From 9d577a9fe12067a41ed4e60adb7edfba30996788 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Thu, 9 Oct 2008 18:40:38 +0000 Subject: * algebra/domain.spad.pamphlet (ConstructorKinid): New domain. (Constructor): Likewise. * algebra/Makefile.pamphlet (axiom_algebra_layer_0): Include CTORKIND. (axiom_algebra_layer_user): Include CTOR. --- src/share/algebra/browse.daase | 3440 +++--- src/share/algebra/category.daase | 5106 ++++---- src/share/algebra/compress.daase | 26 +- src/share/algebra/interp.daase | 10220 +++++++-------- src/share/algebra/operation.daase | 23935 ++++++++++++++++++------------------ 5 files changed, 21377 insertions(+), 21350 deletions(-) (limited to 'src/share') diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index c89ca2c0..dc9d5f7a 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2266992 . 3432414584) +(2267936 . 3432506631) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4345 . T) (-4343 . T) (-4342 . T) ((-4350 "*") . T) (-4341 . T) (-4346 . T) (-4340 . T) (-2363 . T)) +((-4350 . T) (-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4346 . T) (-4351 . T) (-4345 . T) (-2368 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,17 +56,17 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3423) +(-32 R -3428) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) +((|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4348))) +((|HasAttribute| |#1| (QUOTE -4353))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-2363 . T)) +((-2368 . T)) NIL (-35) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4348 . T) (-4349 . T) (-2363 . T)) +((-4353 . T) (-4354 . T) (-2368 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) -((-4342 . T) (-4343 . T) (-4345 . T)) +((-4347 . T) (-4348 . T) (-4350 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -3423 UP UPUP -2938) +(-40 -3428 UP UPUP -2943) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4341 |has| (-400 |#2|) (-356)) (-4346 |has| (-400 |#2|) (-356)) (-4340 |has| (-400 |#2|) (-356)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-343))) (-3886 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-3886 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (-3886 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-343))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147)))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3886 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356))))) -(-41 R -3423) +((-4346 |has| (-402 |#2|) (-358)) (-4351 |has| (-402 |#2|) (-358)) (-4345 |has| (-402 |#2|) (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-345))) (-3891 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-345)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-3891 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-345)))) (-3891 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-345))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3891 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358))))) +(-41 R -3428) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -414) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -103,34 +103,34 @@ NIL (-43 R A) ((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis."))) NIL -((|HasCategory| |#1| (QUOTE (-300)))) +((|HasCategory| |#1| (QUOTE (-302)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4345 |has| |#1| (-543)) (-4343 . T) (-4342 . T)) -((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) +((-4350 |has| |#1| (-545)) (-4348 . T) (-4347 . T)) +((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4348 . T) (-4349 . T)) -((-3886 (-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-825)))) (-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-825))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-825))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) +((-4353 . T) (-4354 . T)) +((-3891 (-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-827)))) (-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-827))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-827))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| $ (QUOTE (-1023))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-536))))) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-538))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4345 . T)) +((-4350 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3423) +(-54 |Base| R -3428) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -154,77 +154,77 @@ NIL NIL (-56 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4348 . T) (-4349 . T) (-2363 . T)) +((-4353 . T) (-4354 . T) (-2368 . T)) NIL (-57 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL (-59 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-60 -3900) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-60 -3905) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-61 -3900) +(-61 -3905) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3900) +(-62 -3905) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -3900) +(-63 -3905) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3900) +(-64 -3905) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -3900) +(-65 -3905) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-66 -3900) +(-66 -3905) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -3900) +(-67 -3905) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3900) +(-68 -3905) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-69 -3900) +(-69 -3905) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-70 -3900) +(-70 -3905) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-71 -3900) +(-71 -3905) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-72 -3900) +(-72 -3905) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-73 -3900) +(-73 -3905) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-74 -3900) +(-74 -3905) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -236,62 +236,62 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -3900) +(-77 -3905) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -3900) +(-78 -3905) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -3900) +(-79 -3905) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3900) +(-80 -3905) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3900) +(-81 -3905) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -3900) +(-82 -3905) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3900) +(-83 -3905) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3900) +(-84 -3905) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3900) +(-85 -3905) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3900) +(-86 -3905) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-87 -3900) +(-87 -3905) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -3900) +(-88 -3905) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL (-89 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) NIL -((|HasCategory| |#1| (QUOTE (-356)))) +((|HasCategory| |#1| (QUOTE (-358)))) (-90 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (-91 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -314,15 +314,15 @@ NIL NIL (-96) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4348 . T)) +((-4353 . T)) NIL (-97) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4348 . T) ((-4350 "*") . T) (-4349 . T) (-4345 . T) (-4343 . T) (-4342 . T) (-4341 . T) (-4346 . T) (-4340 . T) (-4339 . T) (-4338 . T) (-4337 . T) (-4336 . T) (-4344 . T) (-4347 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4335 . T)) +((-4353 . T) ((-4355 "*") . T) (-4354 . T) (-4350 . T) (-4348 . T) (-4347 . T) (-4346 . T) (-4351 . T) (-4345 . T) (-4344 . T) (-4343 . T) (-4342 . T) (-4341 . T) (-4349 . T) (-4352 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4340 . T)) NIL (-98 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4345 . T)) +((-4350 . T)) NIL (-99 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -338,15 +338,15 @@ NIL NIL (-102 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (-103 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4350 "*")))) +((|HasAttribute| |#1| (QUOTE (-4355 "*")))) (-104) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4348 . T)) +((-4353 . T)) NIL (-105 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -354,12 +354,12 @@ NIL NIL (-106 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4349 . T) (-2363 . T)) +((-4354 . T) (-2368 . T)) NIL (-107) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-536) (QUOTE (-884))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-536) (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-145))) (|HasCategory| (-536) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-536) (QUOTE (-994))) (|HasCategory| (-536) (QUOTE (-798))) (-3886 (|HasCategory| (-536) (QUOTE (-798))) (|HasCategory| (-536) (QUOTE (-825)))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-1122))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-536) (QUOTE (-227))) (|HasCategory| (-536) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-536) (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -302) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -279) (QUOTE (-536)) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-300))) (|HasCategory| (-536) (QUOTE (-535))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-536) (LIST (QUOTE -619) (QUOTE (-536)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (|HasCategory| (-536) (QUOTE (-143))))) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-538) (QUOTE (-886))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-538) (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-145))) (|HasCategory| (-538) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-538) (QUOTE (-996))) (|HasCategory| (-538) (QUOTE (-800))) (-3891 (|HasCategory| (-538) (QUOTE (-800))) (|HasCategory| (-538) (QUOTE (-827)))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-1124))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-538) (QUOTE (-229))) (|HasCategory| (-538) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-538) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -304) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -281) (QUOTE (-538)) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-302))) (|HasCategory| (-538) (QUOTE (-537))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-538) (LIST (QUOTE -621) (QUOTE (-538)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (|HasCategory| (-538) (QUOTE (-143))))) (-108) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -370,11 +370,11 @@ NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4349 . T) (-4348 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1072))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-112) (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-112) (QUOTE (-1072))) (|HasCategory| (-112) (LIST (QUOTE -595) (QUOTE (-838))))) +((-4354 . T) (-4353 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1074))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-112) (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-112) (QUOTE (-1074))) (|HasCategory| (-112) (LIST (QUOTE -597) (QUOTE (-840))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4343 . T) (-4342 . T)) +((-4348 . T) (-4347 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) @@ -387,26 +387,26 @@ NIL (-114 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-825)))) -(-115 -3423 UP) +((|HasCategory| |#1| (QUOTE (-827)))) +(-115 -3428 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-884))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-116 |#1|) (QUOTE (-994))) (|HasCategory| (-116 |#1|) (QUOTE (-798))) (-3886 (|HasCategory| (-116 |#1|) (QUOTE (-798))) (|HasCategory| (-116 |#1|) (QUOTE (-825)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1122))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-227))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-300))) (|HasCategory| (-116 |#1|) (QUOTE (-535))) (|HasCategory| (-116 |#1|) (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-884)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-886))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-116 |#1|) (QUOTE (-996))) (|HasCategory| (-116 |#1|) (QUOTE (-800))) (-3891 (|HasCategory| (-116 |#1|) (QUOTE (-800))) (|HasCategory| (-116 |#1|) (QUOTE (-827)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-1124))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-229))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-302))) (|HasCategory| (-116 |#1|) (QUOTE (-537))) (|HasCategory| (-116 |#1|) (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-116 |#1|) (QUOTE (-886)))) (|HasCategory| (-116 |#1|) (QUOTE (-143))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4349))) +((|HasAttribute| |#1| (QUOTE -4354))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-2363 . T)) +((-2368 . T)) NIL (-120 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,24 +430,24 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4348 . T) (-4349 . T) (-2363 . T)) +((-4353 . T) (-4354 . T) (-2368 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (-128) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} views \\spad{`c'} a a byte. In particular \\spad{`c'} is supposed to have a numerical value less than 256.") (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL NIL (-129) ((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| (-128) (QUOTE (-825))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1072))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128)))))) (-3886 (-12 (|HasCategory| (-128) (QUOTE (-1072))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-128) (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| (-128) (QUOTE (-825))) (|HasCategory| (-128) (QUOTE (-1072)))) (|HasCategory| (-128) (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-128) (QUOTE (-1072))) (-12 (|HasCategory| (-128) (QUOTE (-1072))) (|HasCategory| (-128) (LIST (QUOTE -302) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -595) (QUOTE (-838))))) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| (-128) (QUOTE (-827))) (|HasCategory| (-128) (LIST (QUOTE -304) (QUOTE (-128))))) (-12 (|HasCategory| (-128) (QUOTE (-1074))) (|HasCategory| (-128) (LIST (QUOTE -304) (QUOTE (-128)))))) (-3891 (-12 (|HasCategory| (-128) (QUOTE (-1074))) (|HasCategory| (-128) (LIST (QUOTE -304) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-128) (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| (-128) (QUOTE (-827))) (|HasCategory| (-128) (QUOTE (-1074)))) (|HasCategory| (-128) (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-128) (QUOTE (-1074))) (-12 (|HasCategory| (-128) (QUOTE (-1074))) (|HasCategory| (-128) (LIST (QUOTE -304) (QUOTE (-128))))) (|HasCategory| (-128) (LIST (QUOTE -597) (QUOTE (-840))))) (-130) ((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists."))) NIL @@ -462,13 +462,13 @@ NIL NIL (-133) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4350 "*") . T)) +(((-4355 "*") . T)) NIL -(-134 |minix| -2945 R) +(-134 |minix| -2950 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-135 |minix| -2945 S T$) +(-135 |minix| -2950 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -486,8 +486,8 @@ NIL NIL (-139) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4348 . T) (-4338 . T) (-4349 . T)) -((-3886 (-12 (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-142) (QUOTE (-361))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1072))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-838))))) +((-4353 . T) (-4343 . T) (-4354 . T)) +((-3891 (-12 (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-142) (QUOTE (-363))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1074))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-840))))) (-140 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -502,7 +502,7 @@ NIL NIL (-143) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4345 . T)) +((-4350 . T)) NIL (-144 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -510,9 +510,9 @@ NIL NIL (-145) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4345 . T)) +((-4350 . T)) NIL -(-146 -3423 UP UPUP) +(-146 -3428 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -523,14 +523,14 @@ NIL (-148 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasAttribute| |#1| (QUOTE -4348))) +((|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasAttribute| |#1| (QUOTE -4353))) (-149 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-2363 . T)) +((-2368 . T)) NIL (-150 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes"))) NIL NIL -(-200) +(-202) ((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-201) +(-203) ((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-202) +(-204) ((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-203) +(-205) ((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}."))) NIL NIL -(-204) +(-206) ((|elliptic?| (((|Boolean|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{elliptic?(r)} \\undocumented{}")) (|central?| (((|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{central?(f,{}g,{}l)} \\undocumented{}")) (|subscriptedVariables| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{subscriptedVariables(e)} \\undocumented{}")) (|varList| (((|List| (|Symbol|)) (|Symbol|) (|NonNegativeInteger|)) "\\spad{varList(s,{}n)} \\undocumented{}"))) NIL NIL -(-205) +(-207) ((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF."))) NIL NIL -(-206) +(-208) ((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF."))) NIL NIL -(-207 N T$) +(-209 N T$) ((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|setelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "\\spad{setelt(b,{}i,{}x)} sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|elt| ((|#2| $ (|NonNegativeInteger|)) "\\spad{elt(b,{}i)} returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}."))) NIL NIL -(-208 S) +(-210 S) ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-209 -3423 UP UPUP R) +(-211 -3428 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-210 -3423 FP) +(-212 -3428 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL -(-211) +(-213) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-536) (QUOTE (-884))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-536) (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-145))) (|HasCategory| (-536) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-536) (QUOTE (-994))) (|HasCategory| (-536) (QUOTE (-798))) (-3886 (|HasCategory| (-536) (QUOTE (-798))) (|HasCategory| (-536) (QUOTE (-825)))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-1122))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-536) (QUOTE (-227))) (|HasCategory| (-536) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-536) (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -302) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -279) (QUOTE (-536)) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-300))) (|HasCategory| (-536) (QUOTE (-535))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-536) (LIST (QUOTE -619) (QUOTE (-536)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (|HasCategory| (-536) (QUOTE (-143))))) -(-212) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-538) (QUOTE (-886))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-538) (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-145))) (|HasCategory| (-538) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-538) (QUOTE (-996))) (|HasCategory| (-538) (QUOTE (-800))) (-3891 (|HasCategory| (-538) (QUOTE (-800))) (|HasCategory| (-538) (QUOTE (-827)))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-1124))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-538) (QUOTE (-229))) (|HasCategory| (-538) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-538) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -304) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -281) (QUOTE (-538)) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-302))) (|HasCategory| (-538) (QUOTE (-537))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-538) (LIST (QUOTE -621) (QUOTE (-538)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (|HasCategory| (-538) (QUOTE (-143))))) +(-214) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-213 R -3423) +(-215 R -3428) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-214 R) +(-216 R) ((|constructor| (NIL "\\spadtype{RationalFunctionDefiniteIntegration} provides functions to compute definite integrals of rational functions.")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|))) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| (|Expression| |#1|))) (|:| |f2| (|List| (|OrderedCompletion| (|Expression| |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|OrderedCompletion| (|Expression| |#1|)))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL -(-215 R1 R2) +(-217 R1 R2) ((|constructor| (NIL "This package \\undocumented{}")) (|expand| (((|List| (|Expression| |#2|)) (|Expression| |#2|) (|PositiveInteger|)) "\\spad{expand(f,{}n)} \\undocumented{}")) (|reduce| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#1|)) (|:| |deg| (|PositiveInteger|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reduce(p)} \\undocumented{}"))) NIL NIL -(-216 S) +(-218 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-217 |CoefRing| |listIndVar|) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-219 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4345 . T)) +((-4350 . T)) NIL -(-218 R -3423) +(-220 R -3428) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL -(-219) +(-221) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4124 . T) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4129 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-220) +(-222) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) NIL NIL -(-221 R) +(-223 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-543))) (|HasAttribute| |#1| (QUOTE (-4350 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-222 A S) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-545))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-224 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL -(-223 S) +(-225 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4349 . T) (-2363 . T)) +((-4354 . T) (-2368 . T)) NIL -(-224 S R) +(-226 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-227)))) -(-225 R) +((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229)))) +(-227 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4345 . T)) +((-4350 . T)) NIL -(-226 S) +(-228 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) NIL NIL -(-227) +(-229) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4345 . T)) +((-4350 . T)) NIL -(-228 A S) +(-230 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4348))) -(-229 S) +((|HasAttribute| |#1| (QUOTE -4353))) +(-231 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4349 . T) (-2363 . T)) +((-4354 . T) (-2368 . T)) NIL -(-230) +(-232) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-231 S -2945 R) +(-233 S -2950 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823))) (|HasAttribute| |#3| (QUOTE -4345)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (QUOTE (-1072)))) -(-232 -2945 R) +((|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825))) (|HasAttribute| |#3| (QUOTE -4350)) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-1074)))) +(-234 -2950 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4342 |has| |#2| (-1023)) (-4343 |has| |#2| (-1023)) (-4345 |has| |#2| (-6 -4345)) ((-4350 "*") |has| |#2| (-170)) (-4348 . T) (-2363 . T)) +((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T) (-2368 . T)) NIL -(-233 -2945 R) +(-235 -2950 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4342 |has| |#2| (-1023)) (-4343 |has| |#2| (-1023)) (-4345 |has| |#2| (-6 -4345)) ((-4350 "*") |has| |#2| (-170)) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023)))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-771))) (-3886 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4345)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) -(-234 -2945 A B) +((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-3891 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) +(-236 -2950 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-235) +(-237) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL NIL -(-236 S) +(-238 S) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) NIL NIL -(-237) +(-239) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4341 . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-238 S) +(-240 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-2363 . T)) +((-2368 . T)) NIL -(-239 S) +(-241 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-240 M) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-242 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL -(-241 |vl| R) +(-243 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4350 "*") |has| |#2| (-170)) (-4341 |has| |#2| (-543)) (-4346 |has| |#2| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#2| (QUOTE (-884))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-884)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-242) +(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-545)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-886))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-244) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL -(-243 |n| R M S) +(-245 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4345 -3886 (-3186 (|has| |#4| (-1023)) (|has| |#4| (-227))) (-3186 (|has| |#4| (-1023)) (|has| |#4| (-874 (-1147)))) (|has| |#4| (-6 -4345)) (-3186 (|has| |#4| (-1023)) (|has| |#4| (-619 (-536))))) (-4342 |has| |#4| (-1023)) (-4343 |has| |#4| (-1023)) ((-4350 "*") |has| |#4| (-170)) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-356))) (-3886 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-1023)))) (-3886 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-356)))) (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (QUOTE (-771))) (-3886 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (QUOTE (-823)))) (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (QUOTE (-170))) (-3886 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1023)))) (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-705))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-771))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-823))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1023)))) (-3886 (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1023)))) (|HasCategory| |#4| (QUOTE (-705)))) (-3886 (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#4| (QUOTE (-1023)))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#4| (QUOTE (-1023))) (|HasCategory| |#4| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasAttribute| |#4| (QUOTE -4345)) (-12 (|HasCategory| |#4| (QUOTE (-227))) (|HasCategory| |#4| (QUOTE (-1023))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) -(-244 |n| R S) +((-4350 -3891 (-3191 (|has| |#4| (-1025)) (|has| |#4| (-229))) (-3191 (|has| |#4| (-1025)) (|has| |#4| (-876 (-1149)))) (|has| |#4| (-6 -4350)) (-3191 (|has| |#4| (-1025)) (|has| |#4| (-621 (-538))))) (-4347 |has| |#4| (-1025)) (-4348 |has| |#4| (-1025)) ((-4355 "*") |has| |#4| (-170)) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-358))) (-3891 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-1025)))) (-3891 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-358)))) (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (QUOTE (-773))) (-3891 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (QUOTE (-825)))) (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (QUOTE (-170))) (-3891 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-1025)))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#4| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-707))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-773))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-825))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (-3891 (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025)))) (|HasCategory| |#4| (QUOTE (-707)))) (-3891 (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#4| (QUOTE (-1025)))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#4| (QUOTE (-1025))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasAttribute| |#4| (QUOTE -4350)) (-12 (|HasCategory| |#4| (QUOTE (-229))) (|HasCategory| |#4| (QUOTE (-1025))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840))))) +(-246 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4345 -3886 (-3186 (|has| |#3| (-1023)) (|has| |#3| (-227))) (-3186 (|has| |#3| (-1023)) (|has| |#3| (-874 (-1147)))) (|has| |#3| (-6 -4345)) (-3186 (|has| |#3| (-1023)) (|has| |#3| (-619 (-536))))) (-4342 |has| |#3| (-1023)) (-4343 |has| |#3| (-1023)) ((-4350 "*") |has| |#3| (-170)) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-356))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1023)))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (QUOTE (-771))) (-3886 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823)))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-170))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1023)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023)))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023)))) (|HasCategory| |#3| (QUOTE (-705)))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#3| (QUOTE (-1023)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasAttribute| |#3| (QUOTE -4345)) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-838))))) -(-245 A R S V E) +((-4350 -3891 (-3191 (|has| |#3| (-1025)) (|has| |#3| (-229))) (-3191 (|has| |#3| (-1025)) (|has| |#3| (-876 (-1149)))) (|has| |#3| (-6 -4350)) (-3191 (|has| |#3| (-1025)) (|has| |#3| (-621 (-538))))) (-4347 |has| |#3| (-1025)) (-4348 |has| |#3| (-1025)) ((-4355 "*") |has| |#3| (-170)) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-358))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-773))) (-3891 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825)))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-170))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-707)))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasAttribute| |#3| (QUOTE -4350)) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-840))))) +(-247 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL -((|HasCategory| |#2| (QUOTE (-227)))) -(-246 R S V E) +((|HasCategory| |#2| (QUOTE (-229)))) +(-248 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) NIL -(-247 S) +(-249 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4348 . T) (-4349 . T) (-2363 . T)) +((-4353 . T) (-4354 . T) (-2368 . T)) NIL -(-248 |Ex|) +(-250 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-249) +(-251) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) NIL NIL -(-250 R |Ex|) +(-252 R |Ex|) ((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched."))) NIL NIL -(-251) +(-253) ((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction."))) NIL NIL -(-252 R) +(-254 R) ((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}."))) NIL NIL -(-253) +(-255) ((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}."))) NIL NIL -(-254) +(-256) ((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}."))) NIL NIL -(-255) +(-257) ((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned."))) NIL NIL -(-256 S) +(-258 S) ((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command."))) NIL NIL -(-257 R S V) +(-259 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#3| (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#3| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#3| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-258 A S) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#3| (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#3| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#3| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-260 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-259 S) +(-261 S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL NIL -(-260) +(-262) ((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}."))) NIL NIL -(-261) +(-263) ((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-262) +(-264) ((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-263) +(-265) ((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-264) +(-266) ((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-265) +(-267) ((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-266) +(-268) ((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-267) +(-269) ((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}."))) NIL NIL -(-268) +(-270) ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-269 R -3423) +(-271 R -3428) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-270 R -3423) +(-272 R -3428) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL -(-271 |Coef| UTS ULS) +(-273 |Coef| UTS ULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-356)))) -(-272 |Coef| ULS UPXS EFULS) +((|HasCategory| |#1| (QUOTE (-358)))) +(-274 |Coef| ULS UPXS EFULS) ((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}"))) NIL -((|HasCategory| |#1| (QUOTE (-356)))) -(-273) +((|HasCategory| |#1| (QUOTE (-358)))) +(-275) ((|constructor| (NIL "This domains an expresion as elaborated by the interpreter. See Also:")) (|getOperands| (((|Union| (|List| $) "failed") $) "\\spad{getOperands(e)} returns the list of operands in `e',{} assuming it is a call form.")) (|getOperator| (((|Union| (|Symbol|) "failed") $) "\\spad{getOperator(e)} retrieves the operator being invoked in `e',{} when `e' is an expression.")) (|callForm?| (((|Boolean|) $) "\\spad{callForm?(e)} is \\spad{true} when `e' is a call expression.")) (|getIdentifier| (((|Union| (|Symbol|) "failed") $) "\\spad{getIdentifier(e)} retrieves the name of the variable `e'.")) (|variable?| (((|Boolean|) $) "\\spad{variable?(e)} returns \\spad{true} if `e' is a variable.")) (|getConstant| (((|Union| (|SExpression|) "failed") $) "\\spad{getConstant(e)} retrieves the constant value of `e'e.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(e)} returns \\spad{true} if `e' is a constant.")) (|type| (((|ConstructorCall|) $) "\\spad{type(e)} returns the type of the expression as computed by the interpreter."))) NIL NIL -(-274 A S) +(-276 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072)))) -(-275 S) +((|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074)))) +(-277 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4349 . T) (-2363 . T)) +((-4354 . T) (-2368 . T)) NIL -(-276 S) +(-278 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-277) +(-279) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) NIL NIL -(-278 |Coef| UTS) +(-280 |Coef| UTS) ((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}"))) NIL NIL -(-279 S |Index|) +(-281 S |Index|) ((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}."))) NIL NIL -(-280 S |Dom| |Im|) +(-282 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4349))) -(-281 |Dom| |Im|) +((|HasAttribute| |#1| (QUOTE -4354))) +(-283 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-282 S R |Mod| -2147 -3867 |exactQuo|) +(-284 S R |Mod| -2152 -3872 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-283) +(-285) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4341 . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-284) +(-286) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL -(-285 R) +(-287 R) ((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable."))) NIL NIL -(-286 S) +(-288 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4345 -3886 (|has| |#1| (-1023)) (|has| |#1| (-465))) (-4342 |has| |#1| (-1023)) (-4343 |has| |#1| (-1023))) -((|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1023)))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705)))) (|HasCategory| |#1| (QUOTE (-465))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1083)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-291))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-465)))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705)))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) -(-287 S R) +((-4350 -3891 (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4347 |has| |#1| (-1025)) (-4348 |has| |#1| (-1025))) +((|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025)))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707)))) (|HasCategory| |#1| (QUOTE (-467))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1085)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-293))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-467)))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707)))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +(-289 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL -(-288 |Key| |Entry|) +(-290 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) -(-289) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840))))) +(-291) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-290 S) +(-292 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1023)))) -(-291) +((|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1025)))) +(-293) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-292 -3423 S) +(-294 -3428 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-293 E -3423) +(-295 E -3428) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL -(-294) +(-296) ((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}"))) NIL NIL -(-295 A B) +(-297 A B) ((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]"))) NIL NIL -(-296) +(-298) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}"))) NIL NIL -(-297 R1) +(-299 R1) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}"))) NIL NIL -(-298 R1 R2) +(-300 R1 R2) ((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}"))) NIL NIL -(-299 S) +(-301 S) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) NIL NIL -(-300) +(-302) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-301 S R) +(-303 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-302 R) +(-304 R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-303 -3423) +(-305 -3428) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL -(-304) +(-306) ((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}."))) NIL NIL -(-305) +(-307) ((|constructor| (NIL "This domain represents exit expressions.")) (|level| (((|Integer|) $) "\\spad{level(e)} returns the nesting exit level of `e'")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the exit expression of `e'."))) NIL NIL -(-306 R FE |var| |cen|) +(-308 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-884))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-994))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-798))) (-3886 (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-798))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-825)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-1122))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-227))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -1216) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -302) (LIST (QUOTE -1216) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (LIST (QUOTE -279) (LIST (QUOTE -1216) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1216) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-300))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-535))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-884)))) (|HasCategory| (-1216 |#1| |#2| |#3| |#4|) (QUOTE (-143))))) -(-307 R) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-886))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-996))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-800))) (-3891 (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-800))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-827)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-1124))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-229))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -304) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (LIST (QUOTE -281) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1218) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-302))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-537))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-886)))) (|HasCategory| (-1218 |#1| |#2| |#3| |#4|) (QUOTE (-143))))) +(-309 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4345 -3886 (-3186 (|has| |#1| (-1023)) (|has| |#1| (-619 (-536)))) (-12 (|has| |#1| (-543)) (-3886 (-3186 (|has| |#1| (-1023)) (|has| |#1| (-619 (-536)))) (|has| |#1| (-1023)) (|has| |#1| (-465)))) (|has| |#1| (-1023)) (|has| |#1| (-465))) (-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) ((-4350 "*") |has| |#1| (-543)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-543)) (-4340 |has| |#1| (-543))) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-1023)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1083)))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1083)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1083)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3886 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1023)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1083))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| $ (QUOTE (-1023))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-536))))) -(-308 R S) +((-4350 -3891 (-3191 (|has| |#1| (-1025)) (|has| |#1| (-621 (-538)))) (-12 (|has| |#1| (-545)) (-3891 (-3191 (|has| |#1| (-1025)) (|has| |#1| (-621 (-538)))) (|has| |#1| (-1025)) (|has| |#1| (-467)))) (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) ((-4355 "*") |has| |#1| (-545)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-545)) (-4345 |has| |#1| (-545))) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1025)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1085)))) (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1085)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1085)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3891 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#1| (QUOTE (-1025)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1085))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-538))))) +(-310 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL NIL -(-309 R FE) +(-311 R FE) ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-310 R -3423) +(-312 R -3428) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL -(-311) +(-313) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}."))) NIL NIL -(-312 FE |var| |cen|) +(-314 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-536)) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) -(-313 M) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-538)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|))))))) +(-315 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL NIL -(-314 E OV R P) +(-316 E OV R P) ((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}."))) NIL NIL -(-315 S) +(-317 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4343 . T) (-4342 . T)) -((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-770)))) -(-316 S E) +((-4348 . T) (-4347 . T)) +((|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-772)))) +(-318 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL NIL -(-317 S) +(-319 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-749) (QUOTE (-770)))) -(-318 S R E) +((|HasCategory| (-751) (QUOTE (-772)))) +(-320 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170)))) -(-319 R E) +((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170)))) +(-321 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-320 S) +(-322 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-321 S -3423) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-323 S -3428) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL -((|HasCategory| |#2| (QUOTE (-361)))) -(-322 -3423) +((|HasCategory| |#2| (QUOTE (-363)))) +(-324 -3428) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-323) +(-325) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm."))) NIL NIL -(-324 E) +(-326 E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series"))) NIL NIL -(-325) +(-327) ((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}"))) NIL NIL -(-326 -3423 UP UPUP R) +(-328 -3428 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL -(-327 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-329 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-328 S -3423 UP UPUP R) +(-330 S -3428 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-329 -3423 UP UPUP R) +(-331 -3428 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-330 S R) +(-332 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) -(-331 R) +((|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) +(-333 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL -(-332 |basicSymbols| |subscriptedSymbols| R) +(-334 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-371)))) (|HasCategory| $ (QUOTE (-1023))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-536))))) -(-333 |p| |n|) +((-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-373)))) (|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-538))))) +(-335 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (|HasCategory| (-880 |#1|) (QUOTE (-143))) (|HasCategory| (-880 |#1|) (QUOTE (-361)))) (|HasCategory| (-880 |#1|) (QUOTE (-145))) (|HasCategory| (-880 |#1|) (QUOTE (-361))) (|HasCategory| (-880 |#1|) (QUOTE (-143)))) -(-334 S -3423 UP UPUP) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (|HasCategory| (-882 |#1|) (QUOTE (-143))) (|HasCategory| (-882 |#1|) (QUOTE (-363)))) (|HasCategory| (-882 |#1|) (QUOTE (-145))) (|HasCategory| (-882 |#1|) (QUOTE (-363))) (|HasCategory| (-882 |#1|) (QUOTE (-143)))) +(-336 S -3428 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL -((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-356)))) -(-335 -3423 UP UPUP) +((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-358)))) +(-337 -3428 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4341 |has| (-400 |#2|) (-356)) (-4346 |has| (-400 |#2|) (-356)) (-4340 |has| (-400 |#2|) (-356)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 |has| (-402 |#2|) (-358)) (-4351 |has| (-402 |#2|) (-358)) (-4345 |has| (-402 |#2|) (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-336 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) +(-338 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-337 |p| |extdeg|) +(-339 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (|HasCategory| (-880 |#1|) (QUOTE (-143))) (|HasCategory| (-880 |#1|) (QUOTE (-361)))) (|HasCategory| (-880 |#1|) (QUOTE (-145))) (|HasCategory| (-880 |#1|) (QUOTE (-361))) (|HasCategory| (-880 |#1|) (QUOTE (-143)))) -(-338 GF |defpol|) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (|HasCategory| (-882 |#1|) (QUOTE (-143))) (|HasCategory| (-882 |#1|) (QUOTE (-363)))) (|HasCategory| (-882 |#1|) (QUOTE (-145))) (|HasCategory| (-882 |#1|) (QUOTE (-363))) (|HasCategory| (-882 |#1|) (QUOTE (-143)))) +(-340 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-339 GF |extdeg|) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-341 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-340 GF) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-342 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL NIL -(-341 F1 GF F2) +(-343 F1 GF F2) ((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse."))) NIL NIL -(-342 S) +(-344 S) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) NIL NIL -(-343) +(-345) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-344 R UP -3423) +(-346 R UP -3428) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-345 |p| |extdeg|) +(-347 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (|HasCategory| (-880 |#1|) (QUOTE (-143))) (|HasCategory| (-880 |#1|) (QUOTE (-361)))) (|HasCategory| (-880 |#1|) (QUOTE (-145))) (|HasCategory| (-880 |#1|) (QUOTE (-361))) (|HasCategory| (-880 |#1|) (QUOTE (-143)))) -(-346 GF |uni|) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (|HasCategory| (-882 |#1|) (QUOTE (-143))) (|HasCategory| (-882 |#1|) (QUOTE (-363)))) (|HasCategory| (-882 |#1|) (QUOTE (-145))) (|HasCategory| (-882 |#1|) (QUOTE (-363))) (|HasCategory| (-882 |#1|) (QUOTE (-143)))) +(-348 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-347 GF |extdeg|) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-349 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-348 GF |defpol|) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-350 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-349 GF) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-351 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-350 -3423 GF) +(-352 -3428 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-351 -3423 FP FPP) +(-353 -3428 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-352 GF |n|) +(-354 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-143)))) -(-353 R |ls|) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-143)))) +(-355 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL -(-354 S) +(-356 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4345 . T)) +((-4350 . T)) NIL -(-355 S) +(-357 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) NIL NIL -(-356) +(-358) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-357 S) +(-359 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) NIL NIL -(-358 |Name| S) +(-360 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) NIL NIL -(-359 S R) +(-361 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-543)))) -(-360 R) +((|HasCategory| |#2| (QUOTE (-545)))) +(-362 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4345 |has| |#1| (-543)) (-4343 . T) (-4342 . T)) +((-4350 |has| |#1| (-545)) (-4348 . T) (-4347 . T)) NIL -(-361) +(-363) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) NIL NIL -(-362 S R UP) +(-364 S R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) NIL -((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-356)))) -(-363 R UP) +((|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-358)))) +(-365 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4342 . T) (-4343 . T) (-4345 . T)) +((-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-364 A S) +(-366 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4349)) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072)))) -(-365 S) +((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074)))) +(-367 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4348 . T) (-2363 . T)) +((-4353 . T) (-2368 . T)) NIL -(-366 S A R B) +(-368 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) NIL NIL -(-367 |VarSet| R) +(-369 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4343 . T) (-4342 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4348 . T) (-4347 . T)) NIL -(-368 S V) +(-370 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) NIL NIL -(-369 S R) +(-371 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) -(-370 R) +((|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) +(-372 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4345 . T)) +((-4350 . T)) NIL -(-371) +(-373) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4331 . T) (-4339 . T) (-4124 . T) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4336 . T) (-4344 . T) (-4129 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-372 |Par|) +(-374 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) NIL NIL -(-373 |Par|) +(-375 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) NIL NIL -(-374 R S) +(-376 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4343 . T) (-4342 . T)) +((-4348 . T) (-4347 . T)) ((|HasCategory| |#1| (QUOTE (-170)))) -(-375 R S) +(-377 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4343 . T) (-4342 . T)) +((-4348 . T) (-4347 . T)) ((|HasCategory| |#1| (QUOTE (-170)))) -(-376) +(-378) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2363 . T)) +((-2368 . T)) NIL -(-377 R |Basis|) +(-379 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4343 . T) (-4342 . T)) +((-4348 . T) (-4347 . T)) NIL -(-378) +(-380) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2363 . T)) +((-2368 . T)) NIL -(-379 S) +(-381 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-825)))) -(-380) +((|HasCategory| |#1| (QUOTE (-827)))) +(-382) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-381) +(-383) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) NIL NIL -(-382) +(-384) ((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions."))) NIL NIL -(-383 |n| |class| R) +(-385 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4343 . T) (-4342 . T)) +((-4348 . T) (-4347 . T)) NIL -(-384) +(-386) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-385 -3423 UP UPUP R) +(-387 -3428 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL -(-386) +(-388) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format."))) NIL NIL -(-387 S) +(-389 S) ((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format."))) NIL NIL -(-388) +(-390) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-389) +(-391) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-2363 . T)) +((-2368 . T)) NIL -(-390) +(-392) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2363 . T)) +((-2368 . T)) NIL -(-391 -3900 |returnType| -1464 |symbols|) +(-393 -3905 |returnType| -1466 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-392 -3423 UP) +(-394 -3428 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL -(-393 R) +(-395 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-2363 . T)) +((-2368 . T)) NIL -(-394 S) +(-396 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) NIL NIL -(-395) +(-397) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-396 S) +(-398 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4331)) (|HasAttribute| |#1| (QUOTE -4339))) -(-397) +((|HasAttribute| |#1| (QUOTE -4336)) (|HasAttribute| |#1| (QUOTE -4344))) +(-399) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4124 . T) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4129 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-398 R) +(-400 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -302) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -279) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-1188))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-1188)))) (|HasCategory| |#1| (QUOTE (-994))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-444)))) -(-399 R S) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -304) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -281) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-1190))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-1190)))) (|HasCategory| |#1| (QUOTE (-996))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-446)))) +(-401 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL -(-400 S) +(-402 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4335 -12 (|has| |#1| (-6 -4346)) (|has| |#1| (-444)) (|has| |#1| (-6 -4335))) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-994))) (|HasCategory| |#1| (QUOTE (-798))) (-3886 (|HasCategory| |#1| (QUOTE (-798))) (|HasCategory| |#1| (QUOTE (-825)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1122))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-799)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-535))) (-12 (|HasAttribute| |#1| (QUOTE -4335)) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-401 A B) +((-4340 -12 (|has| |#1| (-6 -4351)) (|has| |#1| (-446)) (|has| |#1| (-6 -4340))) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-996))) (|HasCategory| |#1| (QUOTE (-800))) (-3891 (|HasCategory| |#1| (QUOTE (-800))) (|HasCategory| |#1| (QUOTE (-827)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1124))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-801)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-537))) (-12 (|HasAttribute| |#1| (QUOTE -4340)) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-403 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL NIL -(-402 S R UP) +(-404 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL -(-403 R UP) +(-405 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4342 . T) (-4343 . T) (-4345 . T)) +((-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-404 A S) +(-406 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) -(-405 S) +((|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) +(-407 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-406 R -3423 UP A) +(-408 R -3428 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4345 . T)) +((-4350 . T)) NIL -(-407 R1 F1 U1 A1 R2 F2 U2 A2) +(-409 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-408 R -3423 UP A |ibasis|) +(-410 R -3428 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1012) (|devaluate| |#2|)))) -(-409 AR R AS S) +((|HasCategory| |#4| (LIST (QUOTE -1014) (|devaluate| |#2|)))) +(-411 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL NIL -(-410 S R) +(-412 S R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-356)))) -(-411 R) +((|HasCategory| |#2| (QUOTE (-358)))) +(-413 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4345 |has| |#1| (-543)) (-4343 . T) (-4342 . T)) +((-4350 |has| |#1| (-545)) (-4348 . T) (-4347 . T)) NIL -(-412 R) +(-414 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL NIL -(-413 S R) +(-415 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-1083))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525))))) -(-414 R) +((|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-1085))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527))))) +(-416 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4345 -3886 (|has| |#1| (-1023)) (|has| |#1| (-465))) (-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) ((-4350 "*") |has| |#1| (-543)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-543)) (-4340 |has| |#1| (-543)) (-2363 . T)) +((-4350 -3891 (|has| |#1| (-1025)) (|has| |#1| (-467))) (-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) ((-4355 "*") |has| |#1| (-545)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-545)) (-4345 |has| |#1| (-545)) (-2368 . T)) NIL -(-415 R A S B) +(-417 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) NIL NIL -(-416 R FE |x| |cen|) +(-418 R FE |x| |cen|) ((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed."))) NIL NIL -(-417 R FE |Expon| UPS TRAN |x|) +(-419 R FE |Expon| UPS TRAN |x|) ((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'"))) NIL NIL -(-418 A S) +(-420 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-361)))) -(-419 S) +((|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-363)))) +(-421 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4348 . T) (-4338 . T) (-4349 . T) (-2363 . T)) +((-4353 . T) (-4343 . T) (-4354 . T) (-2368 . T)) NIL -(-420 S A R B) +(-422 S A R B) ((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-421 R -3423) +(-423 R -3428) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL -(-422 R E) +(-424 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4335 -12 (|has| |#1| (-6 -4335)) (|has| |#2| (-6 -4335))) (-4342 . T) (-4343 . T) (-4345 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4335)) (|HasAttribute| |#2| (QUOTE -4335)))) -(-423 R -3423) +((-4340 -12 (|has| |#1| (-6 -4340)) (|has| |#2| (-6 -4340))) (-4347 . T) (-4348 . T) (-4350 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4340)) (|HasAttribute| |#2| (QUOTE -4340)))) +(-425 R -3428) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-424 R -3423) +(-426 R -3428) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-425 R -3423) +(-427 R -3428) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-426 R -3423) +(-428 R -3428) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL -(-427) +(-429) ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-428 R -3423 UP) +(-430 R -3428 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-48))))) -(-429) +((|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-48))))) +(-431) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}"))) NIL NIL -(-430) +(-432) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL NIL -(-431 |f|) +(-433 |f|) ((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-432) +(-434) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-2363 . T)) +((-2368 . T)) NIL -(-433) +(-435) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-2363 . T)) +((-2368 . T)) NIL -(-434 UP) +(-436 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-435 R UP -3423) +(-437 R UP -3428) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL -(-436 R UP) +(-438 R UP) ((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1)."))) NIL NIL -(-437 R) +(-439 R) ((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation."))) NIL -((|HasCategory| |#1| (QUOTE (-397)))) -(-438) +((|HasCategory| |#1| (QUOTE (-399)))) +(-440) ((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}."))) NIL NIL -(-439 |Dom| |Expon| |VarSet| |Dpol|) +(-441 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}."))) NIL -((|HasCategory| |#1| (QUOTE (-356)))) -(-440 |Dom| |Expon| |VarSet| |Dpol|) +((|HasCategory| |#1| (QUOTE (-358)))) +(-442 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class."))) NIL NIL -(-441 |Dom| |Expon| |VarSet| |Dpol|) +(-443 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}."))) NIL NIL -(-442 |Dom| |Expon| |VarSet| |Dpol|) +(-444 |Dom| |Expon| |VarSet| |Dpol|) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented"))) NIL NIL -(-443 S) +(-445 S) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) NIL NIL -(-444) +(-446) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-445 R |n| |ls| |gamma|) +(-447 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4345 |has| (-400 (-920 |#1|)) (-543)) (-4343 . T) (-4342 . T)) -((|HasCategory| (-400 (-920 |#1|)) (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| (-400 (-920 |#1|)) (QUOTE (-543)))) -(-446 |vl| R E) +((-4350 |has| (-402 (-922 |#1|)) (-545)) (-4348 . T) (-4347 . T)) +((|HasCategory| (-402 (-922 |#1|)) (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| (-402 (-922 |#1|)) (QUOTE (-545)))) +(-448 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4350 "*") |has| |#2| (-170)) (-4341 |has| |#2| (-543)) (-4346 |has| |#2| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#2| (QUOTE (-884))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-884)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-447 R BP) +(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-545)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-886))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-449 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL NIL -(-448 OV E S R P) +(-450 OV E S R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-449 E OV R P) +(-451 E OV R P) ((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}"))) NIL NIL -(-450 R) +(-452 R) ((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}"))) NIL NIL -(-451 R FE) +(-453 R FE) ((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}."))) NIL NIL -(-452 RP TP) +(-454 RP TP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done ."))) NIL NIL -(-453 |vl| R IS E |ff| P) +(-455 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4343 . T) (-4342 . T)) +((-4348 . T) (-4347 . T)) NIL -(-454 E V R P Q) +(-456 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) NIL NIL -(-455 R E |VarSet| P) +(-457 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4349 . T) (-4348 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) -(-456 S R E) +((-4354 . T) (-4353 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840))))) +(-458 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-457 R E) +(-459 R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL NIL -(-458) +(-460) ((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect."))) NIL NIL -(-459) +(-461) ((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done."))) NIL NIL -(-460) +(-462) ((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport."))) NIL NIL -(-461 S R E) +(-463 S R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-462 R E) +(-464 R E) ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-463 |lv| -3423 R) +(-465 |lv| -3428 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL -(-464 S) +(-466 S) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) NIL NIL -(-465) +(-467) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4345 . T)) +((-4350 . T)) NIL -(-466 |Coef| |var| |cen|) +(-468 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-536)) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) -(-467 |Key| |Entry| |Tbl| |dent|) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-538)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|))))))) +(-469 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4349 . T)) -((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-825))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) -(-468 R E V P) +((-4354 . T)) +((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-827))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840))))) +(-470 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4349 . T) (-4348 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) -(-469) +((-4354 . T) (-4353 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840))))) +(-471) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-470) +(-472) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) NIL NIL -(-471 |Key| |Entry| |hashfn|) +(-473 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) -(-472) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840))))) +(-474) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL -(-473 |vl| R) +(-475 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4350 "*") |has| |#2| (-170)) (-4341 |has| |#2| (-543)) (-4346 |has| |#2| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#2| (QUOTE (-884))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-884)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-474 -2945 S) +(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-545)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-886))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-476 -2950 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4342 |has| |#2| (-1023)) (-4343 |has| |#2| (-1023)) (-4345 |has| |#2| (-6 -4345)) ((-4350 "*") |has| |#2| (-170)) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023)))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-771))) (-3886 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4345)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) -(-475) +((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-3891 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) +(-477) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL -(-476 S) +(-478 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-477 -3423 UP UPUP R) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-479 -3428 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL -(-478 BP) +(-480 BP) ((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}."))) NIL NIL -(-479) +(-481) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-536) (QUOTE (-884))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-536) (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-145))) (|HasCategory| (-536) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-536) (QUOTE (-994))) (|HasCategory| (-536) (QUOTE (-798))) (-3886 (|HasCategory| (-536) (QUOTE (-798))) (|HasCategory| (-536) (QUOTE (-825)))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-1122))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-536) (QUOTE (-227))) (|HasCategory| (-536) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-536) (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -302) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -279) (QUOTE (-536)) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-300))) (|HasCategory| (-536) (QUOTE (-535))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-536) (LIST (QUOTE -619) (QUOTE (-536)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (|HasCategory| (-536) (QUOTE (-143))))) -(-480 A S) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-538) (QUOTE (-886))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-538) (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-145))) (|HasCategory| (-538) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-538) (QUOTE (-996))) (|HasCategory| (-538) (QUOTE (-800))) (-3891 (|HasCategory| (-538) (QUOTE (-800))) (|HasCategory| (-538) (QUOTE (-827)))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-1124))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-538) (QUOTE (-229))) (|HasCategory| (-538) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-538) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -304) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -281) (QUOTE (-538)) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-302))) (|HasCategory| (-538) (QUOTE (-537))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-538) (LIST (QUOTE -621) (QUOTE (-538)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (|HasCategory| (-538) (QUOTE (-143))))) +(-482 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4348)) (|HasAttribute| |#1| (QUOTE -4349)) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) -(-481 S) +((|HasAttribute| |#1| (QUOTE -4353)) (|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) +(-483 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-2363 . T)) +((-2368 . T)) NIL -(-482) +(-484) ((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}."))) NIL NIL -(-483 S) +(-485 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-484) +(-486) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-485 -3423 UP |AlExt| |AlPol|) +(-487 -3428 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL -(-486) +(-488) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| $ (QUOTE (-1023))) (|HasCategory| $ (LIST (QUOTE -1012) (QUOTE (-536))))) -(-487 S |mn|) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| $ (QUOTE (-1025))) (|HasCategory| $ (LIST (QUOTE -1014) (QUOTE (-538))))) +(-489 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-488 R |mnRow| |mnCol|) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-490 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-489 K R UP) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-491 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-490 R UP -3423) +(-492 R UP -3428) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL -(-491 |mn|) +(-493 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4349 . T) (-4348 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1072))) (|HasCategory| (-112) (LIST (QUOTE -302) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-112) (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-112) (QUOTE (-1072))) (|HasCategory| (-112) (LIST (QUOTE -595) (QUOTE (-838))))) -(-492 K R UP L) +((-4354 . T) (-4353 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1074))) (|HasCategory| (-112) (LIST (QUOTE -304) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-112) (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-112) (QUOTE (-1074))) (|HasCategory| (-112) (LIST (QUOTE -597) (QUOTE (-840))))) +(-494 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL NIL -(-493) +(-495) ((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}."))) NIL NIL -(-494 R Q A B) +(-496 R Q A B) ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-495 -3423 |Expon| |VarSet| |DPoly|) +(-497 -3428 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-1147))))) -(-496 |vl| |nv|) +((|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-1149))))) +(-498 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL NIL -(-497) +(-499) ((|constructor| (NIL "This domain represents identifer AST."))) NIL NIL -(-498 A S) +(-500 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-499 A S) +(-501 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL NIL -(-500 A S) +(-502 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL NIL -(-501 A S) +(-503 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL NIL -(-502 A S) +(-504 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-503 A S) +(-505 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL NIL -(-504 S A B) +(-506 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-505 A B) +(-507 A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-506 S E |un|) +(-508 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-770)))) -(-507 S |mn|) +((|HasCategory| |#2| (QUOTE (-772)))) +(-509 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-508) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-510) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL -(-509 |p| |n|) +(-511 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (|HasCategory| (-565 |#1|) (QUOTE (-143))) (|HasCategory| (-565 |#1|) (QUOTE (-361)))) (|HasCategory| (-565 |#1|) (QUOTE (-145))) (|HasCategory| (-565 |#1|) (QUOTE (-361))) (|HasCategory| (-565 |#1|) (QUOTE (-143)))) -(-510 R |mnRow| |mnCol| |Row| |Col|) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (|HasCategory| (-567 |#1|) (QUOTE (-143))) (|HasCategory| (-567 |#1|) (QUOTE (-363)))) (|HasCategory| (-567 |#1|) (QUOTE (-145))) (|HasCategory| (-567 |#1|) (QUOTE (-363))) (|HasCategory| (-567 |#1|) (QUOTE (-143)))) +(-512 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-511 S |mn|) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-513 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-512 R |Row| |Col| M) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-514 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4349))) -(-513 R |Row| |Col| M QF |Row2| |Col2| M2) +((|HasAttribute| |#3| (QUOTE -4354))) +(-515 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4349))) -(-514 R |mnRow| |mnCol|) +((|HasAttribute| |#7| (QUOTE -4354))) +(-516 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-543))) (|HasAttribute| |#1| (QUOTE (-4350 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-515) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-545))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-517) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL NIL -(-516) +(-518) ((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Symbol|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'"))) NIL NIL -(-517 S) +(-519 S) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) NIL NIL -(-518) +(-520) ((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{readBytes!(c,{}b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned.")) (|readByteIfCan!| (((|SingleInteger|) $) "\\spad{readByteIfCan!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise return \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every read attempt,{} which is overkill.}"))) NIL NIL -(-519 GF) +(-521 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL NIL -(-520) +(-522) ((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-521 R) +(-523 R) ((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}."))) NIL NIL -(-522 |Varset|) +(-524 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-523 K -3423 |Par|) +(-525 K -3428 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL -(-524) +(-526) ((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity."))) NIL NIL -(-525) +(-527) ((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter."))) NIL NIL -(-526 R) +(-528 R) ((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}."))) NIL NIL -(-527 |Coef| UTS) +(-529 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-528 K -3423 |Par|) +(-530 K -3428 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL -(-529 R BP |pMod| |nextMod|) +(-531 R BP |pMod| |nextMod|) ((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods."))) NIL NIL -(-530 OV E R P) +(-532 OV E R P) ((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}."))) NIL NIL -(-531 K UP |Coef| UTS) +(-533 K UP |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-532 |Coef| UTS) +(-534 |Coef| UTS) ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-533 R UP) +(-535 R UP) ((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) #1="failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) #1#) |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) #1#) |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented"))) NIL NIL -(-534 S) +(-536 S) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) NIL NIL -(-535) +(-537) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b

1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4346 . T) (-4347 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-536) +(-538) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4330 . T) (-4336 . T) (-4340 . T) (-4335 . T) (-4346 . T) (-4347 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4335 . T) (-4341 . T) (-4345 . T) (-4340 . T) (-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-537 |Key| |Entry| |addDom|) +(-539 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) -(-538 R -3423) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840))))) +(-540 R -3428) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-539 R0 -3423 UP UPUP R) +(-541 R0 -3428 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-540) +(-542) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-541 R) +(-543 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4124 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4129 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-542 S) +(-544 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-543) +(-545) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-544 R -3423) +(-546 R -3428) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-545 I) +(-547 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-546) +(-548) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-547 R -3423 L) +(-549 R -3428 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -636) (|devaluate| |#2|)))) -(-548) +((|HasCategory| |#3| (LIST (QUOTE -638) (|devaluate| |#2|)))) +(-550) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-549 -3423 UP UPUP R) +(-551 -3428 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-550 -3423 UP) +(-552 -3428 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-551) +(-553) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-552 R -3423 L) +(-554 R -3428 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -636) (|devaluate| |#2|)))) -(-553 R -3423) +((|HasCategory| |#3| (LIST (QUOTE -638) (|devaluate| |#2|)))) +(-555 R -3428) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1110)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-610))))) -(-554 -3423 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1112)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-612))))) +(-556 -3428 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-555 S) +(-557 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-556 -3423) +(-558 -3428) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-557 R) +(-559 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4124 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4129 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-558) +(-560) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-559 R -3423) +(-561 R -3428) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-277))) (|HasCategory| |#2| (QUOTE (-610))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-277)))) (|HasCategory| |#1| (QUOTE (-543)))) -(-560 -3423 UP) +((-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-279))) (|HasCategory| |#2| (QUOTE (-612))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-279)))) (|HasCategory| |#1| (QUOTE (-545)))) +(-562 -3428 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-561 R -3423) +(-563 R -3428) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-562) +(-564) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-563) +(-565) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input."))) NIL NIL -(-564 |p| |unBalanced?|) +(-566 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-565 |p|) +(-567 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361)))) -(-566) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-363)))) +(-568) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-567 -3423) +(-569 -3428) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4343 . T) (-4342 . T)) -((|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-1147))))) -(-568 E -3423) +((-4348 . T) (-4347 . T)) +((|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-1149))))) +(-570 E -3428) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-569 R -3423) +(-571 R -3428) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-570 I) +(-572 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-571 GF) +(-573 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-572 R) +(-574 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-145)))) -(-573) +(-575) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-574 R E V P TS) +(-576 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-575) +(-577) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-576 |mn|) +(-578 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (-3886 (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1072)))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1072))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-838))))) -(-577 E V R P) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (-3891 (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1074)))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1074))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-840))))) +(-579 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-578 |Coef|) +(-580 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|)))) (|HasCategory| (-536) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536)))))) -(-579 |Coef|) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|)))) (|HasCategory| (-538) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538)))))) +(-581 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4343 |has| |#1| (-543)) (-4342 |has| |#1| (-543)) ((-4350 "*") |has| |#1| (-543)) (-4341 |has| |#1| (-543)) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-543)))) -(-580 A B) +((-4348 |has| |#1| (-545)) (-4347 |has| |#1| (-545)) ((-4355 "*") |has| |#1| (-545)) (-4346 |has| |#1| (-545)) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-545)))) +(-582 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-581 A B C) +(-583 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-582 R -3423 FG) +(-584 R -3428 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-583 S) +(-585 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-584 R |mn|) +(-586 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-585 S |Index| |Entry|) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-587 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4349)) (|HasCategory| |#2| (QUOTE (-825))) (|HasAttribute| |#1| (QUOTE -4348)) (|HasCategory| |#3| (QUOTE (-1072)))) -(-586 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-827))) (|HasAttribute| |#1| (QUOTE -4353)) (|HasCategory| |#3| (QUOTE (-1074)))) +(-588 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-2363 . T)) +((-2368 . T)) NIL -(-587) +(-589) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) NIL NIL -(-588) +(-590) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-589 R A) +(-591 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4345 -3886 (-3186 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))) (-4343 . T) (-4342 . T)) -((-3886 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) -(-590 |Entry|) +((-4350 -3891 (-3191 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))) (-4348 . T) (-4347 . T)) +((-3891 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) +(-592 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (QUOTE (-1129))) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| (-1129) (QUOTE (-825))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -595) (QUOTE (-838))))) -(-591 S |Key| |Entry|) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| (-1131) (QUOTE (-827))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -597) (QUOTE (-840))))) +(-593 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-592 |Key| |Entry|) +(-594 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4349 . T) (-2363 . T)) +((-4354 . T) (-2368 . T)) NIL -(-593 S) +(-595 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) -(-594 R S) +((|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) +(-596 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-595 S) +(-597 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-596 S) +(-598 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-597 -3423 UP) +(-599 -3428 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-598) +(-600) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value"))) NIL NIL -(-599 A R S) +(-601 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-823)))) -(-600 S R) +((-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-825)))) +(-602 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-601 R) +(-603 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4345 . T)) +((-4350 . T)) NIL -(-602 R -3423) +(-604 R -3428) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-603 R UP) +(-605 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4343 . T) (-4342 . T) ((-4350 "*") . T) (-4341 . T) (-4345 . T)) -((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) -(-604 R E V P TS ST) +((-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4346 . T) (-4350 . T)) +((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) +(-606 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-605 OV E Z P) +(-607 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-606) +(-608) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-607 |VarSet| R |Order|) +(-609 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4345 . T)) +((-4350 . T)) NIL -(-608 R |ls|) +(-610 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-609 R -3423) +(-611 R -3428) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-610) +(-612) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-611 |lv| -3423) +(-613 |lv| -3428) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-612) +(-614) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4349 . T)) -((-12 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (QUOTE (-1129))) (LIST (QUOTE |:|) (QUOTE -2186) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-1129) (QUOTE (-825))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838))))) -(-613 R A) +((-4354 . T)) +((-12 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -2191) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -304) (QUOTE (-51))))) (|HasCategory| (-1131) (QUOTE (-827))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840))))) +(-615 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4345 -3886 (-3186 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))) (-4343 . T) (-4342 . T)) -((-3886 (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -360) (|devaluate| |#1|)))) -(-614 S R) +((-4350 -3891 (-3191 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))) (-4348 . T) (-4347 . T)) +((-3891 (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -413) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -362) (|devaluate| |#1|)))) +(-616 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL -((|HasCategory| |#2| (QUOTE (-356)))) -(-615 R) +((|HasCategory| |#2| (QUOTE (-358)))) +(-617 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4343 . T) (-4342 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4348 . T) (-4347 . T)) NIL -(-616 R FE) +(-618 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-617 R) +(-619 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-618 S R) +(-620 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3671 (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-356)))) -(-619 R) +((-3676 (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-358)))) +(-621 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4345 . T)) +((-4350 . T)) NIL -(-620 S) +(-622 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-799))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-621 A B) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-801))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-623 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-622 A B) +(-624 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-623 A B C) +(-625 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-624 T$) +(-626 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-625 S) +(-627 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-626 R) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-628 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-627 S E |un|) +(-629 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-628 A S) +(-630 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4349))) -(-629 S) +((|HasAttribute| |#1| (QUOTE -4354))) +(-631 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-2363 . T)) +((-2368 . T)) NIL -(-630 M R S) +(-632 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4343 . T) (-4342 . T)) -((|HasCategory| |#1| (QUOTE (-769)))) -(-631 R -3423 L) +((-4348 . T) (-4347 . T)) +((|HasCategory| |#1| (QUOTE (-771)))) +(-633 R -3428 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-632 A -2743) +(-634 A -2748) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) -(-633 A) +((-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) +(-635 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) -(-634 A M) +((-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) +(-636 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) -(-635 S A) +((-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) +(-637 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL -((|HasCategory| |#2| (QUOTE (-356)))) -(-636 A) +((|HasCategory| |#2| (QUOTE (-358)))) +(-638 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4342 . T) (-4343 . T) (-4345 . T)) +((-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-637 -3423 UP) +(-639 -3428 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-638 A L) +(-640 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-639 S) +(-641 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-640) +(-642) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-641 R) +(-643 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-642 |VarSet| R) +(-644 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4343 . T) (-4342 . T)) -((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-170)))) -(-643 A S) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4348 . T) (-4347 . T)) +((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-170)))) +(-645 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-644 S) +(-646 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL -(-645 -3423 |Row| |Col| M) +(-647 -3428 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-646 -3423) +(-648 -3428) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-647 R E OV P) +(-649 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-648 |n| R) +(-650 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4345 . T) (-4348 . T) (-4342 . T) (-4343 . T)) -((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4350 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-543))) (-3886 (|HasAttribute| |#2| (QUOTE (-4350 #1#))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-170)))) -(-649) +((-4350 . T) (-4353 . T) (-4347 . T) (-4348 . T)) +((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4355 #1="*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-545))) (-3891 (|HasAttribute| |#2| (QUOTE (-4355 #1#))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-170)))) +(-651) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-650 |VarSet|) +(-652 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-651 A S) +(-653 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-652 S) +(-654 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-2363 . T)) +((-2368 . T)) NIL -(-653 R) +(-655 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-654) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-656) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-655 |VarSet|) +(-657 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-656 A) +(-658 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-657 A C) +(-659 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-658 A B C) +(-660 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-659) +(-661) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-660 A) +(-662 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-661 A C) +(-663 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-662 A B C) +(-664 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-663 S R |Row| |Col|) +(-665 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then \\spad{x(i,{}j)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i,{}j)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4350 "*"))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-543)))) -(-664 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-545)))) +(-666 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then \\spad{x(i,{}j)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i,{}j)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4348 . T) (-4349 . T) (-2363 . T)) +((-4353 . T) (-4354 . T) (-2368 . T)) NIL -(-665 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-667 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-666 R |Row| |Col| M) +(-668 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-543)))) -(-667 R) +((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-545)))) +(-669 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4348 . T) (-4349 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-300))) (|HasCategory| |#1| (QUOTE (-543))) (|HasAttribute| |#1| (QUOTE (-4350 "*"))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-668 R) +((-4353 . T) (-4354 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-545))) (|HasAttribute| |#1| (QUOTE (-4355 "*"))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-670 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-669 T$) +(-671 T$) ((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}."))) NIL NIL -(-670 S -3423 FLAF FLAS) +(-672 S -3428 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-671 R Q) +(-673 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-672) +(-674) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4341 . T) (-4346 |has| (-677) (-356)) (-4340 |has| (-677) (-356)) (-1421 . T) (-4347 |has| (-677) (-6 -4347)) (-4344 |has| (-677) (-6 -4344)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-677) (QUOTE (-145))) (|HasCategory| (-677) (QUOTE (-143))) (|HasCategory| (-677) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-677) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-677) (QUOTE (-361))) (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-677) (QUOTE (-227))) (-3886 (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-343)))) (|HasCategory| (-677) (QUOTE (-343))) (|HasCategory| (-677) (LIST (QUOTE -279) (QUOTE (-677)) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -302) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE (-677)))) (|HasCategory| (-677) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-677) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-677) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-677) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (-3886 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-343)))) (|HasCategory| (-677) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-677) (QUOTE (-994))) (|HasCategory| (-677) (QUOTE (-1169))) (-12 (|HasCategory| (-677) (QUOTE (-976))) (|HasCategory| (-677) (QUOTE (-1169)))) (-3886 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (-12 (|HasCategory| (-677) (QUOTE (-343))) (|HasCategory| (-677) (QUOTE (-884)))) (|HasCategory| (-677) (QUOTE (-356)))) (-3886 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (-12 (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (QUOTE (-884)))) (-12 (|HasCategory| (-677) (QUOTE (-343))) (|HasCategory| (-677) (QUOTE (-884))))) (|HasCategory| (-677) (QUOTE (-535))) (-12 (|HasCategory| (-677) (QUOTE (-1032))) (|HasCategory| (-677) (QUOTE (-1169)))) (|HasCategory| (-677) (QUOTE (-1032))) (-3886 (|HasCategory| (-677) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-677) (QUOTE (-356)))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884))) (-3886 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (|HasCategory| (-677) (QUOTE (-356)))) (-3886 (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (|HasCategory| (-677) (QUOTE (-543)))) (-12 (|HasCategory| (-677) (QUOTE (-227))) (|HasCategory| (-677) (QUOTE (-356)))) (-12 (|HasCategory| (-677) (QUOTE (-356))) (|HasCategory| (-677) (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| (-677) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-677) (QUOTE (-825))) (|HasCategory| (-677) (QUOTE (-543))) (|HasAttribute| (-677) (QUOTE -4347)) (|HasAttribute| (-677) (QUOTE -4344)) (-12 (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (|HasCategory| (-677) (QUOTE (-143)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-677) (QUOTE (-300))) (|HasCategory| (-677) (QUOTE (-884)))) (|HasCategory| (-677) (QUOTE (-343))))) -(-673 S) +((-4346 . T) (-4351 |has| (-679) (-358)) (-4345 |has| (-679) (-358)) (-1421 . T) (-4352 |has| (-679) (-6 -4352)) (-4349 |has| (-679) (-6 -4349)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-679) (QUOTE (-145))) (|HasCategory| (-679) (QUOTE (-143))) (|HasCategory| (-679) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-679) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-679) (QUOTE (-363))) (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-679) (QUOTE (-229))) (-3891 (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-345)))) (|HasCategory| (-679) (QUOTE (-345))) (|HasCategory| (-679) (LIST (QUOTE -281) (QUOTE (-679)) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -304) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-679)))) (|HasCategory| (-679) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-679) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-679) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-679) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (-3891 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-345)))) (|HasCategory| (-679) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-679) (QUOTE (-996))) (|HasCategory| (-679) (QUOTE (-1171))) (-12 (|HasCategory| (-679) (QUOTE (-978))) (|HasCategory| (-679) (QUOTE (-1171)))) (-3891 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (-12 (|HasCategory| (-679) (QUOTE (-345))) (|HasCategory| (-679) (QUOTE (-886)))) (|HasCategory| (-679) (QUOTE (-358)))) (-3891 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (-12 (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (QUOTE (-886)))) (-12 (|HasCategory| (-679) (QUOTE (-345))) (|HasCategory| (-679) (QUOTE (-886))))) (|HasCategory| (-679) (QUOTE (-537))) (-12 (|HasCategory| (-679) (QUOTE (-1034))) (|HasCategory| (-679) (QUOTE (-1171)))) (|HasCategory| (-679) (QUOTE (-1034))) (-3891 (|HasCategory| (-679) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-679) (QUOTE (-358)))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886))) (-3891 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (|HasCategory| (-679) (QUOTE (-358)))) (-3891 (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (|HasCategory| (-679) (QUOTE (-545)))) (-12 (|HasCategory| (-679) (QUOTE (-229))) (|HasCategory| (-679) (QUOTE (-358)))) (-12 (|HasCategory| (-679) (QUOTE (-358))) (|HasCategory| (-679) (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| (-679) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-679) (QUOTE (-827))) (|HasCategory| (-679) (QUOTE (-545))) (|HasAttribute| (-679) (QUOTE -4352)) (|HasAttribute| (-679) (QUOTE -4349)) (-12 (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (|HasCategory| (-679) (QUOTE (-143)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-679) (QUOTE (-302))) (|HasCategory| (-679) (QUOTE (-886)))) (|HasCategory| (-679) (QUOTE (-345))))) +(-675 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4349 . T) (-2363 . T)) +((-4354 . T) (-2368 . T)) NIL -(-674 U) +(-676 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-675) +(-677) ((|constructor| (NIL "\\indented{1}{} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-676 OV E -3423 PG) +(-678 OV E -3428 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-677) +(-679) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4124 . T) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4129 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-678 R) +(-680 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-679) +(-681) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4347 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4352 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-680 S D1 D2 I) +(-682 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-681 S) +(-683 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%."))) NIL NIL -(-682 S) +(-684 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-683 S) +(-685 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-684 S T$) +(-686 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-685 S -2997 I) +(-687 S -3002 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-686 E OV R P) +(-688 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-687 R) +(-689 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4342 . T) (-4343 . T) (-4345 . T)) +((-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-688 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-690 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-689) +(-691) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-690 R |Mod| -2147 -3867 |exactQuo|) +(-692 R |Mod| -2152 -3872 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-691 R |Rep|) +(-693 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4344 |has| |#1| (-356)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1053) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-343))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-692 IS E |ff|) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-345))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-694 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-693 R M) +(-695 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) (-4345 . T)) +((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T)) ((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) -(-694 R |Mod| -2147 -3867 |exactQuo|) +(-696 R |Mod| -2152 -3872 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4345 . T)) +((-4350 . T)) NIL -(-695 S R) +(-697 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-696 R) +(-698 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4343 . T) (-4342 . T)) +((-4348 . T) (-4347 . T)) NIL -(-697 -3423) +(-699 -3428) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4345 . T)) +((-4350 . T)) NIL -(-698 S) +(-700 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-699) +(-701) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-700 S) +(-702 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-701) +(-703) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-702 S R UP) +(-704 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL -((|HasCategory| |#2| (QUOTE (-343))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361)))) -(-703 R UP) +((|HasCategory| |#2| (QUOTE (-345))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363)))) +(-705 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4341 |has| |#1| (-356)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 |has| |#1| (-358)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-704 S) +(-706 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-705) +(-707) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-706 -3423 UP) +(-708 -3428 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-707 |VarSet| E1 E2 R S PR PS) +(-709 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-708 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-710 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-709 E OV R PPR) +(-711 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-710 |vl| R) +(-712 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4350 "*") |has| |#2| (-170)) (-4341 |has| |#2| (-543)) (-4346 |has| |#2| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#2| (QUOTE (-884))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-884)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-839 |#1|) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-711 E OV R PRF) +(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-545)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-886))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-841 |#1|) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-713 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-712 E OV R P) +(-714 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-713 R S M) +(-715 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-714 R M) +(-716 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) (-4345 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-825)))) -(-715 S) +((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-827)))) +(-717 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4348 . T) (-4338 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-716 S) +((-4353 . T) (-4343 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-718 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4338 . T) (-4349 . T) (-2363 . T)) +((-4343 . T) (-4354 . T) (-2368 . T)) NIL -(-717) +(-719) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-718 S) +(-720 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-719 |Coef| |Var|) +(-721 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4343 . T) (-4342 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4348 . T) (-4347 . T) (-4350 . T)) NIL -(-720 OV E R P) +(-722 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-721 E OV R P) +(-723 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-722 S R) +(-724 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-723 R) +(-725 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4343 . T) (-4342 . T)) +((-4348 . T) (-4347 . T)) NIL -(-724) +(-726) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-725) +(-727) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-726) +(-728) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-727) +(-729) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-728) +(-730) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-729) +(-731) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-730) +(-732) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-731) +(-733) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-732) +(-734) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-733) +(-735) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-734) +(-736) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-735) +(-737) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-736) +(-738) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-737) +(-739) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-738) +(-740) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-739 S) +(-741 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-740) +(-742) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-741 S) +(-743 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-742) +(-744) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-743 |Par|) +(-745 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-744 -3423) +(-746 -3428) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-745 P -3423) +(-747 P -3428) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-746 UP -3423) +(-748 UP -3428) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-747) +(-749) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-748 R) +(-750 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-749) +(-751) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4350 "*") . T)) +(((-4355 "*") . T)) NIL -(-750 R -3423) +(-752 R -3428) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-751) +(-753) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-752 S) +(-754 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-753 R |PolR| E |PolE|) +(-755 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-754 R E V P TS) +(-756 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-755 -3423 |ExtF| |SUEx| |ExtP| |n|) +(-757 -3428 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-756 BP E OV R P) +(-758 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-757 |Par|) +(-759 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-758 R |VarSet|) +(-760 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147))))) (-3886 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))) (-3671 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))))) (-3886 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))) (-3671 (|HasCategory| |#1| (QUOTE (-535)))) (-3671 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))) (-3671 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-536))))) (-3671 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-1147)))) (-3671 (|HasCategory| |#1| (LIST (QUOTE -965) (QUOTE (-536))))))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-759 R) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149))))) (-3891 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))))) (-3891 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-3676 (|HasCategory| |#1| (QUOTE (-537)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-538))))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-1149)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-538))))))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-761 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4344 |has| |#1| (-356)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1053) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-760 R S) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-762 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-761 R) +(-763 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) -(-762 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) +(-764 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL -(-763 S) +(-765 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-170)))) -(-764) +((-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-827)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-1025))) (|HasCategory| |#1| (QUOTE (-170)))) +(-766) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-765) +(-767) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-766) +(-768) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-767) +(-769) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-768 |Curve|) +(-770 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-769) +(-771) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-770) +(-772) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-771) +(-773) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-772) +(-774) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-773 S R) +(-775 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-361)))) -(-774 R) +((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-363)))) +(-776 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4342 . T) (-4343 . T) (-4345 . T)) +((-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-775) +(-777) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-776 R) +(-778 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (-3886 (|HasCategory| (-970 |#1|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-970 |#1|) (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-535))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-970 |#1|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-970 |#1|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) -(-777 -3886 R OS S) +((-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (-3891 (|HasCategory| (-972 |#1|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-972 |#1|) (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-537))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-972 |#1|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-972 |#1|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) +(-779 -3891 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-778) +(-780) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-779 R -3423 L) +(-781 R -3428 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-780 R -3423) +(-782 R -3428) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-781) +(-783) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-782 R -3423) +(-784 R -3428) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-783) +(-785) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-784 -3423 UP UPUP R) +(-786 -3428 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-785 -3423 UP L LQ) +(-787 -3428 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-786) +(-788) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-787 -3423 UP L LQ) +(-789 -3428 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-788 -3423 UP) +(-790 -3428 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-789 -3423 L UP A LO) +(-791 -3428 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-790 -3423 UP) +(-792 -3428 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-791 -3423 LO) +(-793 -3428 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-792 -3423 LODO) +(-794 -3428 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-793 -2945 S |f|) +(-795 -2950 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4342 |has| |#2| (-1023)) (-4343 |has| |#2| (-1023)) (-4345 |has| |#2| (-6 -4345)) ((-4350 "*") |has| |#2| (-170)) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023)))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-771))) (-3886 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823)))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1023)))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-771))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-823))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#2| (QUOTE -4345)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) -(-794 R) +((-4347 |has| |#2| (-1025)) (-4348 |has| |#2| (-1025)) (-4350 |has| |#2| (-6 -4350)) ((-4355 "*") |has| |#2| (-170)) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025)))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358)))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-773))) (-3891 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1025)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-773))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-1025)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#2| (QUOTE -4350)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) +(-796 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-796 (-1147)) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-796 (-1147)) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-796 (-1147)) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-796 (-1147)) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-796 (-1147)) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-795 |Kernels| R |var|) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-798 (-1149)) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-798 (-1149)) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-798 (-1149)) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-797 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) -(((-4350 "*") |has| |#2| (-356)) (-4341 |has| |#2| (-356)) (-4346 |has| |#2| (-356)) (-4340 |has| |#2| (-356)) (-4345 . T) (-4343 . T) (-4342 . T)) -((|HasCategory| |#2| (QUOTE (-356)))) -(-796 S) +(((-4355 "*") |has| |#2| (-358)) (-4346 |has| |#2| (-358)) (-4351 |has| |#2| (-358)) (-4345 |has| |#2| (-358)) (-4350 . T) (-4348 . T) (-4347 . T)) +((|HasCategory| |#2| (QUOTE (-358)))) +(-798 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-797 S) +(-799 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-798) +(-800) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-799) +(-801) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-800) +(-802) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-801) +(-803) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-802) +(-804) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-803) +(-805) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-804) +(-806) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-805 R) +(-807 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-806 P R) +(-808 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-227)))) -(-807) +((-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-229)))) +(-809) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-808 S) +(-810 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4348 . T) (-4338 . T) (-4349 . T) (-2363 . T)) +((-4353 . T) (-4343 . T) (-4354 . T) (-2368 . T)) NIL -(-809) +(-811) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-810 R) +(-812 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4345 |has| |#1| (-823))) -((|HasCategory| |#1| (QUOTE (-823))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-535))) (-3886 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-811 R S) +((-4350 |has| |#1| (-825))) +((|HasCategory| |#1| (QUOTE (-825))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-537))) (-3891 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-813 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-812 R) +(-814 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) (-4345 . T)) +((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T)) ((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145)))) -(-813) +(-815) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-814) +(-816) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-815) +(-817) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-816) +(-818) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-817 R) +(-819 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4345 |has| |#1| (-823))) -((|HasCategory| |#1| (QUOTE (-823))) (-3886 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-823)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-535))) (-3886 (|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-21)))) -(-818 R S) +((-4350 |has| |#1| (-825))) +((|HasCategory| |#1| (QUOTE (-825))) (-3891 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-537))) (-3891 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-21)))) +(-820 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-819) +(-821) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-820 -2945 S) +(-822 -2950 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-821) +(-823) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-822 S) +(-824 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-823) +(-825) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4345 . T)) +((-4350 . T)) NIL -(-824 S) +(-826 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a a= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-825) +(-827) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a a= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-826 S R) +(-828 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170)))) -(-827 R) +((|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170)))) +(-829 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4342 . T) (-4343 . T) (-4345 . T)) +((-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-828 R C) +(-830 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) -(-829 R |sigma| -3590) +((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) +(-831 R |sigma| -3595) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-356)))) -(-830 |x| R |sigma| -3590) +((-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-358)))) +(-832 |x| R |sigma| -3595) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) -((-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-356)))) -(-831 R) +((-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-358)))) +(-833 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) -(-832) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) +(-834) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-833) +(-835) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-834) +(-836) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-835 S) +(-837 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-836) +(-838) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|SingleInteger|) $ (|ByteArray|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeByteIfCan!| (((|SingleInteger|) $ (|Byte|)) "\\spad{writeByteIfCan!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{-1}. Note: Ideally,{} the return value should have been of type \\indented{2}{Maybe Byte; but that would have implied allocating} \\indented{2}{a cons cell for every write attempt,{} which is overkill.}"))) NIL NIL -(-837) +(-839) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-838) +(-840) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-839 |VariableList|) +(-841 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-840 R |vl| |wl| |wtlevel|) +(-842 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights"))) -((-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) -(-841 R PS UP) +((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) +(-843 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-842 R |x| |pt|) +(-844 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-843 |p|) +(-845 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-844 |p|) +(-846 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-845 |p|) +(-847 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-843 |#1|) (QUOTE (-884))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-843 |#1|) (QUOTE (-143))) (|HasCategory| (-843 |#1|) (QUOTE (-145))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-843 |#1|) (QUOTE (-994))) (|HasCategory| (-843 |#1|) (QUOTE (-798))) (-3886 (|HasCategory| (-843 |#1|) (QUOTE (-798))) (|HasCategory| (-843 |#1|) (QUOTE (-825)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-843 |#1|) (QUOTE (-1122))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-843 |#1|) (QUOTE (-227))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -843) (|devaluate| |#1|)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -302) (LIST (QUOTE -843) (|devaluate| |#1|)))) (|HasCategory| (-843 |#1|) (LIST (QUOTE -279) (LIST (QUOTE -843) (|devaluate| |#1|)) (LIST (QUOTE -843) (|devaluate| |#1|)))) (|HasCategory| (-843 |#1|) (QUOTE (-300))) (|HasCategory| (-843 |#1|) (QUOTE (-535))) (|HasCategory| (-843 |#1|) (QUOTE (-825))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-843 |#1|) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-843 |#1|) (QUOTE (-884)))) (|HasCategory| (-843 |#1|) (QUOTE (-143))))) -(-846 |p| PADIC) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-845 |#1|) (QUOTE (-886))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-845 |#1|) (QUOTE (-143))) (|HasCategory| (-845 |#1|) (QUOTE (-145))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-845 |#1|) (QUOTE (-996))) (|HasCategory| (-845 |#1|) (QUOTE (-800))) (-3891 (|HasCategory| (-845 |#1|) (QUOTE (-800))) (|HasCategory| (-845 |#1|) (QUOTE (-827)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-845 |#1|) (QUOTE (-1124))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-845 |#1|) (QUOTE (-229))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -845) (|devaluate| |#1|)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -304) (LIST (QUOTE -845) (|devaluate| |#1|)))) (|HasCategory| (-845 |#1|) (LIST (QUOTE -281) (LIST (QUOTE -845) (|devaluate| |#1|)) (LIST (QUOTE -845) (|devaluate| |#1|)))) (|HasCategory| (-845 |#1|) (QUOTE (-302))) (|HasCategory| (-845 |#1|) (QUOTE (-537))) (|HasCategory| (-845 |#1|) (QUOTE (-827))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-845 |#1|) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-845 |#1|) (QUOTE (-886)))) (|HasCategory| (-845 |#1|) (QUOTE (-143))))) +(-848 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-994))) (|HasCategory| |#2| (QUOTE (-798))) (-3886 (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-825))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-847 S T$) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-996))) (|HasCategory| |#2| (QUOTE (-800))) (-3891 (|HasCategory| |#2| (QUOTE (-800))) (|HasCategory| |#2| (QUOTE (-827)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-827))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-849 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-1072)))) (-3886 (-12 (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-1072))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))))) -(-848) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1074)))) (-3891 (-12 (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-1074))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))))) +(-850) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-849) +(-851) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-850 CF1 CF2) +(-852 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-851 |ComponentFunction|) +(-853 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-852 CF1 CF2) +(-854 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-853 |ComponentFunction|) +(-855 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-854) +(-856) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-855 CF1 CF2) +(-857 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-856 |ComponentFunction|) +(-858 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-857) +(-859) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-858 R) +(-860 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-859 R S L) +(-861 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-860 S) +(-862 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-861 |Base| |Subject| |Pat|) +(-863 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3671 (|HasCategory| |#2| (QUOTE (-1023)))) (-3671 (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147)))))) (-12 (|HasCategory| |#2| (QUOTE (-1023))) (-3671 (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147)))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147))))) -(-862 R S) +((-12 (-3676 (|HasCategory| |#2| (QUOTE (-1025)))) (-3676 (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))) (-12 (|HasCategory| |#2| (QUOTE (-1025))) (-3676 (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) +(-864 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-863 R A B) +(-865 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-864 R) +(-866 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-865 R -2997) +(-867 R -3002) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-866 R S) +(-868 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-867 |VarSet|) +(-869 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-868 UP R) +(-870 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-869) +(-871) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-870 UP -3423) +(-872 UP -3428) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-871) +(-873) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-872) +(-874) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-873 A S) +(-875 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-874 S) +(-876 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4345 . T)) +((-4350 . T)) NIL -(-875 S) +(-877 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-876 S) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-878 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4345 . T)) -((-3886 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-825)))) -(-877 |n| R) +((-4350 . T)) +((-3891 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-827)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-827)))) +(-879 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-878 S) +(-880 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4345 . T)) +((-4350 . T)) NIL -(-879 S) +(-881 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-880 |p|) +(-882 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-361)))) -(-881 R E |VarSet| S) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| $ (QUOTE (-363)))) +(-883 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-882 R S) +(-884 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-883 S) +(-885 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-143)))) -(-884) +(-886) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-885 R0 -3423 UP UPUP R) +(-887 R0 -3428 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-886 UP UPUP R) +(-888 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-887 UP UPUP) +(-889 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-888 R) +(-890 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-889 R) +(-891 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-890 E OV R P) +(-892 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-891) +(-893) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-892 -3423) +(-894 -3428) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-893) +(-895) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4350 "*") . T)) +(((-4355 "*") . T)) NIL -(-894 R) +(-896 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-895) +(-897) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-896 |xx| -3423) +(-898 |xx| -3428) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-897 -3423 P) +(-899 -3428 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-898 R |Var| |Expon| GR) +(-900 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-899) +(-901) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-900 S) +(-902 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-901) +(-903) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-902) +(-904) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-903) +(-905) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-904 R -3423) +(-906 R -3428) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-905 S A B) +(-907 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-906 S R -3423) +(-908 S R -3428) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-907 I) +(-909 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-908 S E) +(-910 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-909 S R L) +(-911 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-910 S E V R P) +(-912 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -860) (|devaluate| |#1|)))) -(-911 -2997) +((|HasCategory| |#3| (LIST (QUOTE -862) (|devaluate| |#1|)))) +(-913 -3002) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-912 R -3423 -2997) +(-914 R -3428 -3002) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-913 S R Q) +(-915 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-914 S) +(-916 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-915 S R P) +(-917 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-916) +(-918) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-917 R) +(-919 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-918 |lv| R) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-920 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-919 |TheField| |ThePols|) +(-921 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-823)))) -(-920 R) +((|HasCategory| |#1| (QUOTE (-825)))) +(-922 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1147) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1147) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1147) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1147) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1147) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-921 R S) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1149) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1149) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1149) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1149) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1149) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-923 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-922 |x| R) +(-924 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-923 S R E |VarSet|) +(-925 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-884))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#4| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#4| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#4| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-825)))) -(-924 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-886))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#4| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#4| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#4| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#4| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-827)))) +(-926 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) NIL -(-925 E V R P -3423) +(-927 E V R P -3428) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-926 E |Vars| R P S) +(-928 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-927 E V R P -3423) +(-929 E V R P -3428) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL -((|HasCategory| |#3| (QUOTE (-444)))) -(-928) +((|HasCategory| |#3| (QUOTE (-446)))) +(-930) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-929) +(-931) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-930 R E) +(-932 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-130)))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346))) -(-931 R L) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-130)))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351))) +(-933 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-932 S) +(-934 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-933 A B) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-935 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-934) +(-936) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-935 -3423) +(-937 -3428) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-936 I) +(-938 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-937) +(-939) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-938 A B) +(-940 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4345 -12 (|has| |#2| (-465)) (|has| |#1| (-465)))) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-361)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-771))) (|HasCategory| |#2| (QUOTE (-771)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-465)))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705))))) (-12 (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-705)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-825))))) -(-939) +((-4350 -12 (|has| |#2| (-467)) (|has| |#1| (-467)))) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-363)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-773))) (|HasCategory| |#2| (QUOTE (-773)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-467))) (|HasCategory| |#2| (QUOTE (-467)))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707))))) (-12 (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-707)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-827))))) +(-941) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-940 T$) +(-942 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL NIL -(-941) +(-943) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-942 S) +(-944 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4348 . T) (-4349 . T) (-2363 . T)) +((-4353 . T) (-4354 . T) (-2368 . T)) NIL -(-943 R |polR|) +(-945 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL -((|HasCategory| |#1| (QUOTE (-444)))) -(-944) +((|HasCategory| |#1| (QUOTE (-446)))) +(-946) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-945) +(-947) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-946 S |Coef| |Expon| |Var|) +(-948 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-947 |Coef| |Expon| |Var|) +(-949 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-948) +(-950) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-949 S R E |VarSet| P) +(-951 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-543)))) -(-950 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-545)))) +(-952 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4348 . T) (-2363 . T)) +((-4353 . T) (-2368 . T)) NIL -(-951 R E V P) +(-953 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-444)))) -(-952 K) +((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-302)))) (|HasCategory| |#1| (QUOTE (-446)))) +(-954 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-953 |VarSet| E RC P) +(-955 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-954 R) +(-956 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL -(-955 R1 R2) +(-957 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-956 R) +(-958 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-957 K) +(-959 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-958 R E OV PPR) +(-960 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-959 K R UP -3423) +(-961 K R UP -3428) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-960 R |Var| |Expon| |Dpoly|) +(-962 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-300))))) -(-961 |vl| |nv|) +((-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-302))))) +(-963 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-962 R E V P TS) +(-964 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-963) +(-965) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-964 A S) +(-966 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-994))) (|HasCategory| |#2| (QUOTE (-798))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1122)))) -(-965 S) +((|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-996))) (|HasCategory| |#2| (QUOTE (-800))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1124)))) +(-967 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-2363 . T) (-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-2368 . T) (-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-966 A B R S) +(-968 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-967 |n| K) +(-969 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-968) +(-970) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-969 S) +(-971 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4348 . T) (-4349 . T) (-2363 . T)) +((-4353 . T) (-4354 . T) (-2368 . T)) NIL -(-970 R) +(-972 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4341 |has| |#1| (-283)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-283))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -279) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-535))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) -(-971 S R) +((-4346 |has| |#1| (-285)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-285))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -281) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1034))) (|HasCategory| |#1| (QUOTE (-537))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) +(-973 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (QUOTE (-283)))) -(-972 R) +((|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (QUOTE (-1034))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (QUOTE (-285)))) +(-974 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4341 |has| |#1| (-283)) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 |has| |#1| (-285)) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-973 QR R QS S) +(-975 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-974 S) +(-976 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-975 S) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-977 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-976) +(-978) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-977 -3423 UP UPUP |radicnd| |n|) +(-979 -3428 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4341 |has| (-400 |#2|) (-356)) (-4346 |has| (-400 |#2|) (-356)) (-4340 |has| (-400 |#2|) (-356)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-400 |#2|) (QUOTE (-143))) (|HasCategory| (-400 |#2|) (QUOTE (-145))) (|HasCategory| (-400 |#2|) (QUOTE (-343))) (-3886 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (QUOTE (-361))) (-3886 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (|HasCategory| (-400 |#2|) (QUOTE (-343)))) (-3886 (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-343))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147)))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3886 (|HasCategory| (-400 |#2|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-400 |#2|) (QUOTE (-356)))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-356))) (|HasCategory| (-400 |#2|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| (-400 |#2|) (QUOTE (-227))) (|HasCategory| (-400 |#2|) (QUOTE (-356))))) -(-978 |bb|) +((-4346 |has| (-402 |#2|) (-358)) (-4351 |has| (-402 |#2|) (-358)) (-4345 |has| (-402 |#2|) (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-402 |#2|) (QUOTE (-143))) (|HasCategory| (-402 |#2|) (QUOTE (-145))) (|HasCategory| (-402 |#2|) (QUOTE (-345))) (-3891 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-345)))) (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (QUOTE (-363))) (-3891 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (|HasCategory| (-402 |#2|) (QUOTE (-345)))) (-3891 (-12 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-345))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3891 (|HasCategory| (-402 |#2|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-402 |#2|) (QUOTE (-358)))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-358))) (|HasCategory| (-402 |#2|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| (-402 |#2|) (QUOTE (-229))) (|HasCategory| (-402 |#2|) (QUOTE (-358))))) +(-980 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-536) (QUOTE (-884))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-1147)))) (|HasCategory| (-536) (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-145))) (|HasCategory| (-536) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-536) (QUOTE (-994))) (|HasCategory| (-536) (QUOTE (-798))) (-3886 (|HasCategory| (-536) (QUOTE (-798))) (|HasCategory| (-536) (QUOTE (-825)))) (|HasCategory| (-536) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-1122))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-536) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-536) (QUOTE (-227))) (|HasCategory| (-536) (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| (-536) (LIST (QUOTE -505) (QUOTE (-1147)) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -302) (QUOTE (-536)))) (|HasCategory| (-536) (LIST (QUOTE -279) (QUOTE (-536)) (QUOTE (-536)))) (|HasCategory| (-536) (QUOTE (-300))) (|HasCategory| (-536) (QUOTE (-535))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-536) (LIST (QUOTE -619) (QUOTE (-536)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-536) (QUOTE (-884)))) (|HasCategory| (-536) (QUOTE (-143))))) -(-979) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-538) (QUOTE (-886))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-1149)))) (|HasCategory| (-538) (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-145))) (|HasCategory| (-538) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-538) (QUOTE (-996))) (|HasCategory| (-538) (QUOTE (-800))) (-3891 (|HasCategory| (-538) (QUOTE (-800))) (|HasCategory| (-538) (QUOTE (-827)))) (|HasCategory| (-538) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-1124))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-538) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-538) (QUOTE (-229))) (|HasCategory| (-538) (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| (-538) (LIST (QUOTE -507) (QUOTE (-1149)) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -304) (QUOTE (-538)))) (|HasCategory| (-538) (LIST (QUOTE -281) (QUOTE (-538)) (QUOTE (-538)))) (|HasCategory| (-538) (QUOTE (-302))) (|HasCategory| (-538) (QUOTE (-537))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-538) (LIST (QUOTE -621) (QUOTE (-538)))) (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-538) (QUOTE (-886)))) (|HasCategory| (-538) (QUOTE (-143))))) +(-981) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-980) +(-982) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-981 RP) +(-983 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-982 S) +(-984 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-983 A S) +(-985 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4349)) (|HasCategory| |#2| (QUOTE (-1072)))) -(-984 S) +((|HasAttribute| |#1| (QUOTE -4354)) (|HasCategory| |#2| (QUOTE (-1074)))) +(-986 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-2363 . T)) +((-2368 . T)) NIL -(-985 S) +(-987 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-986) +(-988) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4341 . T) (-4346 . T) (-4340 . T) (-4343 . T) (-4342 . T) ((-4350 "*") . T) (-4345 . T)) +((-4346 . T) (-4351 . T) (-4345 . T) (-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4350 . T)) NIL -(-987 R -3423) +(-989 R -3428) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-988 R -3423) +(-990 R -3428) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-989 -3423 UP) +(-991 -3428 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-990 -3423 UP) +(-992 -3428 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-991 S) +(-993 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-992 F1 UP UPUP R F2) +(-994 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-993) +(-995) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-994) +(-996) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-995 |Pol|) +(-997 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-996 |Pol|) +(-998 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-997) +(-999) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-998 |TheField|) +(-1000 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4341 . T) (-4346 . T) (-4340 . T) (-4343 . T) (-4342 . T) ((-4350 "*") . T) (-4345 . T)) -((-3886 (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-400 (-536)) (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-400 (-536)) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-400 (-536)) (LIST (QUOTE -1012) (QUOTE (-536))))) -(-999 -3423 L) +((-4346 . T) (-4351 . T) (-4345 . T) (-4348 . T) (-4347 . T) ((-4355 "*") . T) (-4350 . T)) +((-3891 (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-402 (-538)) (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-402 (-538)) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-402 (-538)) (LIST (QUOTE -1014) (QUOTE (-538))))) +(-1001 -3428 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1000 S) +(-1002 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1072)))) -(-1001 R E V P) +((|HasCategory| |#1| (QUOTE (-1074)))) +(-1003 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4349 . T) (-4348 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) -(-1002) +((-4354 . T) (-4353 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840))))) +(-1004) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1003 R) +(-1005 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4350 "*")))) -(-1004 R) +((|HasAttribute| |#1| (QUOTE (-4355 "*")))) +(-1006 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-300)))) -(-1005 S) +((-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-302)))) +(-1007 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1006 S) +(-1008 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1007 S) +(-1009 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1008 -3423 |Expon| |VarSet| |FPol| |LFPol|) +(-1010 -3428 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1009) +(-1011) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (QUOTE (-1147))) (LIST (QUOTE |:|) (QUOTE -2186) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072))) (|HasCategory| (-1147) (QUOTE (-825))) (|HasCategory| (-51) (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838))))) -(-1010) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (QUOTE (-1149))) (LIST (QUOTE |:|) (QUOTE -2191) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -304) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074))) (|HasCategory| (-1149) (QUOTE (-827))) (|HasCategory| (-51) (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840))))) +(-1012) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1011 A S) +(-1013 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-1012 S) +(-1014 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL NIL -(-1013 Q R) +(-1015 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1014 R) +(-1016 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1015) +(-1017) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1016 UP) +(-1018 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1017 R) +(-1019 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1018 T$) +(-1020 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1019 T$) +(-1021 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitepoint is the contant indicating the white point of this color space."))) NIL NIL -(-1020 R |ls|) +(-1022 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4349 . T) (-4348 . T)) -((-12 (|HasCategory| (-758 |#1| (-839 |#2|)) (QUOTE (-1072))) (|HasCategory| (-758 |#1| (-839 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -758) (|devaluate| |#1|) (LIST (QUOTE -839) (|devaluate| |#2|)))))) (|HasCategory| (-758 |#1| (-839 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-758 |#1| (-839 |#2|)) (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| (-839 |#2|) (QUOTE (-361))) (|HasCategory| (-758 |#1| (-839 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) -(-1021) +((-4354 . T) (-4353 . T)) +((-12 (|HasCategory| (-760 |#1| (-841 |#2|)) (QUOTE (-1074))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -760) (|devaluate| |#1|) (LIST (QUOTE -841) (|devaluate| |#2|)))))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-760 |#1| (-841 |#2|)) (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| (-841 |#2|) (QUOTE (-363))) (|HasCategory| (-760 |#1| (-841 |#2|)) (LIST (QUOTE -597) (QUOTE (-840))))) +(-1023) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1022 S) +(-1024 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1023) +(-1025) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4345 . T)) +((-4350 . T)) NIL -(-1024 |xx| -3423) +(-1026 |xx| -3428) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1025 S |m| |n| R |Row| |Col|) +(-1027 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-300))) (|HasCategory| |#4| (QUOTE (-356))) (|HasCategory| |#4| (QUOTE (-543))) (|HasCategory| |#4| (QUOTE (-170)))) -(-1026 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-302))) (|HasCategory| |#4| (QUOTE (-358))) (|HasCategory| |#4| (QUOTE (-545))) (|HasCategory| |#4| (QUOTE (-170)))) +(-1028 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4348 . T) (-2363 . T) (-4343 . T) (-4342 . T)) +((-4353 . T) (-2368 . T) (-4348 . T) (-4347 . T)) NIL -(-1027 |m| |n| R) +(-1029 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4348 . T) (-4343 . T) (-4342 . T)) -((-3886 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (QUOTE (-300))) (|HasCategory| |#3| (QUOTE (-543))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-838)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) -(-1028 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4353 . T) (-4348 . T) (-4347 . T)) +((-3891 (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (QUOTE (-302))) (|HasCategory| |#3| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-840)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) +(-1030 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1029 R) +(-1031 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1030) +(-1032) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1031 S) +(-1033 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1032) +(-1034) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1033 |TheField| |ThePolDom|) +(-1035 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1034) +(-1036) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4336 . T) (-4340 . T) (-4335 . T) (-4346 . T) (-4347 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4341 . T) (-4345 . T) (-4340 . T) (-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1035) +(-1037) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (QUOTE (-1147))) (LIST (QUOTE |:|) (QUOTE -2186) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| (-51) (QUOTE (-1072))) (|HasCategory| (-51) (LIST (QUOTE -302) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (QUOTE (-1072))) (|HasCategory| (-1147) (QUOTE (-825))) (|HasCategory| (-51) (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-51) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (LIST (QUOTE -595) (QUOTE (-838))))) -(-1036 S R E V) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (QUOTE (-1149))) (LIST (QUOTE |:|) (QUOTE -2191) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| (-51) (QUOTE (-1074))) (|HasCategory| (-51) (LIST (QUOTE -304) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (QUOTE (-1074))) (|HasCategory| (-1149) (QUOTE (-827))) (|HasCategory| (-51) (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-51) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (LIST (QUOTE -597) (QUOTE (-840))))) +(-1038 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-535))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -965) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-1147))))) -(-1037 R E V) +((|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-537))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-1149))))) +(-1039 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) NIL -(-1038) +(-1040) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1039 S |TheField| |ThePols|) +(-1041 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1040 |TheField| |ThePols|) +(-1042 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1041 R E V P TS) +(-1043 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1042 S R E V P) +(-1044 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1043 R E V P) +(-1045 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL -(-1044 R E V P TS) +(-1046 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1045) +(-1047) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1046 |Base| R -3423) +(-1048 |Base| R -3428) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1047 |f|) +(-1049 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1048 |Base| R -3423) +(-1050 |Base| R -3428) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1049 R |ls|) +(-1051 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1050 R UP M) +(-1052 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4341 |has| |#1| (-356)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-343))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-343)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-361))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356)))) (|HasCategory| |#1| (QUOTE (-343)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-343))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (QUOTE (-356))))) -(-1051 UP SAE UPA) +((-4346 |has| |#1| (-358)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-345))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-345)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-363))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358)))) (|HasCategory| |#1| (QUOTE (-345)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-345))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (QUOTE (-358))))) +(-1053 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1052 UP SAE UPA) +(-1054 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1053) +(-1055) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1054) +(-1056) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1055 S) +(-1057 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1056) +(-1058) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1057 R) +(-1059 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1058 R) +(-1060 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1059 (-1147)) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1059 (-1147)) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1059 (-1147)) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1059 (-1147)) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1059 (-1147)) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1059 S) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1061 (-1149)) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1061 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1060 S) +(-1062 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1072)))) -(-1061 R S) +((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1074)))) +(-1063 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-823)))) -(-1062) +((|HasCategory| |#1| (QUOTE (-825)))) +(-1064) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1063 S) +(-1065 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1072)))) -(-1064 R S) +((|HasCategory| |#1| (QUOTE (-1074)))) +(-1066 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1065 S) +(-1067 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-2363 . T)) +((-2368 . T)) NIL -(-1066 S L) +(-1068 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-2363 . T)) +((-2368 . T)) NIL -(-1067) +(-1069) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1068 S) +(-1070 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4348 . T) (-4338 . T) (-4349 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-825))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-1069 A S) +((-4353 . T) (-4343 . T) (-4354 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-827))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-1071 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1070 S) +(-1072 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4338 . T) (-2363 . T)) +((-4343 . T) (-2368 . T)) NIL -(-1071 S) +(-1073 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1072) +(-1074) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1073 |m| |n|) +(-1075 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1074) +(-1076) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1075 |Str| |Sym| |Int| |Flt| |Expr|) +(-1077 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1076 |Str| |Sym| |Int| |Flt| |Expr|) +(-1078 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1077 R FS) +(-1079 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1078 R E V P TS) +(-1080 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1079 R E V P TS) +(-1081 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1080 R E V P) +(-1082 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL -(-1081) +(-1083) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1082 S) +(-1084 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1083) +(-1085) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1084 |dimtot| |dim1| S) +(-1086 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4342 |has| |#3| (-1023)) (-4343 |has| |#3| (-1023)) (-4345 |has| |#3| (-6 -4345)) ((-4350 "*") |has| |#3| (-170)) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|))))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023)))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#3| (QUOTE (-356))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1023)))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-356)))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (QUOTE (-771))) (-3886 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823)))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-170))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1023)))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-3886 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-356))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-705))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-771))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-823))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536)))))) (|HasCategory| (-536) (QUOTE (-825))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#3| (QUOTE (-227))) (|HasCategory| |#3| (QUOTE (-1023)))) (-12 (|HasCategory| |#3| (QUOTE (-1023))) (|HasCategory| |#3| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#3| (QUOTE (-1023)))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#3| (QUOTE -4345)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1072))) (|HasCategory| |#3| (LIST (QUOTE -302) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -595) (QUOTE (-838))))) -(-1085 R |x|) +((-4347 |has| |#3| (-1025)) (-4348 |has| |#3| (-1025)) (-4350 |has| |#3| (-6 -4350)) ((-4355 "*") |has| |#3| (-170)) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|))))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#3| (QUOTE (-358))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025)))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-358)))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-773))) (-3891 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825)))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-170))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-1025)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-3891 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-170))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-358))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-707))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-773))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-825))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538)))))) (|HasCategory| (-538) (QUOTE (-827))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#3| (QUOTE (-229))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1025))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#3| (QUOTE (-1025)))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#3| (QUOTE -4350)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1074))) (|HasCategory| |#3| (LIST (QUOTE -304) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -597) (QUOTE (-840))))) +(-1087 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL -((|HasCategory| |#1| (QUOTE (-444)))) -(-1086) +((|HasCategory| |#1| (QUOTE (-446)))) +(-1088) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1087) +(-1089) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1088 R -3423) +(-1090 R -3428) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1089 R) +(-1091 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1090) +(-1092) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1091) +(-1093) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4336 . T) (-4340 . T) (-4335 . T) (-4346 . T) (-4347 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4341 . T) (-4345 . T) (-4340 . T) (-4351 . T) (-4352 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1092 S) +(-1094 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4348 . T) (-4349 . T) (-2363 . T)) +((-4353 . T) (-4354 . T) (-2368 . T)) NIL -(-1093 S |ndim| R |Row| |Col|) +(-1095 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-356))) (|HasAttribute| |#3| (QUOTE (-4350 "*"))) (|HasCategory| |#3| (QUOTE (-170)))) -(-1094 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-358))) (|HasAttribute| |#3| (QUOTE (-4355 "*"))) (|HasCategory| |#3| (QUOTE (-170)))) +(-1096 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-2363 . T) (-4348 . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-2368 . T) (-4353 . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1095 R |Row| |Col| M) +(-1097 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1096 R |VarSet|) +(-1098 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-884))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1097 |Coef| |Var| SMP) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-886))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1099 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-356)))) -(-1098 R E V P) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-358)))) +(-1100 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL -(-1099 UP -3423) +(-1101 UP -3428) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1100 R) +(-1102 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1101 R) +(-1103 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1102 R) +(-1104 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1103 S A) +(-1105 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-825)))) -(-1104 R) +((|HasCategory| |#1| (QUOTE (-827)))) +(-1106 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1105 R) +(-1107 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1106) +(-1108) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1107) +(-1109) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1108) +(-1110) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) -((-2363 . T)) +((-2368 . T)) NIL -(-1109) +(-1111) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1110) +(-1112) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1111 V C) +(-1113 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1112 V C) +(-1114 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| (-1111 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1111) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1111 |#1| |#2|) (QUOTE (-1072)))) (|HasCategory| (-1111 |#1| |#2|) (QUOTE (-1072))) (-3886 (-12 (|HasCategory| (-1111 |#1| |#2|) (LIST (QUOTE -302) (LIST (QUOTE -1111) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1111 |#1| |#2|) (QUOTE (-1072)))) (|HasCategory| (-1111 |#1| |#2|) (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| (-1111 |#1| |#2|) (LIST (QUOTE -595) (QUOTE (-838))))) -(-1113 |ndim| R) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1113) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1074)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1074))) (-3891 (-12 (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -304) (LIST (QUOTE -1113) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1113 |#1| |#2|) (QUOTE (-1074)))) (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| (-1113 |#1| |#2|) (LIST (QUOTE -597) (QUOTE (-840))))) +(-1115 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4345 . T) (-4337 |has| |#2| (-6 (-4350 "*"))) (-4348 . T) (-4342 . T) (-4343 . T)) -((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE (-4350 "*"))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-300))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (QUOTE (-356))) (-3886 (|HasAttribute| |#2| (QUOTE (-4350 "*"))) (|HasCategory| |#2| (QUOTE (-227))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-170)))) -(-1114 S) +((-4350 . T) (-4342 |has| |#2| (-6 (-4355 "*"))) (-4353 . T) (-4347 . T) (-4348 . T)) +((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#2| (QUOTE (-302))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (QUOTE (-358))) (-3891 (|HasAttribute| |#2| (QUOTE (-4355 "*"))) (|HasCategory| |#2| (QUOTE (-229))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-170)))) +(-1116 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1115) +(-1117) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL -(-1116 R E V P TS) +(-1118 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1117 R E V P) +(-1119 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4349 . T) (-4348 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) -(-1118 S) +((-4354 . T) (-4353 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840))))) +(-1120 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-1119 A S) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-1121 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1120 S) +(-1122 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-2363 . T)) +((-2368 . T)) NIL -(-1121 |Key| |Ent| |dent|) +(-1123 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4349 . T)) -((-12 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-825))) (-3886 (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#2| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#2| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (LIST (QUOTE -595) (QUOTE (-838))))) -(-1122) +((-4354 . T)) +((-12 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-827))) (-3891 (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#2| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#2| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (LIST (QUOTE -597) (QUOTE (-840))))) +(-1124) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1123 |Coef|) +(-1125 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1124 S) +(-1126 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4349 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-1125 S) +((-4354 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-1127 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1126 A B) +(-1128 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1127 A B C) +(-1129 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1128) +(-1130) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL -(-1129) +(-1131) NIL -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-142) (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| (-142) (QUOTE (-1072))) (-12 (|HasCategory| (-142) (QUOTE (-1072))) (|HasCategory| (-142) (LIST (QUOTE -302) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -595) (QUOTE (-838))))) -(-1130 |Entry|) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142)))))) (|HasCategory| (-142) (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-142) (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| (-142) (QUOTE (-1074))) (-12 (|HasCategory| (-142) (QUOTE (-1074))) (|HasCategory| (-142) (LIST (QUOTE -304) (QUOTE (-142))))) (|HasCategory| (-142) (LIST (QUOTE -597) (QUOTE (-840))))) +(-1132 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4348 . T) (-4349 . T)) -((-12 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -302) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4215) (QUOTE (-1129))) (LIST (QUOTE |:|) (QUOTE -2186) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072)))) (-3886 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072)))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -596) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (QUOTE (-1072))) (|HasCategory| (-1129) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838)))) (|HasCategory| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (LIST (QUOTE -595) (QUOTE (-838))))) -(-1131 A) +((-4353 . T) (-4354 . T)) +((-12 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -304) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4220) (QUOTE (-1131))) (LIST (QUOTE |:|) (QUOTE -2191) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074)))) (-3891 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074)))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -598) (QUOTE (-527)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (QUOTE (-1074))) (|HasCategory| (-1131) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840)))) (|HasCategory| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (LIST (QUOTE -597) (QUOTE (-840))))) +(-1133 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b = sum(i+j=k,{}a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) -(-1132 |Coef|) +((|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) +(-1134 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1133 |Coef|) +(-1135 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1134 R UP) +(-1136 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL -((|HasCategory| |#1| (QUOTE (-300)))) -(-1135 |n| R) +((|HasCategory| |#1| (QUOTE (-302)))) +(-1137 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1136 S1 S2) +(-1138 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1137) +(-1139) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1138 |Coef| |var| |cen|) +(-1140 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4350 "*") -3886 (-3186 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-798))) (|has| |#1| (-170)) (-3186 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-884)))) (-4341 -3886 (-3186 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-798))) (|has| |#1| (-543)) (-3186 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-884)))) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-994)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-1122)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|))))) (|HasCategory| (-536) (QUOTE (-1083))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-994)))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-798)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-1122)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -1145) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-300)))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1145 |#1| |#2| |#3|) (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1139 R -3423) +(((-4355 "*") -3891 (-3191 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-800))) (|has| |#1| (-170)) (-3191 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-886)))) (-4346 -3891 (-3191 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-800))) (|has| |#1| (-545)) (-3191 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-886)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-996)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1124)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-229)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|))))) (|HasCategory| (-538) (QUOTE (-1085))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-996)))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1147) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-302)))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-827)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1147 |#1| |#2| |#3|) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1141 R -3428) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1140 R) +(-1142 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1141 R) +(-1143 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4344 |has| |#1| (-356)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1053) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-884)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-444))) (|HasCategory| |#1| (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-227))) (|HasAttribute| |#1| (QUOTE -4346)) (|HasCategory| |#1| (QUOTE (-444))) (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1142 R S) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-886)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-446))) (|HasCategory| |#1| (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-229))) (|HasAttribute| |#1| (QUOTE -4351)) (|HasCategory| |#1| (QUOTE (-446))) (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1144 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1143 E OV R P) +(-1145 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1144 |Coef| |var| |cen|) +(-1146 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-536)) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) -(-1145 |Coef| |var| |cen|) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-538)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|))))))) +(-1147 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|)))) (|HasCategory| (-749) (QUOTE (-1083))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) -(-1146) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|)))) (|HasCategory| (-751) (QUOTE (-1085))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|))))))) +(-1148) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1162) +(-1164) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1163) +(-1165) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format."))) NIL NIL -(-1164 S) +(-1166 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1165) +(-1167) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1166 R) +(-1168 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1167) +(-1169) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1168 S) +(-1170 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1169) +(-1171) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1170 S) +(-1172 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4349 . T) (-4348 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1072))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-1171 S) +((-4354 . T) (-4353 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1074))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-1173 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1172) +(-1174) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1173 R -3423) +(-1175 R -3428) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1174 R |Row| |Col| M) +(-1176 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1175 R -3423) +(-1177 R -3428) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -596) (LIST (QUOTE -864) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -860) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -860) (|devaluate| |#1|))))) -(-1176 |Coef|) +((-12 (|HasCategory| |#1| (LIST (QUOTE -598) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -862) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -862) (|devaluate| |#1|))))) +(-1178 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-356)))) -(-1177 S R E V P) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-143))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-358)))) +(-1179 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL -((|HasCategory| |#4| (QUOTE (-361)))) -(-1178 R E V P) +((|HasCategory| |#4| (QUOTE (-363)))) +(-1180 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL -(-1179 |Curve|) +(-1181 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1180) +(-1182) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1181 S) +(-1183 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL -((|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-1182 -3423) +((|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-1184 -3428) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1183) +(-1185) ((|constructor| (NIL "The fundamental Type."))) -((-2363 . T)) +((-2368 . T)) NIL -(-1184) +(-1186) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1185 S) +(-1187 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-825)))) -(-1186) +((|HasCategory| |#1| (QUOTE (-827)))) +(-1188) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1187 S) +(-1189 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1188) +(-1190) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1189 |Coef| |var| |cen|) +(-1191 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4350 "*") -3886 (-3186 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-798))) (|has| |#1| (-170)) (-3186 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-884)))) (-4341 -3886 (-3186 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-798))) (|has| |#1| (-543)) (-3186 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-884)))) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-994)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-1122)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-227)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|))))) (|HasCategory| (-536) (QUOTE (-1083))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-994)))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-1122)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -279) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -302) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -505) (QUOTE (-1147)) (LIST (QUOTE -1219) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-300)))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798)))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (LIST (QUOTE -1012) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-798)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1219 |#1| |#2| |#3|) (QUOTE (-884)))) (|HasCategory| |#1| (QUOTE (-143))))) -(-1190 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4355 "*") -3891 (-3191 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-800))) (|has| |#1| (-170)) (-3191 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-886)))) (-4346 -3891 (-3191 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-800))) (|has| |#1| (-545)) (-3191 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-886)))) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-996)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-1124)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-145)))) (|HasCategory| |#1| (QUOTE (-145)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-229)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|))))) (|HasCategory| (-538) (QUOTE (-1085))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-996)))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-800)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -281) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -304) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -507) (QUOTE (-1149)) (LIST (QUOTE -1221) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-302)))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-143))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-800)))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (LIST (QUOTE -1014) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-800)))) (|HasCategory| |#1| (QUOTE (-170)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-827)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-143)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| $ (QUOTE (-143))) (|HasCategory| (-1221 |#1| |#2| |#3|) (QUOTE (-886)))) (|HasCategory| |#1| (QUOTE (-143))))) +(-1192 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1191 |Coef|) +(-1193 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1192 S |Coef| UTS) +(-1194 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL -((|HasCategory| |#2| (QUOTE (-356)))) -(-1193 |Coef| UTS) +((|HasCategory| |#2| (QUOTE (-358)))) +(-1195 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-2363 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-2368 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1194 |Coef| UTS) +(-1196 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-994)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1122)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143))))) (-3886 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-145))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|)))))) (-3886 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-536)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-227))))) (|HasCategory| (-536) (QUOTE (-1083))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-356))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-884)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-1147))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-994)))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-798)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1122)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -279) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -302) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -505) (QUOTE (-1147)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-536))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-825)))) (|HasCategory| |#2| (QUOTE (-884))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-535)))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-300)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-143)))))) -(-1195 ZP) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-996)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143))))) (-3891 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-145))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|)))))) (-3891 (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-538)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-229))))) (|HasCategory| (-538) (QUOTE (-1085))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-358))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-886)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-1149))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-996)))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-800)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -281) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -304) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -507) (QUOTE (-1149)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-538))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-827)))) (|HasCategory| |#2| (QUOTE (-886))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-537)))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-302)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#1| (QUOTE (-143))) (-12 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-143)))))) +(-1197 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1196 S) +(-1198 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-823))) (|HasCategory| |#1| (QUOTE (-1072)))) -(-1197 R S) +((|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1074)))) +(-1199 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-823)))) -(-1198 |x| R) +((|HasCategory| |#1| (QUOTE (-825)))) +(-1200 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) -(((-4350 "*") |has| |#2| (-170)) (-4341 |has| |#2| (-543)) (-4344 |has| |#2| (-356)) (-4346 |has| |#2| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-371)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-371))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -860) (QUOTE (-536)))) (|HasCategory| (-1053) (LIST (QUOTE -860) (QUOTE (-536))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-371)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536))))) (|HasCategory| (-1053) (LIST (QUOTE -596) (LIST (QUOTE -864) (QUOTE (-536)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| (-1053) (LIST (QUOTE -596) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-825))) (|HasCategory| |#2| (LIST (QUOTE -619) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (-3886 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-884)))) (-3886 (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-884)))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (-3886 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| |#2| (QUOTE (-227))) (|HasAttribute| |#2| (QUOTE -4346)) (|HasCategory| |#2| (QUOTE (-444))) (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (-3886 (-12 (|HasCategory| |#2| (QUOTE (-884))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) -(-1199 |x| R |y| S) +(((-4355 "*") |has| |#2| (-170)) (-4346 |has| |#2| (-545)) (-4349 |has| |#2| (-358)) (-4351 |has| |#2| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-373)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-373))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -862) (QUOTE (-538)))) (|HasCategory| (-1055) (LIST (QUOTE -862) (QUOTE (-538))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-373)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538))))) (|HasCategory| (-1055) (LIST (QUOTE -598) (LIST (QUOTE -866) (QUOTE (-538)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| (-1055) (LIST (QUOTE -598) (QUOTE (-527))))) (|HasCategory| |#2| (QUOTE (-827))) (|HasCategory| |#2| (LIST (QUOTE -621) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (-3891 (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-886)))) (-3891 (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-886)))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (-3891 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| |#2| (QUOTE (-229))) (|HasAttribute| |#2| (QUOTE -4351)) (|HasCategory| |#2| (QUOTE (-446))) (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (-3891 (-12 (|HasCategory| |#2| (QUOTE (-886))) (|HasCategory| $ (QUOTE (-143)))) (|HasCategory| |#2| (QUOTE (-143))))) +(-1201 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1200 R Q UP) +(-1202 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1201 R UP) +(-1203 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1202 R UP) +(-1204 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1203 R U) +(-1205 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1204 S R) +(-1206 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356))) (|HasCategory| |#2| (QUOTE (-444))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1122)))) -(-1205 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358))) (|HasCategory| |#2| (QUOTE (-446))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (QUOTE (-1124)))) +(-1207 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4344 |has| |#1| (-356)) (-4346 |has| |#1| (-6 -4346)) (-4343 . T) (-4342 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4349 |has| |#1| (-358)) (-4351 |has| |#1| (-6 -4351)) (-4348 . T) (-4347 . T) (-4350 . T)) NIL -(-1206 R PR S PS) +(-1208 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1207 S |Coef| |Expon|) +(-1209 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1083))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4312) (LIST (|devaluate| |#2|) (QUOTE (-1147)))))) -(-1208 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1085))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4317) (LIST (|devaluate| |#2|) (QUOTE (-1149)))))) +(-1210 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1209 RC P) +(-1211 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1210 |Coef| |var| |cen|) +(-1212 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-536)) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) -(-1211 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-538)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|))))))) +(-1213 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1212 |Coef|) +(-1214 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1213 S |Coef| ULS) +(-1215 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1214 |Coef| ULS) +(-1216 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1215 |Coef| ULS) +(-1217 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4346 |has| |#1| (-356)) (-4340 |has| |#1| (-356)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-170))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536))) (|devaluate| |#1|)))) (|HasCategory| (-400 (-536)) (QUOTE (-1083))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-3886 (|HasCategory| |#1| (QUOTE (-356))) (|HasCategory| |#1| (QUOTE (-543)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -400) (QUOTE (-536)))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536)))))) -(-1216 R FE |var| |cen|) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4351 |has| |#1| (-358)) (-4345 |has| |#1| (-358)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-170))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538))) (|devaluate| |#1|)))) (|HasCategory| (-402 (-538)) (QUOTE (-1085))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-3891 (|HasCategory| |#1| (QUOTE (-358))) (|HasCategory| |#1| (QUOTE (-545)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -402) (QUOTE (-538)))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538)))))) +(-1218 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4350 "*") |has| (-1210 |#2| |#3| |#4|) (-170)) (-4341 |has| (-1210 |#2| |#3| |#4|) (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -1012) (QUOTE (-536)))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-356))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-444))) (-3886 (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (LIST (QUOTE -1012) (LIST (QUOTE -400) (QUOTE (-536)))))) (|HasCategory| (-1210 |#2| |#3| |#4|) (QUOTE (-543)))) -(-1217 A S) +(((-4355 "*") |has| (-1212 |#2| |#3| |#4|) (-170)) (-4346 |has| (-1212 |#2| |#3| |#4|) (-545)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-143))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-170))) (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -1014) (QUOTE (-538)))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-358))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-446))) (-3891 (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (LIST (QUOTE -1014) (LIST (QUOTE -402) (QUOTE (-538)))))) (|HasCategory| (-1212 |#2| |#3| |#4|) (QUOTE (-545)))) +(-1219 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4349))) -(-1218 S) +((|HasAttribute| |#1| (QUOTE -4354))) +(-1220 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-2363 . T)) +((-2368 . T)) NIL -(-1219 |Coef| |var| |cen|) +(-1221 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-543))) (-3886 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-543)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -874) (QUOTE (-1147)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-749)) (|devaluate| |#1|)))) (|HasCategory| (-749) (QUOTE (-1083))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasSignature| |#1| (LIST (QUOTE -4312) (LIST (|devaluate| |#1|) (QUOTE (-1147)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-749))))) (|HasCategory| |#1| (QUOTE (-356))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1169))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasSignature| |#1| (LIST (QUOTE -4167) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1147))))) (|HasSignature| |#1| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#1|))))))) -(-1220 |Coef1| |Coef2| UTS1 UTS2) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-545))) (-3891 (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-545)))) (|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-143))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-1149)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-751)) (|devaluate| |#1|)))) (|HasCategory| (-751) (QUOTE (-1085))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasSignature| |#1| (LIST (QUOTE -4317) (LIST (|devaluate| |#1|) (QUOTE (-1149)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-751))))) (|HasCategory| |#1| (QUOTE (-358))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-936))) (|HasCategory| |#1| (QUOTE (-1171))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasSignature| |#1| (LIST (QUOTE -4172) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1149))))) (|HasSignature| |#1| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#1|))))))) +(-1222 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1221 S |Coef|) +(-1223 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-1169))) (|HasSignature| |#2| (LIST (QUOTE -3412) (LIST (LIST (QUOTE -620) (QUOTE (-1147))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4167) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1147))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-356)))) -(-1222 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-936))) (|HasCategory| |#2| (QUOTE (-1171))) (|HasSignature| |#2| (LIST (QUOTE -3417) (LIST (LIST (QUOTE -622) (QUOTE (-1149))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4172) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1149))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasCategory| |#2| (QUOTE (-358)))) +(-1224 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4350 "*") |has| |#1| (-170)) (-4341 |has| |#1| (-543)) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") |has| |#1| (-170)) (-4346 |has| |#1| (-545)) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1223 |Coef| UTS) +(-1225 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y=f(y,{}y',{}..,{}y)} such that \\spad{y(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1224 -3423 UP L UTS) +(-1226 -3428 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-543)))) -(-1225) +((|HasCategory| |#1| (QUOTE (-545)))) +(-1227) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-2363 . T)) +((-2368 . T)) NIL -(-1226 |sym|) +(-1228 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1227 S R) +(-1229 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-705))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1228 R) +((|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1025))) (|HasCategory| |#2| (QUOTE (-707))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1230 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4349 . T) (-4348 . T) (-2363 . T)) +((-4354 . T) (-4353 . T) (-2368 . T)) NIL -(-1229 R) +(-1231 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4349 . T) (-4348 . T)) -((-3886 (-12 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|))))) (-3886 (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) (|HasCategory| |#1| (LIST (QUOTE -596) (QUOTE (-525)))) (-3886 (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072)))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-536) (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-705))) (|HasCategory| |#1| (QUOTE (-1023))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-1072))) (|HasCategory| |#1| (LIST (QUOTE -302) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -595) (QUOTE (-838))))) -(-1230 A B) +((-4354 . T) (-4353 . T)) +((-3891 (-12 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|))))) (-3891 (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) (|HasCategory| |#1| (LIST (QUOTE -598) (QUOTE (-527)))) (-3891 (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074)))) (|HasCategory| |#1| (QUOTE (-827))) (|HasCategory| (-538) (QUOTE (-827))) (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-707))) (|HasCategory| |#1| (QUOTE (-1025))) (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1025)))) (-12 (|HasCategory| |#1| (QUOTE (-1074))) (|HasCategory| |#1| (LIST (QUOTE -304) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -597) (QUOTE (-840))))) +(-1232 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1231) +(-1233) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1232) +(-1234) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1233) +(-1235) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1234) +(-1236) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1235) +(-1237) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1236 A S) +(-1238 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1237 S) +(-1239 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4343 . T) (-4342 . T)) +((-4348 . T) (-4347 . T)) NIL -(-1238 R) +(-1240 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1239 K R UP -3423) +(-1241 K R UP -3428) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1240) +(-1242) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1241) +(-1243) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1242 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1244 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights"))) -((-4343 |has| |#1| (-170)) (-4342 |has| |#1| (-170)) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356)))) -(-1243 R E V P) +((-4348 |has| |#1| (-170)) (-4347 |has| |#1| (-170)) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358)))) +(-1245 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4349 . T) (-4348 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#4| (LIST (QUOTE -302) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -596) (QUOTE (-525)))) (|HasCategory| |#4| (QUOTE (-1072))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#3| (QUOTE (-361))) (|HasCategory| |#4| (LIST (QUOTE -595) (QUOTE (-838))))) -(-1244 R) +((-4354 . T) (-4353 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#4| (LIST (QUOTE -304) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -598) (QUOTE (-527)))) (|HasCategory| |#4| (QUOTE (-1074))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -597) (QUOTE (-840))))) +(-1246 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}."))) -((-4342 . T) (-4343 . T) (-4345 . T)) +((-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1245 |vl| R) +(-1247 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4345 . T) (-4341 |has| |#2| (-6 -4341)) (-4343 . T) (-4342 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4341))) -(-1246 R |VarSet| XPOLY) +((-4350 . T) (-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4346))) +(-1248 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1247 S -3423) +(-1249 S -3428) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL -((|HasCategory| |#2| (QUOTE (-361))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145)))) -(-1248 -3423) +((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-143))) (|HasCategory| |#2| (QUOTE (-145)))) +(-1250 -3428) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4340 . T) (-4346 . T) (-4341 . T) ((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +((-4345 . T) (-4351 . T) (-4346 . T) ((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL -(-1249 |vl| R) +(-1251 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4341 |has| |#2| (-6 -4341)) (-4343 . T) (-4342 . T) (-4345 . T)) +((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T)) NIL -(-1250 |VarSet| R) +(-1252 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4341 |has| |#2| (-6 -4341)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -696) (LIST (QUOTE -400) (QUOTE (-536))))) (|HasAttribute| |#2| (QUOTE -4341))) -(-1251 R) +((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasCategory| |#2| (LIST (QUOTE -698) (LIST (QUOTE -402) (QUOTE (-538))))) (|HasAttribute| |#2| (QUOTE -4346))) +(-1253 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4341 |has| |#1| (-6 -4341)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4341))) -(-1252 |vl| R) +((-4346 |has| |#1| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasAttribute| |#1| (QUOTE -4346))) +(-1254 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4341 |has| |#2| (-6 -4341)) (-4343 . T) (-4342 . T) (-4345 . T)) +((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T)) NIL -(-1253 R E) +(-1255 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4345 . T) (-4346 |has| |#1| (-6 -4346)) (-4341 |has| |#1| (-6 -4341)) (-4343 . T) (-4342 . T)) -((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-356))) (|HasAttribute| |#1| (QUOTE -4345)) (|HasAttribute| |#1| (QUOTE -4346)) (|HasAttribute| |#1| (QUOTE -4341))) -(-1254 |VarSet| R) +((-4350 . T) (-4351 |has| |#1| (-6 -4351)) (-4346 |has| |#1| (-6 -4346)) (-4348 . T) (-4347 . T)) +((|HasCategory| |#1| (QUOTE (-170))) (|HasCategory| |#1| (QUOTE (-358))) (|HasAttribute| |#1| (QUOTE -4350)) (|HasAttribute| |#1| (QUOTE -4351)) (|HasAttribute| |#1| (QUOTE -4346))) +(-1256 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4341 |has| |#2| (-6 -4341)) (-4343 . T) (-4342 . T) (-4345 . T)) -((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4341))) -(-1255 A) +((-4346 |has| |#2| (-6 -4346)) (-4348 . T) (-4347 . T) (-4350 . T)) +((|HasCategory| |#2| (QUOTE (-170))) (|HasAttribute| |#2| (QUOTE -4346))) +(-1257 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1256 R |ls| |ls2|) +(-1258 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1257 R) +(-1259 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1258 |p|) +(-1260 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4350 "*") . T) (-4342 . T) (-4343 . T) (-4345 . T)) +(((-4355 "*") . T) (-4347 . T) (-4348 . T) (-4350 . T)) NIL NIL NIL @@ -4980,4 +4988,4 @@ NIL NIL NIL NIL -((-3 NIL 2266972 2266977 2266982 2266987) (-2 NIL 2266952 2266957 2266962 2266967) (-1 NIL 2266932 2266937 2266942 2266947) (0 NIL 2266912 2266917 2266922 2266927) (-1258 "ZMOD.spad" 2266721 2266734 2266850 2266907) (-1257 "ZLINDEP.spad" 2265765 2265776 2266711 2266716) (-1256 "ZDSOLVE.spad" 2255614 2255636 2265755 2265760) (-1255 "YSTREAM.spad" 2255107 2255118 2255604 2255609) (-1254 "XRPOLY.spad" 2254327 2254347 2254963 2255032) (-1253 "XPR.spad" 2252056 2252069 2254045 2254144) (-1252 "XPOLYC.spad" 2251373 2251389 2251982 2252051) (-1251 "XPOLY.spad" 2250928 2250939 2251229 2251298) (-1250 "XPBWPOLY.spad" 2249365 2249385 2250708 2250777) (-1249 "XFALG.spad" 2246389 2246405 2249291 2249360) (-1248 "XF.spad" 2244850 2244865 2246291 2246384) (-1247 "XF.spad" 2243291 2243308 2244734 2244739) (-1246 "XEXPPKG.spad" 2242542 2242568 2243281 2243286) (-1245 "XDPOLY.spad" 2242156 2242172 2242398 2242467) (-1244 "XALG.spad" 2241754 2241765 2242112 2242151) (-1243 "WUTSET.spad" 2237593 2237610 2241400 2241427) (-1242 "WP.spad" 2236607 2236651 2237451 2237518) (-1241 "WHILEAST.spad" 2236405 2236414 2236597 2236602) (-1240 "WHEREAST.spad" 2236076 2236085 2236395 2236400) (-1239 "WFFINTBS.spad" 2233639 2233661 2236066 2236071) (-1238 "WEIER.spad" 2231853 2231864 2233629 2233634) (-1237 "VSPACE.spad" 2231526 2231537 2231821 2231848) (-1236 "VSPACE.spad" 2231219 2231232 2231516 2231521) (-1235 "VOID.spad" 2230809 2230818 2231209 2231214) (-1234 "VIEWDEF.spad" 2226006 2226015 2230799 2230804) (-1233 "VIEW3D.spad" 2209841 2209850 2225996 2226001) (-1232 "VIEW2D.spad" 2197578 2197587 2209831 2209836) (-1231 "VIEW.spad" 2195200 2195209 2197568 2197573) (-1230 "VECTOR2.spad" 2193827 2193840 2195190 2195195) (-1229 "VECTOR.spad" 2192502 2192513 2192753 2192780) (-1228 "VECTCAT.spad" 2190390 2190401 2192458 2192497) (-1227 "VECTCAT.spad" 2188098 2188111 2190168 2190173) (-1226 "VARIABLE.spad" 2187878 2187893 2188088 2188093) (-1225 "UTYPE.spad" 2187512 2187521 2187858 2187873) (-1224 "UTSODETL.spad" 2186805 2186829 2187468 2187473) (-1223 "UTSODE.spad" 2184993 2185013 2186795 2186800) (-1222 "UTSCAT.spad" 2182444 2182460 2184891 2184988) (-1221 "UTSCAT.spad" 2179539 2179557 2181988 2181993) (-1220 "UTS2.spad" 2179132 2179167 2179529 2179534) (-1219 "UTS.spad" 2173921 2173949 2177599 2177696) (-1218 "URAGG.spad" 2168543 2168554 2173901 2173916) (-1217 "URAGG.spad" 2163139 2163152 2168499 2168504) (-1216 "UPXSSING.spad" 2160782 2160808 2162220 2162353) (-1215 "UPXSCONS.spad" 2158539 2158559 2158914 2159063) (-1214 "UPXSCCA.spad" 2156997 2157017 2158385 2158534) (-1213 "UPXSCCA.spad" 2155597 2155619 2156987 2156992) (-1212 "UPXSCAT.spad" 2154178 2154194 2155443 2155592) (-1211 "UPXS2.spad" 2153719 2153772 2154168 2154173) (-1210 "UPXS.spad" 2150746 2150774 2151851 2152000) (-1209 "UPSQFREE.spad" 2149159 2149173 2150736 2150741) (-1208 "UPSCAT.spad" 2146752 2146776 2149057 2149154) (-1207 "UPSCAT.spad" 2144051 2144077 2146358 2146363) (-1206 "UPOLYC2.spad" 2143520 2143539 2144041 2144046) (-1205 "UPOLYC.spad" 2138498 2138509 2143362 2143515) (-1204 "UPOLYC.spad" 2133368 2133381 2138234 2138239) (-1203 "UPMP.spad" 2132258 2132271 2133358 2133363) (-1202 "UPDIVP.spad" 2131821 2131835 2132248 2132253) (-1201 "UPDECOMP.spad" 2130058 2130072 2131811 2131816) (-1200 "UPCDEN.spad" 2129265 2129281 2130048 2130053) (-1199 "UP2.spad" 2128627 2128648 2129255 2129260) (-1198 "UP.spad" 2125669 2125684 2126177 2126330) (-1197 "UNISEG2.spad" 2125162 2125175 2125625 2125630) (-1196 "UNISEG.spad" 2124515 2124526 2125081 2125086) (-1195 "UNIFACT.spad" 2123616 2123628 2124505 2124510) (-1194 "ULSCONS.spad" 2117655 2117675 2118027 2118176) (-1193 "ULSCCAT.spad" 2115252 2115272 2117475 2117650) (-1192 "ULSCCAT.spad" 2112983 2113005 2115208 2115213) (-1191 "ULSCAT.spad" 2111199 2111215 2112829 2112978) (-1190 "ULS2.spad" 2110711 2110764 2111189 2111194) (-1189 "ULS.spad" 2101265 2101293 2102358 2102787) (-1188 "UFD.spad" 2100330 2100339 2101191 2101260) (-1187 "UFD.spad" 2099457 2099468 2100320 2100325) (-1186 "UDVO.spad" 2098304 2098313 2099447 2099452) (-1185 "UDPO.spad" 2095731 2095742 2098260 2098265) (-1184 "TYPEAST.spad" 2095650 2095659 2095721 2095726) (-1183 "TYPE.spad" 2095572 2095581 2095630 2095645) (-1182 "TWOFACT.spad" 2094222 2094237 2095562 2095567) (-1181 "TUPLE.spad" 2093608 2093619 2094121 2094126) (-1180 "TUBETOOL.spad" 2090445 2090454 2093598 2093603) (-1179 "TUBE.spad" 2089086 2089103 2090435 2090440) (-1178 "TSETCAT.spad" 2076201 2076218 2089042 2089081) (-1177 "TSETCAT.spad" 2063314 2063333 2076157 2076162) (-1176 "TS.spad" 2061903 2061919 2062879 2062976) (-1175 "TRMANIP.spad" 2056269 2056286 2061609 2061614) (-1174 "TRIMAT.spad" 2055228 2055253 2056259 2056264) (-1173 "TRIGMNIP.spad" 2053745 2053762 2055218 2055223) (-1172 "TRIGCAT.spad" 2053257 2053266 2053735 2053740) (-1171 "TRIGCAT.spad" 2052767 2052778 2053247 2053252) (-1170 "TREE.spad" 2051338 2051349 2052374 2052401) (-1169 "TRANFUN.spad" 2051169 2051178 2051328 2051333) (-1168 "TRANFUN.spad" 2050998 2051009 2051159 2051164) (-1167 "TOPSP.spad" 2050672 2050681 2050988 2050993) (-1166 "TOOLSIGN.spad" 2050335 2050346 2050662 2050667) (-1165 "TEXTFILE.spad" 2048892 2048901 2050325 2050330) (-1164 "TEX1.spad" 2048448 2048459 2048882 2048887) (-1163 "TEX.spad" 2045465 2045474 2048438 2048443) (-1162 "TEMUTL.spad" 2045020 2045029 2045455 2045460) (-1161 "TBCMPPK.spad" 2043113 2043136 2045010 2045015) (-1160 "TBAGG.spad" 2042137 2042160 2043081 2043108) (-1159 "TBAGG.spad" 2041181 2041206 2042127 2042132) (-1158 "TANEXP.spad" 2040557 2040568 2041171 2041176) (-1157 "TABLEAU.spad" 2040038 2040049 2040547 2040552) (-1156 "TABLE.spad" 2038449 2038472 2038719 2038746) (-1155 "TABLBUMP.spad" 2035232 2035243 2038439 2038444) (-1154 "SYSTEM.spad" 2034506 2034515 2035222 2035227) (-1153 "SYSSOLP.spad" 2031979 2031990 2034496 2034501) (-1152 "SYNTAX.spad" 2028171 2028180 2031969 2031974) (-1151 "SYMTAB.spad" 2026227 2026236 2028161 2028166) (-1150 "SYMS.spad" 2022218 2022227 2026217 2026222) (-1149 "SYMPOLY.spad" 2021225 2021236 2021307 2021434) (-1148 "SYMFUNC.spad" 2020700 2020711 2021215 2021220) (-1147 "SYMBOL.spad" 2018036 2018045 2020690 2020695) (-1146 "SWITCH.spad" 2014793 2014802 2018026 2018031) (-1145 "SUTS.spad" 2011692 2011720 2013260 2013357) (-1144 "SUPXS.spad" 2008706 2008734 2009824 2009973) (-1143 "SUPFRACF.spad" 2007811 2007829 2008696 2008701) (-1142 "SUP2.spad" 2007201 2007214 2007801 2007806) (-1141 "SUP.spad" 2003970 2003981 2004751 2004904) (-1140 "SUMRF.spad" 2002936 2002947 2003960 2003965) (-1139 "SUMFS.spad" 2002569 2002586 2002926 2002931) (-1138 "SULS.spad" 1993110 1993138 1994216 1994645) (-1137 "SUCHTAST.spad" 1992879 1992888 1993100 1993105) (-1136 "SUCH.spad" 1992559 1992574 1992869 1992874) (-1135 "SUBSPACE.spad" 1984566 1984581 1992549 1992554) (-1134 "SUBRESP.spad" 1983726 1983740 1984522 1984527) (-1133 "STTFNC.spad" 1980194 1980210 1983716 1983721) (-1132 "STTF.spad" 1976293 1976309 1980184 1980189) (-1131 "STTAYLOR.spad" 1968691 1968702 1976174 1976179) (-1130 "STRTBL.spad" 1967196 1967213 1967345 1967372) (-1129 "STRING.spad" 1966605 1966614 1966619 1966646) (-1128 "STRICAT.spad" 1966381 1966390 1966561 1966600) (-1127 "STREAM3.spad" 1965926 1965941 1966371 1966376) (-1126 "STREAM2.spad" 1964994 1965007 1965916 1965921) (-1125 "STREAM1.spad" 1964698 1964709 1964984 1964989) (-1124 "STREAM.spad" 1961466 1961477 1964223 1964238) (-1123 "STINPROD.spad" 1960372 1960388 1961456 1961461) (-1122 "STEP.spad" 1959573 1959582 1960362 1960367) (-1121 "STBL.spad" 1958099 1958127 1958266 1958281) (-1120 "STAGG.spad" 1957164 1957175 1958079 1958094) (-1119 "STAGG.spad" 1956237 1956250 1957154 1957159) (-1118 "STACK.spad" 1955588 1955599 1955844 1955871) (-1117 "SREGSET.spad" 1953292 1953309 1955234 1955261) (-1116 "SRDCMPK.spad" 1951837 1951857 1953282 1953287) (-1115 "SRAGG.spad" 1946922 1946931 1951793 1951832) (-1114 "SRAGG.spad" 1942039 1942050 1946912 1946917) (-1113 "SQMATRIX.spad" 1939655 1939673 1940571 1940658) (-1112 "SPLTREE.spad" 1934207 1934220 1939091 1939118) (-1111 "SPLNODE.spad" 1930795 1930808 1934197 1934202) (-1110 "SPFCAT.spad" 1929572 1929581 1930785 1930790) (-1109 "SPECOUT.spad" 1928122 1928131 1929562 1929567) (-1108 "SPADXPT.spad" 1920251 1920260 1928102 1928117) (-1107 "spad-parser.spad" 1919716 1919725 1920241 1920246) (-1106 "SPADAST.spad" 1919417 1919426 1919706 1919711) (-1105 "SPACEC.spad" 1903430 1903441 1919407 1919412) (-1104 "SPACE3.spad" 1903206 1903217 1903420 1903425) (-1103 "SORTPAK.spad" 1902751 1902764 1903162 1903167) (-1102 "SOLVETRA.spad" 1900508 1900519 1902741 1902746) (-1101 "SOLVESER.spad" 1899028 1899039 1900498 1900503) (-1100 "SOLVERAD.spad" 1895038 1895049 1899018 1899023) (-1099 "SOLVEFOR.spad" 1893458 1893476 1895028 1895033) (-1098 "SNTSCAT.spad" 1893046 1893063 1893414 1893453) (-1097 "SMTS.spad" 1891306 1891332 1892611 1892708) (-1096 "SMP.spad" 1888745 1888765 1889135 1889262) (-1095 "SMITH.spad" 1887588 1887613 1888735 1888740) (-1094 "SMATCAT.spad" 1885686 1885716 1887520 1887583) (-1093 "SMATCAT.spad" 1883728 1883760 1885564 1885569) (-1092 "SKAGG.spad" 1882677 1882688 1883684 1883723) (-1091 "SINT.spad" 1880985 1880994 1882543 1882672) (-1090 "SIMPAN.spad" 1880713 1880722 1880975 1880980) (-1089 "SIGNRF.spad" 1879828 1879839 1880703 1880708) (-1088 "SIGNEF.spad" 1879104 1879121 1879818 1879823) (-1087 "SIGAST.spad" 1878485 1878494 1879094 1879099) (-1086 "SIG.spad" 1877813 1877822 1878475 1878480) (-1085 "SHP.spad" 1875731 1875746 1877769 1877774) (-1084 "SHDP.spad" 1866716 1866743 1867225 1867356) (-1083 "SGROUP.spad" 1866324 1866333 1866706 1866711) (-1082 "SGROUP.spad" 1865930 1865941 1866314 1866319) (-1081 "SGCF.spad" 1858811 1858820 1865920 1865925) (-1080 "SFRTCAT.spad" 1857727 1857744 1858767 1858806) (-1079 "SFRGCD.spad" 1856790 1856810 1857717 1857722) (-1078 "SFQCMPK.spad" 1851427 1851447 1856780 1856785) (-1077 "SFORT.spad" 1850862 1850876 1851417 1851422) (-1076 "SEXOF.spad" 1850705 1850745 1850852 1850857) (-1075 "SEXCAT.spad" 1847809 1847849 1850695 1850700) (-1074 "SEX.spad" 1847701 1847710 1847799 1847804) (-1073 "SETMN.spad" 1846137 1846154 1847691 1847696) (-1072 "SETCAT.spad" 1845622 1845631 1846127 1846132) (-1071 "SETCAT.spad" 1845105 1845116 1845612 1845617) (-1070 "SETAGG.spad" 1841614 1841625 1845073 1845100) (-1069 "SETAGG.spad" 1838143 1838156 1841604 1841609) (-1068 "SET.spad" 1836443 1836454 1837564 1837603) (-1067 "SEQAST.spad" 1836146 1836155 1836433 1836438) (-1066 "SEGXCAT.spad" 1835258 1835271 1836126 1836141) (-1065 "SEGCAT.spad" 1834077 1834088 1835238 1835253) (-1064 "SEGBIND2.spad" 1833773 1833786 1834067 1834072) (-1063 "SEGBIND.spad" 1832845 1832856 1833728 1833733) (-1062 "SEGAST.spad" 1832559 1832568 1832835 1832840) (-1061 "SEG2.spad" 1831984 1831997 1832515 1832520) (-1060 "SEG.spad" 1831797 1831808 1831903 1831908) (-1059 "SDVAR.spad" 1831073 1831084 1831787 1831792) (-1058 "SDPOL.spad" 1828463 1828474 1828754 1828881) (-1057 "SCPKG.spad" 1826542 1826553 1828453 1828458) (-1056 "SCOPE.spad" 1825687 1825696 1826532 1826537) (-1055 "SCACHE.spad" 1824369 1824380 1825677 1825682) (-1054 "SASTCAT.spad" 1824278 1824287 1824359 1824364) (-1053 "SAOS.spad" 1824150 1824159 1824268 1824273) (-1052 "SAERFFC.spad" 1823863 1823883 1824140 1824145) (-1051 "SAEFACT.spad" 1823564 1823584 1823853 1823858) (-1050 "SAE.spad" 1821739 1821755 1822350 1822485) (-1049 "RURPK.spad" 1819380 1819396 1821729 1821734) (-1048 "RULESET.spad" 1818821 1818845 1819370 1819375) (-1047 "RULECOLD.spad" 1818673 1818686 1818811 1818816) (-1046 "RULE.spad" 1816877 1816901 1818663 1818668) (-1045 "RSTRCAST.spad" 1816594 1816603 1816867 1816872) (-1044 "RSETGCD.spad" 1812972 1812992 1816584 1816589) (-1043 "RSETCAT.spad" 1802744 1802761 1812928 1812967) (-1042 "RSETCAT.spad" 1792548 1792567 1802734 1802739) (-1041 "RSDCMPK.spad" 1791000 1791020 1792538 1792543) (-1040 "RRCC.spad" 1789384 1789414 1790990 1790995) (-1039 "RRCC.spad" 1787766 1787798 1789374 1789379) (-1038 "RPTAST.spad" 1787468 1787477 1787756 1787761) (-1037 "RPOLCAT.spad" 1766828 1766843 1787336 1787463) (-1036 "RPOLCAT.spad" 1745902 1745919 1766412 1766417) (-1035 "ROUTINE.spad" 1741765 1741774 1744549 1744576) (-1034 "ROMAN.spad" 1740997 1741006 1741631 1741760) (-1033 "ROIRC.spad" 1740077 1740109 1740987 1740992) (-1032 "RNS.spad" 1738980 1738989 1739979 1740072) (-1031 "RNS.spad" 1737969 1737980 1738970 1738975) (-1030 "RNG.spad" 1737704 1737713 1737959 1737964) (-1029 "RMODULE.spad" 1737342 1737353 1737694 1737699) (-1028 "RMCAT2.spad" 1736750 1736807 1737332 1737337) (-1027 "RMATRIX.spad" 1735429 1735448 1735917 1735956) (-1026 "RMATCAT.spad" 1730950 1730981 1735373 1735424) (-1025 "RMATCAT.spad" 1726373 1726406 1730798 1730803) (-1024 "RINTERP.spad" 1726261 1726281 1726363 1726368) (-1023 "RING.spad" 1725618 1725627 1726241 1726256) (-1022 "RING.spad" 1724983 1724994 1725608 1725613) (-1021 "RIDIST.spad" 1724367 1724376 1724973 1724978) (-1020 "RGCHAIN.spad" 1722946 1722962 1723852 1723879) (-1019 "RGBCSPC.spad" 1722727 1722739 1722936 1722941) (-1018 "RGBCMDL.spad" 1722257 1722269 1722717 1722722) (-1017 "RFFACTOR.spad" 1721719 1721730 1722247 1722252) (-1016 "RFFACT.spad" 1721454 1721466 1721709 1721714) (-1015 "RFDIST.spad" 1720442 1720451 1721444 1721449) (-1014 "RF.spad" 1718056 1718067 1720432 1720437) (-1013 "RETSOL.spad" 1717473 1717486 1718046 1718051) (-1012 "RETRACT.spad" 1716822 1716833 1717463 1717468) (-1011 "RETRACT.spad" 1716169 1716182 1716812 1716817) (-1010 "RETAST.spad" 1715981 1715990 1716159 1716164) (-1009 "RESULT.spad" 1714041 1714050 1714628 1714655) (-1008 "RESRING.spad" 1713388 1713435 1713979 1714036) (-1007 "RESLATC.spad" 1712712 1712723 1713378 1713383) (-1006 "REPSQ.spad" 1712441 1712452 1712702 1712707) (-1005 "REPDB.spad" 1712146 1712157 1712431 1712436) (-1004 "REP2.spad" 1701718 1701729 1711988 1711993) (-1003 "REP1.spad" 1695708 1695719 1701668 1701673) (-1002 "REP.spad" 1693260 1693269 1695698 1695703) (-1001 "REGSET.spad" 1691057 1691074 1692906 1692933) (-1000 "REF.spad" 1690386 1690397 1691012 1691017) (-999 "REDORDER.spad" 1689563 1689579 1690376 1690381) (-998 "RECLOS.spad" 1688347 1688366 1689050 1689143) (-997 "REALSOLV.spad" 1687480 1687488 1688337 1688342) (-996 "REAL0Q.spad" 1684763 1684777 1687470 1687475) (-995 "REAL0.spad" 1681592 1681606 1684753 1684758) (-994 "REAL.spad" 1681465 1681473 1681582 1681587) (-993 "RDUCEAST.spad" 1681187 1681195 1681455 1681460) (-992 "RDIV.spad" 1680839 1680863 1681177 1681182) (-991 "RDIST.spad" 1680403 1680413 1680829 1680834) (-990 "RDETRS.spad" 1679200 1679217 1680393 1680398) (-989 "RDETR.spad" 1677308 1677325 1679190 1679195) (-988 "RDEEFS.spad" 1676382 1676398 1677298 1677303) (-987 "RDEEF.spad" 1675379 1675395 1676372 1676377) (-986 "RCFIELD.spad" 1672566 1672574 1675281 1675374) (-985 "RCFIELD.spad" 1669839 1669849 1672556 1672561) (-984 "RCAGG.spad" 1667742 1667752 1669819 1669834) (-983 "RCAGG.spad" 1665582 1665594 1667661 1667666) (-982 "RATRET.spad" 1664943 1664953 1665572 1665577) (-981 "RATFACT.spad" 1664636 1664647 1664933 1664938) (-980 "RANDSRC.spad" 1663956 1663964 1664626 1664631) (-979 "RADUTIL.spad" 1663711 1663719 1663946 1663951) (-978 "RADIX.spad" 1660502 1660515 1662179 1662272) (-977 "RADFF.spad" 1658916 1658952 1659034 1659190) (-976 "RADCAT.spad" 1658510 1658518 1658906 1658911) (-975 "RADCAT.spad" 1658102 1658112 1658500 1658505) (-974 "QUEUE.spad" 1657445 1657455 1657709 1657736) (-973 "QUATCT2.spad" 1657064 1657082 1657435 1657440) (-972 "QUATCAT.spad" 1655229 1655239 1656994 1657059) (-971 "QUATCAT.spad" 1653145 1653157 1654912 1654917) (-970 "QUAT.spad" 1651727 1651737 1652069 1652134) (-969 "QUAGG.spad" 1650541 1650551 1651683 1651722) (-968 "QQUTAST.spad" 1650310 1650318 1650531 1650536) (-967 "QFORM.spad" 1649773 1649787 1650300 1650305) (-966 "QFCAT2.spad" 1649464 1649480 1649763 1649768) (-965 "QFCAT.spad" 1648155 1648165 1649354 1649459) (-964 "QFCAT.spad" 1646450 1646462 1647651 1647656) (-963 "QEQUAT.spad" 1646007 1646015 1646440 1646445) (-962 "QCMPACK.spad" 1640754 1640773 1645997 1646002) (-961 "QALGSET2.spad" 1638750 1638768 1640744 1640749) (-960 "QALGSET.spad" 1634827 1634859 1638664 1638669) (-959 "PWFFINTB.spad" 1632137 1632158 1634817 1634822) (-958 "PUSHVAR.spad" 1631466 1631485 1632127 1632132) (-957 "PTRANFN.spad" 1627592 1627602 1631456 1631461) (-956 "PTPACK.spad" 1624680 1624690 1627582 1627587) (-955 "PTFUNC2.spad" 1624501 1624515 1624670 1624675) (-954 "PTCAT.spad" 1623583 1623593 1624457 1624496) (-953 "PSQFR.spad" 1622890 1622914 1623573 1623578) (-952 "PSEUDLIN.spad" 1621748 1621758 1622880 1622885) (-951 "PSETPK.spad" 1607181 1607197 1621626 1621631) (-950 "PSETCAT.spad" 1601089 1601112 1607149 1607176) (-949 "PSETCAT.spad" 1594983 1595008 1601045 1601050) (-948 "PSCURVE.spad" 1593966 1593974 1594973 1594978) (-947 "PSCAT.spad" 1592733 1592762 1593864 1593961) (-946 "PSCAT.spad" 1591590 1591621 1592723 1592728) (-945 "PRTITION.spad" 1590433 1590441 1591580 1591585) (-944 "PRTDAST.spad" 1590152 1590160 1590423 1590428) (-943 "PRS.spad" 1579714 1579731 1590108 1590113) (-942 "PRQAGG.spad" 1579133 1579143 1579670 1579709) (-941 "PROPLOG.spad" 1578536 1578544 1579123 1579128) (-940 "PROPFRML.spad" 1576454 1576465 1578526 1578531) (-939 "PROPERTY.spad" 1575948 1575956 1576444 1576449) (-938 "PRODUCT.spad" 1573628 1573640 1573914 1573969) (-937 "PRINT.spad" 1573380 1573388 1573618 1573623) (-936 "PRIMES.spad" 1571631 1571641 1573370 1573375) (-935 "PRIMELT.spad" 1569612 1569626 1571621 1571626) (-934 "PRIMCAT.spad" 1569235 1569243 1569602 1569607) (-933 "PRIMARR2.spad" 1567958 1567970 1569225 1569230) (-932 "PRIMARR.spad" 1566963 1566973 1567141 1567168) (-931 "PREASSOC.spad" 1566335 1566347 1566953 1566958) (-930 "PR.spad" 1564721 1564733 1565426 1565553) (-929 "PPCURVE.spad" 1563858 1563866 1564711 1564716) (-928 "PORTNUM.spad" 1563633 1563641 1563848 1563853) (-927 "POLYROOT.spad" 1562405 1562427 1563589 1563594) (-926 "POLYLIFT.spad" 1561666 1561689 1562395 1562400) (-925 "POLYCATQ.spad" 1559768 1559790 1561656 1561661) (-924 "POLYCAT.spad" 1553174 1553195 1559636 1559763) (-923 "POLYCAT.spad" 1545882 1545905 1552346 1552351) (-922 "POLY2UP.spad" 1545330 1545344 1545872 1545877) (-921 "POLY2.spad" 1544925 1544937 1545320 1545325) (-920 "POLY.spad" 1542222 1542232 1542739 1542866) (-919 "POLUTIL.spad" 1541163 1541192 1542178 1542183) (-918 "POLTOPOL.spad" 1539911 1539926 1541153 1541158) (-917 "POINT.spad" 1538750 1538760 1538837 1538864) (-916 "PNTHEORY.spad" 1535416 1535424 1538740 1538745) (-915 "PMTOOLS.spad" 1534173 1534187 1535406 1535411) (-914 "PMSYM.spad" 1533718 1533728 1534163 1534168) (-913 "PMQFCAT.spad" 1533305 1533319 1533708 1533713) (-912 "PMPREDFS.spad" 1532749 1532771 1533295 1533300) (-911 "PMPRED.spad" 1532218 1532232 1532739 1532744) (-910 "PMPLCAT.spad" 1531288 1531306 1532150 1532155) (-909 "PMLSAGG.spad" 1530869 1530883 1531278 1531283) (-908 "PMKERNEL.spad" 1530436 1530448 1530859 1530864) (-907 "PMINS.spad" 1530012 1530022 1530426 1530431) (-906 "PMFS.spad" 1529585 1529603 1530002 1530007) (-905 "PMDOWN.spad" 1528871 1528885 1529575 1529580) (-904 "PMASSFS.spad" 1527840 1527856 1528861 1528866) (-903 "PMASS.spad" 1526852 1526860 1527830 1527835) (-902 "PLOTTOOL.spad" 1526632 1526640 1526842 1526847) (-901 "PLOT3D.spad" 1523052 1523060 1526622 1526627) (-900 "PLOT1.spad" 1522193 1522203 1523042 1523047) (-899 "PLOT.spad" 1517024 1517032 1522183 1522188) (-898 "PLEQN.spad" 1504240 1504267 1517014 1517019) (-897 "PINTERPA.spad" 1504022 1504038 1504230 1504235) (-896 "PINTERP.spad" 1503638 1503657 1504012 1504017) (-895 "PID.spad" 1502594 1502602 1503564 1503633) (-894 "PICOERCE.spad" 1502251 1502261 1502584 1502589) (-893 "PI.spad" 1501858 1501866 1502225 1502246) (-892 "PGROEB.spad" 1500455 1500469 1501848 1501853) (-891 "PGE.spad" 1491708 1491716 1500445 1500450) (-890 "PGCD.spad" 1490590 1490607 1491698 1491703) (-889 "PFRPAC.spad" 1489733 1489743 1490580 1490585) (-888 "PFR.spad" 1486390 1486400 1489635 1489728) (-887 "PFOTOOLS.spad" 1485648 1485664 1486380 1486385) (-886 "PFOQ.spad" 1485018 1485036 1485638 1485643) (-885 "PFO.spad" 1484437 1484464 1485008 1485013) (-884 "PFECAT.spad" 1482103 1482111 1484363 1484432) (-883 "PFECAT.spad" 1479797 1479807 1482059 1482064) (-882 "PFBRU.spad" 1477667 1477679 1479787 1479792) (-881 "PFBR.spad" 1475205 1475228 1477657 1477662) (-880 "PF.spad" 1474779 1474791 1475010 1475103) (-879 "PERMGRP.spad" 1469515 1469525 1474769 1474774) (-878 "PERMCAT.spad" 1468067 1468077 1469495 1469510) (-877 "PERMAN.spad" 1466599 1466613 1468057 1468062) (-876 "PERM.spad" 1462280 1462290 1466429 1466444) (-875 "PENDTREE.spad" 1461553 1461563 1461909 1461914) (-874 "PDRING.spad" 1460044 1460054 1461533 1461548) (-873 "PDRING.spad" 1458543 1458555 1460034 1460039) (-872 "PDEPROB.spad" 1457500 1457508 1458533 1458538) (-871 "PDEPACK.spad" 1451502 1451510 1457490 1457495) (-870 "PDECOMP.spad" 1450964 1450981 1451492 1451497) (-869 "PDECAT.spad" 1449318 1449326 1450954 1450959) (-868 "PCOMP.spad" 1449169 1449182 1449308 1449313) (-867 "PBWLB.spad" 1447751 1447768 1449159 1449164) (-866 "PATTERN2.spad" 1447487 1447499 1447741 1447746) (-865 "PATTERN1.spad" 1445789 1445805 1447477 1447482) (-864 "PATTERN.spad" 1440220 1440230 1445779 1445784) (-863 "PATRES2.spad" 1439882 1439896 1440210 1440215) (-862 "PATRES.spad" 1437429 1437441 1439872 1439877) (-861 "PATMATCH.spad" 1435586 1435617 1437137 1437142) (-860 "PATMAB.spad" 1435011 1435021 1435576 1435581) (-859 "PATLRES.spad" 1434095 1434109 1435001 1435006) (-858 "PATAB.spad" 1433859 1433869 1434085 1434090) (-857 "PARTPERM.spad" 1431221 1431229 1433849 1433854) (-856 "PARSURF.spad" 1430649 1430677 1431211 1431216) (-855 "PARSU2.spad" 1430444 1430460 1430639 1430644) (-854 "script-parser.spad" 1429964 1429972 1430434 1430439) (-853 "PARSCURV.spad" 1429392 1429420 1429954 1429959) (-852 "PARSC2.spad" 1429181 1429197 1429382 1429387) (-851 "PARPCURV.spad" 1428639 1428667 1429171 1429176) (-850 "PARPC2.spad" 1428428 1428444 1428629 1428634) (-849 "PAN2EXPR.spad" 1427840 1427848 1428418 1428423) (-848 "PALETTE.spad" 1426810 1426818 1427830 1427835) (-847 "PAIR.spad" 1425793 1425806 1426398 1426403) (-846 "PADICRC.spad" 1423124 1423142 1424299 1424392) (-845 "PADICRAT.spad" 1421140 1421152 1421361 1421454) (-844 "PADICCT.spad" 1419681 1419693 1421066 1421135) (-843 "PADIC.spad" 1419376 1419388 1419607 1419676) (-842 "PADEPAC.spad" 1418055 1418074 1419366 1419371) (-841 "PADE.spad" 1416795 1416811 1418045 1418050) (-840 "OWP.spad" 1415779 1415809 1416653 1416720) (-839 "OVAR.spad" 1415560 1415583 1415769 1415774) (-838 "OUTFORM.spad" 1404856 1404864 1415550 1415555) (-837 "OUTBFILE.spad" 1404274 1404282 1404846 1404851) (-836 "OUTBCON.spad" 1403553 1403561 1404264 1404269) (-835 "OUTBCON.spad" 1402830 1402840 1403543 1403548) (-834 "OUT.spad" 1401914 1401922 1402820 1402825) (-833 "OSI.spad" 1401389 1401397 1401904 1401909) (-832 "OSGROUP.spad" 1401307 1401315 1401379 1401384) (-831 "ORTHPOL.spad" 1399768 1399778 1401224 1401229) (-830 "OREUP.spad" 1399126 1399154 1399448 1399487) (-829 "ORESUP.spad" 1398425 1398449 1398806 1398845) (-828 "OREPCTO.spad" 1396244 1396256 1398345 1398350) (-827 "OREPCAT.spad" 1390301 1390311 1396200 1396239) (-826 "OREPCAT.spad" 1384248 1384260 1390149 1390154) (-825 "ORDSET.spad" 1383414 1383422 1384238 1384243) (-824 "ORDSET.spad" 1382578 1382588 1383404 1383409) (-823 "ORDRING.spad" 1381968 1381976 1382558 1382573) (-822 "ORDRING.spad" 1381366 1381376 1381958 1381963) (-821 "ORDMON.spad" 1381221 1381229 1381356 1381361) (-820 "ORDFUNS.spad" 1380347 1380363 1381211 1381216) (-819 "ORDFIN.spad" 1380281 1380289 1380337 1380342) (-818 "ORDCOMP2.spad" 1379566 1379578 1380271 1380276) (-817 "ORDCOMP.spad" 1378031 1378041 1379113 1379142) (-816 "OPTPROB.spad" 1376611 1376619 1378021 1378026) (-815 "OPTPACK.spad" 1368996 1369004 1376601 1376606) (-814 "OPTCAT.spad" 1366671 1366679 1368986 1368991) (-813 "OPQUERY.spad" 1366220 1366228 1366661 1366666) (-812 "OP.spad" 1365962 1365972 1366042 1366109) (-811 "ONECOMP2.spad" 1365380 1365392 1365952 1365957) (-810 "ONECOMP.spad" 1364125 1364135 1364927 1364956) (-809 "OMSERVER.spad" 1363127 1363135 1364115 1364120) (-808 "OMSAGG.spad" 1362903 1362913 1363071 1363122) (-807 "OMPKG.spad" 1361515 1361523 1362893 1362898) (-806 "OMLO.spad" 1360940 1360952 1361401 1361440) (-805 "OMEXPR.spad" 1360774 1360784 1360930 1360935) (-804 "OMERRK.spad" 1359808 1359816 1360764 1360769) (-803 "OMERR.spad" 1359351 1359359 1359798 1359803) (-802 "OMENC.spad" 1358695 1358703 1359341 1359346) (-801 "OMDEV.spad" 1352984 1352992 1358685 1358690) (-800 "OMCONN.spad" 1352393 1352401 1352974 1352979) (-799 "OM.spad" 1351358 1351366 1352383 1352388) (-798 "OINTDOM.spad" 1351121 1351129 1351284 1351353) (-797 "OFMONOID.spad" 1347308 1347318 1351111 1351116) (-796 "ODVAR.spad" 1346569 1346579 1347298 1347303) (-795 "ODR.spad" 1346017 1346043 1346381 1346530) (-794 "ODPOL.spad" 1343363 1343373 1343703 1343830) (-793 "ODP.spad" 1334484 1334504 1334857 1334988) (-792 "ODETOOLS.spad" 1333067 1333086 1334474 1334479) (-791 "ODESYS.spad" 1330717 1330734 1333057 1333062) (-790 "ODERTRIC.spad" 1326658 1326675 1330674 1330679) (-789 "ODERED.spad" 1326045 1326069 1326648 1326653) (-788 "ODERAT.spad" 1323598 1323615 1326035 1326040) (-787 "ODEPRRIC.spad" 1320489 1320511 1323588 1323593) (-786 "ODEPROB.spad" 1319688 1319696 1320479 1320484) (-785 "ODEPRIM.spad" 1316962 1316984 1319678 1319683) (-784 "ODEPAL.spad" 1316338 1316362 1316952 1316957) (-783 "ODEPACK.spad" 1302940 1302948 1316328 1316333) (-782 "ODEINT.spad" 1302371 1302387 1302930 1302935) (-781 "ODEIFTBL.spad" 1299766 1299774 1302361 1302366) (-780 "ODEEF.spad" 1295137 1295153 1299756 1299761) (-779 "ODECONST.spad" 1294656 1294674 1295127 1295132) (-778 "ODECAT.spad" 1293252 1293260 1294646 1294651) (-777 "OCTCT2.spad" 1292896 1292917 1293242 1293247) (-776 "OCT.spad" 1291034 1291044 1291750 1291789) (-775 "OCAMON.spad" 1290882 1290890 1291024 1291029) (-774 "OC.spad" 1288656 1288666 1290838 1290877) (-773 "OC.spad" 1286155 1286167 1288339 1288344) (-772 "OASGP.spad" 1285970 1285978 1286145 1286150) (-771 "OAMONS.spad" 1285490 1285498 1285960 1285965) (-770 "OAMON.spad" 1285351 1285359 1285480 1285485) (-769 "OAGROUP.spad" 1285213 1285221 1285341 1285346) (-768 "NUMTUBE.spad" 1284800 1284816 1285203 1285208) (-767 "NUMQUAD.spad" 1272662 1272670 1284790 1284795) (-766 "NUMODE.spad" 1263798 1263806 1272652 1272657) (-765 "NUMINT.spad" 1261356 1261364 1263788 1263793) (-764 "NUMFMT.spad" 1260196 1260204 1261346 1261351) (-763 "NUMERIC.spad" 1252268 1252278 1260001 1260006) (-762 "NTSCAT.spad" 1250758 1250774 1252224 1252263) (-761 "NTPOLFN.spad" 1250303 1250313 1250675 1250680) (-760 "NSUP2.spad" 1249695 1249707 1250293 1250298) (-759 "NSUP.spad" 1242705 1242715 1247245 1247398) (-758 "NSMP.spad" 1238900 1238919 1239208 1239335) (-757 "NREP.spad" 1237272 1237286 1238890 1238895) (-756 "NPCOEF.spad" 1236518 1236538 1237262 1237267) (-755 "NORMRETR.spad" 1236116 1236155 1236508 1236513) (-754 "NORMPK.spad" 1234018 1234037 1236106 1236111) (-753 "NORMMA.spad" 1233706 1233732 1234008 1234013) (-752 "NONE1.spad" 1233382 1233392 1233696 1233701) (-751 "NONE.spad" 1233123 1233131 1233372 1233377) (-750 "NODE1.spad" 1232592 1232608 1233113 1233118) (-749 "NNI.spad" 1231479 1231487 1232566 1232587) (-748 "NLINSOL.spad" 1230101 1230111 1231469 1231474) (-747 "NIPROB.spad" 1228584 1228592 1230091 1230096) (-746 "NFINTBAS.spad" 1226044 1226061 1228574 1228579) (-745 "NCODIV.spad" 1224242 1224258 1226034 1226039) (-744 "NCNTFRAC.spad" 1223884 1223898 1224232 1224237) (-743 "NCEP.spad" 1222044 1222058 1223874 1223879) (-742 "NASRING.spad" 1221640 1221648 1222034 1222039) (-741 "NASRING.spad" 1221234 1221244 1221630 1221635) (-740 "NARNG.spad" 1220578 1220586 1221224 1221229) (-739 "NARNG.spad" 1219920 1219930 1220568 1220573) (-738 "NAGSP.spad" 1218993 1219001 1219910 1219915) (-737 "NAGS.spad" 1208518 1208526 1218983 1218988) (-736 "NAGF07.spad" 1206911 1206919 1208508 1208513) (-735 "NAGF04.spad" 1201143 1201151 1206901 1206906) (-734 "NAGF02.spad" 1194952 1194960 1201133 1201138) (-733 "NAGF01.spad" 1190555 1190563 1194942 1194947) (-732 "NAGE04.spad" 1184015 1184023 1190545 1190550) (-731 "NAGE02.spad" 1174357 1174365 1184005 1184010) (-730 "NAGE01.spad" 1170241 1170249 1174347 1174352) (-729 "NAGD03.spad" 1168161 1168169 1170231 1170236) (-728 "NAGD02.spad" 1160692 1160700 1168151 1168156) (-727 "NAGD01.spad" 1154805 1154813 1160682 1160687) (-726 "NAGC06.spad" 1150592 1150600 1154795 1154800) (-725 "NAGC05.spad" 1149061 1149069 1150582 1150587) (-724 "NAGC02.spad" 1148316 1148324 1149051 1149056) (-723 "NAALG.spad" 1147851 1147861 1148284 1148311) (-722 "NAALG.spad" 1147406 1147418 1147841 1147846) (-721 "MULTSQFR.spad" 1144364 1144381 1147396 1147401) (-720 "MULTFACT.spad" 1143747 1143764 1144354 1144359) (-719 "MTSCAT.spad" 1141781 1141802 1143645 1143742) (-718 "MTHING.spad" 1141438 1141448 1141771 1141776) (-717 "MSYSCMD.spad" 1140872 1140880 1141428 1141433) (-716 "MSETAGG.spad" 1140705 1140715 1140828 1140867) (-715 "MSET.spad" 1138647 1138657 1140411 1140450) (-714 "MRING.spad" 1135618 1135630 1138355 1138422) (-713 "MRF2.spad" 1135186 1135200 1135608 1135613) (-712 "MRATFAC.spad" 1134732 1134749 1135176 1135181) (-711 "MPRFF.spad" 1132762 1132781 1134722 1134727) (-710 "MPOLY.spad" 1130197 1130212 1130556 1130683) (-709 "MPCPF.spad" 1129461 1129480 1130187 1130192) (-708 "MPC3.spad" 1129276 1129316 1129451 1129456) (-707 "MPC2.spad" 1128918 1128951 1129266 1129271) (-706 "MONOTOOL.spad" 1127253 1127270 1128908 1128913) (-705 "MONOID.spad" 1126572 1126580 1127243 1127248) (-704 "MONOID.spad" 1125889 1125899 1126562 1126567) (-703 "MONOGEN.spad" 1124635 1124648 1125749 1125884) (-702 "MONOGEN.spad" 1123403 1123418 1124519 1124524) (-701 "MONADWU.spad" 1121417 1121425 1123393 1123398) (-700 "MONADWU.spad" 1119429 1119439 1121407 1121412) (-699 "MONAD.spad" 1118573 1118581 1119419 1119424) (-698 "MONAD.spad" 1117715 1117725 1118563 1118568) (-697 "MOEBIUS.spad" 1116401 1116415 1117695 1117710) (-696 "MODULE.spad" 1116271 1116281 1116369 1116396) (-695 "MODULE.spad" 1116161 1116173 1116261 1116266) (-694 "MODRING.spad" 1115492 1115531 1116141 1116156) (-693 "MODOP.spad" 1114151 1114163 1115314 1115381) (-692 "MODMONOM.spad" 1113683 1113701 1114141 1114146) (-691 "MODMON.spad" 1110385 1110401 1111161 1111314) (-690 "MODFIELD.spad" 1109743 1109782 1110287 1110380) (-689 "MMLFORM.spad" 1108603 1108611 1109733 1109738) (-688 "MMAP.spad" 1108343 1108377 1108593 1108598) (-687 "MLO.spad" 1106770 1106780 1108299 1108338) (-686 "MLIFT.spad" 1105342 1105359 1106760 1106765) (-685 "MKUCFUNC.spad" 1104875 1104893 1105332 1105337) (-684 "MKRECORD.spad" 1104477 1104490 1104865 1104870) (-683 "MKFUNC.spad" 1103858 1103868 1104467 1104472) (-682 "MKFLCFN.spad" 1102814 1102824 1103848 1103853) (-681 "MKCHSET.spad" 1102590 1102600 1102804 1102809) (-680 "MKBCFUNC.spad" 1102075 1102093 1102580 1102585) (-679 "MINT.spad" 1101514 1101522 1101977 1102070) (-678 "MHROWRED.spad" 1100015 1100025 1101504 1101509) (-677 "MFLOAT.spad" 1098531 1098539 1099905 1100010) (-676 "MFINFACT.spad" 1097931 1097953 1098521 1098526) (-675 "MESH.spad" 1095668 1095676 1097921 1097926) (-674 "MDDFACT.spad" 1093861 1093871 1095658 1095663) (-673 "MDAGG.spad" 1093136 1093146 1093829 1093856) (-672 "MCMPLX.spad" 1089111 1089119 1089725 1089926) (-671 "MCDEN.spad" 1088319 1088331 1089101 1089106) (-670 "MCALCFN.spad" 1085421 1085447 1088309 1088314) (-669 "MAYBE.spad" 1084670 1084681 1085411 1085416) (-668 "MATSTOR.spad" 1081946 1081956 1084660 1084665) (-667 "MATRIX.spad" 1080650 1080660 1081134 1081161) (-666 "MATLIN.spad" 1077976 1078000 1080534 1080539) (-665 "MATCAT2.spad" 1077244 1077292 1077966 1077971) (-664 "MATCAT.spad" 1068817 1068839 1077200 1077239) (-663 "MATCAT.spad" 1060274 1060298 1068659 1068664) (-662 "MAPPKG3.spad" 1059173 1059187 1060264 1060269) (-661 "MAPPKG2.spad" 1058507 1058519 1059163 1059168) (-660 "MAPPKG1.spad" 1057325 1057335 1058497 1058502) (-659 "MAPPAST.spad" 1056638 1056646 1057315 1057320) (-658 "MAPHACK3.spad" 1056446 1056460 1056628 1056633) (-657 "MAPHACK2.spad" 1056211 1056223 1056436 1056441) (-656 "MAPHACK1.spad" 1055841 1055851 1056201 1056206) (-655 "MAGMA.spad" 1053631 1053648 1055831 1055836) (-654 "MACROAST.spad" 1053210 1053218 1053621 1053626) (-653 "M3D.spad" 1050906 1050916 1052588 1052593) (-652 "LZSTAGG.spad" 1048124 1048134 1050886 1050901) (-651 "LZSTAGG.spad" 1045350 1045362 1048114 1048119) (-650 "LWORD.spad" 1042055 1042072 1045340 1045345) (-649 "LSTAST.spad" 1041839 1041847 1042045 1042050) (-648 "LSQM.spad" 1040062 1040076 1040460 1040511) (-647 "LSPP.spad" 1039595 1039612 1040052 1040057) (-646 "LSMP1.spad" 1037416 1037430 1039585 1039590) (-645 "LSMP.spad" 1036263 1036291 1037406 1037411) (-644 "LSAGG.spad" 1035920 1035930 1036219 1036258) (-643 "LSAGG.spad" 1035609 1035621 1035910 1035915) (-642 "LPOLY.spad" 1034563 1034582 1035465 1035534) (-641 "LPEFRAC.spad" 1033820 1033830 1034553 1034558) (-640 "LOGIC.spad" 1033422 1033430 1033810 1033815) (-639 "LOGIC.spad" 1033022 1033032 1033412 1033417) (-638 "LODOOPS.spad" 1031940 1031952 1033012 1033017) (-637 "LODOF.spad" 1030984 1031001 1031897 1031902) (-636 "LODOCAT.spad" 1029642 1029652 1030940 1030979) (-635 "LODOCAT.spad" 1028298 1028310 1029598 1029603) (-634 "LODO2.spad" 1027571 1027583 1027978 1028017) (-633 "LODO1.spad" 1026971 1026981 1027251 1027290) (-632 "LODO.spad" 1026355 1026371 1026651 1026690) (-631 "LODEEF.spad" 1025127 1025145 1026345 1026350) (-630 "LO.spad" 1024528 1024542 1025061 1025088) (-629 "LNAGG.spad" 1020320 1020330 1024508 1024523) (-628 "LNAGG.spad" 1016086 1016098 1020276 1020281) (-627 "LMOPS.spad" 1012822 1012839 1016076 1016081) (-626 "LMODULE.spad" 1012464 1012474 1012812 1012817) (-625 "LMDICT.spad" 1011747 1011757 1012015 1012042) (-624 "LITERAL.spad" 1011653 1011664 1011737 1011742) (-623 "LIST3.spad" 1010944 1010958 1011643 1011648) (-622 "LIST2MAP.spad" 1007821 1007833 1010934 1010939) (-621 "LIST2.spad" 1006461 1006473 1007811 1007816) (-620 "LIST.spad" 1004179 1004189 1005608 1005635) (-619 "LINEXP.spad" 1003611 1003621 1004159 1004174) (-618 "LINDEP.spad" 1002388 1002400 1003523 1003528) (-617 "LIMITRF.spad" 1000321 1000331 1002378 1002383) (-616 "LIMITPS.spad" 999211 999224 1000311 1000316) (-615 "LIECAT.spad" 998687 998697 999137 999206) (-614 "LIECAT.spad" 998191 998203 998643 998648) (-613 "LIE.spad" 996205 996217 997481 997626) (-612 "LIB.spad" 994253 994261 994864 994879) (-611 "LGROBP.spad" 991606 991625 994243 994248) (-610 "LFCAT.spad" 990625 990633 991596 991601) (-609 "LF.spad" 989544 989560 990615 990620) (-608 "LEXTRIPK.spad" 985047 985062 989534 989539) (-607 "LEXP.spad" 983050 983077 985027 985042) (-606 "LETAST.spad" 982749 982757 983040 983045) (-605 "LEADCDET.spad" 981133 981150 982739 982744) (-604 "LAZM3PK.spad" 979837 979859 981123 981128) (-603 "LAUPOL.spad" 978526 978539 979430 979499) (-602 "LAPLACE.spad" 978099 978115 978516 978521) (-601 "LALG.spad" 977875 977885 978079 978094) (-600 "LALG.spad" 977659 977671 977865 977870) (-599 "LA.spad" 977099 977113 977581 977620) (-598 "KTVLOGIC.spad" 976522 976530 977089 977094) (-597 "KOVACIC.spad" 975235 975252 976512 976517) (-596 "KONVERT.spad" 974957 974967 975225 975230) (-595 "KOERCE.spad" 974694 974704 974947 974952) (-594 "KERNEL2.spad" 974397 974409 974684 974689) (-593 "KERNEL.spad" 972932 972942 974181 974186) (-592 "KDAGG.spad" 972023 972045 972900 972927) (-591 "KDAGG.spad" 971134 971158 972013 972018) (-590 "KAFILE.spad" 970097 970113 970332 970359) (-589 "JORDAN.spad" 967924 967936 969387 969532) (-588 "JOINAST.spad" 967618 967626 967914 967919) (-587 "JAVACODE.spad" 967384 967392 967608 967613) (-586 "IXAGG.spad" 965497 965521 967364 967379) (-585 "IXAGG.spad" 963475 963501 965344 965349) (-584 "IVECTOR.spad" 962246 962261 962401 962428) (-583 "ITUPLE.spad" 961391 961401 962236 962241) (-582 "ITRIGMNP.spad" 960202 960221 961381 961386) (-581 "ITFUN3.spad" 959696 959710 960192 960197) (-580 "ITFUN2.spad" 959426 959438 959686 959691) (-579 "ITAYLOR.spad" 957218 957233 959262 959387) (-578 "ISUPS.spad" 949629 949644 956192 956289) (-577 "ISUMP.spad" 949126 949142 949619 949624) (-576 "ISTRING.spad" 948129 948142 948295 948322) (-575 "ISAST.spad" 947848 947856 948119 948124) (-574 "IRURPK.spad" 946561 946580 947838 947843) (-573 "IRSN.spad" 944521 944529 946551 946556) (-572 "IRRF2F.spad" 942996 943006 944477 944482) (-571 "IRREDFFX.spad" 942597 942608 942986 942991) (-570 "IROOT.spad" 940928 940938 942587 942592) (-569 "IR2F.spad" 940128 940144 940918 940923) (-568 "IR2.spad" 939148 939164 940118 940123) (-567 "IR.spad" 936937 936951 939003 939030) (-566 "IPRNTPK.spad" 936697 936705 936927 936932) (-565 "IPF.spad" 936262 936274 936502 936595) (-564 "IPADIC.spad" 936023 936049 936188 936257) (-563 "IOMODE.spad" 935644 935652 936013 936018) (-562 "IOBCON.spad" 935509 935517 935634 935639) (-561 "INVLAPLA.spad" 935154 935170 935499 935504) (-560 "INTTR.spad" 928412 928429 935144 935149) (-559 "INTTOOLS.spad" 926123 926139 927986 927991) (-558 "INTSLPE.spad" 925429 925437 926113 926118) (-557 "INTRVL.spad" 924995 925005 925343 925424) (-556 "INTRF.spad" 923359 923373 924985 924990) (-555 "INTRET.spad" 922791 922801 923349 923354) (-554 "INTRAT.spad" 921466 921483 922781 922786) (-553 "INTPM.spad" 919829 919845 921109 921114) (-552 "INTPAF.spad" 917604 917622 919761 919766) (-551 "INTPACK.spad" 907914 907922 917594 917599) (-550 "INTHERTR.spad" 907180 907197 907904 907909) (-549 "INTHERAL.spad" 906846 906870 907170 907175) (-548 "INTHEORY.spad" 903259 903267 906836 906841) (-547 "INTG0.spad" 896740 896758 903191 903196) (-546 "INTFTBL.spad" 892194 892202 896730 896735) (-545 "INTFACT.spad" 891253 891263 892184 892189) (-544 "INTEF.spad" 889570 889586 891243 891248) (-543 "INTDOM.spad" 888185 888193 889496 889565) (-542 "INTDOM.spad" 886862 886872 888175 888180) (-541 "INTCAT.spad" 885115 885125 886776 886857) (-540 "INTBIT.spad" 884618 884626 885105 885110) (-539 "INTALG.spad" 883800 883827 884608 884613) (-538 "INTAF.spad" 883292 883308 883790 883795) (-537 "INTABL.spad" 881810 881841 881973 882000) (-536 "INT.spad" 881171 881179 881664 881805) (-535 "INS.spad" 878638 878646 881073 881166) (-534 "INS.spad" 876191 876201 878628 878633) (-533 "INPSIGN.spad" 875647 875660 876181 876186) (-532 "INPRODPF.spad" 874713 874732 875637 875642) (-531 "INPRODFF.spad" 873771 873795 874703 874708) (-530 "INNMFACT.spad" 872742 872759 873761 873766) (-529 "INMODGCD.spad" 872226 872256 872732 872737) (-528 "INFSP.spad" 870511 870533 872216 872221) (-527 "INFPROD0.spad" 869561 869580 870501 870506) (-526 "INFORM1.spad" 869186 869196 869551 869556) (-525 "INFORM.spad" 866347 866355 869176 869181) (-524 "INFINITY.spad" 865899 865907 866337 866342) (-523 "INEP.spad" 864431 864453 865889 865894) (-522 "INDE.spad" 864160 864177 864421 864426) (-521 "INCRMAPS.spad" 863581 863591 864150 864155) (-520 "INBFILE.spad" 862910 862918 863571 863576) (-519 "INBFF.spad" 858680 858691 862900 862905) (-518 "INBCON.spad" 857980 857988 858670 858675) (-517 "INBCON.spad" 857278 857288 857970 857975) (-516 "INAST.spad" 856943 856951 857268 857273) (-515 "IMPTAST.spad" 856651 856659 856933 856938) (-514 "IMATRIX.spad" 855596 855622 856108 856135) (-513 "IMATQF.spad" 854690 854734 855552 855557) (-512 "IMATLIN.spad" 853295 853319 854646 854651) (-511 "ILIST.spad" 851951 851966 852478 852505) (-510 "IIARRAY2.spad" 851339 851377 851558 851585) (-509 "IFF.spad" 850749 850765 851020 851113) (-508 "IFAST.spad" 850363 850371 850739 850744) (-507 "IFARRAY.spad" 847850 847865 849546 849573) (-506 "IFAMON.spad" 847712 847729 847806 847811) (-505 "IEVALAB.spad" 847101 847113 847702 847707) (-504 "IEVALAB.spad" 846488 846502 847091 847096) (-503 "IDPOAMS.spad" 846244 846256 846478 846483) (-502 "IDPOAM.spad" 845964 845976 846234 846239) (-501 "IDPO.spad" 845762 845774 845954 845959) (-500 "IDPC.spad" 844696 844708 845752 845757) (-499 "IDPAM.spad" 844441 844453 844686 844691) (-498 "IDPAG.spad" 844188 844200 844431 844436) (-497 "IDENT.spad" 844105 844113 844178 844183) (-496 "IDECOMP.spad" 841342 841360 844095 844100) (-495 "IDEAL.spad" 836265 836304 841277 841282) (-494 "ICDEN.spad" 835416 835432 836255 836260) (-493 "ICARD.spad" 834605 834613 835406 835411) (-492 "IBPTOOLS.spad" 833198 833215 834595 834600) (-491 "IBITS.spad" 832397 832410 832834 832861) (-490 "IBATOOL.spad" 829272 829291 832387 832392) (-489 "IBACHIN.spad" 827759 827774 829262 829267) (-488 "IARRAY2.spad" 826747 826773 827366 827393) (-487 "IARRAY1.spad" 825792 825807 825930 825957) (-486 "IAN.spad" 824005 824013 825608 825701) (-485 "IALGFACT.spad" 823606 823639 823995 824000) (-484 "HYPCAT.spad" 823030 823038 823596 823601) (-483 "HYPCAT.spad" 822452 822462 823020 823025) (-482 "HOSTNAME.spad" 822260 822268 822442 822447) (-481 "HOAGG.spad" 819518 819528 822240 822255) (-480 "HOAGG.spad" 816561 816573 819285 819290) (-479 "HEXADEC.spad" 814431 814439 815029 815122) (-478 "HEUGCD.spad" 813446 813457 814421 814426) (-477 "HELLFDIV.spad" 813036 813060 813436 813441) (-476 "HEAP.spad" 812428 812438 812643 812670) (-475 "HEADAST.spad" 811959 811967 812418 812423) (-474 "HDP.spad" 803076 803092 803453 803584) (-473 "HDMP.spad" 800252 800267 800870 800997) (-472 "HB.spad" 798489 798497 800242 800247) (-471 "HASHTBL.spad" 796959 796990 797170 797197) (-470 "HASAST.spad" 796675 796683 796949 796954) (-469 "HACKPI.spad" 796158 796166 796577 796670) (-468 "GTSET.spad" 795097 795113 795804 795831) (-467 "GSTBL.spad" 793616 793651 793790 793805) (-466 "GSERIES.spad" 790783 790810 791748 791897) (-465 "GROUP.spad" 790052 790060 790763 790778) (-464 "GROUP.spad" 789329 789339 790042 790047) (-463 "GROEBSOL.spad" 787817 787838 789319 789324) (-462 "GRMOD.spad" 786388 786400 787807 787812) (-461 "GRMOD.spad" 784957 784971 786378 786383) (-460 "GRIMAGE.spad" 777562 777570 784947 784952) (-459 "GRDEF.spad" 775941 775949 777552 777557) (-458 "GRAY.spad" 774400 774408 775931 775936) (-457 "GRALG.spad" 773447 773459 774390 774395) (-456 "GRALG.spad" 772492 772506 773437 773442) (-455 "GPOLSET.spad" 771946 771969 772174 772201) (-454 "GOSPER.spad" 771211 771229 771936 771941) (-453 "GMODPOL.spad" 770349 770376 771179 771206) (-452 "GHENSEL.spad" 769418 769432 770339 770344) (-451 "GENUPS.spad" 765519 765532 769408 769413) (-450 "GENUFACT.spad" 765096 765106 765509 765514) (-449 "GENPGCD.spad" 764680 764697 765086 765091) (-448 "GENMFACT.spad" 764132 764151 764670 764675) (-447 "GENEEZ.spad" 762071 762084 764122 764127) (-446 "GDMP.spad" 759089 759106 759865 759992) (-445 "GCNAALG.spad" 752984 753011 758883 758950) (-444 "GCDDOM.spad" 752156 752164 752910 752979) (-443 "GCDDOM.spad" 751390 751400 752146 752151) (-442 "GBINTERN.spad" 747410 747448 751380 751385) (-441 "GBF.spad" 743167 743205 747400 747405) (-440 "GBEUCLID.spad" 741041 741079 743157 743162) (-439 "GB.spad" 738559 738597 740997 741002) (-438 "GAUSSFAC.spad" 737856 737864 738549 738554) (-437 "GALUTIL.spad" 736178 736188 737812 737817) (-436 "GALPOLYU.spad" 734624 734637 736168 736173) (-435 "GALFACTU.spad" 732789 732808 734614 734619) (-434 "GALFACT.spad" 722922 722933 732779 732784) (-433 "FVFUN.spad" 719935 719943 722902 722917) (-432 "FVC.spad" 718977 718985 719915 719930) (-431 "FUNCTION.spad" 718826 718838 718967 718972) (-430 "FTEM.spad" 717989 717997 718816 718821) (-429 "FT.spad" 716204 716212 717979 717984) (-428 "FSUPFACT.spad" 715104 715123 716140 716145) (-427 "FST.spad" 713190 713198 715094 715099) (-426 "FSRED.spad" 712668 712684 713180 713185) (-425 "FSPRMELT.spad" 711492 711508 712625 712630) (-424 "FSPECF.spad" 709569 709585 711482 711487) (-423 "FSINT.spad" 709227 709243 709559 709564) (-422 "FSERIES.spad" 708414 708426 709047 709146) (-421 "FSCINT.spad" 707727 707743 708404 708409) (-420 "FSAGG2.spad" 706426 706442 707717 707722) (-419 "FSAGG.spad" 705531 705541 706370 706421) (-418 "FSAGG.spad" 704610 704622 705451 705456) (-417 "FS2UPS.spad" 698999 699033 704600 704605) (-416 "FS2EXPXP.spad" 698122 698145 698989 698994) (-415 "FS2.spad" 697767 697783 698112 698117) (-414 "FS.spad" 691817 691827 697530 697762) (-413 "FS.spad" 685657 685669 691372 691377) (-412 "FRUTIL.spad" 684599 684609 685647 685652) (-411 "FRNAALG.spad" 679686 679696 684541 684594) (-410 "FRNAALG.spad" 674785 674797 679642 679647) (-409 "FRNAAF2.spad" 674239 674257 674775 674780) (-408 "FRMOD.spad" 673633 673663 674170 674175) (-407 "FRIDEAL2.spad" 673235 673267 673623 673628) (-406 "FRIDEAL.spad" 672430 672451 673215 673230) (-405 "FRETRCT.spad" 671941 671951 672420 672425) (-404 "FRETRCT.spad" 671318 671330 671799 671804) (-403 "FRAMALG.spad" 669646 669659 671274 671313) (-402 "FRAMALG.spad" 668006 668021 669636 669641) (-401 "FRAC2.spad" 667609 667621 667996 668001) (-400 "FRAC.spad" 664709 664719 665112 665285) (-399 "FR2.spad" 664043 664055 664699 664704) (-398 "FR.spad" 657765 657775 663068 663137) (-397 "FPS.spad" 654574 654582 657655 657760) (-396 "FPS.spad" 651411 651421 654494 654499) (-395 "FPC.spad" 650453 650461 651313 651406) (-394 "FPC.spad" 649581 649591 650443 650448) (-393 "FPATMAB.spad" 649333 649343 649561 649576) (-392 "FPARFRAC.spad" 647806 647823 649323 649328) (-391 "FORTRAN.spad" 646312 646355 647796 647801) (-390 "FORTFN.spad" 643472 643480 646292 646307) (-389 "FORTCAT.spad" 643146 643154 643452 643467) (-388 "FORT.spad" 642075 642083 643136 643141) (-387 "FORMULA1.spad" 641554 641564 642065 642070) (-386 "FORMULA.spad" 638892 638900 641544 641549) (-385 "FORDER.spad" 638583 638607 638882 638887) (-384 "FOP.spad" 637784 637792 638573 638578) (-383 "FNLA.spad" 637208 637230 637752 637779) (-382 "FNCAT.spad" 635536 635544 637198 637203) (-381 "FNAME.spad" 635428 635436 635526 635531) (-380 "FMTC.spad" 635226 635234 635354 635423) (-379 "FMONOID.spad" 632281 632291 635182 635187) (-378 "FMFUN.spad" 629301 629309 632261 632276) (-377 "FMCAT.spad" 626955 626973 629269 629296) (-376 "FMC.spad" 625997 626005 626935 626950) (-375 "FM1.spad" 625354 625366 625931 625958) (-374 "FM.spad" 625049 625061 625288 625315) (-373 "FLOATRP.spad" 622770 622784 625039 625044) (-372 "FLOATCP.spad" 620187 620201 622760 622765) (-371 "FLOAT.spad" 613351 613359 620053 620182) (-370 "FLINEXP.spad" 613063 613073 613331 613346) (-369 "FLINEXP.spad" 612729 612741 612999 613004) (-368 "FLASORT.spad" 612049 612061 612719 612724) (-367 "FLALG.spad" 609695 609714 611975 612044) (-366 "FLAGG2.spad" 608376 608392 609685 609690) (-365 "FLAGG.spad" 605382 605392 608344 608371) (-364 "FLAGG.spad" 602301 602313 605265 605270) (-363 "FINRALG.spad" 600330 600343 602257 602296) (-362 "FINRALG.spad" 598285 598300 600214 600219) (-361 "FINITE.spad" 597437 597445 598275 598280) (-360 "FINAALG.spad" 586418 586428 597379 597432) (-359 "FINAALG.spad" 575411 575423 586374 586379) (-358 "FILECAT.spad" 573929 573946 575401 575406) (-357 "FILE.spad" 573512 573522 573919 573924) (-356 "FIELD.spad" 572918 572926 573414 573507) (-355 "FIELD.spad" 572410 572420 572908 572913) (-354 "FGROUP.spad" 571019 571029 572390 572405) (-353 "FGLMICPK.spad" 569806 569821 571009 571014) (-352 "FFX.spad" 569181 569196 569522 569615) (-351 "FFSLPE.spad" 568670 568691 569171 569176) (-350 "FFPOLY2.spad" 567730 567747 568660 568665) (-349 "FFPOLY.spad" 558982 558993 567720 567725) (-348 "FFP.spad" 558379 558399 558698 558791) (-347 "FFNBX.spad" 556891 556911 558095 558188) (-346 "FFNBP.spad" 555404 555421 556607 556700) (-345 "FFNB.spad" 553869 553890 555085 555178) (-344 "FFINTBAS.spad" 551283 551302 553859 553864) (-343 "FFIELDC.spad" 548858 548866 551185 551278) (-342 "FFIELDC.spad" 546519 546529 548848 548853) (-341 "FFHOM.spad" 545267 545284 546509 546514) (-340 "FFF.spad" 542702 542713 545257 545262) (-339 "FFCGX.spad" 541549 541569 542418 542511) (-338 "FFCGP.spad" 540438 540458 541265 541358) (-337 "FFCG.spad" 539230 539251 540119 540212) (-336 "FFCAT2.spad" 538975 539015 539220 539225) (-335 "FFCAT.spad" 532002 532024 538814 538970) (-334 "FFCAT.spad" 525108 525132 531922 531927) (-333 "FF.spad" 524556 524572 524789 524882) (-332 "FEXPR.spad" 516265 516311 524312 524351) (-331 "FEVALAB.spad" 515971 515981 516255 516260) (-330 "FEVALAB.spad" 515462 515474 515748 515753) (-329 "FDIVCAT.spad" 513504 513528 515452 515457) (-328 "FDIVCAT.spad" 511544 511570 513494 513499) (-327 "FDIV2.spad" 511198 511238 511534 511539) (-326 "FDIV.spad" 510640 510664 511188 511193) (-325 "FCPAK1.spad" 509193 509201 510630 510635) (-324 "FCOMP.spad" 508572 508582 509183 509188) (-323 "FC.spad" 498397 498405 508562 508567) (-322 "FAXF.spad" 491332 491346 498299 498392) (-321 "FAXF.spad" 484319 484335 491288 491293) (-320 "FARRAY.spad" 482465 482475 483502 483529) (-319 "FAMR.spad" 480585 480597 482363 482460) (-318 "FAMR.spad" 478689 478703 480469 480474) (-317 "FAMONOID.spad" 478339 478349 478643 478648) (-316 "FAMONC.spad" 476561 476573 478329 478334) (-315 "FAGROUP.spad" 476167 476177 476457 476484) (-314 "FACUTIL.spad" 474363 474380 476157 476162) (-313 "FACTFUNC.spad" 473539 473549 474353 474358) (-312 "EXPUPXS.spad" 470372 470395 471671 471820) (-311 "EXPRTUBE.spad" 467600 467608 470362 470367) (-310 "EXPRODE.spad" 464472 464488 467590 467595) (-309 "EXPR2UPS.spad" 460564 460577 464462 464467) (-308 "EXPR2.spad" 460267 460279 460554 460559) (-307 "EXPR.spad" 455542 455552 456256 456663) (-306 "EXPEXPAN.spad" 452481 452506 453115 453208) (-305 "EXITAST.spad" 452217 452225 452471 452476) (-304 "EXIT.spad" 451888 451896 452207 452212) (-303 "EVALCYC.spad" 451346 451360 451878 451883) (-302 "EVALAB.spad" 450910 450920 451336 451341) (-301 "EVALAB.spad" 450472 450484 450900 450905) (-300 "EUCDOM.spad" 448014 448022 450398 450467) (-299 "EUCDOM.spad" 445618 445628 448004 448009) (-298 "ESTOOLS2.spad" 445219 445233 445608 445613) (-297 "ESTOOLS1.spad" 444904 444915 445209 445214) (-296 "ESTOOLS.spad" 436744 436752 444894 444899) (-295 "ESCONT1.spad" 436493 436505 436734 436739) (-294 "ESCONT.spad" 433266 433274 436483 436488) (-293 "ES2.spad" 432761 432777 433256 433261) (-292 "ES1.spad" 432327 432343 432751 432756) (-291 "ES.spad" 424874 424882 432317 432322) (-290 "ES.spad" 417327 417337 424772 424777) (-289 "ERROR.spad" 414648 414656 417317 417322) (-288 "EQTBL.spad" 413120 413142 413329 413356) (-287 "EQ2.spad" 412836 412848 413110 413115) (-286 "EQ.spad" 407710 407720 410509 410621) (-285 "EP.spad" 404024 404034 407700 407705) (-284 "ENV.spad" 402726 402734 404014 404019) (-283 "ENTIRER.spad" 402394 402402 402670 402721) (-282 "EMR.spad" 401595 401636 402320 402389) (-281 "ELTAGG.spad" 399835 399854 401585 401590) (-280 "ELTAGG.spad" 398039 398060 399791 399796) (-279 "ELTAB.spad" 397486 397504 398029 398034) (-278 "ELFUTS.spad" 396865 396884 397476 397481) (-277 "ELEMFUN.spad" 396554 396562 396855 396860) (-276 "ELEMFUN.spad" 396241 396251 396544 396549) (-275 "ELAGG.spad" 394172 394182 396209 396236) (-274 "ELAGG.spad" 392052 392064 394091 394096) (-273 "ELABEXPR.spad" 390983 390991 392042 392047) (-272 "EFUPXS.spad" 387759 387789 390939 390944) (-271 "EFULS.spad" 384595 384618 387715 387720) (-270 "EFSTRUC.spad" 382550 382566 384585 384590) (-269 "EF.spad" 377316 377332 382540 382545) (-268 "EAB.spad" 375592 375600 377306 377311) (-267 "E04UCFA.spad" 375128 375136 375582 375587) (-266 "E04NAFA.spad" 374705 374713 375118 375123) (-265 "E04MBFA.spad" 374285 374293 374695 374700) (-264 "E04JAFA.spad" 373821 373829 374275 374280) (-263 "E04GCFA.spad" 373357 373365 373811 373816) (-262 "E04FDFA.spad" 372893 372901 373347 373352) (-261 "E04DGFA.spad" 372429 372437 372883 372888) (-260 "E04AGNT.spad" 368271 368279 372419 372424) (-259 "DVARCAT.spad" 364956 364966 368261 368266) (-258 "DVARCAT.spad" 361639 361651 364946 364951) (-257 "DSMP.spad" 359070 359084 359375 359502) (-256 "DROPT1.spad" 358733 358743 359060 359065) (-255 "DROPT0.spad" 353560 353568 358723 358728) (-254 "DROPT.spad" 347505 347513 353550 353555) (-253 "DRAWPT.spad" 345660 345668 347495 347500) (-252 "DRAWHACK.spad" 344968 344978 345650 345655) (-251 "DRAWCX.spad" 342410 342418 344958 344963) (-250 "DRAWCURV.spad" 341947 341962 342400 342405) (-249 "DRAWCFUN.spad" 331119 331127 341937 341942) (-248 "DRAW.spad" 323719 323732 331109 331114) (-247 "DQAGG.spad" 321875 321885 323675 323714) (-246 "DPOLCAT.spad" 317216 317232 321743 321870) (-245 "DPOLCAT.spad" 312643 312661 317172 317177) (-244 "DPMO.spad" 305946 305962 306084 306385) (-243 "DPMM.spad" 299262 299280 299387 299688) (-242 "DOMAIN.spad" 298533 298541 299252 299257) (-241 "DMP.spad" 295755 295770 296327 296454) (-240 "DLP.spad" 295103 295113 295745 295750) (-239 "DLIST.spad" 293515 293525 294286 294313) (-238 "DLAGG.spad" 291916 291926 293495 293510) (-237 "DIVRING.spad" 291458 291466 291860 291911) (-236 "DIVRING.spad" 291044 291054 291448 291453) (-235 "DISPLAY.spad" 289224 289232 291034 291039) (-234 "DIRPROD2.spad" 288032 288050 289214 289219) (-233 "DIRPROD.spad" 278886 278902 279526 279657) (-232 "DIRPCAT.spad" 277816 277832 278738 278881) (-231 "DIRPCAT.spad" 276487 276505 277411 277416) (-230 "DIOSP.spad" 275312 275320 276477 276482) (-229 "DIOPS.spad" 274284 274294 275280 275307) (-228 "DIOPS.spad" 273242 273254 274240 274245) (-227 "DIFRING.spad" 272534 272542 273222 273237) (-226 "DIFRING.spad" 271834 271844 272524 272529) (-225 "DIFEXT.spad" 270993 271003 271814 271829) (-224 "DIFEXT.spad" 270069 270081 270892 270897) (-223 "DIAGG.spad" 269687 269697 270037 270064) (-222 "DIAGG.spad" 269325 269337 269677 269682) (-221 "DHMATRIX.spad" 267629 267639 268782 268809) (-220 "DFSFUN.spad" 261037 261045 267619 267624) (-219 "DFLOAT.spad" 257758 257766 260927 261032) (-218 "DFINTTLS.spad" 255967 255983 257748 257753) (-217 "DERHAM.spad" 253877 253909 255947 255962) (-216 "DEQUEUE.spad" 253195 253205 253484 253511) (-215 "DEGRED.spad" 252810 252824 253185 253190) (-214 "DEFINTRF.spad" 250380 250390 252800 252805) (-213 "DEFINTEF.spad" 248904 248920 250370 250375) (-212 "DEFAST.spad" 248272 248280 248894 248899) (-211 "DECIMAL.spad" 246154 246162 246740 246833) (-210 "DDFACT.spad" 243953 243970 246144 246149) (-209 "DBLRESP.spad" 243551 243575 243943 243948) (-208 "DBASE.spad" 242123 242133 243541 243546) (-207 "DATABUF.spad" 241611 241624 242113 242118) (-206 "D03FAFA.spad" 241439 241447 241601 241606) (-205 "D03EEFA.spad" 241259 241267 241429 241434) (-204 "D03AGNT.spad" 240339 240347 241249 241254) (-203 "D02EJFA.spad" 239801 239809 240329 240334) (-202 "D02CJFA.spad" 239279 239287 239791 239796) (-201 "D02BHFA.spad" 238769 238777 239269 239274) (-200 "D02BBFA.spad" 238259 238267 238759 238764) (-199 "D02AGNT.spad" 233063 233071 238249 238254) (-198 "D01WGTS.spad" 231382 231390 233053 233058) (-197 "D01TRNS.spad" 231359 231367 231372 231377) (-196 "D01GBFA.spad" 230881 230889 231349 231354) (-195 "D01FCFA.spad" 230403 230411 230871 230876) (-194 "D01ASFA.spad" 229871 229879 230393 230398) (-193 "D01AQFA.spad" 229317 229325 229861 229866) (-192 "D01APFA.spad" 228741 228749 229307 229312) (-191 "D01ANFA.spad" 228235 228243 228731 228736) (-190 "D01AMFA.spad" 227745 227753 228225 228230) (-189 "D01ALFA.spad" 227285 227293 227735 227740) (-188 "D01AKFA.spad" 226811 226819 227275 227280) (-187 "D01AJFA.spad" 226334 226342 226801 226806) (-186 "D01AGNT.spad" 222393 222401 226324 226329) (-185 "CYCLOTOM.spad" 221899 221907 222383 222388) (-184 "CYCLES.spad" 218731 218739 221889 221894) (-183 "CVMP.spad" 218148 218158 218721 218726) (-182 "CTRIGMNP.spad" 216638 216654 218138 218143) (-181 "CTORCALL.spad" 216226 216234 216628 216633) (-180 "CSTTOOLS.spad" 215469 215482 216216 216221) (-179 "CRFP.spad" 209173 209186 215459 215464) (-178 "CRCEAST.spad" 208893 208901 209163 209168) (-177 "CRAPACK.spad" 207936 207946 208883 208888) (-176 "CPMATCH.spad" 207436 207451 207861 207866) (-175 "CPIMA.spad" 207141 207160 207426 207431) (-174 "COORDSYS.spad" 202034 202044 207131 207136) (-173 "CONTOUR.spad" 201436 201444 202024 202029) (-172 "CONTFRAC.spad" 197048 197058 201338 201431) (-171 "CONDUIT.spad" 196806 196814 197038 197043) (-170 "COMRING.spad" 196480 196488 196744 196801) (-169 "COMPPROP.spad" 195994 196002 196470 196475) (-168 "COMPLPAT.spad" 195761 195776 195984 195989) (-167 "COMPLEX2.spad" 195474 195486 195751 195756) (-166 "COMPLEX.spad" 189500 189510 189744 190005) (-165 "COMPFACT.spad" 189102 189116 189490 189495) (-164 "COMPCAT.spad" 187158 187168 188824 189097) (-163 "COMPCAT.spad" 184920 184932 186588 186593) (-162 "COMMUPC.spad" 184666 184684 184910 184915) (-161 "COMMONOP.spad" 184199 184207 184656 184661) (-160 "COMMAAST.spad" 183962 183970 184189 184194) (-159 "COMM.spad" 183771 183779 183952 183957) (-158 "COMBOPC.spad" 182676 182684 183761 183766) (-157 "COMBINAT.spad" 181421 181431 182666 182671) (-156 "COMBF.spad" 178789 178805 181411 181416) (-155 "COLOR.spad" 177626 177634 178779 178784) (-154 "COLONAST.spad" 177292 177300 177616 177621) (-153 "CMPLXRT.spad" 177001 177018 177282 177287) (-152 "CLLCTAST.spad" 176663 176671 176991 176996) (-151 "CLIP.spad" 172755 172763 176653 176658) (-150 "CLIF.spad" 171394 171410 172711 172750) (-149 "CLAGG.spad" 167869 167879 171374 171389) (-148 "CLAGG.spad" 164225 164237 167732 167737) (-147 "CINTSLPE.spad" 163550 163563 164215 164220) (-146 "CHVAR.spad" 161628 161650 163540 163545) (-145 "CHARZ.spad" 161543 161551 161608 161623) (-144 "CHARPOL.spad" 161051 161061 161533 161538) (-143 "CHARNZ.spad" 160804 160812 161031 161046) (-142 "CHAR.spad" 158672 158680 160794 160799) (-141 "CFCAT.spad" 157988 157996 158662 158667) (-140 "CDEN.spad" 157146 157160 157978 157983) (-139 "CCLASS.spad" 155295 155303 156557 156596) (-138 "CATEGORY.spad" 155074 155082 155285 155290) (-137 "CATAST.spad" 154701 154709 155064 155069) (-136 "CASEAST.spad" 154415 154423 154691 154696) (-135 "CARTEN2.spad" 153801 153828 154405 154410) (-134 "CARTEN.spad" 148904 148928 153791 153796) (-133 "CARD.spad" 146193 146201 148878 148899) (-132 "CAPSLAST.spad" 145967 145975 146183 146188) (-131 "CACHSET.spad" 145589 145597 145957 145962) (-130 "CABMON.spad" 145142 145150 145579 145584) (-129 "BYTEARY.spad" 144217 144225 144311 144338) (-128 "BYTE.spad" 143391 143399 144207 144212) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP1.spad" 127919 127929 130489 130494) (-113 "BOP.spad" 123383 123391 127909 127914) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP80.spad" 98366 98379 99034 99039) (-86 "ASP8.spad" 97409 97422 98356 98361) (-85 "ASP78.spad" 96860 96873 97399 97404) (-84 "ASP77.spad" 96229 96242 96850 96855) (-83 "ASP74.spad" 95321 95334 96219 96224) (-82 "ASP73.spad" 94592 94605 95311 95316) (-81 "ASP7.spad" 93752 93765 94582 94587) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP49.spad" 87709 87722 88700 88705) (-76 "ASP42.spad" 86116 86155 87699 87704) (-75 "ASP41.spad" 84695 84734 86106 86111) (-74 "ASP4.spad" 83990 84003 84685 84690) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP19.spad" 62496 62509 67800 67805) (-62 "ASP12.spad" 61910 61923 62486 62491) (-61 "ASP10.spad" 61181 61194 61900 61905) (-60 "ASP1.spad" 60562 60575 61171 61176) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY12.spad" 58591 58602 59912 59917) (-57 "ARRAY1.spad" 57426 57435 57774 57801) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY1.spad" 46688 46697 47607 47612) (-51 "ANY.spad" 45030 45037 46678 46683) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file +((-3 NIL 2267916 2267921 2267926 2267931) (-2 NIL 2267896 2267901 2267906 2267911) (-1 NIL 2267876 2267881 2267886 2267891) (0 NIL 2267856 2267861 2267866 2267871) (-1260 "ZMOD.spad" 2267665 2267678 2267794 2267851) (-1259 "ZLINDEP.spad" 2266709 2266720 2267655 2267660) (-1258 "ZDSOLVE.spad" 2256558 2256580 2266699 2266704) (-1257 "YSTREAM.spad" 2256051 2256062 2256548 2256553) (-1256 "XRPOLY.spad" 2255271 2255291 2255907 2255976) (-1255 "XPR.spad" 2253000 2253013 2254989 2255088) (-1254 "XPOLYC.spad" 2252317 2252333 2252926 2252995) (-1253 "XPOLY.spad" 2251872 2251883 2252173 2252242) (-1252 "XPBWPOLY.spad" 2250309 2250329 2251652 2251721) (-1251 "XFALG.spad" 2247333 2247349 2250235 2250304) (-1250 "XF.spad" 2245794 2245809 2247235 2247328) (-1249 "XF.spad" 2244235 2244252 2245678 2245683) (-1248 "XEXPPKG.spad" 2243486 2243512 2244225 2244230) (-1247 "XDPOLY.spad" 2243100 2243116 2243342 2243411) (-1246 "XALG.spad" 2242698 2242709 2243056 2243095) (-1245 "WUTSET.spad" 2238537 2238554 2242344 2242371) (-1244 "WP.spad" 2237551 2237595 2238395 2238462) (-1243 "WHILEAST.spad" 2237349 2237358 2237541 2237546) (-1242 "WHEREAST.spad" 2237020 2237029 2237339 2237344) (-1241 "WFFINTBS.spad" 2234583 2234605 2237010 2237015) (-1240 "WEIER.spad" 2232797 2232808 2234573 2234578) (-1239 "VSPACE.spad" 2232470 2232481 2232765 2232792) (-1238 "VSPACE.spad" 2232163 2232176 2232460 2232465) (-1237 "VOID.spad" 2231753 2231762 2232153 2232158) (-1236 "VIEWDEF.spad" 2226950 2226959 2231743 2231748) (-1235 "VIEW3D.spad" 2210785 2210794 2226940 2226945) (-1234 "VIEW2D.spad" 2198522 2198531 2210775 2210780) (-1233 "VIEW.spad" 2196144 2196153 2198512 2198517) (-1232 "VECTOR2.spad" 2194771 2194784 2196134 2196139) (-1231 "VECTOR.spad" 2193446 2193457 2193697 2193724) (-1230 "VECTCAT.spad" 2191334 2191345 2193402 2193441) (-1229 "VECTCAT.spad" 2189042 2189055 2191112 2191117) (-1228 "VARIABLE.spad" 2188822 2188837 2189032 2189037) (-1227 "UTYPE.spad" 2188456 2188465 2188802 2188817) (-1226 "UTSODETL.spad" 2187749 2187773 2188412 2188417) (-1225 "UTSODE.spad" 2185937 2185957 2187739 2187744) (-1224 "UTSCAT.spad" 2183388 2183404 2185835 2185932) (-1223 "UTSCAT.spad" 2180483 2180501 2182932 2182937) (-1222 "UTS2.spad" 2180076 2180111 2180473 2180478) (-1221 "UTS.spad" 2174865 2174893 2178543 2178640) (-1220 "URAGG.spad" 2169487 2169498 2174845 2174860) (-1219 "URAGG.spad" 2164083 2164096 2169443 2169448) (-1218 "UPXSSING.spad" 2161726 2161752 2163164 2163297) (-1217 "UPXSCONS.spad" 2159483 2159503 2159858 2160007) (-1216 "UPXSCCA.spad" 2157941 2157961 2159329 2159478) (-1215 "UPXSCCA.spad" 2156541 2156563 2157931 2157936) (-1214 "UPXSCAT.spad" 2155122 2155138 2156387 2156536) (-1213 "UPXS2.spad" 2154663 2154716 2155112 2155117) (-1212 "UPXS.spad" 2151690 2151718 2152795 2152944) (-1211 "UPSQFREE.spad" 2150103 2150117 2151680 2151685) (-1210 "UPSCAT.spad" 2147696 2147720 2150001 2150098) (-1209 "UPSCAT.spad" 2144995 2145021 2147302 2147307) (-1208 "UPOLYC2.spad" 2144464 2144483 2144985 2144990) (-1207 "UPOLYC.spad" 2139442 2139453 2144306 2144459) (-1206 "UPOLYC.spad" 2134312 2134325 2139178 2139183) (-1205 "UPMP.spad" 2133202 2133215 2134302 2134307) (-1204 "UPDIVP.spad" 2132765 2132779 2133192 2133197) (-1203 "UPDECOMP.spad" 2131002 2131016 2132755 2132760) (-1202 "UPCDEN.spad" 2130209 2130225 2130992 2130997) (-1201 "UP2.spad" 2129571 2129592 2130199 2130204) (-1200 "UP.spad" 2126613 2126628 2127121 2127274) (-1199 "UNISEG2.spad" 2126106 2126119 2126569 2126574) (-1198 "UNISEG.spad" 2125459 2125470 2126025 2126030) (-1197 "UNIFACT.spad" 2124560 2124572 2125449 2125454) (-1196 "ULSCONS.spad" 2118599 2118619 2118971 2119120) (-1195 "ULSCCAT.spad" 2116196 2116216 2118419 2118594) (-1194 "ULSCCAT.spad" 2113927 2113949 2116152 2116157) (-1193 "ULSCAT.spad" 2112143 2112159 2113773 2113922) (-1192 "ULS2.spad" 2111655 2111708 2112133 2112138) (-1191 "ULS.spad" 2102209 2102237 2103302 2103731) (-1190 "UFD.spad" 2101274 2101283 2102135 2102204) (-1189 "UFD.spad" 2100401 2100412 2101264 2101269) (-1188 "UDVO.spad" 2099248 2099257 2100391 2100396) (-1187 "UDPO.spad" 2096675 2096686 2099204 2099209) (-1186 "TYPEAST.spad" 2096594 2096603 2096665 2096670) (-1185 "TYPE.spad" 2096516 2096525 2096574 2096589) (-1184 "TWOFACT.spad" 2095166 2095181 2096506 2096511) (-1183 "TUPLE.spad" 2094552 2094563 2095065 2095070) (-1182 "TUBETOOL.spad" 2091389 2091398 2094542 2094547) (-1181 "TUBE.spad" 2090030 2090047 2091379 2091384) (-1180 "TSETCAT.spad" 2077145 2077162 2089986 2090025) (-1179 "TSETCAT.spad" 2064258 2064277 2077101 2077106) (-1178 "TS.spad" 2062847 2062863 2063823 2063920) (-1177 "TRMANIP.spad" 2057213 2057230 2062553 2062558) (-1176 "TRIMAT.spad" 2056172 2056197 2057203 2057208) (-1175 "TRIGMNIP.spad" 2054689 2054706 2056162 2056167) (-1174 "TRIGCAT.spad" 2054201 2054210 2054679 2054684) (-1173 "TRIGCAT.spad" 2053711 2053722 2054191 2054196) (-1172 "TREE.spad" 2052282 2052293 2053318 2053345) (-1171 "TRANFUN.spad" 2052113 2052122 2052272 2052277) (-1170 "TRANFUN.spad" 2051942 2051953 2052103 2052108) (-1169 "TOPSP.spad" 2051616 2051625 2051932 2051937) (-1168 "TOOLSIGN.spad" 2051279 2051290 2051606 2051611) (-1167 "TEXTFILE.spad" 2049836 2049845 2051269 2051274) (-1166 "TEX1.spad" 2049392 2049403 2049826 2049831) (-1165 "TEX.spad" 2046409 2046418 2049382 2049387) (-1164 "TEMUTL.spad" 2045964 2045973 2046399 2046404) (-1163 "TBCMPPK.spad" 2044057 2044080 2045954 2045959) (-1162 "TBAGG.spad" 2043081 2043104 2044025 2044052) (-1161 "TBAGG.spad" 2042125 2042150 2043071 2043076) (-1160 "TANEXP.spad" 2041501 2041512 2042115 2042120) (-1159 "TABLEAU.spad" 2040982 2040993 2041491 2041496) (-1158 "TABLE.spad" 2039393 2039416 2039663 2039690) (-1157 "TABLBUMP.spad" 2036176 2036187 2039383 2039388) (-1156 "SYSTEM.spad" 2035450 2035459 2036166 2036171) (-1155 "SYSSOLP.spad" 2032923 2032934 2035440 2035445) (-1154 "SYNTAX.spad" 2029115 2029124 2032913 2032918) (-1153 "SYMTAB.spad" 2027171 2027180 2029105 2029110) (-1152 "SYMS.spad" 2023162 2023171 2027161 2027166) (-1151 "SYMPOLY.spad" 2022169 2022180 2022251 2022378) (-1150 "SYMFUNC.spad" 2021644 2021655 2022159 2022164) (-1149 "SYMBOL.spad" 2018980 2018989 2021634 2021639) (-1148 "SWITCH.spad" 2015737 2015746 2018970 2018975) (-1147 "SUTS.spad" 2012636 2012664 2014204 2014301) (-1146 "SUPXS.spad" 2009650 2009678 2010768 2010917) (-1145 "SUPFRACF.spad" 2008755 2008773 2009640 2009645) (-1144 "SUP2.spad" 2008145 2008158 2008745 2008750) (-1143 "SUP.spad" 2004914 2004925 2005695 2005848) (-1142 "SUMRF.spad" 2003880 2003891 2004904 2004909) (-1141 "SUMFS.spad" 2003513 2003530 2003870 2003875) (-1140 "SULS.spad" 1994054 1994082 1995160 1995589) (-1139 "SUCHTAST.spad" 1993823 1993832 1994044 1994049) (-1138 "SUCH.spad" 1993503 1993518 1993813 1993818) (-1137 "SUBSPACE.spad" 1985510 1985525 1993493 1993498) (-1136 "SUBRESP.spad" 1984670 1984684 1985466 1985471) (-1135 "STTFNC.spad" 1981138 1981154 1984660 1984665) (-1134 "STTF.spad" 1977237 1977253 1981128 1981133) (-1133 "STTAYLOR.spad" 1969635 1969646 1977118 1977123) (-1132 "STRTBL.spad" 1968140 1968157 1968289 1968316) (-1131 "STRING.spad" 1967549 1967558 1967563 1967590) (-1130 "STRICAT.spad" 1967325 1967334 1967505 1967544) (-1129 "STREAM3.spad" 1966870 1966885 1967315 1967320) (-1128 "STREAM2.spad" 1965938 1965951 1966860 1966865) (-1127 "STREAM1.spad" 1965642 1965653 1965928 1965933) (-1126 "STREAM.spad" 1962410 1962421 1965167 1965182) (-1125 "STINPROD.spad" 1961316 1961332 1962400 1962405) (-1124 "STEP.spad" 1960517 1960526 1961306 1961311) (-1123 "STBL.spad" 1959043 1959071 1959210 1959225) (-1122 "STAGG.spad" 1958108 1958119 1959023 1959038) (-1121 "STAGG.spad" 1957181 1957194 1958098 1958103) (-1120 "STACK.spad" 1956532 1956543 1956788 1956815) (-1119 "SREGSET.spad" 1954236 1954253 1956178 1956205) (-1118 "SRDCMPK.spad" 1952781 1952801 1954226 1954231) (-1117 "SRAGG.spad" 1947866 1947875 1952737 1952776) (-1116 "SRAGG.spad" 1942983 1942994 1947856 1947861) (-1115 "SQMATRIX.spad" 1940599 1940617 1941515 1941602) (-1114 "SPLTREE.spad" 1935151 1935164 1940035 1940062) (-1113 "SPLNODE.spad" 1931739 1931752 1935141 1935146) (-1112 "SPFCAT.spad" 1930516 1930525 1931729 1931734) (-1111 "SPECOUT.spad" 1929066 1929075 1930506 1930511) (-1110 "SPADXPT.spad" 1921195 1921204 1929046 1929061) (-1109 "spad-parser.spad" 1920660 1920669 1921185 1921190) (-1108 "SPADAST.spad" 1920361 1920370 1920650 1920655) (-1107 "SPACEC.spad" 1904374 1904385 1920351 1920356) (-1106 "SPACE3.spad" 1904150 1904161 1904364 1904369) (-1105 "SORTPAK.spad" 1903695 1903708 1904106 1904111) (-1104 "SOLVETRA.spad" 1901452 1901463 1903685 1903690) (-1103 "SOLVESER.spad" 1899972 1899983 1901442 1901447) (-1102 "SOLVERAD.spad" 1895982 1895993 1899962 1899967) (-1101 "SOLVEFOR.spad" 1894402 1894420 1895972 1895977) (-1100 "SNTSCAT.spad" 1893990 1894007 1894358 1894397) (-1099 "SMTS.spad" 1892250 1892276 1893555 1893652) (-1098 "SMP.spad" 1889689 1889709 1890079 1890206) (-1097 "SMITH.spad" 1888532 1888557 1889679 1889684) (-1096 "SMATCAT.spad" 1886630 1886660 1888464 1888527) (-1095 "SMATCAT.spad" 1884672 1884704 1886508 1886513) (-1094 "SKAGG.spad" 1883621 1883632 1884628 1884667) (-1093 "SINT.spad" 1881929 1881938 1883487 1883616) (-1092 "SIMPAN.spad" 1881657 1881666 1881919 1881924) (-1091 "SIGNRF.spad" 1880772 1880783 1881647 1881652) (-1090 "SIGNEF.spad" 1880048 1880065 1880762 1880767) (-1089 "SIGAST.spad" 1879429 1879438 1880038 1880043) (-1088 "SIG.spad" 1878757 1878766 1879419 1879424) (-1087 "SHP.spad" 1876675 1876690 1878713 1878718) (-1086 "SHDP.spad" 1867660 1867687 1868169 1868300) (-1085 "SGROUP.spad" 1867268 1867277 1867650 1867655) (-1084 "SGROUP.spad" 1866874 1866885 1867258 1867263) (-1083 "SGCF.spad" 1859755 1859764 1866864 1866869) (-1082 "SFRTCAT.spad" 1858671 1858688 1859711 1859750) (-1081 "SFRGCD.spad" 1857734 1857754 1858661 1858666) (-1080 "SFQCMPK.spad" 1852371 1852391 1857724 1857729) (-1079 "SFORT.spad" 1851806 1851820 1852361 1852366) (-1078 "SEXOF.spad" 1851649 1851689 1851796 1851801) (-1077 "SEXCAT.spad" 1848753 1848793 1851639 1851644) (-1076 "SEX.spad" 1848645 1848654 1848743 1848748) (-1075 "SETMN.spad" 1847081 1847098 1848635 1848640) (-1074 "SETCAT.spad" 1846566 1846575 1847071 1847076) (-1073 "SETCAT.spad" 1846049 1846060 1846556 1846561) (-1072 "SETAGG.spad" 1842558 1842569 1846017 1846044) (-1071 "SETAGG.spad" 1839087 1839100 1842548 1842553) (-1070 "SET.spad" 1837387 1837398 1838508 1838547) (-1069 "SEQAST.spad" 1837090 1837099 1837377 1837382) (-1068 "SEGXCAT.spad" 1836202 1836215 1837070 1837085) (-1067 "SEGCAT.spad" 1835021 1835032 1836182 1836197) (-1066 "SEGBIND2.spad" 1834717 1834730 1835011 1835016) (-1065 "SEGBIND.spad" 1833789 1833800 1834672 1834677) (-1064 "SEGAST.spad" 1833503 1833512 1833779 1833784) (-1063 "SEG2.spad" 1832928 1832941 1833459 1833464) (-1062 "SEG.spad" 1832741 1832752 1832847 1832852) (-1061 "SDVAR.spad" 1832017 1832028 1832731 1832736) (-1060 "SDPOL.spad" 1829407 1829418 1829698 1829825) (-1059 "SCPKG.spad" 1827486 1827497 1829397 1829402) (-1058 "SCOPE.spad" 1826631 1826640 1827476 1827481) (-1057 "SCACHE.spad" 1825313 1825324 1826621 1826626) (-1056 "SASTCAT.spad" 1825222 1825231 1825303 1825308) (-1055 "SAOS.spad" 1825094 1825103 1825212 1825217) (-1054 "SAERFFC.spad" 1824807 1824827 1825084 1825089) (-1053 "SAEFACT.spad" 1824508 1824528 1824797 1824802) (-1052 "SAE.spad" 1822683 1822699 1823294 1823429) (-1051 "RURPK.spad" 1820324 1820340 1822673 1822678) (-1050 "RULESET.spad" 1819765 1819789 1820314 1820319) (-1049 "RULECOLD.spad" 1819617 1819630 1819755 1819760) (-1048 "RULE.spad" 1817821 1817845 1819607 1819612) (-1047 "RSTRCAST.spad" 1817538 1817547 1817811 1817816) (-1046 "RSETGCD.spad" 1813916 1813936 1817528 1817533) (-1045 "RSETCAT.spad" 1803688 1803705 1813872 1813911) (-1044 "RSETCAT.spad" 1793492 1793511 1803678 1803683) (-1043 "RSDCMPK.spad" 1791944 1791964 1793482 1793487) (-1042 "RRCC.spad" 1790328 1790358 1791934 1791939) (-1041 "RRCC.spad" 1788710 1788742 1790318 1790323) (-1040 "RPTAST.spad" 1788412 1788421 1788700 1788705) (-1039 "RPOLCAT.spad" 1767772 1767787 1788280 1788407) (-1038 "RPOLCAT.spad" 1746846 1746863 1767356 1767361) (-1037 "ROUTINE.spad" 1742709 1742718 1745493 1745520) (-1036 "ROMAN.spad" 1741941 1741950 1742575 1742704) (-1035 "ROIRC.spad" 1741021 1741053 1741931 1741936) (-1034 "RNS.spad" 1739924 1739933 1740923 1741016) (-1033 "RNS.spad" 1738913 1738924 1739914 1739919) (-1032 "RNG.spad" 1738648 1738657 1738903 1738908) (-1031 "RMODULE.spad" 1738286 1738297 1738638 1738643) (-1030 "RMCAT2.spad" 1737694 1737751 1738276 1738281) (-1029 "RMATRIX.spad" 1736373 1736392 1736861 1736900) (-1028 "RMATCAT.spad" 1731894 1731925 1736317 1736368) (-1027 "RMATCAT.spad" 1727317 1727350 1731742 1731747) (-1026 "RINTERP.spad" 1727205 1727225 1727307 1727312) (-1025 "RING.spad" 1726562 1726571 1727185 1727200) (-1024 "RING.spad" 1725927 1725938 1726552 1726557) (-1023 "RIDIST.spad" 1725311 1725320 1725917 1725922) (-1022 "RGCHAIN.spad" 1723890 1723906 1724796 1724823) (-1021 "RGBCSPC.spad" 1723671 1723683 1723880 1723885) (-1020 "RGBCMDL.spad" 1723201 1723213 1723661 1723666) (-1019 "RFFACTOR.spad" 1722663 1722674 1723191 1723196) (-1018 "RFFACT.spad" 1722398 1722410 1722653 1722658) (-1017 "RFDIST.spad" 1721386 1721395 1722388 1722393) (-1016 "RF.spad" 1719000 1719011 1721376 1721381) (-1015 "RETSOL.spad" 1718417 1718430 1718990 1718995) (-1014 "RETRACT.spad" 1717766 1717777 1718407 1718412) (-1013 "RETRACT.spad" 1717113 1717126 1717756 1717761) (-1012 "RETAST.spad" 1716925 1716934 1717103 1717108) (-1011 "RESULT.spad" 1714985 1714994 1715572 1715599) (-1010 "RESRING.spad" 1714332 1714379 1714923 1714980) (-1009 "RESLATC.spad" 1713656 1713667 1714322 1714327) (-1008 "REPSQ.spad" 1713385 1713396 1713646 1713651) (-1007 "REPDB.spad" 1713090 1713101 1713375 1713380) (-1006 "REP2.spad" 1702662 1702673 1712932 1712937) (-1005 "REP1.spad" 1696652 1696663 1702612 1702617) (-1004 "REP.spad" 1694204 1694213 1696642 1696647) (-1003 "REGSET.spad" 1692001 1692018 1693850 1693877) (-1002 "REF.spad" 1691330 1691341 1691956 1691961) (-1001 "REDORDER.spad" 1690506 1690523 1691320 1691325) (-1000 "RECLOS.spad" 1689289 1689309 1689993 1690086) (-999 "REALSOLV.spad" 1688422 1688430 1689279 1689284) (-998 "REAL0Q.spad" 1685705 1685719 1688412 1688417) (-997 "REAL0.spad" 1682534 1682548 1685695 1685700) (-996 "REAL.spad" 1682407 1682415 1682524 1682529) (-995 "RDUCEAST.spad" 1682129 1682137 1682397 1682402) (-994 "RDIV.spad" 1681781 1681805 1682119 1682124) (-993 "RDIST.spad" 1681345 1681355 1681771 1681776) (-992 "RDETRS.spad" 1680142 1680159 1681335 1681340) (-991 "RDETR.spad" 1678250 1678267 1680132 1680137) (-990 "RDEEFS.spad" 1677324 1677340 1678240 1678245) (-989 "RDEEF.spad" 1676321 1676337 1677314 1677319) (-988 "RCFIELD.spad" 1673508 1673516 1676223 1676316) (-987 "RCFIELD.spad" 1670781 1670791 1673498 1673503) (-986 "RCAGG.spad" 1668684 1668694 1670761 1670776) (-985 "RCAGG.spad" 1666524 1666536 1668603 1668608) (-984 "RATRET.spad" 1665885 1665895 1666514 1666519) (-983 "RATFACT.spad" 1665578 1665589 1665875 1665880) (-982 "RANDSRC.spad" 1664898 1664906 1665568 1665573) (-981 "RADUTIL.spad" 1664653 1664661 1664888 1664893) (-980 "RADIX.spad" 1661444 1661457 1663121 1663214) (-979 "RADFF.spad" 1659858 1659894 1659976 1660132) (-978 "RADCAT.spad" 1659452 1659460 1659848 1659853) (-977 "RADCAT.spad" 1659044 1659054 1659442 1659447) (-976 "QUEUE.spad" 1658387 1658397 1658651 1658678) (-975 "QUATCT2.spad" 1658006 1658024 1658377 1658382) (-974 "QUATCAT.spad" 1656171 1656181 1657936 1658001) (-973 "QUATCAT.spad" 1654087 1654099 1655854 1655859) (-972 "QUAT.spad" 1652669 1652679 1653011 1653076) (-971 "QUAGG.spad" 1651483 1651493 1652625 1652664) (-970 "QQUTAST.spad" 1651252 1651260 1651473 1651478) (-969 "QFORM.spad" 1650715 1650729 1651242 1651247) (-968 "QFCAT2.spad" 1650406 1650422 1650705 1650710) (-967 "QFCAT.spad" 1649097 1649107 1650296 1650401) (-966 "QFCAT.spad" 1647392 1647404 1648593 1648598) (-965 "QEQUAT.spad" 1646949 1646957 1647382 1647387) (-964 "QCMPACK.spad" 1641696 1641715 1646939 1646944) (-963 "QALGSET2.spad" 1639692 1639710 1641686 1641691) (-962 "QALGSET.spad" 1635769 1635801 1639606 1639611) (-961 "PWFFINTB.spad" 1633079 1633100 1635759 1635764) (-960 "PUSHVAR.spad" 1632408 1632427 1633069 1633074) (-959 "PTRANFN.spad" 1628534 1628544 1632398 1632403) (-958 "PTPACK.spad" 1625622 1625632 1628524 1628529) (-957 "PTFUNC2.spad" 1625443 1625457 1625612 1625617) (-956 "PTCAT.spad" 1624525 1624535 1625399 1625438) (-955 "PSQFR.spad" 1623832 1623856 1624515 1624520) (-954 "PSEUDLIN.spad" 1622690 1622700 1623822 1623827) (-953 "PSETPK.spad" 1608123 1608139 1622568 1622573) (-952 "PSETCAT.spad" 1602031 1602054 1608091 1608118) (-951 "PSETCAT.spad" 1595925 1595950 1601987 1601992) (-950 "PSCURVE.spad" 1594908 1594916 1595915 1595920) (-949 "PSCAT.spad" 1593675 1593704 1594806 1594903) (-948 "PSCAT.spad" 1592532 1592563 1593665 1593670) (-947 "PRTITION.spad" 1591375 1591383 1592522 1592527) (-946 "PRTDAST.spad" 1591094 1591102 1591365 1591370) (-945 "PRS.spad" 1580656 1580673 1591050 1591055) (-944 "PRQAGG.spad" 1580075 1580085 1580612 1580651) (-943 "PROPLOG.spad" 1579478 1579486 1580065 1580070) (-942 "PROPFRML.spad" 1577396 1577407 1579468 1579473) (-941 "PROPERTY.spad" 1576890 1576898 1577386 1577391) (-940 "PRODUCT.spad" 1574570 1574582 1574856 1574911) (-939 "PRINT.spad" 1574322 1574330 1574560 1574565) (-938 "PRIMES.spad" 1572573 1572583 1574312 1574317) (-937 "PRIMELT.spad" 1570554 1570568 1572563 1572568) (-936 "PRIMCAT.spad" 1570177 1570185 1570544 1570549) (-935 "PRIMARR2.spad" 1568900 1568912 1570167 1570172) (-934 "PRIMARR.spad" 1567905 1567915 1568083 1568110) (-933 "PREASSOC.spad" 1567277 1567289 1567895 1567900) (-932 "PR.spad" 1565663 1565675 1566368 1566495) (-931 "PPCURVE.spad" 1564800 1564808 1565653 1565658) (-930 "PORTNUM.spad" 1564575 1564583 1564790 1564795) (-929 "POLYROOT.spad" 1563347 1563369 1564531 1564536) (-928 "POLYLIFT.spad" 1562608 1562631 1563337 1563342) (-927 "POLYCATQ.spad" 1560710 1560732 1562598 1562603) (-926 "POLYCAT.spad" 1554116 1554137 1560578 1560705) (-925 "POLYCAT.spad" 1546824 1546847 1553288 1553293) (-924 "POLY2UP.spad" 1546272 1546286 1546814 1546819) (-923 "POLY2.spad" 1545867 1545879 1546262 1546267) (-922 "POLY.spad" 1543164 1543174 1543681 1543808) (-921 "POLUTIL.spad" 1542105 1542134 1543120 1543125) (-920 "POLTOPOL.spad" 1540853 1540868 1542095 1542100) (-919 "POINT.spad" 1539692 1539702 1539779 1539806) (-918 "PNTHEORY.spad" 1536358 1536366 1539682 1539687) (-917 "PMTOOLS.spad" 1535115 1535129 1536348 1536353) (-916 "PMSYM.spad" 1534660 1534670 1535105 1535110) (-915 "PMQFCAT.spad" 1534247 1534261 1534650 1534655) (-914 "PMPREDFS.spad" 1533691 1533713 1534237 1534242) (-913 "PMPRED.spad" 1533160 1533174 1533681 1533686) (-912 "PMPLCAT.spad" 1532230 1532248 1533092 1533097) (-911 "PMLSAGG.spad" 1531811 1531825 1532220 1532225) (-910 "PMKERNEL.spad" 1531378 1531390 1531801 1531806) (-909 "PMINS.spad" 1530954 1530964 1531368 1531373) (-908 "PMFS.spad" 1530527 1530545 1530944 1530949) (-907 "PMDOWN.spad" 1529813 1529827 1530517 1530522) (-906 "PMASSFS.spad" 1528782 1528798 1529803 1529808) (-905 "PMASS.spad" 1527794 1527802 1528772 1528777) (-904 "PLOTTOOL.spad" 1527574 1527582 1527784 1527789) (-903 "PLOT3D.spad" 1523994 1524002 1527564 1527569) (-902 "PLOT1.spad" 1523135 1523145 1523984 1523989) (-901 "PLOT.spad" 1517966 1517974 1523125 1523130) (-900 "PLEQN.spad" 1505182 1505209 1517956 1517961) (-899 "PINTERPA.spad" 1504964 1504980 1505172 1505177) (-898 "PINTERP.spad" 1504580 1504599 1504954 1504959) (-897 "PID.spad" 1503536 1503544 1504506 1504575) (-896 "PICOERCE.spad" 1503193 1503203 1503526 1503531) (-895 "PI.spad" 1502800 1502808 1503167 1503188) (-894 "PGROEB.spad" 1501397 1501411 1502790 1502795) (-893 "PGE.spad" 1492650 1492658 1501387 1501392) (-892 "PGCD.spad" 1491532 1491549 1492640 1492645) (-891 "PFRPAC.spad" 1490675 1490685 1491522 1491527) (-890 "PFR.spad" 1487332 1487342 1490577 1490670) (-889 "PFOTOOLS.spad" 1486590 1486606 1487322 1487327) (-888 "PFOQ.spad" 1485960 1485978 1486580 1486585) (-887 "PFO.spad" 1485379 1485406 1485950 1485955) (-886 "PFECAT.spad" 1483045 1483053 1485305 1485374) (-885 "PFECAT.spad" 1480739 1480749 1483001 1483006) (-884 "PFBRU.spad" 1478609 1478621 1480729 1480734) (-883 "PFBR.spad" 1476147 1476170 1478599 1478604) (-882 "PF.spad" 1475721 1475733 1475952 1476045) (-881 "PERMGRP.spad" 1470457 1470467 1475711 1475716) (-880 "PERMCAT.spad" 1469009 1469019 1470437 1470452) (-879 "PERMAN.spad" 1467541 1467555 1468999 1469004) (-878 "PERM.spad" 1463222 1463232 1467371 1467386) (-877 "PENDTREE.spad" 1462495 1462505 1462851 1462856) (-876 "PDRING.spad" 1460986 1460996 1462475 1462490) (-875 "PDRING.spad" 1459485 1459497 1460976 1460981) (-874 "PDEPROB.spad" 1458442 1458450 1459475 1459480) (-873 "PDEPACK.spad" 1452444 1452452 1458432 1458437) (-872 "PDECOMP.spad" 1451906 1451923 1452434 1452439) (-871 "PDECAT.spad" 1450260 1450268 1451896 1451901) (-870 "PCOMP.spad" 1450111 1450124 1450250 1450255) (-869 "PBWLB.spad" 1448693 1448710 1450101 1450106) (-868 "PATTERN2.spad" 1448429 1448441 1448683 1448688) (-867 "PATTERN1.spad" 1446731 1446747 1448419 1448424) (-866 "PATTERN.spad" 1441162 1441172 1446721 1446726) (-865 "PATRES2.spad" 1440824 1440838 1441152 1441157) (-864 "PATRES.spad" 1438371 1438383 1440814 1440819) (-863 "PATMATCH.spad" 1436528 1436559 1438079 1438084) (-862 "PATMAB.spad" 1435953 1435963 1436518 1436523) (-861 "PATLRES.spad" 1435037 1435051 1435943 1435948) (-860 "PATAB.spad" 1434801 1434811 1435027 1435032) (-859 "PARTPERM.spad" 1432163 1432171 1434791 1434796) (-858 "PARSURF.spad" 1431591 1431619 1432153 1432158) (-857 "PARSU2.spad" 1431386 1431402 1431581 1431586) (-856 "script-parser.spad" 1430906 1430914 1431376 1431381) (-855 "PARSCURV.spad" 1430334 1430362 1430896 1430901) (-854 "PARSC2.spad" 1430123 1430139 1430324 1430329) (-853 "PARPCURV.spad" 1429581 1429609 1430113 1430118) (-852 "PARPC2.spad" 1429370 1429386 1429571 1429576) (-851 "PAN2EXPR.spad" 1428782 1428790 1429360 1429365) (-850 "PALETTE.spad" 1427752 1427760 1428772 1428777) (-849 "PAIR.spad" 1426735 1426748 1427340 1427345) (-848 "PADICRC.spad" 1424066 1424084 1425241 1425334) (-847 "PADICRAT.spad" 1422082 1422094 1422303 1422396) (-846 "PADICCT.spad" 1420623 1420635 1422008 1422077) (-845 "PADIC.spad" 1420318 1420330 1420549 1420618) (-844 "PADEPAC.spad" 1418997 1419016 1420308 1420313) (-843 "PADE.spad" 1417737 1417753 1418987 1418992) (-842 "OWP.spad" 1416721 1416751 1417595 1417662) (-841 "OVAR.spad" 1416502 1416525 1416711 1416716) (-840 "OUTFORM.spad" 1405798 1405806 1416492 1416497) (-839 "OUTBFILE.spad" 1405216 1405224 1405788 1405793) (-838 "OUTBCON.spad" 1404495 1404503 1405206 1405211) (-837 "OUTBCON.spad" 1403772 1403782 1404485 1404490) (-836 "OUT.spad" 1402856 1402864 1403762 1403767) (-835 "OSI.spad" 1402331 1402339 1402846 1402851) (-834 "OSGROUP.spad" 1402249 1402257 1402321 1402326) (-833 "ORTHPOL.spad" 1400710 1400720 1402166 1402171) (-832 "OREUP.spad" 1400068 1400096 1400390 1400429) (-831 "ORESUP.spad" 1399367 1399391 1399748 1399787) (-830 "OREPCTO.spad" 1397186 1397198 1399287 1399292) (-829 "OREPCAT.spad" 1391243 1391253 1397142 1397181) (-828 "OREPCAT.spad" 1385190 1385202 1391091 1391096) (-827 "ORDSET.spad" 1384356 1384364 1385180 1385185) (-826 "ORDSET.spad" 1383520 1383530 1384346 1384351) (-825 "ORDRING.spad" 1382910 1382918 1383500 1383515) (-824 "ORDRING.spad" 1382308 1382318 1382900 1382905) (-823 "ORDMON.spad" 1382163 1382171 1382298 1382303) (-822 "ORDFUNS.spad" 1381289 1381305 1382153 1382158) (-821 "ORDFIN.spad" 1381223 1381231 1381279 1381284) (-820 "ORDCOMP2.spad" 1380508 1380520 1381213 1381218) (-819 "ORDCOMP.spad" 1378973 1378983 1380055 1380084) (-818 "OPTPROB.spad" 1377553 1377561 1378963 1378968) (-817 "OPTPACK.spad" 1369938 1369946 1377543 1377548) (-816 "OPTCAT.spad" 1367613 1367621 1369928 1369933) (-815 "OPQUERY.spad" 1367162 1367170 1367603 1367608) (-814 "OP.spad" 1366904 1366914 1366984 1367051) (-813 "ONECOMP2.spad" 1366322 1366334 1366894 1366899) (-812 "ONECOMP.spad" 1365067 1365077 1365869 1365898) (-811 "OMSERVER.spad" 1364069 1364077 1365057 1365062) (-810 "OMSAGG.spad" 1363845 1363855 1364013 1364064) (-809 "OMPKG.spad" 1362457 1362465 1363835 1363840) (-808 "OMLO.spad" 1361882 1361894 1362343 1362382) (-807 "OMEXPR.spad" 1361716 1361726 1361872 1361877) (-806 "OMERRK.spad" 1360750 1360758 1361706 1361711) (-805 "OMERR.spad" 1360293 1360301 1360740 1360745) (-804 "OMENC.spad" 1359637 1359645 1360283 1360288) (-803 "OMDEV.spad" 1353926 1353934 1359627 1359632) (-802 "OMCONN.spad" 1353335 1353343 1353916 1353921) (-801 "OM.spad" 1352300 1352308 1353325 1353330) (-800 "OINTDOM.spad" 1352063 1352071 1352226 1352295) (-799 "OFMONOID.spad" 1348250 1348260 1352053 1352058) (-798 "ODVAR.spad" 1347511 1347521 1348240 1348245) (-797 "ODR.spad" 1346959 1346985 1347323 1347472) (-796 "ODPOL.spad" 1344305 1344315 1344645 1344772) (-795 "ODP.spad" 1335426 1335446 1335799 1335930) (-794 "ODETOOLS.spad" 1334009 1334028 1335416 1335421) (-793 "ODESYS.spad" 1331659 1331676 1333999 1334004) (-792 "ODERTRIC.spad" 1327600 1327617 1331616 1331621) (-791 "ODERED.spad" 1326987 1327011 1327590 1327595) (-790 "ODERAT.spad" 1324540 1324557 1326977 1326982) (-789 "ODEPRRIC.spad" 1321431 1321453 1324530 1324535) (-788 "ODEPROB.spad" 1320630 1320638 1321421 1321426) (-787 "ODEPRIM.spad" 1317904 1317926 1320620 1320625) (-786 "ODEPAL.spad" 1317280 1317304 1317894 1317899) (-785 "ODEPACK.spad" 1303882 1303890 1317270 1317275) (-784 "ODEINT.spad" 1303313 1303329 1303872 1303877) (-783 "ODEIFTBL.spad" 1300708 1300716 1303303 1303308) (-782 "ODEEF.spad" 1296079 1296095 1300698 1300703) (-781 "ODECONST.spad" 1295598 1295616 1296069 1296074) (-780 "ODECAT.spad" 1294194 1294202 1295588 1295593) (-779 "OCTCT2.spad" 1293838 1293859 1294184 1294189) (-778 "OCT.spad" 1291976 1291986 1292692 1292731) (-777 "OCAMON.spad" 1291824 1291832 1291966 1291971) (-776 "OC.spad" 1289598 1289608 1291780 1291819) (-775 "OC.spad" 1287097 1287109 1289281 1289286) (-774 "OASGP.spad" 1286912 1286920 1287087 1287092) (-773 "OAMONS.spad" 1286432 1286440 1286902 1286907) (-772 "OAMON.spad" 1286293 1286301 1286422 1286427) (-771 "OAGROUP.spad" 1286155 1286163 1286283 1286288) (-770 "NUMTUBE.spad" 1285742 1285758 1286145 1286150) (-769 "NUMQUAD.spad" 1273604 1273612 1285732 1285737) (-768 "NUMODE.spad" 1264740 1264748 1273594 1273599) (-767 "NUMINT.spad" 1262298 1262306 1264730 1264735) (-766 "NUMFMT.spad" 1261138 1261146 1262288 1262293) (-765 "NUMERIC.spad" 1253210 1253220 1260943 1260948) (-764 "NTSCAT.spad" 1251700 1251716 1253166 1253205) (-763 "NTPOLFN.spad" 1251245 1251255 1251617 1251622) (-762 "NSUP2.spad" 1250637 1250649 1251235 1251240) (-761 "NSUP.spad" 1243647 1243657 1248187 1248340) (-760 "NSMP.spad" 1239842 1239861 1240150 1240277) (-759 "NREP.spad" 1238214 1238228 1239832 1239837) (-758 "NPCOEF.spad" 1237460 1237480 1238204 1238209) (-757 "NORMRETR.spad" 1237058 1237097 1237450 1237455) (-756 "NORMPK.spad" 1234960 1234979 1237048 1237053) (-755 "NORMMA.spad" 1234648 1234674 1234950 1234955) (-754 "NONE1.spad" 1234324 1234334 1234638 1234643) (-753 "NONE.spad" 1234065 1234073 1234314 1234319) (-752 "NODE1.spad" 1233534 1233550 1234055 1234060) (-751 "NNI.spad" 1232421 1232429 1233508 1233529) (-750 "NLINSOL.spad" 1231043 1231053 1232411 1232416) (-749 "NIPROB.spad" 1229526 1229534 1231033 1231038) (-748 "NFINTBAS.spad" 1226986 1227003 1229516 1229521) (-747 "NCODIV.spad" 1225184 1225200 1226976 1226981) (-746 "NCNTFRAC.spad" 1224826 1224840 1225174 1225179) (-745 "NCEP.spad" 1222986 1223000 1224816 1224821) (-744 "NASRING.spad" 1222582 1222590 1222976 1222981) (-743 "NASRING.spad" 1222176 1222186 1222572 1222577) (-742 "NARNG.spad" 1221520 1221528 1222166 1222171) (-741 "NARNG.spad" 1220862 1220872 1221510 1221515) (-740 "NAGSP.spad" 1219935 1219943 1220852 1220857) (-739 "NAGS.spad" 1209460 1209468 1219925 1219930) (-738 "NAGF07.spad" 1207853 1207861 1209450 1209455) (-737 "NAGF04.spad" 1202085 1202093 1207843 1207848) (-736 "NAGF02.spad" 1195894 1195902 1202075 1202080) (-735 "NAGF01.spad" 1191497 1191505 1195884 1195889) (-734 "NAGE04.spad" 1184957 1184965 1191487 1191492) (-733 "NAGE02.spad" 1175299 1175307 1184947 1184952) (-732 "NAGE01.spad" 1171183 1171191 1175289 1175294) (-731 "NAGD03.spad" 1169103 1169111 1171173 1171178) (-730 "NAGD02.spad" 1161634 1161642 1169093 1169098) (-729 "NAGD01.spad" 1155747 1155755 1161624 1161629) (-728 "NAGC06.spad" 1151534 1151542 1155737 1155742) (-727 "NAGC05.spad" 1150003 1150011 1151524 1151529) (-726 "NAGC02.spad" 1149258 1149266 1149993 1149998) (-725 "NAALG.spad" 1148793 1148803 1149226 1149253) (-724 "NAALG.spad" 1148348 1148360 1148783 1148788) (-723 "MULTSQFR.spad" 1145306 1145323 1148338 1148343) (-722 "MULTFACT.spad" 1144689 1144706 1145296 1145301) (-721 "MTSCAT.spad" 1142723 1142744 1144587 1144684) (-720 "MTHING.spad" 1142380 1142390 1142713 1142718) (-719 "MSYSCMD.spad" 1141814 1141822 1142370 1142375) (-718 "MSETAGG.spad" 1141647 1141657 1141770 1141809) (-717 "MSET.spad" 1139589 1139599 1141353 1141392) (-716 "MRING.spad" 1136560 1136572 1139297 1139364) (-715 "MRF2.spad" 1136128 1136142 1136550 1136555) (-714 "MRATFAC.spad" 1135674 1135691 1136118 1136123) (-713 "MPRFF.spad" 1133704 1133723 1135664 1135669) (-712 "MPOLY.spad" 1131139 1131154 1131498 1131625) (-711 "MPCPF.spad" 1130403 1130422 1131129 1131134) (-710 "MPC3.spad" 1130218 1130258 1130393 1130398) (-709 "MPC2.spad" 1129860 1129893 1130208 1130213) (-708 "MONOTOOL.spad" 1128195 1128212 1129850 1129855) (-707 "MONOID.spad" 1127514 1127522 1128185 1128190) (-706 "MONOID.spad" 1126831 1126841 1127504 1127509) (-705 "MONOGEN.spad" 1125577 1125590 1126691 1126826) (-704 "MONOGEN.spad" 1124345 1124360 1125461 1125466) (-703 "MONADWU.spad" 1122359 1122367 1124335 1124340) (-702 "MONADWU.spad" 1120371 1120381 1122349 1122354) (-701 "MONAD.spad" 1119515 1119523 1120361 1120366) (-700 "MONAD.spad" 1118657 1118667 1119505 1119510) (-699 "MOEBIUS.spad" 1117343 1117357 1118637 1118652) (-698 "MODULE.spad" 1117213 1117223 1117311 1117338) (-697 "MODULE.spad" 1117103 1117115 1117203 1117208) (-696 "MODRING.spad" 1116434 1116473 1117083 1117098) (-695 "MODOP.spad" 1115093 1115105 1116256 1116323) (-694 "MODMONOM.spad" 1114625 1114643 1115083 1115088) (-693 "MODMON.spad" 1111327 1111343 1112103 1112256) (-692 "MODFIELD.spad" 1110685 1110724 1111229 1111322) (-691 "MMLFORM.spad" 1109545 1109553 1110675 1110680) (-690 "MMAP.spad" 1109285 1109319 1109535 1109540) (-689 "MLO.spad" 1107712 1107722 1109241 1109280) (-688 "MLIFT.spad" 1106284 1106301 1107702 1107707) (-687 "MKUCFUNC.spad" 1105817 1105835 1106274 1106279) (-686 "MKRECORD.spad" 1105419 1105432 1105807 1105812) (-685 "MKFUNC.spad" 1104800 1104810 1105409 1105414) (-684 "MKFLCFN.spad" 1103756 1103766 1104790 1104795) (-683 "MKCHSET.spad" 1103532 1103542 1103746 1103751) (-682 "MKBCFUNC.spad" 1103017 1103035 1103522 1103527) (-681 "MINT.spad" 1102456 1102464 1102919 1103012) (-680 "MHROWRED.spad" 1100957 1100967 1102446 1102451) (-679 "MFLOAT.spad" 1099473 1099481 1100847 1100952) (-678 "MFINFACT.spad" 1098873 1098895 1099463 1099468) (-677 "MESH.spad" 1096610 1096618 1098863 1098868) (-676 "MDDFACT.spad" 1094803 1094813 1096600 1096605) (-675 "MDAGG.spad" 1094078 1094088 1094771 1094798) (-674 "MCMPLX.spad" 1090053 1090061 1090667 1090868) (-673 "MCDEN.spad" 1089261 1089273 1090043 1090048) (-672 "MCALCFN.spad" 1086363 1086389 1089251 1089256) (-671 "MAYBE.spad" 1085612 1085623 1086353 1086358) (-670 "MATSTOR.spad" 1082888 1082898 1085602 1085607) (-669 "MATRIX.spad" 1081592 1081602 1082076 1082103) (-668 "MATLIN.spad" 1078918 1078942 1081476 1081481) (-667 "MATCAT2.spad" 1078186 1078234 1078908 1078913) (-666 "MATCAT.spad" 1069759 1069781 1078142 1078181) (-665 "MATCAT.spad" 1061216 1061240 1069601 1069606) (-664 "MAPPKG3.spad" 1060115 1060129 1061206 1061211) (-663 "MAPPKG2.spad" 1059449 1059461 1060105 1060110) (-662 "MAPPKG1.spad" 1058267 1058277 1059439 1059444) (-661 "MAPPAST.spad" 1057580 1057588 1058257 1058262) (-660 "MAPHACK3.spad" 1057388 1057402 1057570 1057575) (-659 "MAPHACK2.spad" 1057153 1057165 1057378 1057383) (-658 "MAPHACK1.spad" 1056783 1056793 1057143 1057148) (-657 "MAGMA.spad" 1054573 1054590 1056773 1056778) (-656 "MACROAST.spad" 1054152 1054160 1054563 1054568) (-655 "M3D.spad" 1051848 1051858 1053530 1053535) (-654 "LZSTAGG.spad" 1049066 1049076 1051828 1051843) (-653 "LZSTAGG.spad" 1046292 1046304 1049056 1049061) (-652 "LWORD.spad" 1042997 1043014 1046282 1046287) (-651 "LSTAST.spad" 1042781 1042789 1042987 1042992) (-650 "LSQM.spad" 1041004 1041018 1041402 1041453) (-649 "LSPP.spad" 1040537 1040554 1040994 1040999) (-648 "LSMP1.spad" 1038358 1038372 1040527 1040532) (-647 "LSMP.spad" 1037205 1037233 1038348 1038353) (-646 "LSAGG.spad" 1036862 1036872 1037161 1037200) (-645 "LSAGG.spad" 1036551 1036563 1036852 1036857) (-644 "LPOLY.spad" 1035505 1035524 1036407 1036476) (-643 "LPEFRAC.spad" 1034762 1034772 1035495 1035500) (-642 "LOGIC.spad" 1034364 1034372 1034752 1034757) (-641 "LOGIC.spad" 1033964 1033974 1034354 1034359) (-640 "LODOOPS.spad" 1032882 1032894 1033954 1033959) (-639 "LODOF.spad" 1031926 1031943 1032839 1032844) (-638 "LODOCAT.spad" 1030584 1030594 1031882 1031921) (-637 "LODOCAT.spad" 1029240 1029252 1030540 1030545) (-636 "LODO2.spad" 1028513 1028525 1028920 1028959) (-635 "LODO1.spad" 1027913 1027923 1028193 1028232) (-634 "LODO.spad" 1027297 1027313 1027593 1027632) (-633 "LODEEF.spad" 1026069 1026087 1027287 1027292) (-632 "LO.spad" 1025470 1025484 1026003 1026030) (-631 "LNAGG.spad" 1021262 1021272 1025450 1025465) (-630 "LNAGG.spad" 1017028 1017040 1021218 1021223) (-629 "LMOPS.spad" 1013764 1013781 1017018 1017023) (-628 "LMODULE.spad" 1013406 1013416 1013754 1013759) (-627 "LMDICT.spad" 1012689 1012699 1012957 1012984) (-626 "LITERAL.spad" 1012595 1012606 1012679 1012684) (-625 "LIST3.spad" 1011886 1011900 1012585 1012590) (-624 "LIST2MAP.spad" 1008763 1008775 1011876 1011881) (-623 "LIST2.spad" 1007403 1007415 1008753 1008758) (-622 "LIST.spad" 1005121 1005131 1006550 1006577) (-621 "LINEXP.spad" 1004553 1004563 1005101 1005116) (-620 "LINDEP.spad" 1003330 1003342 1004465 1004470) (-619 "LIMITRF.spad" 1001263 1001273 1003320 1003325) (-618 "LIMITPS.spad" 1000153 1000166 1001253 1001258) (-617 "LIECAT.spad" 999629 999639 1000079 1000148) (-616 "LIECAT.spad" 999133 999145 999585 999590) (-615 "LIE.spad" 997147 997159 998423 998568) (-614 "LIB.spad" 995195 995203 995806 995821) (-613 "LGROBP.spad" 992548 992567 995185 995190) (-612 "LFCAT.spad" 991567 991575 992538 992543) (-611 "LF.spad" 990486 990502 991557 991562) (-610 "LEXTRIPK.spad" 985989 986004 990476 990481) (-609 "LEXP.spad" 983992 984019 985969 985984) (-608 "LETAST.spad" 983691 983699 983982 983987) (-607 "LEADCDET.spad" 982075 982092 983681 983686) (-606 "LAZM3PK.spad" 980779 980801 982065 982070) (-605 "LAUPOL.spad" 979468 979481 980372 980441) (-604 "LAPLACE.spad" 979041 979057 979458 979463) (-603 "LALG.spad" 978817 978827 979021 979036) (-602 "LALG.spad" 978601 978613 978807 978812) (-601 "LA.spad" 978041 978055 978523 978562) (-600 "KTVLOGIC.spad" 977464 977472 978031 978036) (-599 "KOVACIC.spad" 976177 976194 977454 977459) (-598 "KONVERT.spad" 975899 975909 976167 976172) (-597 "KOERCE.spad" 975636 975646 975889 975894) (-596 "KERNEL2.spad" 975339 975351 975626 975631) (-595 "KERNEL.spad" 973874 973884 975123 975128) (-594 "KDAGG.spad" 972965 972987 973842 973869) (-593 "KDAGG.spad" 972076 972100 972955 972960) (-592 "KAFILE.spad" 971039 971055 971274 971301) (-591 "JORDAN.spad" 968866 968878 970329 970474) (-590 "JOINAST.spad" 968560 968568 968856 968861) (-589 "JAVACODE.spad" 968326 968334 968550 968555) (-588 "IXAGG.spad" 966439 966463 968306 968321) (-587 "IXAGG.spad" 964417 964443 966286 966291) (-586 "IVECTOR.spad" 963188 963203 963343 963370) (-585 "ITUPLE.spad" 962333 962343 963178 963183) (-584 "ITRIGMNP.spad" 961144 961163 962323 962328) (-583 "ITFUN3.spad" 960638 960652 961134 961139) (-582 "ITFUN2.spad" 960368 960380 960628 960633) (-581 "ITAYLOR.spad" 958160 958175 960204 960329) (-580 "ISUPS.spad" 950571 950586 957134 957231) (-579 "ISUMP.spad" 950068 950084 950561 950566) (-578 "ISTRING.spad" 949071 949084 949237 949264) (-577 "ISAST.spad" 948790 948798 949061 949066) (-576 "IRURPK.spad" 947503 947522 948780 948785) (-575 "IRSN.spad" 945463 945471 947493 947498) (-574 "IRRF2F.spad" 943938 943948 945419 945424) (-573 "IRREDFFX.spad" 943539 943550 943928 943933) (-572 "IROOT.spad" 941870 941880 943529 943534) (-571 "IR2F.spad" 941070 941086 941860 941865) (-570 "IR2.spad" 940090 940106 941060 941065) (-569 "IR.spad" 937879 937893 939945 939972) (-568 "IPRNTPK.spad" 937639 937647 937869 937874) (-567 "IPF.spad" 937204 937216 937444 937537) (-566 "IPADIC.spad" 936965 936991 937130 937199) (-565 "IOMODE.spad" 936586 936594 936955 936960) (-564 "IOBCON.spad" 936451 936459 936576 936581) (-563 "INVLAPLA.spad" 936096 936112 936441 936446) (-562 "INTTR.spad" 929354 929371 936086 936091) (-561 "INTTOOLS.spad" 927065 927081 928928 928933) (-560 "INTSLPE.spad" 926371 926379 927055 927060) (-559 "INTRVL.spad" 925937 925947 926285 926366) (-558 "INTRF.spad" 924301 924315 925927 925932) (-557 "INTRET.spad" 923733 923743 924291 924296) (-556 "INTRAT.spad" 922408 922425 923723 923728) (-555 "INTPM.spad" 920771 920787 922051 922056) (-554 "INTPAF.spad" 918546 918564 920703 920708) (-553 "INTPACK.spad" 908856 908864 918536 918541) (-552 "INTHERTR.spad" 908122 908139 908846 908851) (-551 "INTHERAL.spad" 907788 907812 908112 908117) (-550 "INTHEORY.spad" 904201 904209 907778 907783) (-549 "INTG0.spad" 897682 897700 904133 904138) (-548 "INTFTBL.spad" 893136 893144 897672 897677) (-547 "INTFACT.spad" 892195 892205 893126 893131) (-546 "INTEF.spad" 890512 890528 892185 892190) (-545 "INTDOM.spad" 889127 889135 890438 890507) (-544 "INTDOM.spad" 887804 887814 889117 889122) (-543 "INTCAT.spad" 886057 886067 887718 887799) (-542 "INTBIT.spad" 885560 885568 886047 886052) (-541 "INTALG.spad" 884742 884769 885550 885555) (-540 "INTAF.spad" 884234 884250 884732 884737) (-539 "INTABL.spad" 882752 882783 882915 882942) (-538 "INT.spad" 882113 882121 882606 882747) (-537 "INS.spad" 879580 879588 882015 882108) (-536 "INS.spad" 877133 877143 879570 879575) (-535 "INPSIGN.spad" 876589 876602 877123 877128) (-534 "INPRODPF.spad" 875655 875674 876579 876584) (-533 "INPRODFF.spad" 874713 874737 875645 875650) (-532 "INNMFACT.spad" 873684 873701 874703 874708) (-531 "INMODGCD.spad" 873168 873198 873674 873679) (-530 "INFSP.spad" 871453 871475 873158 873163) (-529 "INFPROD0.spad" 870503 870522 871443 871448) (-528 "INFORM1.spad" 870128 870138 870493 870498) (-527 "INFORM.spad" 867289 867297 870118 870123) (-526 "INFINITY.spad" 866841 866849 867279 867284) (-525 "INEP.spad" 865373 865395 866831 866836) (-524 "INDE.spad" 865102 865119 865363 865368) (-523 "INCRMAPS.spad" 864523 864533 865092 865097) (-522 "INBFILE.spad" 863852 863860 864513 864518) (-521 "INBFF.spad" 859622 859633 863842 863847) (-520 "INBCON.spad" 858922 858930 859612 859617) (-519 "INBCON.spad" 858220 858230 858912 858917) (-518 "INAST.spad" 857885 857893 858210 858215) (-517 "IMPTAST.spad" 857593 857601 857875 857880) (-516 "IMATRIX.spad" 856538 856564 857050 857077) (-515 "IMATQF.spad" 855632 855676 856494 856499) (-514 "IMATLIN.spad" 854237 854261 855588 855593) (-513 "ILIST.spad" 852893 852908 853420 853447) (-512 "IIARRAY2.spad" 852281 852319 852500 852527) (-511 "IFF.spad" 851691 851707 851962 852055) (-510 "IFAST.spad" 851305 851313 851681 851686) (-509 "IFARRAY.spad" 848792 848807 850488 850515) (-508 "IFAMON.spad" 848654 848671 848748 848753) (-507 "IEVALAB.spad" 848043 848055 848644 848649) (-506 "IEVALAB.spad" 847430 847444 848033 848038) (-505 "IDPOAMS.spad" 847186 847198 847420 847425) (-504 "IDPOAM.spad" 846906 846918 847176 847181) (-503 "IDPO.spad" 846704 846716 846896 846901) (-502 "IDPC.spad" 845638 845650 846694 846699) (-501 "IDPAM.spad" 845383 845395 845628 845633) (-500 "IDPAG.spad" 845130 845142 845373 845378) (-499 "IDENT.spad" 845047 845055 845120 845125) (-498 "IDECOMP.spad" 842284 842302 845037 845042) (-497 "IDEAL.spad" 837207 837246 842219 842224) (-496 "ICDEN.spad" 836358 836374 837197 837202) (-495 "ICARD.spad" 835547 835555 836348 836353) (-494 "IBPTOOLS.spad" 834140 834157 835537 835542) (-493 "IBITS.spad" 833339 833352 833776 833803) (-492 "IBATOOL.spad" 830214 830233 833329 833334) (-491 "IBACHIN.spad" 828701 828716 830204 830209) (-490 "IARRAY2.spad" 827689 827715 828308 828335) (-489 "IARRAY1.spad" 826734 826749 826872 826899) (-488 "IAN.spad" 824947 824955 826550 826643) (-487 "IALGFACT.spad" 824548 824581 824937 824942) (-486 "HYPCAT.spad" 823972 823980 824538 824543) (-485 "HYPCAT.spad" 823394 823404 823962 823967) (-484 "HOSTNAME.spad" 823202 823210 823384 823389) (-483 "HOAGG.spad" 820460 820470 823182 823197) (-482 "HOAGG.spad" 817503 817515 820227 820232) (-481 "HEXADEC.spad" 815373 815381 815971 816064) (-480 "HEUGCD.spad" 814388 814399 815363 815368) (-479 "HELLFDIV.spad" 813978 814002 814378 814383) (-478 "HEAP.spad" 813370 813380 813585 813612) (-477 "HEADAST.spad" 812901 812909 813360 813365) (-476 "HDP.spad" 804018 804034 804395 804526) (-475 "HDMP.spad" 801194 801209 801812 801939) (-474 "HB.spad" 799431 799439 801184 801189) (-473 "HASHTBL.spad" 797901 797932 798112 798139) (-472 "HASAST.spad" 797617 797625 797891 797896) (-471 "HACKPI.spad" 797100 797108 797519 797612) (-470 "GTSET.spad" 796039 796055 796746 796773) (-469 "GSTBL.spad" 794558 794593 794732 794747) (-468 "GSERIES.spad" 791725 791752 792690 792839) (-467 "GROUP.spad" 790994 791002 791705 791720) (-466 "GROUP.spad" 790271 790281 790984 790989) (-465 "GROEBSOL.spad" 788759 788780 790261 790266) (-464 "GRMOD.spad" 787330 787342 788749 788754) (-463 "GRMOD.spad" 785899 785913 787320 787325) (-462 "GRIMAGE.spad" 778504 778512 785889 785894) (-461 "GRDEF.spad" 776883 776891 778494 778499) (-460 "GRAY.spad" 775342 775350 776873 776878) (-459 "GRALG.spad" 774389 774401 775332 775337) (-458 "GRALG.spad" 773434 773448 774379 774384) (-457 "GPOLSET.spad" 772888 772911 773116 773143) (-456 "GOSPER.spad" 772153 772171 772878 772883) (-455 "GMODPOL.spad" 771291 771318 772121 772148) (-454 "GHENSEL.spad" 770360 770374 771281 771286) (-453 "GENUPS.spad" 766461 766474 770350 770355) (-452 "GENUFACT.spad" 766038 766048 766451 766456) (-451 "GENPGCD.spad" 765622 765639 766028 766033) (-450 "GENMFACT.spad" 765074 765093 765612 765617) (-449 "GENEEZ.spad" 763013 763026 765064 765069) (-448 "GDMP.spad" 760031 760048 760807 760934) (-447 "GCNAALG.spad" 753926 753953 759825 759892) (-446 "GCDDOM.spad" 753098 753106 753852 753921) (-445 "GCDDOM.spad" 752332 752342 753088 753093) (-444 "GBINTERN.spad" 748352 748390 752322 752327) (-443 "GBF.spad" 744109 744147 748342 748347) (-442 "GBEUCLID.spad" 741983 742021 744099 744104) (-441 "GB.spad" 739501 739539 741939 741944) (-440 "GAUSSFAC.spad" 738798 738806 739491 739496) (-439 "GALUTIL.spad" 737120 737130 738754 738759) (-438 "GALPOLYU.spad" 735566 735579 737110 737115) (-437 "GALFACTU.spad" 733731 733750 735556 735561) (-436 "GALFACT.spad" 723864 723875 733721 733726) (-435 "FVFUN.spad" 720877 720885 723844 723859) (-434 "FVC.spad" 719919 719927 720857 720872) (-433 "FUNCTION.spad" 719768 719780 719909 719914) (-432 "FTEM.spad" 718931 718939 719758 719763) (-431 "FT.spad" 717146 717154 718921 718926) (-430 "FSUPFACT.spad" 716046 716065 717082 717087) (-429 "FST.spad" 714132 714140 716036 716041) (-428 "FSRED.spad" 713610 713626 714122 714127) (-427 "FSPRMELT.spad" 712434 712450 713567 713572) (-426 "FSPECF.spad" 710511 710527 712424 712429) (-425 "FSINT.spad" 710169 710185 710501 710506) (-424 "FSERIES.spad" 709356 709368 709989 710088) (-423 "FSCINT.spad" 708669 708685 709346 709351) (-422 "FSAGG2.spad" 707368 707384 708659 708664) (-421 "FSAGG.spad" 706473 706483 707312 707363) (-420 "FSAGG.spad" 705552 705564 706393 706398) (-419 "FS2UPS.spad" 699941 699975 705542 705547) (-418 "FS2EXPXP.spad" 699064 699087 699931 699936) (-417 "FS2.spad" 698709 698725 699054 699059) (-416 "FS.spad" 692759 692769 698472 698704) (-415 "FS.spad" 686599 686611 692314 692319) (-414 "FRUTIL.spad" 685541 685551 686589 686594) (-413 "FRNAALG.spad" 680628 680638 685483 685536) (-412 "FRNAALG.spad" 675727 675739 680584 680589) (-411 "FRNAAF2.spad" 675181 675199 675717 675722) (-410 "FRMOD.spad" 674575 674605 675112 675117) (-409 "FRIDEAL2.spad" 674177 674209 674565 674570) (-408 "FRIDEAL.spad" 673372 673393 674157 674172) (-407 "FRETRCT.spad" 672883 672893 673362 673367) (-406 "FRETRCT.spad" 672260 672272 672741 672746) (-405 "FRAMALG.spad" 670588 670601 672216 672255) (-404 "FRAMALG.spad" 668948 668963 670578 670583) (-403 "FRAC2.spad" 668551 668563 668938 668943) (-402 "FRAC.spad" 665651 665661 666054 666227) (-401 "FR2.spad" 664985 664997 665641 665646) (-400 "FR.spad" 658707 658717 664010 664079) (-399 "FPS.spad" 655516 655524 658597 658702) (-398 "FPS.spad" 652353 652363 655436 655441) (-397 "FPC.spad" 651395 651403 652255 652348) (-396 "FPC.spad" 650523 650533 651385 651390) (-395 "FPATMAB.spad" 650275 650285 650503 650518) (-394 "FPARFRAC.spad" 648748 648765 650265 650270) (-393 "FORTRAN.spad" 647254 647297 648738 648743) (-392 "FORTFN.spad" 644414 644422 647234 647249) (-391 "FORTCAT.spad" 644088 644096 644394 644409) (-390 "FORT.spad" 643017 643025 644078 644083) (-389 "FORMULA1.spad" 642496 642506 643007 643012) (-388 "FORMULA.spad" 639834 639842 642486 642491) (-387 "FORDER.spad" 639525 639549 639824 639829) (-386 "FOP.spad" 638726 638734 639515 639520) (-385 "FNLA.spad" 638150 638172 638694 638721) (-384 "FNCAT.spad" 636478 636486 638140 638145) (-383 "FNAME.spad" 636370 636378 636468 636473) (-382 "FMTC.spad" 636168 636176 636296 636365) (-381 "FMONOID.spad" 633223 633233 636124 636129) (-380 "FMFUN.spad" 630243 630251 633203 633218) (-379 "FMCAT.spad" 627897 627915 630211 630238) (-378 "FMC.spad" 626939 626947 627877 627892) (-377 "FM1.spad" 626296 626308 626873 626900) (-376 "FM.spad" 625991 626003 626230 626257) (-375 "FLOATRP.spad" 623712 623726 625981 625986) (-374 "FLOATCP.spad" 621129 621143 623702 623707) (-373 "FLOAT.spad" 614293 614301 620995 621124) (-372 "FLINEXP.spad" 614005 614015 614273 614288) (-371 "FLINEXP.spad" 613671 613683 613941 613946) (-370 "FLASORT.spad" 612991 613003 613661 613666) (-369 "FLALG.spad" 610637 610656 612917 612986) (-368 "FLAGG2.spad" 609318 609334 610627 610632) (-367 "FLAGG.spad" 606324 606334 609286 609313) (-366 "FLAGG.spad" 603243 603255 606207 606212) (-365 "FINRALG.spad" 601272 601285 603199 603238) (-364 "FINRALG.spad" 599227 599242 601156 601161) (-363 "FINITE.spad" 598379 598387 599217 599222) (-362 "FINAALG.spad" 587360 587370 598321 598374) (-361 "FINAALG.spad" 576353 576365 587316 587321) (-360 "FILECAT.spad" 574871 574888 576343 576348) (-359 "FILE.spad" 574454 574464 574861 574866) (-358 "FIELD.spad" 573860 573868 574356 574449) (-357 "FIELD.spad" 573352 573362 573850 573855) (-356 "FGROUP.spad" 571961 571971 573332 573347) (-355 "FGLMICPK.spad" 570748 570763 571951 571956) (-354 "FFX.spad" 570123 570138 570464 570557) (-353 "FFSLPE.spad" 569612 569633 570113 570118) (-352 "FFPOLY2.spad" 568672 568689 569602 569607) (-351 "FFPOLY.spad" 559924 559935 568662 568667) (-350 "FFP.spad" 559321 559341 559640 559733) (-349 "FFNBX.spad" 557833 557853 559037 559130) (-348 "FFNBP.spad" 556346 556363 557549 557642) (-347 "FFNB.spad" 554811 554832 556027 556120) (-346 "FFINTBAS.spad" 552225 552244 554801 554806) (-345 "FFIELDC.spad" 549800 549808 552127 552220) (-344 "FFIELDC.spad" 547461 547471 549790 549795) (-343 "FFHOM.spad" 546209 546226 547451 547456) (-342 "FFF.spad" 543644 543655 546199 546204) (-341 "FFCGX.spad" 542491 542511 543360 543453) (-340 "FFCGP.spad" 541380 541400 542207 542300) (-339 "FFCG.spad" 540172 540193 541061 541154) (-338 "FFCAT2.spad" 539917 539957 540162 540167) (-337 "FFCAT.spad" 532944 532966 539756 539912) (-336 "FFCAT.spad" 526050 526074 532864 532869) (-335 "FF.spad" 525498 525514 525731 525824) (-334 "FEXPR.spad" 517207 517253 525254 525293) (-333 "FEVALAB.spad" 516913 516923 517197 517202) (-332 "FEVALAB.spad" 516404 516416 516690 516695) (-331 "FDIVCAT.spad" 514446 514470 516394 516399) (-330 "FDIVCAT.spad" 512486 512512 514436 514441) (-329 "FDIV2.spad" 512140 512180 512476 512481) (-328 "FDIV.spad" 511582 511606 512130 512135) (-327 "FCPAK1.spad" 510135 510143 511572 511577) (-326 "FCOMP.spad" 509514 509524 510125 510130) (-325 "FC.spad" 499339 499347 509504 509509) (-324 "FAXF.spad" 492274 492288 499241 499334) (-323 "FAXF.spad" 485261 485277 492230 492235) (-322 "FARRAY.spad" 483407 483417 484444 484471) (-321 "FAMR.spad" 481527 481539 483305 483402) (-320 "FAMR.spad" 479631 479645 481411 481416) (-319 "FAMONOID.spad" 479281 479291 479585 479590) (-318 "FAMONC.spad" 477503 477515 479271 479276) (-317 "FAGROUP.spad" 477109 477119 477399 477426) (-316 "FACUTIL.spad" 475305 475322 477099 477104) (-315 "FACTFUNC.spad" 474481 474491 475295 475300) (-314 "EXPUPXS.spad" 471314 471337 472613 472762) (-313 "EXPRTUBE.spad" 468542 468550 471304 471309) (-312 "EXPRODE.spad" 465414 465430 468532 468537) (-311 "EXPR2UPS.spad" 461506 461519 465404 465409) (-310 "EXPR2.spad" 461209 461221 461496 461501) (-309 "EXPR.spad" 456484 456494 457198 457605) (-308 "EXPEXPAN.spad" 453423 453448 454057 454150) (-307 "EXITAST.spad" 453159 453167 453413 453418) (-306 "EXIT.spad" 452830 452838 453149 453154) (-305 "EVALCYC.spad" 452288 452302 452820 452825) (-304 "EVALAB.spad" 451852 451862 452278 452283) (-303 "EVALAB.spad" 451414 451426 451842 451847) (-302 "EUCDOM.spad" 448956 448964 451340 451409) (-301 "EUCDOM.spad" 446560 446570 448946 448951) (-300 "ESTOOLS2.spad" 446161 446175 446550 446555) (-299 "ESTOOLS1.spad" 445846 445857 446151 446156) (-298 "ESTOOLS.spad" 437686 437694 445836 445841) (-297 "ESCONT1.spad" 437435 437447 437676 437681) (-296 "ESCONT.spad" 434208 434216 437425 437430) (-295 "ES2.spad" 433703 433719 434198 434203) (-294 "ES1.spad" 433269 433285 433693 433698) (-293 "ES.spad" 425816 425824 433259 433264) (-292 "ES.spad" 418269 418279 425714 425719) (-291 "ERROR.spad" 415590 415598 418259 418264) (-290 "EQTBL.spad" 414062 414084 414271 414298) (-289 "EQ2.spad" 413778 413790 414052 414057) (-288 "EQ.spad" 408652 408662 411451 411563) (-287 "EP.spad" 404966 404976 408642 408647) (-286 "ENV.spad" 403668 403676 404956 404961) (-285 "ENTIRER.spad" 403336 403344 403612 403663) (-284 "EMR.spad" 402537 402578 403262 403331) (-283 "ELTAGG.spad" 400777 400796 402527 402532) (-282 "ELTAGG.spad" 398981 399002 400733 400738) (-281 "ELTAB.spad" 398428 398446 398971 398976) (-280 "ELFUTS.spad" 397807 397826 398418 398423) (-279 "ELEMFUN.spad" 397496 397504 397797 397802) (-278 "ELEMFUN.spad" 397183 397193 397486 397491) (-277 "ELAGG.spad" 395114 395124 397151 397178) (-276 "ELAGG.spad" 392994 393006 395033 395038) (-275 "ELABEXPR.spad" 391925 391933 392984 392989) (-274 "EFUPXS.spad" 388701 388731 391881 391886) (-273 "EFULS.spad" 385537 385560 388657 388662) (-272 "EFSTRUC.spad" 383492 383508 385527 385532) (-271 "EF.spad" 378258 378274 383482 383487) (-270 "EAB.spad" 376534 376542 378248 378253) (-269 "E04UCFA.spad" 376070 376078 376524 376529) (-268 "E04NAFA.spad" 375647 375655 376060 376065) (-267 "E04MBFA.spad" 375227 375235 375637 375642) (-266 "E04JAFA.spad" 374763 374771 375217 375222) (-265 "E04GCFA.spad" 374299 374307 374753 374758) (-264 "E04FDFA.spad" 373835 373843 374289 374294) (-263 "E04DGFA.spad" 373371 373379 373825 373830) (-262 "E04AGNT.spad" 369213 369221 373361 373366) (-261 "DVARCAT.spad" 365898 365908 369203 369208) (-260 "DVARCAT.spad" 362581 362593 365888 365893) (-259 "DSMP.spad" 360012 360026 360317 360444) (-258 "DROPT1.spad" 359675 359685 360002 360007) (-257 "DROPT0.spad" 354502 354510 359665 359670) (-256 "DROPT.spad" 348447 348455 354492 354497) (-255 "DRAWPT.spad" 346602 346610 348437 348442) (-254 "DRAWHACK.spad" 345910 345920 346592 346597) (-253 "DRAWCX.spad" 343352 343360 345900 345905) (-252 "DRAWCURV.spad" 342889 342904 343342 343347) (-251 "DRAWCFUN.spad" 332061 332069 342879 342884) (-250 "DRAW.spad" 324661 324674 332051 332056) (-249 "DQAGG.spad" 322817 322827 324617 324656) (-248 "DPOLCAT.spad" 318158 318174 322685 322812) (-247 "DPOLCAT.spad" 313585 313603 318114 318119) (-246 "DPMO.spad" 306888 306904 307026 307327) (-245 "DPMM.spad" 300204 300222 300329 300630) (-244 "DOMAIN.spad" 299475 299483 300194 300199) (-243 "DMP.spad" 296697 296712 297269 297396) (-242 "DLP.spad" 296045 296055 296687 296692) (-241 "DLIST.spad" 294457 294467 295228 295255) (-240 "DLAGG.spad" 292858 292868 294437 294452) (-239 "DIVRING.spad" 292400 292408 292802 292853) (-238 "DIVRING.spad" 291986 291996 292390 292395) (-237 "DISPLAY.spad" 290166 290174 291976 291981) (-236 "DIRPROD2.spad" 288974 288992 290156 290161) (-235 "DIRPROD.spad" 279828 279844 280468 280599) (-234 "DIRPCAT.spad" 278758 278774 279680 279823) (-233 "DIRPCAT.spad" 277429 277447 278353 278358) (-232 "DIOSP.spad" 276254 276262 277419 277424) (-231 "DIOPS.spad" 275226 275236 276222 276249) (-230 "DIOPS.spad" 274184 274196 275182 275187) (-229 "DIFRING.spad" 273476 273484 274164 274179) (-228 "DIFRING.spad" 272776 272786 273466 273471) (-227 "DIFEXT.spad" 271935 271945 272756 272771) (-226 "DIFEXT.spad" 271011 271023 271834 271839) (-225 "DIAGG.spad" 270629 270639 270979 271006) (-224 "DIAGG.spad" 270267 270279 270619 270624) (-223 "DHMATRIX.spad" 268571 268581 269724 269751) (-222 "DFSFUN.spad" 261979 261987 268561 268566) (-221 "DFLOAT.spad" 258700 258708 261869 261974) (-220 "DFINTTLS.spad" 256909 256925 258690 258695) (-219 "DERHAM.spad" 254819 254851 256889 256904) (-218 "DEQUEUE.spad" 254137 254147 254426 254453) (-217 "DEGRED.spad" 253752 253766 254127 254132) (-216 "DEFINTRF.spad" 251322 251332 253742 253747) (-215 "DEFINTEF.spad" 249846 249862 251312 251317) (-214 "DEFAST.spad" 249214 249222 249836 249841) (-213 "DECIMAL.spad" 247096 247104 247682 247775) (-212 "DDFACT.spad" 244895 244912 247086 247091) (-211 "DBLRESP.spad" 244493 244517 244885 244890) (-210 "DBASE.spad" 243065 243075 244483 244488) (-209 "DATABUF.spad" 242553 242566 243055 243060) (-208 "D03FAFA.spad" 242381 242389 242543 242548) (-207 "D03EEFA.spad" 242201 242209 242371 242376) (-206 "D03AGNT.spad" 241281 241289 242191 242196) (-205 "D02EJFA.spad" 240743 240751 241271 241276) (-204 "D02CJFA.spad" 240221 240229 240733 240738) (-203 "D02BHFA.spad" 239711 239719 240211 240216) (-202 "D02BBFA.spad" 239201 239209 239701 239706) (-201 "D02AGNT.spad" 234005 234013 239191 239196) (-200 "D01WGTS.spad" 232324 232332 233995 234000) (-199 "D01TRNS.spad" 232301 232309 232314 232319) (-198 "D01GBFA.spad" 231823 231831 232291 232296) (-197 "D01FCFA.spad" 231345 231353 231813 231818) (-196 "D01ASFA.spad" 230813 230821 231335 231340) (-195 "D01AQFA.spad" 230259 230267 230803 230808) (-194 "D01APFA.spad" 229683 229691 230249 230254) (-193 "D01ANFA.spad" 229177 229185 229673 229678) (-192 "D01AMFA.spad" 228687 228695 229167 229172) (-191 "D01ALFA.spad" 228227 228235 228677 228682) (-190 "D01AKFA.spad" 227753 227761 228217 228222) (-189 "D01AJFA.spad" 227276 227284 227743 227748) (-188 "D01AGNT.spad" 223335 223343 227266 227271) (-187 "CYCLOTOM.spad" 222841 222849 223325 223330) (-186 "CYCLES.spad" 219673 219681 222831 222836) (-185 "CVMP.spad" 219090 219100 219663 219668) (-184 "CTRIGMNP.spad" 217580 217596 219080 219085) (-183 "CTORKIND.spad" 217195 217203 217570 217575) (-182 "CTORCALL.spad" 216783 216791 217185 217190) (-181 "CTOR.spad" 216226 216234 216773 216778) (-180 "CSTTOOLS.spad" 215469 215482 216216 216221) (-179 "CRFP.spad" 209173 209186 215459 215464) (-178 "CRCEAST.spad" 208893 208901 209163 209168) (-177 "CRAPACK.spad" 207936 207946 208883 208888) (-176 "CPMATCH.spad" 207436 207451 207861 207866) (-175 "CPIMA.spad" 207141 207160 207426 207431) (-174 "COORDSYS.spad" 202034 202044 207131 207136) (-173 "CONTOUR.spad" 201436 201444 202024 202029) (-172 "CONTFRAC.spad" 197048 197058 201338 201431) (-171 "CONDUIT.spad" 196806 196814 197038 197043) (-170 "COMRING.spad" 196480 196488 196744 196801) (-169 "COMPPROP.spad" 195994 196002 196470 196475) (-168 "COMPLPAT.spad" 195761 195776 195984 195989) (-167 "COMPLEX2.spad" 195474 195486 195751 195756) (-166 "COMPLEX.spad" 189500 189510 189744 190005) (-165 "COMPFACT.spad" 189102 189116 189490 189495) (-164 "COMPCAT.spad" 187158 187168 188824 189097) (-163 "COMPCAT.spad" 184920 184932 186588 186593) (-162 "COMMUPC.spad" 184666 184684 184910 184915) (-161 "COMMONOP.spad" 184199 184207 184656 184661) (-160 "COMMAAST.spad" 183962 183970 184189 184194) (-159 "COMM.spad" 183771 183779 183952 183957) (-158 "COMBOPC.spad" 182676 182684 183761 183766) (-157 "COMBINAT.spad" 181421 181431 182666 182671) (-156 "COMBF.spad" 178789 178805 181411 181416) (-155 "COLOR.spad" 177626 177634 178779 178784) (-154 "COLONAST.spad" 177292 177300 177616 177621) (-153 "CMPLXRT.spad" 177001 177018 177282 177287) (-152 "CLLCTAST.spad" 176663 176671 176991 176996) (-151 "CLIP.spad" 172755 172763 176653 176658) (-150 "CLIF.spad" 171394 171410 172711 172750) (-149 "CLAGG.spad" 167869 167879 171374 171389) (-148 "CLAGG.spad" 164225 164237 167732 167737) (-147 "CINTSLPE.spad" 163550 163563 164215 164220) (-146 "CHVAR.spad" 161628 161650 163540 163545) (-145 "CHARZ.spad" 161543 161551 161608 161623) (-144 "CHARPOL.spad" 161051 161061 161533 161538) (-143 "CHARNZ.spad" 160804 160812 161031 161046) (-142 "CHAR.spad" 158672 158680 160794 160799) (-141 "CFCAT.spad" 157988 157996 158662 158667) (-140 "CDEN.spad" 157146 157160 157978 157983) (-139 "CCLASS.spad" 155295 155303 156557 156596) (-138 "CATEGORY.spad" 155074 155082 155285 155290) (-137 "CATAST.spad" 154701 154709 155064 155069) (-136 "CASEAST.spad" 154415 154423 154691 154696) (-135 "CARTEN2.spad" 153801 153828 154405 154410) (-134 "CARTEN.spad" 148904 148928 153791 153796) (-133 "CARD.spad" 146193 146201 148878 148899) (-132 "CAPSLAST.spad" 145967 145975 146183 146188) (-131 "CACHSET.spad" 145589 145597 145957 145962) (-130 "CABMON.spad" 145142 145150 145579 145584) (-129 "BYTEARY.spad" 144217 144225 144311 144338) (-128 "BYTE.spad" 143391 143399 144207 144212) (-127 "BTREE.spad" 142460 142470 142998 143025) (-126 "BTOURN.spad" 141463 141473 142067 142094) (-125 "BTCAT.spad" 140839 140849 141419 141458) (-124 "BTCAT.spad" 140247 140259 140829 140834) (-123 "BTAGG.spad" 139357 139365 140203 140242) (-122 "BTAGG.spad" 138499 138509 139347 139352) (-121 "BSTREE.spad" 137234 137244 138106 138133) (-120 "BRILL.spad" 135429 135440 137224 137229) (-119 "BRAGG.spad" 134343 134353 135409 135424) (-118 "BRAGG.spad" 133231 133243 134299 134304) (-117 "BPADICRT.spad" 131213 131225 131468 131561) (-116 "BPADIC.spad" 130877 130889 131139 131208) (-115 "BOUNDZRO.spad" 130533 130550 130867 130872) (-114 "BOP1.spad" 127919 127929 130489 130494) (-113 "BOP.spad" 123383 123391 127909 127914) (-112 "BOOLEAN.spad" 122707 122715 123373 123378) (-111 "BMODULE.spad" 122419 122431 122675 122702) (-110 "BITS.spad" 121838 121846 122055 122082) (-109 "BINFILE.spad" 121181 121189 121828 121833) (-108 "BINDING.spad" 120600 120608 121171 121176) (-107 "BINARY.spad" 118491 118499 119068 119161) (-106 "BGAGG.spad" 117676 117686 118459 118486) (-105 "BGAGG.spad" 116881 116893 117666 117671) (-104 "BFUNCT.spad" 116445 116453 116861 116876) (-103 "BEZOUT.spad" 115579 115606 116395 116400) (-102 "BBTREE.spad" 112398 112408 115186 115213) (-101 "BASTYPE.spad" 112070 112078 112388 112393) (-100 "BASTYPE.spad" 111740 111750 112060 112065) (-99 "BALFACT.spad" 111180 111192 111730 111735) (-98 "AUTOMOR.spad" 110627 110636 111160 111175) (-97 "ATTREG.spad" 107346 107353 110379 110622) (-96 "ATTRBUT.spad" 103369 103376 107326 107341) (-95 "ATTRAST.spad" 103086 103093 103359 103364) (-94 "ATRIG.spad" 102556 102563 103076 103081) (-93 "ATRIG.spad" 102024 102033 102546 102551) (-92 "ASTCAT.spad" 101928 101935 102014 102019) (-91 "ASTCAT.spad" 101830 101839 101918 101923) (-90 "ASTACK.spad" 101163 101172 101437 101464) (-89 "ASSOCEQ.spad" 99963 99974 101119 101124) (-88 "ASP9.spad" 99044 99057 99953 99958) (-87 "ASP80.spad" 98366 98379 99034 99039) (-86 "ASP8.spad" 97409 97422 98356 98361) (-85 "ASP78.spad" 96860 96873 97399 97404) (-84 "ASP77.spad" 96229 96242 96850 96855) (-83 "ASP74.spad" 95321 95334 96219 96224) (-82 "ASP73.spad" 94592 94605 95311 95316) (-81 "ASP7.spad" 93752 93765 94582 94587) (-80 "ASP6.spad" 92384 92397 93742 93747) (-79 "ASP55.spad" 90893 90906 92374 92379) (-78 "ASP50.spad" 88710 88723 90883 90888) (-77 "ASP49.spad" 87709 87722 88700 88705) (-76 "ASP42.spad" 86116 86155 87699 87704) (-75 "ASP41.spad" 84695 84734 86106 86111) (-74 "ASP4.spad" 83990 84003 84685 84690) (-73 "ASP35.spad" 82978 82991 83980 83985) (-72 "ASP34.spad" 82279 82292 82968 82973) (-71 "ASP33.spad" 81839 81852 82269 82274) (-70 "ASP31.spad" 80979 80992 81829 81834) (-69 "ASP30.spad" 79871 79884 80969 80974) (-68 "ASP29.spad" 79337 79350 79861 79866) (-67 "ASP28.spad" 70610 70623 79327 79332) (-66 "ASP27.spad" 69507 69520 70600 70605) (-65 "ASP24.spad" 68594 68607 69497 69502) (-64 "ASP20.spad" 67810 67823 68584 68589) (-63 "ASP19.spad" 62496 62509 67800 67805) (-62 "ASP12.spad" 61910 61923 62486 62491) (-61 "ASP10.spad" 61181 61194 61900 61905) (-60 "ASP1.spad" 60562 60575 61171 61176) (-59 "ARRAY2.spad" 59922 59931 60169 60196) (-58 "ARRAY12.spad" 58591 58602 59912 59917) (-57 "ARRAY1.spad" 57426 57435 57774 57801) (-56 "ARR2CAT.spad" 53076 53097 57382 57421) (-55 "ARR2CAT.spad" 48758 48781 53066 53071) (-54 "APPRULE.spad" 48002 48024 48748 48753) (-53 "APPLYORE.spad" 47617 47630 47992 47997) (-52 "ANY1.spad" 46688 46697 47607 47612) (-51 "ANY.spad" 45030 45037 46678 46683) (-50 "ANTISYM.spad" 43469 43485 45010 45025) (-49 "ANON.spad" 43166 43173 43459 43464) (-48 "AN.spad" 41467 41474 42982 43075) (-47 "AMR.spad" 39646 39657 41365 41462) (-46 "AMR.spad" 37662 37675 39383 39388) (-45 "ALIST.spad" 35074 35095 35424 35451) (-44 "ALGSC.spad" 34197 34223 34946 34999) (-43 "ALGPKG.spad" 29906 29917 34153 34158) (-42 "ALGMFACT.spad" 29095 29109 29896 29901) (-41 "ALGMANIP.spad" 26515 26530 28892 28897) (-40 "ALGFF.spad" 24830 24857 25047 25203) (-39 "ALGFACT.spad" 23951 23961 24820 24825) (-38 "ALGEBRA.spad" 23682 23691 23907 23946) (-37 "ALGEBRA.spad" 23445 23456 23672 23677) (-36 "ALAGG.spad" 22943 22964 23401 23440) (-35 "AHYP.spad" 22324 22331 22933 22938) (-34 "AGG.spad" 20623 20630 22304 22319) (-33 "AGG.spad" 18896 18905 20579 20584) (-32 "AF.spad" 17321 17336 18831 18836) (-31 "ADDAST.spad" 16999 17006 17311 17316) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 34f7c1f3..a43fd8c7 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,200 +1,200 @@ -(145075 . 3432414590) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-400 |#2|) |#3|) . T)) -((((-400 (-536))) |has| #1=(-400 |#2|) (-1012 (-400 (-536)))) (((-536)) |has| #1# (-1012 (-536))) ((#1#) . T)) -((((-400 |#2|)) . T)) -((((-536)) |has| #1=(-400 |#2|) (-619 (-536))) ((#1#) . T)) -((((-400 |#2|)) . T)) -((((-400 |#2|) |#3|) . T)) -(|has| (-400 |#2|) (-145)) -((((-400 |#2|) |#3|) . T)) -(|has| (-400 |#2|) (-143)) -((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) -((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) -(|has| (-400 |#2|) (-227)) -((((-1147)) |has| (-400 |#2|) (-874 (-1147)))) -((((-400 |#2|)) . T)) +(145111 . 3432506637) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-402 |#2|) |#3|) . T)) +((((-402 (-538))) |has| #1=(-402 |#2|) (-1014 (-402 (-538)))) (((-538)) |has| #1# (-1014 (-538))) ((#1#) . T)) +((((-402 |#2|)) . T)) +((((-538)) |has| #1=(-402 |#2|) (-621 (-538))) ((#1#) . T)) +((((-402 |#2|)) . T)) +((((-402 |#2|) |#3|) . T)) +(|has| (-402 |#2|) (-145)) +((((-402 |#2|) |#3|) . T)) +(|has| (-402 |#2|) (-143)) +((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T)) +((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T)) +(|has| (-402 |#2|) (-229)) +((((-1149)) |has| (-402 |#2|) (-876 (-1149)))) +((((-402 |#2|)) . T)) (((|#3|) . T)) -(((#1=(-400 |#2|) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) -((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) +(((#1=(-402 |#2|) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T)) +((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1113 |#2| |#1|)) . T) ((|#1|) . T)) -((((-838)) . T)) +((((-1115 |#2| |#1|)) . T) ((|#1|) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-838)) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-840)) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((|#1| |#2|) . T)) -((((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((|#2|) . T)) -(((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) ((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -((((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((|#1| |#2|) . T)) +((((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((|#1| |#2|) . T)) +((((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((|#2|) . T)) +(((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) ((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +((((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-166 (-371))) . T) (((-219)) . T) (((-371)) . T)) -((((-400 (-536))) . T) (((-536)) . T)) -((($) . T) (((-400 (-536))) . T)) -((($) . T) (((-400 (-536))) . T)) -((($) . T) (((-400 (-536))) . T)) -((((-400 (-536))) . T) (($) . T)) -(((#1=(-400 (-536)) #1#) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-593 $) $) . T)) -((((-838)) . T)) -((((-400 (-536))) . T) (((-536)) . T) (((-593 $)) . T)) -((((-838)) . T)) -(((|#1|) . T)) -((((-838)) . T)) +((((-166 (-373))) . T) (((-221)) . T) (((-373)) . T)) +((((-402 (-538))) . T) (((-538)) . T)) +((($) . T) (((-402 (-538))) . T)) +((($) . T) (((-402 (-538))) . T)) +((($) . T) (((-402 (-538))) . T)) +((((-402 (-538))) . T) (($) . T)) +(((#1=(-402 (-538)) #1#) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-595 $) $) . T)) +((((-840)) . T)) +((((-402 (-538))) . T) (((-538)) . T) (((-595 $)) . T)) +((((-840)) . T)) +(((|#1|) . T)) +((((-840)) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) (((|#1| (-57 |#1|) (-57 |#1|)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -(((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +(((|#1|) . T)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T)) (((|#1| |#1|) . T)) -((((-838)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-536)) . T)) -((((-536)) . T) (($) . T) (((-400 (-536))) . T)) -((($) . T) (((-536)) . T) (((-400 (-536))) . T)) -((((-536)) . T) (($) . T) (((-400 (-536))) . T)) -((((-536)) . T) (((-400 (-536))) . T) (($) . T)) -(((#1=(-536) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-525)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) -((((-400 (-536))) . T) (((-536)) . T)) -((((-536)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-381) (-1091)) . T)) +((((-840)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-538)) . T)) +((((-538)) . T) (($) . T) (((-402 (-538))) . T)) +((($) . T) (((-538)) . T) (((-402 (-538))) . T)) +((((-538)) . T) (($) . T) (((-402 (-538))) . T)) +((((-538)) . T) (((-402 (-538))) . T) (($) . T)) +(((#1=(-538) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-527)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T)) +((((-402 (-538))) . T) (((-538)) . T)) +((((-538)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-383) (-1093)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-536) (-112)) . T)) -((((-536) (-112)) . T)) -((((-536) (-112)) . T)) -((((-525)) . T)) +((((-538) (-112)) . T)) +((((-538) (-112)) . T)) +((((-538) (-112)) . T)) +((((-527)) . T)) ((((-112)) . T)) -((((-838)) . T)) +((((-840)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-525)) . T)) -((((-838)) . T)) -((((-838)) . T)) +((((-527)) . T)) +((((-840)) . T)) +((((-840)) . T)) ((($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) ((((-116 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) -((($) . T) (((-116 |#1|)) . T) (((-400 (-536))) . T)) -((((-116 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) -((((-116 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) -(((#1=(-116 |#1|) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) +((((-116 |#1|)) . T) (($) . T) (((-402 (-538))) . T)) +((($) . T) (((-116 |#1|)) . T) (((-402 (-538))) . T)) +((((-116 |#1|)) . T) (($) . T) (((-402 (-538))) . T)) +((((-116 |#1|)) . T) (((-402 (-538))) . T) (($) . T)) +(((#1=(-116 |#1|) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T)) ((((-116 |#1|)) . T)) -((((-1147) #1=(-116 |#1|)) |has| #1# (-505 (-1147) #1#)) ((#1# #1#) |has| #1# (-302 #1#))) -(((#1=(-116 |#1|)) |has| #1# (-302 #1#))) -(((#1=(-116 |#1|) $) |has| #1# (-279 #1# #1#))) +((((-1149) #1=(-116 |#1|)) |has| #1# (-507 (-1149) #1#)) ((#1# #1#) |has| #1# (-304 #1#))) +(((#1=(-116 |#1|)) |has| #1# (-304 #1#))) +(((#1=(-116 |#1|) $) |has| #1# (-281 #1# #1#))) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) @@ -203,51 +203,51 @@ ((((-116 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) (((|#1|) . T)) (((|#1|) . T)) -((((-142)) . T) (((-749)) . T) (((-838)) . T)) +((((-142)) . T) (((-751)) . T) (((-840)) . T)) ((((-128)) . T)) ((((-128)) . T)) -((((-838)) . T)) +((((-840)) . T)) ((((-128)) . T)) -((((-536) (-128)) . T)) -((((-536) (-128)) . T)) -((((-536) (-128)) . T)) +((((-538) (-128)) . T)) +((((-538) (-128)) . T)) +((((-538) (-128)) . T)) ((((-128)) . T)) ((((-128)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-749)) . T)) -((((-838)) . T)) -((((-536) (-749)) . T) ((|#3| (-749)) . T)) -((((-838)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-751)) . T)) +((((-840)) . T)) +((((-538) (-751)) . T) ((|#3| (-751)) . T)) +((((-840)) . T)) (((|#3|) . T)) -(((|#3| (-749)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T)) +(((|#3| (-751)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T)) ((((-142)) . T)) ((((-142)) . T)) ((((-142)) . T)) @@ -255,1352 +255,1354 @@ ((((-142)) . T)) ((((-142)) . T)) ((((-142)) . T)) -((((-620 (-142))) . T) (((-1129)) . T)) -((((-838)) . T)) -((((-838)) . T)) +((((-622 (-142))) . T) (((-1131)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-838)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T) (((-1152)) . T)) -(|has| |#1| (-799)) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-343))) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T) (((-1154)) . T)) +(|has| |#1| (-801)) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-345))) +((((-840)) . T)) (|has| |#1| (-145)) (((|#1|) . T)) -((((-1147)) |has| |#1| (-874 (-1147)))) -(-3886 (|has| |#1| (-227)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-543))) -(-3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-543))) -(-3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) -(((|#1|) . T)) -((((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) -(((|#1|) |has| |#1| (-302 |#1|))) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) -(((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) -(((|#1|) . T)) -((((-536)) |has| |#1| (-860 (-536))) (((-371)) |has| |#1| (-860 (-371)))) -(((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) -(((|#1| (-1141 |#1|)) . T)) -(((|#1| (-1141 |#1|)) . T)) -((($) -3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($ $) . T) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) -((($) -3886 (|has| |#1| (-300)) (|has| |#1| (-356)) (|has| |#1| (-343)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -(((|#1| (-1141 |#1|)) . T)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(-3886 (|has| |#1| (-361)) (|has| |#1| (-343))) -(|has| |#1| (-825)) -(((|#1|) . T)) -((((-166 (-219))) |has| |#1| . #1=((-994))) (((-166 (-371))) |has| |#1| . #1#) (((-525)) |has| |#1| (-596 (-525))) (((-1141 |#1|)) . T) (((-864 (-536))) |has| |#1| (-596 (-864 (-536)))) (((-864 (-371))) |has| |#1| (-596 (-864 (-371))))) -(-12 (|has| |#1| (-300)) (|has| |#1| (-884))) -(-12 (|has| |#1| (-976)) (|has| |#1| (-1169))) -(|has| |#1| (-1169)) -(|has| |#1| (-1169)) -(|has| |#1| (-1169)) -(|has| |#1| (-1169)) -(|has| |#1| (-1169)) -(|has| |#1| (-1169)) -(((|#1|) . T)) -((((-838)) . T)) -((((-400 (-536))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T)) -((((-838)) . T)) -((($) . T) (((-400 (-536))) . T) (((-400 |#1|)) . T) ((|#1|) . T)) -((($ $) . T) ((#1=(-400 (-536)) #1#) . T) ((#2=(-400 |#1|) #2#) . T) ((|#1| |#1|) . T)) -((((-400 (-536))) . T) (((-400 |#1|)) . T) ((|#1|) . T) (($) . T)) -((((-400 (-536))) . T) (($) . T) (((-400 |#1|)) . T) ((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-536)) . T)) -((((-536)) . T) (($) . T) (((-400 (-536))) . T)) -((($) . T) (((-536)) . T) (((-400 (-536))) . T)) -((((-536)) . T) (($) . T) (((-400 (-536))) . T)) -((((-536)) . T) (((-400 (-536))) . T) (($) . T)) -(((#1=(-536) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-525)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) -((((-400 (-536))) . T) (((-536)) . T)) -((((-536)) . T)) -((((-838)) . T) (((-1152)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-307 |#1|)) . T)) -((((-838)) . T)) -((((-307 |#1|)) . T) (($) . T)) -((((-307 |#1|)) . T)) -((((-536)) . T) (((-400 (-536))) . T)) -((((-371)) . T)) -((($) . T) (((-400 (-536))) . T)) -((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-525)) . T) (((-219)) . T) (((-371)) . T) (((-864 (-371))) . T)) -((((-838)) . T)) -((((-400 (-536))) . T) (($) . T)) -(((|#1| (-1229 |#1|) (-1229 |#1|)) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1|) . T)) -(((|#1| (-1229 |#1|) (-1229 |#1|)) . T)) -(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) -(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) +((((-1149)) |has| |#1| (-876 (-1149)))) +(-3891 (|has| |#1| (-229)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)) (|has| |#1| (-545))) +(-3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)) (|has| |#1| (-545))) +(-3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-345))) +(((|#1|) . T)) +((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) +(((|#1|) |has| |#1| (-304 |#1|))) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +(((|#1|) . T)) +(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538)))) +(((|#1|) . T)) +((((-538)) |has| |#1| (-862 (-538))) (((-373)) |has| |#1| (-862 (-373)))) +(((|#1|) . T)) +(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538))))) +(((|#1| (-1143 |#1|)) . T)) +(((|#1| (-1143 |#1|)) . T)) +((($) -3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T)) +((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T)) +((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T)) +((($ $) . T) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1| |#1|) . T)) +((($) -3891 (|has| |#1| (-302)) (|has| |#1| (-358)) (|has| |#1| (-345)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T)) +(((|#1| (-1143 |#1|)) . T)) +(|has| |#1| (-345)) +(|has| |#1| (-345)) +(|has| |#1| (-345)) +(-3891 (|has| |#1| (-363)) (|has| |#1| (-345))) +(|has| |#1| (-827)) +(((|#1|) . T)) +((((-166 (-221))) |has| |#1| . #1=((-996))) (((-166 (-373))) |has| |#1| . #1#) (((-527)) |has| |#1| (-598 (-527))) (((-1143 |#1|)) . T) (((-866 (-538))) |has| |#1| (-598 (-866 (-538)))) (((-866 (-373))) |has| |#1| (-598 (-866 (-373))))) +(-12 (|has| |#1| (-302)) (|has| |#1| (-886))) +(-12 (|has| |#1| (-978)) (|has| |#1| (-1171))) +(|has| |#1| (-1171)) +(|has| |#1| (-1171)) +(|has| |#1| (-1171)) +(|has| |#1| (-1171)) +(|has| |#1| (-1171)) +(|has| |#1| (-1171)) +(((|#1|) . T)) +((((-840)) . T)) +((((-402 (-538))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T)) +((((-840)) . T)) +((($) . T) (((-402 (-538))) . T) (((-402 |#1|)) . T) ((|#1|) . T)) +((($ $) . T) ((#1=(-402 (-538)) #1#) . T) ((#2=(-402 |#1|) #2#) . T) ((|#1| |#1|) . T)) +((((-402 (-538))) . T) (((-402 |#1|)) . T) ((|#1|) . T) (($) . T)) +((((-402 (-538))) . T) (($) . T) (((-402 |#1|)) . T) ((|#1|) . T)) +((((-840)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-538)) . T)) +((((-538)) . T) (($) . T) (((-402 (-538))) . T)) +((($) . T) (((-538)) . T) (((-402 (-538))) . T)) +((((-538)) . T) (($) . T) (((-402 (-538))) . T)) +((((-538)) . T) (((-402 (-538))) . T) (($) . T)) +(((#1=(-538) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-527)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T)) +((((-402 (-538))) . T) (((-538)) . T)) +((((-538)) . T)) +((((-840)) . T) (((-1154)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-309 |#1|)) . T)) +((((-840)) . T)) +((((-309 |#1|)) . T) (($) . T)) +((((-309 |#1|)) . T)) +((((-538)) . T) (((-402 (-538))) . T)) +((((-373)) . T)) +((($) . T) (((-402 (-538))) . T)) +((($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-527)) . T) (((-221)) . T) (((-373)) . T) (((-866 (-373))) . T)) +((((-840)) . T)) +((((-402 (-538))) . T) (($) . T)) +(((|#1| (-1231 |#1|) (-1231 |#1|)) . T)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1|) . T)) +(((|#1| (-1231 |#1|) (-1231 |#1|)) . T)) +(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) +(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) (((|#2|) |has| |#2| (-170))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -((($) -3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) ((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023)))) -(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)))) -((((-838)) -3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-838))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) (((-1229 |#2|)) . T)) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +((($) -3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025)))) +(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)))) +((((-840)) -3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-840))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) (((-1231 |#2|)) . T)) (|has| |#2| (-170)) -(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($) |has| |#2| (-170))) -(((|#2| |#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($ $) |has| |#2| (-170))) -(((|#2|) |has| |#2| (-1023))) -((((-1147)) -12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) -(-12 (|has| |#2| (-227)) (|has| |#2| (-1023))) -(|has| |#2| (-361)) -(((|#2|) |has| |#2| (-1023))) -(((|#2|) |has| |#2| (-1023)) (((-536)) -12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) -(((|#2|) |has| |#2| (-1072))) -(((|#2|) |has| |#2| (-1072)) (((-536)) -12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (((-400 (-536))) -12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) -((((-536) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -(((|#2|) . T)) -((((-536) |#2|) . T)) -((((-536) |#2|) . T)) -(|has| |#2| (-771)) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(|has| |#2| (-823)) -(|has| |#2| (-823)) -(((|#2|) |has| |#2| (-356))) +(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170))) +(((|#2| |#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170))) +(((|#2|) |has| |#2| (-1025))) +((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) +(-12 (|has| |#2| (-229)) (|has| |#2| (-1025))) +(|has| |#2| (-363)) +(((|#2|) |has| |#2| (-1025))) +(((|#2|) |has| |#2| (-1025)) (((-538)) -12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) +(((|#2|) |has| |#2| (-1074))) +(((|#2|) |has| |#2| (-1074)) (((-538)) -12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (((-402 (-538))) -12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) +((((-538) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +(((|#2|) . T)) +((((-538) |#2|) . T)) +((((-538) |#2|) . T)) +(|has| |#2| (-773)) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(|has| |#2| (-825)) +(|has| |#2| (-825)) +(((|#2|) |has| |#2| (-358))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-525)) |has| |#2| (-596 (-525))) (((-864 (-371))) |has| |#2| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#2| (-596 (-864 (-536))))) +((((-527)) |has| |#2| (-598 (-527))) (((-866 (-373))) |has| |#2| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#2| (-598 (-866 (-538))))) ((($) . T)) -(((|#2| (-233 (-4311 |#1|) (-749))) . T)) +(((|#2| (-235 (-4316 |#1|) (-751))) . T)) (((|#2|) . T)) -((((-838)) . T)) -((($) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T)) +((((-840)) . T)) +((($) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T) (($) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(((#1=(-400 (-536)) #1#) |has| |#2| (-38 (-400 (-536)))) ((|#2| |#2|) . T) (($ $) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(((|#2| (-233 (-4311 |#1|) (-749))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-884))) -((($ $) . T) ((#1=(-839 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-825)) -((((-839 |#1|)) . T)) -(|has| |#2| (-884)) -(|has| |#2| (-884)) -((((-400 (-536))) |has| |#2| (-1012 (-400 (-536)))) (((-536)) |has| |#2| (-1012 (-536))) ((|#2|) . T) (((-839 |#1|)) . T)) -(((|#2| (-233 (-4311 |#1|) (-749)) (-839 |#1|)) . T)) -((((-838)) . T)) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T) (($) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(((#1=(-402 (-538)) #1#) |has| |#2| (-38 (-402 (-538)))) ((|#2| |#2|) . T) (($ $) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(((|#2| (-235 (-4316 |#1|) (-751))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538)))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-886))) +((($ $) . T) ((#1=(-841 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-827)) +((((-841 |#1|)) . T)) +(|has| |#2| (-886)) +(|has| |#2| (-886)) +((((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))) (((-538)) |has| |#2| (-1014 (-538))) ((|#2|) . T) (((-841 |#1|)) . T)) +(((|#2| (-235 (-4316 |#1|) (-751)) (-841 |#1|)) . T)) +((((-840)) . T)) (((|#4|) |has| |#4| (-170))) -(-3886 (|has| |#4| (-170)) (|has| |#4| (-705)) (|has| |#4| (-823)) (|has| |#4| (-1023))) -(-3886 (|has| |#4| (-170)) (|has| |#4| (-705)) (|has| |#4| (-823)) (|has| |#4| (-1023))) -(-3886 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1023))) -(-3886 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1023))) -(((|#3|) . T) ((|#2|) . T) (($) -3886 (|has| |#4| (-170)) (|has| |#4| (-823)) (|has| |#4| (-1023))) ((|#4|) -3886 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1023)))) -(((|#4|) -3886 (|has| |#4| (-170)) (|has| |#4| (-356)))) -((((-838)) . T) (((-1229 |#4|)) . T)) +(-3891 (|has| |#4| (-170)) (|has| |#4| (-707)) (|has| |#4| (-825)) (|has| |#4| (-1025))) +(-3891 (|has| |#4| (-170)) (|has| |#4| (-707)) (|has| |#4| (-825)) (|has| |#4| (-1025))) +(-3891 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025))) +(-3891 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025))) +(((|#3|) . T) ((|#2|) . T) (($) -3891 (|has| |#4| (-170)) (|has| |#4| (-825)) (|has| |#4| (-1025))) ((|#4|) -3891 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025)))) +(((|#4|) -3891 (|has| |#4| (-170)) (|has| |#4| (-358)))) +((((-840)) . T) (((-1231 |#4|)) . T)) (|has| |#4| (-170)) -(((|#4|) -3886 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1023))) (($) |has| |#4| (-170))) -(((|#4| |#4|) -3886 (|has| |#4| (-170)) (|has| |#4| (-356)) (|has| |#4| (-1023))) (($ $) |has| |#4| (-170))) -(((|#4|) |has| |#4| (-1023))) -((((-1147)) -12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) -(-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) -(|has| |#4| (-361)) -(((|#4|) |has| |#4| (-1023))) -(((|#4|) |has| |#4| (-1023)) (((-536)) -12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023)))) -(((|#4|) |has| |#4| (-1072))) -(((|#4|) |has| |#4| (-1072)) (((-536)) -12 (|has| |#4| (-1012 (-536))) (|has| |#4| (-1072))) (((-400 (-536))) -12 (|has| |#4| (-1012 (-400 (-536)))) (|has| |#4| (-1072)))) -((((-536) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4|) -3891 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025))) (($) |has| |#4| (-170))) +(((|#4| |#4|) -3891 (|has| |#4| (-170)) (|has| |#4| (-358)) (|has| |#4| (-1025))) (($ $) |has| |#4| (-170))) +(((|#4|) |has| |#4| (-1025))) +((((-1149)) -12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) +(-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) +(|has| |#4| (-363)) +(((|#4|) |has| |#4| (-1025))) +(((|#4|) |has| |#4| (-1025)) (((-538)) -12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025)))) +(((|#4|) |has| |#4| (-1074))) +(((|#4|) |has| |#4| (-1074)) (((-538)) -12 (|has| |#4| (-1014 (-538))) (|has| |#4| (-1074))) (((-402 (-538))) -12 (|has| |#4| (-1014 (-402 (-538)))) (|has| |#4| (-1074)))) +((((-538) |#4|) . T)) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (((|#4|) . T)) -((((-536) |#4|) . T)) -((((-536) |#4|) . T)) -(|has| |#4| (-771)) -(-3886 (|has| |#4| (-771)) (|has| |#4| (-823))) -(-3886 (|has| |#4| (-771)) (|has| |#4| (-823))) -(-3886 (|has| |#4| (-771)) (|has| |#4| (-823))) -(-3886 (|has| |#4| (-771)) (|has| |#4| (-823))) -(|has| |#4| (-823)) -(|has| |#4| (-823)) -(((|#4|) |has| |#4| (-356))) +((((-538) |#4|) . T)) +((((-538) |#4|) . T)) +(|has| |#4| (-773)) +(-3891 (|has| |#4| (-773)) (|has| |#4| (-825))) +(-3891 (|has| |#4| (-773)) (|has| |#4| (-825))) +(-3891 (|has| |#4| (-773)) (|has| |#4| (-825))) +(-3891 (|has| |#4| (-773)) (|has| |#4| (-825))) +(|has| |#4| (-825)) +(|has| |#4| (-825)) +(((|#4|) |has| |#4| (-358))) (((|#1| |#4|) . T)) (((|#3|) |has| |#3| (-170))) -(-3886 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(-3886 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(-3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(-3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(((|#2|) . T) (($) -3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) ((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023)))) -(((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)))) -((((-838)) . T) (((-1229 |#3|)) . T)) +(-3891 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(-3891 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(-3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(-3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(((|#2|) . T) (($) -3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) ((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025)))) +(((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)))) +((((-840)) . T) (((-1231 |#3|)) . T)) (|has| |#3| (-170)) -(((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023))) (($) |has| |#3| (-170))) -(((|#3| |#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023))) (($ $) |has| |#3| (-170))) -(((|#3|) |has| |#3| (-1023))) -((((-1147)) -12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) -(-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) -(|has| |#3| (-361)) -(((|#3|) |has| |#3| (-1023))) -(((|#3|) |has| |#3| (-1023)) (((-536)) -12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023)))) -(((|#3|) |has| |#3| (-1072))) -(((|#3|) |has| |#3| (-1072)) (((-536)) -12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072))) (((-400 (-536))) -12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072)))) -((((-536) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) -(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) +(((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($) |has| |#3| (-170))) +(((|#3| |#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($ $) |has| |#3| (-170))) +(((|#3|) |has| |#3| (-1025))) +((((-1149)) -12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) +(-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) +(|has| |#3| (-363)) +(((|#3|) |has| |#3| (-1025))) +(((|#3|) |has| |#3| (-1025)) (((-538)) -12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025)))) +(((|#3|) |has| |#3| (-1074))) +(((|#3|) |has| |#3| (-1074)) (((-538)) -12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074))) (((-402 (-538))) -12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074)))) +((((-538) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) +(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (((|#3|) . T)) -((((-536) |#3|) . T)) -((((-536) |#3|) . T)) -(|has| |#3| (-771)) -(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) -(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) -(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) -(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) -(|has| |#3| (-823)) -(|has| |#3| (-823)) -(((|#3|) |has| |#3| (-356))) +((((-538) |#3|) . T)) +((((-538) |#3|) . T)) +(|has| |#3| (-773)) +(-3891 (|has| |#3| (-773)) (|has| |#3| (-825))) +(-3891 (|has| |#3| (-773)) (|has| |#3| (-825))) +(-3891 (|has| |#3| (-773)) (|has| |#3| (-825))) +(-3891 (|has| |#3| (-773)) (|has| |#3| (-825))) +(|has| |#3| (-825)) +(|has| |#3| (-825)) +(((|#3|) |has| |#3| (-358))) (((|#1| |#3|) . T)) -((((-838)) . T)) -(((|#1|) . T)) -((((-838)) . T)) -(|has| |#1| (-227)) -((($) . T)) -(((|#1| (-522 |#3|) |#3|) . T)) -(|has| |#1| (-884)) -(|has| |#1| (-884)) -((((-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#3| (-860 (-536)))) (((-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#3| (-860 (-371))))) -((((-1147)) |has| |#1| (-874 (-1147))) ((|#3|) . T)) -(|has| |#1| (-825)) -((($ $) . T) ((|#2| $) |has| |#1| . #1=((-227))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) -((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-522 |#3|)) . T)) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +((((-840)) . T)) +(((|#1|) . T)) +((((-840)) . T)) +(|has| |#1| (-229)) +((($) . T)) +(((|#1| (-524 |#3|) |#3|) . T)) +(|has| |#1| (-886)) +(|has| |#1| (-886)) +((((-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#3| (-862 (-538)))) (((-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#3| (-862 (-373))))) +((((-1149)) |has| |#1| (-876 (-1149))) ((|#3|) . T)) +(|has| |#1| (-827)) +((($ $) . T) ((|#2| $) |has| |#1| . #1=((-229))) ((|#2| |#1|) |has| |#1| . #1#) ((|#3| |#1|) . T) ((|#3| $) . T)) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-886))) +((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-524 |#3|)) . T)) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -(((|#1|) . T)) -(((|#1| (-522 |#3|)) . T)) -((((-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#3| (-596 (-864 (-536))))) (((-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#3| (-596 (-864 (-371))))) (((-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#3| (-596 (-525))))) -((((-1096 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((|#2|) . T)) -(((|#1| |#2| |#3| (-522 |#3|)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) +((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +(((|#1|) . T)) +(((|#1| (-524 |#3|)) . T)) +((((-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#3| (-598 (-866 (-538))))) (((-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#3| (-598 (-866 (-373))))) (((-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#3| (-598 (-527))))) +((((-1098 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((|#2|) . T)) +(((|#1| |#2| |#3| (-524 |#3|)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) ((($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-838)) . T)) -(((|#1|) |has| |#1| (-356))) -((((-1147)) |has| |#1| (-874 (-1147)))) -(((|#1|) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)))) -(((|#1|) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1023)))) -(((|#1| |#1|) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1023)))) -(((|#1|) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-1023))) (($) -3886 (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023)))) -(-3886 (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) -(-3886 (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) -(|has| |#1| (-465)) -(-3886 (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) -(-3886 (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023)) (|has| |#1| (-1083))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023)) (|has| |#1| (-1083)) (|has| |#1| (-1072))) -((((-112)) |has| |#1| (-1072)) (((-838)) -3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023)) (|has| |#1| (-1083)) (|has| |#1| (-1072)))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-465)) (|has| |#1| (-705)) (|has| |#1| (-874 (-1147))) (|has| |#1| (-1023)) (|has| |#1| (-1083)) (|has| |#1| (-1072))) -((((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|))) +((((-840)) . T)) +(((|#1|) |has| |#1| (-358))) +((((-1149)) |has| |#1| (-876 (-1149)))) +(((|#1|) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)))) +(((|#1|) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025)))) +(((|#1| |#1|) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025)))) +(((|#1|) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-1025))) (($) -3891 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)))) +(-3891 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) +(-3891 (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) +(|has| |#1| (-467)) +(-3891 (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) +(-3891 (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1074))) +((((-112)) |has| |#1| (-1074)) (((-840)) -3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1074)))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-467)) (|has| |#1| (-707)) (|has| |#1| (-876 (-1149))) (|has| |#1| (-1025)) (|has| |#1| (-1085)) (|has| |#1| (-1074))) +((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|))) (((|#1| |#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T)) -(|has| (-1216 |#1| |#2| |#3| |#4|) (-143)) -(|has| (-1216 |#1| |#2| |#3| |#4|) (-145)) -((((-1216 |#1| |#2| |#3| |#4|)) . T)) -((((-1216 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-536))) . T)) -((($) . T) (((-1216 |#1| |#2| |#3| |#4|)) . T) (((-400 (-536))) . T)) -((((-1216 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-400 (-536))) . T)) -((((-1216 |#1| |#2| |#3| |#4|)) . T) (((-400 (-536))) . T) (($) . T)) -(((#1=(-1216 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) -((((-1216 |#1| |#2| |#3| |#4|)) . T)) -((((-1147) #1=(-1216 |#1| |#2| |#3| |#4|)) |has| #1# (-505 (-1147) #1#)) ((#1# #1#) |has| #1# (-302 #1#))) -(((#1=(-1216 |#1| |#2| |#3| |#4|)) |has| #1# (-302 #1#))) -(((#1=(-1216 |#1| |#2| |#3| |#4|) $) |has| #1# (-279 #1# #1#))) -((((-1216 |#1| |#2| |#3| |#4|)) . T)) -((((-1216 |#1| |#2| |#3| |#4|)) . T)) -((((-1216 |#1| |#2| |#3| |#4|)) . T)) -((((-1216 |#1| |#2| |#3| |#4|)) . T)) -((((-1210 |#2| |#3| |#4|)) . T) (((-1216 |#1| |#2| |#3| |#4|)) . T)) -((((-1216 |#1| |#2| |#3| |#4|)) . T)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(((|#1|) |has| |#1| (-543))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) -((((-838)) . T)) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-543)) (|has| |#1| (-1023)) (|has| |#1| (-1083))) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-465)) (|has| |#1| (-543)) (|has| |#1| (-1023)) (|has| |#1| (-1083))) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) +((((-840)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T)) +(|has| (-1218 |#1| |#2| |#3| |#4|) (-143)) +(|has| (-1218 |#1| |#2| |#3| |#4|) (-145)) +((((-1218 |#1| |#2| |#3| |#4|)) . T)) +((((-1218 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-538))) . T)) +((($) . T) (((-1218 |#1| |#2| |#3| |#4|)) . T) (((-402 (-538))) . T)) +((((-1218 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-402 (-538))) . T)) +((((-1218 |#1| |#2| |#3| |#4|)) . T) (((-402 (-538))) . T) (($) . T)) +(((#1=(-1218 |#1| |#2| |#3| |#4|) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T)) +((((-1218 |#1| |#2| |#3| |#4|)) . T)) +((((-1149) #1=(-1218 |#1| |#2| |#3| |#4|)) |has| #1# (-507 (-1149) #1#)) ((#1# #1#) |has| #1# (-304 #1#))) +(((#1=(-1218 |#1| |#2| |#3| |#4|)) |has| #1# (-304 #1#))) +(((#1=(-1218 |#1| |#2| |#3| |#4|) $) |has| #1# (-281 #1# #1#))) +((((-1218 |#1| |#2| |#3| |#4|)) . T)) +((((-1218 |#1| |#2| |#3| |#4|)) . T)) +((((-1218 |#1| |#2| |#3| |#4|)) . T)) +((((-1218 |#1| |#2| |#3| |#4|)) . T)) +((((-1212 |#2| |#3| |#4|)) . T) (((-1218 |#1| |#2| |#3| |#4|)) . T)) +((((-1218 |#1| |#2| |#3| |#4|)) . T)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(((|#1|) |has| |#1| (-545))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025))) +((((-840)) . T)) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025))) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-545)) (|has| |#1| (-1025)) (|has| |#1| (-1085))) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-467)) (|has| |#1| (-545)) (|has| |#1| (-1025)) (|has| |#1| (-1085))) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025))) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025))) (|has| |#1| (-143)) (|has| |#1| (-145)) -((((-593 $) $) . T) (($ $) . T)) -((($) . T)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543)) (((-400 (-536))) |has| |#1| (-543))) -((($) -3886 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-543)) (|has| |#1| (-1023))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-543))) -(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543)) (((-400 (-536))) |has| |#1| (-543))) -(|has| |#1| (-543)) -(((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-543)) (($) |has| |#1| (-543))) -(((|#1| |#1|) |has| |#1| (-170)) ((#1=(-400 (-536)) #1#) |has| |#1| (-543)) (($ $) |has| |#1| (-543))) -(|has| |#1| (-543)) -(((|#1|) |has| |#1| (-1023))) -(((|#1|) |has| |#1| (-1023)) (((-536)) -12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))) -(((|#1|) . T)) -((((-536)) |has| |#1| (-860 (-536))) (((-371)) |has| |#1| (-860 (-371)))) -(((|#1|) . T)) -(|has| |#1| (-465)) -((((-1147)) |has| |#1| (-1023))) -(((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525))) (((-864 (-536))) |has| |#1| (-596 (-864 (-536)))) (((-864 (-371))) |has| |#1| (-596 (-864 (-371))))) -((((-48)) -12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536)))) (((-593 $)) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) -3886 (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536)))) (|has| |#1| (-1012 (-400 (-536))))) (((-400 (-920 |#1|))) |has| |#1| (-543)) (((-920 |#1|)) |has| |#1| (-1023)) (((-1147)) . T)) -(((|#1|) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -((((-838)) . T)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(((|#1| (-400 (-536))) . T)) -(((|#1| (-400 (-536))) . T)) +((((-595 $) $) . T) (($ $) . T)) +((($) . T)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545)) (((-402 (-538))) |has| |#1| (-545))) +((($) -3891 (|has| |#1| (-143)) (|has| |#1| (-145)) (|has| |#1| (-170)) (|has| |#1| (-545)) (|has| |#1| (-1025))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-545))) +(((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545)) (((-402 (-538))) |has| |#1| (-545))) +(|has| |#1| (-545)) +(((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-545)) (($) |has| |#1| (-545))) +(((|#1| |#1|) |has| |#1| (-170)) ((#1=(-402 (-538)) #1#) |has| |#1| (-545)) (($ $) |has| |#1| (-545))) +(|has| |#1| (-545)) +(((|#1|) |has| |#1| (-1025))) +(((|#1|) |has| |#1| (-1025)) (((-538)) -12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))) +(((|#1|) . T)) +((((-538)) |has| |#1| (-862 (-538))) (((-373)) |has| |#1| (-862 (-373)))) +(((|#1|) . T)) +(|has| |#1| (-467)) +((((-1149)) |has| |#1| (-1025))) +(((|#1|) . T)) +((((-527)) |has| |#1| (-598 (-527))) (((-866 (-538))) |has| |#1| (-598 (-866 (-538)))) (((-866 (-373))) |has| |#1| (-598 (-866 (-373))))) +((((-48)) -12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538)))) (((-595 $)) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) -3891 (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538)))) (|has| |#1| (-1014 (-402 (-538))))) (((-402 (-922 |#1|))) |has| |#1| (-545)) (((-922 |#1|)) |has| |#1| (-1025)) (((-1149)) . T)) +(((|#1|) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +((((-840)) . T)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(((|#1| (-402 (-538))) . T)) +(((|#1| (-402 (-538))) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#1|) . T)) -(((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#1| |#1|) . T)) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -(((|#1| (-400 (-536)) (-1053)) . T)) -((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#1|) . T)) +(((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#1| |#1|) . T)) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +(((|#1| (-402 (-538)) (-1055)) . T)) +((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) ((($ $) . T)) -(|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) +(|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))) (((|#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#1|) . T)) -(((|#1| (-536)) . T)) -(((#1=(-536) #1#) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-838)) . T)) -((((-838)) . T)) +(((|#1| (-538)) . T)) +(((#1=(-538) #1#) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#1|) . T)) -(((|#1| (-749)) . T)) +(((|#1| (-751)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1147)) . T)) +((((-1149)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T) (($) . T)) (((|#3|) . T)) ((($) . T)) -((($ $) . T) (((-593 $) $) . T)) -((((-838)) . T)) -(((|#3|) . T) (((-593 $)) . T)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) -(((#1=(-880 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-536)) #2#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +((($ $) . T) (((-595 $) $) . T)) +((((-840)) . T)) +(((|#3|) . T) (((-595 $)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T) (($) . T) (((-402 (-538))) . T)) +(((#1=(-882 |#1|) #1#) . T) (($ $) . T) ((#2=(-402 (-538)) #2#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T)) (|has| $ (-145)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) -(((#1=(-880 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-536)) #2#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T) (($) . T) (((-402 (-538))) . T)) +(((#1=(-882 |#1|) #1#) . T) (($ $) . T) ((#2=(-402 (-538)) #2#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T)) (|has| $ (-145)) -((((-880 |#1|)) . T)) +((((-882 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(((|#1|) . T) (($) . T) (((-402 (-538))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) (|has| |#1| (-145)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(((|#1|) . T) (($) . T) (((-402 (-538))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) (|has| |#1| (-145)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(((|#1|) . T)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T)) -((((-880 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) -(((#1=(-880 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-536)) #2#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -((((-880 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(((|#1|) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T) (($) . T) (((-402 (-538))) . T)) +(((#1=(-882 |#1|) #1#) . T) (($ $) . T) ((#2=(-402 (-538)) #2#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +((((-882 |#1|)) . T) (((-402 (-538))) . T) (($) . T)) (|has| $ (-145)) -((((-880 |#1|)) . T)) +((((-882 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(((|#1|) . T) (($) . T) (((-402 (-538))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) (|has| |#1| (-145)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(((|#1|) . T) (($) . T) (((-402 (-538))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) (|has| |#1| (-145)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(((|#1|) . T) (($) . T) (((-402 (-538))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) (|has| |#1| (-145)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-361))) -(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-363))) +(((|#1|) . T) (($) . T) (((-402 (-538))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) (|has| |#1| (-145)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(|has| |#1| (-361)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-381) |#1|) . T)) -((((-536)) . T) (((-400 (-536))) . T)) -((((-371)) . T)) -((($) . T) (((-400 (-536))) . T)) -((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-525)) . T) (((-1129)) . T) (((-219)) . T) (((-371)) . T) (((-864 (-371))) . T)) -((((-219)) . T) (((-838)) . T)) -((((-400 (-536))) . T) (($) . T)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(|has| |#1| (-363)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-383) |#1|) . T)) +((((-538)) . T) (((-402 (-538))) . T)) +((((-373)) . T)) +((($) . T) (((-402 (-538))) . T)) +((($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-527)) . T) (((-1131)) . T) (((-221)) . T) (((-373)) . T) (((-866 (-373))) . T)) +((((-221)) . T) (((-840)) . T)) +((((-402 (-538))) . T) (($) . T)) (((|#1|) |has| |#1| (-170))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-170))) (((|#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-400 |#2|)) . T)) -((((-838)) . T)) -(|has| |#1| (-1188)) -((((-525)) |has| |#1| (-596 (-525))) (((-219)) . #1=(|has| |#1| (-994))) (((-371)) . #1#)) -(|has| |#1| (-994)) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-1188))) -((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) -(((|#1|) . T)) -((($ $) |has| |#1| (-279 $ $)) ((|#1| $) |has| |#1| (-279 |#1| |#1|))) -((($) |has| |#1| (-302 $)) ((|#1|) |has| |#1| (-302 |#1|))) -((((-1147) $) |has| |#1| (-505 (-1147) $)) (($ $) |has| |#1| (-302 $)) ((|#1| |#1|) |has| |#1| (-302 |#1|)) (((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|))) -(((|#1|) . T)) -(|has| |#1| (-227)) -((((-1147)) |has| |#1| (-874 (-1147)))) +((((-840)) . T)) +((((-840)) . T)) +((((-402 |#2|)) . T)) +((((-840)) . T)) +(|has| |#1| (-1190)) +((((-527)) |has| |#1| (-598 (-527))) (((-221)) . #1=(|has| |#1| (-996))) (((-373)) . #1#)) +(|has| |#1| (-996)) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-1190))) +((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T)) +(((|#1|) . T)) +((($ $) |has| |#1| (-281 $ $)) ((|#1| $) |has| |#1| (-281 |#1| |#1|))) +((($) |has| |#1| (-304 $)) ((|#1|) |has| |#1| (-304 |#1|))) +((((-1149) $) |has| |#1| (-507 (-1149) $)) (($ $) |has| |#1| (-304 $)) ((|#1| |#1|) |has| |#1| (-304 |#1|)) (((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|))) +(((|#1|) . T)) +(|has| |#1| (-229)) +((((-1149)) |has| |#1| (-876 (-1149)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -(-12 (|has| |#1| (-535)) (|has| |#1| (-799))) -((((-838)) . T)) +(-12 (|has| |#1| (-537)) (|has| |#1| (-801))) +((((-840)) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) (((|#1|) . T)) -((((-1147)) |has| |#1| (-874 (-1147)))) -(|has| |#1| (-227)) -(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) -((($) . T) ((|#1|) . T) (((-400 (-536))) . T)) -(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) . T) (($ $) . T)) +((((-1149)) |has| |#1| (-876 (-1149)))) +(|has| |#1| (-229)) +(((|#1|) . T) (($) . T) (((-402 (-538))) . T)) +((($) . T) ((|#1|) . T) (((-402 (-538))) . T)) +(((|#1|) . T) (($) . T) (((-402 (-538))) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -((((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) -(((|#1|) |has| |#1| (-302 |#1|))) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) +((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) +(((|#1|) |has| |#1| (-304 |#1|))) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) (((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) +(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538)))) (((|#1|) . T)) -((((-536)) |has| |#1| (-860 (-536))) (((-371)) |has| |#1| (-860 (-371)))) -(|has| |#1| (-798)) -(|has| |#1| (-798)) -(|has| |#1| (-798)) -(-3886 (|has| |#1| (-798)) (|has| |#1| (-825))) -(|has| |#1| (-798)) -(|has| |#1| (-798)) -(|has| |#1| (-798)) +((((-538)) |has| |#1| (-862 (-538))) (((-373)) |has| |#1| (-862 (-373)))) +(|has| |#1| (-800)) +(|has| |#1| (-800)) +(|has| |#1| (-800)) +(-3891 (|has| |#1| (-800)) (|has| |#1| (-827))) +(|has| |#1| (-800)) +(|has| |#1| (-800)) +(|has| |#1| (-800)) (((|#1|) . T)) -(|has| |#1| (-884)) -(|has| |#1| (-994)) -((((-525)) |has| |#1| (-596 (-525))) (((-864 (-536))) |has| |#1| (-596 (-864 (-536)))) (((-864 (-371))) |has| |#1| (-596 (-864 (-371)))) (((-371)) . #1=(|has| |#1| (-994))) (((-219)) . #1#)) -((((-400 (-536))) |has| |#1| . #1=((-1012 (-536)))) (((-536)) |has| |#1| . #1#) (((-1147)) |has| |#1| (-1012 (-1147))) ((|#1|) . T)) -(|has| |#1| (-1122)) +(|has| |#1| (-886)) +(|has| |#1| (-996)) +((((-527)) |has| |#1| (-598 (-527))) (((-866 (-538))) |has| |#1| (-598 (-866 (-538)))) (((-866 (-373))) |has| |#1| (-598 (-866 (-373)))) (((-373)) . #1=(|has| |#1| (-996))) (((-221)) . #1#)) +((((-402 (-538))) |has| |#1| . #1=((-1014 (-538)))) (((-538)) |has| |#1| . #1#) (((-1149)) |has| |#1| (-1014 (-1149))) ((|#1|) . T)) +(|has| |#1| (-1124)) (((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-381) (-1129)) . T)) -((((-838)) . T)) -((((-400 (-920 |#1|))) . T)) -((((-400 (-920 |#1|))) . T)) -((((-1113 |#2| (-400 (-920 |#1|)))) . T) (((-400 (-920 |#1|))) . T)) -((((-838)) . T)) -((((-400 (-920 |#1|))) . T)) -(((#1=(-400 (-920 |#1|)) #1#) . T)) -((((-400 (-920 |#1|))) . T)) -((((-400 (-920 |#1|))) . T)) -((((-525)) |has| |#2| (-596 (-525))) (((-864 (-371))) |has| |#2| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#2| (-596 (-864 (-536))))) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-383) (-1131)) . T)) +((((-840)) . T)) +((((-402 (-922 |#1|))) . T)) +((((-402 (-922 |#1|))) . T)) +((((-1115 |#2| (-402 (-922 |#1|)))) . T) (((-402 (-922 |#1|))) . T)) +((((-840)) . T)) +((((-402 (-922 |#1|))) . T)) +(((#1=(-402 (-922 |#1|)) #1#) . T)) +((((-402 (-922 |#1|))) . T)) +((((-402 (-922 |#1|))) . T)) +((((-527)) |has| |#2| (-598 (-527))) (((-866 (-373))) |has| |#2| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#2| (-598 (-866 (-538))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-838)) . T)) -((($) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T)) +((((-840)) . T)) +((($) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T) (($) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(((#1=(-400 (-536)) #1#) |has| |#2| (-38 (-400 (-536)))) ((|#2| |#2|) . T) (($ $) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T) (($) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(((#1=(-402 (-538)) #1#) |has| |#2| (-38 (-402 (-538)))) ((|#2| |#2|) . T) (($ $) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-884))) -((($ $) . T) ((#1=(-839 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-825)) -((((-839 |#1|)) . T)) -(|has| |#2| (-884)) -(|has| |#2| (-884)) -((((-400 (-536))) |has| |#2| (-1012 (-400 (-536)))) (((-536)) |has| |#2| (-1012 (-536))) ((|#2|) . T) (((-839 |#1|)) . T)) -(((|#2| |#3| (-839 |#1|)) . T)) +(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538)))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-886))) +((($ $) . T) ((#1=(-841 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-827)) +((((-841 |#1|)) . T)) +(|has| |#2| (-886)) +(|has| |#2| (-886)) +((((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))) (((-538)) |has| |#2| (-1014 (-538))) ((|#2|) . T) (((-841 |#1|)) . T)) +(((|#2| |#3| (-841 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-620 |#4|)) . T) (((-838)) . T)) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +((((-622 |#4|)) . T) (((-840)) . T)) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (((|#4|) . T)) -((((-525)) |has| |#4| (-596 (-525)))) +((((-527)) |has| |#4| (-598 (-527)))) (((|#1| |#2| |#3| |#4|) . T)) -((((-838)) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -((((-838)) . T)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(((|#1| (-400 (-536))) . T)) -(((|#1| (-400 (-536))) . T)) +((((-840)) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +((((-840)) . T)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(((|#1| (-402 (-538))) . T)) +(((|#1| (-402 (-538))) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#1|) . T)) -(((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#1| |#1|) . T)) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#1|) |has| |#1| (-170))) -(((|#1| (-400 (-536)) (-1053)) . T)) -((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#1|) . T)) +(((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#1| |#1|) . T)) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#1|) |has| |#1| (-170))) +(((|#1| (-402 (-538)) (-1055)) . T)) +((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) ((($ $) . T)) -(|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) +(|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-525)) |has| |#4| (-596 (-525)))) +((((-527)) |has| |#4| (-598 (-527)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (((|#4|) . T)) -((((-838)) . T) (((-620 |#4|)) . T)) +((((-840)) . T) (((-622 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-525)) . T) (((-400 (-1141 (-536)))) . T) (((-219)) . T) (((-371)) . T)) -((((-400 (-536))) . T) (((-536)) . T)) -((((-371)) . T) (((-219)) . T) (((-838)) . T)) -((($) . T) (((-400 (-536))) . T)) -((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-838)) . T) (((-1152)) . T)) +((((-527)) . T) (((-402 (-1143 (-538)))) . T) (((-221)) . T) (((-373)) . T)) +((((-402 (-538))) . T) (((-538)) . T)) +((((-373)) . T) (((-221)) . T) (((-840)) . T)) +((($) . T) (((-402 (-538))) . T)) +((($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-840)) . T) (((-1154)) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-525)) |has| |#2| (-596 (-525))) (((-864 (-371))) |has| |#2| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#2| (-596 (-864 (-536))))) +((((-527)) |has| |#2| (-598 (-527))) (((-866 (-373))) |has| |#2| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#2| (-598 (-866 (-538))))) ((($) . T)) -(((|#2| (-474 (-4311 |#1|) (-749))) . T)) +(((|#2| (-476 (-4316 |#1|) (-751))) . T)) (((|#2|) . T)) -((((-838)) . T)) -((($) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T)) +((((-840)) . T)) +((($) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T) (($) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(((#1=(-400 (-536)) #1#) |has| |#2| (-38 (-400 (-536)))) ((|#2| |#2|) . T) (($ $) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(((|#2| (-474 (-4311 |#1|) (-749))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-884))) -((($ $) . T) ((#1=(-839 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-825)) -((((-839 |#1|)) . T)) -(|has| |#2| (-884)) -(|has| |#2| (-884)) -((((-400 (-536))) |has| |#2| (-1012 (-400 (-536)))) (((-536)) |has| |#2| (-1012 (-536))) ((|#2|) . T) (((-839 |#1|)) . T)) -(((|#2| (-474 (-4311 |#1|) (-749)) (-839 |#1|)) . T)) -(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) -(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T) (($) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(((#1=(-402 (-538)) #1#) |has| |#2| (-38 (-402 (-538)))) ((|#2| |#2|) . T) (($ $) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(((|#2| (-476 (-4316 |#1|) (-751))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538)))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-886))) +((($ $) . T) ((#1=(-841 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-827)) +((((-841 |#1|)) . T)) +(|has| |#2| (-886)) +(|has| |#2| (-886)) +((((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))) (((-538)) |has| |#2| (-1014 (-538))) ((|#2|) . T) (((-841 |#1|)) . T)) +(((|#2| (-476 (-4316 |#1|) (-751)) (-841 |#1|)) . T)) +(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) +(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) (((|#2|) |has| |#2| (-170))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -((($) -3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) ((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023)))) -(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)))) -((((-838)) -3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-838))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) (((-1229 |#2|)) . T)) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +((($) -3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025)))) +(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)))) +((((-840)) -3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-840))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) (((-1231 |#2|)) . T)) (|has| |#2| (-170)) -(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($) |has| |#2| (-170))) -(((|#2| |#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($ $) |has| |#2| (-170))) -(((|#2|) |has| |#2| (-1023))) -((((-1147)) -12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) -(-12 (|has| |#2| (-227)) (|has| |#2| (-1023))) -(|has| |#2| (-361)) -(((|#2|) |has| |#2| (-1023))) -(((|#2|) |has| |#2| (-1023)) (((-536)) -12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) -(((|#2|) |has| |#2| (-1072))) -(((|#2|) |has| |#2| (-1072)) (((-536)) -12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (((-400 (-536))) -12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) -((((-536) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -(((|#2|) . T)) -((((-536) |#2|) . T)) -((((-536) |#2|) . T)) -(|has| |#2| (-771)) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(|has| |#2| (-823)) -(|has| |#2| (-823)) -(((|#2|) |has| |#2| (-356))) +(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170))) +(((|#2| |#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170))) +(((|#2|) |has| |#2| (-1025))) +((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) +(-12 (|has| |#2| (-229)) (|has| |#2| (-1025))) +(|has| |#2| (-363)) +(((|#2|) |has| |#2| (-1025))) +(((|#2|) |has| |#2| (-1025)) (((-538)) -12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) +(((|#2|) |has| |#2| (-1074))) +(((|#2|) |has| |#2| (-1074)) (((-538)) -12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (((-402 (-538))) -12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) +((((-538) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +(((|#2|) . T)) +((((-538) |#2|) . T)) +((((-538) |#2|) . T)) +(|has| |#2| (-773)) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(|has| |#2| (-825)) +(|has| |#2| (-825)) +(((|#2|) |has| |#2| (-358))) (((|#1| |#2|) . T)) -((((-838)) . T) (((-1152)) . T)) +((((-840)) . T) (((-1154)) . T)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-838)) . T)) -((((-536)) . T)) -((((-536)) . T) (($) . T) (((-400 (-536))) . T)) -((($) . T) (((-536)) . T) (((-400 (-536))) . T)) -((((-536)) . T) (($) . T) (((-400 (-536))) . T)) -((((-536)) . T) (((-400 (-536))) . T) (($) . T)) -(((#1=(-536) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-525)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) -((((-400 (-536))) . T) (((-536)) . T)) -((((-536)) . T)) -((((-1129)) . T) (((-838)) . T)) -((((-166 (-371))) . T) (((-219)) . T) (((-371)) . T)) -((((-400 (-536))) . T) (((-536)) . T)) -((($) . T) (((-400 (-536))) . T)) -((($) . T) (((-400 (-536))) . T)) -((($) . T) (((-400 (-536))) . T)) -((((-400 (-536))) . T) (($) . T)) -(((#1=(-400 (-536)) #1#) . T) (($ $) . T)) -((($) . T)) -((($ $) . T) (((-593 $) $) . T)) -((((-838)) . T)) -((((-400 (-536))) . T) (((-536)) . T) (((-593 $)) . T)) -(((|#1|) . T)) -(|has| |#1| (-825)) -(((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) . T)) +((((-840)) . T)) +((((-538)) . T)) +((((-538)) . T) (($) . T) (((-402 (-538))) . T)) +((($) . T) (((-538)) . T) (((-402 (-538))) . T)) +((((-538)) . T) (($) . T) (((-402 (-538))) . T)) +((((-538)) . T) (((-402 (-538))) . T) (($) . T)) +(((#1=(-538) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-527)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T)) +((((-402 (-538))) . T) (((-538)) . T)) +((((-538)) . T)) +((((-1131)) . T) (((-840)) . T)) +((((-166 (-373))) . T) (((-221)) . T) (((-373)) . T)) +((((-402 (-538))) . T) (((-538)) . T)) +((($) . T) (((-402 (-538))) . T)) +((($) . T) (((-402 (-538))) . T)) +((($) . T) (((-402 (-538))) . T)) +((((-402 (-538))) . T) (($) . T)) +(((#1=(-402 (-538)) #1#) . T) (($ $) . T)) +((($) . T)) +((($ $) . T) (((-595 $) $) . T)) +((((-840)) . T)) +((((-402 (-538))) . T) (((-538)) . T) (((-595 $)) . T)) +(((|#1|) . T)) +(|has| |#1| (-827)) +(((|#1|) . T)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(((|#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-536) (-112)) . T)) -((((-536) (-112)) . T)) -((((-536) (-112)) . T)) -((((-525)) . T)) +((((-538) (-112)) . T)) +((((-538) (-112)) . T)) +((((-538) (-112)) . T)) +((((-527)) . T)) ((((-112)) . T)) -((((-838)) . T)) +((((-840)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-1147)) . T) (((-838)) . T) (((-1152)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-1149)) . T) (((-840)) . T) (((-1154)) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) +(((|#1|) . T)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(((|#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-565 |#1|)) . T)) -((((-565 |#1|)) . T)) -((((-565 |#1|)) . T)) -((((-565 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) -(((#1=(-565 |#1|) #1#) . T) (($ $) . T) ((#2=(-400 (-536)) #2#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-565 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -((((-565 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) +(((|#1|) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-567 |#1|)) . T)) +((((-567 |#1|)) . T)) +((((-567 |#1|)) . T)) +((((-567 |#1|)) . T) (($) . T) (((-402 (-538))) . T)) +(((#1=(-567 |#1|) #1#) . T) (($ $) . T) ((#2=(-402 (-538)) #2#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-567 |#1|)) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +((((-567 |#1|)) . T) (((-402 (-538))) . T) (($) . T)) (|has| $ (-145)) -((((-565 |#1|)) . T)) +((((-567 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) (((|#1| |#4| |#5|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) +(((|#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) . T)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) (((|#1|) . T)) -(((|#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T)) -((((-749) |#1|) . T)) -((((-838)) . T)) -((((-1074)) . T)) -((((-838)) . T)) -((((-1129) (-1147) (-536) (-219) (-838)) . T)) +(((|#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T)) +((((-751) |#1|) . T)) +((((-840)) . T)) +((((-1076)) . T)) +((((-840)) . T)) +((((-1131) (-1149) (-538) (-221) (-840)) . T)) ((($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-1129)) . T) (((-525)) . T) (((-536)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) -((((-536)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-1131)) . T) (((-527)) . T) (((-538)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T)) +((((-538)) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) ((($) . T)) -((((-536)) . T)) +((((-538)) . T)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) (((|#1|) . T)) -((((-536)) . T)) +((((-538)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-145)) ((($) . T)) -((((-838)) . T)) -((($) . T) (((-400 (-536))) . T)) -((($) . T) (((-400 (-536))) . T)) -((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-400 (-536))) . T) (($) . T)) -(((|#1|) . T)) -(((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T)) -((((-838)) . T)) -((((-400 (-536))) . T)) -((((-400 (-536))) . T)) -((((-838)) . T) (((-1152)) . T)) +((((-840)) . T)) +((($) . T) (((-402 (-538))) . T)) +((($) . T) (((-402 (-538))) . T)) +((($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-402 (-538))) . T) (($) . T)) +(((|#1|) . T)) +(((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T)) +((((-840)) . T)) +((((-402 (-538))) . T)) +((((-402 (-538))) . T)) +((((-840)) . T) (((-1154)) . T)) ((((-142)) . T)) ((((-142)) . T)) -((((-536) (-142)) . T)) -((((-536) (-142)) . T)) -((((-536) (-142)) . T)) +((((-538) (-142)) . T)) +((((-538) (-142)) . T)) +((((-538) (-142)) . T)) ((((-142)) . T)) -((((-838)) . T)) +((((-840)) . T)) ((((-142)) . T)) ((((-142)) . T)) -(|has| |#1| (-15 * (|#1| (-536) |#1|))) -((((-838)) . T)) +(|has| |#1| (-15 * (|#1| (-538) |#1|))) +((((-840)) . T)) ((($ $) . T)) -((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) -(((|#1| (-536) (-1053)) . T)) -((($) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T)) +((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) +(((|#1| (-538) (-1055)) . T)) +((($) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) -(((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536)))) ((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) -(((|#1| (-536)) . T)) -(((|#1| (-536)) . T)) -((($) |has| |#1| (-543))) -((($ $) |has| |#1| (-543))) -((($) |has| |#1| (-543))) -((($) |has| |#1| (-543))) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -((($) . T)) -((((-838)) . T)) -((((-838)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -(((|#1|) . T)) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-545))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545)))) +(((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))) ((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545)))) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545))) +(((|#1| (-538)) . T)) +(((|#1| (-538)) . T)) +((($) |has| |#1| (-545))) +((($ $) |has| |#1| (-545))) +((($) |has| |#1| (-545))) +((($) |has| |#1| (-545))) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +((($) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#1|) . T)) -(|has| |#1| (-825)) (((|#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +(((|#1|) . T)) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) +(((|#1|) . T)) +(|has| |#1| (-827)) (((|#1|) . T)) -((((-128)) . T) (((-838)) . T)) -((((-1184)) . T) (((-838)) . T) (((-1152)) . T)) -(((|#1|) -3886 (|has| |#2| (-360 |#1|)) (|has| |#2| (-411 |#1|)))) -(((|#1|) |has| |#2| (-411 |#1|))) (((|#1|) . T)) +((((-128)) . T) (((-840)) . T)) +((((-1186)) . T) (((-840)) . T) (((-1154)) . T)) +(((|#1|) -3891 (|has| |#2| (-362 |#1|)) (|has| |#2| (-413 |#1|)))) +(((|#1|) |has| |#2| (-413 |#1|))) (((|#1|) . T)) -(((|#2|) . T) (((-838)) . T)) +(((|#1|) . T)) +(((|#2|) . T) (((-840)) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-1129) |#1|) . T)) -((((-1129) |#1|) . T)) -((((-1129) |#1|) . T)) -((((-1129) |#1|) . T)) -((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((#1=(-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) #1#) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) -((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -((((-1129) |#1|) . T)) -((((-838)) . T)) -((((-381) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -((((-525)) |has| |#1| (-596 (-525))) (((-864 (-371))) |has| |#1| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#1| (-596 (-864 (-536))))) -(((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(((|#2|) . T)) -((((-838)) . T)) +((((-1131) |#1|) . T)) +((((-1131) |#1|) . T)) +((((-1131) |#1|) . T)) +((((-1131) |#1|) . T)) +((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((#1=(-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) #1#) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))))) +((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +((((-1131) |#1|) . T)) +((((-840)) . T)) +((((-383) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +((((-527)) |has| |#1| (-598 (-527))) (((-866 (-373))) |has| |#1| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#1| (-598 (-866 (-538))))) +(((|#1|) . T)) +((((-840)) . T)) +((((-840)) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(((|#2|) . T)) +((((-840)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T) (($) . T)) (((|#2|) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(((|#2|) . T) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) +(((|#2|) . T) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T)) (((|#1|) . T)) -((((-400 |#2|)) . T)) +((((-402 |#2|)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -(|has| |#2| (-227)) +(|has| |#2| (-229)) ((($) . T)) -((((-838)) . T)) -((((-1147)) |has| |#2| (-874 (-1147)))) +((((-840)) . T)) +((((-1149)) |has| |#2| (-876 (-1149)))) (((|#2|) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T)) -((((-1129) (-51)) . T)) -((((-838)) . T)) -((((-1129) (-51)) . T)) -((((-1129) (-51)) . T)) -((((-1129) (-51)) . T)) -((((-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) . T)) -((((-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4215 (-1129)) (|:| -2186 #1#))) . T)) -(((#1=(-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) #1#) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))))) -((((-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))))) -((((-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) . T)) -((((-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) . T)) -((((-1129) (-51)) . T)) -(((|#1|) -3886 (|has| |#2| (-360 |#1|)) (|has| |#2| (-411 |#1|)))) -(((|#1|) |has| |#2| (-411 |#1|))) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T)) +((((-1131) (-51)) . T)) +((((-840)) . T)) +((((-1131) (-51)) . T)) +((((-1131) (-51)) . T)) +((((-1131) (-51)) . T)) +((((-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) . T)) +((((-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4220 (-1131)) (|:| -2191 #1#))) . T)) +(((#1=(-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) #1#) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))))) +((((-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))))) +((((-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) . T)) +((((-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) . T)) +((((-1131) (-51)) . T)) +(((|#1|) -3891 (|has| |#2| (-362 |#1|)) (|has| |#2| (-413 |#1|)))) +(((|#1|) |has| |#2| (-413 |#1|))) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-838)) . T)) +(((|#2|) . T) (((-840)) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-799)) +(|has| |#1| (-801)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-838)) . T) (((-1152)) . T)) +(((|#1|) . T) (((-840)) . T) (((-1154)) . T)) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) +((((-527)) |has| |#1| (-598 (-527)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) -(|has| |#1| (-769)) -(|has| |#1| (-769)) -(|has| |#1| (-769)) -(|has| |#1| (-769)) -(|has| |#1| (-769)) +((((-840)) . T)) +(|has| |#1| (-771)) +(|has| |#1| (-771)) +(|has| |#1| (-771)) +(|has| |#1| (-771)) +(|has| |#1| (-771)) (((|#2| |#2|) . T)) (((|#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) +((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-170))) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T) (($) . T)) @@ -1608,10 +1610,10 @@ (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) +((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-170))) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T) (($) . T)) @@ -1619,148 +1621,148 @@ (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) +((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-170))) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -((((-650 |#1|)) . T)) -(((|#2| (-650 |#1|)) . T)) +((((-652 |#1|)) . T)) +(((|#2| (-652 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-4350 "*")))) +(((|#2|) |has| |#2| (-6 (-4355 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) -((((-667 |#2|)) . T) (((-838)) . T)) +((((-669 |#2|)) . T) (((-840)) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1147)) |has| |#2| (-874 (-1147)))) -(|has| |#2| (-227)) -(((|#2|) . T)) -(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) -(((|#2|) . T)) -(((|#2|) . T) (((-536)) |has| |#2| (-1012 (-536))) (((-400 (-536))) |has| |#2| (-1012 (-400 (-536))))) -(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -(((|#2|) . T)) -(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) -((((-838)) . T) (((-1152)) . T)) -(((|#1|) . T)) -((((-838)) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1|) . T)) -((((-838)) . T) (((-1152)) . T)) -(((|#1|) . T)) -((((-838)) . T)) -((((-1184)) . T) (((-838)) . T) (((-1152)) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -(((|#1| (-1229 |#1|) (-1229 |#1|)) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1|) . T)) -(((|#1| (-1229 |#1|) (-1229 |#1|)) . T)) -((((-838)) . T)) -((((-677)) . T)) -((((-677)) . T)) -((((-677)) . T)) -((((-677)) . T)) -((((-677)) . T)) -((((-371)) . T)) -((((-677)) . T)) -(((#1=(-677) (-1141 #1#)) . T)) -(((#1=(-677) (-1141 #1#)) . T)) -(((#1=(-677) (-1141 #1#)) . T)) -((((-677)) . T)) -((((-166 (-219))) . T) (((-166 (-371))) . T) (((-1141 (-677))) . T) (((-864 (-371))) . T)) -((((-677)) . T)) -((((-400 (-536))) . T) (((-677)) . T) (($) . T)) -((((-400 (-536))) . T) (((-677)) . T) (($) . T)) -((((-838)) . T)) -((((-400 (-536))) . T) (((-677)) . T) (($) . T)) -(((#1=(-400 (-536)) #1#) . T) ((#2=(-677) #2#) . T) (($ $) . T)) -((((-400 (-536))) . T) (((-677)) . T) (($) . T)) -((((-677)) . T) (((-400 (-536))) . T) (((-536)) . T)) -((((-371)) . T) (((-536)) . T) (((-400 (-536))) . T)) -((((-371)) . T)) -((($) . T) (((-400 (-536))) . T)) -((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-219)) . T) (((-371)) . T) (((-864 (-371))) . T)) -((((-838)) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-525)) . T) (((-536)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) -((($) . T)) -((($) . T)) -((((-838)) . T)) +((((-1149)) |has| |#2| (-876 (-1149)))) +(|has| |#2| (-229)) +(((|#2|) . T)) +(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538)))) +(((|#2|) . T)) +(((|#2|) . T) (((-538)) |has| |#2| (-1014 (-538))) (((-402 (-538))) |has| |#2| (-1014 (-402 (-538))))) +(((|#1| |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +(((|#2|) . T)) +(((|#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) +((((-840)) . T) (((-1154)) . T)) +(((|#1|) . T)) +((((-840)) . T)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1|) . T)) +((((-840)) . T) (((-1154)) . T)) +(((|#1|) . T)) +((((-840)) . T)) +((((-1186)) . T) (((-840)) . T) (((-1154)) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +(((|#1| (-1231 |#1|) (-1231 |#1|)) . T)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1|) . T)) +(((|#1| (-1231 |#1|) (-1231 |#1|)) . T)) +((((-840)) . T)) +((((-679)) . T)) +((((-679)) . T)) +((((-679)) . T)) +((((-679)) . T)) +((((-679)) . T)) +((((-373)) . T)) +((((-679)) . T)) +(((#1=(-679) (-1143 #1#)) . T)) +(((#1=(-679) (-1143 #1#)) . T)) +(((#1=(-679) (-1143 #1#)) . T)) +((((-679)) . T)) +((((-166 (-221))) . T) (((-166 (-373))) . T) (((-1143 (-679))) . T) (((-866 (-373))) . T)) +((((-679)) . T)) +((((-402 (-538))) . T) (((-679)) . T) (($) . T)) +((((-402 (-538))) . T) (((-679)) . T) (($) . T)) +((((-840)) . T)) +((((-402 (-538))) . T) (((-679)) . T) (($) . T)) +(((#1=(-402 (-538)) #1#) . T) ((#2=(-679) #2#) . T) (($ $) . T)) +((((-402 (-538))) . T) (((-679)) . T) (($) . T)) +((((-679)) . T) (((-402 (-538))) . T) (((-538)) . T)) +((((-373)) . T) (((-538)) . T) (((-402 (-538))) . T)) +((((-373)) . T)) +((($) . T) (((-402 (-538))) . T)) +((($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-221)) . T) (((-373)) . T) (((-866 (-373))) . T)) +((((-840)) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-527)) . T) (((-538)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T)) +((($) . T)) +((($) . T)) +((((-840)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-536)) . T)) -(((|#1|) . T) (((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((($) . T) (((-400 (-536))) . T)) -((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-400 (-536))) . T) (($) . T)) -(|has| |#1| (-361)) -(((|#1|) . T)) -((((-838)) . T)) -((((-400 $) (-400 $)) |has| |#1| (-543)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(|has| |#1| (-356)) -(((|#1| (-749) (-1053)) . T)) -(|has| |#1| (-884)) -(|has| |#1| (-884)) -((((-1147)) |has| |#1| (-874 (-1147))) (((-1053)) . T)) -(|has| |#1| (-825)) -((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-749)) . T)) +((((-538)) . T)) +(((|#1|) . T) (((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((($) . T) (((-402 (-538))) . T)) +((($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-402 (-538))) . T) (($) . T)) +(|has| |#1| (-363)) +(((|#1|) . T)) +((((-840)) . T)) +((((-402 $) (-402 $)) |has| |#1| (-545)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(|has| |#1| (-358)) +(((|#1| (-751) (-1055)) . T)) +(|has| |#1| (-886)) +(|has| |#1| (-886)) +((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T)) +(|has| |#1| (-827)) +((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-751)) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) (((|#1|) . T)) -((((-1053)) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) -(((|#1| (-749)) . T)) -(((#1=(-1053) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((((-1055)) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538))))) +(((|#1| (-751)) . T)) +(((#1=(-1055) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1122)) +(|has| |#1| (-1124)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) |has| |#1| (-170))) (((|#1|) |has| |#1| (-170))) (((|#1| |#1|) |has| |#1| (-170))) @@ -1770,37 +1772,37 @@ (((|#2| |#2|) . T)) ((((-113)) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-170)) (($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-525)) |has| |#2| (-596 (-525))) (((-864 (-371))) |has| |#2| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#2| (-596 (-864 (-536))))) +((((-840)) . T)) +((((-840)) . T)) +((((-527)) |has| |#2| (-598 (-527))) (((-866 (-373))) |has| |#2| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#2| (-598 (-866 (-538))))) ((($) . T)) -(((|#2| (-522 (-839 |#1|))) . T)) +(((|#2| (-524 (-841 |#1|))) . T)) (((|#2|) . T)) -((((-838)) . T)) -((($) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T)) +((((-840)) . T)) +((($) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) . T) (($) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(((#1=(-400 (-536)) #1#) |has| |#2| (-38 (-400 (-536)))) ((|#2| |#2|) . T) (($ $) -3886 (|has| |#2| (-170)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -((((-400 (-536))) |has| |#2| (-38 (-400 (-536)))) ((|#2|) |has| |#2| (-170)) (($) -3886 (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884)))) -(((|#2| (-522 (-839 |#1|))) . T)) -(((|#2|) . T)) -(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) -(-3886 (|has| |#2| (-444)) (|has| |#2| (-884))) -((($ $) . T) ((#1=(-839 |#1|) $) . T) ((#1# |#2|) . T)) -(|has| |#2| (-825)) -((((-839 |#1|)) . T)) -(|has| |#2| (-884)) -(|has| |#2| (-884)) -((((-400 (-536))) |has| |#2| (-1012 (-400 (-536)))) (((-536)) |has| |#2| (-1012 (-536))) ((|#2|) . T) (((-839 |#1|)) . T)) -(((|#2| (-522 (-839 |#1|)) (-839 |#1|)) . T)) -(-12 (|has| |#1| (-361)) (|has| |#2| (-361))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) . T) (($) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(((#1=(-402 (-538)) #1#) |has| |#2| (-38 (-402 (-538)))) ((|#2| |#2|) . T) (($ $) -3891 (|has| |#2| (-170)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +((((-402 (-538))) |has| |#2| (-38 (-402 (-538)))) ((|#2|) |has| |#2| (-170)) (($) -3891 (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886)))) +(((|#2| (-524 (-841 |#1|))) . T)) +(((|#2|) . T)) +(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538)))) +(-3891 (|has| |#2| (-446)) (|has| |#2| (-886))) +((($ $) . T) ((#1=(-841 |#1|) $) . T) ((#1# |#2|) . T)) +(|has| |#2| (-827)) +((((-841 |#1|)) . T)) +(|has| |#2| (-886)) +(|has| |#2| (-886)) +((((-402 (-538))) |has| |#2| (-1014 (-402 (-538)))) (((-538)) |has| |#2| (-1014 (-538))) ((|#2|) . T) (((-841 |#1|)) . T)) +(((|#2| (-524 (-841 |#1|)) (-841 |#1|)) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-363))) (((|#1|) |has| |#1| (-170))) (((|#1|) |has| |#1| (-170))) (((|#1| |#1|) |has| |#1| (-170))) @@ -1809,216 +1811,216 @@ (|has| |#1| (-145)) (((|#1|) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-170)) (($) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-840)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (((|#1|) . T)) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) +((((-527)) |has| |#1| (-598 (-527)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -(((|#1| (-522 |#2|) |#2|) . T)) -(|has| |#1| (-884)) -(|has| |#1| (-884)) -((((-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#2| (-860 (-536)))) (((-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#2| (-860 (-371))))) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +(((|#1| (-524 |#2|) |#2|) . T)) +(|has| |#1| (-886)) +(|has| |#1| (-886)) +((((-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#2| (-862 (-538)))) (((-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#2| (-862 (-373))))) (((|#2|) . T)) -(|has| |#1| (-825)) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) -((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) +(|has| |#1| (-827)) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-886))) +((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-522 |#2|)) . T)) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +(((|#1| (-524 |#2|)) . T)) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((((-1096 |#1| |#2|)) . T) (((-920 |#1|)) |has| |#2| (-596 (-1147))) (((-838)) . T)) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -(((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) (($) . T)) -((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -(((|#1|) . T)) -((((-1096 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) -(((|#1| (-522 |#2|)) . T)) +((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((((-1098 |#1| |#2|)) . T) (((-922 |#1|)) |has| |#2| (-598 (-1149))) (((-840)) . T)) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +(((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) (($) . T)) +((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +(((|#1|) . T)) +((((-1098 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538))))) +(((|#1| (-524 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-920 |#1|)) |has| |#2| (-596 (-1147))) (((-1129)) -12 (|has| |#1| (-1012 (-536))) (|has| |#2| (-596 (-1147)))) (((-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536))))) (((-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371))))) (((-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#2| (-596 (-525))))) -(((|#1| (-522 |#2|) |#2|) . T)) -(((|#1|) . T)) -((((-1141 |#1|)) . T) (((-838)) . T)) -((((-400 $) (-400 $)) |has| |#1| (-543)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(|has| |#1| (-356)) -(((|#1| (-749) (-1053)) . T)) -(|has| |#1| (-884)) -(|has| |#1| (-884)) -((((-1147)) |has| |#1| (-874 (-1147))) (((-1053)) . T)) -(|has| |#1| (-825)) -((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-749)) . T)) +((((-922 |#1|)) |has| |#2| (-598 (-1149))) (((-1131)) -12 (|has| |#1| (-1014 (-538))) (|has| |#2| (-598 (-1149)))) (((-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538))))) (((-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373))))) (((-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#2| (-598 (-527))))) +(((|#1| (-524 |#2|) |#2|) . T)) +(((|#1|) . T)) +((((-1143 |#1|)) . T) (((-840)) . T)) +((((-402 $) (-402 $)) |has| |#1| (-545)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(|has| |#1| (-358)) +(((|#1| (-751) (-1055)) . T)) +(|has| |#1| (-886)) +(|has| |#1| (-886)) +((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T)) +(|has| |#1| (-827)) +((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-751)) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) (((|#1|) . T)) -((((-1141 |#1|)) . T) (((-1053)) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) -(((|#1| (-749)) . T)) -(((#1=(-1053) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((((-1143 |#1|)) . T) (((-1055)) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538))))) +(((|#1| (-751)) . T)) +(((#1=(-1055) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1122)) +(|has| |#1| (-1124)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -((((-525)) |has| |#1| (-596 (-525)))) -(|has| |#1| (-361)) -(((|#1|) . T)) -((((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) -(((|#1|) |has| |#1| (-302 |#1|))) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) -((((-970 |#1|)) . T) ((|#1|) . T)) -((((-970 |#1|)) . T) ((|#1|) . T) (((-536)) -3886 (|has| |#1| (-1012 (-536))) (|has| (-970 |#1|) (-1012 (-536)))) (((-400 (-536))) -3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| (-970 |#1|) (-1012 (-400 (-536)))))) -(|has| |#1| (-825)) -(((|#1|) . T)) -((((-838)) . T)) -(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) -(-3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) +((((-527)) |has| |#1| (-598 (-527)))) +(|has| |#1| (-363)) +(((|#1|) . T)) +((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) +(((|#1|) |has| |#1| (-304 |#1|))) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +((((-972 |#1|)) . T) ((|#1|) . T)) +((((-972 |#1|)) . T) ((|#1|) . T) (((-538)) -3891 (|has| |#1| (-1014 (-538))) (|has| (-972 |#1|) (-1014 (-538)))) (((-402 (-538))) -3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| (-972 |#1|) (-1014 (-402 (-538)))))) +(|has| |#1| (-827)) +(((|#1|) . T)) +((((-840)) . T)) +(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) +(-3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) (((|#2|) |has| |#2| (-170))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-705)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -(-3886 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023))) -((($) -3886 (|has| |#2| (-170)) (|has| |#2| (-823)) (|has| |#2| (-1023))) ((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023)))) -(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)))) -((((-838)) -3886 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-595 (-838))) (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-361)) (|has| |#2| (-705)) (|has| |#2| (-771)) (|has| |#2| (-823)) (|has| |#2| (-1023)) (|has| |#2| (-1072))) (((-1229 |#2|)) . T)) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-707)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +(-3891 (|has| |#2| (-130)) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025))) +((($) -3891 (|has| |#2| (-170)) (|has| |#2| (-825)) (|has| |#2| (-1025))) ((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025)))) +(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)))) +((((-840)) -3891 (|has| |#2| (-25)) (|has| |#2| (-130)) (|has| |#2| (-597 (-840))) (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-363)) (|has| |#2| (-707)) (|has| |#2| (-773)) (|has| |#2| (-825)) (|has| |#2| (-1025)) (|has| |#2| (-1074))) (((-1231 |#2|)) . T)) (|has| |#2| (-170)) -(((|#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($) |has| |#2| (-170))) -(((|#2| |#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-1023))) (($ $) |has| |#2| (-170))) -(((|#2|) |has| |#2| (-1023))) -((((-1147)) -12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) -(-12 (|has| |#2| (-227)) (|has| |#2| (-1023))) -(|has| |#2| (-361)) -(((|#2|) |has| |#2| (-1023))) -(((|#2|) |has| |#2| (-1023)) (((-536)) -12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) -(((|#2|) |has| |#2| (-1072))) -(((|#2|) |has| |#2| (-1072)) (((-536)) -12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (((-400 (-536))) -12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) -((((-536) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -(((|#2|) . T)) -((((-536) |#2|) . T)) -((((-536) |#2|) . T)) -(|has| |#2| (-771)) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(-3886 (|has| |#2| (-771)) (|has| |#2| (-823))) -(|has| |#2| (-823)) -(|has| |#2| (-823)) -(((|#2|) |has| |#2| (-356))) +(((|#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($) |has| |#2| (-170))) +(((|#2| |#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-1025))) (($ $) |has| |#2| (-170))) +(((|#2|) |has| |#2| (-1025))) +((((-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) +(-12 (|has| |#2| (-229)) (|has| |#2| (-1025))) +(|has| |#2| (-363)) +(((|#2|) |has| |#2| (-1025))) +(((|#2|) |has| |#2| (-1025)) (((-538)) -12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) +(((|#2|) |has| |#2| (-1074))) +(((|#2|) |has| |#2| (-1074)) (((-538)) -12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (((-402 (-538))) -12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) +((((-538) |#2|) . T)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +(((|#2|) . T)) +((((-538) |#2|) . T)) +((((-538) |#2|) . T)) +(|has| |#2| (-773)) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(-3891 (|has| |#2| (-773)) (|has| |#2| (-825))) +(|has| |#2| (-825)) +(|has| |#2| (-825)) +(((|#2|) |has| |#2| (-358))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-838)) . T)) -(|has| |#1| (-227)) -((($) . T)) -(((|#1| (-522 (-796 (-1147))) (-796 (-1147))) . T)) -(|has| |#1| (-884)) -(|has| |#1| (-884)) -((((-1147)) |has| |#1| (-874 (-1147))) (((-796 (-1147))) . T)) -(|has| |#1| (-825)) -((($ $) . T) ((#1=(-1147) $) |has| |#1| . #2=((-227))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-796 (-1147)) |#1|) . T) ((#3# $) . T)) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) -((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-522 (-796 (-1147)))) . T)) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +((((-840)) . T)) +(|has| |#1| (-229)) +((($) . T)) +(((|#1| (-524 (-798 (-1149))) (-798 (-1149))) . T)) +(|has| |#1| (-886)) +(|has| |#1| (-886)) +((((-1149)) |has| |#1| (-876 (-1149))) (((-798 (-1149))) . T)) +(|has| |#1| (-827)) +((($ $) . T) ((#1=(-1149) $) |has| |#1| . #2=((-229))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-798 (-1149)) |#1|) . T) ((#3# $) . T)) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-886))) +((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-524 (-798 (-1149)))) . T)) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -(((|#1|) . T)) -(((|#1| (-522 (-796 (-1147)))) . T)) -((((-1096 |#1| (-1147))) . T) (((-796 (-1147))) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-1147)) . T)) -(((|#1| (-1147) (-796 (-1147)) (-522 (-796 (-1147)))) . T)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -((((-400 (-536))) . #1=(|has| |#2| (-356))) (($) . #1#)) -((((-400 (-536))) . #1=(|has| |#2| (-356))) (($) . #1#)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -(|has| |#2| (-356)) -((((-400 (-536))) |has| |#2| (-356)) (($) . T)) -((((-838)) . T)) -((((-400 (-536))) |has| |#2| (-356)) (($) . T)) -(((#1=(-400 (-536)) #1#) |has| |#2| (-356)) (($ $) . T)) -((((-838)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -(|has| |#1| (-227)) +((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +(((|#1|) . T)) +(((|#1| (-524 (-798 (-1149)))) . T)) +((((-1098 |#1| (-1149))) . T) (((-798 (-1149))) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-1149)) . T)) +(((|#1| (-1149) (-798 (-1149)) (-524 (-798 (-1149)))) . T)) +(|has| |#2| (-358)) +(|has| |#2| (-358)) +(|has| |#2| (-358)) +(|has| |#2| (-358)) +((((-402 (-538))) . #1=(|has| |#2| (-358))) (($) . #1#)) +((((-402 (-538))) . #1=(|has| |#2| (-358))) (($) . #1#)) +(|has| |#2| (-358)) +(|has| |#2| (-358)) +(|has| |#2| (-358)) +(|has| |#2| (-358)) +(|has| |#2| (-358)) +((((-402 (-538))) |has| |#2| (-358)) (($) . T)) +((((-840)) . T)) +((((-402 (-538))) |has| |#2| (-358)) (($) . T)) +(((#1=(-402 (-538)) #1#) |has| |#2| (-358)) (($ $) . T)) +((((-840)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +(|has| |#1| (-229)) (((|#2|) |has| |#2| (-170))) (((|#2| |#2|) . T)) (((|#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-170))) (((|#2|) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((($) |has| |#1| (-823))) -(|has| |#1| (-823)) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) -((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) -(((|#1|) . T)) -((((-838)) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((($) |has| |#1| (-825))) +(|has| |#1| (-825)) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-825))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-825))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-825))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-825))) +((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T)) +(((|#1|) . T)) +((((-840)) . T)) (((|#1|) |has| |#1| (-170))) (((|#1|) |has| |#1| (-170))) (((|#1| |#1|) |has| |#1| (-170))) @@ -2028,1187 +2030,1187 @@ (((|#1| |#1|) . T)) ((((-113)) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-170)) (($) . T)) -((((-838)) . T)) -((((-838)) . T)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -(|has| |#1| (-823)) -((($) |has| |#1| (-823))) -(|has| |#1| (-823)) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) -(-3886 (|has| |#1| (-21)) (|has| |#1| (-823))) -((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T)) -(((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +(|has| |#1| (-825)) +((($) |has| |#1| (-825))) +(|has| |#1| (-825)) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-825))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-825))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-825))) +(-3891 (|has| |#1| (-21)) (|has| |#1| (-825))) +((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T)) +(((|#1|) . T)) +((((-840)) . T)) (((|#1|) |has| |#1| (-170))) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-170))) (((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) +(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538))))) (((|#1|) . T)) (((|#2|) |has| |#2| (-170))) (((|#2| |#2|) . T)) (((|#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-170))) (((|#2|) . T)) -(((|#2|) . T) (((-536)) |has| |#2| (-1012 (-536))) (((-400 (-536))) |has| |#2| (-1012 (-400 (-536))))) +(((|#2|) . T) (((-538)) |has| |#2| (-1014 (-538))) (((-402 (-538))) |has| |#2| (-1014 (-402 (-538))))) (((|#2|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-864 (-536))) . T) (((-864 (-371))) . T) (((-525)) . T) (((-1147)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-866 (-538))) . T) (((-866 (-373))) . T) (((-527)) . T) (((-1149)) . T)) +((((-840)) . T)) (((|#1|) |has| |#1| (-170))) (((|#1|) |has| |#1| (-170))) (((|#1| |#1|) |has| |#1| (-170))) (((|#1|) |has| |#1| (-170))) (((|#1|) |has| |#1| (-170)) (($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) (((|#1|) . T)) -((((-838)) . T)) -((((-843 |#1|)) . T)) -((((-843 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) -((($) . T) (((-843 |#1|)) . T) (((-400 (-536))) . T)) -((((-843 |#1|)) . T) (($) . T) (((-400 (-536))) . T)) -((((-843 |#1|)) . T) (((-400 (-536))) . T) (($) . T)) -(((#1=(-843 |#1|) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) -((((-843 |#1|)) . T)) -((((-1147) #1=(-843 |#1|)) |has| #1# (-505 (-1147) #1#)) ((#1# #1#) |has| #1# (-302 #1#))) -(((#1=(-843 |#1|)) |has| #1# (-302 #1#))) -(((#1=(-843 |#1|) $) |has| #1# (-279 #1# #1#))) -((((-843 |#1|)) . T)) -((((-843 |#1|)) . T)) -((((-843 |#1|)) . T)) -((((-843 |#1|)) . T)) -((((-843 |#1|)) . T)) -((((-843 |#1|)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-845 |#1|)) . T)) +((((-845 |#1|)) . T) (($) . T) (((-402 (-538))) . T)) +((($) . T) (((-845 |#1|)) . T) (((-402 (-538))) . T)) +((((-845 |#1|)) . T) (($) . T) (((-402 (-538))) . T)) +((((-845 |#1|)) . T) (((-402 (-538))) . T) (($) . T)) +(((#1=(-845 |#1|) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T)) +((((-845 |#1|)) . T)) +((((-1149) #1=(-845 |#1|)) |has| #1# (-507 (-1149) #1#)) ((#1# #1#) |has| #1# (-304 #1#))) +(((#1=(-845 |#1|)) |has| #1# (-304 #1#))) +(((#1=(-845 |#1|) $) |has| #1# (-281 #1# #1#))) +((((-845 |#1|)) . T)) +((((-845 |#1|)) . T)) +((((-845 |#1|)) . T)) +((((-845 |#1|)) . T)) +((((-845 |#1|)) . T)) +((((-845 |#1|)) . T)) +((((-840)) . T)) (|has| |#2| (-143)) (|has| |#2| (-145)) (((|#2|) . T)) -((((-1147)) |has| |#2| (-874 (-1147)))) -(|has| |#2| (-227)) -(((|#2|) . T) (($) . T) (((-400 (-536))) . T)) -((($) . T) ((|#2|) . T) (((-400 (-536))) . T)) -(((|#2|) . T) (($) . T) (((-400 (-536))) . T)) -(((|#2|) . T) (((-400 (-536))) . T) (($) . T)) -(((|#2| |#2|) . T) ((#1=(-400 (-536)) #1#) . T) (($ $) . T)) -(((|#2|) . T)) -((((-1147) |#2|) |has| |#2| (-505 (-1147) |#2|)) ((|#2| |#2|) |has| |#2| (-302 |#2|))) -(((|#2|) |has| |#2| (-302 |#2|))) -(((|#2| $) |has| |#2| (-279 |#2| |#2|))) -(((|#2|) . T)) -(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) -(((|#2|) . T)) -((((-536)) |has| |#2| (-860 (-536))) (((-371)) |has| |#2| (-860 (-371)))) -(|has| |#2| (-798)) -(|has| |#2| (-798)) -(|has| |#2| (-798)) -(-3886 (|has| |#2| (-798)) (|has| |#2| (-825))) -(|has| |#2| (-798)) -(|has| |#2| (-798)) -(|has| |#2| (-798)) -(((|#2|) . T)) -(|has| |#2| (-884)) -(|has| |#2| (-994)) -((((-525)) |has| |#2| (-596 (-525))) (((-864 (-536))) |has| |#2| (-596 (-864 (-536)))) (((-864 (-371))) |has| |#2| (-596 (-864 (-371)))) (((-371)) . #1=(|has| |#2| (-994))) (((-219)) . #1#)) -((((-400 (-536))) |has| |#2| . #1=((-1012 (-536)))) (((-536)) |has| |#2| . #1#) (((-1147)) |has| |#2| (-1012 (-1147))) ((|#2|) . T)) -(|has| |#2| (-1122)) -(((|#2|) . T)) -(-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))) -(-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))) -((((-838)) -3886 (-12 (|has| |#1| (-595 (-838))) (|has| |#2| (-595 (-838)))) (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))))) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-1147)) . T) ((|#1|) . T)) -((((-838)) . T)) -((((-650 |#1|)) . T)) -((((-838)) . T)) -((((-838)) . T)) -(((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-838)) . T)) -(-3886 (|has| |#1| (-361)) (|has| |#1| (-825))) -(((|#1|) . T)) -((((-838)) . T)) -((((-536)) . T)) +((((-1149)) |has| |#2| (-876 (-1149)))) +(|has| |#2| (-229)) +(((|#2|) . T) (($) . T) (((-402 (-538))) . T)) +((($) . T) ((|#2|) . T) (((-402 (-538))) . T)) +(((|#2|) . T) (($) . T) (((-402 (-538))) . T)) +(((|#2|) . T) (((-402 (-538))) . T) (($) . T)) +(((|#2| |#2|) . T) ((#1=(-402 (-538)) #1#) . T) (($ $) . T)) +(((|#2|) . T)) +((((-1149) |#2|) |has| |#2| (-507 (-1149) |#2|)) ((|#2| |#2|) |has| |#2| (-304 |#2|))) +(((|#2|) |has| |#2| (-304 |#2|))) +(((|#2| $) |has| |#2| (-281 |#2| |#2|))) +(((|#2|) . T)) +(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538)))) +(((|#2|) . T)) +((((-538)) |has| |#2| (-862 (-538))) (((-373)) |has| |#2| (-862 (-373)))) +(|has| |#2| (-800)) +(|has| |#2| (-800)) +(|has| |#2| (-800)) +(-3891 (|has| |#2| (-800)) (|has| |#2| (-827))) +(|has| |#2| (-800)) +(|has| |#2| (-800)) +(|has| |#2| (-800)) +(((|#2|) . T)) +(|has| |#2| (-886)) +(|has| |#2| (-996)) +((((-527)) |has| |#2| (-598 (-527))) (((-866 (-538))) |has| |#2| (-598 (-866 (-538)))) (((-866 (-373))) |has| |#2| (-598 (-866 (-373)))) (((-373)) . #1=(|has| |#2| (-996))) (((-221)) . #1#)) +((((-402 (-538))) |has| |#2| . #1=((-1014 (-538)))) (((-538)) |has| |#2| . #1#) (((-1149)) |has| |#2| (-1014 (-1149))) ((|#2|) . T)) +(|has| |#2| (-1124)) +(((|#2|) . T)) +(-12 (|has| |#1| (-1074)) (|has| |#2| (-1074))) +(-12 (|has| |#1| (-1074)) (|has| |#2| (-1074))) +((((-840)) -3891 (-12 (|has| |#1| (-597 (-840))) (|has| |#2| (-597 (-840)))) (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074))))) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-1149)) . T) ((|#1|) . T)) +((((-840)) . T)) +((((-652 |#1|)) . T)) +((((-840)) . T)) +((((-840)) . T)) +(((|#1|) . T)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-840)) . T)) +(-3891 (|has| |#1| (-363)) (|has| |#1| (-827))) +(((|#1|) . T)) +((((-840)) . T)) +((((-538)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-145)) ((($) . T)) -((((-838)) . T)) -((($) . T) (((-400 (-536))) . T)) -((($) . T) (((-400 (-536))) . T)) -((($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -(((|#1|) . T) (($) . T) (((-400 (-536))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#1=(-400 (-536)) #1#) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((($) . T) (((-402 (-538))) . T)) +((($) . T) (((-402 (-538))) . T)) +((($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +(((|#1|) . T) (($) . T) (((-402 (-538))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#1=(-402 (-538)) #1#) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525))) (((-864 (-371))) |has| |#1| (-596 (-864 (-371)))) (((-864 (-536))) |has| |#1| (-596 (-864 (-536))))) +((((-527)) |has| |#1| (-598 (-527))) (((-866 (-373))) |has| |#1| (-598 (-866 (-373)))) (((-866 (-538))) |has| |#1| (-598 (-866 (-538))))) ((($) . T)) -(((|#1| (-522 (-1147))) . T)) +(((|#1| (-524 (-1149))) . T)) (((|#1|) . T)) -((((-838)) . T)) -((($) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T)) +((((-840)) . T)) +((($) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) -(((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536)))) ((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) -(((|#1| (-522 (-1147))) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) -((($ $) . T) ((#1=(-1147) $) . T) ((#1# |#1|) . T)) -(|has| |#1| (-825)) -((((-1147)) . T)) -((((-371)) |has| |#1| (-860 (-371))) (((-536)) |has| |#1| (-860 (-536)))) -(|has| |#1| (-884)) -(|has| |#1| (-884)) -((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T) (((-1147)) . T)) -(((|#1| (-522 (-1147)) (-1147)) . T)) -((((-1091)) . T) (((-838)) . T)) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))) +(((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))) ((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))) +(((|#1| (-524 (-1149))) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538)))) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-886))) +((($ $) . T) ((#1=(-1149) $) . T) ((#1# |#1|) . T)) +(|has| |#1| (-827)) +((((-1149)) . T)) +((((-373)) |has| |#1| (-862 (-373))) (((-538)) |has| |#1| (-862 (-538)))) +(|has| |#1| (-886)) +(|has| |#1| (-886)) +((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T) (((-1149)) . T)) +(((|#1| (-524 (-1149)) (-1149)) . T)) +((((-1093)) . T) (((-840)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-545))) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((((-838)) . T)) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -(((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) (($) . T)) -((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -(((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) +((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((((-840)) . T)) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +(((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) (($) . T)) +((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +(((|#1|) . T)) +(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) -(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) -(-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))) -(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) -(-12 (|has| |#1| (-771)) (|has| |#2| (-771))) +(-12 (|has| |#1| (-773)) (|has| |#2| (-773))) +(-12 (|has| |#1| (-773)) (|has| |#2| (-773))) +(-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))) +(-12 (|has| |#1| (-773)) (|has| |#2| (-773))) +(-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -(-12 (|has| |#1| (-465)) (|has| |#2| (-465))) -(-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) -(-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) -(-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) -(-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) -(-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) -(-12 (|has| |#1| (-361)) (|has| |#2| (-361))) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-620 (-536))) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T)) +(-12 (|has| |#1| (-467)) (|has| |#2| (-467))) +(-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) +(-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) +(-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) +(-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))) +(-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-363))) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-622 (-538))) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -((((-525)) |has| |#1| (-596 (-525)))) -(((|#1|) . T)) -((((-1147)) |has| |#1| (-874 (-1147)))) -(|has| |#1| (-227)) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-283)) (|has| |#1| (-356))) -(((|#1|) . T) (((-400 (-536))) |has| |#1| (-356))) -((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-356))) -(((|#1|) . T) (($) -3886 (|has| |#1| (-283)) (|has| |#1| (-356))) (((-400 (-536))) |has| |#1| (-356))) -(((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-283)) (|has| |#1| (-356))) ((#1=(-400 (-536)) #1#) |has| |#1| (-356))) -(((|#1|) . T) (((-400 (-536))) |has| |#1| (-356))) -(((|#1|) . T)) -((((-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((|#1| |#1|) |has| |#1| (-302 |#1|))) -(((|#1|) |has| |#1| (-302 |#1|))) -(((|#1| $) |has| |#1| (-279 |#1| |#1|))) -(((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) -(((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) -(|has| |#1| (-825)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-400 |#2|) |#3|) . T)) -((((-400 (-536))) |has| #1=(-400 |#2|) (-1012 (-400 (-536)))) (((-536)) |has| #1# (-1012 (-536))) ((#1#) . T)) -((((-400 |#2|)) . T)) -((((-536)) |has| #1=(-400 |#2|) (-619 (-536))) ((#1#) . T)) -((((-400 |#2|)) . T)) -((((-400 |#2|) |#3|) . T)) -(|has| (-400 |#2|) (-145)) -((((-400 |#2|) |#3|) . T)) -(|has| (-400 |#2|) (-143)) -((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) -((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) -(|has| (-400 |#2|) (-227)) -((((-1147)) |has| (-400 |#2|) (-874 (-1147)))) -((((-400 |#2|)) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +(((|#1|) . T)) +((((-1149)) |has| |#1| (-876 (-1149)))) +(|has| |#1| (-229)) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-285)) (|has| |#1| (-358))) +(((|#1|) . T) (((-402 (-538))) |has| |#1| (-358))) +((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-358))) +(((|#1|) . T) (($) -3891 (|has| |#1| (-285)) (|has| |#1| (-358))) (((-402 (-538))) |has| |#1| (-358))) +(((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-285)) (|has| |#1| (-358))) ((#1=(-402 (-538)) #1#) |has| |#1| (-358))) +(((|#1|) . T) (((-402 (-538))) |has| |#1| (-358))) +(((|#1|) . T)) +((((-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((|#1| |#1|) |has| |#1| (-304 |#1|))) +(((|#1|) |has| |#1| (-304 |#1|))) +(((|#1| $) |has| |#1| (-281 |#1| |#1|))) +(((|#1|) . T)) +(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538)))) +(((|#1|) . T)) +(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538))))) +(|has| |#1| (-827)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-402 |#2|) |#3|) . T)) +((((-402 (-538))) |has| #1=(-402 |#2|) (-1014 (-402 (-538)))) (((-538)) |has| #1# (-1014 (-538))) ((#1#) . T)) +((((-402 |#2|)) . T)) +((((-538)) |has| #1=(-402 |#2|) (-621 (-538))) ((#1#) . T)) +((((-402 |#2|)) . T)) +((((-402 |#2|) |#3|) . T)) +(|has| (-402 |#2|) (-145)) +((((-402 |#2|) |#3|) . T)) +(|has| (-402 |#2|) (-143)) +((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T)) +((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T)) +(|has| (-402 |#2|) (-229)) +((((-1149)) |has| (-402 |#2|) (-876 (-1149)))) +((((-402 |#2|)) . T)) (((|#3|) . T)) -(((#1=(-400 |#2|) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) -((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) -((((-838)) . T)) -((((-400 |#2|)) . T) (((-400 (-536))) . T) (($) . T)) +(((#1=(-402 |#2|) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T)) +((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T)) +((((-840)) . T)) +((((-402 |#2|)) . T) (((-402 (-538))) . T) (($) . T)) (((|#1| |#2| |#3|) . T)) -((((-838)) . T)) -((((-536)) . T)) -((((-536)) . T) (($) . T) (((-400 (-536))) . T)) -((($) . T) (((-536)) . T) (((-400 (-536))) . T)) -((((-536)) . T) (($) . T) (((-400 (-536))) . T)) -((((-536)) . T) (((-400 (-536))) . T) (($) . T)) -(((#1=(-536) #1#) . T) ((#2=(-400 (-536)) #2#) . T) (($ $) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-525)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) -((((-400 (-536))) . T) (((-536)) . T)) -((((-536)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T)) -(((|#1|) . T) (($) . T) (((-400 (-536))) . T) (((-536)) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (((-536)) . T) (($) . T)) -(((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) . T) ((#2=(-536) #2#) . T) (($ $) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (((-536)) . T) (($) . T)) -(((|#1|) . T) (((-400 (-536))) . T) (((-536)) . T) (($) . T)) -(((|#1|) . T) (((-400 (-536))) . T)) -(((|#1|) . T) (((-536)) -3886 (|has| |#1| (-1012 (-536))) (|has| (-400 (-536)) (-1012 (-536)))) (((-400 (-536))) . T)) -(|has| |#1| (-1072)) -((((-838)) |has| |#1| (-1072))) -(|has| |#1| (-1072)) +((((-840)) . T)) +((((-538)) . T)) +((((-538)) . T) (($) . T) (((-402 (-538))) . T)) +((($) . T) (((-538)) . T) (((-402 (-538))) . T)) +((((-538)) . T) (($) . T) (((-402 (-538))) . T)) +((((-538)) . T) (((-402 (-538))) . T) (($) . T)) +(((#1=(-538) #1#) . T) ((#2=(-402 (-538)) #2#) . T) (($ $) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-527)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T)) +((((-402 (-538))) . T) (((-538)) . T)) +((((-538)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T)) +(((|#1|) . T) (($) . T) (((-402 (-538))) . T) (((-538)) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (((-538)) . T) (($) . T)) +(((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) . T) ((#2=(-538) #2#) . T) (($ $) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (((-538)) . T) (($) . T)) +(((|#1|) . T) (((-402 (-538))) . T) (((-538)) . T) (($) . T)) +(((|#1|) . T) (((-402 (-538))) . T)) +(((|#1|) . T) (((-538)) -3891 (|has| |#1| (-1014 (-538))) (|has| (-402 (-538)) (-1014 (-538)))) (((-402 (-538))) . T)) +(|has| |#1| (-1074)) +((((-840)) |has| |#1| (-1074))) +(|has| |#1| (-1074)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-620 |#4|)) . T) (((-838)) . T)) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +((((-622 |#4|)) . T) (((-840)) . T)) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (((|#4|) . T)) -((((-525)) |has| |#4| (-596 (-525)))) +((((-527)) |has| |#4| (-598 (-527)))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1|) . T) (($) . T)) -((((-1147) (-51)) . T)) -((((-838)) . T)) -((((-1147) (-51)) . T)) -((((-1147) (-51)) . T)) -((((-1147) (-51)) . T)) -((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) -((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4215 (-1147)) (|:| -2186 #1#))) . T)) -(((#1=(-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) #1#) |has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) -((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) |has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) -((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) -((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) -((((-1147) (-51)) . T)) -((((-838)) . T) (((-1152)) . T)) -(((|#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) . T)) -((((-758 |#1| (-839 |#2|))) . T)) -((((-620 (-758 |#1| (-839 |#2|)))) . T) (((-838)) . T)) -((((-758 |#1| (-839 |#2|))) |has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|))))) -(((#1=(-758 |#1| (-839 |#2|)) #1#) |has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|))))) -((((-758 |#1| (-839 |#2|))) . T)) -((((-525)) |has| (-758 |#1| (-839 |#2|)) (-596 (-525)))) -(((|#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) . T)) -(((|#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) . T)) -((((-525)) |has| |#3| (-596 (-525)))) -(((|#3|) |has| |#3| (-356))) +((((-1149) (-51)) . T)) +((((-840)) . T)) +((((-1149) (-51)) . T)) +((((-1149) (-51)) . T)) +((((-1149) (-51)) . T)) +((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T)) +((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4220 (-1149)) (|:| -2191 #1#))) . T)) +(((#1=(-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) #1#) |has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))))) +((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) |has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))))) +((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T)) +((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T)) +((((-1149) (-51)) . T)) +((((-840)) . T) (((-1154)) . T)) +(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T)) +((((-760 |#1| (-841 |#2|))) . T)) +((((-622 (-760 |#1| (-841 |#2|)))) . T) (((-840)) . T)) +((((-760 |#1| (-841 |#2|))) |has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|))))) +(((#1=(-760 |#1| (-841 |#2|)) #1#) |has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|))))) +((((-760 |#1| (-841 |#2|))) . T)) +((((-527)) |has| (-760 |#1| (-841 |#2|)) (-598 (-527)))) +(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T)) +(((|#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) . T)) +((((-527)) |has| |#3| (-598 (-527)))) +(((|#3|) |has| |#3| (-358))) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-667 |#3|)) . T) (((-838)) . T)) +((((-669 |#3|)) . T) (((-840)) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) -(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) -(((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)))) -(((|#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) . T)) -((((-838)) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) +(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) +(((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)))) +(((|#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) ((($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-525)) . T) (((-536)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) -((((-536)) . T)) -((((-1147) (-51)) . T)) -((((-838)) . T)) -((((-1147) (-51)) . T)) -((((-1147) (-51)) . T)) -((((-1147) (-51)) . T)) -((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) -((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) -(((#1=(-51)) . T) (((-2 (|:| -4215 (-1147)) (|:| -2186 #1#))) . T)) -(((#1=(-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) #1#) |has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) -((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) |has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) -((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) -((((-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) . T)) -((((-1147) (-51)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-286 |#3|)) . T)) +((((-538)) . T)) +((((-538)) . T)) +((((-527)) . T) (((-538)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T)) +((((-538)) . T)) +((((-1149) (-51)) . T)) +((((-840)) . T)) +((((-1149) (-51)) . T)) +((((-1149) (-51)) . T)) +((((-1149) (-51)) . T)) +((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T)) +((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T)) +(((#1=(-51)) . T) (((-2 (|:| -4220 (-1149)) (|:| -2191 #1#))) . T)) +(((#1=(-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) #1#) |has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))))) +((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) |has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))))) +((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T)) +((((-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) . T)) +((((-1149) (-51)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-288 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-838)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#3| |#3|) . T)) -((((-838)) . T)) -((((-838)) . T)) -(((|#2|) . T)) -(((|#1|) |has| |#1| (-356))) -((((-1147)) -12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) -(-3886 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-343))) -(-3886 (|has| |#1| (-361)) (|has| |#1| (-343))) -(|has| |#1| (-343)) -(|has| |#1| (-343)) -(-3886 (|has| |#1| (-143)) (|has| |#1| (-343))) -(|has| |#1| (-343)) +((((-840)) . T)) +((((-840)) . T)) +(((|#2|) . T)) +(((|#1|) |has| |#1| (-358))) +((((-1149)) -12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) +(-3891 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-345))) +(-3891 (|has| |#1| (-363)) (|has| |#1| (-345))) +(|has| |#1| (-345)) +(|has| |#1| (-345)) +(-3891 (|has| |#1| (-143)) (|has| |#1| (-345))) +(|has| |#1| (-345)) (((|#1| |#2|) . T)) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($ $) . T) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1| |#1|) . T)) -((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($) . T) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) (((-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-343))) ((|#1|) . T)) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T)) +((($ $) . T) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1| |#1|) . T)) +((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T)) +((($) . T) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T)) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) (((-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-345))) ((|#1|) . T)) (|has| |#1| (-145)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) +(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538)))) (((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) +(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538))))) (((|#1| |#2|) . T)) -((((-838)) . T)) -((((-838)) . T)) -(((|#1|) . T)) -((((-838)) . T)) -(|has| |#1| (-227)) -((($) . T)) -(((|#1| (-522 (-1059 (-1147))) (-1059 (-1147))) . T)) -(|has| |#1| (-884)) -(|has| |#1| (-884)) -((((-1147)) |has| |#1| (-874 (-1147))) (((-1059 (-1147))) . T)) -(|has| |#1| (-825)) -((($ $) . T) ((#1=(-1147) $) |has| |#1| . #2=((-227))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1059 (-1147)) |#1|) . T) ((#3# $) . T)) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) -((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-522 (-1059 (-1147)))) . T)) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) +((((-840)) . T)) +((((-840)) . T)) +(((|#1|) . T)) +((((-840)) . T)) +(|has| |#1| (-229)) +((($) . T)) +(((|#1| (-524 (-1061 (-1149))) (-1061 (-1149))) . T)) +(|has| |#1| (-886)) +(|has| |#1| (-886)) +((((-1149)) |has| |#1| (-876 (-1149))) (((-1061 (-1149))) . T)) +(|has| |#1| (-827)) +((($ $) . T) ((#1=(-1149) $) |has| |#1| . #2=((-229))) ((#1# |#1|) |has| |#1| . #2#) ((#3=(-1061 (-1149)) |#1|) . T) ((#3# $) . T)) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-886))) +((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-524 (-1061 (-1149)))) . T)) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) (((|#1|) . T)) -(((|#1| (-522 (-1059 (-1147)))) . T)) -((((-1096 |#1| (-1147))) . T) (((-1059 (-1147))) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-1147)) . T)) -(((|#1| (-1147) (-1059 (-1147)) (-522 (-1059 (-1147)))) . T)) -((((-838)) . T)) +(((|#1| (-524 (-1061 (-1149)))) . T)) +((((-1098 |#1| (-1149))) . T) (((-1061 (-1149))) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-1149)) . T)) +(((|#1| (-1149) (-1061 (-1149)) (-524 (-1061 (-1149)))) . T)) +((((-840)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-620 |#1|)) |has| |#1| (-823))) -(|has| |#1| (-1072)) -((((-838)) |has| |#1| (-1072))) -(|has| |#1| (-1072)) +(((|#1| (-622 |#1|)) |has| |#1| (-825))) +(|has| |#1| (-1074)) +((((-840)) |has| |#1| (-1074))) +(|has| |#1| (-1074)) (((|#1|) . T)) -((((-838)) . T) (((-1152)) . T)) -(|has| |#1| (-1072)) -((((-838)) |has| |#1| (-1072))) -(|has| |#1| (-1072)) -((((-838)) . T) (((-1152)) . T)) +((((-840)) . T) (((-1154)) . T)) +(|has| |#1| (-1074)) +((((-840)) |has| |#1| (-1074))) +(|has| |#1| (-1074)) +((((-840)) . T) (((-1154)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) +((((-840)) . T)) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (((|#1|) . T)) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) +((((-527)) |has| |#1| (-598 (-527)))) (((|#1|) . T)) -(|has| |#1| (-361)) +(|has| |#1| (-363)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-1129) (-1147) (-536) (-219) (-838)) . T)) -((((-838)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-1131) (-1149) (-538) (-221) (-840)) . T)) +((((-840)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-838)) . T)) -(-3886 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(-3886 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023)) (|has| |#3| (-1072))) -(-3886 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023)) (|has| |#3| (-1072))) +((((-840)) . T)) +(-3891 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(-3891 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1074))) +(-3891 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1074))) (((|#3|) |has| |#3| (-170))) -(-3886 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(-3886 (|has| |#3| (-170)) (|has| |#3| (-705)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(-3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(-3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(-3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(-3886 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -(-3886 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023))) -((($) -3886 (|has| |#3| (-170)) (|has| |#3| (-823)) (|has| |#3| (-1023))) ((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023)))) -(((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)))) -((((-838)) -3886 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-595 (-838))) (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-361)) (|has| |#3| (-705)) (|has| |#3| (-771)) (|has| |#3| (-823)) (|has| |#3| (-1023)) (|has| |#3| (-1072))) (((-1229 |#3|)) . T)) +(-3891 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(-3891 (|has| |#3| (-170)) (|has| |#3| (-707)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(-3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(-3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(-3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(-3891 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +(-3891 (|has| |#3| (-130)) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025))) +((($) -3891 (|has| |#3| (-170)) (|has| |#3| (-825)) (|has| |#3| (-1025))) ((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025)))) +(((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)))) +((((-840)) -3891 (|has| |#3| (-25)) (|has| |#3| (-130)) (|has| |#3| (-597 (-840))) (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-363)) (|has| |#3| (-707)) (|has| |#3| (-773)) (|has| |#3| (-825)) (|has| |#3| (-1025)) (|has| |#3| (-1074))) (((-1231 |#3|)) . T)) (|has| |#3| (-170)) -(((|#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023))) (($) |has| |#3| (-170))) -(((|#3| |#3|) -3886 (|has| |#3| (-170)) (|has| |#3| (-356)) (|has| |#3| (-1023))) (($ $) |has| |#3| (-170))) -(((|#3|) |has| |#3| (-1023))) -((((-1147)) -12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) -(-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) -(|has| |#3| (-361)) -(((|#3|) |has| |#3| (-1023))) -(((|#3|) |has| |#3| (-1023)) (((-536)) -12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023)))) -(((|#3|) |has| |#3| (-1072))) -(((|#3|) |has| |#3| (-1072)) (((-536)) -12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072))) (((-400 (-536))) -12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072)))) -((((-536) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) -(((|#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) +(((|#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($) |has| |#3| (-170))) +(((|#3| |#3|) -3891 (|has| |#3| (-170)) (|has| |#3| (-358)) (|has| |#3| (-1025))) (($ $) |has| |#3| (-170))) +(((|#3|) |has| |#3| (-1025))) +((((-1149)) -12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) +(-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) +(|has| |#3| (-363)) +(((|#3|) |has| |#3| (-1025))) +(((|#3|) |has| |#3| (-1025)) (((-538)) -12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025)))) +(((|#3|) |has| |#3| (-1074))) +(((|#3|) |has| |#3| (-1074)) (((-538)) -12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074))) (((-402 (-538))) -12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074)))) +((((-538) |#3|) . T)) +(((|#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) +(((|#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (((|#3|) . T)) -((((-536) |#3|) . T)) -((((-536) |#3|) . T)) -(|has| |#3| (-771)) -(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) -(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) -(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) -(-3886 (|has| |#3| (-771)) (|has| |#3| (-823))) -(|has| |#3| (-823)) -(|has| |#3| (-823)) -(((|#3|) |has| |#3| (-356))) +((((-538) |#3|) . T)) +((((-538) |#3|) . T)) +(|has| |#3| (-773)) +(-3891 (|has| |#3| (-773)) (|has| |#3| (-825))) +(-3891 (|has| |#3| (-773)) (|has| |#3| (-825))) +(-3891 (|has| |#3| (-773)) (|has| |#3| (-825))) +(-3891 (|has| |#3| (-773)) (|has| |#3| (-825))) +(|has| |#3| (-825)) +(|has| |#3| (-825)) +(((|#3|) |has| |#3| (-358))) (((|#1| |#3|) . T)) -((((-838)) . T)) -((((-838)) . T) (((-1152)) . T)) +((((-840)) . T)) +((((-840)) . T) (((-1154)) . T)) ((($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-536)) . T)) -((((-536)) . T)) -((((-525)) . T) (((-536)) . T) (((-864 (-536))) . T) (((-371)) . T) (((-219)) . T)) -((((-536)) . T)) -((((-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#2| (-596 (-525)))) (((-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371))))) (((-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) +((((-538)) . T)) +((((-538)) . T)) +((((-527)) . T) (((-538)) . T) (((-866 (-538))) . T) (((-373)) . T) (((-221)) . T)) +((((-538)) . T)) +((((-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#2| (-598 (-527)))) (((-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373))))) (((-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) ((($) . T)) -(((|#1| (-522 |#2|)) . T)) +(((|#1| (-524 |#2|)) . T)) (((|#1|) . T)) -((((-838)) . T)) -((($) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T)) +((((-840)) . T)) +((($) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) -(((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536)))) ((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) -3886 (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884)))) -(((|#1| (-522 |#2|)) . T)) -(((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-619 (-536)))) -(-3886 (|has| |#1| (-444)) (|has| |#1| (-884))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))) +(((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))) ((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) -3891 (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886)))) +(((|#1| (-524 |#2|)) . T)) +(((|#1|) . T)) +(((|#1|) . T) (((-538)) |has| |#1| (-621 (-538)))) +(-3891 (|has| |#1| (-446)) (|has| |#1| (-886))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#2|) . T)) -((((-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#2| (-860 (-371)))) (((-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#2| (-860 (-536))))) -(|has| |#1| (-884)) -(|has| |#1| (-884)) -((((-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) (((-536)) |has| |#1| (-1012 (-536))) ((|#1|) . T) ((|#2|) . T)) -(((|#1| (-522 |#2|) |#2|) . T)) +((((-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#2| (-862 (-373)))) (((-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#2| (-862 (-538))))) +(|has| |#1| (-886)) +(|has| |#1| (-886)) +((((-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) (((-538)) |has| |#1| (-1014 (-538))) ((|#1|) . T) ((|#2|) . T)) +(((|#1| (-524 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-838)) . T)) -(((|#1| (-522 |#2|) |#2|) . T)) -((($) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T)) +((((-840)) . T)) +(((|#1| (-524 |#2|) |#2|) . T)) +((($) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) -(((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536)))) ((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) -(((|#1| (-522 |#2|)) . T)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-545))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545)))) +(((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))) ((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545)))) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545))) +(((|#1| (-524 |#2|)) . T)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) (((|#1| |#2|) . T)) -((((-838)) . T)) -(((|#1|) . T)) -((((-1152)) . T) (((-838)) . T)) -((((-838)) . T)) -((((-1111 |#1| |#2|)) . T)) -(((#1=(-1111 |#1| |#2|) #1#) |has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|)))) -((((-1111 |#1| |#2|)) |has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|)))) -((((-838)) . T)) -((((-1111 |#1| |#2|)) . T)) -((((-525)) |has| |#2| (-596 (-525)))) -(((|#2|) |has| |#2| (-6 (-4350 "*")))) +((((-840)) . T)) +(((|#1|) . T)) +((((-1154)) . T) (((-840)) . T)) +((((-840)) . T)) +((((-1113 |#1| |#2|)) . T)) +(((#1=(-1113 |#1| |#2|) #1#) |has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|)))) +((((-1113 |#1| |#2|)) |has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|)))) +((((-840)) . T)) +((((-1113 |#1| |#2|)) . T)) +((((-527)) |has| |#2| (-598 (-527)))) +(((|#2|) |has| |#2| (-6 (-4355 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) -((((-667 |#2|)) . T) (((-838)) . T)) +((((-669 |#2|)) . T) (((-840)) . T)) ((($) . T) ((|#2|) . T)) -(((|#2|) -3886 (|has| |#2| (-6 (-4350 "*"))) (|has| |#2| (-170)))) +(((|#2|) -3891 (|has| |#2| (-6 (-4355 "*"))) (|has| |#2| (-170)))) (((|#2|) . T)) -((((-1147)) |has| |#2| (-874 (-1147)))) -(|has| |#2| (-227)) +((((-1149)) |has| |#2| (-876 (-1149)))) +(|has| |#2| (-229)) (((|#2|) . T)) -(((|#2|) . T) (((-536)) |has| |#2| (-619 (-536)))) +(((|#2|) . T) (((-538)) |has| |#2| (-621 (-538)))) (((|#2|) . T)) -(((|#2|) . T) (((-536)) |has| |#2| (-1012 (-536))) (((-400 (-536))) |has| |#2| (-1012 (-400 (-536))))) -(((|#1| |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) +(((|#2|) . T) (((-538)) |has| |#2| (-1014 (-538))) (((-402 (-538))) |has| |#2| (-1014 (-402 (-538))))) +(((|#1| |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (((|#2|) . T)) -(((|#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) . T)) +(((|#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-525)) |has| |#4| (-596 (-525)))) +((((-527)) |has| |#4| (-598 (-527)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (((|#4|) . T)) -((((-838)) . T) (((-620 |#4|)) . T)) +((((-840)) . T) (((-622 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) (((|#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) +((((-840)) . T)) ((((-142)) . T)) ((((-142)) . T)) ((((-142)) . T)) -((((-536) (-142)) . T)) -((((-536) (-142)) . T)) -((((-536) (-142)) . T)) +((((-538) (-142)) . T)) +((((-538) (-142)) . T)) +((((-538) (-142)) . T)) ((((-142)) . T)) ((((-142)) . T)) -((((-1129) |#1|) . T)) -((((-838)) . T)) -((((-1129) |#1|) . T)) -((((-1129) |#1|) . T)) -((((-1129) |#1|) . T)) -((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((#1=(-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) #1#) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) |has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) -((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -((((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) . T)) -((((-1129) |#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1145 |#1| |#2| |#3|)) . T)) -((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-356)) -((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1145 |#1| |#2| |#3|)) -12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|))))) -(((#1=(-1145 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|)))) (((-1147) #1#) -12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-505 (-1147) (-1145 |#1| |#2| |#3|))))) -((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3886 (-12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) -((((-1147)) -3886 (-12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147)))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) -((((-1145 |#1| |#2| |#3|)) |has| |#1| (-356))) -(-3886 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-145)))) -(-3886 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-143)))) -((((-838)) . T)) -(((|#1|) . T)) -((((-1145 |#1| |#2| |#3|) $) -12 (|has| |#1| (-356)) (|has| (-1145 |#1| |#2| |#3|) (-279 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)))) (($ $) . T)) -(((|#1| (-536) (-1053)) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-1145 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((#2=(-1145 |#1| |#2| |#3|) #2#) |has| |#1| (-356)) ((|#1| |#1|) . T)) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (((-1145 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (((-1145 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-1145 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1| (-536)) . T)) -(((|#1| (-536)) . T)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(((|#1| (-1145 |#1| |#2| |#3|)) . T)) -(((|#1|) . T)) -((((-838)) . T)) -((((-400 $) (-400 $)) |has| |#1| (-543)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) -(|has| |#1| (-356)) -(((|#1| (-749) (-1053)) . T)) -(|has| |#1| (-884)) -(|has| |#1| (-884)) -((((-1147)) |has| |#1| (-874 (-1147))) (((-1053)) . T)) -(|has| |#1| (-825)) -((((-536)) |has| |#1| (-619 (-536))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-749)) . T)) +((((-1131) |#1|) . T)) +((((-840)) . T)) +((((-1131) |#1|) . T)) +((((-1131) |#1|) . T)) +((((-1131) |#1|) . T)) +((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((#1=(-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) #1#) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) |has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))))) +((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +((((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) . T)) +((((-1131) |#1|) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-1147 |#1| |#2| |#3|)) . T)) +((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) +(|has| |#1| (-358)) +((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-1147 |#1| |#2| |#3|)) -12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))))) +(((#1=(-1147 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|)))) (((-1149) #1#) -12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))))) +((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(-3891 (-12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) +((((-1149)) -3891 (-12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149)))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) +((((-1147 |#1| |#2| |#3|)) |has| |#1| (-358))) +(-3891 (|has| |#1| (-145)) (-12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-145)))) +(-3891 (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-143)))) +((((-840)) . T)) +(((|#1|) . T)) +((((-1147 |#1| |#2| |#3|) $) -12 (|has| |#1| (-358)) (|has| (-1147 |#1| |#2| |#3|) (-281 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)))) (($ $) . T)) +(((|#1| (-538) (-1055)) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((#2=(-1147 |#1| |#2| |#3|) #2#) |has| |#1| (-358)) ((|#1| |#1|) . T)) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-1147 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +(((|#1| (-538)) . T)) +(((|#1| (-538)) . T)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(((|#1| (-1147 |#1| |#2| |#3|)) . T)) +(((|#1|) . T)) +((((-840)) . T)) +((((-402 $) (-402 $)) |has| |#1| (-545)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) +(|has| |#1| (-358)) +(((|#1| (-751) (-1055)) . T)) +(|has| |#1| (-886)) +(|has| |#1| (-886)) +((((-1149)) |has| |#1| (-876 (-1149))) (((-1055)) . T)) +(|has| |#1| (-827)) +((((-538)) |has| |#1| (-621 (-538))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-751)) . T)) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) . T) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-356)) (|has| |#1| (-444)) (|has| |#1| (-543)) (|has| |#1| (-884))) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) . T) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-358)) (|has| |#1| (-446)) (|has| |#1| (-545)) (|has| |#1| (-886))) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) (((|#1|) . T)) -((((-1053)) . T) ((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) -(((|#1| (-749)) . T)) -(((#1=(-1053) |#1|) . T) ((#1# $) . T) (($ $) . T)) +((((-1055)) . T) ((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538))))) +(((|#1| (-751)) . T)) +(((#1=(-1055) |#1|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1122)) +(|has| |#1| (-1124)) (((|#1|) . T)) -((((-1145 |#1| |#2| |#3|)) . T) (((-1138 |#1| |#2| |#3|)) . T)) +((((-1147 |#1| |#2| |#3|)) . T) (((-1140 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) +(|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))) ((($ $) . T)) -((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) -(((|#1| (-400 (-536)) (-1053)) . T)) +((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) +(((|#1| (-402 (-538)) (-1055)) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(((|#1| (-400 (-536))) . T)) -(((|#1| (-400 (-536))) . T)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -((((-838)) . T)) -(((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) -(((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) -(((|#1|) . T) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) -(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(((|#1| (-1138 |#1| |#2| |#3|)) . T)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(((|#1| (-749)) . T)) -(((|#1| (-749)) . T)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +(((|#1| (-402 (-538))) . T)) +(((|#1| (-402 (-538))) . T)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +((((-840)) . T)) +(((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358)))) +(((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358)))) +(((|#1|) . T) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545)))) +(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545)))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(((|#1| (-1140 |#1| |#2| |#3|)) . T)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(((|#1| (-751)) . T)) +(((|#1| (-751)) . T)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-545))) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -(((|#1| (-749) (-1053)) . T)) -((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) +((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +(((|#1| (-751) (-1055)) . T)) +((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) ((($ $) . T)) -((((-838)) . T)) -(((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) (($) . T)) -(|has| |#1| (-15 * (|#1| (-749) |#1|))) -(((|#1|) . T)) -((((-838)) . T)) -((((-371)) . T) (((-536)) . T)) -((((-864 (-371))) . T) (((-864 (-536))) . T) (((-1147)) . T) (((-525)) . T)) -((((-838)) . T)) -(((|#1| (-945)) . T)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +((((-840)) . T)) +(((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) (($) . T)) +(|has| |#1| (-15 * (|#1| (-751) |#1|))) +(((|#1|) . T)) +((((-840)) . T)) +((((-373)) . T) (((-538)) . T)) +((((-866 (-373))) . T) (((-866 (-538))) . T) (((-1149)) . T) (((-527)) . T)) +((((-840)) . T)) +(((|#1| (-947)) . T)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-545))) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((((-838)) . T)) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -(((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) (($) . T)) -((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -(((|#1|) . T)) -(((|#1|) . T) (((-536)) |has| |#1| (-1012 (-536))) (((-400 (-536))) |has| |#1| (-1012 (-400 (-536))))) -(((|#1| (-945)) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T)) +((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((((-840)) . T)) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +(((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) (($) . T)) +((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +(((|#1|) . T)) +(((|#1|) . T) (((-538)) |has| |#1| (-1014 (-538))) (((-402 (-538))) |has| |#1| (-1014 (-402 (-538))))) +(((|#1| (-947)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((#1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #1#) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -(((|#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) -((((-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((#1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #1#) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +(((|#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) +((((-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-381) (-1129)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072)))) -(((|#1|) . T)) -((($) . T)) -((($ $) . T) (((-1147) $) . T)) -((((-1147)) . T)) -((((-838)) . T)) -(((|#1| (-522 #1=(-1147)) #1#) . T)) -((($) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-383) (-1131)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074)))) +(((|#1|) . T)) +((($) . T)) +((($ $) . T) (((-1149) $) . T)) +((((-1149)) . T)) +((((-840)) . T)) +(((|#1| (-524 #1=(-1149)) #1#) . T)) +((($) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) -(((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536)))) ((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543)))) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) -((((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-543))) -(((|#1| (-522 (-1147))) . T)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(((|#1| (-1147)) . T)) -(|has| |#1| (-1072)) -(|has| |#1| (-1072)) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-1072))) (((-932 |#1|)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1219 |#1| |#2| |#3|)) . T)) -((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-356)) -((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) -((((-1219 |#1| |#2| |#3|)) -12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))))) -(((#1=(-1219 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|)))) (((-1147) #1#) -12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-505 (-1147) (-1219 |#1| |#2| |#3|))))) -((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3886 (-12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) -((((-1147)) -3886 (-12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147)))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) -((((-1219 |#1| |#2| |#3|)) |has| |#1| (-356))) -(-3886 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-145)))) -(-3886 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-143)))) -((((-838)) . T)) -(((|#1|) . T)) -((((-1219 |#1| |#2| |#3|) $) -12 (|has| |#1| (-356)) (|has| (-1219 |#1| |#2| |#3|) (-279 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)))) (($ $) . T)) -(((|#1| (-536) (-1053)) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((#2=(-1219 |#1| |#2| |#3|) #2#) |has| |#1| (-356)) ((|#1| |#1|) . T)) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) (((-1219 |#1| |#2| |#3|)) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1| (-536)) . T)) -(((|#1| (-536)) . T)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(((|#1| (-1219 |#1| |#2| |#3|)) . T)) -(((|#2|) |has| |#1| (-356))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-1122))) -(((|#2|) . T) (((-1147)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1147)))) (((-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536)))) (((-400 (-536))) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536))))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-994))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-884))) -(((|#2|) |has| |#1| (-356))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -(-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-798))) (-12 (|has| |#1| (-356)) (|has| |#2| (-825)))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -(-12 (|has| |#1| (-356)) (|has| |#2| (-798))) -((((-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-371)))) (((-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-536))))) -(|has| |#1| (-356)) -(((|#2|) |has| |#1| (-356))) -((((-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-619 (-536)))) ((|#2|) |has| |#1| (-356))) -(((|#2|) |has| |#1| (-356))) -(((|#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) (((-1147) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1147) |#2|)))) -(((|#2|) |has| |#1| (-356))) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) -((((-1147)) -3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) -(((|#2|) |has| |#1| (-356))) -((((-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-994))) (((-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-994))) (((-864 (-371))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-371))))) (((-864 (-536))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-536))))) (((-525)) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-525))))) -(-3886 (|has| |#1| (-145)) (-12 (|has| |#1| (-356)) (|has| |#2| (-145)))) -(-3886 (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143)))) -((((-838)) . T)) -(((|#1|) . T)) -(((|#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) (($ $) . T)) -(((|#1| (-536) (-1053)) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#2| |#2|) |has| |#1| (-356)) ((|#1| |#1|) . T)) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) ((|#1|) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) ((|#2|) |has| |#1| (-356)) (($) . T) ((|#1|) . T)) -((((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543))) ((|#2|) |has| |#1| (-356)) ((|#1|) |has| |#1| (-170))) -(((|#1| (-536)) . T)) -(((|#1| (-536)) . T)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-545))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545)))) +(((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538)))) ((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545)))) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545))) +((((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((|#1|) |has| |#1| (-170)) (($) |has| |#1| (-545))) +(((|#1| (-524 (-1149))) . T)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(((|#1| (-1149)) . T)) +(|has| |#1| (-1074)) +(|has| |#1| (-1074)) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-1074))) (((-934 |#1|)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-1221 |#1| |#2| |#3|)) . T)) +((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358))) +(|has| |#1| (-358)) +((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358))) +((((-1221 |#1| |#2| |#3|)) -12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|))))) +(((#1=(-1221 |#1| |#2| |#3|) #1#) -12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|)))) (((-1149) #1#) -12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-507 (-1149) (-1221 |#1| |#2| |#3|))))) +((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358))) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(-3891 (-12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) +((((-1149)) -3891 (-12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149)))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) +((((-1221 |#1| |#2| |#3|)) |has| |#1| (-358))) +(-3891 (|has| |#1| (-145)) (-12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-145)))) +(-3891 (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-143)))) +((((-840)) . T)) +(((|#1|) . T)) +((((-1221 |#1| |#2| |#3|) $) -12 (|has| |#1| (-358)) (|has| (-1221 |#1| |#2| |#3|) (-281 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)))) (($ $) . T)) +(((|#1| (-538) (-1055)) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((#2=(-1221 |#1| |#2| |#3|) #2#) |has| |#1| (-358)) ((|#1| |#1|) . T)) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)) (($) . T) ((|#1|) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) (((-1221 |#1| |#2| |#3|)) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +(((|#1| (-538)) . T)) +(((|#1| (-538)) . T)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(((|#1| (-1221 |#1| |#2| |#3|)) . T)) +(((|#2|) |has| |#1| (-358))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-1124))) +(((|#2|) . T) (((-1149)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))) (((-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538)))) (((-402 (-538))) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538))))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-996))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-886))) +(((|#2|) |has| |#1| (-358))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) +(-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-800))) (-12 (|has| |#1| (-358)) (|has| |#2| (-827)))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) +(-12 (|has| |#1| (-358)) (|has| |#2| (-800))) +((((-373)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-373)))) (((-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-538))))) +(|has| |#1| (-358)) +(((|#2|) |has| |#1| (-358))) +((((-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-621 (-538)))) ((|#2|) |has| |#1| (-358))) +(((|#2|) |has| |#1| (-358))) +(((|#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) (((-1149) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|)))) +(((|#2|) |has| |#1| (-358))) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) +((((-1149)) -3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) +(((|#2|) |has| |#1| (-358))) +((((-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-996))) (((-373)) -12 (|has| |#1| (-358)) (|has| |#2| (-996))) (((-866 (-373))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-373))))) (((-866 (-538))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-538))))) (((-527)) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-527))))) +(-3891 (|has| |#1| (-145)) (-12 (|has| |#1| (-358)) (|has| |#2| (-145)))) +(-3891 (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| |#2| (-143)))) +((((-840)) . T)) +(((|#1|) . T)) +(((|#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) (($ $) . T)) +(((|#1| (-538) (-1055)) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#2| |#2|) |has| |#1| (-358)) ((|#1| |#1|) . T)) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) ((|#1|) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) ((|#2|) |has| |#1| (-358)) (($) . T) ((|#1|) . T)) +((((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545))) ((|#2|) |has| |#1| (-358)) ((|#1|) |has| |#1| (-170))) +(((|#1| (-538)) . T)) +(((|#1| (-538)) . T)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) (((|#1| |#2|) . T)) -(((|#1| (-1124 |#1|)) |has| |#1| (-823))) -(|has| |#1| (-1072)) -((((-838)) |has| |#1| (-1072))) -(|has| |#1| (-1072)) -(((|#1|) . T)) -(((|#2|) . T)) -((((-838)) . T)) -((((-400 $) (-400 $)) |has| |#2| (-543)) (($ $) . T) ((|#2| |#2|) . T)) -(|has| |#2| (-356)) -(-3886 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-884))) -(-3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -(-3886 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -(-3886 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) -(|has| |#2| (-356)) -(((|#2| (-749) (-1053)) . T)) -(|has| |#2| (-884)) -(|has| |#2| (-884)) -((((-1147)) |has| |#2| (-874 (-1147))) (((-1053)) . T)) -(|has| |#2| (-825)) -((((-536)) |has| |#2| (-619 (-536))) ((|#2|) . T)) -(((|#2|) . T)) -(((|#2| (-749)) . T)) +(((|#1| (-1126 |#1|)) |has| |#1| (-825))) +(|has| |#1| (-1074)) +((((-840)) |has| |#1| (-1074))) +(|has| |#1| (-1074)) +(((|#1|) . T)) +(((|#2|) . T)) +((((-840)) . T)) +((((-402 $) (-402 $)) |has| |#2| (-545)) (($ $) . T) ((|#2| |#2|) . T)) +(|has| |#2| (-358)) +(-3891 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-886))) +(-3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +(-3891 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +(-3891 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) +(|has| |#2| (-358)) +(((|#2| (-751) (-1055)) . T)) +(|has| |#2| (-886)) +(|has| |#2| (-886)) +((((-1149)) |has| |#2| (-876 (-1149))) (((-1055)) . T)) +(|has| |#2| (-827)) +((((-538)) |has| |#2| (-621 (-538))) ((|#2|) . T)) +(((|#2|) . T)) +(((|#2| (-751)) . T)) (|has| |#2| (-145)) (|has| |#2| (-143)) -((($) -3886 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) ((|#2|) |has| |#2| (-170)) (((-400 (-536))) |has| |#2| (-38 (-400 (-536))))) -((($) . T) ((|#2|) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536))))) -((($) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) ((|#2|) . T) (((-400 (-536))) |has| |#2| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#2| (-170)) (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) ((|#2| |#2|) . T) ((#1=(-400 (-536)) #1#) |has| |#2| (-38 (-400 (-536))))) -((($) -3886 (|has| |#2| (-356)) (|has| |#2| (-444)) (|has| |#2| (-543)) (|has| |#2| (-884))) ((|#2|) |has| |#2| (-170)) (((-400 (-536))) |has| |#2| (-38 (-400 (-536))))) +((($) -3891 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) ((|#2|) |has| |#2| (-170)) (((-402 (-538))) |has| |#2| (-38 (-402 (-538))))) +((($) . T) ((|#2|) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538))))) +((($) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) ((|#2|) . T) (((-402 (-538))) |has| |#2| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#2| (-170)) (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) ((|#2| |#2|) . T) ((#1=(-402 (-538)) #1#) |has| |#2| (-38 (-402 (-538))))) +((($) -3891 (|has| |#2| (-358)) (|has| |#2| (-446)) (|has| |#2| (-545)) (|has| |#2| (-886))) ((|#2|) |has| |#2| (-170)) (((-402 (-538))) |has| |#2| (-38 (-402 (-538))))) (((|#2|) . T)) -((((-1053)) . T) ((|#2|) . T) (((-536)) |has| |#2| (-1012 (-536))) (((-400 (-536))) |has| |#2| (-1012 (-400 (-536))))) -(((|#2| (-749)) . T)) -(((#1=(-1053) |#2|) . T) ((#1# $) . T) (($ $) . T)) +((((-1055)) . T) ((|#2|) . T) (((-538)) |has| |#2| (-1014 (-538))) (((-402 (-538))) |has| |#2| (-1014 (-402 (-538))))) +(((|#2| (-751)) . T)) +(((#1=(-1055) |#2|) . T) ((#1# $) . T) (($ $) . T)) ((($) . T)) -(|has| |#2| (-1122)) +(|has| |#2| (-1124)) (((|#2|) . T)) -((((-1219 |#1| |#2| |#3|)) . T) (((-1189 |#1| |#2| |#3|)) . T)) +((((-1221 |#1| |#2| |#3|)) . T) (((-1191 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) +(|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))) ((($ $) . T)) -((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) -(((|#1| (-400 (-536)) (-1053)) . T)) +((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) +(((|#1| (-402 (-538)) (-1055)) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(((|#1| (-400 (-536))) . T)) -(((|#1| (-400 (-536))) . T)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -((((-838)) . T)) -(((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) -(((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) -(((|#1|) . T) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) -(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(((|#1| (-1189 |#1| |#2| |#3|)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) +(((|#1| (-402 (-538))) . T)) +(((|#1| (-402 (-538))) . T)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +((((-840)) . T)) +(((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358)))) +(((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358)))) +(((|#1|) . T) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545)))) +(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545)))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(((|#1| (-1191 |#1| |#2| |#3|)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))) ((($ $) . T)) -((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) -(((|#1| (-400 (-536)) (-1053)) . T)) +((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) +(((|#1| (-402 (-538)) (-1055)) . T)) (|has| |#1| (-143)) (|has| |#1| (-145)) -(((|#1| (-400 (-536))) . T)) -(((|#1| (-400 (-536))) . T)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-356)) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -((((-838)) . T)) -(((|#1|) . T) (($) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) -(((|#1| |#1|) . T) (($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) ((#1=(-400 (-536)) #1#) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356)))) -(((|#1|) . T) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) . T)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) -(((|#1|) |has| |#1| (-170)) (((-400 (-536))) -3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-356))) (($) -3886 (|has| |#1| (-356)) (|has| |#1| (-543)))) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-356)) (|has| |#1| (-543))) -(-3886 (|has| |#1| (-356)) (|has| |#1| (-543))) -(|has| |#1| (-356)) -(|has| |#1| (-356)) -(|has| |#1| (-356)) +(((|#1| (-402 (-538))) . T)) +(((|#1| (-402 (-538))) . T)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-358)) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +((((-840)) . T)) +(((|#1|) . T) (($) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358)))) +(((|#1| |#1|) . T) (($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) ((#1=(-402 (-538)) #1#) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358)))) +(((|#1|) . T) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) . T)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545)))) +(((|#1|) |has| |#1| (-170)) (((-402 (-538))) -3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-358))) (($) -3891 (|has| |#1| (-358)) (|has| |#1| (-545)))) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-358)) (|has| |#1| (-545))) +(-3891 (|has| |#1| (-358)) (|has| |#1| (-545))) +(|has| |#1| (-358)) +(|has| |#1| (-358)) +(|has| |#1| (-358)) (((|#1| |#2|) . T)) -((((-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T)) -(|has| (-1210 |#2| |#3| |#4|) (-145)) -(|has| (-1210 |#2| |#3| |#4|) (-143)) -((($) . T) ((#1=(-1210 |#2| |#3| |#4|)) |has| #1# (-170)) (((-400 (-536))) |has| #1# (-38 (-400 (-536))))) -((((-838)) . T)) -((($) . T) ((#1=(-1210 |#2| |#3| |#4|)) . T) (((-400 (-536))) |has| #1# (-38 (-400 (-536))))) -((($ $) . T) ((#1=(-1210 |#2| |#3| |#4|) #1#) . T) ((#2=(-400 (-536)) #2#) |has| #1# (-38 (-400 (-536))))) -(((#1=(-1210 |#2| |#3| |#4|)) . T) (((-400 (-536))) |has| #1# (-38 (-400 (-536)))) (($) . T)) -((($) . T) ((#1=(-1210 |#2| |#3| |#4|)) |has| #1# (-170)) (((-400 (-536))) |has| #1# (-38 (-400 (-536))))) -((((-1210 |#2| |#3| |#4|)) . T)) -((((-1210 |#2| |#3| |#4|)) . T)) -((((-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) . T)) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(|has| |#1| (-38 (-400 (-536)))) -(((|#1| (-749)) . T)) -(((|#1| (-749)) . T)) -(|has| |#1| (-543)) -(|has| |#1| (-543)) -(-3886 (|has| |#1| (-170)) (|has| |#1| (-543))) +((((-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T)) +(|has| (-1212 |#2| |#3| |#4|) (-145)) +(|has| (-1212 |#2| |#3| |#4|) (-143)) +((($) . T) ((#1=(-1212 |#2| |#3| |#4|)) |has| #1# (-170)) (((-402 (-538))) |has| #1# (-38 (-402 (-538))))) +((((-840)) . T)) +((($) . T) ((#1=(-1212 |#2| |#3| |#4|)) . T) (((-402 (-538))) |has| #1# (-38 (-402 (-538))))) +((($ $) . T) ((#1=(-1212 |#2| |#3| |#4|) #1#) . T) ((#2=(-402 (-538)) #2#) |has| #1# (-38 (-402 (-538))))) +(((#1=(-1212 |#2| |#3| |#4|)) . T) (((-402 (-538))) |has| #1# (-38 (-402 (-538)))) (($) . T)) +((($) . T) ((#1=(-1212 |#2| |#3| |#4|)) |has| #1# (-170)) (((-402 (-538))) |has| #1# (-38 (-402 (-538))))) +((((-1212 |#2| |#3| |#4|)) . T)) +((((-1212 |#2| |#3| |#4|)) . T)) +((((-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) . T)) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(|has| |#1| (-38 (-402 (-538)))) +(((|#1| (-751)) . T)) +(((|#1| (-751)) . T)) +(|has| |#1| (-545)) +(|has| |#1| (-545)) +(-3891 (|has| |#1| (-170)) (|has| |#1| (-545))) (|has| |#1| (-145)) (|has| |#1| (-143)) -((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -((($ $) -3886 (|has| |#1| (-170)) (|has| |#1| (-543))) ((|#1| |#1|) . T) ((#1=(-400 (-536)) #1#) |has| |#1| (-38 (-400 (-536))))) -((($) |has| |#1| (-543)) ((|#1|) |has| |#1| (-170)) (((-400 (-536))) |has| |#1| (-38 (-400 (-536))))) -(((|#1| (-749) (-1053)) . T)) -((((-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) +((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +((($ $) -3891 (|has| |#1| (-170)) (|has| |#1| (-545))) ((|#1| |#1|) . T) ((#1=(-402 (-538)) #1#) |has| |#1| (-38 (-402 (-538))))) +((($) |has| |#1| (-545)) ((|#1|) |has| |#1| (-170)) (((-402 (-538))) |has| |#1| (-38 (-402 (-538))))) +(((|#1| (-751) (-1055)) . T)) +((((-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) ((($ $) . T)) -((((-838)) . T)) -(((|#1|) . T) (((-400 (-536))) |has| |#1| (-38 (-400 (-536)))) (($) . T)) -(|has| |#1| (-15 * (|#1| (-749) |#1|))) +((((-840)) . T)) +(((|#1|) . T) (((-402 (-538))) |has| |#1| (-38 (-402 (-538)))) (($) . T)) +(|has| |#1| (-15 * (|#1| (-751) |#1|))) (((|#1|) . T)) -((((-1147)) . T) (((-838)) . T)) +((((-1149)) . T) (((-840)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-536) |#1|) . T)) -((((-525)) |has| |#1| (-596 (-525)))) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-538) |#1|) . T)) +((((-527)) |has| |#1| (-598 (-527)))) (((|#1|) . T)) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(-3886 (|has| |#1| (-825)) (|has| |#1| (-1072))) -(((|#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -(((|#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) -((((-838)) -3886 (|has| |#1| (-595 (-838))) (|has| |#1| (-825)) (|has| |#1| (-1072)))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(-3891 (|has| |#1| (-827)) (|has| |#1| (-1074))) +(((|#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +(((|#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) +((((-840)) -3891 (|has| |#1| (-597 (-840))) (|has| |#1| (-827)) (|has| |#1| (-1074)))) (((|#1|) . T)) -(|has| |#1| (-825)) +(|has| |#1| (-827)) (((|#1|) . T)) (((|#1|) . T)) -((((-838)) . T)) -((((-838)) . T)) -((((-838)) . T) (((-1152)) . T)) -((((-838)) . T) (((-1152)) . T)) +((((-840)) . T)) +((((-840)) . T)) +((((-840)) . T) (((-1154)) . T)) +((((-840)) . T) (((-1154)) . T)) (((|#1|) |has| |#1| (-170))) (((|#1|) |has| |#1| (-170))) (((|#1| |#1|) |has| |#1| (-170))) (((|#1|) |has| |#1| (-170))) (((|#1|) |has| |#1| (-170)) (($) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-525)) |has| |#4| (-596 (-525)))) +((((-527)) |has| |#4| (-598 (-527)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) -(((|#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) +(((|#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) +(((|#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (((|#4|) . T)) -((((-838)) . T) (((-620 |#4|)) . T)) +((((-840)) . T) (((-622 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-170))) @@ -3216,12 +3218,12 @@ (((|#1| |#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-170))) -((((-797 |#1|)) . T)) -(((|#2| (-797 |#1|)) . T)) -(((|#2| (-867 |#1|)) . T)) +((((-799 |#1|)) . T)) +(((|#2| (-799 |#1|)) . T)) +(((|#2| (-869 |#1|)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-170))) (((|#2| |#2|) . T)) @@ -3229,19 +3231,19 @@ (((|#2|) |has| |#2| (-170))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-838)) . T)) -((((-867 |#1|)) . T) (((-797 |#1|)) . T)) +((((-840)) . T)) +((((-869 |#1|)) . T) (((-799 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1147) |#1|) . T)) +((((-1149) |#1|) . T)) (((|#1|) |has| |#1| (-170))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-170))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-838)) . T)) -((((-797 (-1147))) . T)) -((((-1147) |#1|) . T)) +((((-840)) . T)) +((((-799 (-1149))) . T)) +((((-1149) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-170))) @@ -3250,7 +3252,7 @@ (((|#1|) |has| |#1| (-170))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-838)) . T)) +((((-840)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-170))) (((|#2| |#2|) . T)) @@ -3258,12 +3260,12 @@ (((|#2|) |has| |#2| (-170))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-838)) . T)) -((((-797 |#1|)) . T)) +((((-840)) . T)) +((((-799 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-536)) . T)) +((((-538)) . T)) ((($ $) . T)) ((($) . T)) -((((-838)) . T)) +((((-840)) . T)) ((($) . T)) -(((-1258 . -170) T) ((-1258 . -705) T) ((-1258 . -1083) T) ((-1258 . -1030) T) ((-1258 . -1023) T) ((-1258 . -626) 145062) ((-1258 . -130) T) ((-1258 . -25) T) ((-1258 . -101) T) ((-1258 . -595) 145044) ((-1258 . -1072) T) ((-1258 . -23) T) ((-1258 . -21) T) ((-1258 . -1029) 145031) ((-1258 . -111) 145016) ((-1258 . -361) T) ((-1258 . -596) 144998) ((-1258 . -1122) T) ((-1254 . -1252) 144977) ((-1254 . -1012) 144954) ((-1254 . -1023) T) ((-1254 . -1030) T) ((-1254 . -1083) T) ((-1254 . -705) T) ((-1254 . -21) T) ((-1254 . -23) T) ((-1254 . -1072) T) ((-1254 . -595) 144936) ((-1254 . -101) T) ((-1254 . -25) T) ((-1254 . -130) T) ((-1254 . -626) 144910) ((-1254 . -1244) 144894) ((-1254 . -696) 144864) ((-1254 . -1029) 144848) ((-1254 . -111) 144827) ((-1254 . -38) 144797) ((-1254 . -1249) 144776) ((-1253 . -1023) T) ((-1253 . -1030) T) ((-1253 . -1083) T) ((-1253 . -705) T) ((-1253 . -21) T) ((-1253 . -23) T) ((-1253 . -1072) T) ((-1253 . -595) 144758) ((-1253 . -101) T) ((-1253 . -25) T) ((-1253 . -130) T) ((-1253 . -626) 144732) ((-1253 . -1244) 144716) ((-1253 . -696) 144686) ((-1253 . -1029) 144670) ((-1253 . -111) 144649) ((-1253 . -38) 144619) ((-1253 . -377) 144598) ((-1253 . -1012) 144582) ((-1251 . -1252) 144558) ((-1251 . -1012) 144532) ((-1251 . -1023) T) ((-1251 . -1030) T) ((-1251 . -1083) T) ((-1251 . -705) T) ((-1251 . -21) T) ((-1251 . -23) T) ((-1251 . -1072) T) ((-1251 . -595) 144514) ((-1251 . -101) T) ((-1251 . -25) T) ((-1251 . -130) T) ((-1251 . -626) 144488) ((-1251 . -1244) 144472) ((-1251 . -696) 144442) ((-1251 . -1029) 144426) ((-1251 . -111) 144405) ((-1251 . -38) 144375) ((-1251 . -1249) 144351) ((-1250 . -1252) 144330) ((-1250 . -1012) 144287) ((-1250 . -1023) T) ((-1250 . -1030) T) ((-1250 . -1083) T) ((-1250 . -705) T) ((-1250 . -21) T) ((-1250 . -23) T) ((-1250 . -1072) T) ((-1250 . -595) 144269) ((-1250 . -101) T) ((-1250 . -25) T) ((-1250 . -130) T) ((-1250 . -626) 144243) ((-1250 . -1244) 144227) ((-1250 . -696) 144197) ((-1250 . -1029) 144181) ((-1250 . -111) 144160) ((-1250 . -38) 144130) ((-1250 . -1249) 144109) ((-1250 . -377) 144081) ((-1245 . -377) 144053) ((-1245 . -1012) 144030) ((-1245 . -696) 144000) ((-1245 . -626) 143974) ((-1245 . -130) T) ((-1245 . -25) T) ((-1245 . -101) T) ((-1245 . -595) 143956) ((-1245 . -1072) T) ((-1245 . -23) T) ((-1245 . -21) T) ((-1245 . -1029) 143940) ((-1245 . -111) 143919) ((-1245 . -1252) 143898) ((-1245 . -1023) T) ((-1245 . -1030) T) ((-1245 . -1083) T) ((-1245 . -705) T) ((-1245 . -1244) 143882) ((-1245 . -38) 143852) ((-1245 . -1249) 143831) ((-1243 . -1178) 143800) ((-1243 . -595) 143762) ((-1243 . -149) 143746) ((-1243 . -34) T) ((-1243 . -1183) T) ((-1243 . -302) 143684) ((-1243 . -505) 143617) ((-1243 . -1072) T) ((-1243 . -101) T) ((-1243 . -481) 143601) ((-1243 . -596) 143562) ((-1243 . -950) 143531) ((-1242 . -1023) T) ((-1242 . -1030) T) ((-1242 . -1083) T) ((-1242 . -705) T) ((-1242 . -21) T) ((-1242 . -23) T) ((-1242 . -1072) T) ((-1242 . -595) 143513) ((-1242 . -101) T) ((-1242 . -25) T) ((-1242 . -130) T) ((-1242 . -626) 143473) ((-1242 . -38) 143443) ((-1242 . -111) 143408) ((-1242 . -1029) 143378) ((-1242 . -696) 143348) ((-1241 . -1054) T) ((-1241 . -595) 143314) ((-1241 . -1072) T) ((-1241 . -101) T) ((-1241 . -92) T) ((-1240 . -1054) T) ((-1240 . -595) 143280) ((-1240 . -1072) T) ((-1240 . -101) T) ((-1240 . -92) T) ((-1233 . -1072) T) ((-1233 . -595) 143262) ((-1233 . -101) T) ((-1232 . -1072) T) ((-1232 . -595) 143244) ((-1232 . -101) T) ((-1229 . -1228) 143228) ((-1229 . -365) 143212) ((-1229 . -825) 143191) ((-1229 . -149) 143175) ((-1229 . -34) T) ((-1229 . -1183) T) ((-1229 . -595) 143087) ((-1229 . -302) 143025) ((-1229 . -505) 142958) ((-1229 . -1072) 142908) ((-1229 . -101) 142858) ((-1229 . -481) 142842) ((-1229 . -596) 142803) ((-1229 . -586) 142780) ((-1229 . -279) 142757) ((-1229 . -281) 142734) ((-1229 . -629) 142718) ((-1229 . -19) 142702) ((-1226 . -1072) T) ((-1226 . -595) 142668) ((-1226 . -101) T) ((-1219 . -1222) 142652) ((-1219 . -227) 142611) ((-1219 . -626) 142536) ((-1219 . -130) T) ((-1219 . -25) T) ((-1219 . -101) T) ((-1219 . -595) 142518) ((-1219 . -1072) T) ((-1219 . -23) T) ((-1219 . -21) T) ((-1219 . -705) T) ((-1219 . -1083) T) ((-1219 . -1030) T) ((-1219 . -1023) T) ((-1219 . -279) 142503) ((-1219 . -874) 142416) ((-1219 . -947) 142385) ((-1219 . -38) 142282) ((-1219 . -111) 142151) ((-1219 . -1029) 142034) ((-1219 . -696) 141931) ((-1219 . -143) 141910) ((-1219 . -145) 141889) ((-1219 . -170) 141840) ((-1219 . -543) 141819) ((-1219 . -283) 141798) ((-1219 . -47) 141775) ((-1219 . -1208) 141752) ((-1219 . -35) 141718) ((-1219 . -94) 141684) ((-1219 . -277) 141650) ((-1219 . -484) 141616) ((-1219 . -1172) 141582) ((-1219 . -1169) 141548) ((-1219 . -976) 141514) ((-1216 . -319) 141458) ((-1216 . -1012) 141424) ((-1216 . -405) 141390) ((-1216 . -38) 141282) ((-1216 . -626) 141187) ((-1216 . -705) T) ((-1216 . -1083) T) ((-1216 . -1030) T) ((-1216 . -1023) T) ((-1216 . -111) 141079) ((-1216 . -1029) 140984) ((-1216 . -21) T) ((-1216 . -23) T) ((-1216 . -1072) T) ((-1216 . -595) 140966) ((-1216 . -101) T) ((-1216 . -25) T) ((-1216 . -130) T) ((-1216 . -696) 140858) ((-1216 . -143) 140819) ((-1216 . -145) 140780) ((-1216 . -170) T) ((-1216 . -543) T) ((-1216 . -283) T) ((-1216 . -47) 140724) ((-1215 . -1214) 140703) ((-1215 . -356) 140682) ((-1215 . -1188) 140661) ((-1215 . -895) 140640) ((-1215 . -543) 140591) ((-1215 . -170) 140522) ((-1215 . -696) 140363) ((-1215 . -38) 140204) ((-1215 . -444) 140183) ((-1215 . -300) 140162) ((-1215 . -626) 140059) ((-1215 . -705) T) ((-1215 . -1083) T) ((-1215 . -1030) T) ((-1215 . -1023) T) ((-1215 . -111) 139880) ((-1215 . -1029) 139715) ((-1215 . -21) T) ((-1215 . -23) T) ((-1215 . -1072) T) ((-1215 . -595) 139697) ((-1215 . -101) T) ((-1215 . -25) T) ((-1215 . -130) T) ((-1215 . -283) 139648) ((-1215 . -237) 139627) ((-1215 . -976) 139593) ((-1215 . -1169) 139559) ((-1215 . -1172) 139525) ((-1215 . -484) 139491) ((-1215 . -277) 139457) ((-1215 . -94) 139423) ((-1215 . -35) 139389) ((-1215 . -1208) 139359) ((-1215 . -47) 139329) ((-1215 . -145) 139308) ((-1215 . -143) 139287) ((-1215 . -947) 139249) ((-1215 . -874) 139155) ((-1215 . -279) 139140) ((-1215 . -227) 139092) ((-1215 . -1212) 139076) ((-1215 . -1012) 139060) ((-1210 . -1214) 139021) ((-1210 . -356) 139000) ((-1210 . -1188) 138979) ((-1210 . -895) 138958) ((-1210 . -543) 138909) ((-1210 . -170) 138840) ((-1210 . -696) 138681) ((-1210 . -38) 138522) ((-1210 . -444) 138501) ((-1210 . -300) 138480) ((-1210 . -626) 138377) ((-1210 . -705) T) ((-1210 . -1083) T) ((-1210 . -1030) T) ((-1210 . -1023) T) ((-1210 . -111) 138198) ((-1210 . -1029) 138033) ((-1210 . -21) T) ((-1210 . -23) T) ((-1210 . -1072) T) ((-1210 . -595) 138015) ((-1210 . -101) T) ((-1210 . -25) T) ((-1210 . -130) T) ((-1210 . -283) 137966) ((-1210 . -237) 137945) ((-1210 . -976) 137911) ((-1210 . -1169) 137877) ((-1210 . -1172) 137843) ((-1210 . -484) 137809) ((-1210 . -277) 137775) ((-1210 . -94) 137741) ((-1210 . -35) 137707) ((-1210 . -1208) 137677) ((-1210 . -47) 137647) ((-1210 . -145) 137626) ((-1210 . -143) 137605) ((-1210 . -947) 137567) ((-1210 . -874) 137473) ((-1210 . -279) 137458) ((-1210 . -227) 137410) ((-1210 . -1212) 137394) ((-1210 . -1012) 137329) ((-1198 . -1205) 137313) ((-1198 . -1122) 137291) ((-1198 . -596) NIL) ((-1198 . -302) 137278) ((-1198 . -505) 137225) ((-1198 . -319) 137202) ((-1198 . -1012) 137082) ((-1198 . -405) 137066) ((-1198 . -38) 136895) ((-1198 . -111) 136704) ((-1198 . -1029) 136527) ((-1198 . -626) 136452) ((-1198 . -696) 136281) ((-1198 . -143) 136260) ((-1198 . -145) 136239) ((-1198 . -47) 136216) ((-1198 . -370) 136200) ((-1198 . -619) 136148) ((-1198 . -825) 136127) ((-1198 . -874) 136070) ((-1198 . -860) NIL) ((-1198 . -884) 136049) ((-1198 . -1188) 136028) ((-1198 . -924) 135997) ((-1198 . -895) 135976) ((-1198 . -543) 135887) ((-1198 . -283) 135798) ((-1198 . -170) 135689) ((-1198 . -444) 135620) ((-1198 . -300) 135599) ((-1198 . -279) 135526) ((-1198 . -227) T) ((-1198 . -130) T) ((-1198 . -25) T) ((-1198 . -101) T) ((-1198 . -595) 135508) ((-1198 . -1072) T) ((-1198 . -23) T) ((-1198 . -21) T) ((-1198 . -705) T) ((-1198 . -1083) T) ((-1198 . -1030) T) ((-1198 . -1023) T) ((-1198 . -225) 135492) ((-1196 . -1065) 135476) ((-1196 . -1183) T) ((-1196 . -1072) 135454) ((-1196 . -595) 135421) ((-1196 . -101) 135399) ((-1196 . -1066) 135356) ((-1194 . -1193) 135335) ((-1194 . -976) 135301) ((-1194 . -1169) 135267) ((-1194 . -1172) 135233) ((-1194 . -484) 135199) ((-1194 . -277) 135165) ((-1194 . -94) 135131) ((-1194 . -35) 135097) ((-1194 . -1208) 135074) ((-1194 . -47) 135051) ((-1194 . -696) 134865) ((-1194 . -626) 134735) ((-1194 . -1029) 134543) ((-1194 . -111) 134332) ((-1194 . -38) 134146) ((-1194 . -947) 134115) ((-1194 . -279) 134035) ((-1194 . -1191) 134019) ((-1194 . -705) T) ((-1194 . -1083) T) ((-1194 . -1030) T) ((-1194 . -1023) T) ((-1194 . -21) T) ((-1194 . -23) T) ((-1194 . -1072) T) ((-1194 . -595) 134001) ((-1194 . -101) T) ((-1194 . -25) T) ((-1194 . -130) T) ((-1194 . -143) 133926) ((-1194 . -145) 133851) ((-1194 . -596) 133524) ((-1194 . -225) 133494) ((-1194 . -874) 133345) ((-1194 . -227) 133250) ((-1194 . -356) 133229) ((-1194 . -1188) 133208) ((-1194 . -895) 133187) ((-1194 . -543) 133138) ((-1194 . -170) 133069) ((-1194 . -444) 133048) ((-1194 . -300) 133027) ((-1194 . -283) 132978) ((-1194 . -237) 132957) ((-1194 . -331) 132927) ((-1194 . -505) 132787) ((-1194 . -302) 132726) ((-1194 . -370) 132696) ((-1194 . -619) 132604) ((-1194 . -393) 132574) ((-1194 . -1183) 132553) ((-1194 . -860) 132426) ((-1194 . -798) 132379) ((-1194 . -769) 132332) ((-1194 . -770) 132285) ((-1194 . -825) 132184) ((-1194 . -772) 132137) ((-1194 . -775) 132090) ((-1194 . -823) 132043) ((-1194 . -858) 132013) ((-1194 . -884) 131966) ((-1194 . -994) 131919) ((-1194 . -1012) 131705) ((-1194 . -1122) 131657) ((-1194 . -965) 131627) ((-1189 . -1193) 131588) ((-1189 . -976) 131554) ((-1189 . -1169) 131520) ((-1189 . -1172) 131486) ((-1189 . -484) 131452) ((-1189 . -277) 131418) ((-1189 . -94) 131384) ((-1189 . -35) 131350) ((-1189 . -1208) 131327) ((-1189 . -47) 131304) ((-1189 . -696) 131100) ((-1189 . -626) 130952) ((-1189 . -1029) 130742) ((-1189 . -111) 130511) ((-1189 . -38) 130307) ((-1189 . -947) 130276) ((-1189 . -279) 130124) ((-1189 . -1191) 130108) ((-1189 . -705) T) ((-1189 . -1083) T) ((-1189 . -1030) T) ((-1189 . -1023) T) ((-1189 . -21) T) ((-1189 . -23) T) ((-1189 . -1072) T) ((-1189 . -595) 130090) ((-1189 . -101) T) ((-1189 . -25) T) ((-1189 . -130) T) ((-1189 . -143) 129997) ((-1189 . -145) 129904) ((-1189 . -596) NIL) ((-1189 . -225) 129856) ((-1189 . -874) 129689) ((-1189 . -227) 129576) ((-1189 . -356) 129555) ((-1189 . -1188) 129534) ((-1189 . -895) 129513) ((-1189 . -543) 129464) ((-1189 . -170) 129395) ((-1189 . -444) 129374) ((-1189 . -300) 129353) ((-1189 . -283) 129304) ((-1189 . -237) 129283) ((-1189 . -331) 129235) ((-1189 . -505) 129004) ((-1189 . -302) 128889) ((-1189 . -370) 128841) ((-1189 . -619) 128793) ((-1189 . -393) 128745) ((-1189 . -1183) 128724) ((-1189 . -860) NIL) ((-1189 . -798) NIL) ((-1189 . -769) NIL) ((-1189 . -770) NIL) ((-1189 . -825) NIL) ((-1189 . -772) NIL) ((-1189 . -775) NIL) ((-1189 . -823) NIL) ((-1189 . -858) 128676) ((-1189 . -884) NIL) ((-1189 . -994) NIL) ((-1189 . -1012) 128642) ((-1189 . -1122) NIL) ((-1189 . -965) 128594) ((-1184 . -1054) T) ((-1184 . -595) 128560) ((-1184 . -1072) T) ((-1184 . -101) T) ((-1184 . -92) T) ((-1181 . -595) 128472) ((-1181 . -1072) 128450) ((-1181 . -101) 128428) ((-1176 . -719) 128404) ((-1176 . -35) 128370) ((-1176 . -94) 128336) ((-1176 . -277) 128302) ((-1176 . -484) 128268) ((-1176 . -1172) 128234) ((-1176 . -1169) 128200) ((-1176 . -976) 128166) ((-1176 . -47) 128135) ((-1176 . -38) 128032) ((-1176 . -696) 127929) ((-1176 . -283) 127908) ((-1176 . -543) 127887) ((-1176 . -111) 127756) ((-1176 . -1029) 127639) ((-1176 . -170) 127590) ((-1176 . -145) 127569) ((-1176 . -143) 127548) ((-1176 . -626) 127473) ((-1176 . -947) 127435) ((-1176 . -1023) T) ((-1176 . -1030) T) ((-1176 . -1083) T) ((-1176 . -705) T) ((-1176 . -21) T) ((-1176 . -23) T) ((-1176 . -1072) T) ((-1176 . -595) 127417) ((-1176 . -101) T) ((-1176 . -25) T) ((-1176 . -130) T) ((-1176 . -874) 127398) ((-1176 . -505) 127365) ((-1176 . -302) 127352) ((-1170 . -984) 127336) ((-1170 . -34) T) ((-1170 . -1183) T) ((-1170 . -595) 127268) ((-1170 . -302) 127206) ((-1170 . -505) 127139) ((-1170 . -1072) 127117) ((-1170 . -101) 127095) ((-1170 . -481) 127079) ((-1165 . -358) 127053) ((-1165 . -101) T) ((-1165 . -595) 127035) ((-1165 . -1072) T) ((-1163 . -1072) T) ((-1163 . -595) 127017) ((-1163 . -101) T) ((-1156 . -1160) 126996) ((-1156 . -223) 126946) ((-1156 . -106) 126896) ((-1156 . -302) 126700) ((-1156 . -505) 126492) ((-1156 . -481) 126429) ((-1156 . -149) 126379) ((-1156 . -596) NIL) ((-1156 . -229) 126329) ((-1156 . -592) 126308) ((-1156 . -281) 126287) ((-1156 . -279) 126266) ((-1156 . -101) T) ((-1156 . -1072) T) ((-1156 . -595) 126248) ((-1156 . -1183) T) ((-1156 . -34) T) ((-1156 . -586) 126227) ((-1152 . -1225) T) ((-1152 . -1072) T) ((-1152 . -595) 126209) ((-1152 . -101) T) ((-1151 . -595) 126191) ((-1150 . -595) 126173) ((-1149 . -319) 126150) ((-1149 . -1012) 126046) ((-1149 . -405) 126030) ((-1149 . -38) 125927) ((-1149 . -626) 125852) ((-1149 . -705) T) ((-1149 . -1083) T) ((-1149 . -1030) T) ((-1149 . -1023) T) ((-1149 . -111) 125721) ((-1149 . -1029) 125604) ((-1149 . -21) T) ((-1149 . -23) T) ((-1149 . -1072) T) ((-1149 . -595) 125586) ((-1149 . -101) T) ((-1149 . -25) T) ((-1149 . -130) T) ((-1149 . -696) 125483) ((-1149 . -143) 125462) ((-1149 . -145) 125441) ((-1149 . -170) 125392) ((-1149 . -543) 125371) ((-1149 . -283) 125350) ((-1149 . -47) 125327) ((-1147 . -825) T) ((-1147 . -101) T) ((-1147 . -595) 125309) ((-1147 . -1072) T) ((-1147 . -596) 125231) ((-1147 . -799) T) ((-1147 . -860) 125198) ((-1146 . -595) 125180) ((-1145 . -1222) 125164) ((-1145 . -227) 125123) ((-1145 . -626) 125048) ((-1145 . -130) T) ((-1145 . -25) T) ((-1145 . -101) T) ((-1145 . -595) 125030) ((-1145 . -1072) T) ((-1145 . -23) T) ((-1145 . -21) T) ((-1145 . -705) T) ((-1145 . -1083) T) ((-1145 . -1030) T) ((-1145 . -1023) T) ((-1145 . -279) 125015) ((-1145 . -874) 124928) ((-1145 . -947) 124897) ((-1145 . -38) 124794) ((-1145 . -111) 124663) ((-1145 . -1029) 124546) ((-1145 . -696) 124443) ((-1145 . -143) 124422) ((-1145 . -145) 124401) ((-1145 . -170) 124352) ((-1145 . -543) 124331) ((-1145 . -283) 124310) ((-1145 . -47) 124287) ((-1145 . -1208) 124264) ((-1145 . -35) 124230) ((-1145 . -94) 124196) ((-1145 . -277) 124162) ((-1145 . -484) 124128) ((-1145 . -1172) 124094) ((-1145 . -1169) 124060) ((-1145 . -976) 124026) ((-1144 . -1214) 123987) ((-1144 . -356) 123966) ((-1144 . -1188) 123945) ((-1144 . -895) 123924) ((-1144 . -543) 123875) ((-1144 . -170) 123806) ((-1144 . -696) 123647) ((-1144 . -38) 123488) ((-1144 . -444) 123467) ((-1144 . -300) 123446) ((-1144 . -626) 123343) ((-1144 . -705) T) ((-1144 . -1083) T) ((-1144 . -1030) T) ((-1144 . -1023) T) ((-1144 . -111) 123164) ((-1144 . -1029) 122999) ((-1144 . -21) T) ((-1144 . -23) T) ((-1144 . -1072) T) ((-1144 . -595) 122981) ((-1144 . -101) T) ((-1144 . -25) T) ((-1144 . -130) T) ((-1144 . -283) 122932) ((-1144 . -237) 122911) ((-1144 . -976) 122877) ((-1144 . -1169) 122843) ((-1144 . -1172) 122809) ((-1144 . -484) 122775) ((-1144 . -277) 122741) ((-1144 . -94) 122707) ((-1144 . -35) 122673) ((-1144 . -1208) 122643) ((-1144 . -47) 122613) ((-1144 . -145) 122592) ((-1144 . -143) 122571) ((-1144 . -947) 122533) ((-1144 . -874) 122439) ((-1144 . -279) 122424) ((-1144 . -227) 122376) ((-1144 . -1212) 122360) ((-1144 . -1012) 122295) ((-1141 . -1205) 122279) ((-1141 . -1122) 122257) ((-1141 . -596) NIL) ((-1141 . -302) 122244) ((-1141 . -505) 122191) ((-1141 . -319) 122168) ((-1141 . -1012) 122048) ((-1141 . -405) 122032) ((-1141 . -38) 121861) ((-1141 . -111) 121670) ((-1141 . -1029) 121493) ((-1141 . -626) 121418) ((-1141 . -696) 121247) ((-1141 . -143) 121226) ((-1141 . -145) 121205) ((-1141 . -47) 121182) ((-1141 . -370) 121166) ((-1141 . -619) 121114) ((-1141 . -825) 121093) ((-1141 . -874) 121036) ((-1141 . -860) NIL) ((-1141 . -884) 121015) ((-1141 . -1188) 120994) ((-1141 . -924) 120963) ((-1141 . -895) 120942) ((-1141 . -543) 120853) ((-1141 . -283) 120764) ((-1141 . -170) 120655) ((-1141 . -444) 120586) ((-1141 . -300) 120565) ((-1141 . -279) 120492) ((-1141 . -227) T) ((-1141 . -130) T) ((-1141 . -25) T) ((-1141 . -101) T) ((-1141 . -595) 120474) ((-1141 . -1072) T) ((-1141 . -23) T) ((-1141 . -21) T) ((-1141 . -705) T) ((-1141 . -1083) T) ((-1141 . -1030) T) ((-1141 . -1023) T) ((-1141 . -225) 120458) ((-1138 . -1193) 120419) ((-1138 . -976) 120385) ((-1138 . -1169) 120351) ((-1138 . -1172) 120317) ((-1138 . -484) 120283) ((-1138 . -277) 120249) ((-1138 . -94) 120215) ((-1138 . -35) 120181) ((-1138 . -1208) 120158) ((-1138 . -47) 120135) ((-1138 . -696) 119931) ((-1138 . -626) 119783) ((-1138 . -1029) 119573) ((-1138 . -111) 119342) ((-1138 . -38) 119138) ((-1138 . -947) 119107) ((-1138 . -279) 118955) ((-1138 . -1191) 118939) ((-1138 . -705) T) ((-1138 . -1083) T) ((-1138 . -1030) T) ((-1138 . -1023) T) ((-1138 . -21) T) ((-1138 . -23) T) ((-1138 . -1072) T) ((-1138 . -595) 118921) ((-1138 . -101) T) ((-1138 . -25) T) ((-1138 . -130) T) ((-1138 . -143) 118828) ((-1138 . -145) 118735) ((-1138 . -596) NIL) ((-1138 . -225) 118687) ((-1138 . -874) 118520) ((-1138 . -227) 118407) ((-1138 . -356) 118386) ((-1138 . -1188) 118365) ((-1138 . -895) 118344) ((-1138 . -543) 118295) ((-1138 . -170) 118226) ((-1138 . -444) 118205) ((-1138 . -300) 118184) ((-1138 . -283) 118135) ((-1138 . -237) 118114) ((-1138 . -331) 118066) ((-1138 . -505) 117835) ((-1138 . -302) 117720) ((-1138 . -370) 117672) ((-1138 . -619) 117624) ((-1138 . -393) 117576) ((-1138 . -1183) 117555) ((-1138 . -860) NIL) ((-1138 . -798) NIL) ((-1138 . -769) NIL) ((-1138 . -770) NIL) ((-1138 . -825) NIL) ((-1138 . -772) NIL) ((-1138 . -775) NIL) ((-1138 . -823) NIL) ((-1138 . -858) 117507) ((-1138 . -884) NIL) ((-1138 . -994) NIL) ((-1138 . -1012) 117473) ((-1138 . -1122) NIL) ((-1138 . -965) 117425) ((-1137 . -1054) T) ((-1137 . -595) 117391) ((-1137 . -1072) T) ((-1137 . -101) T) ((-1137 . -92) T) ((-1136 . -1072) T) ((-1136 . -595) 117373) ((-1136 . -101) T) ((-1135 . -1072) T) ((-1135 . -595) 117355) ((-1135 . -101) T) ((-1130 . -1160) 117331) ((-1130 . -223) 117278) ((-1130 . -106) 117225) ((-1130 . -302) 117020) ((-1130 . -505) 116803) ((-1130 . -481) 116737) ((-1130 . -149) 116684) ((-1130 . -596) NIL) ((-1130 . -229) 116631) ((-1130 . -592) 116607) ((-1130 . -281) 116583) ((-1130 . -279) 116559) ((-1130 . -101) T) ((-1130 . -1072) T) ((-1130 . -595) 116541) ((-1130 . -1183) T) ((-1130 . -34) T) ((-1130 . -586) 116517) ((-1129 . -1128) T) ((-1129 . -19) 116499) ((-1129 . -629) 116481) ((-1129 . -281) 116456) ((-1129 . -279) 116431) ((-1129 . -586) 116406) ((-1129 . -596) NIL) ((-1129 . -481) 116388) ((-1129 . -505) NIL) ((-1129 . -302) NIL) ((-1129 . -1183) T) ((-1129 . -34) T) ((-1129 . -149) 116370) ((-1129 . -825) T) ((-1129 . -365) 116352) ((-1129 . -1115) T) ((-1129 . -101) T) ((-1129 . -595) 116334) ((-1129 . -1072) T) ((-1129 . -799) T) ((-1124 . -652) 116318) ((-1124 . -629) 116302) ((-1124 . -281) 116279) ((-1124 . -279) 116256) ((-1124 . -586) 116233) ((-1124 . -596) 116194) ((-1124 . -481) 116178) ((-1124 . -101) 116156) ((-1124 . -1072) 116134) ((-1124 . -505) 116067) ((-1124 . -302) 116005) ((-1124 . -595) 115937) ((-1124 . -1183) T) ((-1124 . -34) T) ((-1124 . -149) 115921) ((-1124 . -1218) 115905) ((-1124 . -984) 115889) ((-1124 . -1120) 115873) ((-1121 . -1160) 115852) ((-1121 . -223) 115802) ((-1121 . -106) 115752) ((-1121 . -302) 115556) ((-1121 . -505) 115348) ((-1121 . -481) 115285) ((-1121 . -149) 115235) ((-1121 . -596) NIL) ((-1121 . -229) 115185) ((-1121 . -592) 115164) ((-1121 . -281) 115143) ((-1121 . -279) 115122) ((-1121 . -101) T) ((-1121 . -1072) T) ((-1121 . -595) 115104) ((-1121 . -1183) T) ((-1121 . -34) T) ((-1121 . -586) 115083) ((-1118 . -1092) 115067) ((-1118 . -481) 115051) ((-1118 . -101) 115029) ((-1118 . -1072) 115007) ((-1118 . -505) 114940) ((-1118 . -302) 114878) ((-1118 . -595) 114810) ((-1118 . -1183) T) ((-1118 . -34) T) ((-1118 . -106) 114794) ((-1117 . -1080) 114763) ((-1117 . -1178) 114732) ((-1117 . -595) 114694) ((-1117 . -149) 114678) ((-1117 . -34) T) ((-1117 . -1183) T) ((-1117 . -302) 114616) ((-1117 . -505) 114549) ((-1117 . -1072) T) ((-1117 . -101) T) ((-1117 . -481) 114533) ((-1117 . -596) 114494) ((-1117 . -950) 114463) ((-1117 . -1043) 114432) ((-1113 . -1094) 114377) ((-1113 . -481) 114361) ((-1113 . -505) 114294) ((-1113 . -302) 114232) ((-1113 . -1183) T) ((-1113 . -34) T) ((-1113 . -1026) 114172) ((-1113 . -1012) 114068) ((-1113 . -405) 114052) ((-1113 . -619) 114000) ((-1113 . -370) 113984) ((-1113 . -227) 113963) ((-1113 . -874) 113922) ((-1113 . -225) 113906) ((-1113 . -696) 113838) ((-1113 . -626) 113812) ((-1113 . -130) T) ((-1113 . -25) T) ((-1113 . -101) T) ((-1113 . -595) 113774) ((-1113 . -1072) T) ((-1113 . -23) T) ((-1113 . -21) T) ((-1113 . -1029) 113758) ((-1113 . -111) 113737) ((-1113 . -1023) T) ((-1113 . -1030) T) ((-1113 . -1083) T) ((-1113 . -705) T) ((-1113 . -38) 113697) ((-1113 . -596) 113658) ((-1112 . -984) 113629) ((-1112 . -34) T) ((-1112 . -1183) T) ((-1112 . -595) 113611) ((-1112 . -302) 113537) ((-1112 . -505) 113456) ((-1112 . -1072) T) ((-1112 . -101) T) ((-1112 . -481) 113427) ((-1111 . -1072) T) ((-1111 . -595) 113409) ((-1111 . -101) T) ((-1106 . -1108) T) ((-1106 . -1225) T) ((-1106 . -92) T) ((-1106 . -101) T) ((-1106 . -595) 113375) ((-1106 . -1072) T) ((-1106 . -1054) T) ((-1104 . -1105) 113359) ((-1104 . -101) T) ((-1104 . -595) 113341) ((-1104 . -1072) T) ((-1097 . -719) 113320) ((-1097 . -35) 113286) ((-1097 . -94) 113252) ((-1097 . -277) 113218) ((-1097 . -484) 113184) ((-1097 . -1172) 113150) ((-1097 . -1169) 113116) ((-1097 . -976) 113082) ((-1097 . -47) 113054) ((-1097 . -38) 112951) ((-1097 . -696) 112848) ((-1097 . -283) 112827) ((-1097 . -543) 112806) ((-1097 . -111) 112675) ((-1097 . -1029) 112558) ((-1097 . -170) 112509) ((-1097 . -145) 112488) ((-1097 . -143) 112467) ((-1097 . -626) 112392) ((-1097 . -947) 112359) ((-1097 . -1023) T) ((-1097 . -1030) T) ((-1097 . -1083) T) ((-1097 . -705) T) ((-1097 . -21) T) ((-1097 . -23) T) ((-1097 . -1072) T) ((-1097 . -595) 112341) ((-1097 . -101) T) ((-1097 . -25) T) ((-1097 . -130) T) ((-1097 . -874) 112325) ((-1097 . -505) 112295) ((-1097 . -302) 112282) ((-1096 . -924) 112249) ((-1096 . -1012) 112132) ((-1096 . -1188) 112111) ((-1096 . -884) 112090) ((-1096 . -860) 111949) ((-1096 . -874) 111933) ((-1096 . -825) 111912) ((-1096 . -505) 111864) ((-1096 . -444) 111815) ((-1096 . -619) 111763) ((-1096 . -370) 111747) ((-1096 . -47) 111719) ((-1096 . -38) 111568) ((-1096 . -696) 111417) ((-1096 . -283) 111348) ((-1096 . -543) 111279) ((-1096 . -111) 111108) ((-1096 . -1029) 110951) ((-1096 . -170) 110862) ((-1096 . -145) 110841) ((-1096 . -143) 110820) ((-1096 . -626) 110745) ((-1096 . -130) T) ((-1096 . -25) T) ((-1096 . -101) T) ((-1096 . -595) 110727) ((-1096 . -1072) T) ((-1096 . -23) T) ((-1096 . -21) T) ((-1096 . -1023) T) ((-1096 . -1030) T) ((-1096 . -1083) T) ((-1096 . -705) T) ((-1096 . -405) 110711) ((-1096 . -319) 110683) ((-1096 . -302) 110670) ((-1096 . -596) 110418) ((-1091 . -535) T) ((-1091 . -1188) T) ((-1091 . -1122) T) ((-1091 . -1012) 110400) ((-1091 . -596) 110315) ((-1091 . -994) T) ((-1091 . -860) 110297) ((-1091 . -823) T) ((-1091 . -775) T) ((-1091 . -772) T) ((-1091 . -825) T) ((-1091 . -770) T) ((-1091 . -769) T) ((-1091 . -798) T) ((-1091 . -619) 110279) ((-1091 . -895) T) ((-1091 . -543) T) ((-1091 . -283) T) ((-1091 . -170) T) ((-1091 . -696) 110266) ((-1091 . -1029) 110253) ((-1091 . -111) 110238) ((-1091 . -38) 110225) ((-1091 . -444) T) ((-1091 . -300) T) ((-1091 . -227) T) ((-1091 . -141) T) ((-1091 . -1023) T) ((-1091 . -1030) T) ((-1091 . -1083) T) ((-1091 . -705) T) ((-1091 . -21) T) ((-1091 . -23) T) ((-1091 . -1072) T) ((-1091 . -595) 110207) ((-1091 . -101) T) ((-1091 . -25) T) ((-1091 . -130) T) ((-1091 . -626) 110194) ((-1091 . -145) T) ((-1091 . -640) T) ((-1091 . -799) T) ((-1087 . -1054) T) ((-1087 . -595) 110160) ((-1087 . -1072) T) ((-1087 . -101) T) ((-1087 . -92) T) ((-1086 . -1072) T) ((-1086 . -595) 110142) ((-1086 . -101) T) ((-1084 . -232) 110121) ((-1084 . -1237) 110091) ((-1084 . -769) 110070) ((-1084 . -823) 110049) ((-1084 . -775) 110000) ((-1084 . -772) 109951) ((-1084 . -825) 109902) ((-1084 . -770) 109853) ((-1084 . -771) 109832) ((-1084 . -281) 109809) ((-1084 . -279) 109786) ((-1084 . -481) 109770) ((-1084 . -505) 109703) ((-1084 . -302) 109641) ((-1084 . -1183) T) ((-1084 . -34) T) ((-1084 . -586) 109618) ((-1084 . -1012) 109445) ((-1084 . -405) 109414) ((-1084 . -619) 109320) ((-1084 . -370) 109289) ((-1084 . -361) 109268) ((-1084 . -227) 109220) ((-1084 . -874) 109152) ((-1084 . -225) 109121) ((-1084 . -111) 109011) ((-1084 . -1029) 108908) ((-1084 . -170) 108887) ((-1084 . -595) 108618) ((-1084 . -696) 108560) ((-1084 . -626) 108408) ((-1084 . -130) 108278) ((-1084 . -23) 108148) ((-1084 . -21) 108058) ((-1084 . -1023) 107988) ((-1084 . -1030) 107918) ((-1084 . -1083) 107828) ((-1084 . -705) 107738) ((-1084 . -38) 107708) ((-1084 . -1072) 107498) ((-1084 . -101) 107288) ((-1084 . -25) 107139) ((-1077 . -389) T) ((-1077 . -1183) T) ((-1077 . -595) 107121) ((-1076 . -1075) 107085) ((-1076 . -101) T) ((-1076 . -595) 107067) ((-1076 . -1072) T) ((-1074 . -1075) 107019) ((-1074 . -101) T) ((-1074 . -595) 107001) ((-1074 . -1072) T) ((-1073 . -361) T) ((-1073 . -101) T) ((-1073 . -595) 106983) ((-1073 . -1072) T) ((-1068 . -419) 106967) ((-1068 . -1070) 106951) ((-1068 . -361) 106930) ((-1068 . -229) 106914) ((-1068 . -596) 106875) ((-1068 . -149) 106859) ((-1068 . -481) 106843) ((-1068 . -101) T) ((-1068 . -1072) T) ((-1068 . -505) 106776) ((-1068 . -302) 106714) ((-1068 . -595) 106696) ((-1068 . -1183) T) ((-1068 . -34) T) ((-1068 . -106) 106680) ((-1068 . -223) 106664) ((-1067 . -1054) T) ((-1067 . -595) 106630) ((-1067 . -1072) T) ((-1067 . -101) T) ((-1067 . -92) T) ((-1063 . -1183) T) ((-1063 . -1072) 106608) ((-1063 . -595) 106575) ((-1063 . -101) 106553) ((-1062 . -1054) T) ((-1062 . -595) 106519) ((-1062 . -1072) T) ((-1062 . -101) T) ((-1062 . -92) T) ((-1060 . -1065) 106503) ((-1060 . -1183) T) ((-1060 . -1072) 106481) ((-1060 . -595) 106448) ((-1060 . -101) 106426) ((-1060 . -1066) 106384) ((-1059 . -259) 106368) ((-1059 . -1012) 106352) ((-1059 . -1072) T) ((-1059 . -595) 106334) ((-1059 . -101) T) ((-1059 . -825) T) ((-1058 . -246) 106271) ((-1058 . -1012) 106098) ((-1058 . -596) NIL) ((-1058 . -319) 106059) ((-1058 . -405) 106043) ((-1058 . -38) 105892) ((-1058 . -111) 105721) ((-1058 . -1029) 105564) ((-1058 . -626) 105489) ((-1058 . -696) 105338) ((-1058 . -143) 105317) ((-1058 . -145) 105296) ((-1058 . -170) 105207) ((-1058 . -543) 105138) ((-1058 . -283) 105069) ((-1058 . -47) 105030) ((-1058 . -370) 105014) ((-1058 . -619) 104962) ((-1058 . -444) 104913) ((-1058 . -505) 104780) ((-1058 . -825) 104759) ((-1058 . -874) 104694) ((-1058 . -860) NIL) ((-1058 . -884) 104673) ((-1058 . -1188) 104652) ((-1058 . -924) 104597) ((-1058 . -302) 104584) ((-1058 . -227) 104563) ((-1058 . -130) T) ((-1058 . -25) T) ((-1058 . -101) T) ((-1058 . -595) 104545) ((-1058 . -1072) T) ((-1058 . -23) T) ((-1058 . -21) T) ((-1058 . -705) T) ((-1058 . -1083) T) ((-1058 . -1030) T) ((-1058 . -1023) T) ((-1058 . -225) 104529) ((-1056 . -595) 104511) ((-1053 . -825) T) ((-1053 . -101) T) ((-1053 . -595) 104493) ((-1053 . -1072) T) ((-1050 . -703) 104472) ((-1050 . -1012) 104368) ((-1050 . -405) 104352) ((-1050 . -619) 104300) ((-1050 . -370) 104284) ((-1050 . -363) 104263) ((-1050 . -145) 104242) ((-1050 . -696) 104110) ((-1050 . -626) 104020) ((-1050 . -1029) 103930) ((-1050 . -111) 103826) ((-1050 . -38) 103694) ((-1050 . -403) 103673) ((-1050 . -395) 103652) ((-1050 . -143) 103603) ((-1050 . -1122) 103582) ((-1050 . -343) 103561) ((-1050 . -361) 103512) ((-1050 . -237) 103463) ((-1050 . -283) 103414) ((-1050 . -300) 103365) ((-1050 . -444) 103316) ((-1050 . -543) 103267) ((-1050 . -895) 103218) ((-1050 . -1188) 103169) ((-1050 . -356) 103120) ((-1050 . -227) 103045) ((-1050 . -874) 102978) ((-1050 . -225) 102948) ((-1050 . -596) 102932) ((-1050 . -21) T) ((-1050 . -23) T) ((-1050 . -1072) T) ((-1050 . -595) 102914) ((-1050 . -101) T) ((-1050 . -25) T) ((-1050 . -130) T) ((-1050 . -1023) T) ((-1050 . -1030) T) ((-1050 . -1083) T) ((-1050 . -705) T) ((-1050 . -170) T) ((-1048 . -1072) T) ((-1048 . -595) 102896) ((-1048 . -101) T) ((-1048 . -279) 102875) ((-1047 . -1072) T) ((-1047 . -595) 102857) ((-1047 . -101) T) ((-1046 . -1072) T) ((-1046 . -595) 102839) ((-1046 . -101) T) ((-1046 . -279) 102818) ((-1046 . -1012) 102795) ((-1045 . -1054) T) ((-1045 . -595) 102761) ((-1045 . -1072) T) ((-1045 . -101) T) ((-1045 . -92) T) ((-1038 . -1054) T) ((-1038 . -595) 102727) ((-1038 . -1072) T) ((-1038 . -101) T) ((-1038 . -92) T) ((-1035 . -1160) 102702) ((-1035 . -223) 102648) ((-1035 . -106) 102594) ((-1035 . -302) 102445) ((-1035 . -505) 102289) ((-1035 . -481) 102220) ((-1035 . -149) 102166) ((-1035 . -596) NIL) ((-1035 . -229) 102112) ((-1035 . -592) 102087) ((-1035 . -281) 102062) ((-1035 . -279) 102037) ((-1035 . -101) T) ((-1035 . -1072) T) ((-1035 . -595) 102019) ((-1035 . -1183) T) ((-1035 . -34) T) ((-1035 . -586) 101994) ((-1034 . -535) T) ((-1034 . -1188) T) ((-1034 . -1122) T) ((-1034 . -1012) 101976) ((-1034 . -596) 101891) ((-1034 . -994) T) ((-1034 . -860) 101873) ((-1034 . -823) T) ((-1034 . -775) T) ((-1034 . -772) T) ((-1034 . -825) T) ((-1034 . -770) T) ((-1034 . -769) T) ((-1034 . -798) T) ((-1034 . -619) 101855) ((-1034 . -895) T) ((-1034 . -543) T) ((-1034 . -283) T) ((-1034 . -170) T) ((-1034 . -696) 101842) ((-1034 . -1029) 101829) ((-1034 . -111) 101814) ((-1034 . -38) 101801) ((-1034 . -444) T) ((-1034 . -300) T) ((-1034 . -227) T) ((-1034 . -141) T) ((-1034 . -1023) T) ((-1034 . -1030) T) ((-1034 . -1083) T) ((-1034 . -705) T) ((-1034 . -21) T) ((-1034 . -23) T) ((-1034 . -1072) T) ((-1034 . -595) 101783) ((-1034 . -101) T) ((-1034 . -25) T) ((-1034 . -130) T) ((-1034 . -626) 101770) ((-1034 . -145) T) ((-1033 . -1040) 101749) ((-1033 . -101) T) ((-1033 . -595) 101731) ((-1033 . -1072) T) ((-1027 . -1026) 101671) ((-1027 . -696) 101613) ((-1027 . -34) T) ((-1027 . -1183) T) ((-1027 . -302) 101551) ((-1027 . -505) 101484) ((-1027 . -481) 101468) ((-1027 . -626) 101452) ((-1027 . -130) T) ((-1027 . -25) T) ((-1027 . -101) T) ((-1027 . -595) 101414) ((-1027 . -1072) T) ((-1027 . -23) T) ((-1027 . -21) T) ((-1027 . -1029) 101398) ((-1027 . -111) 101377) ((-1027 . -1237) 101347) ((-1027 . -596) 101308) ((-1020 . -1043) 101237) ((-1020 . -950) 101166) ((-1020 . -596) 101108) ((-1020 . -481) 101073) ((-1020 . -101) T) ((-1020 . -1072) T) ((-1020 . -505) 100974) ((-1020 . -302) 100882) ((-1020 . -595) 100825) ((-1020 . -1183) T) ((-1020 . -34) T) ((-1020 . -149) 100790) ((-1020 . -1178) 100719) ((-1010 . -1054) T) ((-1010 . -595) 100685) ((-1010 . -1072) T) ((-1010 . -101) T) ((-1010 . -92) T) ((-1009 . -1160) 100660) ((-1009 . -223) 100606) ((-1009 . -106) 100552) ((-1009 . -302) 100403) ((-1009 . -505) 100247) ((-1009 . -481) 100178) ((-1009 . -149) 100124) ((-1009 . -596) NIL) ((-1009 . -229) 100070) ((-1009 . -592) 100045) ((-1009 . -281) 100020) ((-1009 . -279) 99995) ((-1009 . -101) T) ((-1009 . -1072) T) ((-1009 . -595) 99977) ((-1009 . -1183) T) ((-1009 . -34) T) ((-1009 . -586) 99952) ((-1008 . -170) T) ((-1008 . -705) T) ((-1008 . -1083) T) ((-1008 . -1030) T) ((-1008 . -1023) T) ((-1008 . -626) 99926) ((-1008 . -130) T) ((-1008 . -25) T) ((-1008 . -101) T) ((-1008 . -595) 99908) ((-1008 . -1072) T) ((-1008 . -23) T) ((-1008 . -21) T) ((-1008 . -1029) 99882) ((-1008 . -111) 99849) ((-1008 . -38) 99833) ((-1008 . -696) 99817) ((-1001 . -1043) 99786) ((-1001 . -950) 99755) ((-1001 . -596) 99716) ((-1001 . -481) 99700) ((-1001 . -101) T) ((-1001 . -1072) T) ((-1001 . -505) 99633) ((-1001 . -302) 99571) ((-1001 . -595) 99533) ((-1001 . -1183) T) ((-1001 . -34) T) ((-1001 . -149) 99517) ((-1001 . -1178) 99486) ((-1000 . -1183) T) ((-1000 . -1072) 99464) ((-1000 . -595) 99431) ((-1000 . -101) 99409) ((-998 . -986) T) ((-998 . -976) T) ((-998 . -769) T) ((-998 . -770) T) ((-998 . -825) T) ((-998 . -772) T) ((-998 . -775) T) ((-998 . -823) T) ((-998 . -1012) 99289) ((-998 . -405) 99251) ((-998 . -237) T) ((-998 . -283) T) ((-998 . -300) T) ((-998 . -444) T) ((-998 . -38) 99188) ((-998 . -696) 99125) ((-998 . -543) T) ((-998 . -895) T) ((-998 . -1188) T) ((-998 . -356) T) ((-998 . -111) 99041) ((-998 . -1029) 98978) ((-998 . -170) T) ((-998 . -145) T) ((-998 . -626) 98915) ((-998 . -130) T) ((-998 . -25) T) ((-998 . -101) T) ((-998 . -595) 98897) ((-998 . -1072) T) ((-998 . -23) T) ((-998 . -21) T) ((-998 . -1023) T) ((-998 . -1030) T) ((-998 . -1083) T) ((-998 . -705) T) ((-993 . -1054) T) ((-993 . -595) 98863) ((-993 . -1072) T) ((-993 . -101) T) ((-993 . -92) T) ((-978 . -965) 98845) ((-978 . -1122) T) ((-978 . -1012) 98805) ((-978 . -596) 98735) ((-978 . -994) T) ((-978 . -884) NIL) ((-978 . -858) 98717) ((-978 . -823) T) ((-978 . -775) T) ((-978 . -772) T) ((-978 . -825) T) ((-978 . -770) T) ((-978 . -769) T) ((-978 . -798) T) ((-978 . -860) 98699) ((-978 . -1183) T) ((-978 . -393) 98681) ((-978 . -619) 98663) ((-978 . -370) 98645) ((-978 . -279) NIL) ((-978 . -302) NIL) ((-978 . -505) NIL) ((-978 . -331) 98627) ((-978 . -237) T) ((-978 . -111) 98561) ((-978 . -1029) 98511) ((-978 . -283) T) ((-978 . -696) 98461) ((-978 . -626) 98411) ((-978 . -38) 98361) ((-978 . -300) T) ((-978 . -444) T) ((-978 . -170) T) ((-978 . -543) T) ((-978 . -895) T) ((-978 . -1188) T) ((-978 . -356) T) ((-978 . -227) T) ((-978 . -874) NIL) ((-978 . -225) 98343) ((-978 . -145) T) ((-978 . -143) NIL) ((-978 . -130) T) ((-978 . -25) T) ((-978 . -101) T) ((-978 . -595) 98325) ((-978 . -1072) T) ((-978 . -23) T) ((-978 . -21) T) ((-978 . -1023) T) ((-978 . -1030) T) ((-978 . -1083) T) ((-978 . -705) T) ((-977 . -335) 98299) ((-977 . -170) T) ((-977 . -705) T) ((-977 . -1083) T) ((-977 . -1030) T) ((-977 . -1023) T) ((-977 . -626) 98244) ((-977 . -130) T) ((-977 . -25) T) ((-977 . -101) T) ((-977 . -595) 98226) ((-977 . -1072) T) ((-977 . -23) T) ((-977 . -21) T) ((-977 . -1029) 98171) ((-977 . -111) 98100) ((-977 . -596) 98084) ((-977 . -225) 98061) ((-977 . -874) 98013) ((-977 . -227) 97985) ((-977 . -356) T) ((-977 . -1188) T) ((-977 . -895) T) ((-977 . -543) T) ((-977 . -696) 97930) ((-977 . -38) 97875) ((-977 . -444) T) ((-977 . -300) T) ((-977 . -283) T) ((-977 . -237) T) ((-977 . -361) NIL) ((-977 . -343) NIL) ((-977 . -1122) NIL) ((-977 . -143) 97847) ((-977 . -395) NIL) ((-977 . -403) 97819) ((-977 . -145) 97791) ((-977 . -363) 97763) ((-977 . -370) 97740) ((-977 . -619) 97679) ((-977 . -405) 97656) ((-977 . -1012) 97544) ((-977 . -703) 97516) ((-974 . -969) 97500) ((-974 . -481) 97484) ((-974 . -101) 97462) ((-974 . -1072) 97440) ((-974 . -505) 97373) ((-974 . -302) 97311) ((-974 . -595) 97243) ((-974 . -1183) T) ((-974 . -34) T) ((-974 . -106) 97227) ((-970 . -972) 97211) ((-970 . -825) 97190) ((-970 . -1012) 97086) ((-970 . -405) 97070) ((-970 . -619) 97018) ((-970 . -370) 97002) ((-970 . -279) 96960) ((-970 . -302) 96925) ((-970 . -505) 96837) ((-970 . -331) 96821) ((-970 . -38) 96769) ((-970 . -111) 96651) ((-970 . -1029) 96547) ((-970 . -626) 96485) ((-970 . -696) 96433) ((-970 . -283) 96384) ((-970 . -237) 96363) ((-970 . -227) 96342) ((-970 . -874) 96301) ((-970 . -225) 96285) ((-970 . -596) 96246) ((-970 . -145) 96225) ((-970 . -143) 96204) ((-970 . -130) T) ((-970 . -25) T) ((-970 . -101) T) ((-970 . -595) 96186) ((-970 . -1072) T) ((-970 . -23) T) ((-970 . -21) T) ((-970 . -1023) T) ((-970 . -1030) T) ((-970 . -1083) T) ((-970 . -705) T) ((-968 . -1054) T) ((-968 . -595) 96152) ((-968 . -1072) T) ((-968 . -101) T) ((-968 . -92) T) ((-967 . -21) T) ((-967 . -23) T) ((-967 . -1072) T) ((-967 . -595) 96134) ((-967 . -101) T) ((-967 . -25) T) ((-967 . -130) T) ((-963 . -595) 96116) ((-960 . -1072) T) ((-960 . -595) 96098) ((-960 . -101) T) ((-945 . -775) T) ((-945 . -772) T) ((-945 . -825) T) ((-945 . -770) T) ((-945 . -23) T) ((-945 . -1072) T) ((-945 . -595) 96080) ((-945 . -101) T) ((-945 . -25) T) ((-945 . -130) T) ((-945 . -596) 96055) ((-944 . -1054) T) ((-944 . -595) 96021) ((-944 . -1072) T) ((-944 . -101) T) ((-944 . -92) T) ((-940 . -941) T) ((-940 . -101) T) ((-940 . -595) 96003) ((-940 . -1072) T) ((-939 . -595) 95985) ((-938 . -1072) T) ((-938 . -595) 95967) ((-938 . -101) T) ((-938 . -361) 95920) ((-938 . -705) 95819) ((-938 . -1083) 95718) ((-938 . -23) 95529) ((-938 . -25) 95340) ((-938 . -130) 95195) ((-938 . -465) 95148) ((-938 . -21) 95103) ((-938 . -771) 95056) ((-938 . -770) 95009) ((-938 . -825) 94908) ((-938 . -772) 94861) ((-938 . -775) 94814) ((-932 . -19) 94798) ((-932 . -629) 94782) ((-932 . -281) 94759) ((-932 . -279) 94736) ((-932 . -586) 94713) ((-932 . -596) 94674) ((-932 . -481) 94658) ((-932 . -101) 94608) ((-932 . -1072) 94558) ((-932 . -505) 94491) ((-932 . -302) 94429) ((-932 . -595) 94341) ((-932 . -1183) T) ((-932 . -34) T) ((-932 . -149) 94325) ((-932 . -825) 94304) ((-932 . -365) 94288) ((-930 . -319) 94267) ((-930 . -1012) 94163) ((-930 . -405) 94147) ((-930 . -38) 94044) ((-930 . -626) 93969) ((-930 . -705) T) ((-930 . -1083) T) ((-930 . -1030) T) ((-930 . -1023) T) ((-930 . -111) 93838) ((-930 . -1029) 93721) ((-930 . -21) T) ((-930 . -23) T) ((-930 . -1072) T) ((-930 . -595) 93703) ((-930 . -101) T) ((-930 . -25) T) ((-930 . -130) T) ((-930 . -696) 93600) ((-930 . -143) 93579) ((-930 . -145) 93558) ((-930 . -170) 93509) ((-930 . -543) 93488) ((-930 . -283) 93467) ((-930 . -47) 93446) ((-928 . -1072) T) ((-928 . -595) 93412) ((-928 . -101) T) ((-920 . -924) 93373) ((-920 . -1012) 93253) ((-920 . -1188) 93232) ((-920 . -884) 93211) ((-920 . -860) 93136) ((-920 . -874) 93117) ((-920 . -825) 93096) ((-920 . -505) 93043) ((-920 . -444) 92994) ((-920 . -619) 92942) ((-920 . -370) 92926) ((-920 . -47) 92895) ((-920 . -38) 92744) ((-920 . -696) 92593) ((-920 . -283) 92524) ((-920 . -543) 92455) ((-920 . -111) 92284) ((-920 . -1029) 92127) ((-920 . -170) 92038) ((-920 . -145) 92017) ((-920 . -143) 91996) ((-920 . -626) 91921) ((-920 . -130) T) ((-920 . -25) T) ((-920 . -101) T) ((-920 . -595) 91903) ((-920 . -1072) T) ((-920 . -23) T) ((-920 . -21) T) ((-920 . -1023) T) ((-920 . -1030) T) ((-920 . -1083) T) ((-920 . -705) T) ((-920 . -405) 91887) ((-920 . -319) 91856) ((-920 . -302) 91843) ((-920 . -596) 91704) ((-917 . -954) 91688) ((-917 . -19) 91672) ((-917 . -629) 91656) ((-917 . -281) 91633) ((-917 . -279) 91610) ((-917 . -586) 91587) ((-917 . -596) 91548) ((-917 . -481) 91532) ((-917 . -101) 91482) ((-917 . -1072) 91432) ((-917 . -505) 91365) ((-917 . -302) 91303) ((-917 . -595) 91215) ((-917 . -1183) T) ((-917 . -34) T) ((-917 . -149) 91199) ((-917 . -825) 91178) ((-917 . -365) 91162) ((-917 . -1228) 91146) ((-901 . -948) T) ((-901 . -595) 91128) ((-899 . -929) T) ((-899 . -595) 91110) ((-893 . -772) T) ((-893 . -825) T) ((-893 . -1072) T) ((-893 . -595) 91092) ((-893 . -101) T) ((-893 . -25) T) ((-893 . -705) T) ((-893 . -1083) T) ((-888 . -356) T) ((-888 . -1188) T) ((-888 . -895) T) ((-888 . -543) T) ((-888 . -170) T) ((-888 . -696) 91044) ((-888 . -38) 90996) ((-888 . -444) T) ((-888 . -300) T) ((-888 . -626) 90948) ((-888 . -705) T) ((-888 . -1083) T) ((-888 . -1030) T) ((-888 . -1023) T) ((-888 . -111) 90886) ((-888 . -1029) 90838) ((-888 . -21) T) ((-888 . -23) T) ((-888 . -1072) T) ((-888 . -595) 90820) ((-888 . -101) T) ((-888 . -25) T) ((-888 . -130) T) ((-888 . -283) T) ((-888 . -237) T) ((-880 . -343) T) ((-880 . -1122) T) ((-880 . -361) T) ((-880 . -143) T) ((-880 . -356) T) ((-880 . -1188) T) ((-880 . -895) T) ((-880 . -543) T) ((-880 . -170) T) ((-880 . -696) 90785) ((-880 . -38) 90750) ((-880 . -444) T) ((-880 . -300) T) ((-880 . -111) 90706) ((-880 . -1029) 90671) ((-880 . -626) 90636) ((-880 . -283) T) ((-880 . -237) T) ((-880 . -395) T) ((-880 . -1023) T) ((-880 . -1030) T) ((-880 . -1083) T) ((-880 . -705) T) ((-880 . -21) T) ((-880 . -23) T) ((-880 . -1072) T) ((-880 . -595) 90618) ((-880 . -101) T) ((-880 . -25) T) ((-880 . -130) T) ((-880 . -227) T) ((-880 . -322) 90605) ((-880 . -145) 90587) ((-880 . -1012) 90574) ((-880 . -1237) 90561) ((-880 . -1248) 90548) ((-880 . -596) 90530) ((-879 . -1072) T) ((-879 . -595) 90512) ((-879 . -101) T) ((-876 . -878) 90496) ((-876 . -825) 90447) ((-876 . -705) T) ((-876 . -1072) T) ((-876 . -595) 90429) ((-876 . -101) T) ((-876 . -1083) T) ((-876 . -465) T) ((-875 . -119) 90413) ((-875 . -481) 90397) ((-875 . -101) 90375) ((-875 . -1072) 90353) ((-875 . -505) 90286) ((-875 . -302) 90224) ((-875 . -595) 90156) ((-875 . -1183) T) ((-875 . -34) T) ((-875 . -984) 90140) ((-872 . -1072) T) ((-872 . -595) 90122) ((-872 . -101) T) ((-867 . -825) T) ((-867 . -101) T) ((-867 . -595) 90104) ((-867 . -1072) T) ((-867 . -1012) 90081) ((-864 . -1072) T) ((-864 . -595) 90063) ((-864 . -101) T) ((-864 . -1012) 90031) ((-862 . -1072) T) ((-862 . -595) 90013) ((-862 . -101) T) ((-859 . -1072) T) ((-859 . -595) 89995) ((-859 . -101) T) ((-848 . -1072) T) ((-848 . -595) 89977) ((-848 . -101) T) ((-847 . -1183) T) ((-847 . -595) 89849) ((-847 . -1072) 89800) ((-847 . -101) 89751) ((-846 . -965) 89735) ((-846 . -1122) 89713) ((-846 . -1012) 89579) ((-846 . -596) 89387) ((-846 . -994) 89366) ((-846 . -884) 89345) ((-846 . -858) 89329) ((-846 . -823) 89308) ((-846 . -775) 89287) ((-846 . -772) 89266) ((-846 . -825) 89217) ((-846 . -770) 89196) ((-846 . -769) 89175) ((-846 . -798) 89154) ((-846 . -860) 89079) ((-846 . -1183) T) ((-846 . -393) 89063) ((-846 . -619) 89011) ((-846 . -370) 88995) ((-846 . -279) 88953) ((-846 . -302) 88918) ((-846 . -505) 88830) ((-846 . -331) 88814) ((-846 . -237) T) ((-846 . -111) 88752) ((-846 . -1029) 88704) ((-846 . -283) T) ((-846 . -696) 88656) ((-846 . -626) 88608) ((-846 . -38) 88560) ((-846 . -300) T) ((-846 . -444) T) ((-846 . -170) T) ((-846 . -543) T) ((-846 . -895) T) ((-846 . -1188) T) ((-846 . -356) T) ((-846 . -227) 88539) ((-846 . -874) 88498) ((-846 . -225) 88482) ((-846 . -145) 88461) ((-846 . -143) 88440) ((-846 . -130) T) ((-846 . -25) T) ((-846 . -101) T) ((-846 . -595) 88422) ((-846 . -1072) T) ((-846 . -23) T) ((-846 . -21) T) ((-846 . -1023) T) ((-846 . -1030) T) ((-846 . -1083) T) ((-846 . -705) T) ((-845 . -965) 88399) ((-845 . -1122) NIL) ((-845 . -1012) 88376) ((-845 . -596) NIL) ((-845 . -994) NIL) ((-845 . -884) NIL) ((-845 . -858) 88353) ((-845 . -823) NIL) ((-845 . -775) NIL) ((-845 . -772) NIL) ((-845 . -825) NIL) ((-845 . -770) NIL) ((-845 . -769) NIL) ((-845 . -798) NIL) ((-845 . -860) NIL) ((-845 . -1183) T) ((-845 . -393) 88330) ((-845 . -619) 88307) ((-845 . -370) 88284) ((-845 . -279) 88235) ((-845 . -302) 88192) ((-845 . -505) 88100) ((-845 . -331) 88077) ((-845 . -237) T) ((-845 . -111) 88006) ((-845 . -1029) 87951) ((-845 . -283) T) ((-845 . -696) 87896) ((-845 . -626) 87841) ((-845 . -38) 87786) ((-845 . -300) T) ((-845 . -444) T) ((-845 . -170) T) ((-845 . -543) T) ((-845 . -895) T) ((-845 . -1188) T) ((-845 . -356) T) ((-845 . -227) NIL) ((-845 . -874) NIL) ((-845 . -225) 87763) ((-845 . -145) T) ((-845 . -143) NIL) ((-845 . -130) T) ((-845 . -25) T) ((-845 . -101) T) ((-845 . -595) 87745) ((-845 . -1072) T) ((-845 . -23) T) ((-845 . -21) T) ((-845 . -1023) T) ((-845 . -1030) T) ((-845 . -1083) T) ((-845 . -705) T) ((-843 . -844) 87729) ((-843 . -895) T) ((-843 . -543) T) ((-843 . -283) T) ((-843 . -170) T) ((-843 . -696) 87716) ((-843 . -1029) 87703) ((-843 . -111) 87688) ((-843 . -38) 87675) ((-843 . -444) T) ((-843 . -300) T) ((-843 . -1023) T) ((-843 . -1030) T) ((-843 . -1083) T) ((-843 . -705) T) ((-843 . -21) T) ((-843 . -23) T) ((-843 . -1072) T) ((-843 . -595) 87657) ((-843 . -101) T) ((-843 . -25) T) ((-843 . -130) T) ((-843 . -626) 87644) ((-843 . -145) T) ((-840 . -1023) T) ((-840 . -1030) T) ((-840 . -1083) T) ((-840 . -705) T) ((-840 . -21) T) ((-840 . -23) T) ((-840 . -1072) T) ((-840 . -595) 87626) ((-840 . -101) T) ((-840 . -25) T) ((-840 . -130) T) ((-840 . -626) 87586) ((-840 . -38) 87556) ((-840 . -111) 87521) ((-840 . -1029) 87491) ((-840 . -696) 87461) ((-839 . -819) T) ((-839 . -825) T) ((-839 . -1072) T) ((-839 . -595) 87443) ((-839 . -101) T) ((-839 . -361) T) ((-839 . -596) 87365) ((-838 . -1072) T) ((-838 . -595) 87347) ((-838 . -101) T) ((-837 . -836) T) ((-837 . -171) T) ((-837 . -595) 87329) ((-833 . -825) T) ((-833 . -101) T) ((-833 . -595) 87311) ((-833 . -1072) T) ((-830 . -827) 87295) ((-830 . -1012) 87191) ((-830 . -405) 87175) ((-830 . -696) 87145) ((-830 . -626) 87119) ((-830 . -130) T) ((-830 . -25) T) ((-830 . -101) T) ((-830 . -595) 87101) ((-830 . -1072) T) ((-830 . -23) T) ((-830 . -21) T) ((-830 . -1029) 87085) ((-830 . -111) 87064) ((-830 . -1023) T) ((-830 . -1030) T) ((-830 . -1083) T) ((-830 . -705) T) ((-830 . -38) 87034) ((-829 . -827) 87018) ((-829 . -1012) 86914) ((-829 . -405) 86898) ((-829 . -696) 86868) ((-829 . -626) 86842) ((-829 . -130) T) ((-829 . -25) T) ((-829 . -101) T) ((-829 . -595) 86824) ((-829 . -1072) T) ((-829 . -23) T) ((-829 . -21) T) ((-829 . -1029) 86808) ((-829 . -111) 86787) ((-829 . -1023) T) ((-829 . -1030) T) ((-829 . -1083) T) ((-829 . -705) T) ((-829 . -38) 86757) ((-817 . -1072) T) ((-817 . -595) 86739) ((-817 . -101) T) ((-817 . -405) 86723) ((-817 . -1012) 86619) ((-817 . -21) 86571) ((-817 . -23) 86523) ((-817 . -25) 86475) ((-817 . -130) 86427) ((-817 . -823) 86406) ((-817 . -626) 86379) ((-817 . -1030) 86358) ((-817 . -1023) 86337) ((-817 . -775) 86316) ((-817 . -772) 86295) ((-817 . -825) 86274) ((-817 . -770) 86253) ((-817 . -769) 86232) ((-817 . -1083) 86211) ((-817 . -705) 86190) ((-816 . -1072) T) ((-816 . -595) 86172) ((-816 . -101) T) ((-812 . -1023) T) ((-812 . -1030) T) ((-812 . -1083) T) ((-812 . -705) T) ((-812 . -21) T) ((-812 . -23) T) ((-812 . -1072) T) ((-812 . -595) 86154) ((-812 . -101) T) ((-812 . -25) T) ((-812 . -130) T) ((-812 . -626) 86114) ((-812 . -1012) 86083) ((-812 . -279) 86062) ((-812 . -145) 86041) ((-812 . -143) 86020) ((-812 . -38) 85990) ((-812 . -111) 85955) ((-812 . -1029) 85925) ((-812 . -696) 85895) ((-810 . -1072) T) ((-810 . -595) 85877) ((-810 . -101) T) ((-810 . -405) 85861) ((-810 . -1012) 85757) ((-810 . -21) 85709) ((-810 . -23) 85661) ((-810 . -25) 85613) ((-810 . -130) 85565) ((-810 . -823) 85544) ((-810 . -626) 85517) ((-810 . -1030) 85496) ((-810 . -1023) 85475) ((-810 . -775) 85454) ((-810 . -772) 85433) ((-810 . -825) 85412) ((-810 . -770) 85391) ((-810 . -769) 85370) ((-810 . -1083) 85349) ((-810 . -705) 85328) ((-806 . -687) 85312) ((-806 . -696) 85282) ((-806 . -626) 85256) ((-806 . -130) T) ((-806 . -25) T) ((-806 . -101) T) ((-806 . -595) 85238) ((-806 . -1072) T) ((-806 . -23) T) ((-806 . -21) T) ((-806 . -1029) 85222) ((-806 . -111) 85201) ((-806 . -1023) T) ((-806 . -1030) T) ((-806 . -1083) T) ((-806 . -705) T) ((-806 . -38) 85171) ((-806 . -227) 85150) ((-804 . -1072) T) ((-804 . -595) 85132) ((-804 . -101) T) ((-803 . -1072) T) ((-803 . -595) 85114) ((-803 . -101) T) ((-802 . -1072) T) ((-802 . -595) 85096) ((-802 . -101) T) ((-797 . -821) T) ((-797 . -825) T) ((-797 . -832) T) ((-797 . -1083) T) ((-797 . -101) T) ((-797 . -595) 85078) ((-797 . -1072) T) ((-797 . -705) T) ((-797 . -1012) 85062) ((-796 . -259) 85046) ((-796 . -1012) 85030) ((-796 . -1072) T) ((-796 . -595) 85012) ((-796 . -101) T) ((-796 . -825) T) ((-795 . -111) 84954) ((-795 . -1029) 84905) ((-795 . -21) T) ((-795 . -23) T) ((-795 . -1072) T) ((-795 . -595) 84887) ((-795 . -101) T) ((-795 . -25) T) ((-795 . -130) T) ((-795 . -626) 84838) ((-795 . -227) T) ((-795 . -705) T) ((-795 . -1083) T) ((-795 . -1030) T) ((-795 . -1023) T) ((-795 . -356) 84817) ((-795 . -1188) 84796) ((-795 . -895) 84775) ((-795 . -543) 84754) ((-795 . -170) 84733) ((-795 . -696) 84675) ((-795 . -38) 84617) ((-795 . -444) 84596) ((-795 . -300) 84575) ((-795 . -283) 84554) ((-795 . -237) 84533) ((-794 . -246) 84472) ((-794 . -1012) 84300) ((-794 . -596) NIL) ((-794 . -319) 84262) ((-794 . -405) 84246) ((-794 . -38) 84095) ((-794 . -111) 83924) ((-794 . -1029) 83767) ((-794 . -626) 83692) ((-794 . -696) 83541) ((-794 . -143) 83520) ((-794 . -145) 83499) ((-794 . -170) 83410) ((-794 . -543) 83341) ((-794 . -283) 83272) ((-794 . -47) 83234) ((-794 . -370) 83218) ((-794 . -619) 83166) ((-794 . -444) 83117) ((-794 . -505) 82985) ((-794 . -825) 82964) ((-794 . -874) 82900) ((-794 . -860) NIL) ((-794 . -884) 82879) ((-794 . -1188) 82858) ((-794 . -924) 82805) ((-794 . -302) 82792) ((-794 . -227) 82771) ((-794 . -130) T) ((-794 . -25) T) ((-794 . -101) T) ((-794 . -595) 82753) ((-794 . -1072) T) ((-794 . -23) T) ((-794 . -21) T) ((-794 . -705) T) ((-794 . -1083) T) ((-794 . -1030) T) ((-794 . -1023) T) ((-794 . -225) 82737) ((-793 . -232) 82716) ((-793 . -1237) 82686) ((-793 . -769) 82665) ((-793 . -823) 82644) ((-793 . -775) 82595) ((-793 . -772) 82546) ((-793 . -825) 82497) ((-793 . -770) 82448) ((-793 . -771) 82427) ((-793 . -281) 82404) ((-793 . -279) 82381) ((-793 . -481) 82365) ((-793 . -505) 82298) ((-793 . -302) 82236) ((-793 . -1183) T) ((-793 . -34) T) ((-793 . -586) 82213) ((-793 . -1012) 82040) ((-793 . -405) 82009) ((-793 . -619) 81915) ((-793 . -370) 81884) ((-793 . -361) 81863) ((-793 . -227) 81815) ((-793 . -874) 81747) ((-793 . -225) 81716) ((-793 . -111) 81606) ((-793 . -1029) 81503) ((-793 . -170) 81482) ((-793 . -595) 81213) ((-793 . -696) 81155) ((-793 . -626) 81003) ((-793 . -130) 80873) ((-793 . -23) 80743) ((-793 . -21) 80653) ((-793 . -1023) 80583) ((-793 . -1030) 80513) ((-793 . -1083) 80423) ((-793 . -705) 80333) ((-793 . -38) 80303) ((-793 . -1072) 80093) ((-793 . -101) 79883) ((-793 . -25) 79734) ((-786 . -1072) T) ((-786 . -595) 79716) ((-786 . -101) T) ((-776 . -774) 79700) ((-776 . -825) 79679) ((-776 . -1012) 79462) ((-776 . -405) 79426) ((-776 . -279) 79384) ((-776 . -302) 79349) ((-776 . -505) 79261) ((-776 . -331) 79245) ((-776 . -361) 79224) ((-776 . -596) 79185) ((-776 . -145) 79164) ((-776 . -143) 79143) ((-776 . -696) 79127) ((-776 . -626) 79101) ((-776 . -130) T) ((-776 . -25) T) ((-776 . -101) T) ((-776 . -595) 79083) ((-776 . -1072) T) ((-776 . -23) T) ((-776 . -21) T) ((-776 . -1029) 79067) ((-776 . -111) 79046) ((-776 . -1023) T) ((-776 . -1030) T) ((-776 . -1083) T) ((-776 . -705) T) ((-776 . -38) 79030) ((-759 . -1205) 79014) ((-759 . -1122) 78992) ((-759 . -596) NIL) ((-759 . -302) 78979) ((-759 . -505) 78926) ((-759 . -319) 78903) ((-759 . -1012) 78762) ((-759 . -405) 78746) ((-759 . -38) 78575) ((-759 . -111) 78384) ((-759 . -1029) 78207) ((-759 . -626) 78132) ((-759 . -696) 77961) ((-759 . -143) 77940) ((-759 . -145) 77919) ((-759 . -47) 77896) ((-759 . -370) 77880) ((-759 . -619) 77828) ((-759 . -825) 77807) ((-759 . -874) 77750) ((-759 . -860) NIL) ((-759 . -884) 77729) ((-759 . -1188) 77708) ((-759 . -924) 77677) ((-759 . -895) 77656) ((-759 . -543) 77567) ((-759 . -283) 77478) ((-759 . -170) 77369) ((-759 . -444) 77300) ((-759 . -300) 77279) ((-759 . -279) 77206) ((-759 . -227) T) ((-759 . -130) T) ((-759 . -25) T) ((-759 . -101) T) ((-759 . -595) 77167) ((-759 . -1072) T) ((-759 . -23) T) ((-759 . -21) T) ((-759 . -705) T) ((-759 . -1083) T) ((-759 . -1030) T) ((-759 . -1023) T) ((-759 . -225) 77151) ((-758 . -1037) 77118) ((-758 . -596) 76752) ((-758 . -302) 76739) ((-758 . -505) 76691) ((-758 . -319) 76663) ((-758 . -1012) 76520) ((-758 . -405) 76504) ((-758 . -38) 76353) ((-758 . -626) 76278) ((-758 . -705) T) ((-758 . -1083) T) ((-758 . -1030) T) ((-758 . -1023) T) ((-758 . -111) 76107) ((-758 . -1029) 75950) ((-758 . -21) T) ((-758 . -23) T) ((-758 . -1072) T) ((-758 . -595) 75864) ((-758 . -101) T) ((-758 . -25) T) ((-758 . -130) T) ((-758 . -696) 75713) ((-758 . -143) 75692) ((-758 . -145) 75671) ((-758 . -170) 75582) ((-758 . -543) 75513) ((-758 . -283) 75444) ((-758 . -47) 75416) ((-758 . -370) 75400) ((-758 . -619) 75348) ((-758 . -444) 75299) ((-758 . -825) 75278) ((-758 . -874) 75262) ((-758 . -860) 75121) ((-758 . -884) 75100) ((-758 . -1188) 75079) ((-758 . -924) 75046) ((-751 . -1072) T) ((-751 . -595) 75028) ((-751 . -101) T) ((-749 . -771) T) ((-749 . -130) T) ((-749 . -25) T) ((-749 . -101) T) ((-749 . -595) 75010) ((-749 . -1072) T) ((-749 . -23) T) ((-749 . -770) T) ((-749 . -825) T) ((-749 . -772) T) ((-749 . -775) T) ((-749 . -705) T) ((-749 . -1083) T) ((-747 . -1072) T) ((-747 . -595) 74992) ((-747 . -101) T) ((-715 . -716) 74976) ((-715 . -1070) 74960) ((-715 . -229) 74944) ((-715 . -596) 74905) ((-715 . -149) 74889) ((-715 . -481) 74873) ((-715 . -101) T) ((-715 . -1072) T) ((-715 . -505) 74806) ((-715 . -302) 74744) ((-715 . -595) 74726) ((-715 . -1183) T) ((-715 . -34) T) ((-715 . -106) 74710) ((-715 . -673) 74694) ((-714 . -1023) T) ((-714 . -1030) T) ((-714 . -1083) T) ((-714 . -705) T) ((-714 . -21) T) ((-714 . -23) T) ((-714 . -1072) T) ((-714 . -595) 74676) ((-714 . -101) T) ((-714 . -25) T) ((-714 . -130) T) ((-714 . -626) 74636) ((-714 . -1012) 74607) ((-714 . -145) 74586) ((-714 . -143) 74565) ((-714 . -38) 74535) ((-714 . -111) 74500) ((-714 . -1029) 74470) ((-714 . -696) 74440) ((-714 . -361) 74393) ((-710 . -924) 74346) ((-710 . -1012) 74222) ((-710 . -1188) 74201) ((-710 . -884) 74180) ((-710 . -860) NIL) ((-710 . -874) 74157) ((-710 . -825) 74136) ((-710 . -505) 74079) ((-710 . -444) 74030) ((-710 . -619) 73978) ((-710 . -370) 73962) ((-710 . -47) 73927) ((-710 . -38) 73776) ((-710 . -696) 73625) ((-710 . -283) 73556) ((-710 . -543) 73487) ((-710 . -111) 73316) ((-710 . -1029) 73159) ((-710 . -170) 73070) ((-710 . -145) 73049) ((-710 . -143) 73028) ((-710 . -626) 72953) ((-710 . -130) T) ((-710 . -25) T) ((-710 . -101) T) ((-710 . -595) 72935) ((-710 . -1072) T) ((-710 . -23) T) ((-710 . -21) T) ((-710 . -1023) T) ((-710 . -1030) T) ((-710 . -1083) T) ((-710 . -705) T) ((-710 . -405) 72919) ((-710 . -319) 72884) ((-710 . -302) 72871) ((-710 . -596) 72732) ((-697 . -465) T) ((-697 . -1083) T) ((-697 . -101) T) ((-697 . -595) 72714) ((-697 . -1072) T) ((-697 . -705) T) ((-694 . -1023) T) ((-694 . -1030) T) ((-694 . -1083) T) ((-694 . -705) T) ((-694 . -21) T) ((-694 . -23) T) ((-694 . -1072) T) ((-694 . -595) 72696) ((-694 . -101) T) ((-694 . -25) T) ((-694 . -130) T) ((-694 . -626) 72683) ((-693 . -1023) T) ((-693 . -1030) T) ((-693 . -1083) T) ((-693 . -705) T) ((-693 . -21) T) ((-693 . -23) T) ((-693 . -1072) T) ((-693 . -595) 72665) ((-693 . -101) T) ((-693 . -25) T) ((-693 . -130) T) ((-693 . -626) 72625) ((-693 . -1012) 72594) ((-693 . -279) 72573) ((-693 . -145) 72552) ((-693 . -143) 72531) ((-693 . -38) 72501) ((-693 . -111) 72466) ((-693 . -1029) 72436) ((-693 . -696) 72406) ((-692 . -825) T) ((-692 . -101) T) ((-692 . -595) 72388) ((-692 . -1072) T) ((-691 . -1205) 72372) ((-691 . -1122) 72350) ((-691 . -596) NIL) ((-691 . -302) 72337) ((-691 . -505) 72284) ((-691 . -319) 72261) ((-691 . -1012) 72141) ((-691 . -405) 72125) ((-691 . -38) 71954) ((-691 . -111) 71763) ((-691 . -1029) 71586) ((-691 . -626) 71511) ((-691 . -696) 71340) ((-691 . -143) 71319) ((-691 . -145) 71298) ((-691 . -47) 71275) ((-691 . -370) 71259) ((-691 . -619) 71207) ((-691 . -825) 71186) ((-691 . -874) 71129) ((-691 . -860) NIL) ((-691 . -884) 71108) ((-691 . -1188) 71087) ((-691 . -924) 71056) ((-691 . -895) 71035) ((-691 . -543) 70946) ((-691 . -283) 70857) ((-691 . -170) 70748) ((-691 . -444) 70679) ((-691 . -300) 70658) ((-691 . -279) 70585) ((-691 . -227) T) ((-691 . -130) T) ((-691 . -25) T) ((-691 . -101) T) ((-691 . -595) 70567) ((-691 . -1072) T) ((-691 . -23) T) ((-691 . -21) T) ((-691 . -705) T) ((-691 . -1083) T) ((-691 . -1030) T) ((-691 . -1023) T) ((-691 . -225) 70551) ((-691 . -361) 70530) ((-690 . -356) T) ((-690 . -1188) T) ((-690 . -895) T) ((-690 . -543) T) ((-690 . -170) T) ((-690 . -696) 70495) ((-690 . -38) 70460) ((-690 . -444) T) ((-690 . -300) T) ((-690 . -626) 70425) ((-690 . -705) T) ((-690 . -1083) T) ((-690 . -1030) T) ((-690 . -1023) T) ((-690 . -111) 70381) ((-690 . -1029) 70346) ((-690 . -21) T) ((-690 . -23) T) ((-690 . -1072) T) ((-690 . -595) 70328) ((-690 . -101) T) ((-690 . -25) T) ((-690 . -130) T) ((-690 . -283) T) ((-690 . -237) T) ((-689 . -1072) T) ((-689 . -595) 70310) ((-689 . -101) T) ((-681 . -131) T) ((-681 . -1072) T) ((-681 . -595) 70279) ((-681 . -101) T) ((-681 . -825) T) ((-679 . -380) T) ((-679 . -1012) 70261) ((-679 . -825) T) ((-679 . -38) 70248) ((-679 . -705) T) ((-679 . -1083) T) ((-679 . -1030) T) ((-679 . -1023) T) ((-679 . -111) 70233) ((-679 . -1029) 70220) ((-679 . -21) T) ((-679 . -23) T) ((-679 . -1072) T) ((-679 . -595) 70202) ((-679 . -101) T) ((-679 . -25) T) ((-679 . -130) T) ((-679 . -626) 70189) ((-679 . -696) 70176) ((-679 . -170) T) ((-679 . -283) T) ((-679 . -543) T) ((-679 . -535) T) ((-679 . -1188) T) ((-679 . -1122) T) ((-679 . -596) 70091) ((-679 . -994) T) ((-679 . -860) 70073) ((-679 . -823) T) ((-679 . -775) T) ((-679 . -772) T) ((-679 . -770) T) ((-679 . -769) T) ((-679 . -798) T) ((-679 . -619) 70055) ((-679 . -895) T) ((-679 . -444) T) ((-679 . -300) T) ((-679 . -227) T) ((-679 . -141) T) ((-679 . -145) T) ((-677 . -397) T) ((-677 . -145) T) ((-677 . -626) 70020) ((-677 . -130) T) ((-677 . -25) T) ((-677 . -101) T) ((-677 . -595) 70002) ((-677 . -1072) T) ((-677 . -23) T) ((-677 . -21) T) ((-677 . -705) T) ((-677 . -1083) T) ((-677 . -1030) T) ((-677 . -1023) T) ((-677 . -596) 69947) ((-677 . -356) T) ((-677 . -1188) T) ((-677 . -895) T) ((-677 . -543) T) ((-677 . -170) T) ((-677 . -696) 69912) ((-677 . -38) 69877) ((-677 . -444) T) ((-677 . -300) T) ((-677 . -111) 69833) ((-677 . -1029) 69798) ((-677 . -283) T) ((-677 . -237) T) ((-677 . -823) T) ((-677 . -775) T) ((-677 . -772) T) ((-677 . -825) T) ((-677 . -770) T) ((-677 . -769) T) ((-677 . -860) 69780) ((-677 . -976) T) ((-677 . -994) T) ((-677 . -1012) 69725) ((-677 . -1032) T) ((-677 . -380) T) ((-672 . -380) T) ((-672 . -1012) 69670) ((-672 . -825) T) ((-672 . -38) 69620) ((-672 . -705) T) ((-672 . -1083) T) ((-672 . -1030) T) ((-672 . -1023) T) ((-672 . -111) 69554) ((-672 . -1029) 69504) ((-672 . -21) T) ((-672 . -23) T) ((-672 . -1072) T) ((-672 . -595) 69486) ((-672 . -101) T) ((-672 . -25) T) ((-672 . -130) T) ((-672 . -626) 69436) ((-672 . -696) 69386) ((-672 . -170) T) ((-672 . -283) T) ((-672 . -543) T) ((-672 . -164) 69368) ((-672 . -35) NIL) ((-672 . -94) NIL) ((-672 . -277) NIL) ((-672 . -484) NIL) ((-672 . -1172) NIL) ((-672 . -1169) NIL) ((-672 . -976) NIL) ((-672 . -884) NIL) ((-672 . -596) 69276) ((-672 . -858) 69258) ((-672 . -361) NIL) ((-672 . -343) NIL) ((-672 . -1122) NIL) ((-672 . -395) NIL) ((-672 . -403) 69225) ((-672 . -363) 69192) ((-672 . -703) 69159) ((-672 . -405) 69141) ((-672 . -860) 69123) ((-672 . -1183) T) ((-672 . -393) 69105) ((-672 . -619) 69087) ((-672 . -370) 69069) ((-672 . -279) NIL) ((-672 . -302) NIL) ((-672 . -505) NIL) ((-672 . -331) 69051) ((-672 . -237) T) ((-672 . -1188) T) ((-672 . -356) T) ((-672 . -895) T) ((-672 . -444) T) ((-672 . -300) T) ((-672 . -227) NIL) ((-672 . -874) NIL) ((-672 . -225) 69033) ((-672 . -145) T) ((-672 . -143) NIL) ((-669 . -1225) T) ((-669 . -595) 69015) ((-667 . -664) 68973) ((-667 . -481) 68957) ((-667 . -101) 68935) ((-667 . -1072) 68913) ((-667 . -505) 68846) ((-667 . -302) 68784) ((-667 . -595) 68716) ((-667 . -1183) T) ((-667 . -34) T) ((-667 . -56) 68674) ((-667 . -596) 68635) ((-659 . -1054) T) ((-659 . -595) 68585) ((-659 . -1072) T) ((-659 . -101) T) ((-659 . -92) T) ((-655 . -825) T) ((-655 . -101) T) ((-655 . -595) 68567) ((-655 . -1072) T) ((-655 . -1012) 68551) ((-654 . -1054) T) ((-654 . -595) 68517) ((-654 . -1072) T) ((-654 . -101) T) ((-654 . -92) T) ((-653 . -481) 68501) ((-653 . -101) 68479) ((-653 . -1072) 68457) ((-653 . -505) 68390) ((-653 . -302) 68328) ((-653 . -595) 68260) ((-653 . -1183) T) ((-653 . -34) T) ((-650 . -825) T) ((-650 . -101) T) ((-650 . -595) 68242) ((-650 . -1072) T) ((-650 . -1012) 68226) ((-649 . -1054) T) ((-649 . -595) 68192) ((-649 . -1072) T) ((-649 . -101) T) ((-649 . -92) T) ((-648 . -1094) 68137) ((-648 . -481) 68121) ((-648 . -505) 68054) ((-648 . -302) 67992) ((-648 . -1183) T) ((-648 . -34) T) ((-648 . -1026) 67932) ((-648 . -1012) 67828) ((-648 . -405) 67812) ((-648 . -619) 67760) ((-648 . -370) 67744) ((-648 . -227) 67723) ((-648 . -874) 67682) ((-648 . -225) 67666) ((-648 . -696) 67650) ((-648 . -626) 67624) ((-648 . -130) T) ((-648 . -25) T) ((-648 . -101) T) ((-648 . -595) 67586) ((-648 . -1072) T) ((-648 . -23) T) ((-648 . -21) T) ((-648 . -1029) 67570) ((-648 . -111) 67549) ((-648 . -1023) T) ((-648 . -1030) T) ((-648 . -1083) T) ((-648 . -705) T) ((-648 . -38) 67509) ((-648 . -411) 67493) ((-648 . -723) 67477) ((-648 . -699) T) ((-648 . -740) T) ((-648 . -360) 67461) ((-642 . -367) 67440) ((-642 . -696) 67424) ((-642 . -626) 67408) ((-642 . -130) T) ((-642 . -25) T) ((-642 . -101) T) ((-642 . -595) 67390) ((-642 . -1072) T) ((-642 . -23) T) ((-642 . -21) T) ((-642 . -1029) 67374) ((-642 . -111) 67353) ((-642 . -615) 67337) ((-642 . -377) 67309) ((-642 . -1012) 67286) ((-634 . -636) 67270) ((-634 . -38) 67240) ((-634 . -626) 67214) ((-634 . -705) T) ((-634 . -1083) T) ((-634 . -1030) T) ((-634 . -1023) T) ((-634 . -111) 67193) ((-634 . -1029) 67177) ((-634 . -21) T) ((-634 . -23) T) ((-634 . -1072) T) ((-634 . -595) 67159) ((-634 . -101) T) ((-634 . -25) T) ((-634 . -130) T) ((-634 . -696) 67129) ((-634 . -405) 67113) ((-634 . -1012) 67009) ((-634 . -827) 66993) ((-634 . -279) 66954) ((-633 . -636) 66938) ((-633 . -38) 66908) ((-633 . -626) 66882) ((-633 . -705) T) ((-633 . -1083) T) ((-633 . -1030) T) ((-633 . -1023) T) ((-633 . -111) 66861) ((-633 . -1029) 66845) ((-633 . -21) T) ((-633 . -23) T) ((-633 . -1072) T) ((-633 . -595) 66827) ((-633 . -101) T) ((-633 . -25) T) ((-633 . -130) T) ((-633 . -696) 66797) ((-633 . -405) 66781) ((-633 . -1012) 66677) ((-633 . -827) 66661) ((-633 . -279) 66640) ((-632 . -636) 66624) ((-632 . -38) 66594) ((-632 . -626) 66568) ((-632 . -705) T) ((-632 . -1083) T) ((-632 . -1030) T) ((-632 . -1023) T) ((-632 . -111) 66547) ((-632 . -1029) 66531) ((-632 . -21) T) ((-632 . -23) T) ((-632 . -1072) T) ((-632 . -595) 66513) ((-632 . -101) T) ((-632 . -25) T) ((-632 . -130) T) ((-632 . -696) 66483) ((-632 . -405) 66467) ((-632 . -1012) 66363) ((-632 . -827) 66347) ((-632 . -279) 66326) ((-630 . -696) 66310) ((-630 . -626) 66294) ((-630 . -130) T) ((-630 . -25) T) ((-630 . -101) T) ((-630 . -595) 66276) ((-630 . -1072) T) ((-630 . -23) T) ((-630 . -21) T) ((-630 . -1029) 66260) ((-630 . -111) 66239) ((-630 . -769) 66218) ((-630 . -770) 66197) ((-630 . -825) 66176) ((-630 . -772) 66155) ((-630 . -775) 66134) ((-627 . -1072) T) ((-627 . -595) 66116) ((-627 . -101) T) ((-627 . -1012) 66100) ((-625 . -673) 66084) ((-625 . -106) 66068) ((-625 . -34) T) ((-625 . -1183) T) ((-625 . -595) 66000) ((-625 . -302) 65938) ((-625 . -505) 65871) ((-625 . -1072) 65849) ((-625 . -101) 65827) ((-625 . -481) 65811) ((-625 . -149) 65795) ((-625 . -596) 65756) ((-625 . -229) 65740) ((-624 . -1054) T) ((-624 . -595) 65693) ((-624 . -1072) T) ((-624 . -101) T) ((-624 . -92) T) ((-620 . -644) 65677) ((-620 . -1218) 65661) ((-620 . -984) 65645) ((-620 . -1120) 65629) ((-620 . -825) 65608) ((-620 . -365) 65592) ((-620 . -629) 65576) ((-620 . -281) 65553) ((-620 . -279) 65530) ((-620 . -586) 65507) ((-620 . -596) 65468) ((-620 . -481) 65452) ((-620 . -101) 65402) ((-620 . -1072) 65352) ((-620 . -505) 65285) ((-620 . -302) 65223) ((-620 . -595) 65135) ((-620 . -1183) T) ((-620 . -34) T) ((-620 . -149) 65119) ((-620 . -275) 65103) ((-620 . -799) 65082) ((-613 . -723) 65066) ((-613 . -699) T) ((-613 . -740) T) ((-613 . -111) 65045) ((-613 . -1029) 65029) ((-613 . -21) T) ((-613 . -23) T) ((-613 . -1072) T) ((-613 . -595) 64998) ((-613 . -101) T) ((-613 . -25) T) ((-613 . -130) T) ((-613 . -626) 64982) ((-613 . -696) 64966) ((-613 . -411) 64931) ((-613 . -360) 64863) ((-612 . -1160) 64838) ((-612 . -223) 64784) ((-612 . -106) 64730) ((-612 . -302) 64581) ((-612 . -505) 64425) ((-612 . -481) 64356) ((-612 . -149) 64302) ((-612 . -596) NIL) ((-612 . -229) 64248) ((-612 . -592) 64223) ((-612 . -281) 64198) ((-612 . -279) 64173) ((-612 . -101) T) ((-612 . -1072) T) ((-612 . -595) 64155) ((-612 . -1183) T) ((-612 . -34) T) ((-612 . -586) 64130) ((-607 . -465) T) ((-607 . -1083) T) ((-607 . -101) T) ((-607 . -595) 64112) ((-607 . -1072) T) ((-607 . -705) T) ((-606 . -1054) T) ((-606 . -595) 64078) ((-606 . -1072) T) ((-606 . -101) T) ((-606 . -92) T) ((-603 . -225) 64062) ((-603 . -874) 64021) ((-603 . -1023) T) ((-603 . -1030) T) ((-603 . -1083) T) ((-603 . -705) T) ((-603 . -21) T) ((-603 . -23) T) ((-603 . -1072) T) ((-603 . -595) 64003) ((-603 . -101) T) ((-603 . -25) T) ((-603 . -130) T) ((-603 . -626) 63990) ((-603 . -227) 63969) ((-603 . -543) T) ((-603 . -283) T) ((-603 . -170) T) ((-603 . -696) 63956) ((-603 . -1029) 63943) ((-603 . -111) 63928) ((-603 . -38) 63915) ((-603 . -596) 63892) ((-603 . -405) 63876) ((-603 . -1012) 63759) ((-603 . -145) 63738) ((-603 . -143) 63717) ((-603 . -300) 63696) ((-603 . -444) 63675) ((-603 . -895) 63654) ((-599 . -38) 63638) ((-599 . -626) 63612) ((-599 . -705) T) ((-599 . -1083) T) ((-599 . -1030) T) ((-599 . -1023) T) ((-599 . -111) 63591) ((-599 . -1029) 63575) ((-599 . -21) T) ((-599 . -23) T) ((-599 . -1072) T) ((-599 . -595) 63557) ((-599 . -101) T) ((-599 . -25) T) ((-599 . -130) T) ((-599 . -696) 63541) ((-599 . -823) 63520) ((-599 . -775) 63499) ((-599 . -772) 63478) ((-599 . -825) 63457) ((-599 . -770) 63436) ((-599 . -769) 63415) ((-598 . -941) T) ((-598 . -101) T) ((-598 . -595) 63397) ((-598 . -1072) T) ((-593 . -131) T) ((-593 . -1072) T) ((-593 . -595) 63379) ((-593 . -101) T) ((-593 . -825) T) ((-593 . -858) 63363) ((-593 . -596) 63224) ((-590 . -358) 63164) ((-590 . -101) T) ((-590 . -595) 63146) ((-590 . -1072) T) ((-590 . -1160) 63122) ((-590 . -223) 63069) ((-590 . -106) 63016) ((-590 . -302) 62811) ((-590 . -505) 62594) ((-590 . -481) 62528) ((-590 . -149) 62475) ((-590 . -596) NIL) ((-590 . -229) 62422) ((-590 . -592) 62398) ((-590 . -281) 62374) ((-590 . -279) 62350) ((-590 . -1183) T) ((-590 . -34) T) ((-590 . -586) 62326) ((-589 . -723) 62310) ((-589 . -699) T) ((-589 . -740) T) ((-589 . -111) 62289) ((-589 . -1029) 62273) ((-589 . -21) T) ((-589 . -23) T) ((-589 . -1072) T) ((-589 . -595) 62242) ((-589 . -101) T) ((-589 . -25) T) ((-589 . -130) T) ((-589 . -626) 62226) ((-589 . -696) 62210) ((-589 . -411) 62175) ((-589 . -360) 62107) ((-588 . -1054) T) ((-588 . -595) 62057) ((-588 . -1072) T) ((-588 . -101) T) ((-588 . -92) T) ((-587 . -595) 62024) ((-584 . -1228) 62008) ((-584 . -365) 61992) ((-584 . -825) 61971) ((-584 . -149) 61955) ((-584 . -34) T) ((-584 . -1183) T) ((-584 . -595) 61867) ((-584 . -302) 61805) ((-584 . -505) 61738) ((-584 . -1072) 61688) ((-584 . -101) 61638) ((-584 . -481) 61622) ((-584 . -596) 61583) ((-584 . -586) 61560) ((-584 . -279) 61537) ((-584 . -281) 61514) ((-584 . -629) 61498) ((-584 . -19) 61482) ((-583 . -595) 61464) ((-579 . -1023) T) ((-579 . -1030) T) ((-579 . -1083) T) ((-579 . -705) T) ((-579 . -21) T) ((-579 . -23) T) ((-579 . -1072) T) ((-579 . -595) 61446) ((-579 . -101) T) ((-579 . -25) T) ((-579 . -130) T) ((-579 . -626) 61433) ((-579 . -543) 61412) ((-579 . -283) 61391) ((-579 . -170) 61370) ((-579 . -696) 61343) ((-579 . -1029) 61316) ((-579 . -111) 61287) ((-579 . -38) 61260) ((-578 . -1208) 61237) ((-578 . -47) 61214) ((-578 . -38) 61111) ((-578 . -696) 61008) ((-578 . -283) 60987) ((-578 . -543) 60966) ((-578 . -111) 60835) ((-578 . -1029) 60718) ((-578 . -170) 60669) ((-578 . -145) 60648) ((-578 . -143) 60627) ((-578 . -626) 60552) ((-578 . -947) 60521) ((-578 . -874) 60434) ((-578 . -279) 60419) ((-578 . -1023) T) ((-578 . -1030) T) ((-578 . -1083) T) ((-578 . -705) T) ((-578 . -21) T) ((-578 . -23) T) ((-578 . -1072) T) ((-578 . -595) 60401) ((-578 . -101) T) ((-578 . -25) T) ((-578 . -130) T) ((-578 . -227) 60360) ((-576 . -1115) T) ((-576 . -365) 60342) ((-576 . -825) T) ((-576 . -149) 60324) ((-576 . -34) T) ((-576 . -1183) T) ((-576 . -595) 60306) ((-576 . -302) NIL) ((-576 . -505) NIL) ((-576 . -1072) T) ((-576 . -101) T) ((-576 . -481) 60288) ((-576 . -596) NIL) ((-576 . -586) 60263) ((-576 . -279) 60238) ((-576 . -281) 60213) ((-576 . -629) 60195) ((-576 . -19) 60177) ((-575 . -1054) T) ((-575 . -595) 60143) ((-575 . -1072) T) ((-575 . -101) T) ((-575 . -92) T) ((-567 . -696) 60118) ((-567 . -626) 60093) ((-567 . -130) T) ((-567 . -25) T) ((-567 . -101) T) ((-567 . -595) 60075) ((-567 . -1072) T) ((-567 . -23) T) ((-567 . -21) T) ((-567 . -1029) 60050) ((-567 . -111) 60018) ((-567 . -1012) 60002) ((-565 . -343) T) ((-565 . -1122) T) ((-565 . -361) T) ((-565 . -143) T) ((-565 . -356) T) ((-565 . -1188) T) ((-565 . -895) T) ((-565 . -543) T) ((-565 . -170) T) ((-565 . -696) 59967) ((-565 . -38) 59932) ((-565 . -444) T) ((-565 . -300) T) ((-565 . -111) 59888) ((-565 . -1029) 59853) ((-565 . -626) 59818) ((-565 . -283) T) ((-565 . -237) T) ((-565 . -395) T) ((-565 . -1023) T) ((-565 . -1030) T) ((-565 . -1083) T) ((-565 . -705) T) ((-565 . -21) T) ((-565 . -23) T) ((-565 . -1072) T) ((-565 . -595) 59800) ((-565 . -101) T) ((-565 . -25) T) ((-565 . -130) T) ((-565 . -227) T) ((-565 . -322) 59787) ((-565 . -145) 59769) ((-565 . -1012) 59756) ((-565 . -1237) 59743) ((-565 . -1248) 59730) ((-565 . -596) 59712) ((-564 . -844) 59696) ((-564 . -895) T) ((-564 . -543) T) ((-564 . -283) T) ((-564 . -170) T) ((-564 . -696) 59683) ((-564 . -1029) 59670) ((-564 . -111) 59655) ((-564 . -38) 59642) ((-564 . -444) T) ((-564 . -300) T) ((-564 . -1023) T) ((-564 . -1030) T) ((-564 . -1083) T) ((-564 . -705) T) ((-564 . -21) T) ((-564 . -23) T) ((-564 . -1072) T) ((-564 . -595) 59624) ((-564 . -101) T) ((-564 . -25) T) ((-564 . -130) T) ((-564 . -626) 59611) ((-564 . -145) T) ((-563 . -1072) T) ((-563 . -595) 59593) ((-563 . -101) T) ((-557 . -541) 59577) ((-557 . -35) T) ((-557 . -94) T) ((-557 . -277) T) ((-557 . -484) T) ((-557 . -1172) T) ((-557 . -1169) T) ((-557 . -1012) 59559) ((-557 . -976) T) ((-557 . -825) T) ((-557 . -543) T) ((-557 . -283) T) ((-557 . -170) T) ((-557 . -696) 59546) ((-557 . -626) 59533) ((-557 . -130) T) ((-557 . -25) T) ((-557 . -101) T) ((-557 . -595) 59515) ((-557 . -1072) T) ((-557 . -23) T) ((-557 . -21) T) ((-557 . -1029) 59502) ((-557 . -111) 59487) ((-557 . -1023) T) ((-557 . -1030) T) ((-557 . -1083) T) ((-557 . -705) T) ((-557 . -38) 59474) ((-557 . -444) T) ((-537 . -1160) 59453) ((-537 . -223) 59403) ((-537 . -106) 59353) ((-537 . -302) 59157) ((-537 . -505) 58949) ((-537 . -481) 58886) ((-537 . -149) 58836) ((-537 . -596) NIL) ((-537 . -229) 58786) ((-537 . -592) 58765) ((-537 . -281) 58744) ((-537 . -279) 58723) ((-537 . -101) T) ((-537 . -1072) T) ((-537 . -595) 58705) ((-537 . -1183) T) ((-537 . -34) T) ((-537 . -586) 58684) ((-536 . -535) T) ((-536 . -1188) T) ((-536 . -1122) T) ((-536 . -1012) 58666) ((-536 . -596) 58565) ((-536 . -994) T) ((-536 . -860) 58547) ((-536 . -823) T) ((-536 . -775) T) ((-536 . -772) T) ((-536 . -825) T) ((-536 . -770) T) ((-536 . -769) T) ((-536 . -798) T) ((-536 . -619) 58529) ((-536 . -895) T) ((-536 . -543) T) ((-536 . -283) T) ((-536 . -170) T) ((-536 . -696) 58516) ((-536 . -1029) 58503) ((-536 . -111) 58488) ((-536 . -38) 58475) ((-536 . -444) T) ((-536 . -300) T) ((-536 . -227) T) ((-536 . -141) T) ((-536 . -1023) T) ((-536 . -1030) T) ((-536 . -1083) T) ((-536 . -705) T) ((-536 . -21) T) ((-536 . -23) T) ((-536 . -1072) T) ((-536 . -595) 58457) ((-536 . -101) T) ((-536 . -25) T) ((-536 . -130) T) ((-536 . -626) 58444) ((-536 . -145) T) ((-536 . -799) T) ((-525 . -1075) 58396) ((-525 . -101) T) ((-525 . -595) 58378) ((-525 . -1072) T) ((-525 . -596) 58359) ((-522 . -771) T) ((-522 . -130) T) ((-522 . -25) T) ((-522 . -101) T) ((-522 . -595) 58341) ((-522 . -1072) T) ((-522 . -23) T) ((-522 . -770) T) ((-522 . -825) T) ((-522 . -772) T) ((-522 . -775) T) ((-522 . -500) 58318) ((-520 . -518) T) ((-520 . -171) T) ((-520 . -595) 58300) ((-516 . -1054) T) ((-516 . -595) 58266) ((-516 . -1072) T) ((-516 . -101) T) ((-516 . -92) T) ((-515 . -1054) T) ((-515 . -595) 58232) ((-515 . -1072) T) ((-515 . -101) T) ((-515 . -92) T) ((-514 . -664) 58182) ((-514 . -481) 58166) ((-514 . -101) 58144) ((-514 . -1072) 58122) ((-514 . -505) 58055) ((-514 . -302) 57993) ((-514 . -595) 57925) ((-514 . -1183) T) ((-514 . -34) T) ((-514 . -56) 57875) ((-511 . -644) 57859) ((-511 . -1218) 57843) ((-511 . -984) 57827) ((-511 . -1120) 57811) ((-511 . -825) 57790) ((-511 . -365) 57774) ((-511 . -629) 57758) ((-511 . -281) 57735) ((-511 . -279) 57712) ((-511 . -586) 57689) ((-511 . -596) 57650) ((-511 . -481) 57634) ((-511 . -101) 57584) ((-511 . -1072) 57534) ((-511 . -505) 57467) ((-511 . -302) 57405) ((-511 . -595) 57317) ((-511 . -1183) T) ((-511 . -34) T) ((-511 . -149) 57301) ((-511 . -275) 57285) ((-510 . -56) 57259) ((-510 . -34) T) ((-510 . -1183) T) ((-510 . -595) 57191) ((-510 . -302) 57129) ((-510 . -505) 57062) ((-510 . -1072) 57040) ((-510 . -101) 57018) ((-510 . -481) 57002) ((-509 . -322) 56979) ((-509 . -227) T) ((-509 . -361) T) ((-509 . -1122) T) ((-509 . -343) T) ((-509 . -145) 56961) ((-509 . -626) 56906) ((-509 . -130) T) ((-509 . -25) T) ((-509 . -101) T) ((-509 . -595) 56888) ((-509 . -1072) T) ((-509 . -23) T) ((-509 . -21) T) ((-509 . -705) T) ((-509 . -1083) T) ((-509 . -1030) T) ((-509 . -1023) T) ((-509 . -356) T) ((-509 . -1188) T) ((-509 . -895) T) ((-509 . -543) T) ((-509 . -170) T) ((-509 . -696) 56833) ((-509 . -38) 56798) ((-509 . -444) T) ((-509 . -300) T) ((-509 . -111) 56727) ((-509 . -1029) 56672) ((-509 . -283) T) ((-509 . -237) T) ((-509 . -395) T) ((-509 . -143) T) ((-509 . -1012) 56649) ((-509 . -1237) 56626) ((-509 . -1248) 56603) ((-508 . -1054) T) ((-508 . -595) 56569) ((-508 . -1072) T) ((-508 . -101) T) ((-508 . -92) T) ((-507 . -19) 56553) ((-507 . -629) 56537) ((-507 . -281) 56514) ((-507 . -279) 56491) ((-507 . -586) 56468) ((-507 . -596) 56429) ((-507 . -481) 56413) ((-507 . -101) 56363) ((-507 . -1072) 56313) ((-507 . -505) 56246) ((-507 . -302) 56184) ((-507 . -595) 56096) ((-507 . -1183) T) ((-507 . -34) T) ((-507 . -149) 56080) ((-507 . -825) 56059) ((-507 . -365) 56043) ((-507 . -275) 56027) ((-506 . -316) 56006) ((-506 . -1012) 55990) ((-506 . -23) T) ((-506 . -1072) T) ((-506 . -595) 55972) ((-506 . -101) T) ((-506 . -25) T) ((-506 . -130) T) ((-503 . -771) T) ((-503 . -130) T) ((-503 . -25) T) ((-503 . -101) T) ((-503 . -595) 55954) ((-503 . -1072) T) ((-503 . -23) T) ((-503 . -770) T) ((-503 . -825) T) ((-503 . -772) T) ((-503 . -775) T) ((-503 . -500) 55933) ((-502 . -770) T) ((-502 . -825) T) ((-502 . -772) T) ((-502 . -25) T) ((-502 . -101) T) ((-502 . -595) 55915) ((-502 . -1072) T) ((-502 . -23) T) ((-502 . -500) 55894) ((-501 . -500) 55873) ((-501 . -101) T) ((-501 . -595) 55855) ((-501 . -1072) T) ((-499 . -23) T) ((-499 . -1072) T) ((-499 . -595) 55837) ((-499 . -101) T) ((-499 . -25) T) ((-499 . -500) 55816) ((-498 . -21) T) ((-498 . -23) T) ((-498 . -1072) T) ((-498 . -595) 55798) ((-498 . -101) T) ((-498 . -25) T) ((-498 . -130) T) ((-498 . -500) 55777) ((-497 . -1054) T) ((-497 . -595) 55727) ((-497 . -1072) T) ((-497 . -101) T) ((-497 . -92) T) ((-495 . -1072) T) ((-495 . -595) 55709) ((-495 . -101) T) ((-493 . -825) T) ((-493 . -101) T) ((-493 . -595) 55691) ((-493 . -1072) T) ((-491 . -123) T) ((-491 . -365) 55673) ((-491 . -825) T) ((-491 . -149) 55655) ((-491 . -34) T) ((-491 . -1183) T) ((-491 . -595) 55637) ((-491 . -302) NIL) ((-491 . -505) NIL) ((-491 . -1072) T) ((-491 . -481) 55619) ((-491 . -596) 55601) ((-491 . -586) 55576) ((-491 . -279) 55551) ((-491 . -281) 55526) ((-491 . -629) 55508) ((-491 . -19) 55490) ((-491 . -101) T) ((-491 . -640) T) ((-488 . -56) 55440) ((-488 . -34) T) ((-488 . -1183) T) ((-488 . -595) 55372) ((-488 . -302) 55310) ((-488 . -505) 55243) ((-488 . -1072) 55221) ((-488 . -101) 55199) ((-488 . -481) 55183) ((-487 . -19) 55167) ((-487 . -629) 55151) ((-487 . -281) 55128) ((-487 . -279) 55105) ((-487 . -586) 55082) ((-487 . -596) 55043) ((-487 . -481) 55027) ((-487 . -101) 54977) ((-487 . -1072) 54927) ((-487 . -505) 54860) ((-487 . -302) 54798) ((-487 . -595) 54710) ((-487 . -1183) T) ((-487 . -34) T) ((-487 . -149) 54694) ((-487 . -825) 54673) ((-487 . -365) 54657) ((-486 . -291) T) ((-486 . -1012) 54600) ((-486 . -1072) T) ((-486 . -595) 54582) ((-486 . -101) T) ((-486 . -825) T) ((-486 . -505) 54548) ((-486 . -302) 54535) ((-486 . -27) T) ((-486 . -976) T) ((-486 . -237) T) ((-486 . -111) 54491) ((-486 . -1029) 54456) ((-486 . -283) T) ((-486 . -696) 54421) ((-486 . -626) 54386) ((-486 . -130) T) ((-486 . -25) T) ((-486 . -23) T) ((-486 . -21) T) ((-486 . -1023) T) ((-486 . -1030) T) ((-486 . -1083) T) ((-486 . -705) T) ((-486 . -38) 54351) ((-486 . -300) T) ((-486 . -444) T) ((-486 . -170) T) ((-486 . -543) T) ((-486 . -895) T) ((-486 . -1188) T) ((-486 . -356) T) ((-486 . -619) 54311) ((-486 . -994) T) ((-486 . -596) 54256) ((-486 . -145) T) ((-486 . -227) T) ((-482 . -1072) T) ((-482 . -595) 54222) ((-482 . -101) T) ((-479 . -965) 54204) ((-479 . -1122) T) ((-479 . -1012) 54164) ((-479 . -596) 54094) ((-479 . -994) T) ((-479 . -884) NIL) ((-479 . -858) 54076) ((-479 . -823) T) ((-479 . -775) T) ((-479 . -772) T) ((-479 . -825) T) ((-479 . -770) T) ((-479 . -769) T) ((-479 . -798) T) ((-479 . -860) 54058) ((-479 . -1183) T) ((-479 . -393) 54040) ((-479 . -619) 54022) ((-479 . -370) 54004) ((-479 . -279) NIL) ((-479 . -302) NIL) ((-479 . -505) NIL) ((-479 . -331) 53986) ((-479 . -237) T) ((-479 . -111) 53920) ((-479 . -1029) 53870) ((-479 . -283) T) ((-479 . -696) 53820) ((-479 . -626) 53770) ((-479 . -38) 53720) ((-479 . -300) T) ((-479 . -444) T) ((-479 . -170) T) ((-479 . -543) T) ((-479 . -895) T) ((-479 . -1188) T) ((-479 . -356) T) ((-479 . -227) T) ((-479 . -874) NIL) ((-479 . -225) 53702) ((-479 . -145) T) ((-479 . -143) NIL) ((-479 . -130) T) ((-479 . -25) T) ((-479 . -101) T) ((-479 . -595) 53684) ((-479 . -1072) T) ((-479 . -23) T) ((-479 . -21) T) ((-479 . -1023) T) ((-479 . -1030) T) ((-479 . -1083) T) ((-479 . -705) T) ((-477 . -329) 53653) ((-477 . -130) T) ((-477 . -25) T) ((-477 . -101) T) ((-477 . -595) 53635) ((-477 . -1072) T) ((-477 . -23) T) ((-477 . -21) T) ((-476 . -942) 53619) ((-476 . -481) 53603) ((-476 . -101) 53581) ((-476 . -1072) 53559) ((-476 . -505) 53492) ((-476 . -302) 53430) ((-476 . -595) 53362) ((-476 . -1183) T) ((-476 . -34) T) ((-476 . -106) 53346) ((-475 . -1054) T) ((-475 . -595) 53312) ((-475 . -1072) T) ((-475 . -101) T) ((-475 . -92) T) ((-474 . -232) 53291) ((-474 . -1237) 53261) ((-474 . -769) 53240) ((-474 . -823) 53219) ((-474 . -775) 53170) ((-474 . -772) 53121) ((-474 . -825) 53072) ((-474 . -770) 53023) ((-474 . -771) 53002) ((-474 . -281) 52979) ((-474 . -279) 52956) ((-474 . -481) 52940) ((-474 . -505) 52873) ((-474 . -302) 52811) ((-474 . -1183) T) ((-474 . -34) T) ((-474 . -586) 52788) ((-474 . -1012) 52615) ((-474 . -405) 52584) ((-474 . -619) 52490) ((-474 . -370) 52459) ((-474 . -361) 52438) ((-474 . -227) 52390) ((-474 . -874) 52322) ((-474 . -225) 52291) ((-474 . -111) 52181) ((-474 . -1029) 52078) ((-474 . -170) 52057) ((-474 . -595) 51788) ((-474 . -696) 51730) ((-474 . -626) 51578) ((-474 . -130) 51448) ((-474 . -23) 51318) ((-474 . -21) 51228) ((-474 . -1023) 51158) ((-474 . -1030) 51088) ((-474 . -1083) 50998) ((-474 . -705) 50908) ((-474 . -38) 50878) ((-474 . -1072) 50668) ((-474 . -101) 50458) ((-474 . -25) 50309) ((-473 . -924) 50254) ((-473 . -1012) 50130) ((-473 . -1188) 50109) ((-473 . -884) 50088) ((-473 . -860) NIL) ((-473 . -874) 50065) ((-473 . -825) 50044) ((-473 . -505) 49987) ((-473 . -444) 49938) ((-473 . -619) 49886) ((-473 . -370) 49870) ((-473 . -47) 49827) ((-473 . -38) 49676) ((-473 . -696) 49525) ((-473 . -283) 49456) ((-473 . -543) 49387) ((-473 . -111) 49216) ((-473 . -1029) 49059) ((-473 . -170) 48970) ((-473 . -145) 48949) ((-473 . -143) 48928) ((-473 . -626) 48853) ((-473 . -130) T) ((-473 . -25) T) ((-473 . -101) T) ((-473 . -595) 48835) ((-473 . -1072) T) ((-473 . -23) T) ((-473 . -21) T) ((-473 . -1023) T) ((-473 . -1030) T) ((-473 . -1083) T) ((-473 . -705) T) ((-473 . -405) 48819) ((-473 . -319) 48776) ((-473 . -302) 48763) ((-473 . -596) 48624) ((-471 . -1160) 48603) ((-471 . -223) 48553) ((-471 . -106) 48503) ((-471 . -302) 48307) ((-471 . -505) 48099) ((-471 . -481) 48036) ((-471 . -149) 47986) ((-471 . -596) NIL) ((-471 . -229) 47936) ((-471 . -592) 47915) ((-471 . -281) 47894) ((-471 . -279) 47873) ((-471 . -101) T) ((-471 . -1072) T) ((-471 . -595) 47855) ((-471 . -1183) T) ((-471 . -34) T) ((-471 . -586) 47834) ((-470 . -1054) T) ((-470 . -595) 47800) ((-470 . -1072) T) ((-470 . -101) T) ((-470 . -92) T) ((-469 . -356) T) ((-469 . -1188) T) ((-469 . -895) T) ((-469 . -543) T) ((-469 . -170) T) ((-469 . -696) 47765) ((-469 . -38) 47730) ((-469 . -444) T) ((-469 . -300) T) ((-469 . -626) 47695) ((-469 . -705) T) ((-469 . -1083) T) ((-469 . -1030) T) ((-469 . -1023) T) ((-469 . -111) 47651) ((-469 . -1029) 47616) ((-469 . -21) T) ((-469 . -23) T) ((-469 . -1072) T) ((-469 . -595) 47568) ((-469 . -101) T) ((-469 . -25) T) ((-469 . -130) T) ((-469 . -283) T) ((-469 . -237) T) ((-469 . -145) T) ((-469 . -1012) 47528) ((-469 . -994) T) ((-469 . -596) 47450) ((-468 . -1178) 47419) ((-468 . -595) 47381) ((-468 . -149) 47365) ((-468 . -34) T) ((-468 . -1183) T) ((-468 . -302) 47303) ((-468 . -505) 47236) ((-468 . -1072) T) ((-468 . -101) T) ((-468 . -481) 47220) ((-468 . -596) 47181) ((-468 . -950) 47150) ((-467 . -1160) 47129) ((-467 . -223) 47079) ((-467 . -106) 47029) ((-467 . -302) 46833) ((-467 . -505) 46625) ((-467 . -481) 46562) ((-467 . -149) 46512) ((-467 . -596) NIL) ((-467 . -229) 46462) ((-467 . -592) 46441) ((-467 . -281) 46420) ((-467 . -279) 46399) ((-467 . -101) T) ((-467 . -1072) T) ((-467 . -595) 46381) ((-467 . -1183) T) ((-467 . -34) T) ((-467 . -586) 46360) ((-466 . -1212) 46344) ((-466 . -227) 46296) ((-466 . -279) 46281) ((-466 . -874) 46187) ((-466 . -947) 46149) ((-466 . -38) 45990) ((-466 . -111) 45811) ((-466 . -1029) 45646) ((-466 . -626) 45543) ((-466 . -696) 45384) ((-466 . -143) 45363) ((-466 . -145) 45342) ((-466 . -47) 45312) ((-466 . -1208) 45282) ((-466 . -35) 45248) ((-466 . -94) 45214) ((-466 . -277) 45180) ((-466 . -484) 45146) ((-466 . -1172) 45112) ((-466 . -1169) 45078) ((-466 . -976) 45044) ((-466 . -237) 45023) ((-466 . -283) 44974) ((-466 . -130) T) ((-466 . -25) T) ((-466 . -101) T) ((-466 . -595) 44956) ((-466 . -1072) T) ((-466 . -23) T) ((-466 . -21) T) ((-466 . -1023) T) ((-466 . -1030) T) ((-466 . -1083) T) ((-466 . -705) T) ((-466 . -300) 44935) ((-466 . -444) 44914) ((-466 . -170) 44845) ((-466 . -543) 44796) ((-466 . -895) 44775) ((-466 . -1188) 44754) ((-466 . -356) 44733) ((-460 . -1072) T) ((-460 . -595) 44715) ((-460 . -101) T) ((-455 . -950) 44684) ((-455 . -596) 44645) ((-455 . -481) 44629) ((-455 . -101) T) ((-455 . -1072) T) ((-455 . -505) 44562) ((-455 . -302) 44500) ((-455 . -595) 44462) ((-455 . -1183) T) ((-455 . -34) T) ((-455 . -149) 44446) ((-453 . -696) 44417) ((-453 . -626) 44388) ((-453 . -130) T) ((-453 . -25) T) ((-453 . -101) T) ((-453 . -595) 44370) ((-453 . -1072) T) ((-453 . -23) T) ((-453 . -21) T) ((-453 . -1029) 44341) ((-453 . -111) 44302) ((-446 . -924) 44269) ((-446 . -1012) 44145) ((-446 . -1188) 44124) ((-446 . -884) 44103) ((-446 . -860) NIL) ((-446 . -874) 44080) ((-446 . -825) 44059) ((-446 . -505) 44002) ((-446 . -444) 43953) ((-446 . -619) 43901) ((-446 . -370) 43885) ((-446 . -47) 43864) ((-446 . -38) 43713) ((-446 . -696) 43562) ((-446 . -283) 43493) ((-446 . -543) 43424) ((-446 . -111) 43253) ((-446 . -1029) 43096) ((-446 . -170) 43007) ((-446 . -145) 42986) ((-446 . -143) 42965) ((-446 . -626) 42890) ((-446 . -130) T) ((-446 . -25) T) ((-446 . -101) T) ((-446 . -595) 42872) ((-446 . -1072) T) ((-446 . -23) T) ((-446 . -21) T) ((-446 . -1023) T) ((-446 . -1030) T) ((-446 . -1083) T) ((-446 . -705) T) ((-446 . -405) 42856) ((-446 . -319) 42835) ((-446 . -302) 42822) ((-446 . -596) 42683) ((-445 . -411) 42653) ((-445 . -723) 42623) ((-445 . -699) T) ((-445 . -740) T) ((-445 . -111) 42586) ((-445 . -1029) 42556) ((-445 . -21) T) ((-445 . -23) T) ((-445 . -1072) T) ((-445 . -595) 42538) ((-445 . -101) T) ((-445 . -25) T) ((-445 . -130) T) ((-445 . -626) 42468) ((-445 . -696) 42438) ((-445 . -360) 42408) ((-431 . -1072) T) ((-431 . -595) 42390) ((-431 . -101) T) ((-430 . -358) 42364) ((-430 . -101) T) ((-430 . -595) 42346) ((-430 . -1072) T) ((-429 . -1072) T) ((-429 . -595) 42328) ((-429 . -101) T) ((-427 . -595) 42310) ((-422 . -38) 42294) ((-422 . -626) 42268) ((-422 . -705) T) ((-422 . -1083) T) ((-422 . -1030) T) ((-422 . -1023) T) ((-422 . -111) 42247) ((-422 . -1029) 42231) ((-422 . -21) T) ((-422 . -23) T) ((-422 . -1072) T) ((-422 . -595) 42213) ((-422 . -101) T) ((-422 . -25) T) ((-422 . -130) T) ((-422 . -696) 42197) ((-408 . -705) T) ((-408 . -1072) T) ((-408 . -595) 42179) ((-408 . -101) T) ((-408 . -1083) T) ((-406 . -465) T) ((-406 . -1083) T) ((-406 . -101) T) ((-406 . -595) 42161) ((-406 . -1072) T) ((-406 . -705) T) ((-400 . -965) 42145) ((-400 . -1122) 42123) ((-400 . -1012) 41989) ((-400 . -596) 41797) ((-400 . -994) 41776) ((-400 . -884) 41755) ((-400 . -858) 41739) ((-400 . -823) 41718) ((-400 . -775) 41697) ((-400 . -772) 41676) ((-400 . -825) 41627) ((-400 . -770) 41606) ((-400 . -769) 41585) ((-400 . -798) 41564) ((-400 . -860) 41489) ((-400 . -1183) T) ((-400 . -393) 41473) ((-400 . -619) 41421) ((-400 . -370) 41405) ((-400 . -279) 41363) ((-400 . -302) 41328) ((-400 . -505) 41240) ((-400 . -331) 41224) ((-400 . -237) T) ((-400 . -111) 41162) ((-400 . -1029) 41114) ((-400 . -283) T) ((-400 . -696) 41066) ((-400 . -626) 41018) ((-400 . -38) 40970) ((-400 . -300) T) ((-400 . -444) T) ((-400 . -170) T) ((-400 . -543) T) ((-400 . -895) T) ((-400 . -1188) T) ((-400 . -356) T) ((-400 . -227) 40949) ((-400 . -874) 40908) ((-400 . -225) 40892) ((-400 . -145) 40871) ((-400 . -143) 40850) ((-400 . -130) T) ((-400 . -25) T) ((-400 . -101) T) ((-400 . -595) 40832) ((-400 . -1072) T) ((-400 . -23) T) ((-400 . -21) T) ((-400 . -1023) T) ((-400 . -1030) T) ((-400 . -1083) T) ((-400 . -705) T) ((-400 . -799) 40785) ((-398 . -543) T) ((-398 . -283) T) ((-398 . -170) T) ((-398 . -696) 40759) ((-398 . -626) 40733) ((-398 . -130) T) ((-398 . -25) T) ((-398 . -101) T) ((-398 . -595) 40715) ((-398 . -1072) T) ((-398 . -23) T) ((-398 . -21) T) ((-398 . -1029) 40689) ((-398 . -111) 40656) ((-398 . -1023) T) ((-398 . -1030) T) ((-398 . -1083) T) ((-398 . -705) T) ((-398 . -38) 40630) ((-398 . -225) 40614) ((-398 . -874) 40573) ((-398 . -227) 40552) ((-398 . -331) 40536) ((-398 . -505) 40378) ((-398 . -302) 40317) ((-398 . -279) 40245) ((-398 . -405) 40229) ((-398 . -1012) 40125) ((-398 . -444) 40075) ((-398 . -994) 40054) ((-398 . -596) 39962) ((-398 . -1188) 39940) ((-392 . -1072) T) ((-392 . -595) 39922) ((-392 . -101) T) ((-392 . -596) 39899) ((-391 . -389) T) ((-391 . -1183) T) ((-391 . -595) 39881) ((-386 . -1072) T) ((-386 . -595) 39863) ((-386 . -101) T) ((-383 . -723) 39847) ((-383 . -699) T) ((-383 . -740) T) ((-383 . -111) 39826) ((-383 . -1029) 39810) ((-383 . -21) T) ((-383 . -23) T) ((-383 . -1072) T) ((-383 . -595) 39792) ((-383 . -101) T) ((-383 . -25) T) ((-383 . -130) T) ((-383 . -626) 39776) ((-383 . -696) 39760) ((-381 . -382) T) ((-381 . -101) T) ((-381 . -595) 39742) ((-381 . -1072) T) ((-379 . -705) T) ((-379 . -1072) T) ((-379 . -595) 39724) ((-379 . -101) T) ((-379 . -1083) T) ((-379 . -1012) 39708) ((-379 . -825) 39687) ((-375 . -377) 39666) ((-375 . -1012) 39650) ((-375 . -696) 39620) ((-375 . -626) 39604) ((-375 . -130) T) ((-375 . -25) T) ((-375 . -101) T) ((-375 . -595) 39586) ((-375 . -1072) T) ((-375 . -23) T) ((-375 . -21) T) ((-375 . -1029) 39570) ((-375 . -111) 39549) ((-374 . -111) 39528) ((-374 . -1029) 39512) ((-374 . -21) T) ((-374 . -23) T) ((-374 . -1072) T) ((-374 . -595) 39494) ((-374 . -101) T) ((-374 . -25) T) ((-374 . -130) T) ((-374 . -626) 39478) ((-374 . -500) 39457) ((-374 . -696) 39427) ((-371 . -397) T) ((-371 . -145) T) ((-371 . -626) 39392) ((-371 . -130) T) ((-371 . -25) T) ((-371 . -101) T) ((-371 . -595) 39359) ((-371 . -1072) T) ((-371 . -23) T) ((-371 . -21) T) ((-371 . -705) T) ((-371 . -1083) T) ((-371 . -1030) T) ((-371 . -1023) T) ((-371 . -596) 39273) ((-371 . -356) T) ((-371 . -1188) T) ((-371 . -895) T) ((-371 . -543) T) ((-371 . -170) T) ((-371 . -696) 39238) ((-371 . -38) 39203) ((-371 . -444) T) ((-371 . -300) T) ((-371 . -111) 39159) ((-371 . -1029) 39124) ((-371 . -283) T) ((-371 . -237) T) ((-371 . -823) T) ((-371 . -775) T) ((-371 . -772) T) ((-371 . -825) T) ((-371 . -770) T) ((-371 . -769) T) ((-371 . -860) 39106) ((-371 . -976) T) ((-371 . -994) T) ((-371 . -1012) 39066) ((-371 . -1032) T) ((-371 . -227) T) ((-371 . -799) T) ((-371 . -1169) T) ((-371 . -1172) T) ((-371 . -484) T) ((-371 . -277) T) ((-371 . -94) T) ((-371 . -35) T) ((-357 . -358) 39043) ((-357 . -101) T) ((-357 . -595) 39025) ((-357 . -1072) T) ((-354 . -465) T) ((-354 . -1083) T) ((-354 . -101) T) ((-354 . -595) 39007) ((-354 . -1072) T) ((-354 . -705) T) ((-354 . -1012) 38991) ((-352 . -322) 38975) ((-352 . -227) 38954) ((-352 . -361) 38933) ((-352 . -1122) 38912) ((-352 . -343) 38891) ((-352 . -145) 38870) ((-352 . -626) 38822) ((-352 . -130) T) ((-352 . -25) T) ((-352 . -101) T) ((-352 . -595) 38804) ((-352 . -1072) T) ((-352 . -23) T) ((-352 . -21) T) ((-352 . -705) T) ((-352 . -1083) T) ((-352 . -1030) T) ((-352 . -1023) T) ((-352 . -356) T) ((-352 . -1188) T) ((-352 . -895) T) ((-352 . -543) T) ((-352 . -170) T) ((-352 . -696) 38756) ((-352 . -38) 38721) ((-352 . -444) T) ((-352 . -300) T) ((-352 . -111) 38659) ((-352 . -1029) 38611) ((-352 . -283) T) ((-352 . -237) T) ((-352 . -395) 38562) ((-352 . -143) 38513) ((-352 . -1012) 38497) ((-352 . -1237) 38481) ((-352 . -1248) 38465) ((-348 . -322) 38449) ((-348 . -227) 38428) ((-348 . -361) 38407) ((-348 . -1122) 38386) ((-348 . -343) 38365) ((-348 . -145) 38344) ((-348 . -626) 38296) ((-348 . -130) T) ((-348 . -25) T) ((-348 . -101) T) ((-348 . -595) 38278) ((-348 . -1072) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -705) T) ((-348 . -1083) T) ((-348 . -1030) T) ((-348 . -1023) T) ((-348 . -356) T) ((-348 . -1188) T) ((-348 . -895) T) ((-348 . -543) T) ((-348 . -170) T) ((-348 . -696) 38230) ((-348 . -38) 38195) ((-348 . -444) T) ((-348 . -300) T) ((-348 . -111) 38133) ((-348 . -1029) 38085) ((-348 . -283) T) ((-348 . -237) T) ((-348 . -395) 38036) ((-348 . -143) 37987) ((-348 . -1012) 37971) ((-348 . -1237) 37955) ((-348 . -1248) 37939) ((-347 . -322) 37923) ((-347 . -227) 37902) ((-347 . -361) 37881) ((-347 . -1122) 37860) ((-347 . -343) 37839) ((-347 . -145) 37818) ((-347 . -626) 37770) ((-347 . -130) T) ((-347 . -25) T) ((-347 . -101) T) ((-347 . -595) 37752) ((-347 . -1072) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -705) T) ((-347 . -1083) T) ((-347 . -1030) T) ((-347 . -1023) T) ((-347 . -356) T) ((-347 . -1188) T) ((-347 . -895) T) ((-347 . -543) T) ((-347 . -170) T) ((-347 . -696) 37704) ((-347 . -38) 37669) ((-347 . -444) T) ((-347 . -300) T) ((-347 . -111) 37607) ((-347 . -1029) 37559) ((-347 . -283) T) ((-347 . -237) T) ((-347 . -395) 37510) ((-347 . -143) 37461) ((-347 . -1012) 37445) ((-347 . -1237) 37429) ((-347 . -1248) 37413) ((-346 . -322) 37397) ((-346 . -227) 37376) ((-346 . -361) 37355) ((-346 . -1122) 37334) ((-346 . -343) 37313) ((-346 . -145) 37292) ((-346 . -626) 37244) ((-346 . -130) T) ((-346 . -25) T) ((-346 . -101) T) ((-346 . -595) 37226) ((-346 . -1072) T) ((-346 . -23) T) ((-346 . -21) T) ((-346 . -705) T) ((-346 . -1083) T) ((-346 . -1030) T) ((-346 . -1023) T) ((-346 . -356) T) ((-346 . -1188) T) ((-346 . -895) T) ((-346 . -543) T) ((-346 . -170) T) ((-346 . -696) 37178) ((-346 . -38) 37143) ((-346 . -444) T) ((-346 . -300) T) ((-346 . -111) 37081) ((-346 . -1029) 37033) ((-346 . -283) T) ((-346 . -237) T) ((-346 . -395) 36984) ((-346 . -143) 36935) ((-346 . -1012) 36919) ((-346 . -1237) 36903) ((-346 . -1248) 36887) ((-345 . -322) 36864) ((-345 . -227) T) ((-345 . -361) T) ((-345 . -1122) T) ((-345 . -343) T) ((-345 . -145) 36846) ((-345 . -626) 36791) ((-345 . -130) T) ((-345 . -25) T) ((-345 . -101) T) ((-345 . -595) 36773) ((-345 . -1072) T) ((-345 . -23) T) ((-345 . -21) T) ((-345 . -705) T) ((-345 . -1083) T) ((-345 . -1030) T) ((-345 . -1023) T) ((-345 . -356) T) ((-345 . -1188) T) ((-345 . -895) T) ((-345 . -543) T) ((-345 . -170) T) ((-345 . -696) 36718) ((-345 . -38) 36683) ((-345 . -444) T) ((-345 . -300) T) ((-345 . -111) 36612) ((-345 . -1029) 36557) ((-345 . -283) T) ((-345 . -237) T) ((-345 . -395) T) ((-345 . -143) T) ((-345 . -1012) 36534) ((-345 . -1237) 36511) ((-345 . -1248) 36488) ((-339 . -322) 36472) ((-339 . -227) 36451) ((-339 . -361) 36430) ((-339 . -1122) 36409) ((-339 . -343) 36388) ((-339 . -145) 36367) ((-339 . -626) 36319) ((-339 . -130) T) ((-339 . -25) T) ((-339 . -101) T) ((-339 . -595) 36301) ((-339 . -1072) T) ((-339 . -23) T) ((-339 . -21) T) ((-339 . -705) T) ((-339 . -1083) T) ((-339 . -1030) T) ((-339 . -1023) T) ((-339 . -356) T) ((-339 . -1188) T) ((-339 . -895) T) ((-339 . -543) T) ((-339 . -170) T) ((-339 . -696) 36253) ((-339 . -38) 36218) ((-339 . -444) T) ((-339 . -300) T) ((-339 . -111) 36156) ((-339 . -1029) 36108) ((-339 . -283) T) ((-339 . -237) T) ((-339 . -395) 36059) ((-339 . -143) 36010) ((-339 . -1012) 35994) ((-339 . -1237) 35978) ((-339 . -1248) 35962) ((-338 . -322) 35946) ((-338 . -227) 35925) ((-338 . -361) 35904) ((-338 . -1122) 35883) ((-338 . -343) 35862) ((-338 . -145) 35841) ((-338 . -626) 35793) ((-338 . -130) T) ((-338 . -25) T) ((-338 . -101) T) ((-338 . -595) 35775) ((-338 . -1072) T) ((-338 . -23) T) ((-338 . -21) T) ((-338 . -705) T) ((-338 . -1083) T) ((-338 . -1030) T) ((-338 . -1023) T) ((-338 . -356) T) ((-338 . -1188) T) ((-338 . -895) T) ((-338 . -543) T) ((-338 . -170) T) ((-338 . -696) 35727) ((-338 . -38) 35692) ((-338 . -444) T) ((-338 . -300) T) ((-338 . -111) 35630) ((-338 . -1029) 35582) ((-338 . -283) T) ((-338 . -237) T) ((-338 . -395) 35533) ((-338 . -143) 35484) ((-338 . -1012) 35468) ((-338 . -1237) 35452) ((-338 . -1248) 35436) ((-337 . -322) 35413) ((-337 . -227) T) ((-337 . -361) T) ((-337 . -1122) T) ((-337 . -343) T) ((-337 . -145) 35395) ((-337 . -626) 35340) ((-337 . -130) T) ((-337 . -25) T) ((-337 . -101) T) ((-337 . -595) 35322) ((-337 . -1072) T) ((-337 . -23) T) ((-337 . -21) T) ((-337 . -705) T) ((-337 . -1083) T) ((-337 . -1030) T) ((-337 . -1023) T) ((-337 . -356) T) ((-337 . -1188) T) ((-337 . -895) T) ((-337 . -543) T) ((-337 . -170) T) ((-337 . -696) 35267) ((-337 . -38) 35232) ((-337 . -444) T) ((-337 . -300) T) ((-337 . -111) 35161) ((-337 . -1029) 35106) ((-337 . -283) T) ((-337 . -237) T) ((-337 . -395) T) ((-337 . -143) T) ((-337 . -1012) 35083) ((-337 . -1237) 35060) ((-337 . -1248) 35037) ((-333 . -322) 35014) ((-333 . -227) T) ((-333 . -361) T) ((-333 . -1122) T) ((-333 . -343) T) ((-333 . -145) 34996) ((-333 . -626) 34941) ((-333 . -130) T) ((-333 . -25) T) ((-333 . -101) T) ((-333 . -595) 34923) ((-333 . -1072) T) ((-333 . -23) T) ((-333 . -21) T) ((-333 . -705) T) ((-333 . -1083) T) ((-333 . -1030) T) ((-333 . -1023) T) ((-333 . -356) T) ((-333 . -1188) T) ((-333 . -895) T) ((-333 . -543) T) ((-333 . -170) T) ((-333 . -696) 34868) ((-333 . -38) 34833) ((-333 . -444) T) ((-333 . -300) T) ((-333 . -111) 34762) ((-333 . -1029) 34707) ((-333 . -283) T) ((-333 . -237) T) ((-333 . -395) T) ((-333 . -143) T) ((-333 . -1012) 34684) ((-333 . -1237) 34661) ((-333 . -1248) 34638) ((-332 . -291) T) ((-332 . -1012) 34605) ((-332 . -1072) T) ((-332 . -595) 34587) ((-332 . -101) T) ((-332 . -825) T) ((-332 . -505) 34553) ((-332 . -302) 34540) ((-332 . -38) 34524) ((-332 . -626) 34498) ((-332 . -705) T) ((-332 . -1083) T) ((-332 . -1030) T) ((-332 . -1023) T) ((-332 . -111) 34477) ((-332 . -1029) 34461) ((-332 . -21) T) ((-332 . -23) T) ((-332 . -25) T) ((-332 . -130) T) ((-332 . -696) 34445) ((-332 . -874) 34426) ((-326 . -329) 34395) ((-326 . -130) T) ((-326 . -25) T) ((-326 . -101) T) ((-326 . -595) 34377) ((-326 . -1072) T) ((-326 . -23) T) ((-326 . -21) T) ((-324 . -825) T) ((-324 . -101) T) ((-324 . -595) 34359) ((-324 . -1072) T) ((-323 . -1072) T) ((-323 . -595) 34341) ((-323 . -101) T) ((-320 . -19) 34325) ((-320 . -629) 34309) ((-320 . -281) 34286) ((-320 . -279) 34263) ((-320 . -586) 34240) ((-320 . -596) 34201) ((-320 . -481) 34185) ((-320 . -101) 34135) ((-320 . -1072) 34085) ((-320 . -505) 34018) ((-320 . -302) 33956) ((-320 . -595) 33868) ((-320 . -1183) T) ((-320 . -34) T) ((-320 . -149) 33852) ((-320 . -825) 33831) ((-320 . -365) 33815) ((-320 . -275) 33799) ((-317 . -316) 33776) ((-317 . -1012) 33760) ((-317 . -23) T) ((-317 . -1072) T) ((-317 . -595) 33742) ((-317 . -101) T) ((-317 . -25) T) ((-317 . -130) T) ((-315 . -21) T) ((-315 . -23) T) ((-315 . -1072) T) ((-315 . -595) 33724) ((-315 . -101) T) ((-315 . -25) T) ((-315 . -130) T) ((-315 . -696) 33706) ((-315 . -626) 33688) ((-315 . -1029) 33670) ((-315 . -111) 33645) ((-315 . -316) 33622) ((-315 . -1012) 33606) ((-315 . -825) 33585) ((-312 . -1212) 33569) ((-312 . -227) 33521) ((-312 . -279) 33506) ((-312 . -874) 33412) ((-312 . -947) 33374) ((-312 . -38) 33215) ((-312 . -111) 33036) ((-312 . -1029) 32871) ((-312 . -626) 32768) ((-312 . -696) 32609) ((-312 . -143) 32588) ((-312 . -145) 32567) ((-312 . -47) 32537) ((-312 . -1208) 32507) ((-312 . -35) 32473) ((-312 . -94) 32439) ((-312 . -277) 32405) ((-312 . -484) 32371) ((-312 . -1172) 32337) ((-312 . -1169) 32303) ((-312 . -976) 32269) ((-312 . -237) 32248) ((-312 . -283) 32199) ((-312 . -130) T) ((-312 . -25) T) ((-312 . -101) T) ((-312 . -595) 32181) ((-312 . -1072) T) ((-312 . -23) T) ((-312 . -21) T) ((-312 . -1023) T) ((-312 . -1030) T) ((-312 . -1083) T) ((-312 . -705) T) ((-312 . -300) 32160) ((-312 . -444) 32139) ((-312 . -170) 32070) ((-312 . -543) 32021) ((-312 . -895) 32000) ((-312 . -1188) 31979) ((-312 . -356) 31958) ((-312 . -770) T) ((-312 . -825) T) ((-312 . -772) T) ((-307 . -414) 31942) ((-307 . -1012) 31605) ((-307 . -596) 31466) ((-307 . -858) 31450) ((-307 . -874) 31416) ((-307 . -465) 31395) ((-307 . -405) 31379) ((-307 . -860) 31304) ((-307 . -1183) T) ((-307 . -393) 31288) ((-307 . -619) 31194) ((-307 . -370) 31163) ((-307 . -237) 31142) ((-307 . -111) 31038) ((-307 . -1029) 30948) ((-307 . -283) 30927) ((-307 . -696) 30837) ((-307 . -626) 30658) ((-307 . -38) 30568) ((-307 . -300) 30547) ((-307 . -444) 30526) ((-307 . -170) 30505) ((-307 . -543) 30484) ((-307 . -895) 30463) ((-307 . -1188) 30442) ((-307 . -356) 30421) ((-307 . -302) 30408) ((-307 . -505) 30374) ((-307 . -825) T) ((-307 . -291) T) ((-307 . -145) 30353) ((-307 . -143) 30332) ((-307 . -1023) 30222) ((-307 . -1030) 30112) ((-307 . -1083) 29961) ((-307 . -705) 29810) ((-307 . -130) 29681) ((-307 . -25) 29533) ((-307 . -101) T) ((-307 . -595) 29515) ((-307 . -1072) T) ((-307 . -23) 29367) ((-307 . -21) 29238) ((-307 . -29) 29208) ((-307 . -976) 29187) ((-307 . -27) 29166) ((-307 . -1169) 29145) ((-307 . -1172) 29124) ((-307 . -484) 29103) ((-307 . -277) 29082) ((-307 . -94) 29061) ((-307 . -35) 29040) ((-307 . -158) 29019) ((-307 . -141) 28998) ((-307 . -610) 28977) ((-307 . -934) 28956) ((-307 . -1110) 28935) ((-306 . -965) 28896) ((-306 . -1122) NIL) ((-306 . -1012) 28826) ((-306 . -596) NIL) ((-306 . -994) NIL) ((-306 . -884) NIL) ((-306 . -858) 28787) ((-306 . -823) NIL) ((-306 . -775) NIL) ((-306 . -772) NIL) ((-306 . -825) NIL) ((-306 . -770) NIL) ((-306 . -769) NIL) ((-306 . -798) NIL) ((-306 . -860) NIL) ((-306 . -1183) T) ((-306 . -393) 28748) ((-306 . -619) 28709) ((-306 . -370) 28670) ((-306 . -279) 28605) ((-306 . -302) 28546) ((-306 . -505) 28438) ((-306 . -331) 28399) ((-306 . -237) T) ((-306 . -111) 28312) ((-306 . -1029) 28241) ((-306 . -283) T) ((-306 . -696) 28170) ((-306 . -626) 28099) ((-306 . -38) 28028) ((-306 . -300) T) ((-306 . -444) T) ((-306 . -170) T) ((-306 . -543) T) ((-306 . -895) T) ((-306 . -1188) T) ((-306 . -356) T) ((-306 . -227) NIL) ((-306 . -874) NIL) ((-306 . -225) 27989) ((-306 . -145) 27945) ((-306 . -143) 27901) ((-306 . -130) T) ((-306 . -25) T) ((-306 . -101) T) ((-306 . -595) 27883) ((-306 . -1072) T) ((-306 . -23) T) ((-306 . -21) T) ((-306 . -1023) T) ((-306 . -1030) T) ((-306 . -1083) T) ((-306 . -705) T) ((-305 . -1054) T) ((-305 . -595) 27849) ((-305 . -1072) T) ((-305 . -101) T) ((-305 . -92) T) ((-304 . -1072) T) ((-304 . -595) 27831) ((-304 . -101) T) ((-288 . -1160) 27810) ((-288 . -223) 27760) ((-288 . -106) 27710) ((-288 . -302) 27514) ((-288 . -505) 27306) ((-288 . -481) 27243) ((-288 . -149) 27193) ((-288 . -596) NIL) ((-288 . -229) 27143) ((-288 . -592) 27122) ((-288 . -281) 27101) ((-288 . -279) 27080) ((-288 . -101) T) ((-288 . -1072) T) ((-288 . -595) 27062) ((-288 . -1183) T) ((-288 . -34) T) ((-288 . -586) 27041) ((-286 . -1183) T) ((-286 . -505) 26990) ((-286 . -1072) 26772) ((-286 . -595) 26513) ((-286 . -101) 26295) ((-286 . -25) 26159) ((-286 . -21) 26042) ((-286 . -23) 25925) ((-286 . -130) 25808) ((-286 . -1083) 25689) ((-286 . -705) 25591) ((-286 . -465) 25570) ((-286 . -1023) 25512) ((-286 . -1030) 25454) ((-286 . -626) 25314) ((-286 . -111) 25230) ((-286 . -1029) 25151) ((-286 . -696) 25093) ((-286 . -874) 25052) ((-286 . -1237) 25022) ((-284 . -595) 25004) ((-282 . -300) T) ((-282 . -444) T) ((-282 . -38) 24991) ((-282 . -705) T) ((-282 . -1083) T) ((-282 . -1030) T) ((-282 . -1023) T) ((-282 . -111) 24976) ((-282 . -1029) 24963) ((-282 . -21) T) ((-282 . -23) T) ((-282 . -1072) T) ((-282 . -595) 24945) ((-282 . -101) T) ((-282 . -25) T) ((-282 . -130) T) ((-282 . -626) 24932) ((-282 . -696) 24919) ((-282 . -170) T) ((-282 . -283) T) ((-282 . -543) T) ((-282 . -895) T) ((-273 . -595) 24901) ((-272 . -957) 24885) ((-271 . -957) 24869) ((-268 . -825) T) ((-268 . -101) T) ((-268 . -595) 24851) ((-268 . -1072) T) ((-267 . -814) T) ((-267 . -101) T) ((-267 . -595) 24833) ((-267 . -1072) T) ((-266 . -814) T) ((-266 . -101) T) ((-266 . -595) 24815) ((-266 . -1072) T) ((-265 . -814) T) ((-265 . -101) T) ((-265 . -595) 24797) ((-265 . -1072) T) ((-264 . -814) T) ((-264 . -101) T) ((-264 . -595) 24779) ((-264 . -1072) T) ((-263 . -814) T) ((-263 . -101) T) ((-263 . -595) 24761) ((-263 . -1072) T) ((-262 . -814) T) ((-262 . -101) T) ((-262 . -595) 24743) ((-262 . -1072) T) ((-261 . -814) T) ((-261 . -101) T) ((-261 . -595) 24725) ((-261 . -1072) T) ((-257 . -246) 24687) ((-257 . -1012) 24531) ((-257 . -596) 24279) ((-257 . -319) 24251) ((-257 . -405) 24235) ((-257 . -38) 24084) ((-257 . -111) 23913) ((-257 . -1029) 23756) ((-257 . -626) 23681) ((-257 . -696) 23530) ((-257 . -143) 23509) ((-257 . -145) 23488) ((-257 . -170) 23399) ((-257 . -543) 23330) ((-257 . -283) 23261) ((-257 . -47) 23233) ((-257 . -370) 23217) ((-257 . -619) 23165) ((-257 . -444) 23116) ((-257 . -505) 23001) ((-257 . -825) 22980) ((-257 . -874) 22926) ((-257 . -860) 22785) ((-257 . -884) 22764) ((-257 . -1188) 22743) ((-257 . -924) 22710) ((-257 . -302) 22697) ((-257 . -227) 22676) ((-257 . -130) T) ((-257 . -25) T) ((-257 . -101) T) ((-257 . -595) 22658) ((-257 . -1072) T) ((-257 . -23) T) ((-257 . -21) T) ((-257 . -705) T) ((-257 . -1083) T) ((-257 . -1030) T) ((-257 . -1023) T) ((-257 . -225) 22642) ((-254 . -1072) T) ((-254 . -595) 22624) ((-254 . -101) T) ((-244 . -232) 22603) ((-244 . -1237) 22573) ((-244 . -769) 22552) ((-244 . -823) 22531) ((-244 . -775) 22482) ((-244 . -772) 22433) ((-244 . -825) 22384) ((-244 . -770) 22335) ((-244 . -771) 22314) ((-244 . -281) 22291) ((-244 . -279) 22268) ((-244 . -481) 22252) ((-244 . -505) 22185) ((-244 . -302) 22123) ((-244 . -1183) T) ((-244 . -34) T) ((-244 . -586) 22100) ((-244 . -1012) 21927) ((-244 . -405) 21896) ((-244 . -619) 21802) ((-244 . -370) 21771) ((-244 . -361) 21750) ((-244 . -227) 21702) ((-244 . -874) 21634) ((-244 . -225) 21603) ((-244 . -111) 21493) ((-244 . -1029) 21390) ((-244 . -170) 21369) ((-244 . -595) 21330) ((-244 . -696) 21272) ((-244 . -626) 21107) ((-244 . -130) T) ((-244 . -23) T) ((-244 . -21) T) ((-244 . -1023) 21037) ((-244 . -1030) 20967) ((-244 . -1083) 20877) ((-244 . -705) 20787) ((-244 . -38) 20757) ((-244 . -1072) T) ((-244 . -101) T) ((-244 . -25) T) ((-243 . -232) 20736) ((-243 . -1237) 20706) ((-243 . -769) 20685) ((-243 . -823) 20664) ((-243 . -775) 20615) ((-243 . -772) 20566) ((-243 . -825) 20517) ((-243 . -770) 20468) ((-243 . -771) 20447) ((-243 . -281) 20424) ((-243 . -279) 20401) ((-243 . -481) 20385) ((-243 . -505) 20318) ((-243 . -302) 20256) ((-243 . -1183) T) ((-243 . -34) T) ((-243 . -586) 20233) ((-243 . -1012) 20060) ((-243 . -405) 20029) ((-243 . -619) 19935) ((-243 . -370) 19904) ((-243 . -361) 19883) ((-243 . -227) 19835) ((-243 . -874) 19767) ((-243 . -225) 19736) ((-243 . -111) 19626) ((-243 . -1029) 19523) ((-243 . -170) 19502) ((-243 . -595) 19463) ((-243 . -696) 19405) ((-243 . -626) 19227) ((-243 . -130) T) ((-243 . -23) T) ((-243 . -21) T) ((-243 . -1023) 19157) ((-243 . -1030) 19087) ((-243 . -1083) 18997) ((-243 . -705) 18907) ((-243 . -38) 18877) ((-243 . -1072) T) ((-243 . -101) T) ((-243 . -25) T) ((-242 . -1072) T) ((-242 . -595) 18859) ((-242 . -101) T) ((-241 . -924) 18804) ((-241 . -1012) 18680) ((-241 . -1188) 18659) ((-241 . -884) 18638) ((-241 . -860) NIL) ((-241 . -874) 18615) ((-241 . -825) 18594) ((-241 . -505) 18537) ((-241 . -444) 18488) ((-241 . -619) 18436) ((-241 . -370) 18420) ((-241 . -47) 18377) ((-241 . -38) 18226) ((-241 . -696) 18075) ((-241 . -283) 18006) ((-241 . -543) 17937) ((-241 . -111) 17766) ((-241 . -1029) 17609) ((-241 . -170) 17520) ((-241 . -145) 17499) ((-241 . -143) 17478) ((-241 . -626) 17403) ((-241 . -130) T) ((-241 . -25) T) ((-241 . -101) T) ((-241 . -595) 17385) ((-241 . -1072) T) ((-241 . -23) T) ((-241 . -21) T) ((-241 . -1023) T) ((-241 . -1030) T) ((-241 . -1083) T) ((-241 . -705) T) ((-241 . -405) 17369) ((-241 . -319) 17326) ((-241 . -302) 17313) ((-241 . -596) 17174) ((-239 . -644) 17158) ((-239 . -1218) 17142) ((-239 . -984) 17126) ((-239 . -1120) 17110) ((-239 . -825) 17089) ((-239 . -365) 17073) ((-239 . -629) 17057) ((-239 . -281) 17034) ((-239 . -279) 17011) ((-239 . -586) 16988) ((-239 . -596) 16949) ((-239 . -481) 16933) ((-239 . -101) 16883) ((-239 . -1072) 16833) ((-239 . -505) 16766) ((-239 . -302) 16704) ((-239 . -595) 16616) ((-239 . -1183) T) ((-239 . -34) T) ((-239 . -149) 16600) ((-239 . -275) 16584) ((-233 . -232) 16563) ((-233 . -1237) 16533) ((-233 . -769) 16512) ((-233 . -823) 16491) ((-233 . -775) 16442) ((-233 . -772) 16393) ((-233 . -825) 16344) ((-233 . -770) 16295) ((-233 . -771) 16274) ((-233 . -281) 16251) ((-233 . -279) 16228) ((-233 . -481) 16212) ((-233 . -505) 16145) ((-233 . -302) 16083) ((-233 . -1183) T) ((-233 . -34) T) ((-233 . -586) 16060) ((-233 . -1012) 15887) ((-233 . -405) 15856) ((-233 . -619) 15762) ((-233 . -370) 15731) ((-233 . -361) 15710) ((-233 . -227) 15662) ((-233 . -874) 15594) ((-233 . -225) 15563) ((-233 . -111) 15453) ((-233 . -1029) 15350) ((-233 . -170) 15329) ((-233 . -595) 15060) ((-233 . -696) 15002) ((-233 . -626) 14850) ((-233 . -130) 14720) ((-233 . -23) 14590) ((-233 . -21) 14500) ((-233 . -1023) 14430) ((-233 . -1030) 14360) ((-233 . -1083) 14270) ((-233 . -705) 14180) ((-233 . -38) 14150) ((-233 . -1072) 13940) ((-233 . -101) 13730) ((-233 . -25) 13581) ((-221 . -664) 13539) ((-221 . -481) 13523) ((-221 . -101) 13501) ((-221 . -1072) 13479) ((-221 . -505) 13412) ((-221 . -302) 13350) ((-221 . -595) 13282) ((-221 . -1183) T) ((-221 . -34) T) ((-221 . -56) 13240) ((-219 . -397) T) ((-219 . -145) T) ((-219 . -626) 13205) ((-219 . -130) T) ((-219 . -25) T) ((-219 . -101) T) ((-219 . -595) 13187) ((-219 . -1072) T) ((-219 . -23) T) ((-219 . -21) T) ((-219 . -705) T) ((-219 . -1083) T) ((-219 . -1030) T) ((-219 . -1023) T) ((-219 . -596) 13117) ((-219 . -356) T) ((-219 . -1188) T) ((-219 . -895) T) ((-219 . -543) T) ((-219 . -170) T) ((-219 . -696) 13082) ((-219 . -38) 13047) ((-219 . -444) T) ((-219 . -300) T) ((-219 . -111) 13003) ((-219 . -1029) 12968) ((-219 . -283) T) ((-219 . -237) T) ((-219 . -823) T) ((-219 . -775) T) ((-219 . -772) T) ((-219 . -825) T) ((-219 . -770) T) ((-219 . -769) T) ((-219 . -860) 12950) ((-219 . -976) T) ((-219 . -994) T) ((-219 . -1012) 12910) ((-219 . -1032) T) ((-219 . -227) T) ((-219 . -799) T) ((-219 . -1169) T) ((-219 . -1172) T) ((-219 . -484) T) ((-219 . -277) T) ((-219 . -94) T) ((-219 . -35) T) ((-217 . -601) 12887) ((-217 . -626) 12854) ((-217 . -705) T) ((-217 . -1083) T) ((-217 . -1030) T) ((-217 . -1023) T) ((-217 . -21) T) ((-217 . -23) T) ((-217 . -1072) T) ((-217 . -595) 12836) ((-217 . -101) T) ((-217 . -25) T) ((-217 . -130) T) ((-217 . -1012) 12813) ((-216 . -247) 12797) ((-216 . -1092) 12781) ((-216 . -106) 12765) ((-216 . -34) T) ((-216 . -1183) T) ((-216 . -595) 12697) ((-216 . -302) 12635) ((-216 . -505) 12568) ((-216 . -1072) 12546) ((-216 . -101) 12524) ((-216 . -481) 12508) ((-216 . -969) 12492) ((-212 . -1054) T) ((-212 . -595) 12458) ((-212 . -1072) T) ((-212 . -101) T) ((-212 . -92) T) ((-211 . -965) 12440) ((-211 . -1122) T) ((-211 . -1012) 12400) ((-211 . -596) 12330) ((-211 . -994) T) ((-211 . -884) NIL) ((-211 . -858) 12312) ((-211 . -823) T) ((-211 . -775) T) ((-211 . -772) T) ((-211 . -825) T) ((-211 . -770) T) ((-211 . -769) T) ((-211 . -798) T) ((-211 . -860) 12294) ((-211 . -1183) T) ((-211 . -393) 12276) ((-211 . -619) 12258) ((-211 . -370) 12240) ((-211 . -279) NIL) ((-211 . -302) NIL) ((-211 . -505) NIL) ((-211 . -331) 12222) ((-211 . -237) T) ((-211 . -111) 12156) ((-211 . -1029) 12106) ((-211 . -283) T) ((-211 . -696) 12056) ((-211 . -626) 12006) ((-211 . -38) 11956) ((-211 . -300) T) ((-211 . -444) T) ((-211 . -170) T) ((-211 . -543) T) ((-211 . -895) T) ((-211 . -1188) T) ((-211 . -356) T) ((-211 . -227) T) ((-211 . -874) NIL) ((-211 . -225) 11938) ((-211 . -145) T) ((-211 . -143) NIL) ((-211 . -130) T) ((-211 . -25) T) ((-211 . -101) T) ((-211 . -595) 11920) ((-211 . -1072) T) ((-211 . -23) T) ((-211 . -21) T) ((-211 . -1023) T) ((-211 . -1030) T) ((-211 . -1083) T) ((-211 . -705) T) ((-208 . -1072) T) ((-208 . -595) 11902) ((-208 . -101) T) ((-207 . -1072) T) ((-207 . -595) 11884) ((-207 . -101) T) ((-206 . -869) T) ((-206 . -101) T) ((-206 . -595) 11866) ((-206 . -1072) T) ((-205 . -869) T) ((-205 . -101) T) ((-205 . -595) 11848) ((-205 . -1072) T) ((-203 . -778) T) ((-203 . -101) T) ((-203 . -595) 11830) ((-203 . -1072) T) ((-202 . -778) T) ((-202 . -101) T) ((-202 . -595) 11812) ((-202 . -1072) T) ((-201 . -778) T) ((-201 . -101) T) ((-201 . -595) 11794) ((-201 . -1072) T) ((-200 . -778) T) ((-200 . -101) T) ((-200 . -595) 11776) ((-200 . -1072) T) ((-197 . -765) T) ((-197 . -101) T) ((-197 . -595) 11758) ((-197 . -1072) T) ((-196 . -765) T) ((-196 . -101) T) ((-196 . -595) 11740) ((-196 . -1072) T) ((-195 . -765) T) ((-195 . -101) T) ((-195 . -595) 11722) ((-195 . -1072) T) ((-194 . -765) T) ((-194 . -101) T) ((-194 . -595) 11704) ((-194 . -1072) T) ((-193 . -765) T) ((-193 . -101) T) ((-193 . -595) 11686) ((-193 . -1072) T) ((-192 . -765) T) ((-192 . -101) T) ((-192 . -595) 11668) ((-192 . -1072) T) ((-191 . -765) T) ((-191 . -101) T) ((-191 . -595) 11650) ((-191 . -1072) T) ((-190 . -765) T) ((-190 . -101) T) ((-190 . -595) 11632) ((-190 . -1072) T) ((-189 . -765) T) ((-189 . -101) T) ((-189 . -595) 11614) ((-189 . -1072) T) ((-188 . -765) T) ((-188 . -101) T) ((-188 . -595) 11596) ((-188 . -1072) T) ((-187 . -765) T) ((-187 . -101) T) ((-187 . -595) 11578) ((-187 . -1072) T) ((-181 . -1072) T) ((-181 . -595) 11560) ((-181 . -101) T) ((-178 . -1054) T) ((-178 . -595) 11526) ((-178 . -1072) T) ((-178 . -101) T) ((-178 . -92) T) ((-173 . -595) 11508) ((-172 . -38) 11440) ((-172 . -626) 11372) ((-172 . -705) T) ((-172 . -1083) T) ((-172 . -1030) T) ((-172 . -1023) T) ((-172 . -111) 11283) ((-172 . -1029) 11215) ((-172 . -21) T) ((-172 . -23) T) ((-172 . -1072) T) ((-172 . -595) 11197) ((-172 . -101) T) ((-172 . -25) T) ((-172 . -130) T) ((-172 . -696) 11129) ((-172 . -356) T) ((-172 . -1188) T) ((-172 . -895) T) ((-172 . -543) T) ((-172 . -170) T) ((-172 . -444) T) ((-172 . -300) T) ((-172 . -283) T) ((-172 . -237) T) ((-169 . -1072) T) ((-169 . -595) 11111) ((-169 . -101) T) ((-166 . -164) 11095) ((-166 . -35) 11073) ((-166 . -94) 11051) ((-166 . -277) 11029) ((-166 . -484) 11007) ((-166 . -1172) 10985) ((-166 . -1169) 10963) ((-166 . -976) 10915) ((-166 . -884) 10868) ((-166 . -596) 10630) ((-166 . -858) 10614) ((-166 . -825) 10593) ((-166 . -361) 10544) ((-166 . -343) 10523) ((-166 . -1122) 10502) ((-166 . -395) 10481) ((-166 . -403) 10452) ((-166 . -38) 10280) ((-166 . -111) 10176) ((-166 . -1029) 10086) ((-166 . -626) 9996) ((-166 . -696) 9824) ((-166 . -363) 9795) ((-166 . -703) 9766) ((-166 . -1012) 9662) ((-166 . -405) 9646) ((-166 . -860) 9571) ((-166 . -1183) T) ((-166 . -393) 9555) ((-166 . -619) 9503) ((-166 . -370) 9487) ((-166 . -279) 9445) ((-166 . -302) 9410) ((-166 . -505) 9322) ((-166 . -331) 9306) ((-166 . -237) 9257) ((-166 . -1188) 9162) ((-166 . -356) 9113) ((-166 . -895) 9044) ((-166 . -543) 8955) ((-166 . -283) 8866) ((-166 . -444) 8797) ((-166 . -300) 8728) ((-166 . -227) 8679) ((-166 . -874) 8638) ((-166 . -225) 8622) ((-166 . -170) T) ((-166 . -145) 8601) ((-166 . -1023) T) ((-166 . -1030) T) ((-166 . -1083) T) ((-166 . -705) T) ((-166 . -21) T) ((-166 . -23) T) ((-166 . -1072) T) ((-166 . -595) 8583) ((-166 . -101) T) ((-166 . -25) T) ((-166 . -130) T) ((-166 . -143) 8534) ((-166 . -799) 8513) ((-160 . -1054) T) ((-160 . -595) 8479) ((-160 . -1072) T) ((-160 . -101) T) ((-160 . -92) T) ((-159 . -1072) T) ((-159 . -595) 8461) ((-159 . -101) T) ((-155 . -25) T) ((-155 . -101) T) ((-155 . -595) 8443) ((-155 . -1072) T) ((-154 . -1054) T) ((-154 . -595) 8409) ((-154 . -1072) T) ((-154 . -101) T) ((-154 . -92) T) ((-152 . -1054) T) ((-152 . -595) 8375) ((-152 . -1072) T) ((-152 . -101) T) ((-152 . -92) T) ((-150 . -1023) T) ((-150 . -1030) T) ((-150 . -1083) T) ((-150 . -705) T) ((-150 . -21) T) ((-150 . -23) T) ((-150 . -1072) T) ((-150 . -595) 8357) ((-150 . -101) T) ((-150 . -25) T) ((-150 . -130) T) ((-150 . -626) 8331) ((-150 . -38) 8315) ((-150 . -111) 8294) ((-150 . -1029) 8278) ((-150 . -696) 8262) ((-150 . -1237) 8246) ((-142 . -819) T) ((-142 . -825) T) ((-142 . -1072) T) ((-142 . -595) 8228) ((-142 . -101) T) ((-142 . -361) T) ((-139 . -1072) T) ((-139 . -595) 8210) ((-139 . -101) T) ((-139 . -596) 8169) ((-139 . -419) 8151) ((-139 . -1070) 8133) ((-139 . -361) T) ((-139 . -229) 8115) ((-139 . -149) 8097) ((-139 . -481) 8079) ((-139 . -505) NIL) ((-139 . -302) NIL) ((-139 . -1183) T) ((-139 . -34) T) ((-139 . -106) 8061) ((-139 . -223) 8043) ((-138 . -595) 8025) ((-137 . -1054) T) ((-137 . -595) 7991) ((-137 . -1072) T) ((-137 . -101) T) ((-137 . -92) T) ((-136 . -1054) T) ((-136 . -595) 7957) ((-136 . -1072) T) ((-136 . -101) T) ((-136 . -92) T) ((-134 . -457) 7934) ((-134 . -1012) 7918) ((-134 . -1072) T) ((-134 . -595) 7900) ((-134 . -101) T) ((-134 . -462) 7855) ((-133 . -825) T) ((-133 . -101) T) ((-133 . -595) 7837) ((-133 . -1072) T) ((-133 . -23) T) ((-133 . -25) T) ((-133 . -705) T) ((-133 . -1083) T) ((-133 . -1012) 7819) ((-132 . -1054) T) ((-132 . -595) 7785) ((-132 . -1072) T) ((-132 . -101) T) ((-132 . -92) T) ((-129 . -19) 7767) ((-129 . -629) 7749) ((-129 . -281) 7724) ((-129 . -279) 7699) ((-129 . -586) 7674) ((-129 . -596) NIL) ((-129 . -481) 7656) ((-129 . -101) T) ((-129 . -1072) T) ((-129 . -505) NIL) ((-129 . -302) NIL) ((-129 . -595) 7638) ((-129 . -1183) T) ((-129 . -34) T) ((-129 . -149) 7620) ((-129 . -825) T) ((-129 . -365) 7602) ((-128 . -825) T) ((-128 . -101) T) ((-128 . -595) 7554) ((-128 . -1072) T) ((-127 . -125) 7538) ((-127 . -984) 7522) ((-127 . -34) T) ((-127 . -1183) T) ((-127 . -595) 7454) ((-127 . -302) 7392) ((-127 . -505) 7325) ((-127 . -1072) 7303) ((-127 . -101) 7281) ((-127 . -481) 7265) ((-127 . -119) 7249) ((-126 . -125) 7233) ((-126 . -984) 7217) ((-126 . -34) T) ((-126 . -1183) T) ((-126 . -595) 7149) ((-126 . -302) 7087) ((-126 . -505) 7020) ((-126 . -1072) 6998) ((-126 . -101) 6976) ((-126 . -481) 6960) ((-126 . -119) 6944) ((-121 . -125) 6928) ((-121 . -984) 6912) ((-121 . -34) T) ((-121 . -1183) T) ((-121 . -595) 6844) ((-121 . -302) 6782) ((-121 . -505) 6715) ((-121 . -1072) 6693) ((-121 . -101) 6671) ((-121 . -481) 6655) ((-121 . -119) 6639) ((-117 . -965) 6616) ((-117 . -1122) NIL) ((-117 . -1012) 6593) ((-117 . -596) NIL) ((-117 . -994) NIL) ((-117 . -884) NIL) ((-117 . -858) 6570) ((-117 . -823) NIL) ((-117 . -775) NIL) ((-117 . -772) NIL) ((-117 . -825) NIL) ((-117 . -770) NIL) ((-117 . -769) NIL) ((-117 . -798) NIL) ((-117 . -860) NIL) ((-117 . -1183) T) ((-117 . -393) 6547) ((-117 . -619) 6524) ((-117 . -370) 6501) ((-117 . -279) 6452) ((-117 . -302) 6409) ((-117 . -505) 6317) ((-117 . -331) 6294) ((-117 . -237) T) ((-117 . -111) 6223) ((-117 . -1029) 6168) ((-117 . -283) T) ((-117 . -696) 6113) ((-117 . -626) 6058) ((-117 . -38) 6003) ((-117 . -300) T) ((-117 . -444) T) ((-117 . -170) T) ((-117 . -543) T) ((-117 . -895) T) ((-117 . -1188) T) ((-117 . -356) T) ((-117 . -227) NIL) ((-117 . -874) NIL) ((-117 . -225) 5980) ((-117 . -145) T) ((-117 . -143) NIL) ((-117 . -130) T) ((-117 . -25) T) ((-117 . -101) T) ((-117 . -595) 5962) ((-117 . -1072) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1023) T) ((-117 . -1030) T) ((-117 . -1083) T) ((-117 . -705) T) ((-116 . -844) 5946) ((-116 . -895) T) ((-116 . -543) T) ((-116 . -283) T) ((-116 . -170) T) ((-116 . -696) 5933) ((-116 . -1029) 5920) ((-116 . -111) 5905) ((-116 . -38) 5892) ((-116 . -444) T) ((-116 . -300) T) ((-116 . -1023) T) ((-116 . -1030) T) ((-116 . -1083) T) ((-116 . -705) T) ((-116 . -21) T) ((-116 . -23) T) ((-116 . -1072) T) ((-116 . -595) 5874) ((-116 . -101) T) ((-116 . -25) T) ((-116 . -130) T) ((-116 . -626) 5861) ((-116 . -145) T) ((-113 . -825) T) ((-113 . -101) T) ((-113 . -595) 5843) ((-113 . -1072) T) ((-112 . -819) T) ((-112 . -825) T) ((-112 . -1072) T) ((-112 . -595) 5825) ((-112 . -101) T) ((-112 . -361) T) ((-112 . -640) T) ((-112 . -941) T) ((-112 . -596) 5807) ((-110 . -123) T) ((-110 . -365) 5789) ((-110 . -825) T) ((-110 . -149) 5771) ((-110 . -34) T) ((-110 . -1183) T) ((-110 . -595) 5753) ((-110 . -302) NIL) ((-110 . -505) NIL) ((-110 . -1072) T) ((-110 . -481) 5735) ((-110 . -596) 5717) ((-110 . -586) 5692) ((-110 . -279) 5667) ((-110 . -281) 5642) ((-110 . -629) 5624) ((-110 . -19) 5606) ((-110 . -101) T) ((-110 . -640) T) ((-109 . -358) 5580) ((-109 . -101) T) ((-109 . -595) 5562) ((-109 . -1072) T) ((-108 . -595) 5544) ((-107 . -965) 5526) ((-107 . -1122) T) ((-107 . -1012) 5486) ((-107 . -596) 5416) ((-107 . -994) T) ((-107 . -884) NIL) ((-107 . -858) 5398) ((-107 . -823) T) ((-107 . -775) T) ((-107 . -772) T) ((-107 . -825) T) ((-107 . -770) T) ((-107 . -769) T) ((-107 . -798) T) ((-107 . -860) 5380) ((-107 . -1183) T) ((-107 . -393) 5362) ((-107 . -619) 5344) ((-107 . -370) 5326) ((-107 . -279) NIL) ((-107 . -302) NIL) ((-107 . -505) NIL) ((-107 . -331) 5308) ((-107 . -237) T) ((-107 . -111) 5242) ((-107 . -1029) 5192) ((-107 . -283) T) ((-107 . -696) 5142) ((-107 . -626) 5092) ((-107 . -38) 5042) ((-107 . -300) T) ((-107 . -444) T) ((-107 . -170) T) ((-107 . -543) T) ((-107 . -895) T) ((-107 . -1188) T) ((-107 . -356) T) ((-107 . -227) T) ((-107 . -874) NIL) ((-107 . -225) 5024) ((-107 . -145) T) ((-107 . -143) NIL) ((-107 . -130) T) ((-107 . -25) T) ((-107 . -101) T) ((-107 . -595) 5006) ((-107 . -1072) T) ((-107 . -23) T) ((-107 . -21) T) ((-107 . -1023) T) ((-107 . -1030) T) ((-107 . -1083) T) ((-107 . -705) T) ((-104 . -1072) T) ((-104 . -595) 4988) ((-104 . -101) T) ((-102 . -125) 4972) ((-102 . -984) 4956) ((-102 . -34) T) ((-102 . -1183) T) ((-102 . -595) 4888) ((-102 . -302) 4826) ((-102 . -505) 4759) ((-102 . -1072) 4737) ((-102 . -101) 4715) ((-102 . -481) 4699) ((-102 . -119) 4683) ((-98 . -465) T) ((-98 . -1083) T) ((-98 . -101) T) ((-98 . -595) 4665) ((-98 . -1072) T) ((-98 . -705) T) ((-98 . -279) 4644) ((-96 . -1072) T) ((-96 . -595) 4626) ((-96 . -101) T) ((-95 . -1054) T) ((-95 . -595) 4592) ((-95 . -1072) T) ((-95 . -101) T) ((-95 . -92) T) ((-90 . -1092) 4576) ((-90 . -481) 4560) ((-90 . -101) 4538) ((-90 . -1072) 4516) ((-90 . -505) 4449) ((-90 . -302) 4387) ((-90 . -595) 4319) ((-90 . -1183) T) ((-90 . -34) T) ((-90 . -106) 4303) ((-88 . -390) T) ((-88 . -595) 4285) ((-88 . -1183) T) ((-88 . -389) T) ((-87 . -378) T) ((-87 . -595) 4267) ((-87 . -1183) T) ((-87 . -389) T) ((-86 . -432) T) ((-86 . -595) 4249) ((-86 . -1183) T) ((-86 . -389) T) ((-85 . -433) T) ((-85 . -595) 4231) ((-85 . -1183) T) ((-85 . -389) T) ((-84 . -378) T) ((-84 . -595) 4213) ((-84 . -1183) T) ((-84 . -389) T) ((-83 . -378) T) ((-83 . -595) 4195) ((-83 . -1183) T) ((-83 . -389) T) ((-82 . -433) T) ((-82 . -595) 4177) ((-82 . -1183) T) ((-82 . -389) T) ((-81 . -433) T) ((-81 . -595) 4159) ((-81 . -1183) T) ((-81 . -389) T) ((-80 . -433) T) ((-80 . -595) 4141) ((-80 . -1183) T) ((-80 . -389) T) ((-79 . -433) T) ((-79 . -595) 4123) ((-79 . -1183) T) ((-79 . -389) T) ((-78 . -433) T) ((-78 . -595) 4105) ((-78 . -1183) T) ((-78 . -389) T) ((-77 . -390) T) ((-77 . -595) 4087) ((-77 . -1183) T) ((-77 . -389) T) ((-76 . -433) T) ((-76 . -595) 4069) ((-76 . -1183) T) ((-76 . -389) T) ((-75 . -433) T) ((-75 . -595) 4051) ((-75 . -1183) T) ((-75 . -389) T) ((-74 . -390) T) ((-74 . -595) 4033) ((-74 . -1183) T) ((-74 . -389) T) ((-73 . -433) T) ((-73 . -595) 4015) ((-73 . -1183) T) ((-73 . -389) T) ((-72 . -376) T) ((-72 . -595) 3997) ((-72 . -1183) T) ((-72 . -389) T) ((-71 . -389) T) ((-71 . -1183) T) ((-71 . -595) 3979) ((-70 . -433) T) ((-70 . -595) 3961) ((-70 . -1183) T) ((-70 . -389) T) ((-69 . -376) T) ((-69 . -595) 3943) ((-69 . -1183) T) ((-69 . -389) T) ((-68 . -389) T) ((-68 . -1183) T) ((-68 . -595) 3925) ((-67 . -376) T) ((-67 . -595) 3907) ((-67 . -1183) T) ((-67 . -389) T) ((-66 . -376) T) ((-66 . -595) 3889) ((-66 . -1183) T) ((-66 . -389) T) ((-65 . -390) T) ((-65 . -595) 3871) ((-65 . -1183) T) ((-65 . -389) T) ((-64 . -378) T) ((-64 . -595) 3853) ((-64 . -1183) T) ((-64 . -389) T) ((-63 . -433) T) ((-63 . -595) 3835) ((-63 . -1183) T) ((-63 . -389) T) ((-62 . -389) T) ((-62 . -1183) T) ((-62 . -595) 3817) ((-61 . -433) T) ((-61 . -595) 3799) ((-61 . -1183) T) ((-61 . -389) T) ((-60 . -390) T) ((-60 . -595) 3781) ((-60 . -1183) T) ((-60 . -389) T) ((-59 . -56) 3743) ((-59 . -34) T) ((-59 . -1183) T) ((-59 . -595) 3675) ((-59 . -302) 3613) ((-59 . -505) 3546) ((-59 . -1072) 3524) ((-59 . -101) 3502) ((-59 . -481) 3486) ((-57 . -19) 3470) ((-57 . -629) 3454) ((-57 . -281) 3431) ((-57 . -279) 3408) ((-57 . -586) 3385) ((-57 . -596) 3346) ((-57 . -481) 3330) ((-57 . -101) 3280) ((-57 . -1072) 3230) ((-57 . -505) 3163) ((-57 . -302) 3101) ((-57 . -595) 3013) ((-57 . -1183) T) ((-57 . -34) T) ((-57 . -149) 2997) ((-57 . -825) 2976) ((-57 . -365) 2960) ((-51 . -1072) T) ((-51 . -595) 2942) ((-51 . -101) T) ((-50 . -601) 2926) ((-50 . -626) 2900) ((-50 . -705) T) ((-50 . -1083) T) ((-50 . -1030) T) ((-50 . -1023) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1072) T) ((-50 . -595) 2882) ((-50 . -101) T) ((-50 . -25) T) ((-50 . -130) T) ((-50 . -1012) 2866) ((-49 . -1072) T) ((-49 . -595) 2848) ((-49 . -101) T) ((-48 . -291) T) ((-48 . -1012) 2791) ((-48 . -1072) T) ((-48 . -595) 2773) ((-48 . -101) T) ((-48 . -825) T) ((-48 . -505) 2739) ((-48 . -302) 2726) ((-48 . -27) T) ((-48 . -976) T) ((-48 . -237) T) ((-48 . -111) 2682) ((-48 . -1029) 2647) ((-48 . -283) T) ((-48 . -696) 2612) ((-48 . -626) 2577) ((-48 . -130) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1023) T) ((-48 . -1030) T) ((-48 . -1083) T) ((-48 . -705) T) ((-48 . -38) 2542) ((-48 . -300) T) ((-48 . -444) T) ((-48 . -170) T) ((-48 . -543) T) ((-48 . -895) T) ((-48 . -1188) T) ((-48 . -356) T) ((-48 . -619) 2502) ((-48 . -994) T) ((-48 . -596) 2447) ((-48 . -145) T) ((-48 . -227) T) ((-45 . -36) 2426) ((-45 . -586) 2351) ((-45 . -302) 2155) ((-45 . -505) 1947) ((-45 . -481) 1884) ((-45 . -279) 1809) ((-45 . -281) 1734) ((-45 . -592) 1713) ((-45 . -229) 1663) ((-45 . -106) 1613) ((-45 . -223) 1563) ((-45 . -1160) 1542) ((-45 . -275) 1492) ((-45 . -149) 1442) ((-45 . -34) T) ((-45 . -1183) T) ((-45 . -595) 1424) ((-45 . -1072) T) ((-45 . -101) T) ((-45 . -596) NIL) ((-45 . -629) 1374) ((-45 . -365) 1324) ((-45 . -825) NIL) ((-45 . -1120) 1274) ((-45 . -984) 1224) ((-45 . -1218) 1174) ((-45 . -644) 1124) ((-44 . -411) 1108) ((-44 . -723) 1092) ((-44 . -699) T) ((-44 . -740) T) ((-44 . -111) 1071) ((-44 . -1029) 1055) ((-44 . -21) T) ((-44 . -23) T) ((-44 . -1072) T) ((-44 . -595) 1037) ((-44 . -101) T) ((-44 . -25) T) ((-44 . -130) T) ((-44 . -626) 995) ((-44 . -696) 979) ((-44 . -360) 963) ((-40 . -335) 937) ((-40 . -170) T) ((-40 . -705) T) ((-40 . -1083) T) ((-40 . -1030) T) ((-40 . -1023) T) ((-40 . -626) 882) ((-40 . -130) T) ((-40 . -25) T) ((-40 . -101) T) ((-40 . -595) 864) ((-40 . -1072) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1029) 809) ((-40 . -111) 738) ((-40 . -596) 722) ((-40 . -225) 699) ((-40 . -874) 651) ((-40 . -227) 623) ((-40 . -356) T) ((-40 . -1188) T) ((-40 . -895) T) ((-40 . -543) T) ((-40 . -696) 568) ((-40 . -38) 513) ((-40 . -444) T) ((-40 . -300) T) ((-40 . -283) T) ((-40 . -237) T) ((-40 . -361) NIL) ((-40 . -343) NIL) ((-40 . -1122) NIL) ((-40 . -143) 485) ((-40 . -395) NIL) ((-40 . -403) 457) ((-40 . -145) 429) ((-40 . -363) 401) ((-40 . -370) 378) ((-40 . -619) 317) ((-40 . -405) 294) ((-40 . -1012) 182) ((-40 . -703) 154) ((-31 . -1054) T) ((-31 . -595) 120) ((-31 . -1072) T) ((-31 . -101) T) ((-31 . -92) T) ((-30 . -929) T) ((-30 . -595) 102) ((0 . |EnumerationCategory|) T) ((0 . -595) 84) ((0 . -1072) T) ((0 . -101) T) ((-1 . -1072) T) ((-1 . -595) 66) ((-1 . -101) T) ((-2 . |RecordCategory|) T) ((-2 . -595) 48) ((-2 . -1072) T) ((-2 . -101) T) ((-3 . |UnionCategory|) T) ((-3 . -595) 30) ((-3 . -1072) T) ((-3 . -101) T)) \ No newline at end of file +(((-1260 . -170) T) ((-1260 . -707) T) ((-1260 . -1085) T) ((-1260 . -1032) T) ((-1260 . -1025) T) ((-1260 . -628) 145098) ((-1260 . -130) T) ((-1260 . -25) T) ((-1260 . -101) T) ((-1260 . -597) 145080) ((-1260 . -1074) T) ((-1260 . -23) T) ((-1260 . -21) T) ((-1260 . -1031) 145067) ((-1260 . -111) 145052) ((-1260 . -363) T) ((-1260 . -598) 145034) ((-1260 . -1124) T) ((-1256 . -1254) 145013) ((-1256 . -1014) 144990) ((-1256 . -1025) T) ((-1256 . -1032) T) ((-1256 . -1085) T) ((-1256 . -707) T) ((-1256 . -21) T) ((-1256 . -23) T) ((-1256 . -1074) T) ((-1256 . -597) 144972) ((-1256 . -101) T) ((-1256 . -25) T) ((-1256 . -130) T) ((-1256 . -628) 144946) ((-1256 . -1246) 144930) ((-1256 . -698) 144900) ((-1256 . -1031) 144884) ((-1256 . -111) 144863) ((-1256 . -38) 144833) ((-1256 . -1251) 144812) ((-1255 . -1025) T) ((-1255 . -1032) T) ((-1255 . -1085) T) ((-1255 . -707) T) ((-1255 . -21) T) ((-1255 . -23) T) ((-1255 . -1074) T) ((-1255 . -597) 144794) ((-1255 . -101) T) ((-1255 . -25) T) ((-1255 . -130) T) ((-1255 . -628) 144768) ((-1255 . -1246) 144752) ((-1255 . -698) 144722) ((-1255 . -1031) 144706) ((-1255 . -111) 144685) ((-1255 . -38) 144655) ((-1255 . -379) 144634) ((-1255 . -1014) 144618) ((-1253 . -1254) 144594) ((-1253 . -1014) 144568) ((-1253 . -1025) T) ((-1253 . -1032) T) ((-1253 . -1085) T) ((-1253 . -707) T) ((-1253 . -21) T) ((-1253 . -23) T) ((-1253 . -1074) T) ((-1253 . -597) 144550) ((-1253 . -101) T) ((-1253 . -25) T) ((-1253 . -130) T) ((-1253 . -628) 144524) ((-1253 . -1246) 144508) ((-1253 . -698) 144478) ((-1253 . -1031) 144462) ((-1253 . -111) 144441) ((-1253 . -38) 144411) ((-1253 . -1251) 144387) ((-1252 . -1254) 144366) ((-1252 . -1014) 144323) ((-1252 . -1025) T) ((-1252 . -1032) T) ((-1252 . -1085) T) ((-1252 . -707) T) ((-1252 . -21) T) ((-1252 . -23) T) ((-1252 . -1074) T) ((-1252 . -597) 144305) ((-1252 . -101) T) ((-1252 . -25) T) ((-1252 . -130) T) ((-1252 . -628) 144279) ((-1252 . -1246) 144263) ((-1252 . -698) 144233) ((-1252 . -1031) 144217) ((-1252 . -111) 144196) ((-1252 . -38) 144166) ((-1252 . -1251) 144145) ((-1252 . -379) 144117) ((-1247 . -379) 144089) ((-1247 . -1014) 144066) ((-1247 . -698) 144036) ((-1247 . -628) 144010) ((-1247 . -130) T) ((-1247 . -25) T) ((-1247 . -101) T) ((-1247 . -597) 143992) ((-1247 . -1074) T) ((-1247 . -23) T) ((-1247 . -21) T) ((-1247 . -1031) 143976) ((-1247 . -111) 143955) ((-1247 . -1254) 143934) ((-1247 . -1025) T) ((-1247 . -1032) T) ((-1247 . -1085) T) ((-1247 . -707) T) ((-1247 . -1246) 143918) ((-1247 . -38) 143888) ((-1247 . -1251) 143867) ((-1245 . -1180) 143836) ((-1245 . -597) 143798) ((-1245 . -149) 143782) ((-1245 . -34) T) ((-1245 . -1185) T) ((-1245 . -304) 143720) ((-1245 . -507) 143653) ((-1245 . -1074) T) ((-1245 . -101) T) ((-1245 . -483) 143637) ((-1245 . -598) 143598) ((-1245 . -952) 143567) ((-1244 . -1025) T) ((-1244 . -1032) T) ((-1244 . -1085) T) ((-1244 . -707) T) ((-1244 . -21) T) ((-1244 . -23) T) ((-1244 . -1074) T) ((-1244 . -597) 143549) ((-1244 . -101) T) ((-1244 . -25) T) ((-1244 . -130) T) ((-1244 . -628) 143509) ((-1244 . -38) 143479) ((-1244 . -111) 143444) ((-1244 . -1031) 143414) ((-1244 . -698) 143384) ((-1243 . -1056) T) ((-1243 . -597) 143350) ((-1243 . -1074) T) ((-1243 . -101) T) ((-1243 . -92) T) ((-1242 . -1056) T) ((-1242 . -597) 143316) ((-1242 . -1074) T) ((-1242 . -101) T) ((-1242 . -92) T) ((-1235 . -1074) T) ((-1235 . -597) 143298) ((-1235 . -101) T) ((-1234 . -1074) T) ((-1234 . -597) 143280) ((-1234 . -101) T) ((-1231 . -1230) 143264) ((-1231 . -367) 143248) ((-1231 . -827) 143227) ((-1231 . -149) 143211) ((-1231 . -34) T) ((-1231 . -1185) T) ((-1231 . -597) 143123) ((-1231 . -304) 143061) ((-1231 . -507) 142994) ((-1231 . -1074) 142944) ((-1231 . -101) 142894) ((-1231 . -483) 142878) ((-1231 . -598) 142839) ((-1231 . -588) 142816) ((-1231 . -281) 142793) ((-1231 . -283) 142770) ((-1231 . -631) 142754) ((-1231 . -19) 142738) ((-1228 . -1074) T) ((-1228 . -597) 142704) ((-1228 . -101) T) ((-1221 . -1224) 142688) ((-1221 . -229) 142647) ((-1221 . -628) 142572) ((-1221 . -130) T) ((-1221 . -25) T) ((-1221 . -101) T) ((-1221 . -597) 142554) ((-1221 . -1074) T) ((-1221 . -23) T) ((-1221 . -21) T) ((-1221 . -707) T) ((-1221 . -1085) T) ((-1221 . -1032) T) ((-1221 . -1025) T) ((-1221 . -281) 142539) ((-1221 . -876) 142452) ((-1221 . -949) 142421) ((-1221 . -38) 142318) ((-1221 . -111) 142187) ((-1221 . -1031) 142070) ((-1221 . -698) 141967) ((-1221 . -143) 141946) ((-1221 . -145) 141925) ((-1221 . -170) 141876) ((-1221 . -545) 141855) ((-1221 . -285) 141834) ((-1221 . -47) 141811) ((-1221 . -1210) 141788) ((-1221 . -35) 141754) ((-1221 . -94) 141720) ((-1221 . -279) 141686) ((-1221 . -486) 141652) ((-1221 . -1174) 141618) ((-1221 . -1171) 141584) ((-1221 . -978) 141550) ((-1218 . -321) 141494) ((-1218 . -1014) 141460) ((-1218 . -407) 141426) ((-1218 . -38) 141318) ((-1218 . -628) 141223) ((-1218 . -707) T) ((-1218 . -1085) T) ((-1218 . -1032) T) ((-1218 . -1025) T) ((-1218 . -111) 141115) ((-1218 . -1031) 141020) ((-1218 . -21) T) ((-1218 . -23) T) ((-1218 . -1074) T) ((-1218 . -597) 141002) ((-1218 . -101) T) ((-1218 . -25) T) ((-1218 . -130) T) ((-1218 . -698) 140894) ((-1218 . -143) 140855) ((-1218 . -145) 140816) ((-1218 . -170) T) ((-1218 . -545) T) ((-1218 . -285) T) ((-1218 . -47) 140760) ((-1217 . -1216) 140739) ((-1217 . -358) 140718) ((-1217 . -1190) 140697) ((-1217 . -897) 140676) ((-1217 . -545) 140627) ((-1217 . -170) 140558) ((-1217 . -698) 140399) ((-1217 . -38) 140240) ((-1217 . -446) 140219) ((-1217 . -302) 140198) ((-1217 . -628) 140095) ((-1217 . -707) T) ((-1217 . -1085) T) ((-1217 . -1032) T) ((-1217 . -1025) T) ((-1217 . -111) 139916) ((-1217 . -1031) 139751) ((-1217 . -21) T) ((-1217 . -23) T) ((-1217 . -1074) T) ((-1217 . -597) 139733) ((-1217 . -101) T) ((-1217 . -25) T) ((-1217 . -130) T) ((-1217 . -285) 139684) ((-1217 . -239) 139663) ((-1217 . -978) 139629) ((-1217 . -1171) 139595) ((-1217 . -1174) 139561) ((-1217 . -486) 139527) ((-1217 . -279) 139493) ((-1217 . -94) 139459) ((-1217 . -35) 139425) ((-1217 . -1210) 139395) ((-1217 . -47) 139365) ((-1217 . -145) 139344) ((-1217 . -143) 139323) ((-1217 . -949) 139285) ((-1217 . -876) 139191) ((-1217 . -281) 139176) ((-1217 . -229) 139128) ((-1217 . -1214) 139112) ((-1217 . -1014) 139096) ((-1212 . -1216) 139057) ((-1212 . -358) 139036) ((-1212 . -1190) 139015) ((-1212 . -897) 138994) ((-1212 . -545) 138945) ((-1212 . -170) 138876) ((-1212 . -698) 138717) ((-1212 . -38) 138558) ((-1212 . -446) 138537) ((-1212 . -302) 138516) ((-1212 . -628) 138413) ((-1212 . -707) T) ((-1212 . -1085) T) ((-1212 . -1032) T) ((-1212 . -1025) T) ((-1212 . -111) 138234) ((-1212 . -1031) 138069) ((-1212 . -21) T) ((-1212 . -23) T) ((-1212 . -1074) T) ((-1212 . -597) 138051) ((-1212 . -101) T) ((-1212 . -25) T) ((-1212 . -130) T) ((-1212 . -285) 138002) ((-1212 . -239) 137981) ((-1212 . -978) 137947) ((-1212 . -1171) 137913) ((-1212 . -1174) 137879) ((-1212 . -486) 137845) ((-1212 . -279) 137811) ((-1212 . -94) 137777) ((-1212 . -35) 137743) ((-1212 . -1210) 137713) ((-1212 . -47) 137683) ((-1212 . -145) 137662) ((-1212 . -143) 137641) ((-1212 . -949) 137603) ((-1212 . -876) 137509) ((-1212 . -281) 137494) ((-1212 . -229) 137446) ((-1212 . -1214) 137430) ((-1212 . -1014) 137365) ((-1200 . -1207) 137349) ((-1200 . -1124) 137327) ((-1200 . -598) NIL) ((-1200 . -304) 137314) ((-1200 . -507) 137261) ((-1200 . -321) 137238) ((-1200 . -1014) 137118) ((-1200 . -407) 137102) ((-1200 . -38) 136931) ((-1200 . -111) 136740) ((-1200 . -1031) 136563) ((-1200 . -628) 136488) ((-1200 . -698) 136317) ((-1200 . -143) 136296) ((-1200 . -145) 136275) ((-1200 . -47) 136252) ((-1200 . -372) 136236) ((-1200 . -621) 136184) ((-1200 . -827) 136163) ((-1200 . -876) 136106) ((-1200 . -862) NIL) ((-1200 . -886) 136085) ((-1200 . -1190) 136064) ((-1200 . -926) 136033) ((-1200 . -897) 136012) ((-1200 . -545) 135923) ((-1200 . -285) 135834) ((-1200 . -170) 135725) ((-1200 . -446) 135656) ((-1200 . -302) 135635) ((-1200 . -281) 135562) ((-1200 . -229) T) ((-1200 . -130) T) ((-1200 . -25) T) ((-1200 . -101) T) ((-1200 . -597) 135544) ((-1200 . -1074) T) ((-1200 . -23) T) ((-1200 . -21) T) ((-1200 . -707) T) ((-1200 . -1085) T) ((-1200 . -1032) T) ((-1200 . -1025) T) ((-1200 . -227) 135528) ((-1198 . -1067) 135512) ((-1198 . -1185) T) ((-1198 . -1074) 135490) ((-1198 . -597) 135457) ((-1198 . -101) 135435) ((-1198 . -1068) 135392) ((-1196 . -1195) 135371) ((-1196 . -978) 135337) ((-1196 . -1171) 135303) ((-1196 . -1174) 135269) ((-1196 . -486) 135235) ((-1196 . -279) 135201) ((-1196 . -94) 135167) ((-1196 . -35) 135133) ((-1196 . -1210) 135110) ((-1196 . -47) 135087) ((-1196 . -698) 134901) ((-1196 . -628) 134771) ((-1196 . -1031) 134579) ((-1196 . -111) 134368) ((-1196 . -38) 134182) ((-1196 . -949) 134151) ((-1196 . -281) 134071) ((-1196 . -1193) 134055) ((-1196 . -707) T) ((-1196 . -1085) T) ((-1196 . -1032) T) ((-1196 . -1025) T) ((-1196 . -21) T) ((-1196 . -23) T) ((-1196 . -1074) T) ((-1196 . -597) 134037) ((-1196 . -101) T) ((-1196 . -25) T) ((-1196 . -130) T) ((-1196 . -143) 133962) ((-1196 . -145) 133887) ((-1196 . -598) 133560) ((-1196 . -227) 133530) ((-1196 . -876) 133381) ((-1196 . -229) 133286) ((-1196 . -358) 133265) ((-1196 . -1190) 133244) ((-1196 . -897) 133223) ((-1196 . -545) 133174) ((-1196 . -170) 133105) ((-1196 . -446) 133084) ((-1196 . -302) 133063) ((-1196 . -285) 133014) ((-1196 . -239) 132993) ((-1196 . -333) 132963) ((-1196 . -507) 132823) ((-1196 . -304) 132762) ((-1196 . -372) 132732) ((-1196 . -621) 132640) ((-1196 . -395) 132610) ((-1196 . -1185) 132589) ((-1196 . -862) 132462) ((-1196 . -800) 132415) ((-1196 . -771) 132368) ((-1196 . -772) 132321) ((-1196 . -827) 132220) ((-1196 . -774) 132173) ((-1196 . -777) 132126) ((-1196 . -825) 132079) ((-1196 . -860) 132049) ((-1196 . -886) 132002) ((-1196 . -996) 131955) ((-1196 . -1014) 131741) ((-1196 . -1124) 131693) ((-1196 . -967) 131663) ((-1191 . -1195) 131624) ((-1191 . -978) 131590) ((-1191 . -1171) 131556) ((-1191 . -1174) 131522) ((-1191 . -486) 131488) ((-1191 . -279) 131454) ((-1191 . -94) 131420) ((-1191 . -35) 131386) ((-1191 . -1210) 131363) ((-1191 . -47) 131340) ((-1191 . -698) 131136) ((-1191 . -628) 130988) ((-1191 . -1031) 130778) ((-1191 . -111) 130547) ((-1191 . -38) 130343) ((-1191 . -949) 130312) ((-1191 . -281) 130160) ((-1191 . -1193) 130144) ((-1191 . -707) T) ((-1191 . -1085) T) ((-1191 . -1032) T) ((-1191 . -1025) T) ((-1191 . -21) T) ((-1191 . -23) T) ((-1191 . -1074) T) ((-1191 . -597) 130126) ((-1191 . -101) T) ((-1191 . -25) T) ((-1191 . -130) T) ((-1191 . -143) 130033) ((-1191 . -145) 129940) ((-1191 . -598) NIL) ((-1191 . -227) 129892) ((-1191 . -876) 129725) ((-1191 . -229) 129612) ((-1191 . -358) 129591) ((-1191 . -1190) 129570) ((-1191 . -897) 129549) ((-1191 . -545) 129500) ((-1191 . -170) 129431) ((-1191 . -446) 129410) ((-1191 . -302) 129389) ((-1191 . -285) 129340) ((-1191 . -239) 129319) ((-1191 . -333) 129271) ((-1191 . -507) 129040) ((-1191 . -304) 128925) ((-1191 . -372) 128877) ((-1191 . -621) 128829) ((-1191 . -395) 128781) ((-1191 . -1185) 128760) ((-1191 . -862) NIL) ((-1191 . -800) NIL) ((-1191 . -771) NIL) ((-1191 . -772) NIL) ((-1191 . -827) NIL) ((-1191 . -774) NIL) ((-1191 . -777) NIL) ((-1191 . -825) NIL) ((-1191 . -860) 128712) ((-1191 . -886) NIL) ((-1191 . -996) NIL) ((-1191 . -1014) 128678) ((-1191 . -1124) NIL) ((-1191 . -967) 128630) ((-1186 . -1056) T) ((-1186 . -597) 128596) ((-1186 . -1074) T) ((-1186 . -101) T) ((-1186 . -92) T) ((-1183 . -597) 128508) ((-1183 . -1074) 128486) ((-1183 . -101) 128464) ((-1178 . -721) 128440) ((-1178 . -35) 128406) ((-1178 . -94) 128372) ((-1178 . -279) 128338) ((-1178 . -486) 128304) ((-1178 . -1174) 128270) ((-1178 . -1171) 128236) ((-1178 . -978) 128202) ((-1178 . -47) 128171) ((-1178 . -38) 128068) ((-1178 . -698) 127965) ((-1178 . -285) 127944) ((-1178 . -545) 127923) ((-1178 . -111) 127792) ((-1178 . -1031) 127675) ((-1178 . -170) 127626) ((-1178 . -145) 127605) ((-1178 . -143) 127584) ((-1178 . -628) 127509) ((-1178 . -949) 127471) ((-1178 . -1025) T) ((-1178 . -1032) T) ((-1178 . -1085) T) ((-1178 . -707) T) ((-1178 . -21) T) ((-1178 . -23) T) ((-1178 . -1074) T) ((-1178 . -597) 127453) ((-1178 . -101) T) ((-1178 . -25) T) ((-1178 . -130) T) ((-1178 . -876) 127434) ((-1178 . -507) 127401) ((-1178 . -304) 127388) ((-1172 . -986) 127372) ((-1172 . -34) T) ((-1172 . -1185) T) ((-1172 . -597) 127304) ((-1172 . -304) 127242) ((-1172 . -507) 127175) ((-1172 . -1074) 127153) ((-1172 . -101) 127131) ((-1172 . -483) 127115) ((-1167 . -360) 127089) ((-1167 . -101) T) ((-1167 . -597) 127071) ((-1167 . -1074) T) ((-1165 . -1074) T) ((-1165 . -597) 127053) ((-1165 . -101) T) ((-1158 . -1162) 127032) ((-1158 . -225) 126982) ((-1158 . -106) 126932) ((-1158 . -304) 126736) ((-1158 . -507) 126528) ((-1158 . -483) 126465) ((-1158 . -149) 126415) ((-1158 . -598) NIL) ((-1158 . -231) 126365) ((-1158 . -594) 126344) ((-1158 . -283) 126323) ((-1158 . -281) 126302) ((-1158 . -101) T) ((-1158 . -1074) T) ((-1158 . -597) 126284) ((-1158 . -1185) T) ((-1158 . -34) T) ((-1158 . -588) 126263) ((-1154 . -1227) T) ((-1154 . -1074) T) ((-1154 . -597) 126245) ((-1154 . -101) T) ((-1153 . -597) 126227) ((-1152 . -597) 126209) ((-1151 . -321) 126186) ((-1151 . -1014) 126082) ((-1151 . -407) 126066) ((-1151 . -38) 125963) ((-1151 . -628) 125888) ((-1151 . -707) T) ((-1151 . -1085) T) ((-1151 . -1032) T) ((-1151 . -1025) T) ((-1151 . -111) 125757) ((-1151 . -1031) 125640) ((-1151 . -21) T) ((-1151 . -23) T) ((-1151 . -1074) T) ((-1151 . -597) 125622) ((-1151 . -101) T) ((-1151 . -25) T) ((-1151 . -130) T) ((-1151 . -698) 125519) ((-1151 . -143) 125498) ((-1151 . -145) 125477) ((-1151 . -170) 125428) ((-1151 . -545) 125407) ((-1151 . -285) 125386) ((-1151 . -47) 125363) ((-1149 . -827) T) ((-1149 . -101) T) ((-1149 . -597) 125345) ((-1149 . -1074) T) ((-1149 . -598) 125267) ((-1149 . -801) T) ((-1149 . -862) 125234) ((-1148 . -597) 125216) ((-1147 . -1224) 125200) ((-1147 . -229) 125159) ((-1147 . -628) 125084) ((-1147 . -130) T) ((-1147 . -25) T) ((-1147 . -101) T) ((-1147 . -597) 125066) ((-1147 . -1074) T) ((-1147 . -23) T) ((-1147 . -21) T) ((-1147 . -707) T) ((-1147 . -1085) T) ((-1147 . -1032) T) ((-1147 . -1025) T) ((-1147 . -281) 125051) ((-1147 . -876) 124964) ((-1147 . -949) 124933) ((-1147 . -38) 124830) ((-1147 . -111) 124699) ((-1147 . -1031) 124582) ((-1147 . -698) 124479) ((-1147 . -143) 124458) ((-1147 . -145) 124437) ((-1147 . -170) 124388) ((-1147 . -545) 124367) ((-1147 . -285) 124346) ((-1147 . -47) 124323) ((-1147 . -1210) 124300) ((-1147 . -35) 124266) ((-1147 . -94) 124232) ((-1147 . -279) 124198) ((-1147 . -486) 124164) ((-1147 . -1174) 124130) ((-1147 . -1171) 124096) ((-1147 . -978) 124062) ((-1146 . -1216) 124023) ((-1146 . -358) 124002) ((-1146 . -1190) 123981) ((-1146 . -897) 123960) ((-1146 . -545) 123911) ((-1146 . -170) 123842) ((-1146 . -698) 123683) ((-1146 . -38) 123524) ((-1146 . -446) 123503) ((-1146 . -302) 123482) ((-1146 . -628) 123379) ((-1146 . -707) T) ((-1146 . -1085) T) ((-1146 . -1032) T) ((-1146 . -1025) T) ((-1146 . -111) 123200) ((-1146 . -1031) 123035) ((-1146 . -21) T) ((-1146 . -23) T) ((-1146 . -1074) T) ((-1146 . -597) 123017) ((-1146 . -101) T) ((-1146 . -25) T) ((-1146 . -130) T) ((-1146 . -285) 122968) ((-1146 . -239) 122947) ((-1146 . -978) 122913) ((-1146 . -1171) 122879) ((-1146 . -1174) 122845) ((-1146 . -486) 122811) ((-1146 . -279) 122777) ((-1146 . -94) 122743) ((-1146 . -35) 122709) ((-1146 . -1210) 122679) ((-1146 . -47) 122649) ((-1146 . -145) 122628) ((-1146 . -143) 122607) ((-1146 . -949) 122569) ((-1146 . -876) 122475) ((-1146 . -281) 122460) ((-1146 . -229) 122412) ((-1146 . -1214) 122396) ((-1146 . -1014) 122331) ((-1143 . -1207) 122315) ((-1143 . -1124) 122293) ((-1143 . -598) NIL) ((-1143 . -304) 122280) ((-1143 . -507) 122227) ((-1143 . -321) 122204) ((-1143 . -1014) 122084) ((-1143 . -407) 122068) ((-1143 . -38) 121897) ((-1143 . -111) 121706) ((-1143 . -1031) 121529) ((-1143 . -628) 121454) ((-1143 . -698) 121283) ((-1143 . -143) 121262) ((-1143 . -145) 121241) ((-1143 . -47) 121218) ((-1143 . -372) 121202) ((-1143 . -621) 121150) ((-1143 . -827) 121129) ((-1143 . -876) 121072) ((-1143 . -862) NIL) ((-1143 . -886) 121051) ((-1143 . -1190) 121030) ((-1143 . -926) 120999) ((-1143 . -897) 120978) ((-1143 . -545) 120889) ((-1143 . -285) 120800) ((-1143 . -170) 120691) ((-1143 . -446) 120622) ((-1143 . -302) 120601) ((-1143 . -281) 120528) ((-1143 . -229) T) ((-1143 . -130) T) ((-1143 . -25) T) ((-1143 . -101) T) ((-1143 . -597) 120510) ((-1143 . -1074) T) ((-1143 . -23) T) ((-1143 . -21) T) ((-1143 . -707) T) ((-1143 . -1085) T) ((-1143 . -1032) T) ((-1143 . -1025) T) ((-1143 . -227) 120494) ((-1140 . -1195) 120455) ((-1140 . -978) 120421) ((-1140 . -1171) 120387) ((-1140 . -1174) 120353) ((-1140 . -486) 120319) ((-1140 . -279) 120285) ((-1140 . -94) 120251) ((-1140 . -35) 120217) ((-1140 . -1210) 120194) ((-1140 . -47) 120171) ((-1140 . -698) 119967) ((-1140 . -628) 119819) ((-1140 . -1031) 119609) ((-1140 . -111) 119378) ((-1140 . -38) 119174) ((-1140 . -949) 119143) ((-1140 . -281) 118991) ((-1140 . -1193) 118975) ((-1140 . -707) T) ((-1140 . -1085) T) ((-1140 . -1032) T) ((-1140 . -1025) T) ((-1140 . -21) T) ((-1140 . -23) T) ((-1140 . -1074) T) ((-1140 . -597) 118957) ((-1140 . -101) T) ((-1140 . -25) T) ((-1140 . -130) T) ((-1140 . -143) 118864) ((-1140 . -145) 118771) ((-1140 . -598) NIL) ((-1140 . -227) 118723) ((-1140 . -876) 118556) ((-1140 . -229) 118443) ((-1140 . -358) 118422) ((-1140 . -1190) 118401) ((-1140 . -897) 118380) ((-1140 . -545) 118331) ((-1140 . -170) 118262) ((-1140 . -446) 118241) ((-1140 . -302) 118220) ((-1140 . -285) 118171) ((-1140 . -239) 118150) ((-1140 . -333) 118102) ((-1140 . -507) 117871) ((-1140 . -304) 117756) ((-1140 . -372) 117708) ((-1140 . -621) 117660) ((-1140 . -395) 117612) ((-1140 . -1185) 117591) ((-1140 . -862) NIL) ((-1140 . -800) NIL) ((-1140 . -771) NIL) ((-1140 . -772) NIL) ((-1140 . -827) NIL) ((-1140 . -774) NIL) ((-1140 . -777) NIL) ((-1140 . -825) NIL) ((-1140 . -860) 117543) ((-1140 . -886) NIL) ((-1140 . -996) NIL) ((-1140 . -1014) 117509) ((-1140 . -1124) NIL) ((-1140 . -967) 117461) ((-1139 . -1056) T) ((-1139 . -597) 117427) ((-1139 . -1074) T) ((-1139 . -101) T) ((-1139 . -92) T) ((-1138 . -1074) T) ((-1138 . -597) 117409) ((-1138 . -101) T) ((-1137 . -1074) T) ((-1137 . -597) 117391) ((-1137 . -101) T) ((-1132 . -1162) 117367) ((-1132 . -225) 117314) ((-1132 . -106) 117261) ((-1132 . -304) 117056) ((-1132 . -507) 116839) ((-1132 . -483) 116773) ((-1132 . -149) 116720) ((-1132 . -598) NIL) ((-1132 . -231) 116667) ((-1132 . -594) 116643) ((-1132 . -283) 116619) ((-1132 . -281) 116595) ((-1132 . -101) T) ((-1132 . -1074) T) ((-1132 . -597) 116577) ((-1132 . -1185) T) ((-1132 . -34) T) ((-1132 . -588) 116553) ((-1131 . -1130) T) ((-1131 . -19) 116535) ((-1131 . -631) 116517) ((-1131 . -283) 116492) ((-1131 . -281) 116467) ((-1131 . -588) 116442) ((-1131 . -598) NIL) ((-1131 . -483) 116424) ((-1131 . -507) NIL) ((-1131 . -304) NIL) ((-1131 . -1185) T) ((-1131 . -34) T) ((-1131 . -149) 116406) ((-1131 . -827) T) ((-1131 . -367) 116388) ((-1131 . -1117) T) ((-1131 . -101) T) ((-1131 . -597) 116370) ((-1131 . -1074) T) ((-1131 . -801) T) ((-1126 . -654) 116354) ((-1126 . -631) 116338) ((-1126 . -283) 116315) ((-1126 . -281) 116292) ((-1126 . -588) 116269) ((-1126 . -598) 116230) ((-1126 . -483) 116214) ((-1126 . -101) 116192) ((-1126 . -1074) 116170) ((-1126 . -507) 116103) ((-1126 . -304) 116041) ((-1126 . -597) 115973) ((-1126 . -1185) T) ((-1126 . -34) T) ((-1126 . -149) 115957) ((-1126 . -1220) 115941) ((-1126 . -986) 115925) ((-1126 . -1122) 115909) ((-1123 . -1162) 115888) ((-1123 . -225) 115838) ((-1123 . -106) 115788) ((-1123 . -304) 115592) ((-1123 . -507) 115384) ((-1123 . -483) 115321) ((-1123 . -149) 115271) ((-1123 . -598) NIL) ((-1123 . -231) 115221) ((-1123 . -594) 115200) ((-1123 . -283) 115179) ((-1123 . -281) 115158) ((-1123 . -101) T) ((-1123 . -1074) T) ((-1123 . -597) 115140) ((-1123 . -1185) T) ((-1123 . -34) T) ((-1123 . -588) 115119) ((-1120 . -1094) 115103) ((-1120 . -483) 115087) ((-1120 . -101) 115065) ((-1120 . -1074) 115043) ((-1120 . -507) 114976) ((-1120 . -304) 114914) ((-1120 . -597) 114846) ((-1120 . -1185) T) ((-1120 . -34) T) ((-1120 . -106) 114830) ((-1119 . -1082) 114799) ((-1119 . -1180) 114768) ((-1119 . -597) 114730) ((-1119 . -149) 114714) ((-1119 . -34) T) ((-1119 . -1185) T) ((-1119 . -304) 114652) ((-1119 . -507) 114585) ((-1119 . -1074) T) ((-1119 . -101) T) ((-1119 . -483) 114569) ((-1119 . -598) 114530) ((-1119 . -952) 114499) ((-1119 . -1045) 114468) ((-1115 . -1096) 114413) ((-1115 . -483) 114397) ((-1115 . -507) 114330) ((-1115 . -304) 114268) ((-1115 . -1185) T) ((-1115 . -34) T) ((-1115 . -1028) 114208) ((-1115 . -1014) 114104) ((-1115 . -407) 114088) ((-1115 . -621) 114036) ((-1115 . -372) 114020) ((-1115 . -229) 113999) ((-1115 . -876) 113958) ((-1115 . -227) 113942) ((-1115 . -698) 113874) ((-1115 . -628) 113848) ((-1115 . -130) T) ((-1115 . -25) T) ((-1115 . -101) T) ((-1115 . -597) 113810) ((-1115 . -1074) T) ((-1115 . -23) T) ((-1115 . -21) T) ((-1115 . -1031) 113794) ((-1115 . -111) 113773) ((-1115 . -1025) T) ((-1115 . -1032) T) ((-1115 . -1085) T) ((-1115 . -707) T) ((-1115 . -38) 113733) ((-1115 . -598) 113694) ((-1114 . -986) 113665) ((-1114 . -34) T) ((-1114 . -1185) T) ((-1114 . -597) 113647) ((-1114 . -304) 113573) ((-1114 . -507) 113492) ((-1114 . -1074) T) ((-1114 . -101) T) ((-1114 . -483) 113463) ((-1113 . -1074) T) ((-1113 . -597) 113445) ((-1113 . -101) T) ((-1108 . -1110) T) ((-1108 . -1227) T) ((-1108 . -92) T) ((-1108 . -101) T) ((-1108 . -597) 113411) ((-1108 . -1074) T) ((-1108 . -1056) T) ((-1106 . -1107) 113395) ((-1106 . -101) T) ((-1106 . -597) 113377) ((-1106 . -1074) T) ((-1099 . -721) 113356) ((-1099 . -35) 113322) ((-1099 . -94) 113288) ((-1099 . -279) 113254) ((-1099 . -486) 113220) ((-1099 . -1174) 113186) ((-1099 . -1171) 113152) ((-1099 . -978) 113118) ((-1099 . -47) 113090) ((-1099 . -38) 112987) ((-1099 . -698) 112884) ((-1099 . -285) 112863) ((-1099 . -545) 112842) ((-1099 . -111) 112711) ((-1099 . -1031) 112594) ((-1099 . -170) 112545) ((-1099 . -145) 112524) ((-1099 . -143) 112503) ((-1099 . -628) 112428) ((-1099 . -949) 112395) ((-1099 . -1025) T) ((-1099 . -1032) T) ((-1099 . -1085) T) ((-1099 . -707) T) ((-1099 . -21) T) ((-1099 . -23) T) ((-1099 . -1074) T) ((-1099 . -597) 112377) ((-1099 . -101) T) ((-1099 . -25) T) ((-1099 . -130) T) ((-1099 . -876) 112361) ((-1099 . -507) 112331) ((-1099 . -304) 112318) ((-1098 . -926) 112285) ((-1098 . -1014) 112168) ((-1098 . -1190) 112147) ((-1098 . -886) 112126) ((-1098 . -862) 111985) ((-1098 . -876) 111969) ((-1098 . -827) 111948) ((-1098 . -507) 111900) ((-1098 . -446) 111851) ((-1098 . -621) 111799) ((-1098 . -372) 111783) ((-1098 . -47) 111755) ((-1098 . -38) 111604) ((-1098 . -698) 111453) ((-1098 . -285) 111384) ((-1098 . -545) 111315) ((-1098 . -111) 111144) ((-1098 . -1031) 110987) ((-1098 . -170) 110898) ((-1098 . -145) 110877) ((-1098 . -143) 110856) ((-1098 . -628) 110781) ((-1098 . -130) T) ((-1098 . -25) T) ((-1098 . -101) T) ((-1098 . -597) 110763) ((-1098 . -1074) T) ((-1098 . -23) T) ((-1098 . -21) T) ((-1098 . -1025) T) ((-1098 . -1032) T) ((-1098 . -1085) T) ((-1098 . -707) T) ((-1098 . -407) 110747) ((-1098 . -321) 110719) ((-1098 . -304) 110706) ((-1098 . -598) 110454) ((-1093 . -537) T) ((-1093 . -1190) T) ((-1093 . -1124) T) ((-1093 . -1014) 110436) ((-1093 . -598) 110351) ((-1093 . -996) T) ((-1093 . -862) 110333) ((-1093 . -825) T) ((-1093 . -777) T) ((-1093 . -774) T) ((-1093 . -827) T) ((-1093 . -772) T) ((-1093 . -771) T) ((-1093 . -800) T) ((-1093 . -621) 110315) ((-1093 . -897) T) ((-1093 . -545) T) ((-1093 . -285) T) ((-1093 . -170) T) ((-1093 . -698) 110302) ((-1093 . -1031) 110289) ((-1093 . -111) 110274) ((-1093 . -38) 110261) ((-1093 . -446) T) ((-1093 . -302) T) ((-1093 . -229) T) ((-1093 . -141) T) ((-1093 . -1025) T) ((-1093 . -1032) T) ((-1093 . -1085) T) ((-1093 . -707) T) ((-1093 . -21) T) ((-1093 . -23) T) ((-1093 . -1074) T) ((-1093 . -597) 110243) ((-1093 . -101) T) ((-1093 . -25) T) ((-1093 . -130) T) ((-1093 . -628) 110230) ((-1093 . -145) T) ((-1093 . -642) T) ((-1093 . -801) T) ((-1089 . -1056) T) ((-1089 . -597) 110196) ((-1089 . -1074) T) ((-1089 . -101) T) ((-1089 . -92) T) ((-1088 . -1074) T) ((-1088 . -597) 110178) ((-1088 . -101) T) ((-1086 . -234) 110157) ((-1086 . -1239) 110127) ((-1086 . -771) 110106) ((-1086 . -825) 110085) ((-1086 . -777) 110036) ((-1086 . -774) 109987) ((-1086 . -827) 109938) ((-1086 . -772) 109889) ((-1086 . -773) 109868) ((-1086 . -283) 109845) ((-1086 . -281) 109822) ((-1086 . -483) 109806) ((-1086 . -507) 109739) ((-1086 . -304) 109677) ((-1086 . -1185) T) ((-1086 . -34) T) ((-1086 . -588) 109654) ((-1086 . -1014) 109481) ((-1086 . -407) 109450) ((-1086 . -621) 109356) ((-1086 . -372) 109325) ((-1086 . -363) 109304) ((-1086 . -229) 109256) ((-1086 . -876) 109188) ((-1086 . -227) 109157) ((-1086 . -111) 109047) ((-1086 . -1031) 108944) ((-1086 . -170) 108923) ((-1086 . -597) 108654) ((-1086 . -698) 108596) ((-1086 . -628) 108444) ((-1086 . -130) 108314) ((-1086 . -23) 108184) ((-1086 . -21) 108094) ((-1086 . -1025) 108024) ((-1086 . -1032) 107954) ((-1086 . -1085) 107864) ((-1086 . -707) 107774) ((-1086 . -38) 107744) ((-1086 . -1074) 107534) ((-1086 . -101) 107324) ((-1086 . -25) 107175) ((-1079 . -391) T) ((-1079 . -1185) T) ((-1079 . -597) 107157) ((-1078 . -1077) 107121) ((-1078 . -101) T) ((-1078 . -597) 107103) ((-1078 . -1074) T) ((-1076 . -1077) 107055) ((-1076 . -101) T) ((-1076 . -597) 107037) ((-1076 . -1074) T) ((-1075 . -363) T) ((-1075 . -101) T) ((-1075 . -597) 107019) ((-1075 . -1074) T) ((-1070 . -421) 107003) ((-1070 . -1072) 106987) ((-1070 . -363) 106966) ((-1070 . -231) 106950) ((-1070 . -598) 106911) ((-1070 . -149) 106895) ((-1070 . -483) 106879) ((-1070 . -101) T) ((-1070 . -1074) T) ((-1070 . -507) 106812) ((-1070 . -304) 106750) ((-1070 . -597) 106732) ((-1070 . -1185) T) ((-1070 . -34) T) ((-1070 . -106) 106716) ((-1070 . -225) 106700) ((-1069 . -1056) T) ((-1069 . -597) 106666) ((-1069 . -1074) T) ((-1069 . -101) T) ((-1069 . -92) T) ((-1065 . -1185) T) ((-1065 . -1074) 106644) ((-1065 . -597) 106611) ((-1065 . -101) 106589) ((-1064 . -1056) T) ((-1064 . -597) 106555) ((-1064 . -1074) T) ((-1064 . -101) T) ((-1064 . -92) T) ((-1062 . -1067) 106539) ((-1062 . -1185) T) ((-1062 . -1074) 106517) ((-1062 . -597) 106484) ((-1062 . -101) 106462) ((-1062 . -1068) 106420) ((-1061 . -261) 106404) ((-1061 . -1014) 106388) ((-1061 . -1074) T) ((-1061 . -597) 106370) ((-1061 . -101) T) ((-1061 . -827) T) ((-1060 . -248) 106307) ((-1060 . -1014) 106134) ((-1060 . -598) NIL) ((-1060 . -321) 106095) ((-1060 . -407) 106079) ((-1060 . -38) 105928) ((-1060 . -111) 105757) ((-1060 . -1031) 105600) ((-1060 . -628) 105525) ((-1060 . -698) 105374) ((-1060 . -143) 105353) ((-1060 . -145) 105332) ((-1060 . -170) 105243) ((-1060 . -545) 105174) ((-1060 . -285) 105105) ((-1060 . -47) 105066) ((-1060 . -372) 105050) ((-1060 . -621) 104998) ((-1060 . -446) 104949) ((-1060 . -507) 104816) ((-1060 . -827) 104795) ((-1060 . -876) 104730) ((-1060 . -862) NIL) ((-1060 . -886) 104709) ((-1060 . -1190) 104688) ((-1060 . -926) 104633) ((-1060 . -304) 104620) ((-1060 . -229) 104599) ((-1060 . -130) T) ((-1060 . -25) T) ((-1060 . -101) T) ((-1060 . -597) 104581) ((-1060 . -1074) T) ((-1060 . -23) T) ((-1060 . -21) T) ((-1060 . -707) T) ((-1060 . -1085) T) ((-1060 . -1032) T) ((-1060 . -1025) T) ((-1060 . -227) 104565) ((-1058 . -597) 104547) ((-1055 . -827) T) ((-1055 . -101) T) ((-1055 . -597) 104529) ((-1055 . -1074) T) ((-1052 . -705) 104508) ((-1052 . -1014) 104404) ((-1052 . -407) 104388) ((-1052 . -621) 104336) ((-1052 . -372) 104320) ((-1052 . -365) 104299) ((-1052 . -145) 104278) ((-1052 . -698) 104146) ((-1052 . -628) 104056) ((-1052 . -1031) 103966) ((-1052 . -111) 103862) ((-1052 . -38) 103730) ((-1052 . -405) 103709) ((-1052 . -397) 103688) ((-1052 . -143) 103639) ((-1052 . -1124) 103618) ((-1052 . -345) 103597) ((-1052 . -363) 103548) ((-1052 . -239) 103499) ((-1052 . -285) 103450) ((-1052 . -302) 103401) ((-1052 . -446) 103352) ((-1052 . -545) 103303) ((-1052 . -897) 103254) ((-1052 . -1190) 103205) ((-1052 . -358) 103156) ((-1052 . -229) 103081) ((-1052 . -876) 103014) ((-1052 . -227) 102984) ((-1052 . -598) 102968) ((-1052 . -21) T) ((-1052 . -23) T) ((-1052 . -1074) T) ((-1052 . -597) 102950) ((-1052 . -101) T) ((-1052 . -25) T) ((-1052 . -130) T) ((-1052 . -1025) T) ((-1052 . -1032) T) ((-1052 . -1085) T) ((-1052 . -707) T) ((-1052 . -170) T) ((-1050 . -1074) T) ((-1050 . -597) 102932) ((-1050 . -101) T) ((-1050 . -281) 102911) ((-1049 . -1074) T) ((-1049 . -597) 102893) ((-1049 . -101) T) ((-1048 . -1074) T) ((-1048 . -597) 102875) ((-1048 . -101) T) ((-1048 . -281) 102854) ((-1048 . -1014) 102831) ((-1047 . -1056) T) ((-1047 . -597) 102797) ((-1047 . -1074) T) ((-1047 . -101) T) ((-1047 . -92) T) ((-1040 . -1056) T) ((-1040 . -597) 102763) ((-1040 . -1074) T) ((-1040 . -101) T) ((-1040 . -92) T) ((-1037 . -1162) 102738) ((-1037 . -225) 102684) ((-1037 . -106) 102630) ((-1037 . -304) 102481) ((-1037 . -507) 102325) ((-1037 . -483) 102256) ((-1037 . -149) 102202) ((-1037 . -598) NIL) ((-1037 . -231) 102148) ((-1037 . -594) 102123) ((-1037 . -283) 102098) ((-1037 . -281) 102073) ((-1037 . -101) T) ((-1037 . -1074) T) ((-1037 . -597) 102055) ((-1037 . -1185) T) ((-1037 . -34) T) ((-1037 . -588) 102030) ((-1036 . -537) T) ((-1036 . -1190) T) ((-1036 . -1124) T) ((-1036 . -1014) 102012) ((-1036 . -598) 101927) ((-1036 . -996) T) ((-1036 . -862) 101909) ((-1036 . -825) T) ((-1036 . -777) T) ((-1036 . -774) T) ((-1036 . -827) T) ((-1036 . -772) T) ((-1036 . -771) T) ((-1036 . -800) T) ((-1036 . -621) 101891) ((-1036 . -897) T) ((-1036 . -545) T) ((-1036 . -285) T) ((-1036 . -170) T) ((-1036 . -698) 101878) ((-1036 . -1031) 101865) ((-1036 . -111) 101850) ((-1036 . -38) 101837) ((-1036 . -446) T) ((-1036 . -302) T) ((-1036 . -229) T) ((-1036 . -141) T) ((-1036 . -1025) T) ((-1036 . -1032) T) ((-1036 . -1085) T) ((-1036 . -707) T) ((-1036 . -21) T) ((-1036 . -23) T) ((-1036 . -1074) T) ((-1036 . -597) 101819) ((-1036 . -101) T) ((-1036 . -25) T) ((-1036 . -130) T) ((-1036 . -628) 101806) ((-1036 . -145) T) ((-1035 . -1042) 101785) ((-1035 . -101) T) ((-1035 . -597) 101767) ((-1035 . -1074) T) ((-1029 . -1028) 101707) ((-1029 . -698) 101649) ((-1029 . -34) T) ((-1029 . -1185) T) ((-1029 . -304) 101587) ((-1029 . -507) 101520) ((-1029 . -483) 101504) ((-1029 . -628) 101488) ((-1029 . -130) T) ((-1029 . -25) T) ((-1029 . -101) T) ((-1029 . -597) 101450) ((-1029 . -1074) T) ((-1029 . -23) T) ((-1029 . -21) T) ((-1029 . -1031) 101434) ((-1029 . -111) 101413) ((-1029 . -1239) 101383) ((-1029 . -598) 101344) ((-1022 . -1045) 101273) ((-1022 . -952) 101202) ((-1022 . -598) 101144) ((-1022 . -483) 101109) ((-1022 . -101) T) ((-1022 . -1074) T) ((-1022 . -507) 101010) ((-1022 . -304) 100918) ((-1022 . -597) 100861) ((-1022 . -1185) T) ((-1022 . -34) T) ((-1022 . -149) 100826) ((-1022 . -1180) 100755) ((-1012 . -1056) T) ((-1012 . -597) 100721) ((-1012 . -1074) T) ((-1012 . -101) T) ((-1012 . -92) T) ((-1011 . -1162) 100696) ((-1011 . -225) 100642) ((-1011 . -106) 100588) ((-1011 . -304) 100439) ((-1011 . -507) 100283) ((-1011 . -483) 100214) ((-1011 . -149) 100160) ((-1011 . -598) NIL) ((-1011 . -231) 100106) ((-1011 . -594) 100081) ((-1011 . -283) 100056) ((-1011 . -281) 100031) ((-1011 . -101) T) ((-1011 . -1074) T) ((-1011 . -597) 100013) ((-1011 . -1185) T) ((-1011 . -34) T) ((-1011 . -588) 99988) ((-1010 . -170) T) ((-1010 . -707) T) ((-1010 . -1085) T) ((-1010 . -1032) T) ((-1010 . -1025) T) ((-1010 . -628) 99962) ((-1010 . -130) T) ((-1010 . -25) T) ((-1010 . -101) T) ((-1010 . -597) 99944) ((-1010 . -1074) T) ((-1010 . -23) T) ((-1010 . -21) T) ((-1010 . -1031) 99918) ((-1010 . -111) 99885) ((-1010 . -38) 99869) ((-1010 . -698) 99853) ((-1003 . -1045) 99822) ((-1003 . -952) 99791) ((-1003 . -598) 99752) ((-1003 . -483) 99736) ((-1003 . -101) T) ((-1003 . -1074) T) ((-1003 . -507) 99669) ((-1003 . -304) 99607) ((-1003 . -597) 99569) ((-1003 . -1185) T) ((-1003 . -34) T) ((-1003 . -149) 99553) ((-1003 . -1180) 99522) ((-1002 . -1185) T) ((-1002 . -1074) 99500) ((-1002 . -597) 99467) ((-1002 . -101) 99445) ((-1000 . -988) T) ((-1000 . -978) T) ((-1000 . -771) T) ((-1000 . -772) T) ((-1000 . -827) T) ((-1000 . -774) T) ((-1000 . -777) T) ((-1000 . -825) T) ((-1000 . -1014) 99325) ((-1000 . -407) 99287) ((-1000 . -239) T) ((-1000 . -285) T) ((-1000 . -302) T) ((-1000 . -446) T) ((-1000 . -38) 99224) ((-1000 . -698) 99161) ((-1000 . -545) T) ((-1000 . -897) T) ((-1000 . -1190) T) ((-1000 . -358) T) ((-1000 . -111) 99077) ((-1000 . -1031) 99014) ((-1000 . -170) T) ((-1000 . -145) T) ((-1000 . -628) 98951) ((-1000 . -130) T) ((-1000 . -25) T) ((-1000 . -101) T) ((-1000 . -597) 98933) ((-1000 . -1074) T) ((-1000 . -23) T) ((-1000 . -21) T) ((-1000 . -1025) T) ((-1000 . -1032) T) ((-1000 . -1085) T) ((-1000 . -707) T) ((-995 . -1056) T) ((-995 . -597) 98899) ((-995 . -1074) T) ((-995 . -101) T) ((-995 . -92) T) ((-980 . -967) 98881) ((-980 . -1124) T) ((-980 . -1014) 98841) ((-980 . -598) 98771) ((-980 . -996) T) ((-980 . -886) NIL) ((-980 . -860) 98753) ((-980 . -825) T) ((-980 . -777) T) ((-980 . -774) T) ((-980 . -827) T) ((-980 . -772) T) ((-980 . -771) T) ((-980 . -800) T) ((-980 . -862) 98735) ((-980 . -1185) T) ((-980 . -395) 98717) ((-980 . -621) 98699) ((-980 . -372) 98681) ((-980 . -281) NIL) ((-980 . -304) NIL) ((-980 . -507) NIL) ((-980 . -333) 98663) ((-980 . -239) T) ((-980 . -111) 98597) ((-980 . -1031) 98547) ((-980 . -285) T) ((-980 . -698) 98497) ((-980 . -628) 98447) ((-980 . -38) 98397) ((-980 . -302) T) ((-980 . -446) T) ((-980 . -170) T) ((-980 . -545) T) ((-980 . -897) T) ((-980 . -1190) T) ((-980 . -358) T) ((-980 . -229) T) ((-980 . -876) NIL) ((-980 . -227) 98379) ((-980 . -145) T) ((-980 . -143) NIL) ((-980 . -130) T) ((-980 . -25) T) ((-980 . -101) T) ((-980 . -597) 98361) ((-980 . -1074) T) ((-980 . -23) T) ((-980 . -21) T) ((-980 . -1025) T) ((-980 . -1032) T) ((-980 . -1085) T) ((-980 . -707) T) ((-979 . -337) 98335) ((-979 . -170) T) ((-979 . -707) T) ((-979 . -1085) T) ((-979 . -1032) T) ((-979 . -1025) T) ((-979 . -628) 98280) ((-979 . -130) T) ((-979 . -25) T) ((-979 . -101) T) ((-979 . -597) 98262) ((-979 . -1074) T) ((-979 . -23) T) ((-979 . -21) T) ((-979 . -1031) 98207) ((-979 . -111) 98136) ((-979 . -598) 98120) ((-979 . -227) 98097) ((-979 . -876) 98049) ((-979 . -229) 98021) ((-979 . -358) T) ((-979 . -1190) T) ((-979 . -897) T) ((-979 . -545) T) ((-979 . -698) 97966) ((-979 . -38) 97911) ((-979 . -446) T) ((-979 . -302) T) ((-979 . -285) T) ((-979 . -239) T) ((-979 . -363) NIL) ((-979 . -345) NIL) ((-979 . -1124) NIL) ((-979 . -143) 97883) ((-979 . -397) NIL) ((-979 . -405) 97855) ((-979 . -145) 97827) ((-979 . -365) 97799) ((-979 . -372) 97776) ((-979 . -621) 97715) ((-979 . -407) 97692) ((-979 . -1014) 97580) ((-979 . -705) 97552) ((-976 . -971) 97536) ((-976 . -483) 97520) ((-976 . -101) 97498) ((-976 . -1074) 97476) ((-976 . -507) 97409) ((-976 . -304) 97347) ((-976 . -597) 97279) ((-976 . -1185) T) ((-976 . -34) T) ((-976 . -106) 97263) ((-972 . -974) 97247) ((-972 . -827) 97226) ((-972 . -1014) 97122) ((-972 . -407) 97106) ((-972 . -621) 97054) ((-972 . -372) 97038) ((-972 . -281) 96996) ((-972 . -304) 96961) ((-972 . -507) 96873) ((-972 . -333) 96857) ((-972 . -38) 96805) ((-972 . -111) 96687) ((-972 . -1031) 96583) ((-972 . -628) 96521) ((-972 . -698) 96469) ((-972 . -285) 96420) ((-972 . -239) 96399) ((-972 . -229) 96378) ((-972 . -876) 96337) ((-972 . -227) 96321) ((-972 . -598) 96282) ((-972 . -145) 96261) ((-972 . -143) 96240) ((-972 . -130) T) ((-972 . -25) T) ((-972 . -101) T) ((-972 . -597) 96222) ((-972 . -1074) T) ((-972 . -23) T) ((-972 . -21) T) ((-972 . -1025) T) ((-972 . -1032) T) ((-972 . -1085) T) ((-972 . -707) T) ((-970 . -1056) T) ((-970 . -597) 96188) ((-970 . -1074) T) ((-970 . -101) T) ((-970 . -92) T) ((-969 . -21) T) ((-969 . -23) T) ((-969 . -1074) T) ((-969 . -597) 96170) ((-969 . -101) T) ((-969 . -25) T) ((-969 . -130) T) ((-965 . -597) 96152) ((-962 . -1074) T) ((-962 . -597) 96134) ((-962 . -101) T) ((-947 . -777) T) ((-947 . -774) T) ((-947 . -827) T) ((-947 . -772) T) ((-947 . -23) T) ((-947 . -1074) T) ((-947 . -597) 96116) ((-947 . -101) T) ((-947 . -25) T) ((-947 . -130) T) ((-947 . -598) 96091) ((-946 . -1056) T) ((-946 . -597) 96057) ((-946 . -1074) T) ((-946 . -101) T) ((-946 . -92) T) ((-942 . -943) T) ((-942 . -101) T) ((-942 . -597) 96039) ((-942 . -1074) T) ((-941 . -597) 96021) ((-940 . -1074) T) ((-940 . -597) 96003) ((-940 . -101) T) ((-940 . -363) 95956) ((-940 . -707) 95855) ((-940 . -1085) 95754) ((-940 . -23) 95565) ((-940 . -25) 95376) ((-940 . -130) 95231) ((-940 . -467) 95184) ((-940 . -21) 95139) ((-940 . -773) 95092) ((-940 . -772) 95045) ((-940 . -827) 94944) ((-940 . -774) 94897) ((-940 . -777) 94850) ((-934 . -19) 94834) ((-934 . -631) 94818) ((-934 . -283) 94795) ((-934 . -281) 94772) ((-934 . -588) 94749) ((-934 . -598) 94710) ((-934 . -483) 94694) ((-934 . -101) 94644) ((-934 . -1074) 94594) ((-934 . -507) 94527) ((-934 . -304) 94465) ((-934 . -597) 94377) ((-934 . -1185) T) ((-934 . -34) T) ((-934 . -149) 94361) ((-934 . -827) 94340) ((-934 . -367) 94324) ((-932 . -321) 94303) ((-932 . -1014) 94199) ((-932 . -407) 94183) ((-932 . -38) 94080) ((-932 . -628) 94005) ((-932 . -707) T) ((-932 . -1085) T) ((-932 . -1032) T) ((-932 . -1025) T) ((-932 . -111) 93874) ((-932 . -1031) 93757) ((-932 . -21) T) ((-932 . -23) T) ((-932 . -1074) T) ((-932 . -597) 93739) ((-932 . -101) T) ((-932 . -25) T) ((-932 . -130) T) ((-932 . -698) 93636) ((-932 . -143) 93615) ((-932 . -145) 93594) ((-932 . -170) 93545) ((-932 . -545) 93524) ((-932 . -285) 93503) ((-932 . -47) 93482) ((-930 . -1074) T) ((-930 . -597) 93448) ((-930 . -101) T) ((-922 . -926) 93409) ((-922 . -1014) 93289) ((-922 . -1190) 93268) ((-922 . -886) 93247) ((-922 . -862) 93172) ((-922 . -876) 93153) ((-922 . -827) 93132) ((-922 . -507) 93079) ((-922 . -446) 93030) ((-922 . -621) 92978) ((-922 . -372) 92962) ((-922 . -47) 92931) ((-922 . -38) 92780) ((-922 . -698) 92629) ((-922 . -285) 92560) ((-922 . -545) 92491) ((-922 . -111) 92320) ((-922 . -1031) 92163) ((-922 . -170) 92074) ((-922 . -145) 92053) ((-922 . -143) 92032) ((-922 . -628) 91957) ((-922 . -130) T) ((-922 . -25) T) ((-922 . -101) T) ((-922 . -597) 91939) ((-922 . -1074) T) ((-922 . -23) T) ((-922 . -21) T) ((-922 . -1025) T) ((-922 . -1032) T) ((-922 . -1085) T) ((-922 . -707) T) ((-922 . -407) 91923) ((-922 . -321) 91892) ((-922 . -304) 91879) ((-922 . -598) 91740) ((-919 . -956) 91724) ((-919 . -19) 91708) ((-919 . -631) 91692) ((-919 . -283) 91669) ((-919 . -281) 91646) ((-919 . -588) 91623) ((-919 . -598) 91584) ((-919 . -483) 91568) ((-919 . -101) 91518) ((-919 . -1074) 91468) ((-919 . -507) 91401) ((-919 . -304) 91339) ((-919 . -597) 91251) ((-919 . -1185) T) ((-919 . -34) T) ((-919 . -149) 91235) ((-919 . -827) 91214) ((-919 . -367) 91198) ((-919 . -1230) 91182) ((-903 . -950) T) ((-903 . -597) 91164) ((-901 . -931) T) ((-901 . -597) 91146) ((-895 . -774) T) ((-895 . -827) T) ((-895 . -1074) T) ((-895 . -597) 91128) ((-895 . -101) T) ((-895 . -25) T) ((-895 . -707) T) ((-895 . -1085) T) ((-890 . -358) T) ((-890 . -1190) T) ((-890 . -897) T) ((-890 . -545) T) ((-890 . -170) T) ((-890 . -698) 91080) ((-890 . -38) 91032) ((-890 . -446) T) ((-890 . -302) T) ((-890 . -628) 90984) ((-890 . -707) T) ((-890 . -1085) T) ((-890 . -1032) T) ((-890 . -1025) T) ((-890 . -111) 90922) ((-890 . -1031) 90874) ((-890 . -21) T) ((-890 . -23) T) ((-890 . -1074) T) ((-890 . -597) 90856) ((-890 . -101) T) ((-890 . -25) T) ((-890 . -130) T) ((-890 . -285) T) ((-890 . -239) T) ((-882 . -345) T) ((-882 . -1124) T) ((-882 . -363) T) ((-882 . -143) T) ((-882 . -358) T) ((-882 . -1190) T) ((-882 . -897) T) ((-882 . -545) T) ((-882 . -170) T) ((-882 . -698) 90821) ((-882 . -38) 90786) ((-882 . -446) T) ((-882 . -302) T) ((-882 . -111) 90742) ((-882 . -1031) 90707) ((-882 . -628) 90672) ((-882 . -285) T) ((-882 . -239) T) ((-882 . -397) T) ((-882 . -1025) T) ((-882 . -1032) T) ((-882 . -1085) T) ((-882 . -707) T) ((-882 . -21) T) ((-882 . -23) T) ((-882 . -1074) T) ((-882 . -597) 90654) ((-882 . -101) T) ((-882 . -25) T) ((-882 . -130) T) ((-882 . -229) T) ((-882 . -324) 90641) ((-882 . -145) 90623) ((-882 . -1014) 90610) ((-882 . -1239) 90597) ((-882 . -1250) 90584) ((-882 . -598) 90566) ((-881 . -1074) T) ((-881 . -597) 90548) ((-881 . -101) T) ((-878 . -880) 90532) ((-878 . -827) 90483) ((-878 . -707) T) ((-878 . -1074) T) ((-878 . -597) 90465) ((-878 . -101) T) ((-878 . -1085) T) ((-878 . -467) T) ((-877 . -119) 90449) ((-877 . -483) 90433) ((-877 . -101) 90411) ((-877 . -1074) 90389) ((-877 . -507) 90322) ((-877 . -304) 90260) ((-877 . -597) 90192) ((-877 . -1185) T) ((-877 . -34) T) ((-877 . -986) 90176) ((-874 . -1074) T) ((-874 . -597) 90158) ((-874 . -101) T) ((-869 . -827) T) ((-869 . -101) T) ((-869 . -597) 90140) ((-869 . -1074) T) ((-869 . -1014) 90117) ((-866 . -1074) T) ((-866 . -597) 90099) ((-866 . -101) T) ((-866 . -1014) 90067) ((-864 . -1074) T) ((-864 . -597) 90049) ((-864 . -101) T) ((-861 . -1074) T) ((-861 . -597) 90031) ((-861 . -101) T) ((-850 . -1074) T) ((-850 . -597) 90013) ((-850 . -101) T) ((-849 . -1185) T) ((-849 . -597) 89885) ((-849 . -1074) 89836) ((-849 . -101) 89787) ((-848 . -967) 89771) ((-848 . -1124) 89749) ((-848 . -1014) 89615) ((-848 . -598) 89423) ((-848 . -996) 89402) ((-848 . -886) 89381) ((-848 . -860) 89365) ((-848 . -825) 89344) ((-848 . -777) 89323) ((-848 . -774) 89302) ((-848 . -827) 89253) ((-848 . -772) 89232) ((-848 . -771) 89211) ((-848 . -800) 89190) ((-848 . -862) 89115) ((-848 . -1185) T) ((-848 . -395) 89099) ((-848 . -621) 89047) ((-848 . -372) 89031) ((-848 . -281) 88989) ((-848 . -304) 88954) ((-848 . -507) 88866) ((-848 . -333) 88850) ((-848 . -239) T) ((-848 . -111) 88788) ((-848 . -1031) 88740) ((-848 . -285) T) ((-848 . -698) 88692) ((-848 . -628) 88644) ((-848 . -38) 88596) ((-848 . -302) T) ((-848 . -446) T) ((-848 . -170) T) ((-848 . -545) T) ((-848 . -897) T) ((-848 . -1190) T) ((-848 . -358) T) ((-848 . -229) 88575) ((-848 . -876) 88534) ((-848 . -227) 88518) ((-848 . -145) 88497) ((-848 . -143) 88476) ((-848 . -130) T) ((-848 . -25) T) ((-848 . -101) T) ((-848 . -597) 88458) ((-848 . -1074) T) ((-848 . -23) T) ((-848 . -21) T) ((-848 . -1025) T) ((-848 . -1032) T) ((-848 . -1085) T) ((-848 . -707) T) ((-847 . -967) 88435) ((-847 . -1124) NIL) ((-847 . -1014) 88412) ((-847 . -598) NIL) ((-847 . -996) NIL) ((-847 . -886) NIL) ((-847 . -860) 88389) ((-847 . -825) NIL) ((-847 . -777) NIL) ((-847 . -774) NIL) ((-847 . -827) NIL) ((-847 . -772) NIL) ((-847 . -771) NIL) ((-847 . -800) NIL) ((-847 . -862) NIL) ((-847 . -1185) T) ((-847 . -395) 88366) ((-847 . -621) 88343) ((-847 . -372) 88320) ((-847 . -281) 88271) ((-847 . -304) 88228) ((-847 . -507) 88136) ((-847 . -333) 88113) ((-847 . -239) T) ((-847 . -111) 88042) ((-847 . -1031) 87987) ((-847 . -285) T) ((-847 . -698) 87932) ((-847 . -628) 87877) ((-847 . -38) 87822) ((-847 . -302) T) ((-847 . -446) T) ((-847 . -170) T) ((-847 . -545) T) ((-847 . -897) T) ((-847 . -1190) T) ((-847 . -358) T) ((-847 . -229) NIL) ((-847 . -876) NIL) ((-847 . -227) 87799) ((-847 . -145) T) ((-847 . -143) NIL) ((-847 . -130) T) ((-847 . -25) T) ((-847 . -101) T) ((-847 . -597) 87781) ((-847 . -1074) T) ((-847 . -23) T) ((-847 . -21) T) ((-847 . -1025) T) ((-847 . -1032) T) ((-847 . -1085) T) ((-847 . -707) T) ((-845 . -846) 87765) ((-845 . -897) T) ((-845 . -545) T) ((-845 . -285) T) ((-845 . -170) T) ((-845 . -698) 87752) ((-845 . -1031) 87739) ((-845 . -111) 87724) ((-845 . -38) 87711) ((-845 . -446) T) ((-845 . -302) T) ((-845 . -1025) T) ((-845 . -1032) T) ((-845 . -1085) T) ((-845 . -707) T) ((-845 . -21) T) ((-845 . -23) T) ((-845 . -1074) T) ((-845 . -597) 87693) ((-845 . -101) T) ((-845 . -25) T) ((-845 . -130) T) ((-845 . -628) 87680) ((-845 . -145) T) ((-842 . -1025) T) ((-842 . -1032) T) ((-842 . -1085) T) ((-842 . -707) T) ((-842 . -21) T) ((-842 . -23) T) ((-842 . -1074) T) ((-842 . -597) 87662) ((-842 . -101) T) ((-842 . -25) T) ((-842 . -130) T) ((-842 . -628) 87622) ((-842 . -38) 87592) ((-842 . -111) 87557) ((-842 . -1031) 87527) ((-842 . -698) 87497) ((-841 . -821) T) ((-841 . -827) T) ((-841 . -1074) T) ((-841 . -597) 87479) ((-841 . -101) T) ((-841 . -363) T) ((-841 . -598) 87401) ((-840 . -1074) T) ((-840 . -597) 87383) ((-840 . -101) T) ((-839 . -838) T) ((-839 . -171) T) ((-839 . -597) 87365) ((-835 . -827) T) ((-835 . -101) T) ((-835 . -597) 87347) ((-835 . -1074) T) ((-832 . -829) 87331) ((-832 . -1014) 87227) ((-832 . -407) 87211) ((-832 . -698) 87181) ((-832 . -628) 87155) ((-832 . -130) T) ((-832 . -25) T) ((-832 . -101) T) ((-832 . -597) 87137) ((-832 . -1074) T) ((-832 . -23) T) ((-832 . -21) T) ((-832 . -1031) 87121) ((-832 . -111) 87100) ((-832 . -1025) T) ((-832 . -1032) T) ((-832 . -1085) T) ((-832 . -707) T) ((-832 . -38) 87070) ((-831 . -829) 87054) ((-831 . -1014) 86950) ((-831 . -407) 86934) ((-831 . -698) 86904) ((-831 . -628) 86878) ((-831 . -130) T) ((-831 . -25) T) ((-831 . -101) T) ((-831 . -597) 86860) ((-831 . -1074) T) ((-831 . -23) T) ((-831 . -21) T) ((-831 . -1031) 86844) ((-831 . -111) 86823) ((-831 . -1025) T) ((-831 . -1032) T) ((-831 . -1085) T) ((-831 . -707) T) ((-831 . -38) 86793) ((-819 . -1074) T) ((-819 . -597) 86775) ((-819 . -101) T) ((-819 . -407) 86759) ((-819 . -1014) 86655) ((-819 . -21) 86607) ((-819 . -23) 86559) ((-819 . -25) 86511) ((-819 . -130) 86463) ((-819 . -825) 86442) ((-819 . -628) 86415) ((-819 . -1032) 86394) ((-819 . -1025) 86373) ((-819 . -777) 86352) ((-819 . -774) 86331) ((-819 . -827) 86310) ((-819 . -772) 86289) ((-819 . -771) 86268) ((-819 . -1085) 86247) ((-819 . -707) 86226) ((-818 . -1074) T) ((-818 . -597) 86208) ((-818 . -101) T) ((-814 . -1025) T) ((-814 . -1032) T) ((-814 . -1085) T) ((-814 . -707) T) ((-814 . -21) T) ((-814 . -23) T) ((-814 . -1074) T) ((-814 . -597) 86190) ((-814 . -101) T) ((-814 . -25) T) ((-814 . -130) T) ((-814 . -628) 86150) ((-814 . -1014) 86119) ((-814 . -281) 86098) ((-814 . -145) 86077) ((-814 . -143) 86056) ((-814 . -38) 86026) ((-814 . -111) 85991) ((-814 . -1031) 85961) ((-814 . -698) 85931) ((-812 . -1074) T) ((-812 . -597) 85913) ((-812 . -101) T) ((-812 . -407) 85897) ((-812 . -1014) 85793) ((-812 . -21) 85745) ((-812 . -23) 85697) ((-812 . -25) 85649) ((-812 . -130) 85601) ((-812 . -825) 85580) ((-812 . -628) 85553) ((-812 . -1032) 85532) ((-812 . -1025) 85511) ((-812 . -777) 85490) ((-812 . -774) 85469) ((-812 . -827) 85448) ((-812 . -772) 85427) ((-812 . -771) 85406) ((-812 . -1085) 85385) ((-812 . -707) 85364) ((-808 . -689) 85348) ((-808 . -698) 85318) ((-808 . -628) 85292) ((-808 . -130) T) ((-808 . -25) T) ((-808 . -101) T) ((-808 . -597) 85274) ((-808 . -1074) T) ((-808 . -23) T) ((-808 . -21) T) ((-808 . -1031) 85258) ((-808 . -111) 85237) ((-808 . -1025) T) ((-808 . -1032) T) ((-808 . -1085) T) ((-808 . -707) T) ((-808 . -38) 85207) ((-808 . -229) 85186) ((-806 . -1074) T) ((-806 . -597) 85168) ((-806 . -101) T) ((-805 . -1074) T) ((-805 . -597) 85150) ((-805 . -101) T) ((-804 . -1074) T) ((-804 . -597) 85132) ((-804 . -101) T) ((-799 . -823) T) ((-799 . -827) T) ((-799 . -834) T) ((-799 . -1085) T) ((-799 . -101) T) ((-799 . -597) 85114) ((-799 . -1074) T) ((-799 . -707) T) ((-799 . -1014) 85098) ((-798 . -261) 85082) ((-798 . -1014) 85066) ((-798 . -1074) T) ((-798 . -597) 85048) ((-798 . -101) T) ((-798 . -827) T) ((-797 . -111) 84990) ((-797 . -1031) 84941) ((-797 . -21) T) ((-797 . -23) T) ((-797 . -1074) T) ((-797 . -597) 84923) ((-797 . -101) T) ((-797 . -25) T) ((-797 . -130) T) ((-797 . -628) 84874) ((-797 . -229) T) ((-797 . -707) T) ((-797 . -1085) T) ((-797 . -1032) T) ((-797 . -1025) T) ((-797 . -358) 84853) ((-797 . -1190) 84832) ((-797 . -897) 84811) ((-797 . -545) 84790) ((-797 . -170) 84769) ((-797 . -698) 84711) ((-797 . -38) 84653) ((-797 . -446) 84632) ((-797 . -302) 84611) ((-797 . -285) 84590) ((-797 . -239) 84569) ((-796 . -248) 84508) ((-796 . -1014) 84336) ((-796 . -598) NIL) ((-796 . -321) 84298) ((-796 . -407) 84282) ((-796 . -38) 84131) ((-796 . -111) 83960) ((-796 . -1031) 83803) ((-796 . -628) 83728) ((-796 . -698) 83577) ((-796 . -143) 83556) ((-796 . -145) 83535) ((-796 . -170) 83446) ((-796 . -545) 83377) ((-796 . -285) 83308) ((-796 . -47) 83270) ((-796 . -372) 83254) ((-796 . -621) 83202) ((-796 . -446) 83153) ((-796 . -507) 83021) ((-796 . -827) 83000) ((-796 . -876) 82936) ((-796 . -862) NIL) ((-796 . -886) 82915) ((-796 . -1190) 82894) ((-796 . -926) 82841) ((-796 . -304) 82828) ((-796 . -229) 82807) ((-796 . -130) T) ((-796 . -25) T) ((-796 . -101) T) ((-796 . -597) 82789) ((-796 . -1074) T) ((-796 . -23) T) ((-796 . -21) T) ((-796 . -707) T) ((-796 . -1085) T) ((-796 . -1032) T) ((-796 . -1025) T) ((-796 . -227) 82773) ((-795 . -234) 82752) ((-795 . -1239) 82722) ((-795 . -771) 82701) ((-795 . -825) 82680) ((-795 . -777) 82631) ((-795 . -774) 82582) ((-795 . -827) 82533) ((-795 . -772) 82484) ((-795 . -773) 82463) ((-795 . -283) 82440) ((-795 . -281) 82417) ((-795 . -483) 82401) ((-795 . -507) 82334) ((-795 . -304) 82272) ((-795 . -1185) T) ((-795 . -34) T) ((-795 . -588) 82249) ((-795 . -1014) 82076) ((-795 . -407) 82045) ((-795 . -621) 81951) ((-795 . -372) 81920) ((-795 . -363) 81899) ((-795 . -229) 81851) ((-795 . -876) 81783) ((-795 . -227) 81752) ((-795 . -111) 81642) ((-795 . -1031) 81539) ((-795 . -170) 81518) ((-795 . -597) 81249) ((-795 . -698) 81191) ((-795 . -628) 81039) ((-795 . -130) 80909) ((-795 . -23) 80779) ((-795 . -21) 80689) ((-795 . -1025) 80619) ((-795 . -1032) 80549) ((-795 . -1085) 80459) ((-795 . -707) 80369) ((-795 . -38) 80339) ((-795 . -1074) 80129) ((-795 . -101) 79919) ((-795 . -25) 79770) ((-788 . -1074) T) ((-788 . -597) 79752) ((-788 . -101) T) ((-778 . -776) 79736) ((-778 . -827) 79715) ((-778 . -1014) 79498) ((-778 . -407) 79462) ((-778 . -281) 79420) ((-778 . -304) 79385) ((-778 . -507) 79297) ((-778 . -333) 79281) ((-778 . -363) 79260) ((-778 . -598) 79221) ((-778 . -145) 79200) ((-778 . -143) 79179) ((-778 . -698) 79163) ((-778 . -628) 79137) ((-778 . -130) T) ((-778 . -25) T) ((-778 . -101) T) ((-778 . -597) 79119) ((-778 . -1074) T) ((-778 . -23) T) ((-778 . -21) T) ((-778 . -1031) 79103) ((-778 . -111) 79082) ((-778 . -1025) T) ((-778 . -1032) T) ((-778 . -1085) T) ((-778 . -707) T) ((-778 . -38) 79066) ((-761 . -1207) 79050) ((-761 . -1124) 79028) ((-761 . -598) NIL) ((-761 . -304) 79015) ((-761 . -507) 78962) ((-761 . -321) 78939) ((-761 . -1014) 78798) ((-761 . -407) 78782) ((-761 . -38) 78611) ((-761 . -111) 78420) ((-761 . -1031) 78243) ((-761 . -628) 78168) ((-761 . -698) 77997) ((-761 . -143) 77976) ((-761 . -145) 77955) ((-761 . -47) 77932) ((-761 . -372) 77916) ((-761 . -621) 77864) ((-761 . -827) 77843) ((-761 . -876) 77786) ((-761 . -862) NIL) ((-761 . -886) 77765) ((-761 . -1190) 77744) ((-761 . -926) 77713) ((-761 . -897) 77692) ((-761 . -545) 77603) ((-761 . -285) 77514) ((-761 . -170) 77405) ((-761 . -446) 77336) ((-761 . -302) 77315) ((-761 . -281) 77242) ((-761 . -229) T) ((-761 . -130) T) ((-761 . -25) T) ((-761 . -101) T) ((-761 . -597) 77203) ((-761 . -1074) T) ((-761 . -23) T) ((-761 . -21) T) ((-761 . -707) T) ((-761 . -1085) T) ((-761 . -1032) T) ((-761 . -1025) T) ((-761 . -227) 77187) ((-760 . -1039) 77154) ((-760 . -598) 76788) ((-760 . -304) 76775) ((-760 . -507) 76727) ((-760 . -321) 76699) ((-760 . -1014) 76556) ((-760 . -407) 76540) ((-760 . -38) 76389) ((-760 . -628) 76314) ((-760 . -707) T) ((-760 . -1085) T) ((-760 . -1032) T) ((-760 . -1025) T) ((-760 . -111) 76143) ((-760 . -1031) 75986) ((-760 . -21) T) ((-760 . -23) T) ((-760 . -1074) T) ((-760 . -597) 75900) ((-760 . -101) T) ((-760 . -25) T) ((-760 . -130) T) ((-760 . -698) 75749) ((-760 . -143) 75728) ((-760 . -145) 75707) ((-760 . -170) 75618) ((-760 . -545) 75549) ((-760 . -285) 75480) ((-760 . -47) 75452) ((-760 . -372) 75436) ((-760 . -621) 75384) ((-760 . -446) 75335) ((-760 . -827) 75314) ((-760 . -876) 75298) ((-760 . -862) 75157) ((-760 . -886) 75136) ((-760 . -1190) 75115) ((-760 . -926) 75082) ((-753 . -1074) T) ((-753 . -597) 75064) ((-753 . -101) T) ((-751 . -773) T) ((-751 . -130) T) ((-751 . -25) T) ((-751 . -101) T) ((-751 . -597) 75046) ((-751 . -1074) T) ((-751 . -23) T) ((-751 . -772) T) ((-751 . -827) T) ((-751 . -774) T) ((-751 . -777) T) ((-751 . -707) T) ((-751 . -1085) T) ((-749 . -1074) T) ((-749 . -597) 75028) ((-749 . -101) T) ((-717 . -718) 75012) ((-717 . -1072) 74996) ((-717 . -231) 74980) ((-717 . -598) 74941) ((-717 . -149) 74925) ((-717 . -483) 74909) ((-717 . -101) T) ((-717 . -1074) T) ((-717 . -507) 74842) ((-717 . -304) 74780) ((-717 . -597) 74762) ((-717 . -1185) T) ((-717 . -34) T) ((-717 . -106) 74746) ((-717 . -675) 74730) ((-716 . -1025) T) ((-716 . -1032) T) ((-716 . -1085) T) ((-716 . -707) T) ((-716 . -21) T) ((-716 . -23) T) ((-716 . -1074) T) ((-716 . -597) 74712) ((-716 . -101) T) ((-716 . -25) T) ((-716 . -130) T) ((-716 . -628) 74672) ((-716 . -1014) 74643) ((-716 . -145) 74622) ((-716 . -143) 74601) ((-716 . -38) 74571) ((-716 . -111) 74536) ((-716 . -1031) 74506) ((-716 . -698) 74476) ((-716 . -363) 74429) ((-712 . -926) 74382) ((-712 . -1014) 74258) ((-712 . -1190) 74237) ((-712 . -886) 74216) ((-712 . -862) NIL) ((-712 . -876) 74193) ((-712 . -827) 74172) ((-712 . -507) 74115) ((-712 . -446) 74066) ((-712 . -621) 74014) ((-712 . -372) 73998) ((-712 . -47) 73963) ((-712 . -38) 73812) ((-712 . -698) 73661) ((-712 . -285) 73592) ((-712 . -545) 73523) ((-712 . -111) 73352) ((-712 . -1031) 73195) ((-712 . -170) 73106) ((-712 . -145) 73085) ((-712 . -143) 73064) ((-712 . -628) 72989) ((-712 . -130) T) ((-712 . -25) T) ((-712 . -101) T) ((-712 . -597) 72971) ((-712 . -1074) T) ((-712 . -23) T) ((-712 . -21) T) ((-712 . -1025) T) ((-712 . -1032) T) ((-712 . -1085) T) ((-712 . -707) T) ((-712 . -407) 72955) ((-712 . -321) 72920) ((-712 . -304) 72907) ((-712 . -598) 72768) ((-699 . -467) T) ((-699 . -1085) T) ((-699 . -101) T) ((-699 . -597) 72750) ((-699 . -1074) T) ((-699 . -707) T) ((-696 . -1025) T) ((-696 . -1032) T) ((-696 . -1085) T) ((-696 . -707) T) ((-696 . -21) T) ((-696 . -23) T) ((-696 . -1074) T) ((-696 . -597) 72732) ((-696 . -101) T) ((-696 . -25) T) ((-696 . -130) T) ((-696 . -628) 72719) ((-695 . -1025) T) ((-695 . -1032) T) ((-695 . -1085) T) ((-695 . -707) T) ((-695 . -21) T) ((-695 . -23) T) ((-695 . -1074) T) ((-695 . -597) 72701) ((-695 . -101) T) ((-695 . -25) T) ((-695 . -130) T) ((-695 . -628) 72661) ((-695 . -1014) 72630) ((-695 . -281) 72609) ((-695 . -145) 72588) ((-695 . -143) 72567) ((-695 . -38) 72537) ((-695 . -111) 72502) ((-695 . -1031) 72472) ((-695 . -698) 72442) ((-694 . -827) T) ((-694 . -101) T) ((-694 . -597) 72424) ((-694 . -1074) T) ((-693 . -1207) 72408) ((-693 . -1124) 72386) ((-693 . -598) NIL) ((-693 . -304) 72373) ((-693 . -507) 72320) ((-693 . -321) 72297) ((-693 . -1014) 72177) ((-693 . -407) 72161) ((-693 . -38) 71990) ((-693 . -111) 71799) ((-693 . -1031) 71622) ((-693 . -628) 71547) ((-693 . -698) 71376) ((-693 . -143) 71355) ((-693 . -145) 71334) ((-693 . -47) 71311) ((-693 . -372) 71295) ((-693 . -621) 71243) ((-693 . -827) 71222) ((-693 . -876) 71165) ((-693 . -862) NIL) ((-693 . -886) 71144) ((-693 . -1190) 71123) ((-693 . -926) 71092) ((-693 . -897) 71071) ((-693 . -545) 70982) ((-693 . -285) 70893) ((-693 . -170) 70784) ((-693 . -446) 70715) ((-693 . -302) 70694) ((-693 . -281) 70621) ((-693 . -229) T) ((-693 . -130) T) ((-693 . -25) T) ((-693 . -101) T) ((-693 . -597) 70603) ((-693 . -1074) T) ((-693 . -23) T) ((-693 . -21) T) ((-693 . -707) T) ((-693 . -1085) T) ((-693 . -1032) T) ((-693 . -1025) T) ((-693 . -227) 70587) ((-693 . -363) 70566) ((-692 . -358) T) ((-692 . -1190) T) ((-692 . -897) T) ((-692 . -545) T) ((-692 . -170) T) ((-692 . -698) 70531) ((-692 . -38) 70496) ((-692 . -446) T) ((-692 . -302) T) ((-692 . -628) 70461) ((-692 . -707) T) ((-692 . -1085) T) ((-692 . -1032) T) ((-692 . -1025) T) ((-692 . -111) 70417) ((-692 . -1031) 70382) ((-692 . -21) T) ((-692 . -23) T) ((-692 . -1074) T) ((-692 . -597) 70364) ((-692 . -101) T) ((-692 . -25) T) ((-692 . -130) T) ((-692 . -285) T) ((-692 . -239) T) ((-691 . -1074) T) ((-691 . -597) 70346) ((-691 . -101) T) ((-683 . -131) T) ((-683 . -1074) T) ((-683 . -597) 70315) ((-683 . -101) T) ((-683 . -827) T) ((-681 . -382) T) ((-681 . -1014) 70297) ((-681 . -827) T) ((-681 . -38) 70284) ((-681 . -707) T) ((-681 . -1085) T) ((-681 . -1032) T) ((-681 . -1025) T) ((-681 . -111) 70269) ((-681 . -1031) 70256) ((-681 . -21) T) ((-681 . -23) T) ((-681 . -1074) T) ((-681 . -597) 70238) ((-681 . -101) T) ((-681 . -25) T) ((-681 . -130) T) ((-681 . -628) 70225) ((-681 . -698) 70212) ((-681 . -170) T) ((-681 . -285) T) ((-681 . -545) T) ((-681 . -537) T) ((-681 . -1190) T) ((-681 . -1124) T) ((-681 . -598) 70127) ((-681 . -996) T) ((-681 . -862) 70109) ((-681 . -825) T) ((-681 . -777) T) ((-681 . -774) T) ((-681 . -772) T) ((-681 . -771) T) ((-681 . -800) T) ((-681 . -621) 70091) ((-681 . -897) T) ((-681 . -446) T) ((-681 . -302) T) ((-681 . -229) T) ((-681 . -141) T) ((-681 . -145) T) ((-679 . -399) T) ((-679 . -145) T) ((-679 . -628) 70056) ((-679 . -130) T) ((-679 . -25) T) ((-679 . -101) T) ((-679 . -597) 70038) ((-679 . -1074) T) ((-679 . -23) T) ((-679 . -21) T) ((-679 . -707) T) ((-679 . -1085) T) ((-679 . -1032) T) ((-679 . -1025) T) ((-679 . -598) 69983) ((-679 . -358) T) ((-679 . -1190) T) ((-679 . -897) T) ((-679 . -545) T) ((-679 . -170) T) ((-679 . -698) 69948) ((-679 . -38) 69913) ((-679 . -446) T) ((-679 . -302) T) ((-679 . -111) 69869) ((-679 . -1031) 69834) ((-679 . -285) T) ((-679 . -239) T) ((-679 . -825) T) ((-679 . -777) T) ((-679 . -774) T) ((-679 . -827) T) ((-679 . -772) T) ((-679 . -771) T) ((-679 . -862) 69816) ((-679 . -978) T) ((-679 . -996) T) ((-679 . -1014) 69761) ((-679 . -1034) T) ((-679 . -382) T) ((-674 . -382) T) ((-674 . -1014) 69706) ((-674 . -827) T) ((-674 . -38) 69656) ((-674 . -707) T) ((-674 . -1085) T) ((-674 . -1032) T) ((-674 . -1025) T) ((-674 . -111) 69590) ((-674 . -1031) 69540) ((-674 . -21) T) ((-674 . -23) T) ((-674 . -1074) T) ((-674 . -597) 69522) ((-674 . -101) T) ((-674 . -25) T) ((-674 . -130) T) ((-674 . -628) 69472) ((-674 . -698) 69422) ((-674 . -170) T) ((-674 . -285) T) ((-674 . -545) T) ((-674 . -164) 69404) ((-674 . -35) NIL) ((-674 . -94) NIL) ((-674 . -279) NIL) ((-674 . -486) NIL) ((-674 . -1174) NIL) ((-674 . -1171) NIL) ((-674 . -978) NIL) ((-674 . -886) NIL) ((-674 . -598) 69312) ((-674 . -860) 69294) ((-674 . -363) NIL) ((-674 . -345) NIL) ((-674 . -1124) NIL) ((-674 . -397) NIL) ((-674 . -405) 69261) ((-674 . -365) 69228) ((-674 . -705) 69195) ((-674 . -407) 69177) ((-674 . -862) 69159) ((-674 . -1185) T) ((-674 . -395) 69141) ((-674 . -621) 69123) ((-674 . -372) 69105) ((-674 . -281) NIL) ((-674 . -304) NIL) ((-674 . -507) NIL) ((-674 . -333) 69087) ((-674 . -239) T) ((-674 . -1190) T) ((-674 . -358) T) ((-674 . -897) T) ((-674 . -446) T) ((-674 . -302) T) ((-674 . -229) NIL) ((-674 . -876) NIL) ((-674 . -227) 69069) ((-674 . -145) T) ((-674 . -143) NIL) ((-671 . -1227) T) ((-671 . -597) 69051) ((-669 . -666) 69009) ((-669 . -483) 68993) ((-669 . -101) 68971) ((-669 . -1074) 68949) ((-669 . -507) 68882) ((-669 . -304) 68820) ((-669 . -597) 68752) ((-669 . -1185) T) ((-669 . -34) T) ((-669 . -56) 68710) ((-669 . -598) 68671) ((-661 . -1056) T) ((-661 . -597) 68621) ((-661 . -1074) T) ((-661 . -101) T) ((-661 . -92) T) ((-657 . -827) T) ((-657 . -101) T) ((-657 . -597) 68603) ((-657 . -1074) T) ((-657 . -1014) 68587) ((-656 . -1056) T) ((-656 . -597) 68553) ((-656 . -1074) T) ((-656 . -101) T) ((-656 . -92) T) ((-655 . -483) 68537) ((-655 . -101) 68515) ((-655 . -1074) 68493) ((-655 . -507) 68426) ((-655 . -304) 68364) ((-655 . -597) 68296) ((-655 . -1185) T) ((-655 . -34) T) ((-652 . -827) T) ((-652 . -101) T) ((-652 . -597) 68278) ((-652 . -1074) T) ((-652 . -1014) 68262) ((-651 . -1056) T) ((-651 . -597) 68228) ((-651 . -1074) T) ((-651 . -101) T) ((-651 . -92) T) ((-650 . -1096) 68173) ((-650 . -483) 68157) ((-650 . -507) 68090) ((-650 . -304) 68028) ((-650 . -1185) T) ((-650 . -34) T) ((-650 . -1028) 67968) ((-650 . -1014) 67864) ((-650 . -407) 67848) ((-650 . -621) 67796) ((-650 . -372) 67780) ((-650 . -229) 67759) ((-650 . -876) 67718) ((-650 . -227) 67702) ((-650 . -698) 67686) ((-650 . -628) 67660) ((-650 . -130) T) ((-650 . -25) T) ((-650 . -101) T) ((-650 . -597) 67622) ((-650 . -1074) T) ((-650 . -23) T) ((-650 . -21) T) ((-650 . -1031) 67606) ((-650 . -111) 67585) ((-650 . -1025) T) ((-650 . -1032) T) ((-650 . -1085) T) ((-650 . -707) T) ((-650 . -38) 67545) ((-650 . -413) 67529) ((-650 . -725) 67513) ((-650 . -701) T) ((-650 . -742) T) ((-650 . -362) 67497) ((-644 . -369) 67476) ((-644 . -698) 67460) ((-644 . -628) 67444) ((-644 . -130) T) ((-644 . -25) T) ((-644 . -101) T) ((-644 . -597) 67426) ((-644 . -1074) T) ((-644 . -23) T) ((-644 . -21) T) ((-644 . -1031) 67410) ((-644 . -111) 67389) ((-644 . -617) 67373) ((-644 . -379) 67345) ((-644 . -1014) 67322) ((-636 . -638) 67306) ((-636 . -38) 67276) ((-636 . -628) 67250) ((-636 . -707) T) ((-636 . -1085) T) ((-636 . -1032) T) ((-636 . -1025) T) ((-636 . -111) 67229) ((-636 . -1031) 67213) ((-636 . -21) T) ((-636 . -23) T) ((-636 . -1074) T) ((-636 . -597) 67195) ((-636 . -101) T) ((-636 . -25) T) ((-636 . -130) T) ((-636 . -698) 67165) ((-636 . -407) 67149) ((-636 . -1014) 67045) ((-636 . -829) 67029) ((-636 . -281) 66990) ((-635 . -638) 66974) ((-635 . -38) 66944) ((-635 . -628) 66918) ((-635 . -707) T) ((-635 . -1085) T) ((-635 . -1032) T) ((-635 . -1025) T) ((-635 . -111) 66897) ((-635 . -1031) 66881) ((-635 . -21) T) ((-635 . -23) T) ((-635 . -1074) T) ((-635 . -597) 66863) ((-635 . -101) T) ((-635 . -25) T) ((-635 . -130) T) ((-635 . -698) 66833) ((-635 . -407) 66817) ((-635 . -1014) 66713) ((-635 . -829) 66697) ((-635 . -281) 66676) ((-634 . -638) 66660) ((-634 . -38) 66630) ((-634 . -628) 66604) ((-634 . -707) T) ((-634 . -1085) T) ((-634 . -1032) T) ((-634 . -1025) T) ((-634 . -111) 66583) ((-634 . -1031) 66567) ((-634 . -21) T) ((-634 . -23) T) ((-634 . -1074) T) ((-634 . -597) 66549) ((-634 . -101) T) ((-634 . -25) T) ((-634 . -130) T) ((-634 . -698) 66519) ((-634 . -407) 66503) ((-634 . -1014) 66399) ((-634 . -829) 66383) ((-634 . -281) 66362) ((-632 . -698) 66346) ((-632 . -628) 66330) ((-632 . -130) T) ((-632 . -25) T) ((-632 . -101) T) ((-632 . -597) 66312) ((-632 . -1074) T) ((-632 . -23) T) ((-632 . -21) T) ((-632 . -1031) 66296) ((-632 . -111) 66275) ((-632 . -771) 66254) ((-632 . -772) 66233) ((-632 . -827) 66212) ((-632 . -774) 66191) ((-632 . -777) 66170) ((-629 . -1074) T) ((-629 . -597) 66152) ((-629 . -101) T) ((-629 . -1014) 66136) ((-627 . -675) 66120) ((-627 . -106) 66104) ((-627 . -34) T) ((-627 . -1185) T) ((-627 . -597) 66036) ((-627 . -304) 65974) ((-627 . -507) 65907) ((-627 . -1074) 65885) ((-627 . -101) 65863) ((-627 . -483) 65847) ((-627 . -149) 65831) ((-627 . -598) 65792) ((-627 . -231) 65776) ((-626 . -1056) T) ((-626 . -597) 65729) ((-626 . -1074) T) ((-626 . -101) T) ((-626 . -92) T) ((-622 . -646) 65713) ((-622 . -1220) 65697) ((-622 . -986) 65681) ((-622 . -1122) 65665) ((-622 . -827) 65644) ((-622 . -367) 65628) ((-622 . -631) 65612) ((-622 . -283) 65589) ((-622 . -281) 65566) ((-622 . -588) 65543) ((-622 . -598) 65504) ((-622 . -483) 65488) ((-622 . -101) 65438) ((-622 . -1074) 65388) ((-622 . -507) 65321) ((-622 . -304) 65259) ((-622 . -597) 65171) ((-622 . -1185) T) ((-622 . -34) T) ((-622 . -149) 65155) ((-622 . -277) 65139) ((-622 . -801) 65118) ((-615 . -725) 65102) ((-615 . -701) T) ((-615 . -742) T) ((-615 . -111) 65081) ((-615 . -1031) 65065) ((-615 . -21) T) ((-615 . -23) T) ((-615 . -1074) T) ((-615 . -597) 65034) ((-615 . -101) T) ((-615 . -25) T) ((-615 . -130) T) ((-615 . -628) 65018) ((-615 . -698) 65002) ((-615 . -413) 64967) ((-615 . -362) 64899) ((-614 . -1162) 64874) ((-614 . -225) 64820) ((-614 . -106) 64766) ((-614 . -304) 64617) ((-614 . -507) 64461) ((-614 . -483) 64392) ((-614 . -149) 64338) ((-614 . -598) NIL) ((-614 . -231) 64284) ((-614 . -594) 64259) ((-614 . -283) 64234) ((-614 . -281) 64209) ((-614 . -101) T) ((-614 . -1074) T) ((-614 . -597) 64191) ((-614 . -1185) T) ((-614 . -34) T) ((-614 . -588) 64166) ((-609 . -467) T) ((-609 . -1085) T) ((-609 . -101) T) ((-609 . -597) 64148) ((-609 . -1074) T) ((-609 . -707) T) ((-608 . -1056) T) ((-608 . -597) 64114) ((-608 . -1074) T) ((-608 . -101) T) ((-608 . -92) T) ((-605 . -227) 64098) ((-605 . -876) 64057) ((-605 . -1025) T) ((-605 . -1032) T) ((-605 . -1085) T) ((-605 . -707) T) ((-605 . -21) T) ((-605 . -23) T) ((-605 . -1074) T) ((-605 . -597) 64039) ((-605 . -101) T) ((-605 . -25) T) ((-605 . -130) T) ((-605 . -628) 64026) ((-605 . -229) 64005) ((-605 . -545) T) ((-605 . -285) T) ((-605 . -170) T) ((-605 . -698) 63992) ((-605 . -1031) 63979) ((-605 . -111) 63964) ((-605 . -38) 63951) ((-605 . -598) 63928) ((-605 . -407) 63912) ((-605 . -1014) 63795) ((-605 . -145) 63774) ((-605 . -143) 63753) ((-605 . -302) 63732) ((-605 . -446) 63711) ((-605 . -897) 63690) ((-601 . -38) 63674) ((-601 . -628) 63648) ((-601 . -707) T) ((-601 . -1085) T) ((-601 . -1032) T) ((-601 . -1025) T) ((-601 . -111) 63627) ((-601 . -1031) 63611) ((-601 . -21) T) ((-601 . -23) T) ((-601 . -1074) T) ((-601 . -597) 63593) ((-601 . -101) T) ((-601 . -25) T) ((-601 . -130) T) ((-601 . -698) 63577) ((-601 . -825) 63556) ((-601 . -777) 63535) ((-601 . -774) 63514) ((-601 . -827) 63493) ((-601 . -772) 63472) ((-601 . -771) 63451) ((-600 . -943) T) ((-600 . -101) T) ((-600 . -597) 63433) ((-600 . -1074) T) ((-595 . -131) T) ((-595 . -1074) T) ((-595 . -597) 63415) ((-595 . -101) T) ((-595 . -827) T) ((-595 . -860) 63399) ((-595 . -598) 63260) ((-592 . -360) 63200) ((-592 . -101) T) ((-592 . -597) 63182) ((-592 . -1074) T) ((-592 . -1162) 63158) ((-592 . -225) 63105) ((-592 . -106) 63052) ((-592 . -304) 62847) ((-592 . -507) 62630) ((-592 . -483) 62564) ((-592 . -149) 62511) ((-592 . -598) NIL) ((-592 . -231) 62458) ((-592 . -594) 62434) ((-592 . -283) 62410) ((-592 . -281) 62386) ((-592 . -1185) T) ((-592 . -34) T) ((-592 . -588) 62362) ((-591 . -725) 62346) ((-591 . -701) T) ((-591 . -742) T) ((-591 . -111) 62325) ((-591 . -1031) 62309) ((-591 . -21) T) ((-591 . -23) T) ((-591 . -1074) T) ((-591 . -597) 62278) ((-591 . -101) T) ((-591 . -25) T) ((-591 . -130) T) ((-591 . -628) 62262) ((-591 . -698) 62246) ((-591 . -413) 62211) ((-591 . -362) 62143) ((-590 . -1056) T) ((-590 . -597) 62093) ((-590 . -1074) T) ((-590 . -101) T) ((-590 . -92) T) ((-589 . -597) 62060) ((-586 . -1230) 62044) ((-586 . -367) 62028) ((-586 . -827) 62007) ((-586 . -149) 61991) ((-586 . -34) T) ((-586 . -1185) T) ((-586 . -597) 61903) ((-586 . -304) 61841) ((-586 . -507) 61774) ((-586 . -1074) 61724) ((-586 . -101) 61674) ((-586 . -483) 61658) ((-586 . -598) 61619) ((-586 . -588) 61596) ((-586 . -281) 61573) ((-586 . -283) 61550) ((-586 . -631) 61534) ((-586 . -19) 61518) ((-585 . -597) 61500) ((-581 . -1025) T) ((-581 . -1032) T) ((-581 . -1085) T) ((-581 . -707) T) ((-581 . -21) T) ((-581 . -23) T) ((-581 . -1074) T) ((-581 . -597) 61482) ((-581 . -101) T) ((-581 . -25) T) ((-581 . -130) T) ((-581 . -628) 61469) ((-581 . -545) 61448) ((-581 . -285) 61427) ((-581 . -170) 61406) ((-581 . -698) 61379) ((-581 . -1031) 61352) ((-581 . -111) 61323) ((-581 . -38) 61296) ((-580 . -1210) 61273) ((-580 . -47) 61250) ((-580 . -38) 61147) ((-580 . -698) 61044) ((-580 . -285) 61023) ((-580 . -545) 61002) ((-580 . -111) 60871) ((-580 . -1031) 60754) ((-580 . -170) 60705) ((-580 . -145) 60684) ((-580 . -143) 60663) ((-580 . -628) 60588) ((-580 . -949) 60557) ((-580 . -876) 60470) ((-580 . -281) 60455) ((-580 . -1025) T) ((-580 . -1032) T) ((-580 . -1085) T) ((-580 . -707) T) ((-580 . -21) T) ((-580 . -23) T) ((-580 . -1074) T) ((-580 . -597) 60437) ((-580 . -101) T) ((-580 . -25) T) ((-580 . -130) T) ((-580 . -229) 60396) ((-578 . -1117) T) ((-578 . -367) 60378) ((-578 . -827) T) ((-578 . -149) 60360) ((-578 . -34) T) ((-578 . -1185) T) ((-578 . -597) 60342) ((-578 . -304) NIL) ((-578 . -507) NIL) ((-578 . -1074) T) ((-578 . -101) T) ((-578 . -483) 60324) ((-578 . -598) NIL) ((-578 . -588) 60299) ((-578 . -281) 60274) ((-578 . -283) 60249) ((-578 . -631) 60231) ((-578 . -19) 60213) ((-577 . -1056) T) ((-577 . -597) 60179) ((-577 . -1074) T) ((-577 . -101) T) ((-577 . -92) T) ((-569 . -698) 60154) ((-569 . -628) 60129) ((-569 . -130) T) ((-569 . -25) T) ((-569 . -101) T) ((-569 . -597) 60111) ((-569 . -1074) T) ((-569 . -23) T) ((-569 . -21) T) ((-569 . -1031) 60086) ((-569 . -111) 60054) ((-569 . -1014) 60038) ((-567 . -345) T) ((-567 . -1124) T) ((-567 . -363) T) ((-567 . -143) T) ((-567 . -358) T) ((-567 . -1190) T) ((-567 . -897) T) ((-567 . -545) T) ((-567 . -170) T) ((-567 . -698) 60003) ((-567 . -38) 59968) ((-567 . -446) T) ((-567 . -302) T) ((-567 . -111) 59924) ((-567 . -1031) 59889) ((-567 . -628) 59854) ((-567 . -285) T) ((-567 . -239) T) ((-567 . -397) T) ((-567 . -1025) T) ((-567 . -1032) T) ((-567 . -1085) T) ((-567 . -707) T) ((-567 . -21) T) ((-567 . -23) T) ((-567 . -1074) T) ((-567 . -597) 59836) ((-567 . -101) T) ((-567 . -25) T) ((-567 . -130) T) ((-567 . -229) T) ((-567 . -324) 59823) ((-567 . -145) 59805) ((-567 . -1014) 59792) ((-567 . -1239) 59779) ((-567 . -1250) 59766) ((-567 . -598) 59748) ((-566 . -846) 59732) ((-566 . -897) T) ((-566 . -545) T) ((-566 . -285) T) ((-566 . -170) T) ((-566 . -698) 59719) ((-566 . -1031) 59706) ((-566 . -111) 59691) ((-566 . -38) 59678) ((-566 . -446) T) ((-566 . -302) T) ((-566 . -1025) T) ((-566 . -1032) T) ((-566 . -1085) T) ((-566 . -707) T) ((-566 . -21) T) ((-566 . -23) T) ((-566 . -1074) T) ((-566 . -597) 59660) ((-566 . -101) T) ((-566 . -25) T) ((-566 . -130) T) ((-566 . -628) 59647) ((-566 . -145) T) ((-565 . -1074) T) ((-565 . -597) 59629) ((-565 . -101) T) ((-559 . -543) 59613) ((-559 . -35) T) ((-559 . -94) T) ((-559 . -279) T) ((-559 . -486) T) ((-559 . -1174) T) ((-559 . -1171) T) ((-559 . -1014) 59595) ((-559 . -978) T) ((-559 . -827) T) ((-559 . -545) T) ((-559 . -285) T) ((-559 . -170) T) ((-559 . -698) 59582) ((-559 . -628) 59569) ((-559 . -130) T) ((-559 . -25) T) ((-559 . -101) T) ((-559 . -597) 59551) ((-559 . -1074) T) ((-559 . -23) T) ((-559 . -21) T) ((-559 . -1031) 59538) ((-559 . -111) 59523) ((-559 . -1025) T) ((-559 . -1032) T) ((-559 . -1085) T) ((-559 . -707) T) ((-559 . -38) 59510) ((-559 . -446) T) ((-539 . -1162) 59489) ((-539 . -225) 59439) ((-539 . -106) 59389) ((-539 . -304) 59193) ((-539 . -507) 58985) ((-539 . -483) 58922) ((-539 . -149) 58872) ((-539 . -598) NIL) ((-539 . -231) 58822) ((-539 . -594) 58801) ((-539 . -283) 58780) ((-539 . -281) 58759) ((-539 . -101) T) ((-539 . -1074) T) ((-539 . -597) 58741) ((-539 . -1185) T) ((-539 . -34) T) ((-539 . -588) 58720) ((-538 . -537) T) ((-538 . -1190) T) ((-538 . -1124) T) ((-538 . -1014) 58702) ((-538 . -598) 58601) ((-538 . -996) T) ((-538 . -862) 58583) ((-538 . -825) T) ((-538 . -777) T) ((-538 . -774) T) ((-538 . -827) T) ((-538 . -772) T) ((-538 . -771) T) ((-538 . -800) T) ((-538 . -621) 58565) ((-538 . -897) T) ((-538 . -545) T) ((-538 . -285) T) ((-538 . -170) T) ((-538 . -698) 58552) ((-538 . -1031) 58539) ((-538 . -111) 58524) ((-538 . -38) 58511) ((-538 . -446) T) ((-538 . -302) T) ((-538 . -229) T) ((-538 . -141) T) ((-538 . -1025) T) ((-538 . -1032) T) ((-538 . -1085) T) ((-538 . -707) T) ((-538 . -21) T) ((-538 . -23) T) ((-538 . -1074) T) ((-538 . -597) 58493) ((-538 . -101) T) ((-538 . -25) T) ((-538 . -130) T) ((-538 . -628) 58480) ((-538 . -145) T) ((-538 . -801) T) ((-527 . -1077) 58432) ((-527 . -101) T) ((-527 . -597) 58414) ((-527 . -1074) T) ((-527 . -598) 58395) ((-524 . -773) T) ((-524 . -130) T) ((-524 . -25) T) ((-524 . -101) T) ((-524 . -597) 58377) ((-524 . -1074) T) ((-524 . -23) T) ((-524 . -772) T) ((-524 . -827) T) ((-524 . -774) T) ((-524 . -777) T) ((-524 . -502) 58354) ((-522 . -520) T) ((-522 . -171) T) ((-522 . -597) 58336) ((-518 . -1056) T) ((-518 . -597) 58302) ((-518 . -1074) T) ((-518 . -101) T) ((-518 . -92) T) ((-517 . -1056) T) ((-517 . -597) 58268) ((-517 . -1074) T) ((-517 . -101) T) ((-517 . -92) T) ((-516 . -666) 58218) ((-516 . -483) 58202) ((-516 . -101) 58180) ((-516 . -1074) 58158) ((-516 . -507) 58091) ((-516 . -304) 58029) ((-516 . -597) 57961) ((-516 . -1185) T) ((-516 . -34) T) ((-516 . -56) 57911) ((-513 . -646) 57895) ((-513 . -1220) 57879) ((-513 . -986) 57863) ((-513 . -1122) 57847) ((-513 . -827) 57826) ((-513 . -367) 57810) ((-513 . -631) 57794) ((-513 . -283) 57771) ((-513 . -281) 57748) ((-513 . -588) 57725) ((-513 . -598) 57686) ((-513 . -483) 57670) ((-513 . -101) 57620) ((-513 . -1074) 57570) ((-513 . -507) 57503) ((-513 . -304) 57441) ((-513 . -597) 57353) ((-513 . -1185) T) ((-513 . -34) T) ((-513 . -149) 57337) ((-513 . -277) 57321) ((-512 . -56) 57295) ((-512 . -34) T) ((-512 . -1185) T) ((-512 . -597) 57227) ((-512 . -304) 57165) ((-512 . -507) 57098) ((-512 . -1074) 57076) ((-512 . -101) 57054) ((-512 . -483) 57038) ((-511 . -324) 57015) ((-511 . -229) T) ((-511 . -363) T) ((-511 . -1124) T) ((-511 . -345) T) ((-511 . -145) 56997) ((-511 . -628) 56942) ((-511 . -130) T) ((-511 . -25) T) ((-511 . -101) T) ((-511 . -597) 56924) ((-511 . -1074) T) ((-511 . -23) T) ((-511 . -21) T) ((-511 . -707) T) ((-511 . -1085) T) ((-511 . -1032) T) ((-511 . -1025) T) ((-511 . -358) T) ((-511 . -1190) T) ((-511 . -897) T) ((-511 . -545) T) ((-511 . -170) T) ((-511 . -698) 56869) ((-511 . -38) 56834) ((-511 . -446) T) ((-511 . -302) T) ((-511 . -111) 56763) ((-511 . -1031) 56708) ((-511 . -285) T) ((-511 . -239) T) ((-511 . -397) T) ((-511 . -143) T) ((-511 . -1014) 56685) ((-511 . -1239) 56662) ((-511 . -1250) 56639) ((-510 . -1056) T) ((-510 . -597) 56605) ((-510 . -1074) T) ((-510 . -101) T) ((-510 . -92) T) ((-509 . -19) 56589) ((-509 . -631) 56573) ((-509 . -283) 56550) ((-509 . -281) 56527) ((-509 . -588) 56504) ((-509 . -598) 56465) ((-509 . -483) 56449) ((-509 . -101) 56399) ((-509 . -1074) 56349) ((-509 . -507) 56282) ((-509 . -304) 56220) ((-509 . -597) 56132) ((-509 . -1185) T) ((-509 . -34) T) ((-509 . -149) 56116) ((-509 . -827) 56095) ((-509 . -367) 56079) ((-509 . -277) 56063) ((-508 . -318) 56042) ((-508 . -1014) 56026) ((-508 . -23) T) ((-508 . -1074) T) ((-508 . -597) 56008) ((-508 . -101) T) ((-508 . -25) T) ((-508 . -130) T) ((-505 . -773) T) ((-505 . -130) T) ((-505 . -25) T) ((-505 . -101) T) ((-505 . -597) 55990) ((-505 . -1074) T) ((-505 . -23) T) ((-505 . -772) T) ((-505 . -827) T) ((-505 . -774) T) ((-505 . -777) T) ((-505 . -502) 55969) ((-504 . -772) T) ((-504 . -827) T) ((-504 . -774) T) ((-504 . -25) T) ((-504 . -101) T) ((-504 . -597) 55951) ((-504 . -1074) T) ((-504 . -23) T) ((-504 . -502) 55930) ((-503 . -502) 55909) ((-503 . -101) T) ((-503 . -597) 55891) ((-503 . -1074) T) ((-501 . -23) T) ((-501 . -1074) T) ((-501 . -597) 55873) ((-501 . -101) T) ((-501 . -25) T) ((-501 . -502) 55852) ((-500 . -21) T) ((-500 . -23) T) ((-500 . -1074) T) ((-500 . -597) 55834) ((-500 . -101) T) ((-500 . -25) T) ((-500 . -130) T) ((-500 . -502) 55813) ((-499 . -1056) T) ((-499 . -597) 55763) ((-499 . -1074) T) ((-499 . -101) T) ((-499 . -92) T) ((-497 . -1074) T) ((-497 . -597) 55745) ((-497 . -101) T) ((-495 . -827) T) ((-495 . -101) T) ((-495 . -597) 55727) ((-495 . -1074) T) ((-493 . -123) T) ((-493 . -367) 55709) ((-493 . -827) T) ((-493 . -149) 55691) ((-493 . -34) T) ((-493 . -1185) T) ((-493 . -597) 55673) ((-493 . -304) NIL) ((-493 . -507) NIL) ((-493 . -1074) T) ((-493 . -483) 55655) ((-493 . -598) 55637) ((-493 . -588) 55612) ((-493 . -281) 55587) ((-493 . -283) 55562) ((-493 . -631) 55544) ((-493 . -19) 55526) ((-493 . -101) T) ((-493 . -642) T) ((-490 . -56) 55476) ((-490 . -34) T) ((-490 . -1185) T) ((-490 . -597) 55408) ((-490 . -304) 55346) ((-490 . -507) 55279) ((-490 . -1074) 55257) ((-490 . -101) 55235) ((-490 . -483) 55219) ((-489 . -19) 55203) ((-489 . -631) 55187) ((-489 . -283) 55164) ((-489 . -281) 55141) ((-489 . -588) 55118) ((-489 . -598) 55079) ((-489 . -483) 55063) ((-489 . -101) 55013) ((-489 . -1074) 54963) ((-489 . -507) 54896) ((-489 . -304) 54834) ((-489 . -597) 54746) ((-489 . -1185) T) ((-489 . -34) T) ((-489 . -149) 54730) ((-489 . -827) 54709) ((-489 . -367) 54693) ((-488 . -293) T) ((-488 . -1014) 54636) ((-488 . -1074) T) ((-488 . -597) 54618) ((-488 . -101) T) ((-488 . -827) T) ((-488 . -507) 54584) ((-488 . -304) 54571) ((-488 . -27) T) ((-488 . -978) T) ((-488 . -239) T) ((-488 . -111) 54527) ((-488 . -1031) 54492) ((-488 . -285) T) ((-488 . -698) 54457) ((-488 . -628) 54422) ((-488 . -130) T) ((-488 . -25) T) ((-488 . -23) T) ((-488 . -21) T) ((-488 . -1025) T) ((-488 . -1032) T) ((-488 . -1085) T) ((-488 . -707) T) ((-488 . -38) 54387) ((-488 . -302) T) ((-488 . -446) T) ((-488 . -170) T) ((-488 . -545) T) ((-488 . -897) T) ((-488 . -1190) T) ((-488 . -358) T) ((-488 . -621) 54347) ((-488 . -996) T) ((-488 . -598) 54292) ((-488 . -145) T) ((-488 . -229) T) ((-484 . -1074) T) ((-484 . -597) 54258) ((-484 . -101) T) ((-481 . -967) 54240) ((-481 . -1124) T) ((-481 . -1014) 54200) ((-481 . -598) 54130) ((-481 . -996) T) ((-481 . -886) NIL) ((-481 . -860) 54112) ((-481 . -825) T) ((-481 . -777) T) ((-481 . -774) T) ((-481 . -827) T) ((-481 . -772) T) ((-481 . -771) T) ((-481 . -800) T) ((-481 . -862) 54094) ((-481 . -1185) T) ((-481 . -395) 54076) ((-481 . -621) 54058) ((-481 . -372) 54040) ((-481 . -281) NIL) ((-481 . -304) NIL) ((-481 . -507) NIL) ((-481 . -333) 54022) ((-481 . -239) T) ((-481 . -111) 53956) ((-481 . -1031) 53906) ((-481 . -285) T) ((-481 . -698) 53856) ((-481 . -628) 53806) ((-481 . -38) 53756) ((-481 . -302) T) ((-481 . -446) T) ((-481 . -170) T) ((-481 . -545) T) ((-481 . -897) T) ((-481 . -1190) T) ((-481 . -358) T) ((-481 . -229) T) ((-481 . -876) NIL) ((-481 . -227) 53738) ((-481 . -145) T) ((-481 . -143) NIL) ((-481 . -130) T) ((-481 . -25) T) ((-481 . -101) T) ((-481 . -597) 53720) ((-481 . -1074) T) ((-481 . -23) T) ((-481 . -21) T) ((-481 . -1025) T) ((-481 . -1032) T) ((-481 . -1085) T) ((-481 . -707) T) ((-479 . -331) 53689) ((-479 . -130) T) ((-479 . -25) T) ((-479 . -101) T) ((-479 . -597) 53671) ((-479 . -1074) T) ((-479 . -23) T) ((-479 . -21) T) ((-478 . -944) 53655) ((-478 . -483) 53639) ((-478 . -101) 53617) ((-478 . -1074) 53595) ((-478 . -507) 53528) ((-478 . -304) 53466) ((-478 . -597) 53398) ((-478 . -1185) T) ((-478 . -34) T) ((-478 . -106) 53382) ((-477 . -1056) T) ((-477 . -597) 53348) ((-477 . -1074) T) ((-477 . -101) T) ((-477 . -92) T) ((-476 . -234) 53327) ((-476 . -1239) 53297) ((-476 . -771) 53276) ((-476 . -825) 53255) ((-476 . -777) 53206) ((-476 . -774) 53157) ((-476 . -827) 53108) ((-476 . -772) 53059) ((-476 . -773) 53038) ((-476 . -283) 53015) ((-476 . -281) 52992) ((-476 . -483) 52976) ((-476 . -507) 52909) ((-476 . -304) 52847) ((-476 . -1185) T) ((-476 . -34) T) ((-476 . -588) 52824) ((-476 . -1014) 52651) ((-476 . -407) 52620) ((-476 . -621) 52526) ((-476 . -372) 52495) ((-476 . -363) 52474) ((-476 . -229) 52426) ((-476 . -876) 52358) ((-476 . -227) 52327) ((-476 . -111) 52217) ((-476 . -1031) 52114) ((-476 . -170) 52093) ((-476 . -597) 51824) ((-476 . -698) 51766) ((-476 . -628) 51614) ((-476 . -130) 51484) ((-476 . -23) 51354) ((-476 . -21) 51264) ((-476 . -1025) 51194) ((-476 . -1032) 51124) ((-476 . -1085) 51034) ((-476 . -707) 50944) ((-476 . -38) 50914) ((-476 . -1074) 50704) ((-476 . -101) 50494) ((-476 . -25) 50345) ((-475 . -926) 50290) ((-475 . -1014) 50166) ((-475 . -1190) 50145) ((-475 . -886) 50124) ((-475 . -862) NIL) ((-475 . -876) 50101) ((-475 . -827) 50080) ((-475 . -507) 50023) ((-475 . -446) 49974) ((-475 . -621) 49922) ((-475 . -372) 49906) ((-475 . -47) 49863) ((-475 . -38) 49712) ((-475 . -698) 49561) ((-475 . -285) 49492) ((-475 . -545) 49423) ((-475 . -111) 49252) ((-475 . -1031) 49095) ((-475 . -170) 49006) ((-475 . -145) 48985) ((-475 . -143) 48964) ((-475 . -628) 48889) ((-475 . -130) T) ((-475 . -25) T) ((-475 . -101) T) ((-475 . -597) 48871) ((-475 . -1074) T) ((-475 . -23) T) ((-475 . -21) T) ((-475 . -1025) T) ((-475 . -1032) T) ((-475 . -1085) T) ((-475 . -707) T) ((-475 . -407) 48855) ((-475 . -321) 48812) ((-475 . -304) 48799) ((-475 . -598) 48660) ((-473 . -1162) 48639) ((-473 . -225) 48589) ((-473 . -106) 48539) ((-473 . -304) 48343) ((-473 . -507) 48135) ((-473 . -483) 48072) ((-473 . -149) 48022) ((-473 . -598) NIL) ((-473 . -231) 47972) ((-473 . -594) 47951) ((-473 . -283) 47930) ((-473 . -281) 47909) ((-473 . -101) T) ((-473 . -1074) T) ((-473 . -597) 47891) ((-473 . -1185) T) ((-473 . -34) T) ((-473 . -588) 47870) ((-472 . -1056) T) ((-472 . -597) 47836) ((-472 . -1074) T) ((-472 . -101) T) ((-472 . -92) T) ((-471 . -358) T) ((-471 . -1190) T) ((-471 . -897) T) ((-471 . -545) T) ((-471 . -170) T) ((-471 . -698) 47801) ((-471 . -38) 47766) ((-471 . -446) T) ((-471 . -302) T) ((-471 . -628) 47731) ((-471 . -707) T) ((-471 . -1085) T) ((-471 . -1032) T) ((-471 . -1025) T) ((-471 . -111) 47687) ((-471 . -1031) 47652) ((-471 . -21) T) ((-471 . -23) T) ((-471 . -1074) T) ((-471 . -597) 47604) ((-471 . -101) T) ((-471 . -25) T) ((-471 . -130) T) ((-471 . -285) T) ((-471 . -239) T) ((-471 . -145) T) ((-471 . -1014) 47564) ((-471 . -996) T) ((-471 . -598) 47486) ((-470 . -1180) 47455) ((-470 . -597) 47417) ((-470 . -149) 47401) ((-470 . -34) T) ((-470 . -1185) T) ((-470 . -304) 47339) ((-470 . -507) 47272) ((-470 . -1074) T) ((-470 . -101) T) ((-470 . -483) 47256) ((-470 . -598) 47217) ((-470 . -952) 47186) ((-469 . -1162) 47165) ((-469 . -225) 47115) ((-469 . -106) 47065) ((-469 . -304) 46869) ((-469 . -507) 46661) ((-469 . -483) 46598) ((-469 . -149) 46548) ((-469 . -598) NIL) ((-469 . -231) 46498) ((-469 . -594) 46477) ((-469 . -283) 46456) ((-469 . -281) 46435) ((-469 . -101) T) ((-469 . -1074) T) ((-469 . -597) 46417) ((-469 . -1185) T) ((-469 . -34) T) ((-469 . -588) 46396) ((-468 . -1214) 46380) ((-468 . -229) 46332) ((-468 . -281) 46317) ((-468 . -876) 46223) ((-468 . -949) 46185) ((-468 . -38) 46026) ((-468 . -111) 45847) ((-468 . -1031) 45682) ((-468 . -628) 45579) ((-468 . -698) 45420) ((-468 . -143) 45399) ((-468 . -145) 45378) ((-468 . -47) 45348) ((-468 . -1210) 45318) ((-468 . -35) 45284) ((-468 . -94) 45250) ((-468 . -279) 45216) ((-468 . -486) 45182) ((-468 . -1174) 45148) ((-468 . -1171) 45114) ((-468 . -978) 45080) ((-468 . -239) 45059) ((-468 . -285) 45010) ((-468 . -130) T) ((-468 . -25) T) ((-468 . -101) T) ((-468 . -597) 44992) ((-468 . -1074) T) ((-468 . -23) T) ((-468 . -21) T) ((-468 . -1025) T) ((-468 . -1032) T) ((-468 . -1085) T) ((-468 . -707) T) ((-468 . -302) 44971) ((-468 . -446) 44950) ((-468 . -170) 44881) ((-468 . -545) 44832) ((-468 . -897) 44811) ((-468 . -1190) 44790) ((-468 . -358) 44769) ((-462 . -1074) T) ((-462 . -597) 44751) ((-462 . -101) T) ((-457 . -952) 44720) ((-457 . -598) 44681) ((-457 . -483) 44665) ((-457 . -101) T) ((-457 . -1074) T) ((-457 . -507) 44598) ((-457 . -304) 44536) ((-457 . -597) 44498) ((-457 . -1185) T) ((-457 . -34) T) ((-457 . -149) 44482) ((-455 . -698) 44453) ((-455 . -628) 44424) ((-455 . -130) T) ((-455 . -25) T) ((-455 . -101) T) ((-455 . -597) 44406) ((-455 . -1074) T) ((-455 . -23) T) ((-455 . -21) T) ((-455 . -1031) 44377) ((-455 . -111) 44338) ((-448 . -926) 44305) ((-448 . -1014) 44181) ((-448 . -1190) 44160) ((-448 . -886) 44139) ((-448 . -862) NIL) ((-448 . -876) 44116) ((-448 . -827) 44095) ((-448 . -507) 44038) ((-448 . -446) 43989) ((-448 . -621) 43937) ((-448 . -372) 43921) ((-448 . -47) 43900) ((-448 . -38) 43749) ((-448 . -698) 43598) ((-448 . -285) 43529) ((-448 . -545) 43460) ((-448 . -111) 43289) ((-448 . -1031) 43132) ((-448 . -170) 43043) ((-448 . -145) 43022) ((-448 . -143) 43001) ((-448 . -628) 42926) ((-448 . -130) T) ((-448 . -25) T) ((-448 . -101) T) ((-448 . -597) 42908) ((-448 . -1074) T) ((-448 . -23) T) ((-448 . -21) T) ((-448 . -1025) T) ((-448 . -1032) T) ((-448 . -1085) T) ((-448 . -707) T) ((-448 . -407) 42892) ((-448 . -321) 42871) ((-448 . -304) 42858) ((-448 . -598) 42719) ((-447 . -413) 42689) ((-447 . -725) 42659) ((-447 . -701) T) ((-447 . -742) T) ((-447 . -111) 42622) ((-447 . -1031) 42592) ((-447 . -21) T) ((-447 . -23) T) ((-447 . -1074) T) ((-447 . -597) 42574) ((-447 . -101) T) ((-447 . -25) T) ((-447 . -130) T) ((-447 . -628) 42504) ((-447 . -698) 42474) ((-447 . -362) 42444) ((-433 . -1074) T) ((-433 . -597) 42426) ((-433 . -101) T) ((-432 . -360) 42400) ((-432 . -101) T) ((-432 . -597) 42382) ((-432 . -1074) T) ((-431 . -1074) T) ((-431 . -597) 42364) ((-431 . -101) T) ((-429 . -597) 42346) ((-424 . -38) 42330) ((-424 . -628) 42304) ((-424 . -707) T) ((-424 . -1085) T) ((-424 . -1032) T) ((-424 . -1025) T) ((-424 . -111) 42283) ((-424 . -1031) 42267) ((-424 . -21) T) ((-424 . -23) T) ((-424 . -1074) T) ((-424 . -597) 42249) ((-424 . -101) T) ((-424 . -25) T) ((-424 . -130) T) ((-424 . -698) 42233) ((-410 . -707) T) ((-410 . -1074) T) ((-410 . -597) 42215) ((-410 . -101) T) ((-410 . -1085) T) ((-408 . -467) T) ((-408 . -1085) T) ((-408 . -101) T) ((-408 . -597) 42197) ((-408 . -1074) T) ((-408 . -707) T) ((-402 . -967) 42181) ((-402 . -1124) 42159) ((-402 . -1014) 42025) ((-402 . -598) 41833) ((-402 . -996) 41812) ((-402 . -886) 41791) ((-402 . -860) 41775) ((-402 . -825) 41754) ((-402 . -777) 41733) ((-402 . -774) 41712) ((-402 . -827) 41663) ((-402 . -772) 41642) ((-402 . -771) 41621) ((-402 . -800) 41600) ((-402 . -862) 41525) ((-402 . -1185) T) ((-402 . -395) 41509) ((-402 . -621) 41457) ((-402 . -372) 41441) ((-402 . -281) 41399) ((-402 . -304) 41364) ((-402 . -507) 41276) ((-402 . -333) 41260) ((-402 . -239) T) ((-402 . -111) 41198) ((-402 . -1031) 41150) ((-402 . -285) T) ((-402 . -698) 41102) ((-402 . -628) 41054) ((-402 . -38) 41006) ((-402 . -302) T) ((-402 . -446) T) ((-402 . -170) T) ((-402 . -545) T) ((-402 . -897) T) ((-402 . -1190) T) ((-402 . -358) T) ((-402 . -229) 40985) ((-402 . -876) 40944) ((-402 . -227) 40928) ((-402 . -145) 40907) ((-402 . -143) 40886) ((-402 . -130) T) ((-402 . -25) T) ((-402 . -101) T) ((-402 . -597) 40868) ((-402 . -1074) T) ((-402 . -23) T) ((-402 . -21) T) ((-402 . -1025) T) ((-402 . -1032) T) ((-402 . -1085) T) ((-402 . -707) T) ((-402 . -801) 40821) ((-400 . -545) T) ((-400 . -285) T) ((-400 . -170) T) ((-400 . -698) 40795) ((-400 . -628) 40769) ((-400 . -130) T) ((-400 . -25) T) ((-400 . -101) T) ((-400 . -597) 40751) ((-400 . -1074) T) ((-400 . -23) T) ((-400 . -21) T) ((-400 . -1031) 40725) ((-400 . -111) 40692) ((-400 . -1025) T) ((-400 . -1032) T) ((-400 . -1085) T) ((-400 . -707) T) ((-400 . -38) 40666) ((-400 . -227) 40650) ((-400 . -876) 40609) ((-400 . -229) 40588) ((-400 . -333) 40572) ((-400 . -507) 40414) ((-400 . -304) 40353) ((-400 . -281) 40281) ((-400 . -407) 40265) ((-400 . -1014) 40161) ((-400 . -446) 40111) ((-400 . -996) 40090) ((-400 . -598) 39998) ((-400 . -1190) 39976) ((-394 . -1074) T) ((-394 . -597) 39958) ((-394 . -101) T) ((-394 . -598) 39935) ((-393 . -391) T) ((-393 . -1185) T) ((-393 . -597) 39917) ((-388 . -1074) T) ((-388 . -597) 39899) ((-388 . -101) T) ((-385 . -725) 39883) ((-385 . -701) T) ((-385 . -742) T) ((-385 . -111) 39862) ((-385 . -1031) 39846) ((-385 . -21) T) ((-385 . -23) T) ((-385 . -1074) T) ((-385 . -597) 39828) ((-385 . -101) T) ((-385 . -25) T) ((-385 . -130) T) ((-385 . -628) 39812) ((-385 . -698) 39796) ((-383 . -384) T) ((-383 . -101) T) ((-383 . -597) 39778) ((-383 . -1074) T) ((-381 . -707) T) ((-381 . -1074) T) ((-381 . -597) 39760) ((-381 . -101) T) ((-381 . -1085) T) ((-381 . -1014) 39744) ((-381 . -827) 39723) ((-377 . -379) 39702) ((-377 . -1014) 39686) ((-377 . -698) 39656) ((-377 . -628) 39640) ((-377 . -130) T) ((-377 . -25) T) ((-377 . -101) T) ((-377 . -597) 39622) ((-377 . -1074) T) ((-377 . -23) T) ((-377 . -21) T) ((-377 . -1031) 39606) ((-377 . -111) 39585) ((-376 . -111) 39564) ((-376 . -1031) 39548) ((-376 . -21) T) ((-376 . -23) T) ((-376 . -1074) T) ((-376 . -597) 39530) ((-376 . -101) T) ((-376 . -25) T) ((-376 . -130) T) ((-376 . -628) 39514) ((-376 . -502) 39493) ((-376 . -698) 39463) ((-373 . -399) T) ((-373 . -145) T) ((-373 . -628) 39428) ((-373 . -130) T) ((-373 . -25) T) ((-373 . -101) T) ((-373 . -597) 39395) ((-373 . -1074) T) ((-373 . -23) T) ((-373 . -21) T) ((-373 . -707) T) ((-373 . -1085) T) ((-373 . -1032) T) ((-373 . -1025) T) ((-373 . -598) 39309) ((-373 . -358) T) ((-373 . -1190) T) ((-373 . -897) T) ((-373 . -545) T) ((-373 . -170) T) ((-373 . -698) 39274) ((-373 . -38) 39239) ((-373 . -446) T) ((-373 . -302) T) ((-373 . -111) 39195) ((-373 . -1031) 39160) ((-373 . -285) T) ((-373 . -239) T) ((-373 . -825) T) ((-373 . -777) T) ((-373 . -774) T) ((-373 . -827) T) ((-373 . -772) T) ((-373 . -771) T) ((-373 . -862) 39142) ((-373 . -978) T) ((-373 . -996) T) ((-373 . -1014) 39102) ((-373 . -1034) T) ((-373 . -229) T) ((-373 . -801) T) ((-373 . -1171) T) ((-373 . -1174) T) ((-373 . -486) T) ((-373 . -279) T) ((-373 . -94) T) ((-373 . -35) T) ((-359 . -360) 39079) ((-359 . -101) T) ((-359 . -597) 39061) ((-359 . -1074) T) ((-356 . -467) T) ((-356 . -1085) T) ((-356 . -101) T) ((-356 . -597) 39043) ((-356 . -1074) T) ((-356 . -707) T) ((-356 . -1014) 39027) ((-354 . -324) 39011) ((-354 . -229) 38990) ((-354 . -363) 38969) ((-354 . -1124) 38948) ((-354 . -345) 38927) ((-354 . -145) 38906) ((-354 . -628) 38858) ((-354 . -130) T) ((-354 . -25) T) ((-354 . -101) T) ((-354 . -597) 38840) ((-354 . -1074) T) ((-354 . -23) T) ((-354 . -21) T) ((-354 . -707) T) ((-354 . -1085) T) ((-354 . -1032) T) ((-354 . -1025) T) ((-354 . -358) T) ((-354 . -1190) T) ((-354 . -897) T) ((-354 . -545) T) ((-354 . -170) T) ((-354 . -698) 38792) ((-354 . -38) 38757) ((-354 . -446) T) ((-354 . -302) T) ((-354 . -111) 38695) ((-354 . -1031) 38647) ((-354 . -285) T) ((-354 . -239) T) ((-354 . -397) 38598) ((-354 . -143) 38549) ((-354 . -1014) 38533) ((-354 . -1239) 38517) ((-354 . -1250) 38501) ((-350 . -324) 38485) ((-350 . -229) 38464) ((-350 . -363) 38443) ((-350 . -1124) 38422) ((-350 . -345) 38401) ((-350 . -145) 38380) ((-350 . -628) 38332) ((-350 . -130) T) ((-350 . -25) T) ((-350 . -101) T) ((-350 . -597) 38314) ((-350 . -1074) T) ((-350 . -23) T) ((-350 . -21) T) ((-350 . -707) T) ((-350 . -1085) T) ((-350 . -1032) T) ((-350 . -1025) T) ((-350 . -358) T) ((-350 . -1190) T) ((-350 . -897) T) ((-350 . -545) T) ((-350 . -170) T) ((-350 . -698) 38266) ((-350 . -38) 38231) ((-350 . -446) T) ((-350 . -302) T) ((-350 . -111) 38169) ((-350 . -1031) 38121) ((-350 . -285) T) ((-350 . -239) T) ((-350 . -397) 38072) ((-350 . -143) 38023) ((-350 . -1014) 38007) ((-350 . -1239) 37991) ((-350 . -1250) 37975) ((-349 . -324) 37959) ((-349 . -229) 37938) ((-349 . -363) 37917) ((-349 . -1124) 37896) ((-349 . -345) 37875) ((-349 . -145) 37854) ((-349 . -628) 37806) ((-349 . -130) T) ((-349 . -25) T) ((-349 . -101) T) ((-349 . -597) 37788) ((-349 . -1074) T) ((-349 . -23) T) ((-349 . -21) T) ((-349 . -707) T) ((-349 . -1085) T) ((-349 . -1032) T) ((-349 . -1025) T) ((-349 . -358) T) ((-349 . -1190) T) ((-349 . -897) T) ((-349 . -545) T) ((-349 . -170) T) ((-349 . -698) 37740) ((-349 . -38) 37705) ((-349 . -446) T) ((-349 . -302) T) ((-349 . -111) 37643) ((-349 . -1031) 37595) ((-349 . -285) T) ((-349 . -239) T) ((-349 . -397) 37546) ((-349 . -143) 37497) ((-349 . -1014) 37481) ((-349 . -1239) 37465) ((-349 . -1250) 37449) ((-348 . -324) 37433) ((-348 . -229) 37412) ((-348 . -363) 37391) ((-348 . -1124) 37370) ((-348 . -345) 37349) ((-348 . -145) 37328) ((-348 . -628) 37280) ((-348 . -130) T) ((-348 . -25) T) ((-348 . -101) T) ((-348 . -597) 37262) ((-348 . -1074) T) ((-348 . -23) T) ((-348 . -21) T) ((-348 . -707) T) ((-348 . -1085) T) ((-348 . -1032) T) ((-348 . -1025) T) ((-348 . -358) T) ((-348 . -1190) T) ((-348 . -897) T) ((-348 . -545) T) ((-348 . -170) T) ((-348 . -698) 37214) ((-348 . -38) 37179) ((-348 . -446) T) ((-348 . -302) T) ((-348 . -111) 37117) ((-348 . -1031) 37069) ((-348 . -285) T) ((-348 . -239) T) ((-348 . -397) 37020) ((-348 . -143) 36971) ((-348 . -1014) 36955) ((-348 . -1239) 36939) ((-348 . -1250) 36923) ((-347 . -324) 36900) ((-347 . -229) T) ((-347 . -363) T) ((-347 . -1124) T) ((-347 . -345) T) ((-347 . -145) 36882) ((-347 . -628) 36827) ((-347 . -130) T) ((-347 . -25) T) ((-347 . -101) T) ((-347 . -597) 36809) ((-347 . -1074) T) ((-347 . -23) T) ((-347 . -21) T) ((-347 . -707) T) ((-347 . -1085) T) ((-347 . -1032) T) ((-347 . -1025) T) ((-347 . -358) T) ((-347 . -1190) T) ((-347 . -897) T) ((-347 . -545) T) ((-347 . -170) T) ((-347 . -698) 36754) ((-347 . -38) 36719) ((-347 . -446) T) ((-347 . -302) T) ((-347 . -111) 36648) ((-347 . -1031) 36593) ((-347 . -285) T) ((-347 . -239) T) ((-347 . -397) T) ((-347 . -143) T) ((-347 . -1014) 36570) ((-347 . -1239) 36547) ((-347 . -1250) 36524) ((-341 . -324) 36508) ((-341 . -229) 36487) ((-341 . -363) 36466) ((-341 . -1124) 36445) ((-341 . -345) 36424) ((-341 . -145) 36403) ((-341 . -628) 36355) ((-341 . -130) T) ((-341 . -25) T) ((-341 . -101) T) ((-341 . -597) 36337) ((-341 . -1074) T) ((-341 . -23) T) ((-341 . -21) T) ((-341 . -707) T) ((-341 . -1085) T) ((-341 . -1032) T) ((-341 . -1025) T) ((-341 . -358) T) ((-341 . -1190) T) ((-341 . -897) T) ((-341 . -545) T) ((-341 . -170) T) ((-341 . -698) 36289) ((-341 . -38) 36254) ((-341 . -446) T) ((-341 . -302) T) ((-341 . -111) 36192) ((-341 . -1031) 36144) ((-341 . -285) T) ((-341 . -239) T) ((-341 . -397) 36095) ((-341 . -143) 36046) ((-341 . -1014) 36030) ((-341 . -1239) 36014) ((-341 . -1250) 35998) ((-340 . -324) 35982) ((-340 . -229) 35961) ((-340 . -363) 35940) ((-340 . -1124) 35919) ((-340 . -345) 35898) ((-340 . -145) 35877) ((-340 . -628) 35829) ((-340 . -130) T) ((-340 . -25) T) ((-340 . -101) T) ((-340 . -597) 35811) ((-340 . -1074) T) ((-340 . -23) T) ((-340 . -21) T) ((-340 . -707) T) ((-340 . -1085) T) ((-340 . -1032) T) ((-340 . -1025) T) ((-340 . -358) T) ((-340 . -1190) T) ((-340 . -897) T) ((-340 . -545) T) ((-340 . -170) T) ((-340 . -698) 35763) ((-340 . -38) 35728) ((-340 . -446) T) ((-340 . -302) T) ((-340 . -111) 35666) ((-340 . -1031) 35618) ((-340 . -285) T) ((-340 . -239) T) ((-340 . -397) 35569) ((-340 . -143) 35520) ((-340 . -1014) 35504) ((-340 . -1239) 35488) ((-340 . -1250) 35472) ((-339 . -324) 35449) ((-339 . -229) T) ((-339 . -363) T) ((-339 . -1124) T) ((-339 . -345) T) ((-339 . -145) 35431) ((-339 . -628) 35376) ((-339 . -130) T) ((-339 . -25) T) ((-339 . -101) T) ((-339 . -597) 35358) ((-339 . -1074) T) ((-339 . -23) T) ((-339 . -21) T) ((-339 . -707) T) ((-339 . -1085) T) ((-339 . -1032) T) ((-339 . -1025) T) ((-339 . -358) T) ((-339 . -1190) T) ((-339 . -897) T) ((-339 . -545) T) ((-339 . -170) T) ((-339 . -698) 35303) ((-339 . -38) 35268) ((-339 . -446) T) ((-339 . -302) T) ((-339 . -111) 35197) ((-339 . -1031) 35142) ((-339 . -285) T) ((-339 . -239) T) ((-339 . -397) T) ((-339 . -143) T) ((-339 . -1014) 35119) ((-339 . -1239) 35096) ((-339 . -1250) 35073) ((-335 . -324) 35050) ((-335 . -229) T) ((-335 . -363) T) ((-335 . -1124) T) ((-335 . -345) T) ((-335 . -145) 35032) ((-335 . -628) 34977) ((-335 . -130) T) ((-335 . -25) T) ((-335 . -101) T) ((-335 . -597) 34959) ((-335 . -1074) T) ((-335 . -23) T) ((-335 . -21) T) ((-335 . -707) T) ((-335 . -1085) T) ((-335 . -1032) T) ((-335 . -1025) T) ((-335 . -358) T) ((-335 . -1190) T) ((-335 . -897) T) ((-335 . -545) T) ((-335 . -170) T) ((-335 . -698) 34904) ((-335 . -38) 34869) ((-335 . -446) T) ((-335 . -302) T) ((-335 . -111) 34798) ((-335 . -1031) 34743) ((-335 . -285) T) ((-335 . -239) T) ((-335 . -397) T) ((-335 . -143) T) ((-335 . -1014) 34720) ((-335 . -1239) 34697) ((-335 . -1250) 34674) ((-334 . -293) T) ((-334 . -1014) 34641) ((-334 . -1074) T) ((-334 . -597) 34623) ((-334 . -101) T) ((-334 . -827) T) ((-334 . -507) 34589) ((-334 . -304) 34576) ((-334 . -38) 34560) ((-334 . -628) 34534) ((-334 . -707) T) ((-334 . -1085) T) ((-334 . -1032) T) ((-334 . -1025) T) ((-334 . -111) 34513) ((-334 . -1031) 34497) ((-334 . -21) T) ((-334 . -23) T) ((-334 . -25) T) ((-334 . -130) T) ((-334 . -698) 34481) ((-334 . -876) 34462) ((-328 . -331) 34431) ((-328 . -130) T) ((-328 . -25) T) ((-328 . -101) T) ((-328 . -597) 34413) ((-328 . -1074) T) ((-328 . -23) T) ((-328 . -21) T) ((-326 . -827) T) ((-326 . -101) T) ((-326 . -597) 34395) ((-326 . -1074) T) ((-325 . -1074) T) ((-325 . -597) 34377) ((-325 . -101) T) ((-322 . -19) 34361) ((-322 . -631) 34345) ((-322 . -283) 34322) ((-322 . -281) 34299) ((-322 . -588) 34276) ((-322 . -598) 34237) ((-322 . -483) 34221) ((-322 . -101) 34171) ((-322 . -1074) 34121) ((-322 . -507) 34054) ((-322 . -304) 33992) ((-322 . -597) 33904) ((-322 . -1185) T) ((-322 . -34) T) ((-322 . -149) 33888) ((-322 . -827) 33867) ((-322 . -367) 33851) ((-322 . -277) 33835) ((-319 . -318) 33812) ((-319 . -1014) 33796) ((-319 . -23) T) ((-319 . -1074) T) ((-319 . -597) 33778) ((-319 . -101) T) ((-319 . -25) T) ((-319 . -130) T) ((-317 . -21) T) ((-317 . -23) T) ((-317 . -1074) T) ((-317 . -597) 33760) ((-317 . -101) T) ((-317 . -25) T) ((-317 . -130) T) ((-317 . -698) 33742) ((-317 . -628) 33724) ((-317 . -1031) 33706) ((-317 . -111) 33681) ((-317 . -318) 33658) ((-317 . -1014) 33642) ((-317 . -827) 33621) ((-314 . -1214) 33605) ((-314 . -229) 33557) ((-314 . -281) 33542) ((-314 . -876) 33448) ((-314 . -949) 33410) ((-314 . -38) 33251) ((-314 . -111) 33072) ((-314 . -1031) 32907) ((-314 . -628) 32804) ((-314 . -698) 32645) ((-314 . -143) 32624) ((-314 . -145) 32603) ((-314 . -47) 32573) ((-314 . -1210) 32543) ((-314 . -35) 32509) ((-314 . -94) 32475) ((-314 . -279) 32441) ((-314 . -486) 32407) ((-314 . -1174) 32373) ((-314 . -1171) 32339) ((-314 . -978) 32305) ((-314 . -239) 32284) ((-314 . -285) 32235) ((-314 . -130) T) ((-314 . -25) T) ((-314 . -101) T) ((-314 . -597) 32217) ((-314 . -1074) T) ((-314 . -23) T) ((-314 . -21) T) ((-314 . -1025) T) ((-314 . -1032) T) ((-314 . -1085) T) ((-314 . -707) T) ((-314 . -302) 32196) ((-314 . -446) 32175) ((-314 . -170) 32106) ((-314 . -545) 32057) ((-314 . -897) 32036) ((-314 . -1190) 32015) ((-314 . -358) 31994) ((-314 . -772) T) ((-314 . -827) T) ((-314 . -774) T) ((-309 . -416) 31978) ((-309 . -1014) 31641) ((-309 . -598) 31502) ((-309 . -860) 31486) ((-309 . -876) 31452) ((-309 . -467) 31431) ((-309 . -407) 31415) ((-309 . -862) 31340) ((-309 . -1185) T) ((-309 . -395) 31324) ((-309 . -621) 31230) ((-309 . -372) 31199) ((-309 . -239) 31178) ((-309 . -111) 31074) ((-309 . -1031) 30984) ((-309 . -285) 30963) ((-309 . -698) 30873) ((-309 . -628) 30694) ((-309 . -38) 30604) ((-309 . -302) 30583) ((-309 . -446) 30562) ((-309 . -170) 30541) ((-309 . -545) 30520) ((-309 . -897) 30499) ((-309 . -1190) 30478) ((-309 . -358) 30457) ((-309 . -304) 30444) ((-309 . -507) 30410) ((-309 . -827) T) ((-309 . -293) T) ((-309 . -145) 30389) ((-309 . -143) 30368) ((-309 . -1025) 30258) ((-309 . -1032) 30148) ((-309 . -1085) 29997) ((-309 . -707) 29846) ((-309 . -130) 29717) ((-309 . -25) 29569) ((-309 . -101) T) ((-309 . -597) 29551) ((-309 . -1074) T) ((-309 . -23) 29403) ((-309 . -21) 29274) ((-309 . -29) 29244) ((-309 . -978) 29223) ((-309 . -27) 29202) ((-309 . -1171) 29181) ((-309 . -1174) 29160) ((-309 . -486) 29139) ((-309 . -279) 29118) ((-309 . -94) 29097) ((-309 . -35) 29076) ((-309 . -158) 29055) ((-309 . -141) 29034) ((-309 . -612) 29013) ((-309 . -936) 28992) ((-309 . -1112) 28971) ((-308 . -967) 28932) ((-308 . -1124) NIL) ((-308 . -1014) 28862) ((-308 . -598) NIL) ((-308 . -996) NIL) ((-308 . -886) NIL) ((-308 . -860) 28823) ((-308 . -825) NIL) ((-308 . -777) NIL) ((-308 . -774) NIL) ((-308 . -827) NIL) ((-308 . -772) NIL) ((-308 . -771) NIL) ((-308 . -800) NIL) ((-308 . -862) NIL) ((-308 . -1185) T) ((-308 . -395) 28784) ((-308 . -621) 28745) ((-308 . -372) 28706) ((-308 . -281) 28641) ((-308 . -304) 28582) ((-308 . -507) 28474) ((-308 . -333) 28435) ((-308 . -239) T) ((-308 . -111) 28348) ((-308 . -1031) 28277) ((-308 . -285) T) ((-308 . -698) 28206) ((-308 . -628) 28135) ((-308 . -38) 28064) ((-308 . -302) T) ((-308 . -446) T) ((-308 . -170) T) ((-308 . -545) T) ((-308 . -897) T) ((-308 . -1190) T) ((-308 . -358) T) ((-308 . -229) NIL) ((-308 . -876) NIL) ((-308 . -227) 28025) ((-308 . -145) 27981) ((-308 . -143) 27937) ((-308 . -130) T) ((-308 . -25) T) ((-308 . -101) T) ((-308 . -597) 27919) ((-308 . -1074) T) ((-308 . -23) T) ((-308 . -21) T) ((-308 . -1025) T) ((-308 . -1032) T) ((-308 . -1085) T) ((-308 . -707) T) ((-307 . -1056) T) ((-307 . -597) 27885) ((-307 . -1074) T) ((-307 . -101) T) ((-307 . -92) T) ((-306 . -1074) T) ((-306 . -597) 27867) ((-306 . -101) T) ((-290 . -1162) 27846) ((-290 . -225) 27796) ((-290 . -106) 27746) ((-290 . -304) 27550) ((-290 . -507) 27342) ((-290 . -483) 27279) ((-290 . -149) 27229) ((-290 . -598) NIL) ((-290 . -231) 27179) ((-290 . -594) 27158) ((-290 . -283) 27137) ((-290 . -281) 27116) ((-290 . -101) T) ((-290 . -1074) T) ((-290 . -597) 27098) ((-290 . -1185) T) ((-290 . -34) T) ((-290 . -588) 27077) ((-288 . -1185) T) ((-288 . -507) 27026) ((-288 . -1074) 26808) ((-288 . -597) 26549) ((-288 . -101) 26331) ((-288 . -25) 26195) ((-288 . -21) 26078) ((-288 . -23) 25961) ((-288 . -130) 25844) ((-288 . -1085) 25725) ((-288 . -707) 25627) ((-288 . -467) 25606) ((-288 . -1025) 25548) ((-288 . -1032) 25490) ((-288 . -628) 25350) ((-288 . -111) 25266) ((-288 . -1031) 25187) ((-288 . -698) 25129) ((-288 . -876) 25088) ((-288 . -1239) 25058) ((-286 . -597) 25040) ((-284 . -302) T) ((-284 . -446) T) ((-284 . -38) 25027) ((-284 . -707) T) ((-284 . -1085) T) ((-284 . -1032) T) ((-284 . -1025) T) ((-284 . -111) 25012) ((-284 . -1031) 24999) ((-284 . -21) T) ((-284 . -23) T) ((-284 . -1074) T) ((-284 . -597) 24981) ((-284 . -101) T) ((-284 . -25) T) ((-284 . -130) T) ((-284 . -628) 24968) ((-284 . -698) 24955) ((-284 . -170) T) ((-284 . -285) T) ((-284 . -545) T) ((-284 . -897) T) ((-275 . -597) 24937) ((-274 . -959) 24921) ((-273 . -959) 24905) ((-270 . -827) T) ((-270 . -101) T) ((-270 . -597) 24887) ((-270 . -1074) T) ((-269 . -816) T) ((-269 . -101) T) ((-269 . -597) 24869) ((-269 . -1074) T) ((-268 . -816) T) ((-268 . -101) T) ((-268 . -597) 24851) ((-268 . -1074) T) ((-267 . -816) T) ((-267 . -101) T) ((-267 . -597) 24833) ((-267 . -1074) T) ((-266 . -816) T) ((-266 . -101) T) ((-266 . -597) 24815) ((-266 . -1074) T) ((-265 . -816) T) ((-265 . -101) T) ((-265 . -597) 24797) ((-265 . -1074) T) ((-264 . -816) T) ((-264 . -101) T) ((-264 . -597) 24779) ((-264 . -1074) T) ((-263 . -816) T) ((-263 . -101) T) ((-263 . -597) 24761) ((-263 . -1074) T) ((-259 . -248) 24723) ((-259 . -1014) 24567) ((-259 . -598) 24315) ((-259 . -321) 24287) ((-259 . -407) 24271) ((-259 . -38) 24120) ((-259 . -111) 23949) ((-259 . -1031) 23792) ((-259 . -628) 23717) ((-259 . -698) 23566) ((-259 . -143) 23545) ((-259 . -145) 23524) ((-259 . -170) 23435) ((-259 . -545) 23366) ((-259 . -285) 23297) ((-259 . -47) 23269) ((-259 . -372) 23253) ((-259 . -621) 23201) ((-259 . -446) 23152) ((-259 . -507) 23037) ((-259 . -827) 23016) ((-259 . -876) 22962) ((-259 . -862) 22821) ((-259 . -886) 22800) ((-259 . -1190) 22779) ((-259 . -926) 22746) ((-259 . -304) 22733) ((-259 . -229) 22712) ((-259 . -130) T) ((-259 . -25) T) ((-259 . -101) T) ((-259 . -597) 22694) ((-259 . -1074) T) ((-259 . -23) T) ((-259 . -21) T) ((-259 . -707) T) ((-259 . -1085) T) ((-259 . -1032) T) ((-259 . -1025) T) ((-259 . -227) 22678) ((-256 . -1074) T) ((-256 . -597) 22660) ((-256 . -101) T) ((-246 . -234) 22639) ((-246 . -1239) 22609) ((-246 . -771) 22588) ((-246 . -825) 22567) ((-246 . -777) 22518) ((-246 . -774) 22469) ((-246 . -827) 22420) ((-246 . -772) 22371) ((-246 . -773) 22350) ((-246 . -283) 22327) ((-246 . -281) 22304) ((-246 . -483) 22288) ((-246 . -507) 22221) ((-246 . -304) 22159) ((-246 . -1185) T) ((-246 . -34) T) ((-246 . -588) 22136) ((-246 . -1014) 21963) ((-246 . -407) 21932) ((-246 . -621) 21838) ((-246 . -372) 21807) ((-246 . -363) 21786) ((-246 . -229) 21738) ((-246 . -876) 21670) ((-246 . -227) 21639) ((-246 . -111) 21529) ((-246 . -1031) 21426) ((-246 . -170) 21405) ((-246 . -597) 21366) ((-246 . -698) 21308) ((-246 . -628) 21143) ((-246 . -130) T) ((-246 . -23) T) ((-246 . -21) T) ((-246 . -1025) 21073) ((-246 . -1032) 21003) ((-246 . -1085) 20913) ((-246 . -707) 20823) ((-246 . -38) 20793) ((-246 . -1074) T) ((-246 . -101) T) ((-246 . -25) T) ((-245 . -234) 20772) ((-245 . -1239) 20742) ((-245 . -771) 20721) ((-245 . -825) 20700) ((-245 . -777) 20651) ((-245 . -774) 20602) ((-245 . -827) 20553) ((-245 . -772) 20504) ((-245 . -773) 20483) ((-245 . -283) 20460) ((-245 . -281) 20437) ((-245 . -483) 20421) ((-245 . -507) 20354) ((-245 . -304) 20292) ((-245 . -1185) T) ((-245 . -34) T) ((-245 . -588) 20269) ((-245 . -1014) 20096) ((-245 . -407) 20065) ((-245 . -621) 19971) ((-245 . -372) 19940) ((-245 . -363) 19919) ((-245 . -229) 19871) ((-245 . -876) 19803) ((-245 . -227) 19772) ((-245 . -111) 19662) ((-245 . -1031) 19559) ((-245 . -170) 19538) ((-245 . -597) 19499) ((-245 . -698) 19441) ((-245 . -628) 19263) ((-245 . -130) T) ((-245 . -23) T) ((-245 . -21) T) ((-245 . -1025) 19193) ((-245 . -1032) 19123) ((-245 . -1085) 19033) ((-245 . -707) 18943) ((-245 . -38) 18913) ((-245 . -1074) T) ((-245 . -101) T) ((-245 . -25) T) ((-244 . -1074) T) ((-244 . -597) 18895) ((-244 . -101) T) ((-243 . -926) 18840) ((-243 . -1014) 18716) ((-243 . -1190) 18695) ((-243 . -886) 18674) ((-243 . -862) NIL) ((-243 . -876) 18651) ((-243 . -827) 18630) ((-243 . -507) 18573) ((-243 . -446) 18524) ((-243 . -621) 18472) ((-243 . -372) 18456) ((-243 . -47) 18413) ((-243 . -38) 18262) ((-243 . -698) 18111) ((-243 . -285) 18042) ((-243 . -545) 17973) ((-243 . -111) 17802) ((-243 . -1031) 17645) ((-243 . -170) 17556) ((-243 . -145) 17535) ((-243 . -143) 17514) ((-243 . -628) 17439) ((-243 . -130) T) ((-243 . -25) T) ((-243 . -101) T) ((-243 . -597) 17421) ((-243 . -1074) T) ((-243 . -23) T) ((-243 . -21) T) ((-243 . -1025) T) ((-243 . -1032) T) ((-243 . -1085) T) ((-243 . -707) T) ((-243 . -407) 17405) ((-243 . -321) 17362) ((-243 . -304) 17349) ((-243 . -598) 17210) ((-241 . -646) 17194) ((-241 . -1220) 17178) ((-241 . -986) 17162) ((-241 . -1122) 17146) ((-241 . -827) 17125) ((-241 . -367) 17109) ((-241 . -631) 17093) ((-241 . -283) 17070) ((-241 . -281) 17047) ((-241 . -588) 17024) ((-241 . -598) 16985) ((-241 . -483) 16969) ((-241 . -101) 16919) ((-241 . -1074) 16869) ((-241 . -507) 16802) ((-241 . -304) 16740) ((-241 . -597) 16652) ((-241 . -1185) T) ((-241 . -34) T) ((-241 . -149) 16636) ((-241 . -277) 16620) ((-235 . -234) 16599) ((-235 . -1239) 16569) ((-235 . -771) 16548) ((-235 . -825) 16527) ((-235 . -777) 16478) ((-235 . -774) 16429) ((-235 . -827) 16380) ((-235 . -772) 16331) ((-235 . -773) 16310) ((-235 . -283) 16287) ((-235 . -281) 16264) ((-235 . -483) 16248) ((-235 . -507) 16181) ((-235 . -304) 16119) ((-235 . -1185) T) ((-235 . -34) T) ((-235 . -588) 16096) ((-235 . -1014) 15923) ((-235 . -407) 15892) ((-235 . -621) 15798) ((-235 . -372) 15767) ((-235 . -363) 15746) ((-235 . -229) 15698) ((-235 . -876) 15630) ((-235 . -227) 15599) ((-235 . -111) 15489) ((-235 . -1031) 15386) ((-235 . -170) 15365) ((-235 . -597) 15096) ((-235 . -698) 15038) ((-235 . -628) 14886) ((-235 . -130) 14756) ((-235 . -23) 14626) ((-235 . -21) 14536) ((-235 . -1025) 14466) ((-235 . -1032) 14396) ((-235 . -1085) 14306) ((-235 . -707) 14216) ((-235 . -38) 14186) ((-235 . -1074) 13976) ((-235 . -101) 13766) ((-235 . -25) 13617) ((-223 . -666) 13575) ((-223 . -483) 13559) ((-223 . -101) 13537) ((-223 . -1074) 13515) ((-223 . -507) 13448) ((-223 . -304) 13386) ((-223 . -597) 13318) ((-223 . -1185) T) ((-223 . -34) T) ((-223 . -56) 13276) ((-221 . -399) T) ((-221 . -145) T) ((-221 . -628) 13241) ((-221 . -130) T) ((-221 . -25) T) ((-221 . -101) T) ((-221 . -597) 13223) ((-221 . -1074) T) ((-221 . -23) T) ((-221 . -21) T) ((-221 . -707) T) ((-221 . -1085) T) ((-221 . -1032) T) ((-221 . -1025) T) ((-221 . -598) 13153) ((-221 . -358) T) ((-221 . -1190) T) ((-221 . -897) T) ((-221 . -545) T) ((-221 . -170) T) ((-221 . -698) 13118) ((-221 . -38) 13083) ((-221 . -446) T) ((-221 . -302) T) ((-221 . -111) 13039) ((-221 . -1031) 13004) ((-221 . -285) T) ((-221 . -239) T) ((-221 . -825) T) ((-221 . -777) T) ((-221 . -774) T) ((-221 . -827) T) ((-221 . -772) T) ((-221 . -771) T) ((-221 . -862) 12986) ((-221 . -978) T) ((-221 . -996) T) ((-221 . -1014) 12946) ((-221 . -1034) T) ((-221 . -229) T) ((-221 . -801) T) ((-221 . -1171) T) ((-221 . -1174) T) ((-221 . -486) T) ((-221 . -279) T) ((-221 . -94) T) ((-221 . -35) T) ((-219 . -603) 12923) ((-219 . -628) 12890) ((-219 . -707) T) ((-219 . -1085) T) ((-219 . -1032) T) ((-219 . -1025) T) ((-219 . -21) T) ((-219 . -23) T) ((-219 . -1074) T) ((-219 . -597) 12872) ((-219 . -101) T) ((-219 . -25) T) ((-219 . -130) T) ((-219 . -1014) 12849) ((-218 . -249) 12833) ((-218 . -1094) 12817) ((-218 . -106) 12801) ((-218 . -34) T) ((-218 . -1185) T) ((-218 . -597) 12733) ((-218 . -304) 12671) ((-218 . -507) 12604) ((-218 . -1074) 12582) ((-218 . -101) 12560) ((-218 . -483) 12544) ((-218 . -971) 12528) ((-214 . -1056) T) ((-214 . -597) 12494) ((-214 . -1074) T) ((-214 . -101) T) ((-214 . -92) T) ((-213 . -967) 12476) ((-213 . -1124) T) ((-213 . -1014) 12436) ((-213 . -598) 12366) ((-213 . -996) T) ((-213 . -886) NIL) ((-213 . -860) 12348) ((-213 . -825) T) ((-213 . -777) T) ((-213 . -774) T) ((-213 . -827) T) ((-213 . -772) T) ((-213 . -771) T) ((-213 . -800) T) ((-213 . -862) 12330) ((-213 . -1185) T) ((-213 . -395) 12312) ((-213 . -621) 12294) ((-213 . -372) 12276) ((-213 . -281) NIL) ((-213 . -304) NIL) ((-213 . -507) NIL) ((-213 . -333) 12258) ((-213 . -239) T) ((-213 . -111) 12192) ((-213 . -1031) 12142) ((-213 . -285) T) ((-213 . -698) 12092) ((-213 . -628) 12042) ((-213 . -38) 11992) ((-213 . -302) T) ((-213 . -446) T) ((-213 . -170) T) ((-213 . -545) T) ((-213 . -897) T) ((-213 . -1190) T) ((-213 . -358) T) ((-213 . -229) T) ((-213 . -876) NIL) ((-213 . -227) 11974) ((-213 . -145) T) ((-213 . -143) NIL) ((-213 . -130) T) ((-213 . -25) T) ((-213 . -101) T) ((-213 . -597) 11956) ((-213 . -1074) T) ((-213 . -23) T) ((-213 . -21) T) ((-213 . -1025) T) ((-213 . -1032) T) ((-213 . -1085) T) ((-213 . -707) T) ((-210 . -1074) T) ((-210 . -597) 11938) ((-210 . -101) T) ((-209 . -1074) T) ((-209 . -597) 11920) ((-209 . -101) T) ((-208 . -871) T) ((-208 . -101) T) ((-208 . -597) 11902) ((-208 . -1074) T) ((-207 . -871) T) ((-207 . -101) T) ((-207 . -597) 11884) ((-207 . -1074) T) ((-205 . -780) T) ((-205 . -101) T) ((-205 . -597) 11866) ((-205 . -1074) T) ((-204 . -780) T) ((-204 . -101) T) ((-204 . -597) 11848) ((-204 . -1074) T) ((-203 . -780) T) ((-203 . -101) T) ((-203 . -597) 11830) ((-203 . -1074) T) ((-202 . -780) T) ((-202 . -101) T) ((-202 . -597) 11812) ((-202 . -1074) T) ((-199 . -767) T) ((-199 . -101) T) ((-199 . -597) 11794) ((-199 . -1074) T) ((-198 . -767) T) ((-198 . -101) T) ((-198 . -597) 11776) ((-198 . -1074) T) ((-197 . -767) T) ((-197 . -101) T) ((-197 . -597) 11758) ((-197 . -1074) T) ((-196 . -767) T) ((-196 . -101) T) ((-196 . -597) 11740) ((-196 . -1074) T) ((-195 . -767) T) ((-195 . -101) T) ((-195 . -597) 11722) ((-195 . -1074) T) ((-194 . -767) T) ((-194 . -101) T) ((-194 . -597) 11704) ((-194 . -1074) T) ((-193 . -767) T) ((-193 . -101) T) ((-193 . -597) 11686) ((-193 . -1074) T) ((-192 . -767) T) ((-192 . -101) T) ((-192 . -597) 11668) ((-192 . -1074) T) ((-191 . -767) T) ((-191 . -101) T) ((-191 . -597) 11650) ((-191 . -1074) T) ((-190 . -767) T) ((-190 . -101) T) ((-190 . -597) 11632) ((-190 . -1074) T) ((-189 . -767) T) ((-189 . -101) T) ((-189 . -597) 11614) ((-189 . -1074) T) ((-183 . -1074) T) ((-183 . -597) 11596) ((-183 . -101) T) ((-182 . -1074) T) ((-182 . -597) 11578) ((-182 . -101) T) ((-181 . -1074) T) ((-181 . -597) 11560) ((-181 . -101) T) ((-178 . -1056) T) ((-178 . -597) 11526) ((-178 . -1074) T) ((-178 . -101) T) ((-178 . -92) T) ((-173 . -597) 11508) ((-172 . -38) 11440) ((-172 . -628) 11372) ((-172 . -707) T) ((-172 . -1085) T) ((-172 . -1032) T) ((-172 . -1025) T) ((-172 . -111) 11283) ((-172 . -1031) 11215) ((-172 . -21) T) ((-172 . -23) T) ((-172 . -1074) T) ((-172 . -597) 11197) ((-172 . -101) T) ((-172 . -25) T) ((-172 . -130) T) ((-172 . -698) 11129) ((-172 . -358) T) ((-172 . -1190) T) ((-172 . -897) T) ((-172 . -545) T) ((-172 . -170) T) ((-172 . -446) T) ((-172 . -302) T) ((-172 . -285) T) ((-172 . -239) T) ((-169 . -1074) T) ((-169 . -597) 11111) ((-169 . -101) T) ((-166 . -164) 11095) ((-166 . -35) 11073) ((-166 . -94) 11051) ((-166 . -279) 11029) ((-166 . -486) 11007) ((-166 . -1174) 10985) ((-166 . -1171) 10963) ((-166 . -978) 10915) ((-166 . -886) 10868) ((-166 . -598) 10630) ((-166 . -860) 10614) ((-166 . -827) 10593) ((-166 . -363) 10544) ((-166 . -345) 10523) ((-166 . -1124) 10502) ((-166 . -397) 10481) ((-166 . -405) 10452) ((-166 . -38) 10280) ((-166 . -111) 10176) ((-166 . -1031) 10086) ((-166 . -628) 9996) ((-166 . -698) 9824) ((-166 . -365) 9795) ((-166 . -705) 9766) ((-166 . -1014) 9662) ((-166 . -407) 9646) ((-166 . -862) 9571) ((-166 . -1185) T) ((-166 . -395) 9555) ((-166 . -621) 9503) ((-166 . -372) 9487) ((-166 . -281) 9445) ((-166 . -304) 9410) ((-166 . -507) 9322) ((-166 . -333) 9306) ((-166 . -239) 9257) ((-166 . -1190) 9162) ((-166 . -358) 9113) ((-166 . -897) 9044) ((-166 . -545) 8955) ((-166 . -285) 8866) ((-166 . -446) 8797) ((-166 . -302) 8728) ((-166 . -229) 8679) ((-166 . -876) 8638) ((-166 . -227) 8622) ((-166 . -170) T) ((-166 . -145) 8601) ((-166 . -1025) T) ((-166 . -1032) T) ((-166 . -1085) T) ((-166 . -707) T) ((-166 . -21) T) ((-166 . -23) T) ((-166 . -1074) T) ((-166 . -597) 8583) ((-166 . -101) T) ((-166 . -25) T) ((-166 . -130) T) ((-166 . -143) 8534) ((-166 . -801) 8513) ((-160 . -1056) T) ((-160 . -597) 8479) ((-160 . -1074) T) ((-160 . -101) T) ((-160 . -92) T) ((-159 . -1074) T) ((-159 . -597) 8461) ((-159 . -101) T) ((-155 . -25) T) ((-155 . -101) T) ((-155 . -597) 8443) ((-155 . -1074) T) ((-154 . -1056) T) ((-154 . -597) 8409) ((-154 . -1074) T) ((-154 . -101) T) ((-154 . -92) T) ((-152 . -1056) T) ((-152 . -597) 8375) ((-152 . -1074) T) ((-152 . -101) T) ((-152 . -92) T) ((-150 . -1025) T) ((-150 . -1032) T) ((-150 . -1085) T) ((-150 . -707) T) ((-150 . -21) T) ((-150 . -23) T) ((-150 . -1074) T) ((-150 . -597) 8357) ((-150 . -101) T) ((-150 . -25) T) ((-150 . -130) T) ((-150 . -628) 8331) ((-150 . -38) 8315) ((-150 . -111) 8294) ((-150 . -1031) 8278) ((-150 . -698) 8262) ((-150 . -1239) 8246) ((-142 . -821) T) ((-142 . -827) T) ((-142 . -1074) T) ((-142 . -597) 8228) ((-142 . -101) T) ((-142 . -363) T) ((-139 . -1074) T) ((-139 . -597) 8210) ((-139 . -101) T) ((-139 . -598) 8169) ((-139 . -421) 8151) ((-139 . -1072) 8133) ((-139 . -363) T) ((-139 . -231) 8115) ((-139 . -149) 8097) ((-139 . -483) 8079) ((-139 . -507) NIL) ((-139 . -304) NIL) ((-139 . -1185) T) ((-139 . -34) T) ((-139 . -106) 8061) ((-139 . -225) 8043) ((-138 . -597) 8025) ((-137 . -1056) T) ((-137 . -597) 7991) ((-137 . -1074) T) ((-137 . -101) T) ((-137 . -92) T) ((-136 . -1056) T) ((-136 . -597) 7957) ((-136 . -1074) T) ((-136 . -101) T) ((-136 . -92) T) ((-134 . -459) 7934) ((-134 . -1014) 7918) ((-134 . -1074) T) ((-134 . -597) 7900) ((-134 . -101) T) ((-134 . -464) 7855) ((-133 . -827) T) ((-133 . -101) T) ((-133 . -597) 7837) ((-133 . -1074) T) ((-133 . -23) T) ((-133 . -25) T) ((-133 . -707) T) ((-133 . -1085) T) ((-133 . -1014) 7819) ((-132 . -1056) T) ((-132 . -597) 7785) ((-132 . -1074) T) ((-132 . -101) T) ((-132 . -92) T) ((-129 . -19) 7767) ((-129 . -631) 7749) ((-129 . -283) 7724) ((-129 . -281) 7699) ((-129 . -588) 7674) ((-129 . -598) NIL) ((-129 . -483) 7656) ((-129 . -101) T) ((-129 . -1074) T) ((-129 . -507) NIL) ((-129 . -304) NIL) ((-129 . -597) 7638) ((-129 . -1185) T) ((-129 . -34) T) ((-129 . -149) 7620) ((-129 . -827) T) ((-129 . -367) 7602) ((-128 . -827) T) ((-128 . -101) T) ((-128 . -597) 7554) ((-128 . -1074) T) ((-127 . -125) 7538) ((-127 . -986) 7522) ((-127 . -34) T) ((-127 . -1185) T) ((-127 . -597) 7454) ((-127 . -304) 7392) ((-127 . -507) 7325) ((-127 . -1074) 7303) ((-127 . -101) 7281) ((-127 . -483) 7265) ((-127 . -119) 7249) ((-126 . -125) 7233) ((-126 . -986) 7217) ((-126 . -34) T) ((-126 . -1185) T) ((-126 . -597) 7149) ((-126 . -304) 7087) ((-126 . -507) 7020) ((-126 . -1074) 6998) ((-126 . -101) 6976) ((-126 . -483) 6960) ((-126 . -119) 6944) ((-121 . -125) 6928) ((-121 . -986) 6912) ((-121 . -34) T) ((-121 . -1185) T) ((-121 . -597) 6844) ((-121 . -304) 6782) ((-121 . -507) 6715) ((-121 . -1074) 6693) ((-121 . -101) 6671) ((-121 . -483) 6655) ((-121 . -119) 6639) ((-117 . -967) 6616) ((-117 . -1124) NIL) ((-117 . -1014) 6593) ((-117 . -598) NIL) ((-117 . -996) NIL) ((-117 . -886) NIL) ((-117 . -860) 6570) ((-117 . -825) NIL) ((-117 . -777) NIL) ((-117 . -774) NIL) ((-117 . -827) NIL) ((-117 . -772) NIL) ((-117 . -771) NIL) ((-117 . -800) NIL) ((-117 . -862) NIL) ((-117 . -1185) T) ((-117 . -395) 6547) ((-117 . -621) 6524) ((-117 . -372) 6501) ((-117 . -281) 6452) ((-117 . -304) 6409) ((-117 . -507) 6317) ((-117 . -333) 6294) ((-117 . -239) T) ((-117 . -111) 6223) ((-117 . -1031) 6168) ((-117 . -285) T) ((-117 . -698) 6113) ((-117 . -628) 6058) ((-117 . -38) 6003) ((-117 . -302) T) ((-117 . -446) T) ((-117 . -170) T) ((-117 . -545) T) ((-117 . -897) T) ((-117 . -1190) T) ((-117 . -358) T) ((-117 . -229) NIL) ((-117 . -876) NIL) ((-117 . -227) 5980) ((-117 . -145) T) ((-117 . -143) NIL) ((-117 . -130) T) ((-117 . -25) T) ((-117 . -101) T) ((-117 . -597) 5962) ((-117 . -1074) T) ((-117 . -23) T) ((-117 . -21) T) ((-117 . -1025) T) ((-117 . -1032) T) ((-117 . -1085) T) ((-117 . -707) T) ((-116 . -846) 5946) ((-116 . -897) T) ((-116 . -545) T) ((-116 . -285) T) ((-116 . -170) T) ((-116 . -698) 5933) ((-116 . -1031) 5920) ((-116 . -111) 5905) ((-116 . -38) 5892) ((-116 . -446) T) ((-116 . -302) T) ((-116 . -1025) T) ((-116 . -1032) T) ((-116 . -1085) T) ((-116 . -707) T) ((-116 . -21) T) ((-116 . -23) T) ((-116 . -1074) T) ((-116 . -597) 5874) ((-116 . -101) T) ((-116 . -25) T) ((-116 . -130) T) ((-116 . -628) 5861) ((-116 . -145) T) ((-113 . -827) T) ((-113 . -101) T) ((-113 . -597) 5843) ((-113 . -1074) T) ((-112 . -821) T) ((-112 . -827) T) ((-112 . -1074) T) ((-112 . -597) 5825) ((-112 . -101) T) ((-112 . -363) T) ((-112 . -642) T) ((-112 . -943) T) ((-112 . -598) 5807) ((-110 . -123) T) ((-110 . -367) 5789) ((-110 . -827) T) ((-110 . -149) 5771) ((-110 . -34) T) ((-110 . -1185) T) ((-110 . -597) 5753) ((-110 . -304) NIL) ((-110 . -507) NIL) ((-110 . -1074) T) ((-110 . -483) 5735) ((-110 . -598) 5717) ((-110 . -588) 5692) ((-110 . -281) 5667) ((-110 . -283) 5642) ((-110 . -631) 5624) ((-110 . -19) 5606) ((-110 . -101) T) ((-110 . -642) T) ((-109 . -360) 5580) ((-109 . -101) T) ((-109 . -597) 5562) ((-109 . -1074) T) ((-108 . -597) 5544) ((-107 . -967) 5526) ((-107 . -1124) T) ((-107 . -1014) 5486) ((-107 . -598) 5416) ((-107 . -996) T) ((-107 . -886) NIL) ((-107 . -860) 5398) ((-107 . -825) T) ((-107 . -777) T) ((-107 . -774) T) ((-107 . -827) T) ((-107 . -772) T) ((-107 . -771) T) ((-107 . -800) T) ((-107 . -862) 5380) ((-107 . -1185) T) ((-107 . -395) 5362) ((-107 . -621) 5344) ((-107 . -372) 5326) ((-107 . -281) NIL) ((-107 . -304) NIL) ((-107 . -507) NIL) ((-107 . -333) 5308) ((-107 . -239) T) ((-107 . -111) 5242) ((-107 . -1031) 5192) ((-107 . -285) T) ((-107 . -698) 5142) ((-107 . -628) 5092) ((-107 . -38) 5042) ((-107 . -302) T) ((-107 . -446) T) ((-107 . -170) T) ((-107 . -545) T) ((-107 . -897) T) ((-107 . -1190) T) ((-107 . -358) T) ((-107 . -229) T) ((-107 . -876) NIL) ((-107 . -227) 5024) ((-107 . -145) T) ((-107 . -143) NIL) ((-107 . -130) T) ((-107 . -25) T) ((-107 . -101) T) ((-107 . -597) 5006) ((-107 . -1074) T) ((-107 . -23) T) ((-107 . -21) T) ((-107 . -1025) T) ((-107 . -1032) T) ((-107 . -1085) T) ((-107 . -707) T) ((-104 . -1074) T) ((-104 . -597) 4988) ((-104 . -101) T) ((-102 . -125) 4972) ((-102 . -986) 4956) ((-102 . -34) T) ((-102 . -1185) T) ((-102 . -597) 4888) ((-102 . -304) 4826) ((-102 . -507) 4759) ((-102 . -1074) 4737) ((-102 . -101) 4715) ((-102 . -483) 4699) ((-102 . -119) 4683) ((-98 . -467) T) ((-98 . -1085) T) ((-98 . -101) T) ((-98 . -597) 4665) ((-98 . -1074) T) ((-98 . -707) T) ((-98 . -281) 4644) ((-96 . -1074) T) ((-96 . -597) 4626) ((-96 . -101) T) ((-95 . -1056) T) ((-95 . -597) 4592) ((-95 . -1074) T) ((-95 . -101) T) ((-95 . -92) T) ((-90 . -1094) 4576) ((-90 . -483) 4560) ((-90 . -101) 4538) ((-90 . -1074) 4516) ((-90 . -507) 4449) ((-90 . -304) 4387) ((-90 . -597) 4319) ((-90 . -1185) T) ((-90 . -34) T) ((-90 . -106) 4303) ((-88 . -392) T) ((-88 . -597) 4285) ((-88 . -1185) T) ((-88 . -391) T) ((-87 . -380) T) ((-87 . -597) 4267) ((-87 . -1185) T) ((-87 . -391) T) ((-86 . -434) T) ((-86 . -597) 4249) ((-86 . -1185) T) ((-86 . -391) T) ((-85 . -435) T) ((-85 . -597) 4231) ((-85 . -1185) T) ((-85 . -391) T) ((-84 . -380) T) ((-84 . -597) 4213) ((-84 . -1185) T) ((-84 . -391) T) ((-83 . -380) T) ((-83 . -597) 4195) ((-83 . -1185) T) ((-83 . -391) T) ((-82 . -435) T) ((-82 . -597) 4177) ((-82 . -1185) T) ((-82 . -391) T) ((-81 . -435) T) ((-81 . -597) 4159) ((-81 . -1185) T) ((-81 . -391) T) ((-80 . -435) T) ((-80 . -597) 4141) ((-80 . -1185) T) ((-80 . -391) T) ((-79 . -435) T) ((-79 . -597) 4123) ((-79 . -1185) T) ((-79 . -391) T) ((-78 . -435) T) ((-78 . -597) 4105) ((-78 . -1185) T) ((-78 . -391) T) ((-77 . -392) T) ((-77 . -597) 4087) ((-77 . -1185) T) ((-77 . -391) T) ((-76 . -435) T) ((-76 . -597) 4069) ((-76 . -1185) T) ((-76 . -391) T) ((-75 . -435) T) ((-75 . -597) 4051) ((-75 . -1185) T) ((-75 . -391) T) ((-74 . -392) T) ((-74 . -597) 4033) ((-74 . -1185) T) ((-74 . -391) T) ((-73 . -435) T) ((-73 . -597) 4015) ((-73 . -1185) T) ((-73 . -391) T) ((-72 . -378) T) ((-72 . -597) 3997) ((-72 . -1185) T) ((-72 . -391) T) ((-71 . -391) T) ((-71 . -1185) T) ((-71 . -597) 3979) ((-70 . -435) T) ((-70 . -597) 3961) ((-70 . -1185) T) ((-70 . -391) T) ((-69 . -378) T) ((-69 . -597) 3943) ((-69 . -1185) T) ((-69 . -391) T) ((-68 . -391) T) ((-68 . -1185) T) ((-68 . -597) 3925) ((-67 . -378) T) ((-67 . -597) 3907) ((-67 . -1185) T) ((-67 . -391) T) ((-66 . -378) T) ((-66 . -597) 3889) ((-66 . -1185) T) ((-66 . -391) T) ((-65 . -392) T) ((-65 . -597) 3871) ((-65 . -1185) T) ((-65 . -391) T) ((-64 . -380) T) ((-64 . -597) 3853) ((-64 . -1185) T) ((-64 . -391) T) ((-63 . -435) T) ((-63 . -597) 3835) ((-63 . -1185) T) ((-63 . -391) T) ((-62 . -391) T) ((-62 . -1185) T) ((-62 . -597) 3817) ((-61 . -435) T) ((-61 . -597) 3799) ((-61 . -1185) T) ((-61 . -391) T) ((-60 . -392) T) ((-60 . -597) 3781) ((-60 . -1185) T) ((-60 . -391) T) ((-59 . -56) 3743) ((-59 . -34) T) ((-59 . -1185) T) ((-59 . -597) 3675) ((-59 . -304) 3613) ((-59 . -507) 3546) ((-59 . -1074) 3524) ((-59 . -101) 3502) ((-59 . -483) 3486) ((-57 . -19) 3470) ((-57 . -631) 3454) ((-57 . -283) 3431) ((-57 . -281) 3408) ((-57 . -588) 3385) ((-57 . -598) 3346) ((-57 . -483) 3330) ((-57 . -101) 3280) ((-57 . -1074) 3230) ((-57 . -507) 3163) ((-57 . -304) 3101) ((-57 . -597) 3013) ((-57 . -1185) T) ((-57 . -34) T) ((-57 . -149) 2997) ((-57 . -827) 2976) ((-57 . -367) 2960) ((-51 . -1074) T) ((-51 . -597) 2942) ((-51 . -101) T) ((-50 . -603) 2926) ((-50 . -628) 2900) ((-50 . -707) T) ((-50 . -1085) T) ((-50 . -1032) T) ((-50 . -1025) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1074) T) ((-50 . -597) 2882) ((-50 . -101) T) ((-50 . -25) T) ((-50 . -130) T) ((-50 . -1014) 2866) ((-49 . -1074) T) ((-49 . -597) 2848) ((-49 . -101) T) ((-48 . -293) T) ((-48 . -1014) 2791) ((-48 . -1074) T) ((-48 . -597) 2773) ((-48 . -101) T) ((-48 . -827) T) ((-48 . -507) 2739) ((-48 . -304) 2726) ((-48 . -27) T) ((-48 . -978) T) ((-48 . -239) T) ((-48 . -111) 2682) ((-48 . -1031) 2647) ((-48 . -285) T) ((-48 . -698) 2612) ((-48 . -628) 2577) ((-48 . -130) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1025) T) ((-48 . -1032) T) ((-48 . -1085) T) ((-48 . -707) T) ((-48 . -38) 2542) ((-48 . -302) T) ((-48 . -446) T) ((-48 . -170) T) ((-48 . -545) T) ((-48 . -897) T) ((-48 . -1190) T) ((-48 . -358) T) ((-48 . -621) 2502) ((-48 . -996) T) ((-48 . -598) 2447) ((-48 . -145) T) ((-48 . -229) T) ((-45 . -36) 2426) ((-45 . -588) 2351) ((-45 . -304) 2155) ((-45 . -507) 1947) ((-45 . -483) 1884) ((-45 . -281) 1809) ((-45 . -283) 1734) ((-45 . -594) 1713) ((-45 . -231) 1663) ((-45 . -106) 1613) ((-45 . -225) 1563) ((-45 . -1162) 1542) ((-45 . -277) 1492) ((-45 . -149) 1442) ((-45 . -34) T) ((-45 . -1185) T) ((-45 . -597) 1424) ((-45 . -1074) T) ((-45 . -101) T) ((-45 . -598) NIL) ((-45 . -631) 1374) ((-45 . -367) 1324) ((-45 . -827) NIL) ((-45 . -1122) 1274) ((-45 . -986) 1224) ((-45 . -1220) 1174) ((-45 . -646) 1124) ((-44 . -413) 1108) ((-44 . -725) 1092) ((-44 . -701) T) ((-44 . -742) T) ((-44 . -111) 1071) ((-44 . -1031) 1055) ((-44 . -21) T) ((-44 . -23) T) ((-44 . -1074) T) ((-44 . -597) 1037) ((-44 . -101) T) ((-44 . -25) T) ((-44 . -130) T) ((-44 . -628) 995) ((-44 . -698) 979) ((-44 . -362) 963) ((-40 . -337) 937) ((-40 . -170) T) ((-40 . -707) T) ((-40 . -1085) T) ((-40 . -1032) T) ((-40 . -1025) T) ((-40 . -628) 882) ((-40 . -130) T) ((-40 . -25) T) ((-40 . -101) T) ((-40 . -597) 864) ((-40 . -1074) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1031) 809) ((-40 . -111) 738) ((-40 . -598) 722) ((-40 . -227) 699) ((-40 . -876) 651) ((-40 . -229) 623) ((-40 . -358) T) ((-40 . -1190) T) ((-40 . -897) T) ((-40 . -545) T) ((-40 . -698) 568) ((-40 . -38) 513) ((-40 . -446) T) ((-40 . -302) T) ((-40 . -285) T) ((-40 . -239) T) ((-40 . -363) NIL) ((-40 . -345) NIL) ((-40 . -1124) NIL) ((-40 . -143) 485) ((-40 . -397) NIL) ((-40 . -405) 457) ((-40 . -145) 429) ((-40 . -365) 401) ((-40 . -372) 378) ((-40 . -621) 317) ((-40 . -407) 294) ((-40 . -1014) 182) ((-40 . -705) 154) ((-31 . -1056) T) ((-31 . -597) 120) ((-31 . -1074) T) ((-31 . -101) T) ((-31 . -92) T) ((-30 . -931) T) ((-30 . -597) 102) ((0 . |EnumerationCategory|) T) ((0 . -597) 84) ((0 . -1074) T) ((0 . -101) T) ((-1 . -1074) T) ((-1 . -597) 66) ((-1 . -101) T) ((-2 . |RecordCategory|) T) ((-2 . -597) 48) ((-2 . -1074) T) ((-2 . -101) T) ((-3 . |UnionCategory|) T) ((-3 . -597) 30) ((-3 . -1074) T) ((-3 . -101) T)) \ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index e9ff6a49..175f5012 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3432414583) -(4351 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3432506629) +(4356 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -45,11 +45,12 @@ |CommutativeRing| |Conduit| |ContinuedFraction| |Contour| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |CoerceAst| |ComplexRootFindingPackage| |CyclicStreamTools| - |ConstructorCall| |ComplexTrigonometricManipulations| - |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| - |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| - |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| - |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| + |Constructor| |ConstructorCall| |ConstructorKind| + |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| + |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| + |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| + |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| + |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |DataBuffer| |Database| |DoubleResultantPackage| @@ -429,14 +430,14 @@ |bezoutMatrix| |bezoutResultant| |bezoutDiscriminant| |bfEntry| |bfKeys| |inspect| |extract!| |bag| |binding| |position!| |test| |setProperties| |setProperty| |deleteProperty!| |has?| |comparison| |equality| |nary?| - |unary?| |nullary?| |arity| |properties| |derivative| |constantOperator| + |unary?| |nullary?| |properties| |derivative| |constantOperator| |constantOpIfCan| |integerBound| |setright!| |setleft!| |brillhartIrreducible?| |brillhartTrials| |noLinearFactor?| |insertRoot!| |binarySearchTree| |nor| |nand| |node| |binaryTournament| |binaryTree| |bitior| |bitand| |byte| |subtractIfCan| |setPosition| |generalizedContinuumHypothesisAssumed| |generalizedContinuumHypothesisAssumed?| |countable?| |Aleph| |unravel| - |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |kind| |alphanumeric| + |ravel| |leviCivitaSymbol| |kroneckerDelta| |reindex| |alphanumeric| |alphabetic| |hexDigit| |digit| |charClass| |alphanumeric?| |lowerCase?| |upperCase?| |alphabetic?| |hexDigit?| |digit?| |escape| |char| |ord| |mkIntegral| |radPoly| |rootPoly| |goodPoint| |chvar| |removeDuplicates| @@ -452,9 +453,10 @@ |toroidal| |conical| |modTree| |multiEuclideanTree| |complexZeros| |divisorCascade| |graeffe| |pleskenSplit| |reciprocalPolynomial| |rootRadius| |schwerpunkt| |setErrorBound| |startPolynomial| |cycleElt| - |computeCycleLength| |computeCycleEntry| |arguments| |constructorName| - |coerceP| |powerSum| |elementary| |alternating| |cyclic| |dihedral| |cap| - |cup| |wreath| |SFunction| |skewSFunction| |cyclotomicDecomposition| + |computeCycleLength| |computeCycleEntry| |arity| |kind| |arguments| + |constructorName| |package| |domain| |category| |coerceP| |powerSum| + |elementary| |alternating| |cyclic| |dihedral| |cap| |cup| |wreath| + |SFunction| |skewSFunction| |cyclotomicDecomposition| |cyclotomicFactorization| |rangeIsFinite| |functionIsContinuousAtEndPoints| |functionIsOscillatory| |changeName| |exprHasWeightCosWXorSinWX| |exprHasAlgebraicWeight| |exprHasLogarithmicWeights| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index d63b31cf..118cb525 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5174 +1,5182 @@ -(3167315 . 3432414603) -((-1843 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-1841 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4142 ((|#2| $ (-536) |#2|) NIL) ((|#2| $ (-1196 (-536)) |#2|) 34)) (-2372 (($ $) 59)) (-4197 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3773 (((-536) (-1 (-112) |#2|) $) 22) (((-536) |#2| $) NIL) (((-536) |#2| $ (-536)) 73)) (-2063 (((-620 |#2|) $) 13)) (-3867 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2067 (($ (-1 |#2| |#2|) $) 29)) (-4313 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2377 (($ |#2| $ (-536)) NIL) (($ $ $ (-536)) 50)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2065 (((-112) (-1 (-112) |#2|) $) 21)) (-4154 ((|#2| $ (-536) |#2|) NIL) ((|#2| $ (-536)) NIL) (($ $ (-1196 (-536))) 49)) (-2378 (($ $ (-536)) 56) (($ $ (-1196 (-536))) 55)) (-2064 (((-749) (-1 (-112) |#2|) $) 26) (((-749) |#2| $) NIL)) (-1842 (($ $ $ (-536)) 52)) (-3754 (($ $) 51)) (-3879 (($ (-620 |#2|)) 53)) (-4156 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-620 $)) 62)) (-4312 (((-838) $) 69)) (-2066 (((-112) (-1 (-112) |#2|) $) 20)) (-3382 (((-112) $ $) 72)) (-3013 (((-112) $ $) 75))) -(((-18 |#1| |#2|) (-10 -8 (-15 -3382 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2372 (|#1| |#1|)) (-15 -1842 (|#1| |#1| |#1| (-536))) (-15 -1843 ((-112) |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4142 (|#2| |#1| (-1196 (-536)) |#2|)) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4142 (|#2| |#1| (-536) |#2|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2063 ((-620 |#2|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1|))) (-19 |#2|) (-1183)) (T -18)) +(3168425 . 3432506650) +((-1848 (((-112) (-1 (-112) |#2| |#2|) $) 63) (((-112) $) NIL)) (-1846 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4147 ((|#2| $ (-538) |#2|) NIL) ((|#2| $ (-1198 (-538)) |#2|) 34)) (-2377 (($ $) 59)) (-4202 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3778 (((-538) (-1 (-112) |#2|) $) 22) (((-538) |#2| $) NIL) (((-538) |#2| $ (-538)) 73)) (-2068 (((-622 |#2|) $) 13)) (-3872 (($ (-1 (-112) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2072 (($ (-1 |#2| |#2|) $) 29)) (-4318 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2382 (($ |#2| $ (-538)) NIL) (($ $ $ (-538)) 50)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 24)) (-2070 (((-112) (-1 (-112) |#2|) $) 21)) (-4159 ((|#2| $ (-538) |#2|) NIL) ((|#2| $ (-538)) NIL) (($ $ (-1198 (-538))) 49)) (-2383 (($ $ (-538)) 56) (($ $ (-1198 (-538))) 55)) (-2069 (((-751) (-1 (-112) |#2|) $) 26) (((-751) |#2| $) NIL)) (-1847 (($ $ $ (-538)) 52)) (-3759 (($ $) 51)) (-3884 (($ (-622 |#2|)) 53)) (-4161 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-622 $)) 62)) (-4317 (((-840) $) 69)) (-2071 (((-112) (-1 (-112) |#2|) $) 20)) (-3387 (((-112) $ $) 72)) (-3018 (((-112) $ $) 75))) +(((-18 |#1| |#2|) (-10 -8 (-15 -3387 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2377 (|#1| |#1|)) (-15 -1847 (|#1| |#1| |#1| (-538))) (-15 -1848 ((-112) |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4147 (|#2| |#1| (-1198 (-538)) |#2|)) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4147 (|#2| |#1| (-538) |#2|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2068 ((-622 |#2|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1|))) (-19 |#2|) (-1185)) (T -18)) NIL -(-10 -8 (-15 -3382 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2372 (|#1| |#1|)) (-15 -1842 (|#1| |#1| |#1| (-536))) (-15 -1843 ((-112) |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4142 (|#2| |#1| (-1196 (-536)) |#2|)) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4142 (|#2| |#1| (-536) |#2|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2063 ((-620 |#2|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-3773 (((-536) (-1 (-112) |#1|) $) 97) (((-536) |#1| $) 96 (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) 95 (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 83 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) 85 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 82 (|has| |#1| (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-19 |#1|) (-138) (-1183)) (T -19)) +(-10 -8 (-15 -3387 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2377 (|#1| |#1|)) (-15 -1847 (|#1| |#1| |#1| (-538))) (-15 -1848 ((-112) |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4147 (|#2| |#1| (-1198 (-538)) |#2|)) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4147 (|#2| |#1| (-538) |#2|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2068 ((-622 |#2|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-3778 (((-538) (-1 (-112) |#1|) $) 97) (((-538) |#1| $) 96 (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) 95 (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 70)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) 85 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 82 (|has| |#1| (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-19 |#1|) (-138) (-1185)) (T -19)) NIL -(-13 (-365 |t#1|) (-10 -7 (-6 -4349))) -(((-34) . T) ((-101) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1072) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-1183) . T)) -((-1367 (((-3 $ "failed") $ $) 12)) (-4192 (($ $) NIL) (($ $ $) 9)) (* (($ (-893) $) NIL) (($ (-749) $) 16) (($ (-536) $) 21))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -1367 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) (-21)) (T -20)) +(-13 (-367 |t#1|) (-10 -7 (-6 -4354))) +(((-34) . T) ((-101) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-367 |#1|) . T) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1074) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-1185) . T)) +((-1368 (((-3 $ "failed") $ $) 12)) (-4197 (($ $) NIL) (($ $ $) 9)) (* (($ (-895) $) NIL) (($ (-751) $) 16) (($ (-538) $) 21))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -1368 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -1367 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20))) +(-10 -8 (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -1368 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20))) (((-21) (-138)) (T -21)) -((-4192 (*1 *1 *1) (-4 *1 (-21))) (-4192 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-536))))) -(-13 (-130) (-10 -8 (-15 -4192 ($ $)) (-15 -4192 ($ $ $)) (-15 * ($ (-536) $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-3534 (((-112) $) 10)) (-3891 (($) 15)) (* (($ (-893) $) 14) (($ (-749) $) 18))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 -3891 (|#1|)) (-15 * (|#1| (-893) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 -3891 (|#1|)) (-15 * (|#1| (-893) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15))) +((-4197 (*1 *1 *1) (-4 *1 (-21))) (-4197 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-538))))) +(-13 (-130) (-10 -8 (-15 -4197 ($ $)) (-15 -4197 ($ $ $)) (-15 * ($ (-538) $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-3539 (((-112) $) 10)) (-3896 (($) 15)) (* (($ (-895) $) 14) (($ (-751) $) 18))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 -3896 (|#1|)) (-15 * (|#1| (-895) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 -3896 (|#1|)) (-15 * (|#1| (-895) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15))) (((-23) (-138)) (T -23)) -((-2986 (*1 *1) (-4 *1 (-23))) (-3891 (*1 *1) (-4 *1 (-23))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-749))))) -(-13 (-25) (-10 -8 (-15 (-2986) ($) -4306) (-15 -3891 ($) -4306) (-15 -3534 ((-112) $)) (-15 * ($ (-749) $)))) -(((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((* (($ (-893) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-893) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-893) |#1|))) -((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13))) +((-2991 (*1 *1) (-4 *1 (-23))) (-3896 (*1 *1) (-4 *1 (-23))) (-3539 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-751))))) +(-13 (-25) (-10 -8 (-15 (-2991) ($) -4311) (-15 -3896 ($) -4311) (-15 -3539 ((-112) $)) (-15 * ($ (-751) $)))) +(((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((* (($ (-895) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-895) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-895) |#1|))) +((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13))) (((-25) (-138)) (T -25)) -((-4194 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-893))))) -(-13 (-1072) (-10 -8 (-15 -4194 ($ $ $)) (-15 * ($ (-893) $)))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-1662 (((-620 $) (-920 $)) 29) (((-620 $) (-1141 $)) 16) (((-620 $) (-1141 $) (-1147)) 20)) (-1263 (($ (-920 $)) 27) (($ (-1141 $)) 11) (($ (-1141 $) (-1147)) 54)) (-1264 (((-620 $) (-920 $)) 30) (((-620 $) (-1141 $)) 18) (((-620 $) (-1141 $) (-1147)) 19)) (-3529 (($ (-920 $)) 28) (($ (-1141 $)) 13) (($ (-1141 $) (-1147)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -1662 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1662 ((-620 |#1|) (-1141 |#1|))) (-15 -1662 ((-620 |#1|) (-920 |#1|))) (-15 -1263 (|#1| (-1141 |#1|) (-1147))) (-15 -1263 (|#1| (-1141 |#1|))) (-15 -1263 (|#1| (-920 |#1|))) (-15 -1264 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1264 ((-620 |#1|) (-1141 |#1|))) (-15 -1264 ((-620 |#1|) (-920 |#1|))) (-15 -3529 (|#1| (-1141 |#1|) (-1147))) (-15 -3529 (|#1| (-1141 |#1|))) (-15 -3529 (|#1| (-920 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -1662 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1662 ((-620 |#1|) (-1141 |#1|))) (-15 -1662 ((-620 |#1|) (-920 |#1|))) (-15 -1263 (|#1| (-1141 |#1|) (-1147))) (-15 -1263 (|#1| (-1141 |#1|))) (-15 -1263 (|#1| (-920 |#1|))) (-15 -1264 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1264 ((-620 |#1|) (-1141 |#1|))) (-15 -1264 ((-620 |#1|) (-920 |#1|))) (-15 -3529 (|#1| (-1141 |#1|) (-1147))) (-15 -3529 (|#1| (-1141 |#1|))) (-15 -3529 (|#1| (-920 |#1|)))) -((-2893 (((-112) $ $) 7)) (-1662 (((-620 $) (-920 $)) 77) (((-620 $) (-1141 $)) 76) (((-620 $) (-1141 $) (-1147)) 75)) (-1263 (($ (-920 $)) 80) (($ (-1141 $)) 79) (($ (-1141 $) (-1147)) 78)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-3365 (($ $) 89)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-1264 (((-620 $) (-920 $)) 83) (((-620 $) (-1141 $)) 82) (((-620 $) (-1141 $) (-1147)) 81)) (-3529 (($ (-920 $)) 86) (($ (-1141 $)) 85) (($ (-1141 $) (-1147)) 84)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 88)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66) (($ $ (-400 (-536))) 87)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) +((-4199 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-895))))) +(-13 (-1074) (-10 -8 (-15 -4199 ($ $ $)) (-15 * ($ (-895) $)))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-1667 (((-622 $) (-922 $)) 29) (((-622 $) (-1143 $)) 16) (((-622 $) (-1143 $) (-1149)) 20)) (-1265 (($ (-922 $)) 27) (($ (-1143 $)) 11) (($ (-1143 $) (-1149)) 54)) (-1266 (((-622 $) (-922 $)) 30) (((-622 $) (-1143 $)) 18) (((-622 $) (-1143 $) (-1149)) 19)) (-3534 (($ (-922 $)) 28) (($ (-1143 $)) 13) (($ (-1143 $) (-1149)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -1667 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1667 ((-622 |#1|) (-1143 |#1|))) (-15 -1667 ((-622 |#1|) (-922 |#1|))) (-15 -1265 (|#1| (-1143 |#1|) (-1149))) (-15 -1265 (|#1| (-1143 |#1|))) (-15 -1265 (|#1| (-922 |#1|))) (-15 -1266 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1266 ((-622 |#1|) (-1143 |#1|))) (-15 -1266 ((-622 |#1|) (-922 |#1|))) (-15 -3534 (|#1| (-1143 |#1|) (-1149))) (-15 -3534 (|#1| (-1143 |#1|))) (-15 -3534 (|#1| (-922 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -1667 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1667 ((-622 |#1|) (-1143 |#1|))) (-15 -1667 ((-622 |#1|) (-922 |#1|))) (-15 -1265 (|#1| (-1143 |#1|) (-1149))) (-15 -1265 (|#1| (-1143 |#1|))) (-15 -1265 (|#1| (-922 |#1|))) (-15 -1266 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1266 ((-622 |#1|) (-1143 |#1|))) (-15 -1266 ((-622 |#1|) (-922 |#1|))) (-15 -3534 (|#1| (-1143 |#1|) (-1149))) (-15 -3534 (|#1| (-1143 |#1|))) (-15 -3534 (|#1| (-922 |#1|)))) +((-2898 (((-112) $ $) 7)) (-1667 (((-622 $) (-922 $)) 77) (((-622 $) (-1143 $)) 76) (((-622 $) (-1143 $) (-1149)) 75)) (-1265 (($ (-922 $)) 80) (($ (-1143 $)) 79) (($ (-1143 $) (-1149)) 78)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-3370 (($ $) 89)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-1266 (((-622 $) (-922 $)) 83) (((-622 $) (-1143 $)) 82) (((-622 $) (-1143 $) (-1149)) 81)) (-3534 (($ (-922 $)) 86) (($ (-1143 $)) 85) (($ (-1143 $) (-1149)) 84)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 88)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66) (($ $ (-402 (-538))) 87)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64))) (((-27) (-138)) (T -27)) -((-3529 (*1 *1 *2) (-12 (-5 *2 (-920 *1)) (-4 *1 (-27)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) (-3529 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1147)) (-4 *1 (-27)))) (-1264 (*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) (-1264 (*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) (-1264 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1147)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) (-1263 (*1 *1 *2) (-12 (-5 *2 (-920 *1)) (-4 *1 (-27)))) (-1263 (*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) (-1263 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1147)) (-4 *1 (-27)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) (-1662 (*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1147)) (-4 *1 (-27)) (-5 *2 (-620 *1))))) -(-13 (-356) (-976) (-10 -8 (-15 -3529 ($ (-920 $))) (-15 -3529 ($ (-1141 $))) (-15 -3529 ($ (-1141 $) (-1147))) (-15 -1264 ((-620 $) (-920 $))) (-15 -1264 ((-620 $) (-1141 $))) (-15 -1264 ((-620 $) (-1141 $) (-1147))) (-15 -1263 ($ (-920 $))) (-15 -1263 ($ (-1141 $))) (-15 -1263 ($ (-1141 $) (-1147))) (-15 -1662 ((-620 $) (-920 $))) (-15 -1662 ((-620 $) (-1141 $))) (-15 -1662 ((-620 $) (-1141 $) (-1147))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-976) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) -((-1662 (((-620 $) (-920 $)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-1141 $) (-1147)) 50) (((-620 $) $) 19) (((-620 $) $ (-1147)) 41)) (-1263 (($ (-920 $)) NIL) (($ (-1141 $)) NIL) (($ (-1141 $) (-1147)) 52) (($ $) 17) (($ $ (-1147)) 37)) (-1264 (((-620 $) (-920 $)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-1141 $) (-1147)) 48) (((-620 $) $) 15) (((-620 $) $ (-1147)) 43)) (-3529 (($ (-920 $)) NIL) (($ (-1141 $)) NIL) (($ (-1141 $) (-1147)) NIL) (($ $) 12) (($ $ (-1147)) 39))) -(((-28 |#1| |#2|) (-10 -8 (-15 -1662 ((-620 |#1|) |#1| (-1147))) (-15 -1263 (|#1| |#1| (-1147))) (-15 -1662 ((-620 |#1|) |#1|)) (-15 -1263 (|#1| |#1|)) (-15 -1264 ((-620 |#1|) |#1| (-1147))) (-15 -3529 (|#1| |#1| (-1147))) (-15 -1264 ((-620 |#1|) |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -1662 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1662 ((-620 |#1|) (-1141 |#1|))) (-15 -1662 ((-620 |#1|) (-920 |#1|))) (-15 -1263 (|#1| (-1141 |#1|) (-1147))) (-15 -1263 (|#1| (-1141 |#1|))) (-15 -1263 (|#1| (-920 |#1|))) (-15 -1264 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1264 ((-620 |#1|) (-1141 |#1|))) (-15 -1264 ((-620 |#1|) (-920 |#1|))) (-15 -3529 (|#1| (-1141 |#1|) (-1147))) (-15 -3529 (|#1| (-1141 |#1|))) (-15 -3529 (|#1| (-920 |#1|)))) (-29 |#2|) (-13 (-825) (-543))) (T -28)) -NIL -(-10 -8 (-15 -1662 ((-620 |#1|) |#1| (-1147))) (-15 -1263 (|#1| |#1| (-1147))) (-15 -1662 ((-620 |#1|) |#1|)) (-15 -1263 (|#1| |#1|)) (-15 -1264 ((-620 |#1|) |#1| (-1147))) (-15 -3529 (|#1| |#1| (-1147))) (-15 -1264 ((-620 |#1|) |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -1662 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1662 ((-620 |#1|) (-1141 |#1|))) (-15 -1662 ((-620 |#1|) (-920 |#1|))) (-15 -1263 (|#1| (-1141 |#1|) (-1147))) (-15 -1263 (|#1| (-1141 |#1|))) (-15 -1263 (|#1| (-920 |#1|))) (-15 -1264 ((-620 |#1|) (-1141 |#1|) (-1147))) (-15 -1264 ((-620 |#1|) (-1141 |#1|))) (-15 -1264 ((-620 |#1|) (-920 |#1|))) (-15 -3529 (|#1| (-1141 |#1|) (-1147))) (-15 -3529 (|#1| (-1141 |#1|))) (-15 -3529 (|#1| (-920 |#1|)))) -((-2893 (((-112) $ $) 7)) (-1662 (((-620 $) (-920 $)) 77) (((-620 $) (-1141 $)) 76) (((-620 $) (-1141 $) (-1147)) 75) (((-620 $) $) 123) (((-620 $) $ (-1147)) 121)) (-1263 (($ (-920 $)) 80) (($ (-1141 $)) 79) (($ (-1141 $) (-1147)) 78) (($ $) 124) (($ $ (-1147)) 122)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1147)) $) 198)) (-3414 (((-400 (-1141 $)) $ (-593 $)) 230 (|has| |#1| (-543)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1655 (((-620 (-593 $)) $) 161)) (-1367 (((-3 $ "failed") $ $) 19)) (-1659 (($ $ (-620 (-593 $)) (-620 $)) 151) (($ $ (-620 (-286 $))) 150) (($ $ (-286 $)) 149)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-3365 (($ $) 89)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-1264 (((-620 $) (-920 $)) 83) (((-620 $) (-1141 $)) 82) (((-620 $) (-1141 $) (-1147)) 81) (((-620 $) $) 127) (((-620 $) $ (-1147)) 125)) (-3529 (($ (-920 $)) 86) (($ (-1141 $)) 85) (($ (-1141 $) (-1147)) 84) (($ $) 128) (($ $ (-1147)) 126)) (-3503 (((-3 (-920 |#1|) #1="failed") $) 248 (|has| |#1| (-1023))) (((-3 (-400 (-920 |#1|)) #1#) $) 232 (|has| |#1| (-543))) (((-3 |#1| #1#) $) 194) (((-3 (-536) #1#) $) 192 (|has| |#1| (-1012 (-536)))) (((-3 (-1147) #1#) $) 185) (((-3 (-593 $) #1#) $) 136) (((-3 (-400 (-536)) #1#) $) 120 (-3886 (-12 (|has| |#1| (-1012 (-536))) (|has| |#1| (-543))) (|has| |#1| (-1012 (-400 (-536))))))) (-3502 (((-920 |#1|) $) 249 (|has| |#1| (-1023))) (((-400 (-920 |#1|)) $) 233 (|has| |#1| (-543))) ((|#1| $) 195) (((-536) $) 191 (|has| |#1| (-1012 (-536)))) (((-1147) $) 186) (((-593 $) $) 137) (((-400 (-536)) $) 119 (-3886 (-12 (|has| |#1| (-1012 (-536))) (|has| |#1| (-543))) (|has| |#1| (-1012 (-400 (-536))))))) (-2889 (($ $ $) 53)) (-2357 (((-667 |#1|) (-667 $)) 238 (|has| |#1| (-1023))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 237 (|has| |#1| (-1023))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 118 (-3886 (-3186 (|has| |#1| (-1023)) (|has| |#1| (-619 (-536)))) (-3186 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))) (((-667 (-536)) (-667 $)) 117 (-3886 (-3186 (|has| |#1| (-1023)) (|has| |#1| (-619 (-536)))) (-3186 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))))) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 190 (|has| |#1| (-860 (-371)))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 189 (|has| |#1| (-860 (-536))))) (-2898 (($ (-620 $)) 155) (($ $) 154)) (-1654 (((-620 (-113)) $) 162)) (-3375 (((-113) (-113)) 163)) (-2497 (((-112) $) 30)) (-3001 (((-112) $) 183 (|has| $ (-1012 (-536))))) (-3324 (($ $) 215 (|has| |#1| (-1023)))) (-3326 (((-1096 |#1| (-593 $)) $) 214 (|has| |#1| (-1023)))) (-3339 (($ $ (-536)) 88)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 50)) (-1652 (((-1141 $) (-593 $)) 180 (|has| $ (-1023)))) (-3672 (($ $ $) 134)) (-3673 (($ $ $) 133)) (-4313 (($ (-1 $ $) (-593 $)) 169)) (-1657 (((-3 (-593 $) "failed") $) 159)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-1656 (((-620 (-593 $)) $) 160)) (-2312 (($ (-113) (-620 $)) 168) (($ (-113) $) 167)) (-3151 (((-3 (-620 $) #3="failed") $) 209 (|has| |#1| (-1083)))) (-3153 (((-3 (-2 (|:| |val| $) (|:| -2488 (-536))) #3#) $) 218 (|has| |#1| (-1023)))) (-3150 (((-3 (-620 $) #3#) $) 211 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 $))) #3#) $) 212 (|has| |#1| (-25)))) (-3152 (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $ (-1147)) 217 (|has| |#1| (-1023))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $ (-113)) 216 (|has| |#1| (-1023))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $) 210 (|has| |#1| (-1083)))) (-2959 (((-112) $ (-1147)) 166) (((-112) $ (-113)) 165)) (-2729 (($ $) 67)) (-2928 (((-749) $) 158)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 196)) (-1910 ((|#1| $) 197)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1653 (((-112) $ (-1147)) 171) (((-112) $ $) 170)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-3002 (((-112) $) 182 (|has| $ (-1012 (-536))))) (-4122 (($ $ (-1147) (-749) (-1 $ $)) 222 (|has| |#1| (-1023))) (($ $ (-1147) (-749) (-1 $ (-620 $))) 221 (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ (-620 $)))) 220 (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ $))) 219 (|has| |#1| (-1023))) (($ $ (-620 (-113)) (-620 $) (-1147)) 208 (|has| |#1| (-596 (-525)))) (($ $ (-113) $ (-1147)) 207 (|has| |#1| (-596 (-525)))) (($ $) 206 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-1147))) 205 (|has| |#1| (-596 (-525)))) (($ $ (-1147)) 204 (|has| |#1| (-596 (-525)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-620 $))) 178) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) 177) (($ $ (-620 (-113)) (-620 (-1 $ $))) 176) (($ $ (-1147) (-1 $ $)) 175) (($ $ (-1147) (-1 $ (-620 $))) 174) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) 173) (($ $ (-620 (-1147)) (-620 (-1 $ $))) 172) (($ $ (-620 $) (-620 $)) 143) (($ $ $ $) 142) (($ $ (-286 $)) 141) (($ $ (-620 (-286 $))) 140) (($ $ (-620 (-593 $)) (-620 $)) 139) (($ $ (-593 $) $) 138)) (-1699 (((-749) $) 56)) (-4154 (($ (-113) (-620 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-1658 (($ $ $) 157) (($ $) 156)) (-4165 (($ $ (-1147)) 246 (|has| |#1| (-1023))) (($ $ (-620 (-1147))) 245 (|has| |#1| (-1023))) (($ $ (-1147) (-749)) 244 (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) 243 (|has| |#1| (-1023)))) (-3323 (($ $) 225 (|has| |#1| (-543)))) (-3325 (((-1096 |#1| (-593 $)) $) 224 (|has| |#1| (-543)))) (-3531 (($ $) 181 (|has| $ (-1023)))) (-4325 (((-525) $) 252 (|has| |#1| (-596 (-525)))) (($ (-398 $)) 223 (|has| |#1| (-543))) (((-864 (-371)) $) 188 (|has| |#1| (-596 (-864 (-371))))) (((-864 (-536)) $) 187 (|has| |#1| (-596 (-864 (-536)))))) (-3337 (($ $ $) 251 (|has| |#1| (-465)))) (-2681 (($ $ $) 250 (|has| |#1| (-465)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ (-920 |#1|)) 247 (|has| |#1| (-1023))) (($ (-400 (-920 |#1|))) 231 (|has| |#1| (-543))) (($ (-400 (-920 (-400 |#1|)))) 229 (|has| |#1| (-543))) (($ (-920 (-400 |#1|))) 228 (|has| |#1| (-543))) (($ (-400 |#1|)) 227 (|has| |#1| (-543))) (($ (-1096 |#1| (-593 $))) 213 (|has| |#1| (-1023))) (($ |#1|) 193) (($ (-1147)) 184) (($ (-593 $)) 135)) (-3030 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-2915 (($ (-620 $)) 153) (($ $) 152)) (-2333 (((-112) (-113)) 164)) (-2172 (((-112) $ $) 37)) (-1909 (($ (-1147) (-620 $)) 203) (($ (-1147) $ $ $ $) 202) (($ (-1147) $ $ $) 201) (($ (-1147) $ $) 200) (($ (-1147) $) 199)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1147)) 242 (|has| |#1| (-1023))) (($ $ (-620 (-1147))) 241 (|has| |#1| (-1023))) (($ $ (-1147) (-749)) 240 (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) 239 (|has| |#1| (-1023)))) (-2891 (((-112) $ $) 131)) (-2892 (((-112) $ $) 130)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 132)) (-3013 (((-112) $ $) 129)) (-4303 (($ $ $) 62) (($ (-1096 |#1| (-593 $)) (-1096 |#1| (-593 $))) 226 (|has| |#1| (-543)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66) (($ $ (-400 (-536))) 87)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170))))) -(((-29 |#1|) (-138) (-13 (-825) (-543))) (T -29)) -((-3529 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-543))))) (-1264 (*1 *2 *1) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *3)))) (-3529 (*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-543))))) (-1264 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *4)))) (-1263 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-543))))) (-1662 (*1 *2 *1) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *3)))) (-1263 (*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-543))))) (-1662 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-414 |t#1|) (-10 -8 (-15 -3529 ($ $)) (-15 -1264 ((-620 $) $)) (-15 -3529 ($ $ (-1147))) (-15 -1264 ((-620 $) $ (-1147))) (-15 -1263 ($ $)) (-15 -1662 ((-620 $) $)) (-15 -1263 ($ $ (-1147))) (-15 -1662 ((-620 $) $ (-1147))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-596 (-864 (-371))) |has| |#1| (-596 (-864 (-371)))) ((-596 (-864 (-536))) |has| |#1| (-596 (-864 (-536)))) ((-237) . T) ((-283) . T) ((-300) . T) ((-302 $) . T) ((-291) . T) ((-356) . T) ((-370 |#1|) |has| |#1| (-1023)) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-414 |#1|) . T) ((-444) . T) ((-465) |has| |#1| (-465)) ((-505 (-593 $) $) . T) ((-505 $ $) . T) ((-543) . T) ((-626 #1#) . T) ((-626 |#1|) |has| |#1| (-170)) ((-626 $) . T) ((-619 (-536)) -12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) ((-619 |#1|) |has| |#1| (-1023)) ((-696 #1#) . T) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-874 (-1147)) |has| |#1| (-1023)) ((-860 (-371)) |has| |#1| (-860 (-371))) ((-860 (-536)) |has| |#1| (-860 (-536))) ((-858 |#1|) . T) ((-895) . T) ((-976) . T) ((-1012 (-400 (-536))) -3886 (|has| |#1| (-1012 (-400 (-536)))) (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536))))) ((-1012 (-400 (-920 |#1|))) |has| |#1| (-543)) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 (-593 $)) . T) ((-1012 (-920 |#1|)) |has| |#1| (-1023)) ((-1012 (-1147)) . T) ((-1012 |#1|) . T) ((-1029 #1#) . T) ((-1029 |#1|) |has| |#1| (-170)) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1183) . T) ((-1188) . T)) -((-3224 (((-1060 (-219)) $) NIL)) (-3225 (((-1060 (-219)) $) NIL)) (-3464 (($ $ (-219)) 125)) (-1265 (($ (-920 (-536)) (-1147) (-1147) (-1060 (-400 (-536))) (-1060 (-400 (-536)))) 83)) (-3226 (((-620 (-620 (-917 (-219)))) $) 137)) (-4312 (((-838) $) 149))) -(((-30) (-13 (-929) (-10 -8 (-15 -1265 ($ (-920 (-536)) (-1147) (-1147) (-1060 (-400 (-536))) (-1060 (-400 (-536))))) (-15 -3464 ($ $ (-219)))))) (T -30)) -((-1265 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-920 (-536))) (-5 *3 (-1147)) (-5 *4 (-1060 (-400 (-536)))) (-5 *1 (-30)))) (-3464 (*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30))))) -(-13 (-929) (-10 -8 (-15 -1265 ($ (-920 (-536)) (-1147) (-1147) (-1060 (-400 (-536))) (-1060 (-400 (-536))))) (-15 -3464 ($ $ (-219))))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 11)) (-3022 (((-1106) $) 9)) (-3382 (((-112) $ $) NIL))) -(((-31) (-13 (-1054) (-10 -8 (-15 -3022 ((-1106) $)) (-15 -3579 ((-1106) $))))) (T -31)) -((-3022 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-31)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-31))))) -(-13 (-1054) (-10 -8 (-15 -3022 ((-1106) $)) (-15 -3579 ((-1106) $)))) -((-3529 ((|#2| (-1141 |#2|) (-1147)) 43)) (-3375 (((-113) (-113)) 56)) (-1652 (((-1141 |#2|) (-593 |#2|)) 133 (|has| |#1| (-1012 (-536))))) (-1268 ((|#2| |#1| (-536)) 122 (|has| |#1| (-1012 (-536))))) (-1266 ((|#2| (-1141 |#2|) |#2|) 30)) (-1267 (((-838) (-620 |#2|)) 85)) (-3531 ((|#2| |#2|) 129 (|has| |#1| (-1012 (-536))))) (-2333 (((-112) (-113)) 18)) (** ((|#2| |#2| (-400 (-536))) 96 (|has| |#1| (-1012 (-536)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3529 (|#2| (-1141 |#2|) (-1147))) (-15 -3375 ((-113) (-113))) (-15 -2333 ((-112) (-113))) (-15 -1266 (|#2| (-1141 |#2|) |#2|)) (-15 -1267 ((-838) (-620 |#2|))) (IF (|has| |#1| (-1012 (-536))) (PROGN (-15 ** (|#2| |#2| (-400 (-536)))) (-15 -1652 ((-1141 |#2|) (-593 |#2|))) (-15 -3531 (|#2| |#2|)) (-15 -1268 (|#2| |#1| (-536)))) |%noBranch|)) (-13 (-825) (-543)) (-414 |#1|)) (T -32)) -((-1268 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-4 *2 (-414 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1012 *4)) (-4 *3 (-13 (-825) (-543))))) (-3531 (*1 *2 *2) (-12 (-4 *3 (-1012 (-536))) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-32 *3 *2)) (-4 *2 (-414 *3)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-593 *5)) (-4 *5 (-414 *4)) (-4 *4 (-1012 (-536))) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-1141 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-536))) (-4 *4 (-1012 (-536))) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-32 *4 *2)) (-4 *2 (-414 *4)))) (-1267 (*1 *2 *3) (-12 (-5 *3 (-620 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-838)) (-5 *1 (-32 *4 *5)))) (-1266 (*1 *2 *3 *2) (-12 (-5 *3 (-1141 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-32 *4 *2)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-414 *4)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-32 *3 *4)) (-4 *4 (-414 *3)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *2)) (-5 *4 (-1147)) (-4 *2 (-414 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-825) (-543)))))) -(-10 -7 (-15 -3529 (|#2| (-1141 |#2|) (-1147))) (-15 -3375 ((-113) (-113))) (-15 -2333 ((-112) (-113))) (-15 -1266 (|#2| (-1141 |#2|) |#2|)) (-15 -1267 ((-838) (-620 |#2|))) (IF (|has| |#1| (-1012 (-536))) (PROGN (-15 ** (|#2| |#2| (-400 (-536)))) (-15 -1652 ((-1141 |#2|) (-593 |#2|))) (-15 -3531 (|#2| |#2|)) (-15 -1268 (|#2| |#1| (-536)))) |%noBranch|)) -((-1269 (((-112) $ (-749)) 16)) (-3891 (($) 10)) (-4077 (((-112) $ (-749)) 15)) (-4074 (((-112) $ (-749)) 14)) (-1270 (((-112) $ $) 8)) (-3757 (((-112) $) 13))) -(((-33 |#1|) (-10 -8 (-15 -3891 (|#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749))) (-15 -3757 ((-112) |#1|)) (-15 -1270 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3891 (|#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749))) (-15 -3757 ((-112) |#1|)) (-15 -1270 ((-112) |#1| |#1|))) -((-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-4077 (((-112) $ (-749)) 9)) (-4074 (((-112) $ (-749)) 10)) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-3754 (($ $) 13)) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) +((-3534 (*1 *1 *2) (-12 (-5 *2 (-922 *1)) (-4 *1 (-27)))) (-3534 (*1 *1 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-27)))) (-3534 (*1 *1 *2 *3) (-12 (-5 *2 (-1143 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) (-1266 (*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) (-1266 (*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) (-1266 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) (-1265 (*1 *1 *2) (-12 (-5 *2 (-922 *1)) (-4 *1 (-27)))) (-1265 (*1 *1 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-27)))) (-1265 (*1 *1 *2 *3) (-12 (-5 *2 (-1143 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) (-1667 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-622 *1))))) +(-13 (-358) (-978) (-10 -8 (-15 -3534 ($ (-922 $))) (-15 -3534 ($ (-1143 $))) (-15 -3534 ($ (-1143 $) (-1149))) (-15 -1266 ((-622 $) (-922 $))) (-15 -1266 ((-622 $) (-1143 $))) (-15 -1266 ((-622 $) (-1143 $) (-1149))) (-15 -1265 ($ (-922 $))) (-15 -1265 ($ (-1143 $))) (-15 -1265 ($ (-1143 $) (-1149))) (-15 -1667 ((-622 $) (-922 $))) (-15 -1667 ((-622 $) (-1143 $))) (-15 -1667 ((-622 $) (-1143 $) (-1149))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-978) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T)) +((-1667 (((-622 $) (-922 $)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-1143 $) (-1149)) 50) (((-622 $) $) 19) (((-622 $) $ (-1149)) 41)) (-1265 (($ (-922 $)) NIL) (($ (-1143 $)) NIL) (($ (-1143 $) (-1149)) 52) (($ $) 17) (($ $ (-1149)) 37)) (-1266 (((-622 $) (-922 $)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-1143 $) (-1149)) 48) (((-622 $) $) 15) (((-622 $) $ (-1149)) 43)) (-3534 (($ (-922 $)) NIL) (($ (-1143 $)) NIL) (($ (-1143 $) (-1149)) NIL) (($ $) 12) (($ $ (-1149)) 39))) +(((-28 |#1| |#2|) (-10 -8 (-15 -1667 ((-622 |#1|) |#1| (-1149))) (-15 -1265 (|#1| |#1| (-1149))) (-15 -1667 ((-622 |#1|) |#1|)) (-15 -1265 (|#1| |#1|)) (-15 -1266 ((-622 |#1|) |#1| (-1149))) (-15 -3534 (|#1| |#1| (-1149))) (-15 -1266 ((-622 |#1|) |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -1667 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1667 ((-622 |#1|) (-1143 |#1|))) (-15 -1667 ((-622 |#1|) (-922 |#1|))) (-15 -1265 (|#1| (-1143 |#1|) (-1149))) (-15 -1265 (|#1| (-1143 |#1|))) (-15 -1265 (|#1| (-922 |#1|))) (-15 -1266 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1266 ((-622 |#1|) (-1143 |#1|))) (-15 -1266 ((-622 |#1|) (-922 |#1|))) (-15 -3534 (|#1| (-1143 |#1|) (-1149))) (-15 -3534 (|#1| (-1143 |#1|))) (-15 -3534 (|#1| (-922 |#1|)))) (-29 |#2|) (-13 (-827) (-545))) (T -28)) +NIL +(-10 -8 (-15 -1667 ((-622 |#1|) |#1| (-1149))) (-15 -1265 (|#1| |#1| (-1149))) (-15 -1667 ((-622 |#1|) |#1|)) (-15 -1265 (|#1| |#1|)) (-15 -1266 ((-622 |#1|) |#1| (-1149))) (-15 -3534 (|#1| |#1| (-1149))) (-15 -1266 ((-622 |#1|) |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -1667 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1667 ((-622 |#1|) (-1143 |#1|))) (-15 -1667 ((-622 |#1|) (-922 |#1|))) (-15 -1265 (|#1| (-1143 |#1|) (-1149))) (-15 -1265 (|#1| (-1143 |#1|))) (-15 -1265 (|#1| (-922 |#1|))) (-15 -1266 ((-622 |#1|) (-1143 |#1|) (-1149))) (-15 -1266 ((-622 |#1|) (-1143 |#1|))) (-15 -1266 ((-622 |#1|) (-922 |#1|))) (-15 -3534 (|#1| (-1143 |#1|) (-1149))) (-15 -3534 (|#1| (-1143 |#1|))) (-15 -3534 (|#1| (-922 |#1|)))) +((-2898 (((-112) $ $) 7)) (-1667 (((-622 $) (-922 $)) 77) (((-622 $) (-1143 $)) 76) (((-622 $) (-1143 $) (-1149)) 75) (((-622 $) $) 123) (((-622 $) $ (-1149)) 121)) (-1265 (($ (-922 $)) 80) (($ (-1143 $)) 79) (($ (-1143 $) (-1149)) 78) (($ $) 124) (($ $ (-1149)) 122)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1149)) $) 198)) (-3419 (((-402 (-1143 $)) $ (-595 $)) 230 (|has| |#1| (-545)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1660 (((-622 (-595 $)) $) 161)) (-1368 (((-3 $ "failed") $ $) 19)) (-1664 (($ $ (-622 (-595 $)) (-622 $)) 151) (($ $ (-622 (-288 $))) 150) (($ $ (-288 $)) 149)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-3370 (($ $) 89)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-1266 (((-622 $) (-922 $)) 83) (((-622 $) (-1143 $)) 82) (((-622 $) (-1143 $) (-1149)) 81) (((-622 $) $) 127) (((-622 $) $ (-1149)) 125)) (-3534 (($ (-922 $)) 86) (($ (-1143 $)) 85) (($ (-1143 $) (-1149)) 84) (($ $) 128) (($ $ (-1149)) 126)) (-3508 (((-3 (-922 |#1|) #1="failed") $) 248 (|has| |#1| (-1025))) (((-3 (-402 (-922 |#1|)) #1#) $) 232 (|has| |#1| (-545))) (((-3 |#1| #1#) $) 194) (((-3 (-538) #1#) $) 192 (|has| |#1| (-1014 (-538)))) (((-3 (-1149) #1#) $) 185) (((-3 (-595 $) #1#) $) 136) (((-3 (-402 (-538)) #1#) $) 120 (-3891 (-12 (|has| |#1| (-1014 (-538))) (|has| |#1| (-545))) (|has| |#1| (-1014 (-402 (-538))))))) (-3507 (((-922 |#1|) $) 249 (|has| |#1| (-1025))) (((-402 (-922 |#1|)) $) 233 (|has| |#1| (-545))) ((|#1| $) 195) (((-538) $) 191 (|has| |#1| (-1014 (-538)))) (((-1149) $) 186) (((-595 $) $) 137) (((-402 (-538)) $) 119 (-3891 (-12 (|has| |#1| (-1014 (-538))) (|has| |#1| (-545))) (|has| |#1| (-1014 (-402 (-538))))))) (-2894 (($ $ $) 53)) (-2362 (((-669 |#1|) (-669 $)) 238 (|has| |#1| (-1025))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 237 (|has| |#1| (-1025))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 118 (-3891 (-3191 (|has| |#1| (-1025)) (|has| |#1| (-621 (-538)))) (-3191 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))) (((-669 (-538)) (-669 $)) 117 (-3891 (-3191 (|has| |#1| (-1025)) (|has| |#1| (-621 (-538)))) (-3191 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 190 (|has| |#1| (-862 (-373)))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 189 (|has| |#1| (-862 (-538))))) (-2903 (($ (-622 $)) 155) (($ $) 154)) (-1659 (((-622 (-113)) $) 162)) (-3380 (((-113) (-113)) 163)) (-2502 (((-112) $) 30)) (-3006 (((-112) $) 183 (|has| $ (-1014 (-538))))) (-3329 (($ $) 215 (|has| |#1| (-1025)))) (-3331 (((-1098 |#1| (-595 $)) $) 214 (|has| |#1| (-1025)))) (-3344 (($ $ (-538)) 88)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 50)) (-1657 (((-1143 $) (-595 $)) 180 (|has| $ (-1025)))) (-3677 (($ $ $) 134)) (-3678 (($ $ $) 133)) (-4318 (($ (-1 $ $) (-595 $)) 169)) (-1662 (((-3 (-595 $) "failed") $) 159)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-1661 (((-622 (-595 $)) $) 160)) (-2317 (($ (-113) (-622 $)) 168) (($ (-113) $) 167)) (-3156 (((-3 (-622 $) #3="failed") $) 209 (|has| |#1| (-1085)))) (-3158 (((-3 (-2 (|:| |val| $) (|:| -2493 (-538))) #3#) $) 218 (|has| |#1| (-1025)))) (-3155 (((-3 (-622 $) #3#) $) 211 (|has| |#1| (-25)))) (-1913 (((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 $))) #3#) $) 212 (|has| |#1| (-25)))) (-3157 (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $ (-1149)) 217 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $ (-113)) 216 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $) 210 (|has| |#1| (-1085)))) (-2964 (((-112) $ (-1149)) 166) (((-112) $ (-113)) 165)) (-2734 (($ $) 67)) (-2933 (((-751) $) 158)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 196)) (-1915 ((|#1| $) 197)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1658 (((-112) $ (-1149)) 171) (((-112) $ $) 170)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-3007 (((-112) $) 182 (|has| $ (-1014 (-538))))) (-4127 (($ $ (-1149) (-751) (-1 $ $)) 222 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-622 $))) 221 (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ (-622 $)))) 220 (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ $))) 219 (|has| |#1| (-1025))) (($ $ (-622 (-113)) (-622 $) (-1149)) 208 (|has| |#1| (-598 (-527)))) (($ $ (-113) $ (-1149)) 207 (|has| |#1| (-598 (-527)))) (($ $) 206 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-1149))) 205 (|has| |#1| (-598 (-527)))) (($ $ (-1149)) 204 (|has| |#1| (-598 (-527)))) (($ $ (-113) (-1 $ $)) 179) (($ $ (-113) (-1 $ (-622 $))) 178) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) 177) (($ $ (-622 (-113)) (-622 (-1 $ $))) 176) (($ $ (-1149) (-1 $ $)) 175) (($ $ (-1149) (-1 $ (-622 $))) 174) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) 173) (($ $ (-622 (-1149)) (-622 (-1 $ $))) 172) (($ $ (-622 $) (-622 $)) 143) (($ $ $ $) 142) (($ $ (-288 $)) 141) (($ $ (-622 (-288 $))) 140) (($ $ (-622 (-595 $)) (-622 $)) 139) (($ $ (-595 $) $) 138)) (-1704 (((-751) $) 56)) (-4159 (($ (-113) (-622 $)) 148) (($ (-113) $ $ $ $) 147) (($ (-113) $ $ $) 146) (($ (-113) $ $) 145) (($ (-113) $) 144)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-1663 (($ $ $) 157) (($ $) 156)) (-4170 (($ $ (-1149)) 246 (|has| |#1| (-1025))) (($ $ (-622 (-1149))) 245 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 244 (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) 243 (|has| |#1| (-1025)))) (-3328 (($ $) 225 (|has| |#1| (-545)))) (-3330 (((-1098 |#1| (-595 $)) $) 224 (|has| |#1| (-545)))) (-3536 (($ $) 181 (|has| $ (-1025)))) (-4330 (((-527) $) 252 (|has| |#1| (-598 (-527)))) (($ (-400 $)) 223 (|has| |#1| (-545))) (((-866 (-373)) $) 188 (|has| |#1| (-598 (-866 (-373))))) (((-866 (-538)) $) 187 (|has| |#1| (-598 (-866 (-538)))))) (-3342 (($ $ $) 251 (|has| |#1| (-467)))) (-2686 (($ $ $) 250 (|has| |#1| (-467)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ (-922 |#1|)) 247 (|has| |#1| (-1025))) (($ (-402 (-922 |#1|))) 231 (|has| |#1| (-545))) (($ (-402 (-922 (-402 |#1|)))) 229 (|has| |#1| (-545))) (($ (-922 (-402 |#1|))) 228 (|has| |#1| (-545))) (($ (-402 |#1|)) 227 (|has| |#1| (-545))) (($ (-1098 |#1| (-595 $))) 213 (|has| |#1| (-1025))) (($ |#1|) 193) (($ (-1149)) 184) (($ (-595 $)) 135)) (-3035 (((-3 $ "failed") $) 236 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-2920 (($ (-622 $)) 153) (($ $) 152)) (-2338 (((-112) (-113)) 164)) (-2177 (((-112) $ $) 37)) (-1914 (($ (-1149) (-622 $)) 203) (($ (-1149) $ $ $ $) 202) (($ (-1149) $ $ $) 201) (($ (-1149) $ $) 200) (($ (-1149) $) 199)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1149)) 242 (|has| |#1| (-1025))) (($ $ (-622 (-1149))) 241 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 240 (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) 239 (|has| |#1| (-1025)))) (-2896 (((-112) $ $) 131)) (-2897 (((-112) $ $) 130)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 132)) (-3018 (((-112) $ $) 129)) (-4308 (($ $ $) 62) (($ (-1098 |#1| (-595 $)) (-1098 |#1| (-595 $))) 226 (|has| |#1| (-545)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66) (($ $ (-402 (-538))) 87)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-170))) (($ |#1| $) 234 (|has| |#1| (-170))))) +(((-29 |#1|) (-138) (-13 (-827) (-545))) (T -29)) +((-3534 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-545))))) (-1266 (*1 *2 *1) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *3)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-545))))) (-1266 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *4)))) (-1265 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-545))))) (-1667 (*1 *2 *1) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *3)))) (-1265 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-545))))) (-1667 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-416 |t#1|) (-10 -8 (-15 -3534 ($ $)) (-15 -1266 ((-622 $) $)) (-15 -3534 ($ $ (-1149))) (-15 -1266 ((-622 $) $ (-1149))) (-15 -1265 ($ $)) (-15 -1667 ((-622 $) $)) (-15 -1265 ($ $ (-1149))) (-15 -1667 ((-622 $) $ (-1149))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) . T) ((-27) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-598 (-866 (-373))) |has| |#1| (-598 (-866 (-373)))) ((-598 (-866 (-538))) |has| |#1| (-598 (-866 (-538)))) ((-239) . T) ((-285) . T) ((-302) . T) ((-304 $) . T) ((-293) . T) ((-358) . T) ((-372 |#1|) |has| |#1| (-1025)) ((-395 |#1|) . T) ((-407 |#1|) . T) ((-416 |#1|) . T) ((-446) . T) ((-467) |has| |#1| (-467)) ((-507 (-595 $) $) . T) ((-507 $ $) . T) ((-545) . T) ((-628 #1#) . T) ((-628 |#1|) |has| |#1| (-170)) ((-628 $) . T) ((-621 (-538)) -12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) ((-621 |#1|) |has| |#1| (-1025)) ((-698 #1#) . T) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-876 (-1149)) |has| |#1| (-1025)) ((-862 (-373)) |has| |#1| (-862 (-373))) ((-862 (-538)) |has| |#1| (-862 (-538))) ((-860 |#1|) . T) ((-897) . T) ((-978) . T) ((-1014 (-402 (-538))) -3891 (|has| |#1| (-1014 (-402 (-538)))) (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538))))) ((-1014 (-402 (-922 |#1|))) |has| |#1| (-545)) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 (-595 $)) . T) ((-1014 (-922 |#1|)) |has| |#1| (-1025)) ((-1014 (-1149)) . T) ((-1014 |#1|) . T) ((-1031 #1#) . T) ((-1031 |#1|) |has| |#1| (-170)) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1185) . T) ((-1190) . T)) +((-3229 (((-1062 (-221)) $) NIL)) (-3230 (((-1062 (-221)) $) NIL)) (-3469 (($ $ (-221)) 125)) (-1267 (($ (-922 (-538)) (-1149) (-1149) (-1062 (-402 (-538))) (-1062 (-402 (-538)))) 83)) (-3231 (((-622 (-622 (-919 (-221)))) $) 137)) (-4317 (((-840) $) 149))) +(((-30) (-13 (-931) (-10 -8 (-15 -1267 ($ (-922 (-538)) (-1149) (-1149) (-1062 (-402 (-538))) (-1062 (-402 (-538))))) (-15 -3469 ($ $ (-221)))))) (T -30)) +((-1267 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-922 (-538))) (-5 *3 (-1149)) (-5 *4 (-1062 (-402 (-538)))) (-5 *1 (-30)))) (-3469 (*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30))))) +(-13 (-931) (-10 -8 (-15 -1267 ($ (-922 (-538)) (-1149) (-1149) (-1062 (-402 (-538))) (-1062 (-402 (-538))))) (-15 -3469 ($ $ (-221))))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 11)) (-3027 (((-1108) $) 9)) (-3387 (((-112) $ $) NIL))) +(((-31) (-13 (-1056) (-10 -8 (-15 -3027 ((-1108) $)) (-15 -3584 ((-1108) $))))) (T -31)) +((-3027 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31))))) +(-13 (-1056) (-10 -8 (-15 -3027 ((-1108) $)) (-15 -3584 ((-1108) $)))) +((-3534 ((|#2| (-1143 |#2|) (-1149)) 43)) (-3380 (((-113) (-113)) 56)) (-1657 (((-1143 |#2|) (-595 |#2|)) 133 (|has| |#1| (-1014 (-538))))) (-1270 ((|#2| |#1| (-538)) 122 (|has| |#1| (-1014 (-538))))) (-1268 ((|#2| (-1143 |#2|) |#2|) 30)) (-1269 (((-840) (-622 |#2|)) 85)) (-3536 ((|#2| |#2|) 129 (|has| |#1| (-1014 (-538))))) (-2338 (((-112) (-113)) 18)) (** ((|#2| |#2| (-402 (-538))) 96 (|has| |#1| (-1014 (-538)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3534 (|#2| (-1143 |#2|) (-1149))) (-15 -3380 ((-113) (-113))) (-15 -2338 ((-112) (-113))) (-15 -1268 (|#2| (-1143 |#2|) |#2|)) (-15 -1269 ((-840) (-622 |#2|))) (IF (|has| |#1| (-1014 (-538))) (PROGN (-15 ** (|#2| |#2| (-402 (-538)))) (-15 -1657 ((-1143 |#2|) (-595 |#2|))) (-15 -3536 (|#2| |#2|)) (-15 -1270 (|#2| |#1| (-538)))) |%noBranch|)) (-13 (-827) (-545)) (-416 |#1|)) (T -32)) +((-1270 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-4 *2 (-416 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1014 *4)) (-4 *3 (-13 (-827) (-545))))) (-3536 (*1 *2 *2) (-12 (-4 *3 (-1014 (-538))) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-32 *3 *2)) (-4 *2 (-416 *3)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-595 *5)) (-4 *5 (-416 *4)) (-4 *4 (-1014 (-538))) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-1143 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-538))) (-4 *4 (-1014 (-538))) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-32 *4 *2)) (-4 *2 (-416 *4)))) (-1269 (*1 *2 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-840)) (-5 *1 (-32 *4 *5)))) (-1268 (*1 *2 *3 *2) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-32 *4 *2)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-416 *4)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-32 *3 *4)) (-4 *4 (-416 *3)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *2)) (-5 *4 (-1149)) (-4 *2 (-416 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-827) (-545)))))) +(-10 -7 (-15 -3534 (|#2| (-1143 |#2|) (-1149))) (-15 -3380 ((-113) (-113))) (-15 -2338 ((-112) (-113))) (-15 -1268 (|#2| (-1143 |#2|) |#2|)) (-15 -1269 ((-840) (-622 |#2|))) (IF (|has| |#1| (-1014 (-538))) (PROGN (-15 ** (|#2| |#2| (-402 (-538)))) (-15 -1657 ((-1143 |#2|) (-595 |#2|))) (-15 -3536 (|#2| |#2|)) (-15 -1270 (|#2| |#1| (-538)))) |%noBranch|)) +((-1271 (((-112) $ (-751)) 16)) (-3896 (($) 10)) (-4082 (((-112) $ (-751)) 15)) (-4079 (((-112) $ (-751)) 14)) (-1272 (((-112) $ $) 8)) (-3762 (((-112) $) 13))) +(((-33 |#1|) (-10 -8 (-15 -3896 (|#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751))) (-15 -3762 ((-112) |#1|)) (-15 -1272 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -3896 (|#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751))) (-15 -3762 ((-112) |#1|)) (-15 -1272 ((-112) |#1| |#1|))) +((-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-4082 (((-112) $ (-751)) 9)) (-4079 (((-112) $ (-751)) 10)) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-3759 (($ $) 13)) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) (((-34) (-138)) (T -34)) -((-1270 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3754 (*1 *1 *1) (-4 *1 (-34))) (-3923 (*1 *1) (-4 *1 (-34))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4074 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-4077 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-1269 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) (-3891 (*1 *1) (-4 *1 (-34))) (-4311 (*1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-34)) (-5 *2 (-749))))) -(-13 (-1183) (-10 -8 (-15 -1270 ((-112) $ $)) (-15 -3754 ($ $)) (-15 -3923 ($)) (-15 -3757 ((-112) $)) (-15 -4074 ((-112) $ (-749))) (-15 -4077 ((-112) $ (-749))) (-15 -1269 ((-112) $ (-749))) (-15 -3891 ($) -4306) (IF (|has| $ (-6 -4348)) (-15 -4311 ((-749) $)) |%noBranch|))) -(((-1183) . T)) -((-3847 (($ $) 11)) (-3845 (($ $) 10)) (-3849 (($ $) 9)) (-3850 (($ $) 8)) (-3848 (($ $) 7)) (-3846 (($ $) 6))) +((-1272 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3759 (*1 *1 *1) (-4 *1 (-34))) (-3928 (*1 *1) (-4 *1 (-34))) (-3762 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4079 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-4082 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-1271 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) (-3896 (*1 *1) (-4 *1 (-34))) (-4316 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-34)) (-5 *2 (-751))))) +(-13 (-1185) (-10 -8 (-15 -1272 ((-112) $ $)) (-15 -3759 ($ $)) (-15 -3928 ($)) (-15 -3762 ((-112) $)) (-15 -4079 ((-112) $ (-751))) (-15 -4082 ((-112) $ (-751))) (-15 -1271 ((-112) $ (-751))) (-15 -3896 ($) -4311) (IF (|has| $ (-6 -4353)) (-15 -4316 ((-751) $)) |%noBranch|))) +(((-1185) . T)) +((-3852 (($ $) 11)) (-3850 (($ $) 10)) (-3854 (($ $) 9)) (-3855 (($ $) 8)) (-3853 (($ $) 7)) (-3851 (($ $) 6))) (((-35) (-138)) (T -35)) -((-3847 (*1 *1 *1) (-4 *1 (-35))) (-3845 (*1 *1 *1) (-4 *1 (-35))) (-3849 (*1 *1 *1) (-4 *1 (-35))) (-3850 (*1 *1 *1) (-4 *1 (-35))) (-3848 (*1 *1 *1) (-4 *1 (-35))) (-3846 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3846 ($ $)) (-15 -3848 ($ $)) (-15 -3850 ($ $)) (-15 -3849 ($ $)) (-15 -3845 ($ $)) (-15 -3847 ($ $)))) -((-2893 (((-112) $ $) 19 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3756 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 125)) (-4149 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 148)) (-4151 (($ $) 146)) (-3955 (($) 72) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 71)) (-2300 (((-1235) $ |#1| |#1|) 99 (|has| $ (-6 -4349))) (((-1235) $ (-536) (-536)) 178 (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 159 (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-1841 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 200 (|has| $ (-6 -4349))) (($ $) 199 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-1269 (((-112) $ (-749)) 8)) (-3353 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 134 (|has| $ (-6 -4349)))) (-4141 (($ $ $) 155 (|has| $ (-6 -4349)))) (-4140 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 157 (|has| $ (-6 -4349)))) (-4143 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 153 (|has| $ (-6 -4349)))) (-4142 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 189 (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-1196 (-536)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 160 (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #1="last" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 158 (|has| $ (-6 -4349))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #3="first" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 154 (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #4="value" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 133 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 132 (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 45 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 216)) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 55 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 175 (|has| $ (-6 -4348)))) (-4150 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 147)) (-2309 (((-3 |#2| #5="failed") |#1| $) 61)) (-3891 (($) 7 T CONST)) (-2372 (($ $) 201 (|has| $ (-6 -4349)))) (-2373 (($ $) 211)) (-4153 (($ $ (-749)) 142) (($ $) 140)) (-2450 (($ $) 214 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1398 (($ $) 58 (-3886 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))) (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 46 (|has| $ (-6 -4348))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 220) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 215 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 54 (|has| $ (-6 -4348))) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 174 (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 56 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 53 (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 52 (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 176 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 173 (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 172 (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 190 (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) 88) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) 188)) (-3796 (((-112) $) 192)) (-3773 (((-536) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 208) (((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 207 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) (((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) 206 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 30 (|has| $ (-6 -4348))) (((-620 |#2|) $) 79 (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 114 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 123)) (-3355 (((-112) $ $) 131 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-3972 (($ (-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 169)) (-4077 (((-112) $ (-749)) 9)) (-2302 ((|#1| $) 96 (|has| |#1| (-825))) (((-536) $) 180 (|has| (-536) (-825)))) (-3672 (($ $ $) 198 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3187 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3867 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 29 (|has| $ (-6 -4348))) (((-620 |#2|) $) 80 (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 115 (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348)))) (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))))) (-2303 ((|#1| $) 95 (|has| |#1| (-825))) (((-536) $) 181 (|has| (-536) (-825)))) (-3673 (($ $ $) 197 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 34 (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4349))) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 110 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 109)) (-3892 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 225)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 128)) (-3876 (((-112) $) 124)) (-3588 (((-1129) $) 22 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-4152 (($ $ (-749)) 145) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 143)) (-2739 (((-620 |#1|) $) 63)) (-2310 (((-112) |#1| $) 64)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 39)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 40) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) 219) (($ $ $ (-536)) 218)) (-2377 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) 162) (($ $ $ (-536)) 161)) (-2305 (((-620 |#1|) $) 93) (((-620 (-536)) $) 183)) (-2306 (((-112) |#1| $) 92) (((-112) (-536) $) 184)) (-3589 (((-1091) $) 21 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-4155 ((|#2| $) 97 (|has| |#1| (-825))) (($ $ (-749)) 139) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 137)) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 51) (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #6#) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 171)) (-2301 (($ $ |#2|) 98 (|has| $ (-6 -4349))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 179 (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 41)) (-3797 (((-112) $) 191)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 32 (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 112 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) 26 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 25 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 24 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 23 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 121 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 120 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 119 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) 118 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 182 (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-2307 (((-620 |#2|) $) 91) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 185)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 187) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) 186) (($ $ (-1196 (-536))) 165) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #3#) 138) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #4#) 126)) (-3357 (((-536) $ $) 129)) (-1518 (($) 49) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 48)) (-1627 (($ $ (-536)) 222) (($ $ (-1196 (-536))) 221)) (-2378 (($ $ (-536)) 164) (($ $ (-1196 (-536))) 163)) (-3991 (((-112) $) 127)) (-4146 (($ $) 151)) (-4144 (($ $) 152 (|has| $ (-6 -4349)))) (-4147 (((-749) $) 150)) (-4148 (($ $) 149)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 31 (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-749) |#2| $) 81 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 113 (|has| $ (-6 -4348)))) (-1842 (($ $ $ (-536)) 202 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525)))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 50) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 170)) (-4145 (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 224) (($ $ $) 223)) (-4156 (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 168) (($ (-620 $)) 167) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 136) (($ $ $) 135)) (-4312 (((-838) $) 18 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838)))))) (-3871 (((-620 $) $) 122)) (-3356 (((-112) $ $) 130 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 42)) (-1271 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") |#1| $) 108)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 33 (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 111 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 195 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2892 (((-112) $ $) 194 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3382 (((-112) $ $) 20 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3012 (((-112) $ $) 196 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3013 (((-112) $ $) 193 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-36 |#1| |#2|) (-138) (-1072) (-1072)) (T -36)) -((-1271 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-2 (|:| -4215 *3) (|:| -2186 *4)))))) -(-13 (-1160 |t#1| |t#2|) (-644 (-2 (|:| -4215 |t#1|) (|:| -2186 |t#2|))) (-10 -8 (-15 -1271 ((-3 (-2 (|:| -4215 |t#1|) (|:| -2186 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-106 #1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((-101) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)) (|has| |#2| (-1072))) ((-595 (-838)) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-1072)) (|has| |#2| (-595 (-838)))) ((-149 #2=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((-596 (-525)) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))) ((-223 #1#) . T) ((-229 #1#) . T) ((-279 #3=(-536) #2#) . T) ((-279 |#1| |#2|) . T) ((-281 #3# #2#) . T) ((-281 |#1| |#2|) . T) ((-302 #2#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-275 #2#) . T) ((-365 #2#) . T) ((-481 #2#) . T) ((-481 |#2|) . T) ((-586 #3# #2#) . T) ((-586 |#1| |#2|) . T) ((-505 #2# #2#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-592 |#1| |#2|) . T) ((-629 #2#) . T) ((-644 #2#) . T) ((-825) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)) ((-984 #2#) . T) ((-1072) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)) (|has| |#2| (-1072))) ((-1120 #2#) . T) ((-1160 |#1| |#2|) . T) ((-1183) . T) ((-1218 #2#) . T)) -((-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-38 |#2|) (-170)) (T -37)) -NIL -(-10 -8 (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +((-3852 (*1 *1 *1) (-4 *1 (-35))) (-3850 (*1 *1 *1) (-4 *1 (-35))) (-3854 (*1 *1 *1) (-4 *1 (-35))) (-3855 (*1 *1 *1) (-4 *1 (-35))) (-3853 (*1 *1 *1) (-4 *1 (-35))) (-3851 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3851 ($ $)) (-15 -3853 ($ $)) (-15 -3855 ($ $)) (-15 -3854 ($ $)) (-15 -3850 ($ $)) (-15 -3852 ($ $)))) +((-2898 (((-112) $ $) 19 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3761 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 125)) (-4154 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 148)) (-4156 (($ $) 146)) (-3960 (($) 72) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 71)) (-2305 (((-1237) $ |#1| |#1|) 99 (|has| $ (-6 -4354))) (((-1237) $ (-538) (-538)) 178 (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 159 (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-1846 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 200 (|has| $ (-6 -4354))) (($ $) 199 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-1271 (((-112) $ (-751)) 8)) (-3358 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 134 (|has| $ (-6 -4354)))) (-4146 (($ $ $) 155 (|has| $ (-6 -4354)))) (-4145 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 157 (|has| $ (-6 -4354)))) (-4148 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 153 (|has| $ (-6 -4354)))) (-4147 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 189 (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-1198 (-538)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 160 (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #1="last" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 158 (|has| $ (-6 -4354))) (($ $ #2="rest" $) 156 (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #3="first" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 154 (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #4="value" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 133 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 132 (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 45 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 216)) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 55 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 175 (|has| $ (-6 -4353)))) (-4155 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 147)) (-2314 (((-3 |#2| #5="failed") |#1| $) 61)) (-3896 (($) 7 T CONST)) (-2377 (($ $) 201 (|has| $ (-6 -4354)))) (-2378 (($ $) 211)) (-4158 (($ $ (-751)) 142) (($ $) 140)) (-2455 (($ $) 214 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1398 (($ $) 58 (-3891 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))) (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| #5#) |#1| $) 62) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 220) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 215 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 54 (|has| $ (-6 -4353))) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 177 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 174 (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 56 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 52 (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 176 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 173 (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 172 (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 190 (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) 88) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) 188)) (-3801 (((-112) $) 192)) (-3778 (((-538) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 208) (((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 207 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) (((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) 206 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 30 (|has| $ (-6 -4353))) (((-622 |#2|) $) 79 (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 114 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 123)) (-3360 (((-112) $ $) 131 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-3977 (($ (-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 169)) (-4082 (((-112) $ (-751)) 9)) (-2307 ((|#1| $) 96 (|has| |#1| (-827))) (((-538) $) 180 (|has| (-538) (-827)))) (-3677 (($ $ $) 198 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3192 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3872 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 29 (|has| $ (-6 -4353))) (((-622 |#2|) $) 80 (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 115 (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353)))) (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 117 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))))) (-2308 ((|#1| $) 95 (|has| |#1| (-827))) (((-538) $) 181 (|has| (-538) (-827)))) (-3678 (($ $ $) 197 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 34 (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 110 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 109)) (-3897 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 225)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 128)) (-3881 (((-112) $) 124)) (-3593 (((-1131) $) 22 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-4157 (($ $ (-751)) 145) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 143)) (-2744 (((-622 |#1|) $) 63)) (-2315 (((-112) |#1| $) 64)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 39)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 40) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) 219) (($ $ $ (-538)) 218)) (-2382 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) 162) (($ $ $ (-538)) 161)) (-2310 (((-622 |#1|) $) 93) (((-622 (-538)) $) 183)) (-2311 (((-112) |#1| $) 92) (((-112) (-538) $) 184)) (-3594 (((-1093) $) 21 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-4160 ((|#2| $) 97 (|has| |#1| (-827))) (($ $ (-751)) 139) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 137)) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 51) (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #6#) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 171)) (-2306 (($ $ |#2|) 98 (|has| $ (-6 -4354))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 179 (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 41)) (-3802 (((-112) $) 191)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 32 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 112 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) 26 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 25 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 24 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 23 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 121 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 120 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 119 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) 118 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 182 (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-2312 (((-622 |#2|) $) 91) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 185)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 187) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) 186) (($ $ (-1198 (-538))) 165) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #1#) 144) (($ $ #2#) 141) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #3#) 138) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #4#) 126)) (-3362 (((-538) $ $) 129)) (-1523 (($) 49) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 48)) (-1632 (($ $ (-538)) 222) (($ $ (-1198 (-538))) 221)) (-2383 (($ $ (-538)) 164) (($ $ (-1198 (-538))) 163)) (-3996 (((-112) $) 127)) (-4151 (($ $) 151)) (-4149 (($ $) 152 (|has| $ (-6 -4354)))) (-4152 (((-751) $) 150)) (-4153 (($ $) 149)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-751) |#2| $) 81 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 116 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 113 (|has| $ (-6 -4353)))) (-1847 (($ $ $ (-538)) 202 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527)))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 50) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 170)) (-4150 (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 224) (($ $ $) 223)) (-4161 (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 168) (($ (-622 $)) 167) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 136) (($ $ $) 135)) (-4317 (((-840) $) 18 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840)))))) (-3876 (((-622 $) $) 122)) (-3361 (((-112) $ $) 130 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 42)) (-1273 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") |#1| $) 108)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 33 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 111 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 195 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2897 (((-112) $ $) 194 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3387 (((-112) $ $) 20 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3017 (((-112) $ $) 196 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3018 (((-112) $ $) 193 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-36 |#1| |#2|) (-138) (-1074) (-1074)) (T -36)) +((-1273 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| -4220 *3) (|:| -2191 *4)))))) +(-13 (-1162 |t#1| |t#2|) (-646 (-2 (|:| -4220 |t#1|) (|:| -2191 |t#2|))) (-10 -8 (-15 -1273 ((-3 (-2 (|:| -4220 |t#1|) (|:| -2191 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-106 #1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((-101) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)) (|has| |#2| (-1074))) ((-597 (-840)) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-1074)) (|has| |#2| (-597 (-840)))) ((-149 #2=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((-598 (-527)) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))) ((-225 #1#) . T) ((-231 #1#) . T) ((-281 #3=(-538) #2#) . T) ((-281 |#1| |#2|) . T) ((-283 #3# #2#) . T) ((-283 |#1| |#2|) . T) ((-304 #2#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-277 #2#) . T) ((-367 #2#) . T) ((-483 #2#) . T) ((-483 |#2|) . T) ((-588 #3# #2#) . T) ((-588 |#1| |#2|) . T) ((-507 #2# #2#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-594 |#1| |#2|) . T) ((-631 #2#) . T) ((-646 #2#) . T) ((-827) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)) ((-986 #2#) . T) ((-1074) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)) (|has| |#2| (-1074))) ((-1122 #2#) . T) ((-1162 |#1| |#2|) . T) ((-1185) . T) ((-1220 #2#) . T)) +((-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-38 |#2|) (-170)) (T -37)) +NIL +(-10 -8 (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) (((-38 |#1|) (-138) (-170)) (T -38)) -((-4312 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))) -(-13 (-1023) (-696 |t#1|) (-10 -8 (-15 -4312 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-3772 (((-398 |#1|) |#1|) 41)) (-4087 (((-398 |#1|) |#1|) 30) (((-398 |#1|) |#1| (-620 (-48))) 33)) (-1272 (((-112) |#1|) 56))) -(((-39 |#1|) (-10 -7 (-15 -4087 ((-398 |#1|) |#1| (-620 (-48)))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3772 ((-398 |#1|) |#1|)) (-15 -1272 ((-112) |#1|))) (-1205 (-48))) (T -39)) -((-1272 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48))))) (-3772 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48))))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-48))) (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48)))))) -(-10 -7 (-15 -4087 ((-398 |#1|) |#1| (-620 (-48)))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3772 ((-398 |#1|) |#1|)) (-15 -1272 ((-112) |#1|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1758 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2173 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2171 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1896 (((-667 (-400 |#2|)) (-1229 $)) NIL) (((-667 (-400 |#2|))) NIL)) (-3684 (((-400 |#2|) $) NIL)) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-400 |#2|) (-343)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4324 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3466 (((-749)) NIL (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) NIL)) (-1771 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| (-400 |#2|) (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-3 (-400 |#2|) #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| (-400 |#2|) (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-400 |#2|) $) NIL)) (-1906 (($ (-1229 (-400 |#2|)) (-1229 $)) NIL) (($ (-1229 (-400 |#2|))) 57) (($ (-1229 |#2|) |#2|) 125)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-343)))) (-2889 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1895 (((-667 (-400 |#2|)) $ (-1229 $)) NIL) (((-667 (-400 |#2|)) $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-400 |#2|))) (|:| |vec| (-1229 (-400 |#2|)))) (-667 $) (-1229 $)) NIL) (((-667 (-400 |#2|)) (-667 $)) NIL)) (-1763 (((-1229 $) (-1229 $)) NIL)) (-4197 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-3816 (((-3 $ "failed") $) NIL)) (-1750 (((-620 (-620 |#1|))) NIL (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) NIL)) (-3439 (((-893)) NIL)) (-3322 (($) NIL (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) NIL)) (-1769 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2888 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| (-400 |#2|) (-356)))) (-3852 (($ $) NIL)) (-3161 (($) NIL (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) NIL (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-749)) NIL (|has| (-400 |#2|) (-343))) (($ $) NIL (|has| (-400 |#2|) (-343)))) (-4081 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-4126 (((-893) $) NIL (|has| (-400 |#2|) (-343))) (((-810 (-893)) $) NIL (|has| (-400 |#2|) (-343)))) (-2497 (((-112) $) NIL)) (-3731 (((-749)) NIL)) (-1764 (((-1229 $) (-1229 $)) 102)) (-3462 (((-400 |#2|) $) NIL)) (-1751 (((-620 (-920 |#1|)) (-1147)) NIL (|has| |#1| (-356)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2121 (((-893) $) NIL (|has| (-400 |#2|) (-361)))) (-3408 ((|#3| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3588 (((-1129) $) NIL)) (-1273 (((-1235) (-749)) 79)) (-1759 (((-667 (-400 |#2|))) 51)) (-1761 (((-667 (-400 |#2|))) 44)) (-2729 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1229 |#2|) |#2|) 126)) (-1760 (((-667 (-400 |#2|))) 45)) (-1762 (((-667 (-400 |#2|))) 43)) (-1755 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1757 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) 64)) (-1768 (((-1229 $)) 42)) (-4273 (((-1229 $)) 41)) (-1767 (((-112) $) NIL)) (-1766 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3799 (($) NIL (|has| (-400 |#2|) (-343)) CONST)) (-2487 (($ (-893)) NIL (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| #3="failed")) NIL)) (-3589 (((-1091) $) NIL)) (-1777 (((-749)) NIL)) (-2496 (($) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| (-400 |#2|) (-356)))) (-3490 (($ (-620 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-400 |#2|) (-343)))) (-4087 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3815 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1699 (((-749) $) NIL (|has| (-400 |#2|) (-356)))) (-4154 ((|#1| $ |#1| |#1|) NIL)) (-1754 (((-3 |#2| #3#)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-4112 (((-400 |#2|) (-1229 $)) NIL) (((-400 |#2|)) 39)) (-1882 (((-749) $) NIL (|has| (-400 |#2|) (-343))) (((-3 (-749) "failed") $ $) NIL (|has| (-400 |#2|) (-343)))) (-4165 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2495 (((-667 (-400 |#2|)) (-1229 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-3531 ((|#3|) 50)) (-1785 (($) NIL (|has| (-400 |#2|) (-343)))) (-3570 (((-1229 (-400 |#2|)) $ (-1229 $)) NIL) (((-667 (-400 |#2|)) (-1229 $) (-1229 $)) NIL) (((-1229 (-400 |#2|)) $) 58) (((-667 (-400 |#2|)) (-1229 $)) 103)) (-4325 (((-1229 (-400 |#2|)) $) NIL) (($ (-1229 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-400 |#2|) (-343)))) (-1765 (((-1229 $) (-1229 $)) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-536))) NIL (-3886 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1012 (-400 (-536)))))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3030 (($ $) NIL (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-2693 ((|#3| $) NIL)) (-3456 (((-749)) NIL)) (-1774 (((-112)) 37)) (-1773 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-2123 (((-1229 $)) 93)) (-2172 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1776 (((-112)) NIL)) (-2986 (($) 16 T CONST)) (-2992 (($) 26 T CONST)) (-2997 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-536)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-536))) NIL (|has| (-400 |#2|) (-356))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -1273 ((-1235) (-749))))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) |#3|) (T -40)) -((-1273 (*1 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-4 *5 (-1205 *4)) (-5 *2 (-1235)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1205 (-400 *5))) (-14 *7 *6)))) -(-13 (-335 |#1| |#2| |#3|) (-10 -7 (-15 -1273 ((-1235) (-749))))) -((-1274 ((|#2| |#2|) 48)) (-1279 ((|#2| |#2|) 120 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-536)))))) (-1278 ((|#2| |#2|) 87 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-536)))))) (-1277 ((|#2| |#2|) 88 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-536)))))) (-1280 ((|#2| (-113) |#2| (-749)) 116 (-12 (|has| |#2| (-414 |#1|)) (|has| |#1| (-444)) (|has| |#1| (-825)) (|has| |#1| (-1012 (-536)))))) (-1276 (((-1141 |#2|) |#2|) 45)) (-1275 ((|#2| |#2| (-620 (-593 |#2|))) 18) ((|#2| |#2| (-620 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1274 (|#2| |#2|)) (-15 -1275 (|#2| |#2|)) (-15 -1275 (|#2| |#2| |#2|)) (-15 -1275 (|#2| |#2| (-620 |#2|))) (-15 -1275 (|#2| |#2| (-620 (-593 |#2|)))) (-15 -1276 ((-1141 |#2|) |#2|)) (IF (|has| |#1| (-825)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1012 (-536))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -1277 (|#2| |#2|)) (-15 -1278 (|#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -1280 (|#2| (-113) |#2| (-749)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-543) (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 |#1| (-593 $)) $)) (-15 -3325 ((-1096 |#1| (-593 $)) $)) (-15 -4312 ($ (-1096 |#1| (-593 $))))))) (T -41)) -((-1280 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-749)) (-4 *5 (-444)) (-4 *5 (-825)) (-4 *5 (-1012 (-536))) (-4 *5 (-543)) (-5 *1 (-41 *5 *2)) (-4 *2 (-414 *5)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *5 (-593 $)) $)) (-15 -3325 ((-1096 *5 (-593 $)) $)) (-15 -4312 ($ (-1096 *5 (-593 $))))))))) (-1279 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $))))))))) (-1278 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $))))))))) (-1277 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $))))))))) (-1276 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-1141 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) (-15 -3325 ((-1096 *4 (-593 $)) $)) (-15 -4312 ($ (-1096 *4 (-593 $))))))))) (-1275 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-593 *2))) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) (-15 -3325 ((-1096 *4 (-593 $)) $)) (-15 -4312 ($ (-1096 *4 (-593 $))))))) (-4 *4 (-543)) (-5 *1 (-41 *4 *2)))) (-1275 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) (-15 -3325 ((-1096 *4 (-593 $)) $)) (-15 -4312 ($ (-1096 *4 (-593 $))))))) (-4 *4 (-543)) (-5 *1 (-41 *4 *2)))) (-1275 (*1 *2 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $))))))))) (-1275 (*1 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $))))))))) (-1274 (*1 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-356) (-291) (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) (-15 -3325 ((-1096 *3 (-593 $)) $)) (-15 -4312 ($ (-1096 *3 (-593 $)))))))))) -(-10 -7 (-15 -1274 (|#2| |#2|)) (-15 -1275 (|#2| |#2|)) (-15 -1275 (|#2| |#2| |#2|)) (-15 -1275 (|#2| |#2| (-620 |#2|))) (-15 -1275 (|#2| |#2| (-620 (-593 |#2|)))) (-15 -1276 ((-1141 |#2|) |#2|)) (IF (|has| |#1| (-825)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-1012 (-536))) (IF (|has| |#2| (-414 |#1|)) (PROGN (-15 -1277 (|#2| |#2|)) (-15 -1278 (|#2| |#2|)) (-15 -1279 (|#2| |#2|)) (-15 -1280 (|#2| (-113) |#2| (-749)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-4087 (((-398 (-1141 |#3|)) (-1141 |#3|) (-620 (-48))) 23) (((-398 |#3|) |#3| (-620 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-398 |#3|) |#3| (-620 (-48)))) (-15 -4087 ((-398 (-1141 |#3|)) (-1141 |#3|) (-620 (-48))))) (-825) (-771) (-924 (-48) |#2| |#1|)) (T -42)) -((-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *7 (-924 (-48) *6 *5)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-398 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-924 (-48) *6 *5))))) -(-10 -7 (-15 -4087 ((-398 |#3|) |#3| (-620 (-48)))) (-15 -4087 ((-398 (-1141 |#3|)) (-1141 |#3|) (-620 (-48))))) -((-1284 (((-749) |#2|) 65)) (-1282 (((-749) |#2|) 68)) (-1297 (((-620 |#2|)) 33)) (-1281 (((-749) |#2|) 67)) (-1283 (((-749) |#2|) 64)) (-1285 (((-749) |#2|) 66)) (-1295 (((-620 (-667 |#1|))) 60)) (-1290 (((-620 |#2|)) 55)) (-1288 (((-620 |#2|) |#2|) 43)) (-1292 (((-620 |#2|)) 57)) (-1291 (((-620 |#2|)) 56)) (-1294 (((-620 (-667 |#1|))) 48)) (-1289 (((-620 |#2|)) 54)) (-1287 (((-620 |#2|) |#2|) 42)) (-1286 (((-620 |#2|)) 50)) (-1296 (((-620 (-667 |#1|))) 61)) (-1293 (((-620 |#2|)) 59)) (-2123 (((-1229 |#2|) (-1229 |#2|)) 84 (|has| |#1| (-300))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1281 ((-749) |#2|)) (-15 -1282 ((-749) |#2|)) (-15 -1283 ((-749) |#2|)) (-15 -1284 ((-749) |#2|)) (-15 -1285 ((-749) |#2|)) (-15 -1286 ((-620 |#2|))) (-15 -1287 ((-620 |#2|) |#2|)) (-15 -1288 ((-620 |#2|) |#2|)) (-15 -1289 ((-620 |#2|))) (-15 -1290 ((-620 |#2|))) (-15 -1291 ((-620 |#2|))) (-15 -1292 ((-620 |#2|))) (-15 -1293 ((-620 |#2|))) (-15 -1294 ((-620 (-667 |#1|)))) (-15 -1295 ((-620 (-667 |#1|)))) (-15 -1296 ((-620 (-667 |#1|)))) (-15 -1297 ((-620 |#2|))) (IF (|has| |#1| (-300)) (-15 -2123 ((-1229 |#2|) (-1229 |#2|))) |%noBranch|)) (-543) (-411 |#1|)) (T -43)) -((-2123 (*1 *2 *2) (-12 (-5 *2 (-1229 *4)) (-4 *4 (-411 *3)) (-4 *3 (-300)) (-4 *3 (-543)) (-5 *1 (-43 *3 *4)))) (-1297 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1296 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1295 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1294 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1293 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1292 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1291 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1290 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1289 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1288 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1287 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1286 (*1 *2) (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3)))) (-1285 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1284 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1283 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1282 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4)))) (-1281 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) -(-10 -7 (-15 -1281 ((-749) |#2|)) (-15 -1282 ((-749) |#2|)) (-15 -1283 ((-749) |#2|)) (-15 -1284 ((-749) |#2|)) (-15 -1285 ((-749) |#2|)) (-15 -1286 ((-620 |#2|))) (-15 -1287 ((-620 |#2|) |#2|)) (-15 -1288 ((-620 |#2|) |#2|)) (-15 -1289 ((-620 |#2|))) (-15 -1290 ((-620 |#2|))) (-15 -1291 ((-620 |#2|))) (-15 -1292 ((-620 |#2|))) (-15 -1293 ((-620 |#2|))) (-15 -1294 ((-620 (-667 |#1|)))) (-15 -1295 ((-620 (-667 |#1|)))) (-15 -1296 ((-620 (-667 |#1|)))) (-15 -1297 ((-620 |#2|))) (IF (|has| |#1| (-300)) (-15 -2123 ((-1229 |#2|) (-1229 |#2|))) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3569 (((-1229 (-667 |#1|)) (-1229 $)) NIL) (((-1229 (-667 |#1|))) 24)) (-1840 (((-1229 $)) 51)) (-3891 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (|has| |#1| (-543)))) (-1814 (((-3 $ #1#)) NIL (|has| |#1| (-543)))) (-1902 (((-667 |#1|) (-1229 $)) NIL) (((-667 |#1|)) NIL)) (-1838 ((|#1| $) NIL)) (-1900 (((-667 |#1|) $ (-1229 $)) NIL) (((-667 |#1|) $) NIL)) (-2491 (((-3 $ #1#) $) NIL (|has| |#1| (-543)))) (-2017 (((-1141 (-920 |#1|))) NIL (|has| |#1| (-356)))) (-2494 (($ $ (-893)) NIL)) (-1836 ((|#1| $) NIL)) (-1816 (((-1141 |#1|) $) NIL (|has| |#1| (-543)))) (-1904 ((|#1| (-1229 $)) NIL) ((|#1|) NIL)) (-1834 (((-1141 |#1|) $) NIL)) (-1828 (((-112)) 87)) (-1906 (($ (-1229 |#1|) (-1229 $)) NIL) (($ (-1229 |#1|)) NIL)) (-3816 (((-3 $ #1#) $) 14 (|has| |#1| (-543)))) (-3439 (((-893)) 52)) (-1825 (((-112)) NIL)) (-2519 (($ $ (-893)) NIL)) (-1821 (((-112)) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) 89)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (|has| |#1| (-543)))) (-1815 (((-3 $ #1#)) NIL (|has| |#1| (-543)))) (-1903 (((-667 |#1|) (-1229 $)) NIL) (((-667 |#1|)) NIL)) (-1839 ((|#1| $) NIL)) (-1901 (((-667 |#1|) $ (-1229 $)) NIL) (((-667 |#1|) $) NIL)) (-2492 (((-3 $ #1#) $) NIL (|has| |#1| (-543)))) (-2021 (((-1141 (-920 |#1|))) NIL (|has| |#1| (-356)))) (-2493 (($ $ (-893)) NIL)) (-1837 ((|#1| $) NIL)) (-1817 (((-1141 |#1|) $) NIL (|has| |#1| (-543)))) (-1905 ((|#1| (-1229 $)) NIL) ((|#1|) NIL)) (-1835 (((-1141 |#1|) $) NIL)) (-1829 (((-112)) 86)) (-3588 (((-1129) $) NIL)) (-1820 (((-112)) 93)) (-1822 (((-112)) 92)) (-1824 (((-112)) 94)) (-3589 (((-1091) $) NIL)) (-1827 (((-112)) 88)) (-4154 ((|#1| $ (-536)) 54)) (-3570 (((-1229 |#1|) $ (-1229 $)) 48) (((-667 |#1|) (-1229 $) (-1229 $)) NIL) (((-1229 |#1|) $) 28) (((-667 |#1|) (-1229 $)) NIL)) (-4325 (((-1229 |#1|) $) NIL) (($ (-1229 |#1|)) NIL)) (-2009 (((-620 (-920 |#1|)) (-1229 $)) NIL) (((-620 (-920 |#1|))) NIL)) (-2681 (($ $ $) NIL)) (-1833 (((-112)) 84)) (-4312 (((-838) $) 69) (($ (-1229 |#1|)) 22)) (-2123 (((-1229 $)) 45)) (-1818 (((-620 (-1229 |#1|))) NIL (|has| |#1| (-543)))) (-2682 (($ $ $ $) NIL)) (-1831 (((-112)) 82)) (-2875 (($ (-667 |#1|) $) 18)) (-2680 (($ $ $) NIL)) (-1832 (((-112)) 85)) (-1830 (((-112)) 83)) (-1826 (((-112)) 81)) (-2986 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1113 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-411 |#1|) (-626 (-1113 |#2| |#1|)) (-10 -8 (-15 -4312 ($ (-1229 |#1|))))) (-356) (-893) (-620 (-1147)) (-1229 (-667 |#1|))) (T -44)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-356)) (-14 *6 (-1229 (-667 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-893)) (-14 *5 (-620 (-1147)))))) -(-13 (-411 |#1|) (-626 (-1113 |#2| |#1|)) (-10 -8 (-15 -4312 ($ (-1229 |#1|))))) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3756 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-4149 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-4151 (($ $) NIL)) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349))) (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-1841 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825))))) (-3237 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-3353 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349)))) (-4141 (($ $ $) 27 (|has| $ (-6 -4349)))) (-4140 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349)))) (-4143 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 29 (|has| $ (-6 -4349)))) (-4142 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-1196 (-536)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #1="last" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #3="first" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #4="value" (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4150 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2309 (((-3 |#2| #5="failed") |#1| $) 37)) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-4153 (($ $ (-749)) NIL) (($ $) 24)) (-2450 (($ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #5#) |#1| $) 48) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) NIL)) (-3796 (((-112) $) NIL)) (-3773 (((-536) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) (((-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 18 (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 18 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-3972 (($ (-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825))) (((-536) $) 32 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3187 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3867 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825))) (((-536) $) 34 (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349))) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-3892 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) 42 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4152 (($ $ (-749)) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2739 (((-620 |#1|) $) 20)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2377 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 |#1|) $) NIL) (((-620 (-536)) $) NIL)) (-2306 (((-112) |#1| $) NIL) (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825))) (($ $ (-749)) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 23)) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) #6#) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3797 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-2307 (((-620 |#2|) $) NIL) (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 17)) (-3757 (((-112) $) 16)) (-3923 (($) 13)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ (-536)) NIL) (($ $ (-1196 (-536))) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #3#) NIL) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $ #4#) NIL)) (-3357 (((-536) $ $) NIL)) (-1518 (($) 12) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-1627 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-3991 (((-112) $) NIL)) (-4146 (($ $) NIL)) (-4144 (($ $) NIL (|has| $ (-6 -4349)))) (-4147 (((-749) $) NIL)) (-4148 (($ $) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4145 (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL) (($ $ $) NIL)) (-4156 (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL) (($ (-620 $)) NIL) (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 25) (($ $ $) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-1271 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") |#1| $) 44)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3012 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-825)))) (-4311 (((-749) $) 22 (|has| $ (-6 -4348))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1072) (-1072)) (T -45)) +((-4317 (*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170))))) +(-13 (-1025) (-698 |t#1|) (-10 -8 (-15 -4317 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-3777 (((-400 |#1|) |#1|) 41)) (-4092 (((-400 |#1|) |#1|) 30) (((-400 |#1|) |#1| (-622 (-48))) 33)) (-1274 (((-112) |#1|) 56))) +(((-39 |#1|) (-10 -7 (-15 -4092 ((-400 |#1|) |#1| (-622 (-48)))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3777 ((-400 |#1|) |#1|)) (-15 -1274 ((-112) |#1|))) (-1207 (-48))) (T -39)) +((-1274 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48))))) (-3777 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48))))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48))))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-48))) (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48)))))) +(-10 -7 (-15 -4092 ((-400 |#1|) |#1| (-622 (-48)))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3777 ((-400 |#1|) |#1|)) (-15 -1274 ((-112) |#1|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1763 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-2178 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2176 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-1901 (((-669 (-402 |#2|)) (-1231 $)) NIL) (((-669 (-402 |#2|))) NIL)) (-3689 (((-402 |#2|) $) NIL)) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-402 |#2|) (-345)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-4329 (((-400 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1705 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3471 (((-751)) NIL (|has| (-402 |#2|) (-363)))) (-1777 (((-112)) NIL)) (-1776 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| (-402 |#2|) (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-3 (-402 |#2|) #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| (-402 |#2|) (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-402 |#2|) $) NIL)) (-1911 (($ (-1231 (-402 |#2|)) (-1231 $)) NIL) (($ (-1231 (-402 |#2|))) 57) (($ (-1231 |#2|) |#2|) 125)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-345)))) (-2894 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1900 (((-669 (-402 |#2|)) $ (-1231 $)) NIL) (((-669 (-402 |#2|)) $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-402 |#2|))) (|:| |vec| (-1231 (-402 |#2|)))) (-669 $) (-1231 $)) NIL) (((-669 (-402 |#2|)) (-669 $)) NIL)) (-1768 (((-1231 $) (-1231 $)) NIL)) (-4202 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-3821 (((-3 $ "failed") $) NIL)) (-1755 (((-622 (-622 |#1|))) NIL (|has| |#1| (-363)))) (-1780 (((-112) |#1| |#1|) NIL)) (-3444 (((-895)) NIL)) (-3327 (($) NIL (|has| (-402 |#2|) (-363)))) (-1775 (((-112)) NIL)) (-1774 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2893 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| (-402 |#2|) (-358)))) (-3857 (($ $) NIL)) (-3166 (($) NIL (|has| (-402 |#2|) (-345)))) (-1796 (((-112) $) NIL (|has| (-402 |#2|) (-345)))) (-1886 (($ $ (-751)) NIL (|has| (-402 |#2|) (-345))) (($ $) NIL (|has| (-402 |#2|) (-345)))) (-4086 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-4131 (((-895) $) NIL (|has| (-402 |#2|) (-345))) (((-812 (-895)) $) NIL (|has| (-402 |#2|) (-345)))) (-2502 (((-112) $) NIL)) (-3736 (((-751)) NIL)) (-1769 (((-1231 $) (-1231 $)) 102)) (-3467 (((-402 |#2|) $) NIL)) (-1756 (((-622 (-922 |#1|)) (-1149)) NIL (|has| |#1| (-358)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2130 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-2126 (((-895) $) NIL (|has| (-402 |#2|) (-363)))) (-3413 ((|#3| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3593 (((-1131) $) NIL)) (-1275 (((-1237) (-751)) 79)) (-1764 (((-669 (-402 |#2|))) 51)) (-1766 (((-669 (-402 |#2|))) 44)) (-2734 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1761 (($ (-1231 |#2|) |#2|) 126)) (-1765 (((-669 (-402 |#2|))) 45)) (-1767 (((-669 (-402 |#2|))) 43)) (-1760 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1762 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) 64)) (-1773 (((-1231 $)) 42)) (-4278 (((-1231 $)) 41)) (-1772 (((-112) $) NIL)) (-1771 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3804 (($) NIL (|has| (-402 |#2|) (-345)) CONST)) (-2492 (($ (-895)) NIL (|has| (-402 |#2|) (-363)))) (-1758 (((-3 |#2| #3="failed")) NIL)) (-3594 (((-1093) $) NIL)) (-1782 (((-751)) NIL)) (-2501 (($) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| (-402 |#2|) (-358)))) (-3495 (($ (-622 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-402 |#2|) (-345)))) (-4092 (((-400 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3820 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1704 (((-751) $) NIL (|has| (-402 |#2|) (-358)))) (-4159 ((|#1| $ |#1| |#1|) NIL)) (-1759 (((-3 |#2| #3#)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-4117 (((-402 |#2|) (-1231 $)) NIL) (((-402 |#2|)) 39)) (-1887 (((-751) $) NIL (|has| (-402 |#2|) (-345))) (((-3 (-751) "failed") $ $) NIL (|has| (-402 |#2|) (-345)))) (-4170 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-2500 (((-669 (-402 |#2|)) (-1231 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-3536 ((|#3|) 50)) (-1790 (($) NIL (|has| (-402 |#2|) (-345)))) (-3575 (((-1231 (-402 |#2|)) $ (-1231 $)) NIL) (((-669 (-402 |#2|)) (-1231 $) (-1231 $)) NIL) (((-1231 (-402 |#2|)) $) 58) (((-669 (-402 |#2|)) (-1231 $)) 103)) (-4330 (((-1231 (-402 |#2|)) $) NIL) (($ (-1231 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-402 |#2|) (-345)))) (-1770 (((-1231 $) (-1231 $)) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-538))) NIL (-3891 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-1014 (-402 (-538)))))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-3035 (($ $) NIL (|has| (-402 |#2|) (-345))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-2698 ((|#3| $) NIL)) (-3461 (((-751)) NIL)) (-1779 (((-112)) 37)) (-1778 (((-112) |#1|) 49) (((-112) |#2|) 132)) (-2128 (((-1231 $)) 93)) (-2177 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1757 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1781 (((-112)) NIL)) (-2991 (($) 16 T CONST)) (-2997 (($) 26 T CONST)) (-3002 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-538)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-538))) NIL (|has| (-402 |#2|) (-358))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -1275 ((-1237) (-751))))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) |#3|) (T -40)) +((-1275 (*1 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-4 *5 (-1207 *4)) (-5 *2 (-1237)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1207 (-402 *5))) (-14 *7 *6)))) +(-13 (-337 |#1| |#2| |#3|) (-10 -7 (-15 -1275 ((-1237) (-751))))) +((-1276 ((|#2| |#2|) 48)) (-1281 ((|#2| |#2|) 120 (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-538)))))) (-1280 ((|#2| |#2|) 87 (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-538)))))) (-1279 ((|#2| |#2|) 88 (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-538)))))) (-1282 ((|#2| (-113) |#2| (-751)) 116 (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-446)) (|has| |#1| (-827)) (|has| |#1| (-1014 (-538)))))) (-1278 (((-1143 |#2|) |#2|) 45)) (-1277 ((|#2| |#2| (-622 (-595 |#2|))) 18) ((|#2| |#2| (-622 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1276 (|#2| |#2|)) (-15 -1277 (|#2| |#2|)) (-15 -1277 (|#2| |#2| |#2|)) (-15 -1277 (|#2| |#2| (-622 |#2|))) (-15 -1277 (|#2| |#2| (-622 (-595 |#2|)))) (-15 -1278 ((-1143 |#2|) |#2|)) (IF (|has| |#1| (-827)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1014 (-538))) (IF (|has| |#2| (-416 |#1|)) (PROGN (-15 -1279 (|#2| |#2|)) (-15 -1280 (|#2| |#2|)) (-15 -1281 (|#2| |#2|)) (-15 -1282 (|#2| (-113) |#2| (-751)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-545) (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 |#1| (-595 $)) $)) (-15 -3330 ((-1098 |#1| (-595 $)) $)) (-15 -4317 ($ (-1098 |#1| (-595 $))))))) (T -41)) +((-1282 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-113)) (-5 *4 (-751)) (-4 *5 (-446)) (-4 *5 (-827)) (-4 *5 (-1014 (-538))) (-4 *5 (-545)) (-5 *1 (-41 *5 *2)) (-4 *2 (-416 *5)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *5 (-595 $)) $)) (-15 -3330 ((-1098 *5 (-595 $)) $)) (-15 -4317 ($ (-1098 *5 (-595 $))))))))) (-1281 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))) (-1280 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))) (-1279 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))) (-1278 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-1143 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $)) (-15 -3330 ((-1098 *4 (-595 $)) $)) (-15 -4317 ($ (-1098 *4 (-595 $))))))))) (-1277 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-595 *2))) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $)) (-15 -3330 ((-1098 *4 (-595 $)) $)) (-15 -4317 ($ (-1098 *4 (-595 $))))))) (-4 *4 (-545)) (-5 *1 (-41 *4 *2)))) (-1277 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $)) (-15 -3330 ((-1098 *4 (-595 $)) $)) (-15 -4317 ($ (-1098 *4 (-595 $))))))) (-4 *4 (-545)) (-5 *1 (-41 *4 *2)))) (-1277 (*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))) (-1277 (*1 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $))))))))) (-1276 (*1 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-358) (-293) (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) (-15 -3330 ((-1098 *3 (-595 $)) $)) (-15 -4317 ($ (-1098 *3 (-595 $)))))))))) +(-10 -7 (-15 -1276 (|#2| |#2|)) (-15 -1277 (|#2| |#2|)) (-15 -1277 (|#2| |#2| |#2|)) (-15 -1277 (|#2| |#2| (-622 |#2|))) (-15 -1277 (|#2| |#2| (-622 (-595 |#2|)))) (-15 -1278 ((-1143 |#2|) |#2|)) (IF (|has| |#1| (-827)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-1014 (-538))) (IF (|has| |#2| (-416 |#1|)) (PROGN (-15 -1279 (|#2| |#2|)) (-15 -1280 (|#2| |#2|)) (-15 -1281 (|#2| |#2|)) (-15 -1282 (|#2| (-113) |#2| (-751)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-4092 (((-400 (-1143 |#3|)) (-1143 |#3|) (-622 (-48))) 23) (((-400 |#3|) |#3| (-622 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4092 ((-400 |#3|) |#3| (-622 (-48)))) (-15 -4092 ((-400 (-1143 |#3|)) (-1143 |#3|) (-622 (-48))))) (-827) (-773) (-926 (-48) |#2| |#1|)) (T -42)) +((-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *7 (-926 (-48) *6 *5)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-400 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-926 (-48) *6 *5))))) +(-10 -7 (-15 -4092 ((-400 |#3|) |#3| (-622 (-48)))) (-15 -4092 ((-400 (-1143 |#3|)) (-1143 |#3|) (-622 (-48))))) +((-1286 (((-751) |#2|) 65)) (-1284 (((-751) |#2|) 68)) (-1299 (((-622 |#2|)) 33)) (-1283 (((-751) |#2|) 67)) (-1285 (((-751) |#2|) 64)) (-1287 (((-751) |#2|) 66)) (-1297 (((-622 (-669 |#1|))) 60)) (-1292 (((-622 |#2|)) 55)) (-1290 (((-622 |#2|) |#2|) 43)) (-1294 (((-622 |#2|)) 57)) (-1293 (((-622 |#2|)) 56)) (-1296 (((-622 (-669 |#1|))) 48)) (-1291 (((-622 |#2|)) 54)) (-1289 (((-622 |#2|) |#2|) 42)) (-1288 (((-622 |#2|)) 50)) (-1298 (((-622 (-669 |#1|))) 61)) (-1295 (((-622 |#2|)) 59)) (-2128 (((-1231 |#2|) (-1231 |#2|)) 84 (|has| |#1| (-302))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1283 ((-751) |#2|)) (-15 -1284 ((-751) |#2|)) (-15 -1285 ((-751) |#2|)) (-15 -1286 ((-751) |#2|)) (-15 -1287 ((-751) |#2|)) (-15 -1288 ((-622 |#2|))) (-15 -1289 ((-622 |#2|) |#2|)) (-15 -1290 ((-622 |#2|) |#2|)) (-15 -1291 ((-622 |#2|))) (-15 -1292 ((-622 |#2|))) (-15 -1293 ((-622 |#2|))) (-15 -1294 ((-622 |#2|))) (-15 -1295 ((-622 |#2|))) (-15 -1296 ((-622 (-669 |#1|)))) (-15 -1297 ((-622 (-669 |#1|)))) (-15 -1298 ((-622 (-669 |#1|)))) (-15 -1299 ((-622 |#2|))) (IF (|has| |#1| (-302)) (-15 -2128 ((-1231 |#2|) (-1231 |#2|))) |%noBranch|)) (-545) (-413 |#1|)) (T -43)) +((-2128 (*1 *2 *2) (-12 (-5 *2 (-1231 *4)) (-4 *4 (-413 *3)) (-4 *3 (-302)) (-4 *3 (-545)) (-5 *1 (-43 *3 *4)))) (-1299 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1298 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1297 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1296 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1295 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1294 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1293 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1292 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1291 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1290 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1289 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1288 (*1 *2) (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3)))) (-1287 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1286 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1285 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1284 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4)))) (-1283 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4))))) +(-10 -7 (-15 -1283 ((-751) |#2|)) (-15 -1284 ((-751) |#2|)) (-15 -1285 ((-751) |#2|)) (-15 -1286 ((-751) |#2|)) (-15 -1287 ((-751) |#2|)) (-15 -1288 ((-622 |#2|))) (-15 -1289 ((-622 |#2|) |#2|)) (-15 -1290 ((-622 |#2|) |#2|)) (-15 -1291 ((-622 |#2|))) (-15 -1292 ((-622 |#2|))) (-15 -1293 ((-622 |#2|))) (-15 -1294 ((-622 |#2|))) (-15 -1295 ((-622 |#2|))) (-15 -1296 ((-622 (-669 |#1|)))) (-15 -1297 ((-622 (-669 |#1|)))) (-15 -1298 ((-622 (-669 |#1|)))) (-15 -1299 ((-622 |#2|))) (IF (|has| |#1| (-302)) (-15 -2128 ((-1231 |#2|) (-1231 |#2|))) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1892 (((-3 $ #1="failed")) NIL (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3574 (((-1231 (-669 |#1|)) (-1231 $)) NIL) (((-1231 (-669 |#1|))) 24)) (-1845 (((-1231 $)) 51)) (-3896 (($) NIL T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (|has| |#1| (-545)))) (-1819 (((-3 $ #1#)) NIL (|has| |#1| (-545)))) (-1907 (((-669 |#1|) (-1231 $)) NIL) (((-669 |#1|)) NIL)) (-1843 ((|#1| $) NIL)) (-1905 (((-669 |#1|) $ (-1231 $)) NIL) (((-669 |#1|) $) NIL)) (-2496 (((-3 $ #1#) $) NIL (|has| |#1| (-545)))) (-2022 (((-1143 (-922 |#1|))) NIL (|has| |#1| (-358)))) (-2499 (($ $ (-895)) NIL)) (-1841 ((|#1| $) NIL)) (-1821 (((-1143 |#1|) $) NIL (|has| |#1| (-545)))) (-1909 ((|#1| (-1231 $)) NIL) ((|#1|) NIL)) (-1839 (((-1143 |#1|) $) NIL)) (-1833 (((-112)) 87)) (-1911 (($ (-1231 |#1|) (-1231 $)) NIL) (($ (-1231 |#1|)) NIL)) (-3821 (((-3 $ #1#) $) 14 (|has| |#1| (-545)))) (-3444 (((-895)) 52)) (-1830 (((-112)) NIL)) (-2524 (($ $ (-895)) NIL)) (-1826 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-1828 (((-112)) 89)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (|has| |#1| (-545)))) (-1820 (((-3 $ #1#)) NIL (|has| |#1| (-545)))) (-1908 (((-669 |#1|) (-1231 $)) NIL) (((-669 |#1|)) NIL)) (-1844 ((|#1| $) NIL)) (-1906 (((-669 |#1|) $ (-1231 $)) NIL) (((-669 |#1|) $) NIL)) (-2497 (((-3 $ #1#) $) NIL (|has| |#1| (-545)))) (-2026 (((-1143 (-922 |#1|))) NIL (|has| |#1| (-358)))) (-2498 (($ $ (-895)) NIL)) (-1842 ((|#1| $) NIL)) (-1822 (((-1143 |#1|) $) NIL (|has| |#1| (-545)))) (-1910 ((|#1| (-1231 $)) NIL) ((|#1|) NIL)) (-1840 (((-1143 |#1|) $) NIL)) (-1834 (((-112)) 86)) (-3593 (((-1131) $) NIL)) (-1825 (((-112)) 93)) (-1827 (((-112)) 92)) (-1829 (((-112)) 94)) (-3594 (((-1093) $) NIL)) (-1832 (((-112)) 88)) (-4159 ((|#1| $ (-538)) 54)) (-3575 (((-1231 |#1|) $ (-1231 $)) 48) (((-669 |#1|) (-1231 $) (-1231 $)) NIL) (((-1231 |#1|) $) 28) (((-669 |#1|) (-1231 $)) NIL)) (-4330 (((-1231 |#1|) $) NIL) (($ (-1231 |#1|)) NIL)) (-2014 (((-622 (-922 |#1|)) (-1231 $)) NIL) (((-622 (-922 |#1|))) NIL)) (-2686 (($ $ $) NIL)) (-1838 (((-112)) 84)) (-4317 (((-840) $) 69) (($ (-1231 |#1|)) 22)) (-2128 (((-1231 $)) 45)) (-1823 (((-622 (-1231 |#1|))) NIL (|has| |#1| (-545)))) (-2687 (($ $ $ $) NIL)) (-1836 (((-112)) 82)) (-2880 (($ (-669 |#1|) $) 18)) (-2685 (($ $ $) NIL)) (-1837 (((-112)) 85)) (-1835 (((-112)) 83)) (-1831 (((-112)) 81)) (-2991 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1115 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-413 |#1|) (-628 (-1115 |#2| |#1|)) (-10 -8 (-15 -4317 ($ (-1231 |#1|))))) (-358) (-895) (-622 (-1149)) (-1231 (-669 |#1|))) (T -44)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-358)) (-14 *6 (-1231 (-669 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-895)) (-14 *5 (-622 (-1149)))))) +(-13 (-413 |#1|) (-628 (-1115 |#2| |#1|)) (-10 -8 (-15 -4317 ($ (-1231 |#1|))))) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3761 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-4154 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-4156 (($ $) NIL)) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354))) (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-1846 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827))))) (-3242 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-3358 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354)))) (-4146 (($ $ $) 27 (|has| $ (-6 -4354)))) (-4145 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354)))) (-4148 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 29 (|has| $ (-6 -4354)))) (-4147 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-1198 (-538)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #1="last" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354))) (($ $ #2="rest" $) NIL (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #3="first" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #4="value" (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4155 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2314 (((-3 |#2| #5="failed") |#1| $) 37)) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-4158 (($ $ (-751)) NIL) (($ $) 24)) (-2455 (($ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #5#) |#1| $) 48) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) NIL)) (-3801 (((-112) $) NIL)) (-3778 (((-538) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) (((-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 18 (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 18 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-3977 (($ (-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827))) (((-538) $) 32 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3192 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3872 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827))) (((-538) $) 34 (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-3897 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) 42 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4157 (($ $ (-751)) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2744 (((-622 |#1|) $) 20)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2382 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 |#1|) $) NIL) (((-622 (-538)) $) NIL)) (-2311 (((-112) |#1| $) NIL) (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827))) (($ $ (-751)) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 23)) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #6="failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) #6#) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3802 (((-112) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-2312 (((-622 |#2|) $) NIL) (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 17)) (-3762 (((-112) $) 16)) (-3928 (($) 13)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ (-538)) NIL) (($ $ (-1198 (-538))) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #1#) NIL) (($ $ #2#) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #3#) NIL) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $ #4#) NIL)) (-3362 (((-538) $ $) NIL)) (-1523 (($) 12) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-1632 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-3996 (((-112) $) NIL)) (-4151 (($ $) NIL)) (-4149 (($ $) NIL (|has| $ (-6 -4354)))) (-4152 (((-751) $) NIL)) (-4153 (($ $) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4150 (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL) (($ $ $) NIL)) (-4161 (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL) (($ (-622 $)) NIL) (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 25) (($ $ $) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-1273 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") |#1| $) 44)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3017 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-827)))) (-4316 (((-751) $) 22 (|has| $ (-6 -4353))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1074) (-1074)) (T -45)) NIL (-36 |#1| |#2|) -((-4292 (((-112) $) 12)) (-4313 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-400 (-536)) $) 25) (($ $ (-400 (-536))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) (-47 |#2| |#3|) (-1023) (-770)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-4292 (((-112) $) 60)) (-3221 (($ |#1| |#2|) 59)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-4302 ((|#2| $) 62)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4035 ((|#1| $ |#2|) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) -(((-47 |#1| |#2|) (-138) (-1023) (-770)) (T -47)) -((-3520 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) (-3222 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-112)))) (-3221 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) (-4035 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) (-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *2 (-356))))) -(-13 (-1023) (-111 |t#1| |t#1|) (-10 -8 (-15 -3520 (|t#1| $)) (-15 -3222 ($ $)) (-15 -4302 (|t#2| $)) (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (-15 -4292 ((-112) $)) (-15 -3221 ($ |t#1| |t#2|)) (-15 -4314 ($ $)) (-15 -4035 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-356)) (-15 -4303 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-543)) (-6 (-543)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-536)))) (-6 (-38 (-400 (-536)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-283) |has| |#1| (-543)) ((-543) |has| |#1| (-543)) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-1662 (((-620 $) (-1141 $) (-1147)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-920 $)) NIL)) (-1263 (($ (-1141 $) (-1147)) NIL) (($ (-1141 $)) NIL) (($ (-920 $)) NIL)) (-3534 (((-112) $) 11)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1655 (((-620 (-593 $)) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-1264 (((-620 $) (-1141 $) (-1147)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-920 $)) NIL)) (-3529 (($ (-1141 $) (-1147)) NIL) (($ (-1141 $)) NIL) (($ (-920 $)) NIL)) (-3503 (((-3 (-593 $) #1="failed") $) NIL) (((-3 (-536) #1#) $) NIL) (((-3 (-400 (-536)) #1#) $) NIL)) (-3502 (((-593 $) $) NIL) (((-536) $) NIL) (((-400 (-536)) $) NIL)) (-2889 (($ $ $) NIL)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-400 (-536)))) (|:| |vec| (-1229 (-400 (-536))))) (-667 $) (-1229 $)) NIL) (((-667 (-400 (-536))) (-667 $)) NIL)) (-4197 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2898 (($ $) NIL) (($ (-620 $)) NIL)) (-1654 (((-620 (-113)) $) NIL)) (-3375 (((-113) (-113)) NIL)) (-2497 (((-112) $) 14)) (-3001 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-3326 (((-1096 (-536) (-593 $)) $) NIL)) (-3339 (($ $ (-536)) NIL)) (-3462 (((-1141 $) (-1141 $) (-593 $)) NIL) (((-1141 $) (-1141 $) (-620 (-593 $))) NIL) (($ $ (-593 $)) NIL) (($ $ (-620 (-593 $))) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-1652 (((-1141 $) (-593 $)) NIL (|has| $ (-1023)))) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 $ $) (-593 $)) NIL)) (-1657 (((-3 (-593 $) "failed") $) NIL)) (-2008 (($ (-620 $)) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-1656 (((-620 (-593 $)) $) NIL)) (-2312 (($ (-113) $) NIL) (($ (-113) (-620 $)) NIL)) (-2959 (((-112) $ (-113)) NIL) (((-112) $ (-1147)) NIL)) (-2729 (($ $) NIL)) (-2928 (((-749) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ (-620 $)) NIL) (($ $ $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1147)) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-1147) (-1 $ (-620 $))) NIL) (($ $ (-1147) (-1 $ $)) NIL) (($ $ (-620 (-113)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-113) (-1 $ (-620 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1699 (((-749) $) NIL)) (-4154 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-620 $)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-3325 (((-1096 (-536) (-593 $)) $) NIL)) (-3531 (($ $) NIL (|has| $ (-1023)))) (-4325 (((-371) $) NIL) (((-219) $) NIL) (((-166 (-371)) $) NIL)) (-4312 (((-838) $) NIL) (($ (-593 $)) NIL) (($ (-400 (-536))) NIL) (($ $) NIL) (($ (-536)) NIL) (($ (-1096 (-536) (-593 $))) NIL)) (-3456 (((-749)) NIL)) (-2915 (($ $) NIL) (($ (-620 $)) NIL)) (-2333 (((-112) (-113)) NIL)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 7 T CONST)) (-2992 (($) 12 T CONST)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 16)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (-4192 (($ $ $) 15) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-400 (-536))) NIL) (($ $ (-536)) NIL) (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL) (($ $ $) NIL) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL))) -(((-48) (-13 (-291) (-27) (-1012 (-536)) (-1012 (-400 (-536))) (-619 (-536)) (-994) (-619 (-400 (-536))) (-145) (-596 (-166 (-371))) (-227) (-10 -8 (-15 -4312 ($ (-1096 (-536) (-593 $)))) (-15 -3326 ((-1096 (-536) (-593 $)) $)) (-15 -3325 ((-1096 (-536) (-593 $)) $)) (-15 -4197 ($ $)) (-15 -3462 ((-1141 $) (-1141 $) (-593 $))) (-15 -3462 ((-1141 $) (-1141 $) (-620 (-593 $)))) (-15 -3462 ($ $ (-593 $))) (-15 -3462 ($ $ (-620 (-593 $))))))) (T -48)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) (-4197 (*1 *1 *1) (-5 *1 (-48))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-593 (-48))) (-5 *1 (-48)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-620 (-593 (-48)))) (-5 *1 (-48)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-593 (-48))) (-5 *1 (-48)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-593 (-48)))) (-5 *1 (-48))))) -(-13 (-291) (-27) (-1012 (-536)) (-1012 (-400 (-536))) (-619 (-536)) (-994) (-619 (-400 (-536))) (-145) (-596 (-166 (-371))) (-227) (-10 -8 (-15 -4312 ($ (-1096 (-536) (-593 $)))) (-15 -3326 ((-1096 (-536) (-593 $)) $)) (-15 -3325 ((-1096 (-536) (-593 $)) $)) (-15 -4197 ($ $)) (-15 -3462 ((-1141 $) (-1141 $) (-593 $))) (-15 -3462 ((-1141 $) (-1141 $) (-620 (-593 $)))) (-15 -3462 ($ $ (-593 $))) (-15 -3462 ($ $ (-620 (-593 $)))))) -((-2893 (((-112) $ $) NIL)) (-2055 (((-620 (-1147)) $) 17)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 7)) (-3579 (((-1152) $) 18)) (-3382 (((-112) $ $) NIL))) -(((-49) (-13 (-1072) (-10 -8 (-15 -2055 ((-620 (-1147)) $)) (-15 -3579 ((-1152) $))))) (T -49)) -((-2055 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-49)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-49))))) -(-13 (-1072) (-10 -8 (-15 -2055 ((-620 (-1147)) $)) (-15 -3579 ((-1152) $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 61)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2990 (((-112) $) 20)) (-3503 (((-3 |#1| "failed") $) 23)) (-3502 ((|#1| $) 24)) (-4314 (($ $) 28)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3520 ((|#1| $) 21)) (-1508 (($ $) 50)) (-3588 (((-1129) $) NIL)) (-1507 (((-112) $) 30)) (-3589 (((-1091) $) NIL)) (-2496 (($ (-749)) 48)) (-4298 (($ (-620 (-536))) 49)) (-4302 (((-749) $) 31)) (-4312 (((-838) $) 64) (($ (-536)) 45) (($ |#1|) 43)) (-4035 ((|#1| $ $) 19)) (-3456 (((-749)) 47)) (-2986 (($) 32 T CONST)) (-2992 (($) 14 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 40)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) -(((-50 |#1| |#2|) (-13 (-601 |#1|) (-1012 |#1|) (-10 -8 (-15 -3520 (|#1| $)) (-15 -1508 ($ $)) (-15 -4314 ($ $)) (-15 -4035 (|#1| $ $)) (-15 -2496 ($ (-749))) (-15 -4298 ($ (-620 (-536)))) (-15 -1507 ((-112) $)) (-15 -2990 ((-112) $)) (-15 -4302 ((-749) $)) (-15 -4313 ($ (-1 |#1| |#1|) $)))) (-1023) (-620 (-1147))) (T -50)) -((-3520 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-50 *2 *3)) (-14 *3 (-620 (-1147))))) (-1508 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1023)) (-14 *3 (-620 (-1147))))) (-4314 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1023)) (-14 *3 (-620 (-1147))))) (-4035 (*1 *2 *1 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-50 *2 *3)) (-14 *3 (-620 (-1147))))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))))) (-4298 (*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-50 *3 *4)) (-14 *4 (-620 (-1147)))))) -(-13 (-601 |#1|) (-1012 |#1|) (-10 -8 (-15 -3520 (|#1| $)) (-15 -1508 ($ $)) (-15 -4314 ($ $)) (-15 -4035 (|#1| $ $)) (-15 -2496 ($ (-749))) (-15 -4298 ($ (-620 (-536)))) (-15 -1507 ((-112) $)) (-15 -2990 ((-112) $)) (-15 -4302 ((-749) $)) (-15 -4313 ($ (-1 |#1| |#1|) $)))) -((-2893 (((-112) $ $) NIL)) (-1298 (((-1129) (-112)) 25)) (-1301 (((-838) $) 24)) (-1299 (((-751) $) 12)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1302 (((-838) $) 16)) (-1300 (((-1074) $) 14)) (-4312 (((-838) $) 32)) (-1303 (($ (-1074) (-751)) 33)) (-3382 (((-112) $ $) 18))) -(((-51) (-13 (-1072) (-10 -8 (-15 -1303 ($ (-1074) (-751))) (-15 -1302 ((-838) $)) (-15 -1301 ((-838) $)) (-15 -1300 ((-1074) $)) (-15 -1299 ((-751) $)) (-15 -1298 ((-1129) (-112)))))) (T -51)) -((-1303 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-751)) (-5 *1 (-51)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-51)))) (-1301 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-51)))) (-1300 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-51)))) (-1299 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-51)))) (-1298 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1129)) (-5 *1 (-51))))) -(-13 (-1072) (-10 -8 (-15 -1303 ($ (-1074) (-751))) (-15 -1302 ((-838) $)) (-15 -1301 ((-838) $)) (-15 -1300 ((-1074) $)) (-15 -1299 ((-751) $)) (-15 -1298 ((-1129) (-112))))) -((-2990 (((-112) (-51)) 13)) (-3503 (((-3 |#1| "failed") (-51)) 21)) (-3502 ((|#1| (-51)) 22)) (-4312 (((-51) |#1|) 18))) -(((-52 |#1|) (-10 -7 (-15 -4312 ((-51) |#1|)) (-15 -3503 ((-3 |#1| "failed") (-51))) (-15 -2990 ((-112) (-51))) (-15 -3502 (|#1| (-51)))) (-1183)) (T -52)) -((-3502 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1183)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1183)))) (-3503 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1183)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1183))))) -(-10 -7 (-15 -4312 ((-51) |#1|)) (-15 -3503 ((-3 |#1| "failed") (-51))) (-15 -2990 ((-112) (-51))) (-15 -3502 (|#1| (-51)))) -((-2875 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2875 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1023) (-626 |#1|) (-827 |#1|)) (T -53)) -((-2875 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-626 *5)) (-4 *5 (-1023)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-827 *5))))) -(-10 -7 (-15 -2875 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-1305 ((|#3| |#3| (-620 (-1147))) 35)) (-1304 ((|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3| (-893)) 22) ((|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3|) 20))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1304 (|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3|)) (-15 -1304 (|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3| (-893))) (-15 -1305 (|#3| |#3| (-620 (-1147))))) (-1072) (-13 (-1023) (-860 |#1|) (-825) (-596 (-864 |#1|))) (-13 (-414 |#2|) (-860 |#1|) (-596 (-864 |#1|)))) (T -54)) -((-1305 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) (-1304 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-620 (-1046 *5 *6 *2))) (-5 *4 (-893)) (-4 *5 (-1072)) (-4 *6 (-13 (-1023) (-860 *5) (-825) (-596 (-864 *5)))) (-4 *2 (-13 (-414 *6) (-860 *5) (-596 (-864 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1304 (*1 *2 *3 *2) (-12 (-5 *3 (-620 (-1046 *4 *5 *2))) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -1304 (|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3|)) (-15 -1304 (|#3| (-620 (-1046 |#1| |#2| |#3|)) |#3| (-893))) (-15 -1305 (|#3| |#3| (-620 (-1147))))) -((-1269 (((-112) $ (-749)) 23)) (-1307 (($ $ (-536) |#3|) 47)) (-1306 (($ $ (-536) |#4|) 51)) (-3442 ((|#3| $ (-536)) 60)) (-2063 (((-620 |#2|) $) 30)) (-4077 (((-112) $ (-749)) 25)) (-3591 (((-112) |#2| $) 55)) (-2067 (($ (-1 |#2| |#2|) $) 38)) (-4313 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-4074 (((-112) $ (-749)) 24)) (-2301 (($ $ |#2|) 35)) (-2065 (((-112) (-1 (-112) |#2|) $) 19)) (-4154 ((|#2| $ (-536) (-536)) NIL) ((|#2| $ (-536) (-536) |#2|) 27)) (-2064 (((-749) (-1 (-112) |#2|) $) 28) (((-749) |#2| $) 57)) (-3754 (($ $) 34)) (-3441 ((|#4| $ (-536)) 63)) (-4312 (((-838) $) 69)) (-2066 (((-112) (-1 (-112) |#2|) $) 18)) (-3382 (((-112) $ $) 54)) (-4311 (((-749) $) 26))) -(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1306 (|#1| |#1| (-536) |#4|)) (-15 -1307 (|#1| |#1| (-536) |#3|)) (-15 -2063 ((-620 |#2|) |#1|)) (-15 -3441 (|#4| |#1| (-536))) (-15 -3442 (|#3| |#1| (-536))) (-15 -4154 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536))) (-15 -2301 (|#1| |#1| |#2|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -3591 ((-112) |#2| |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749))) (-15 -3754 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1183) (-365 |#2|) (-365 |#2|)) (T -55)) -NIL -(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1306 (|#1| |#1| (-536) |#4|)) (-15 -1307 (|#1| |#1| (-536) |#3|)) (-15 -2063 ((-620 |#2|) |#1|)) (-15 -3441 (|#4| |#1| (-536))) (-15 -3442 (|#3| |#1| (-536))) (-15 -4154 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536))) (-15 -2301 (|#1| |#1| |#2|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -3591 ((-112) |#2| |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749))) (-15 -3754 (|#1| |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) (-536) |#1|) 44)) (-1307 (($ $ (-536) |#2|) 42)) (-1306 (($ $ (-536) |#3|) 41)) (-3891 (($) 7 T CONST)) (-3442 ((|#2| $ (-536)) 46)) (-1632 ((|#1| $ (-536) (-536) |#1|) 43)) (-3443 ((|#1| $ (-536) (-536)) 48)) (-2063 (((-620 |#1|) $) 30)) (-3445 (((-749) $) 51)) (-3972 (($ (-749) (-749) |#1|) 57)) (-3444 (((-749) $) 50)) (-4077 (((-112) $ (-749)) 9)) (-3449 (((-536) $) 55)) (-3447 (((-536) $) 53)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3448 (((-536) $) 54)) (-3446 (((-536) $) 52)) (-2067 (($ (-1 |#1| |#1|) $) 34)) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) 56)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) (-536)) 49) ((|#1| $ (-536) (-536) |#1|) 47)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-3441 ((|#3| $ (-536)) 45)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-56 |#1| |#2| |#3|) (-138) (-1183) (-365 |t#1|) (-365 |t#1|)) (T -56)) -((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3972 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-749)) (-4 *3 (-1183)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2301 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-536)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-536)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-536)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-536)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-749)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-749)))) (-4154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1183)))) (-3443 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-1183)))) (-4154 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) (-4 *2 (-365 *4)))) (-2063 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-620 *3)))) (-4142 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-1632 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) (-4 *5 (-365 *2)))) (-1307 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-536)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-365 *4)) (-4 *5 (-365 *4)))) (-1306 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-536)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) (-4 *3 (-365 *4)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4313 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3))))) -(-13 (-481 |t#1|) (-10 -8 (-6 -4349) (-6 -4348) (-15 -3972 ($ (-749) (-749) |t#1|)) (-15 -2301 ($ $ |t#1|)) (-15 -3449 ((-536) $)) (-15 -3448 ((-536) $)) (-15 -3447 ((-536) $)) (-15 -3446 ((-536) $)) (-15 -3445 ((-749) $)) (-15 -3444 ((-749) $)) (-15 -4154 (|t#1| $ (-536) (-536))) (-15 -3443 (|t#1| $ (-536) (-536))) (-15 -4154 (|t#1| $ (-536) (-536) |t#1|)) (-15 -3442 (|t#2| $ (-536))) (-15 -3441 (|t#3| $ (-536))) (-15 -2063 ((-620 |t#1|) $)) (-15 -4142 (|t#1| $ (-536) (-536) |t#1|)) (-15 -1632 (|t#1| $ (-536) (-536) |t#1|)) (-15 -1307 ($ $ (-536) |t#2|)) (-15 -1306 ($ $ (-536) |t#3|)) (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (-15 -2067 ($ (-1 |t#1| |t#1|) $)) (-15 -4313 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4313 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) 11 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-1308 (($ (-620 |#1|)) 13) (($ (-749) |#1|) 14)) (-3972 (($ (-749) |#1|) 9)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 7)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1308 ($ (-620 |#1|))) (-15 -1308 ($ (-749) |#1|)))) (-1183)) (T -57)) -((-1308 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-57 *3)))) (-1308 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-57 *3)) (-4 *3 (-1183))))) -(-13 (-19 |#1|) (-10 -8 (-15 -1308 ($ (-620 |#1|))) (-15 -1308 ($ (-749) |#1|)))) -((-4196 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-4197 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-4313 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -4196 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4313 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1183) (-1183)) (T -58)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-58 *5 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -4196 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4313 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) NIL)) (-1307 (($ $ (-536) (-57 |#1|)) NIL)) (-1306 (($ $ (-536) (-57 |#1|)) NIL)) (-3891 (($) NIL T CONST)) (-3442 (((-57 |#1|) $ (-536)) NIL)) (-1632 ((|#1| $ (-536) (-536) |#1|) NIL)) (-3443 ((|#1| $ (-536) (-536)) NIL)) (-2063 (((-620 |#1|) $) NIL)) (-3445 (((-749) $) NIL)) (-3972 (($ (-749) (-749) |#1|) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) (-536)) NIL) ((|#1| $ (-536) (-536) |#1|) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3441 (((-57 |#1|) $ (-536)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-59 |#1|) (-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4349))) (-1183)) (T -59)) -NIL -(-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4349))) -((-3503 (((-3 $ #1="failed") (-307 (-371))) 41) (((-3 $ #1#) (-307 (-536))) 46) (((-3 $ #1#) (-920 (-371))) 50) (((-3 $ #1#) (-920 (-536))) 54) (((-3 $ #1#) (-400 (-920 (-371)))) 36) (((-3 $ #1#) (-400 (-920 (-536)))) 29)) (-3502 (($ (-307 (-371))) 39) (($ (-307 (-536))) 44) (($ (-920 (-371))) 48) (($ (-920 (-536))) 52) (($ (-400 (-920 (-371)))) 34) (($ (-400 (-920 (-536)))) 26)) (-3734 (((-1235) $) 76)) (-4312 (((-838) $) 69) (($ (-620 (-323))) 61) (($ (-323)) 66) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 64) (($ (-332 (-3879 (QUOTE X)) (-3879) (-677))) 25))) -(((-60 |#1|) (-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879 (QUOTE X)) (-3879) (-677)))))) (-1147)) (T -60)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-332 (-3879 (QUOTE X)) (-3879) (-677))) (-5 *1 (-60 *3)) (-14 *3 (-1147))))) -(-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879 (QUOTE X)) (-3879) (-677)))))) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 74) (((-3 $ #1#) (-1229 (-307 (-536)))) 63) (((-3 $ #1#) (-1229 (-920 (-371)))) 94) (((-3 $ #1#) (-1229 (-920 (-536)))) 84) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 52) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 39)) (-3502 (($ (-1229 (-307 (-371)))) 70) (($ (-1229 (-307 (-536)))) 59) (($ (-1229 (-920 (-371)))) 90) (($ (-1229 (-920 (-536)))) 80) (($ (-1229 (-400 (-920 (-371))))) 48) (($ (-1229 (-400 (-920 (-536))))) 32)) (-3734 (((-1235) $) 120)) (-4312 (((-838) $) 113) (($ (-620 (-323))) 103) (($ (-323)) 97) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 101) (($ (-1229 (-332 (-3879 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3879) (-677)))) 31))) -(((-61 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3879) (-677))))))) (-1147)) (T -61)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3879) (-677)))) (-5 *1 (-61 *3)) (-14 *3 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3879) (-677))))))) -((-3734 (((-1235) $) 53) (((-1235)) 54)) (-4312 (((-838) $) 50))) -(((-62 |#1|) (-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) (-1147)) (T -62)) -((-3734 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-62 *3)) (-14 *3 (-1147))))) -(-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 144) (((-3 $ #1#) (-1229 (-307 (-536)))) 134) (((-3 $ #1#) (-1229 (-920 (-371)))) 164) (((-3 $ #1#) (-1229 (-920 (-536)))) 154) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 123) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 111)) (-3502 (($ (-1229 (-307 (-371)))) 140) (($ (-1229 (-307 (-536)))) 130) (($ (-1229 (-920 (-371)))) 160) (($ (-1229 (-920 (-536)))) 150) (($ (-1229 (-400 (-920 (-371))))) 119) (($ (-1229 (-400 (-920 (-536))))) 104)) (-3734 (((-1235) $) 97)) (-4312 (((-838) $) 91) (($ (-620 (-323))) 29) (($ (-323)) 34) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 32) (($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677)))) 89))) -(((-63 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677))))))) (-1147)) (T -63)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677)))) (-5 *1 (-63 *3)) (-14 *3 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677))))))) -((-3503 (((-3 $ #1="failed") (-667 (-307 (-371)))) 109) (((-3 $ #1#) (-667 (-307 (-536)))) 97) (((-3 $ #1#) (-667 (-920 (-371)))) 131) (((-3 $ #1#) (-667 (-920 (-536)))) 120) (((-3 $ #1#) (-667 (-400 (-920 (-371))))) 85) (((-3 $ #1#) (-667 (-400 (-920 (-536))))) 71)) (-3502 (($ (-667 (-307 (-371)))) 105) (($ (-667 (-307 (-536)))) 93) (($ (-667 (-920 (-371)))) 127) (($ (-667 (-920 (-536)))) 116) (($ (-667 (-400 (-920 (-371))))) 81) (($ (-667 (-400 (-920 (-536))))) 64)) (-3734 (((-1235) $) 139)) (-4312 (((-838) $) 133) (($ (-620 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 31) (($ (-667 (-332 (-3879) (-3879 (QUOTE X) (QUOTE HESS)) (-677)))) 54))) -(((-64 |#1|) (-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879) (-3879 (QUOTE X) (QUOTE HESS)) (-677))))))) (-1147)) (T -64)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-3879) (-3879 (QUOTE X) (QUOTE HESS)) (-677)))) (-5 *1 (-64 *3)) (-14 *3 (-1147))))) -(-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879) (-3879 (QUOTE X) (QUOTE HESS)) (-677))))))) -((-3503 (((-3 $ #1="failed") (-307 (-371))) 59) (((-3 $ #1#) (-307 (-536))) 64) (((-3 $ #1#) (-920 (-371))) 68) (((-3 $ #1#) (-920 (-536))) 72) (((-3 $ #1#) (-400 (-920 (-371)))) 54) (((-3 $ #1#) (-400 (-920 (-536)))) 47)) (-3502 (($ (-307 (-371))) 57) (($ (-307 (-536))) 62) (($ (-920 (-371))) 66) (($ (-920 (-536))) 70) (($ (-400 (-920 (-371)))) 52) (($ (-400 (-920 (-536)))) 44)) (-3734 (((-1235) $) 81)) (-4312 (((-838) $) 75) (($ (-620 (-323))) 28) (($ (-323)) 33) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 31) (($ (-332 (-3879) (-3879 (QUOTE XC)) (-677))) 39))) -(((-65 |#1|) (-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE XC)) (-677)))))) (-1147)) (T -65)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-332 (-3879) (-3879 (QUOTE XC)) (-677))) (-5 *1 (-65 *3)) (-14 *3 (-1147))))) -(-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE XC)) (-677)))))) -((-3734 (((-1235) $) 63)) (-4312 (((-838) $) 57) (($ (-667 (-677))) 49) (($ (-620 (-323))) 48) (($ (-323)) 55) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 53))) -(((-66 |#1|) (-376) (-1147)) (T -66)) -NIL -(-376) -((-3734 (((-1235) $) 64)) (-4312 (((-838) $) 58) (($ (-667 (-677))) 50) (($ (-620 (-323))) 49) (($ (-323)) 52) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 55))) -(((-67 |#1|) (-376) (-1147)) (T -67)) -NIL -(-376) -((-3734 (((-1235) $) NIL) (((-1235)) 32)) (-4312 (((-838) $) NIL))) -(((-68 |#1|) (-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) (-1147)) (T -68)) -((-3734 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-68 *3)) (-14 *3 (-1147))))) -(-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) -((-3734 (((-1235) $) 73)) (-4312 (((-838) $) 67) (($ (-667 (-677))) 59) (($ (-620 (-323))) 61) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 58))) -(((-69 |#1|) (-376) (-1147)) (T -69)) -NIL -(-376) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 103) (((-3 $ #1#) (-1229 (-307 (-536)))) 92) (((-3 $ #1#) (-1229 (-920 (-371)))) 123) (((-3 $ #1#) (-1229 (-920 (-536)))) 113) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 81) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 68)) (-3502 (($ (-1229 (-307 (-371)))) 99) (($ (-1229 (-307 (-536)))) 88) (($ (-1229 (-920 (-371)))) 119) (($ (-1229 (-920 (-536)))) 109) (($ (-1229 (-400 (-920 (-371))))) 77) (($ (-1229 (-400 (-920 (-536))))) 61)) (-3734 (((-1235) $) 136)) (-4312 (((-838) $) 130) (($ (-620 (-323))) 125) (($ (-323)) 128) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 53) (($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))) 54))) -(((-70 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))))))) (-1147)) (T -70)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))) (-5 *1 (-70 *3)) (-14 *3 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))))))) -((-3734 (((-1235) $) 32) (((-1235)) 31)) (-4312 (((-838) $) 35))) -(((-71 |#1|) (-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) (-1147)) (T -71)) -((-3734 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-71 *3)) (-14 *3 (-1147))))) -(-13 (-389) (-10 -7 (-15 -3734 ((-1235))))) -((-3734 (((-1235) $) 63)) (-4312 (((-838) $) 57) (($ (-667 (-677))) 49) (($ (-620 (-323))) 51) (($ (-323)) 54) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 48))) -(((-72 |#1|) (-376) (-1147)) (T -72)) -NIL -(-376) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 125) (((-3 $ #1#) (-1229 (-307 (-536)))) 115) (((-3 $ #1#) (-1229 (-920 (-371)))) 145) (((-3 $ #1#) (-1229 (-920 (-536)))) 135) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 105) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 93)) (-3502 (($ (-1229 (-307 (-371)))) 121) (($ (-1229 (-307 (-536)))) 111) (($ (-1229 (-920 (-371)))) 141) (($ (-1229 (-920 (-536)))) 131) (($ (-1229 (-400 (-920 (-371))))) 101) (($ (-1229 (-400 (-920 (-536))))) 86)) (-3734 (((-1235) $) 78)) (-4312 (((-838) $) 27) (($ (-620 (-323))) 68) (($ (-323)) 64) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 71) (($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) 65))) -(((-73 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) (-1147)) (T -73)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) (-5 *1 (-73 *3)) (-14 *3 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) -((-3503 (((-3 $ #1="failed") (-307 (-371))) 46) (((-3 $ #1#) (-307 (-536))) 51) (((-3 $ #1#) (-920 (-371))) 55) (((-3 $ #1#) (-920 (-536))) 59) (((-3 $ #1#) (-400 (-920 (-371)))) 41) (((-3 $ #1#) (-400 (-920 (-536)))) 34)) (-3502 (($ (-307 (-371))) 44) (($ (-307 (-536))) 49) (($ (-920 (-371))) 53) (($ (-920 (-536))) 57) (($ (-400 (-920 (-371)))) 39) (($ (-400 (-920 (-536)))) 31)) (-3734 (((-1235) $) 80)) (-4312 (((-838) $) 74) (($ (-620 (-323))) 66) (($ (-323)) 71) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 69) (($ (-332 (-3879) (-3879 (QUOTE X)) (-677))) 30))) -(((-74 |#1|) (-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE X)) (-677)))))) (-1147)) (T -74)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-332 (-3879) (-3879 (QUOTE X)) (-677))) (-5 *1 (-74 *3)) (-14 *3 (-1147))))) -(-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE X)) (-677)))))) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 130) (((-3 $ #1#) (-1229 (-307 (-536)))) 119) (((-3 $ #1#) (-1229 (-920 (-371)))) 150) (((-3 $ #1#) (-1229 (-920 (-536)))) 140) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 108) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 95)) (-3502 (($ (-1229 (-307 (-371)))) 126) (($ (-1229 (-307 (-536)))) 115) (($ (-1229 (-920 (-371)))) 146) (($ (-1229 (-920 (-536)))) 136) (($ (-1229 (-400 (-920 (-371))))) 104) (($ (-1229 (-400 (-920 (-536))))) 88)) (-3734 (((-1235) $) 79)) (-4312 (((-838) $) 71) (($ (-620 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) NIL) (($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE EPS)) (-3879 (QUOTE -4319)) (-677)))) 66))) -(((-75 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE EPS)) (-3879 (QUOTE -4319)) (-677))))))) (-1147) (-1147) (-1147)) (T -75)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE X) (QUOTE EPS)) (-3879 (QUOTE -4319)) (-677)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1147)) (-14 *4 (-1147)) (-14 *5 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE EPS)) (-3879 (QUOTE -4319)) (-677))))))) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 134) (((-3 $ #1#) (-1229 (-307 (-536)))) 123) (((-3 $ #1#) (-1229 (-920 (-371)))) 154) (((-3 $ #1#) (-1229 (-920 (-536)))) 144) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 112) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 99)) (-3502 (($ (-1229 (-307 (-371)))) 130) (($ (-1229 (-307 (-536)))) 119) (($ (-1229 (-920 (-371)))) 150) (($ (-1229 (-920 (-536)))) 140) (($ (-1229 (-400 (-920 (-371))))) 108) (($ (-1229 (-400 (-920 (-536))))) 92)) (-3734 (((-1235) $) 83)) (-4312 (((-838) $) 75) (($ (-620 (-323))) NIL) (($ (-323)) NIL) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) NIL) (($ (-1229 (-332 (-3879 (QUOTE EPS)) (-3879 (QUOTE YA) (QUOTE YB)) (-677)))) 70))) -(((-76 |#1| |#2| |#3|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE EPS)) (-3879 (QUOTE YA) (QUOTE YB)) (-677))))))) (-1147) (-1147) (-1147)) (T -76)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE EPS)) (-3879 (QUOTE YA) (QUOTE YB)) (-677)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1147)) (-14 *4 (-1147)) (-14 *5 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE EPS)) (-3879 (QUOTE YA) (QUOTE YB)) (-677))))))) -((-3503 (((-3 $ #1="failed") (-307 (-371))) 82) (((-3 $ #1#) (-307 (-536))) 87) (((-3 $ #1#) (-920 (-371))) 91) (((-3 $ #1#) (-920 (-536))) 95) (((-3 $ #1#) (-400 (-920 (-371)))) 77) (((-3 $ #1#) (-400 (-920 (-536)))) 70)) (-3502 (($ (-307 (-371))) 80) (($ (-307 (-536))) 85) (($ (-920 (-371))) 89) (($ (-920 (-536))) 93) (($ (-400 (-920 (-371)))) 75) (($ (-400 (-920 (-536)))) 67)) (-3734 (((-1235) $) 62)) (-4312 (((-838) $) 50) (($ (-620 (-323))) 46) (($ (-323)) 56) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 54) (($ (-332 (-3879) (-3879 (QUOTE X)) (-677))) 47))) -(((-77 |#1|) (-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE X)) (-677)))))) (-1147)) (T -77)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-332 (-3879) (-3879 (QUOTE X)) (-677))) (-5 *1 (-77 *3)) (-14 *3 (-1147))))) -(-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879) (-3879 (QUOTE X)) (-677)))))) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 89) (((-3 $ #1#) (-1229 (-307 (-536)))) 78) (((-3 $ #1#) (-1229 (-920 (-371)))) 109) (((-3 $ #1#) (-1229 (-920 (-536)))) 99) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 67) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 54)) (-3502 (($ (-1229 (-307 (-371)))) 85) (($ (-1229 (-307 (-536)))) 74) (($ (-1229 (-920 (-371)))) 105) (($ (-1229 (-920 (-536)))) 95) (($ (-1229 (-400 (-920 (-371))))) 63) (($ (-1229 (-400 (-920 (-536))))) 47)) (-3734 (((-1235) $) 125)) (-4312 (((-838) $) 119) (($ (-620 (-323))) 112) (($ (-323)) 37) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 115) (($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677)))) 38))) -(((-78 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677))))))) (-1147)) (T -78)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677)))) (-5 *1 (-78 *3)) (-14 *3 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE XC)) (-677))))))) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 142) (((-3 $ #1#) (-1229 (-307 (-536)))) 132) (((-3 $ #1#) (-1229 (-920 (-371)))) 162) (((-3 $ #1#) (-1229 (-920 (-536)))) 152) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 122) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 110)) (-3502 (($ (-1229 (-307 (-371)))) 138) (($ (-1229 (-307 (-536)))) 128) (($ (-1229 (-920 (-371)))) 158) (($ (-1229 (-920 (-536)))) 148) (($ (-1229 (-400 (-920 (-371))))) 118) (($ (-1229 (-400 (-920 (-536))))) 103)) (-3734 (((-1235) $) 96)) (-4312 (((-838) $) 90) (($ (-620 (-323))) 81) (($ (-323)) 88) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 86) (($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) 82))) -(((-79 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) (-1147)) (T -79)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) (-5 *1 (-79 *3)) (-14 *3 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 78) (((-3 $ #1#) (-1229 (-307 (-536)))) 67) (((-3 $ #1#) (-1229 (-920 (-371)))) 98) (((-3 $ #1#) (-1229 (-920 (-536)))) 88) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 56) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 43)) (-3502 (($ (-1229 (-307 (-371)))) 74) (($ (-1229 (-307 (-536)))) 63) (($ (-1229 (-920 (-371)))) 94) (($ (-1229 (-920 (-536)))) 84) (($ (-1229 (-400 (-920 (-371))))) 52) (($ (-1229 (-400 (-920 (-536))))) 36)) (-3734 (((-1235) $) 124)) (-4312 (((-838) $) 118) (($ (-620 (-323))) 109) (($ (-323)) 115) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 113) (($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) 35))) -(((-80 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) (-1147)) (T -80)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677)))) (-5 *1 (-80 *3)) (-14 *3 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879) (-3879 (QUOTE X)) (-677))))))) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 79) (((-3 $ #1#) (-1229 (-307 (-536)))) 68) (((-3 $ #1#) (-1229 (-920 (-371)))) 99) (((-3 $ #1#) (-1229 (-920 (-536)))) 89) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 57) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 44)) (-3502 (($ (-1229 (-307 (-371)))) 75) (($ (-1229 (-307 (-536)))) 64) (($ (-1229 (-920 (-371)))) 95) (($ (-1229 (-920 (-536)))) 85) (($ (-1229 (-400 (-920 (-371))))) 53) (($ (-1229 (-400 (-920 (-536))))) 37)) (-3734 (((-1235) $) 125)) (-4312 (((-838) $) 119) (($ (-620 (-323))) 110) (($ (-323)) 116) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 114) (($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))) 36))) -(((-81 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))))))) (-1147)) (T -81)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))) (-5 *1 (-81 *3)) (-14 *3 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))))))) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 95) (((-3 $ #1#) (-1229 (-307 (-536)))) 84) (((-3 $ #1#) (-1229 (-920 (-371)))) 115) (((-3 $ #1#) (-1229 (-920 (-536)))) 105) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 73) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 60)) (-3502 (($ (-1229 (-307 (-371)))) 91) (($ (-1229 (-307 (-536)))) 80) (($ (-1229 (-920 (-371)))) 111) (($ (-1229 (-920 (-536)))) 101) (($ (-1229 (-400 (-920 (-371))))) 69) (($ (-1229 (-400 (-920 (-536))))) 53)) (-3734 (((-1235) $) 45)) (-4312 (((-838) $) 39) (($ (-620 (-323))) 29) (($ (-323)) 32) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 35) (($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677)))) 30))) -(((-82 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677))))))) (-1147)) (T -82)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677)))) (-5 *1 (-82 *3)) (-14 *3 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677))))))) -((-3503 (((-3 $ #1="failed") (-667 (-307 (-371)))) 115) (((-3 $ #1#) (-667 (-307 (-536)))) 104) (((-3 $ #1#) (-667 (-920 (-371)))) 137) (((-3 $ #1#) (-667 (-920 (-536)))) 126) (((-3 $ #1#) (-667 (-400 (-920 (-371))))) 93) (((-3 $ #1#) (-667 (-400 (-920 (-536))))) 80)) (-3502 (($ (-667 (-307 (-371)))) 111) (($ (-667 (-307 (-536)))) 100) (($ (-667 (-920 (-371)))) 133) (($ (-667 (-920 (-536)))) 122) (($ (-667 (-400 (-920 (-371))))) 89) (($ (-667 (-400 (-920 (-536))))) 73)) (-3734 (((-1235) $) 63)) (-4312 (((-838) $) 50) (($ (-620 (-323))) 57) (($ (-323)) 46) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 55) (($ (-667 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677)))) 47))) -(((-83 |#1|) (-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677))))))) (-1147)) (T -83)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677)))) (-5 *1 (-83 *3)) (-14 *3 (-1147))))) -(-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE X) (QUOTE -4319)) (-3879) (-677))))))) -((-3503 (((-3 $ #1="failed") (-667 (-307 (-371)))) 112) (((-3 $ #1#) (-667 (-307 (-536)))) 100) (((-3 $ #1#) (-667 (-920 (-371)))) 134) (((-3 $ #1#) (-667 (-920 (-536)))) 123) (((-3 $ #1#) (-667 (-400 (-920 (-371))))) 88) (((-3 $ #1#) (-667 (-400 (-920 (-536))))) 74)) (-3502 (($ (-667 (-307 (-371)))) 108) (($ (-667 (-307 (-536)))) 96) (($ (-667 (-920 (-371)))) 130) (($ (-667 (-920 (-536)))) 119) (($ (-667 (-400 (-920 (-371))))) 84) (($ (-667 (-400 (-920 (-536))))) 67)) (-3734 (((-1235) $) 59)) (-4312 (((-838) $) 53) (($ (-620 (-323))) 47) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 44) (($ (-667 (-332 (-3879 (QUOTE X)) (-3879) (-677)))) 45))) -(((-84 |#1|) (-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE X)) (-3879) (-677))))))) (-1147)) (T -84)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-3879 (QUOTE X)) (-3879) (-677)))) (-5 *1 (-84 *3)) (-14 *3 (-1147))))) -(-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE X)) (-3879) (-677))))))) -((-3503 (((-3 $ #1="failed") (-1229 (-307 (-371)))) 104) (((-3 $ #1#) (-1229 (-307 (-536)))) 93) (((-3 $ #1#) (-1229 (-920 (-371)))) 124) (((-3 $ #1#) (-1229 (-920 (-536)))) 114) (((-3 $ #1#) (-1229 (-400 (-920 (-371))))) 82) (((-3 $ #1#) (-1229 (-400 (-920 (-536))))) 69)) (-3502 (($ (-1229 (-307 (-371)))) 100) (($ (-1229 (-307 (-536)))) 89) (($ (-1229 (-920 (-371)))) 120) (($ (-1229 (-920 (-536)))) 110) (($ (-1229 (-400 (-920 (-371))))) 78) (($ (-1229 (-400 (-920 (-536))))) 62)) (-3734 (((-1235) $) 46)) (-4312 (((-838) $) 40) (($ (-620 (-323))) 49) (($ (-323)) 36) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 52) (($ (-1229 (-332 (-3879 (QUOTE X)) (-3879) (-677)))) 37))) -(((-85 |#1|) (-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879) (-677))))))) (-1147)) (T -85)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-332 (-3879 (QUOTE X)) (-3879) (-677)))) (-5 *1 (-85 *3)) (-14 *3 (-1147))))) -(-13 (-433) (-10 -8 (-15 -4312 ($ (-1229 (-332 (-3879 (QUOTE X)) (-3879) (-677))))))) -((-3734 (((-1235) $) 44)) (-4312 (((-838) $) 38) (($ (-1229 (-677))) 92) (($ (-620 (-323))) 30) (($ (-323)) 35) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 33))) -(((-86 |#1|) (-432) (-1147)) (T -86)) -NIL -(-432) -((-3503 (((-3 $ #1="failed") (-667 (-307 (-371)))) 113) (((-3 $ #1#) (-667 (-307 (-536)))) 101) (((-3 $ #1#) (-667 (-920 (-371)))) 135) (((-3 $ #1#) (-667 (-920 (-536)))) 124) (((-3 $ #1#) (-667 (-400 (-920 (-371))))) 89) (((-3 $ #1#) (-667 (-400 (-920 (-536))))) 75)) (-3502 (($ (-667 (-307 (-371)))) 109) (($ (-667 (-307 (-536)))) 97) (($ (-667 (-920 (-371)))) 131) (($ (-667 (-920 (-536)))) 120) (($ (-667 (-400 (-920 (-371))))) 85) (($ (-667 (-400 (-920 (-536))))) 68)) (-3734 (((-1235) $) 59)) (-4312 (((-838) $) 53) (($ (-620 (-323))) 43) (($ (-323)) 50) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 48) (($ (-667 (-332 (-3879 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3879) (-677)))) 44))) -(((-87 |#1|) (-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3879) (-677))))))) (-1147)) (T -87)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-667 (-332 (-3879 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3879) (-677)))) (-5 *1 (-87 *3)) (-14 *3 (-1147))))) -(-13 (-378) (-10 -8 (-15 -4312 ($ (-667 (-332 (-3879 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3879) (-677))))))) -((-3503 (((-3 $ #1="failed") (-307 (-371))) 47) (((-3 $ #1#) (-307 (-536))) 52) (((-3 $ #1#) (-920 (-371))) 56) (((-3 $ #1#) (-920 (-536))) 60) (((-3 $ #1#) (-400 (-920 (-371)))) 42) (((-3 $ #1#) (-400 (-920 (-536)))) 35)) (-3502 (($ (-307 (-371))) 45) (($ (-307 (-536))) 50) (($ (-920 (-371))) 54) (($ (-920 (-536))) 58) (($ (-400 (-920 (-371)))) 40) (($ (-400 (-920 (-536)))) 32)) (-3734 (((-1235) $) 90)) (-4312 (((-838) $) 84) (($ (-620 (-323))) 78) (($ (-323)) 81) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 76) (($ (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))) 31))) -(((-88 |#1|) (-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))))) (-1147)) (T -88)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677))) (-5 *1 (-88 *3)) (-14 *3 (-1147))))) -(-13 (-390) (-10 -8 (-15 -4312 ($ (-332 (-3879 (QUOTE X)) (-3879 (QUOTE -4319)) (-677)))))) -((-1310 (((-1229 (-667 |#1|)) (-667 |#1|)) 54)) (-1309 (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 (-620 (-893))))) |#2| (-893)) 44)) (-1311 (((-2 (|:| |minor| (-620 (-893))) (|:| -3612 |#2|) (|:| |minors| (-620 (-620 (-893)))) (|:| |ops| (-620 |#2|))) |#2| (-893)) 65 (|has| |#1| (-356))))) -(((-89 |#1| |#2|) (-10 -7 (-15 -1309 ((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 (-620 (-893))))) |#2| (-893))) (-15 -1310 ((-1229 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-356)) (-15 -1311 ((-2 (|:| |minor| (-620 (-893))) (|:| -3612 |#2|) (|:| |minors| (-620 (-620 (-893)))) (|:| |ops| (-620 |#2|))) |#2| (-893))) |%noBranch|)) (-543) (-636 |#1|)) (T -89)) -((-1311 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *5 (-543)) (-5 *2 (-2 (|:| |minor| (-620 (-893))) (|:| -3612 *3) (|:| |minors| (-620 (-620 (-893)))) (|:| |ops| (-620 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-893)) (-4 *3 (-636 *5)))) (-1310 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-1229 (-667 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-667 *4)) (-4 *5 (-636 *4)))) (-1309 (*1 *2 *3 *4) (-12 (-4 *5 (-543)) (-5 *2 (-2 (|:| -1695 (-667 *5)) (|:| |vec| (-1229 (-620 (-893)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-893)) (-4 *3 (-636 *5))))) -(-10 -7 (-15 -1309 ((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 (-620 (-893))))) |#2| (-893))) (-15 -1310 ((-1229 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-356)) (-15 -1311 ((-2 (|:| |minor| (-620 (-893))) (|:| -3612 |#2|) (|:| |minors| (-620 (-620 (-893)))) (|:| |ops| (-620 |#2|))) |#2| (-893))) |%noBranch|)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3678 ((|#1| $) 35)) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-3680 ((|#1| |#1| $) 30)) (-3679 ((|#1| $) 28)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) NIL)) (-3965 (($ |#1| $) 31)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-1332 ((|#1| $) 29)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 16)) (-3923 (($) 39)) (-3677 (((-749) $) 26)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 15)) (-4312 (((-838) $) 25 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) NIL)) (-1312 (($ (-620 |#1|)) 37)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 13 (|has| |#1| (-1072)))) (-4311 (((-749) $) 10 (|has| $ (-6 -4348))))) -(((-90 |#1|) (-13 (-1092 |#1|) (-10 -8 (-15 -1312 ($ (-620 |#1|))))) (-1072)) (T -90)) -((-1312 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-90 *3))))) -(-13 (-1092 |#1|) (-10 -8 (-15 -1312 ($ (-620 |#1|))))) -((-4312 (((-838) $) 13) (((-1152) $) 8) (($ (-1152)) 9))) -(((-91 |#1|) (-10 -8 (-15 -4312 (|#1| (-1152))) (-15 -4312 ((-1152) |#1|)) (-15 -4312 ((-838) |#1|))) (-92)) (T -91)) -NIL -(-10 -8 (-15 -4312 (|#1| (-1152))) (-15 -4312 ((-1152) |#1|)) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (((-1152) $) 15) (($ (-1152)) 14)) (-3382 (((-112) $ $) 6))) +((-4297 (((-112) $) 12)) (-4318 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-402 (-538)) $) 25) (($ $ (-402 (-538))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4297 ((-112) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) (-47 |#2| |#3|) (-1025) (-772)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4297 ((-112) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-4297 (((-112) $) 60)) (-3226 (($ |#1| |#2|) 59)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-4307 ((|#2| $) 62)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4040 ((|#1| $ |#2|) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538))))))) +(((-47 |#1| |#2|) (-138) (-1025) (-772)) (T -47)) +((-3525 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-3227 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112)))) (-3226 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-4319 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-4040 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-358))))) +(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (-15 -3525 (|t#1| $)) (-15 -3227 ($ $)) (-15 -4307 (|t#2| $)) (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (-15 -4297 ((-112) $)) (-15 -3226 ($ |t#1| |t#2|)) (-15 -4319 ($ $)) (-15 -4040 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-358)) (-15 -4308 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-6 (-170)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-545)) (-6 (-545)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-538)))) (-6 (-38 (-402 (-538)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-285) |has| |#1| (-545)) ((-545) |has| |#1| (-545)) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-1667 (((-622 $) (-1143 $) (-1149)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-922 $)) NIL)) (-1265 (($ (-1143 $) (-1149)) NIL) (($ (-1143 $)) NIL) (($ (-922 $)) NIL)) (-3539 (((-112) $) 11)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1660 (((-622 (-595 $)) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1664 (($ $ (-288 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-1266 (((-622 $) (-1143 $) (-1149)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-922 $)) NIL)) (-3534 (($ (-1143 $) (-1149)) NIL) (($ (-1143 $)) NIL) (($ (-922 $)) NIL)) (-3508 (((-3 (-595 $) #1="failed") $) NIL) (((-3 (-538) #1#) $) NIL) (((-3 (-402 (-538)) #1#) $) NIL)) (-3507 (((-595 $) $) NIL) (((-538) $) NIL) (((-402 (-538)) $) NIL)) (-2894 (($ $ $) NIL)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-402 (-538)))) (|:| |vec| (-1231 (-402 (-538))))) (-669 $) (-1231 $)) NIL) (((-669 (-402 (-538))) (-669 $)) NIL)) (-4202 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2903 (($ $) NIL) (($ (-622 $)) NIL)) (-1659 (((-622 (-113)) $) NIL)) (-3380 (((-113) (-113)) NIL)) (-2502 (((-112) $) 14)) (-3006 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-3331 (((-1098 (-538) (-595 $)) $) NIL)) (-3344 (($ $ (-538)) NIL)) (-3467 (((-1143 $) (-1143 $) (-595 $)) NIL) (((-1143 $) (-1143 $) (-622 (-595 $))) NIL) (($ $ (-595 $)) NIL) (($ $ (-622 (-595 $))) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-1657 (((-1143 $) (-595 $)) NIL (|has| $ (-1025)))) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 $ $) (-595 $)) NIL)) (-1662 (((-3 (-595 $) "failed") $) NIL)) (-2013 (($ (-622 $)) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-1661 (((-622 (-595 $)) $) NIL)) (-2317 (($ (-113) $) NIL) (($ (-113) (-622 $)) NIL)) (-2964 (((-112) $ (-113)) NIL) (((-112) $ (-1149)) NIL)) (-2734 (($ $) NIL)) (-2933 (((-751) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ (-622 $)) NIL) (($ $ $) NIL)) (-1658 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-1149) (-1 $ (-622 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-622 (-113)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-113) (-1 $ (-622 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1704 (((-751) $) NIL)) (-4159 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-622 $)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-3330 (((-1098 (-538) (-595 $)) $) NIL)) (-3536 (($ $) NIL (|has| $ (-1025)))) (-4330 (((-373) $) NIL) (((-221) $) NIL) (((-166 (-373)) $) NIL)) (-4317 (((-840) $) NIL) (($ (-595 $)) NIL) (($ (-402 (-538))) NIL) (($ $) NIL) (($ (-538)) NIL) (($ (-1098 (-538) (-595 $))) NIL)) (-3461 (((-751)) NIL)) (-2920 (($ $) NIL) (($ (-622 $)) NIL)) (-2338 (((-112) (-113)) NIL)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 7 T CONST)) (-2997 (($) 12 T CONST)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 16)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (-4197 (($ $ $) 15) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-402 (-538))) NIL) (($ $ (-538)) NIL) (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL) (($ $ $) NIL) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL))) +(((-48) (-13 (-293) (-27) (-1014 (-538)) (-1014 (-402 (-538))) (-621 (-538)) (-996) (-621 (-402 (-538))) (-145) (-598 (-166 (-373))) (-229) (-10 -8 (-15 -4317 ($ (-1098 (-538) (-595 $)))) (-15 -3331 ((-1098 (-538) (-595 $)) $)) (-15 -3330 ((-1098 (-538) (-595 $)) $)) (-15 -4202 ($ $)) (-15 -3467 ((-1143 $) (-1143 $) (-595 $))) (-15 -3467 ((-1143 $) (-1143 $) (-622 (-595 $)))) (-15 -3467 ($ $ (-595 $))) (-15 -3467 ($ $ (-622 (-595 $))))))) (T -48)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48)))) (-4202 (*1 *1 *1) (-5 *1 (-48))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 (-48))) (-5 *3 (-595 (-48))) (-5 *1 (-48)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 (-48))) (-5 *3 (-622 (-595 (-48)))) (-5 *1 (-48)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-48))) (-5 *1 (-48)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-595 (-48)))) (-5 *1 (-48))))) +(-13 (-293) (-27) (-1014 (-538)) (-1014 (-402 (-538))) (-621 (-538)) (-996) (-621 (-402 (-538))) (-145) (-598 (-166 (-373))) (-229) (-10 -8 (-15 -4317 ($ (-1098 (-538) (-595 $)))) (-15 -3331 ((-1098 (-538) (-595 $)) $)) (-15 -3330 ((-1098 (-538) (-595 $)) $)) (-15 -4202 ($ $)) (-15 -3467 ((-1143 $) (-1143 $) (-595 $))) (-15 -3467 ((-1143 $) (-1143 $) (-622 (-595 $)))) (-15 -3467 ($ $ (-595 $))) (-15 -3467 ($ $ (-622 (-595 $)))))) +((-2898 (((-112) $ $) NIL)) (-2060 (((-622 (-1149)) $) 17)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 7)) (-3584 (((-1154) $) 18)) (-3387 (((-112) $ $) NIL))) +(((-49) (-13 (-1074) (-10 -8 (-15 -2060 ((-622 (-1149)) $)) (-15 -3584 ((-1154) $))))) (T -49)) +((-2060 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-49)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-49))))) +(-13 (-1074) (-10 -8 (-15 -2060 ((-622 (-1149)) $)) (-15 -3584 ((-1154) $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 61)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2995 (((-112) $) 20)) (-3508 (((-3 |#1| "failed") $) 23)) (-3507 ((|#1| $) 24)) (-4319 (($ $) 28)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3525 ((|#1| $) 21)) (-1513 (($ $) 50)) (-3593 (((-1131) $) NIL)) (-1512 (((-112) $) 30)) (-3594 (((-1093) $) NIL)) (-2501 (($ (-751)) 48)) (-4303 (($ (-622 (-538))) 49)) (-4307 (((-751) $) 31)) (-4317 (((-840) $) 64) (($ (-538)) 45) (($ |#1|) 43)) (-4040 ((|#1| $ $) 19)) (-3461 (((-751)) 47)) (-2991 (($) 32 T CONST)) (-2997 (($) 14 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 40)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 41) (($ |#1| $) 35))) +(((-50 |#1| |#2|) (-13 (-603 |#1|) (-1014 |#1|) (-10 -8 (-15 -3525 (|#1| $)) (-15 -1513 ($ $)) (-15 -4319 ($ $)) (-15 -4040 (|#1| $ $)) (-15 -2501 ($ (-751))) (-15 -4303 ($ (-622 (-538)))) (-15 -1512 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -4307 ((-751) $)) (-15 -4318 ($ (-1 |#1| |#1|) $)))) (-1025) (-622 (-1149))) (T -50)) +((-3525 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-622 (-1149))))) (-1513 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-622 (-1149))))) (-4319 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-622 (-1149))))) (-4040 (*1 *2 *1 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-622 (-1149))))) (-2501 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))))) (-4303 (*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-50 *3 *4)) (-14 *4 (-622 (-1149)))))) +(-13 (-603 |#1|) (-1014 |#1|) (-10 -8 (-15 -3525 (|#1| $)) (-15 -1513 ($ $)) (-15 -4319 ($ $)) (-15 -4040 (|#1| $ $)) (-15 -2501 ($ (-751))) (-15 -4303 ($ (-622 (-538)))) (-15 -1512 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -4307 ((-751) $)) (-15 -4318 ($ (-1 |#1| |#1|) $)))) +((-2898 (((-112) $ $) NIL)) (-1300 (((-1131) (-112)) 25)) (-1303 (((-840) $) 24)) (-1301 (((-753) $) 12)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1304 (((-840) $) 16)) (-1302 (((-1076) $) 14)) (-4317 (((-840) $) 32)) (-1305 (($ (-1076) (-753)) 33)) (-3387 (((-112) $ $) 18))) +(((-51) (-13 (-1074) (-10 -8 (-15 -1305 ($ (-1076) (-753))) (-15 -1304 ((-840) $)) (-15 -1303 ((-840) $)) (-15 -1302 ((-1076) $)) (-15 -1301 ((-753) $)) (-15 -1300 ((-1131) (-112)))))) (T -51)) +((-1305 (*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-753)) (-5 *1 (-51)))) (-1304 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-51)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-51)))) (-1302 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-51)))) (-1301 (*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-51)))) (-1300 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1131)) (-5 *1 (-51))))) +(-13 (-1074) (-10 -8 (-15 -1305 ($ (-1076) (-753))) (-15 -1304 ((-840) $)) (-15 -1303 ((-840) $)) (-15 -1302 ((-1076) $)) (-15 -1301 ((-753) $)) (-15 -1300 ((-1131) (-112))))) +((-2995 (((-112) (-51)) 13)) (-3508 (((-3 |#1| "failed") (-51)) 21)) (-3507 ((|#1| (-51)) 22)) (-4317 (((-51) |#1|) 18))) +(((-52 |#1|) (-10 -7 (-15 -4317 ((-51) |#1|)) (-15 -3508 ((-3 |#1| "failed") (-51))) (-15 -2995 ((-112) (-51))) (-15 -3507 (|#1| (-51)))) (-1185)) (T -52)) +((-3507 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1185)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1185)))) (-3508 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1185)))) (-4317 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1185))))) +(-10 -7 (-15 -4317 ((-51) |#1|)) (-15 -3508 ((-3 |#1| "failed") (-51))) (-15 -2995 ((-112) (-51))) (-15 -3507 (|#1| (-51)))) +((-2880 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2880 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1025) (-628 |#1|) (-829 |#1|)) (T -53)) +((-2880 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-628 *5)) (-4 *5 (-1025)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-829 *5))))) +(-10 -7 (-15 -2880 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-1307 ((|#3| |#3| (-622 (-1149))) 35)) (-1306 ((|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3| (-895)) 22) ((|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3|) 20))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1306 (|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3|)) (-15 -1306 (|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3| (-895))) (-15 -1307 (|#3| |#3| (-622 (-1149))))) (-1074) (-13 (-1025) (-862 |#1|) (-827) (-598 (-866 |#1|))) (-13 (-416 |#2|) (-862 |#1|) (-598 (-866 |#1|)))) (T -54)) +((-1307 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))) (-1306 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-622 (-1048 *5 *6 *2))) (-5 *4 (-895)) (-4 *5 (-1074)) (-4 *6 (-13 (-1025) (-862 *5) (-827) (-598 (-866 *5)))) (-4 *2 (-13 (-416 *6) (-862 *5) (-598 (-866 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1306 (*1 *2 *3 *2) (-12 (-5 *3 (-622 (-1048 *4 *5 *2))) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -1306 (|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3|)) (-15 -1306 (|#3| (-622 (-1048 |#1| |#2| |#3|)) |#3| (-895))) (-15 -1307 (|#3| |#3| (-622 (-1149))))) +((-1271 (((-112) $ (-751)) 23)) (-1309 (($ $ (-538) |#3|) 47)) (-1308 (($ $ (-538) |#4|) 51)) (-3447 ((|#3| $ (-538)) 60)) (-2068 (((-622 |#2|) $) 30)) (-4082 (((-112) $ (-751)) 25)) (-3596 (((-112) |#2| $) 55)) (-2072 (($ (-1 |#2| |#2|) $) 38)) (-4318 (($ (-1 |#2| |#2|) $) 37) (($ (-1 |#2| |#2| |#2|) $ $) 41) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 43)) (-4079 (((-112) $ (-751)) 24)) (-2306 (($ $ |#2|) 35)) (-2070 (((-112) (-1 (-112) |#2|) $) 19)) (-4159 ((|#2| $ (-538) (-538)) NIL) ((|#2| $ (-538) (-538) |#2|) 27)) (-2069 (((-751) (-1 (-112) |#2|) $) 28) (((-751) |#2| $) 57)) (-3759 (($ $) 34)) (-3446 ((|#4| $ (-538)) 63)) (-4317 (((-840) $) 69)) (-2071 (((-112) (-1 (-112) |#2|) $) 18)) (-3387 (((-112) $ $) 54)) (-4316 (((-751) $) 26))) +(((-55 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1308 (|#1| |#1| (-538) |#4|)) (-15 -1309 (|#1| |#1| (-538) |#3|)) (-15 -2068 ((-622 |#2|) |#1|)) (-15 -3446 (|#4| |#1| (-538))) (-15 -3447 (|#3| |#1| (-538))) (-15 -4159 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538))) (-15 -2306 (|#1| |#1| |#2|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -3596 ((-112) |#2| |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751))) (-15 -3759 (|#1| |#1|))) (-56 |#2| |#3| |#4|) (-1185) (-367 |#2|) (-367 |#2|)) (T -55)) +NIL +(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1308 (|#1| |#1| (-538) |#4|)) (-15 -1309 (|#1| |#1| (-538) |#3|)) (-15 -2068 ((-622 |#2|) |#1|)) (-15 -3446 (|#4| |#1| (-538))) (-15 -3447 (|#3| |#1| (-538))) (-15 -4159 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538))) (-15 -2306 (|#1| |#1| |#2|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -3596 ((-112) |#2| |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751))) (-15 -3759 (|#1| |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) (-538) |#1|) 44)) (-1309 (($ $ (-538) |#2|) 42)) (-1308 (($ $ (-538) |#3|) 41)) (-3896 (($) 7 T CONST)) (-3447 ((|#2| $ (-538)) 46)) (-1637 ((|#1| $ (-538) (-538) |#1|) 43)) (-3448 ((|#1| $ (-538) (-538)) 48)) (-2068 (((-622 |#1|) $) 30)) (-3450 (((-751) $) 51)) (-3977 (($ (-751) (-751) |#1|) 57)) (-3449 (((-751) $) 50)) (-4082 (((-112) $ (-751)) 9)) (-3454 (((-538) $) 55)) (-3452 (((-538) $) 53)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3453 (((-538) $) 54)) (-3451 (((-538) $) 52)) (-2072 (($ (-1 |#1| |#1|) $) 34)) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) 56)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) (-538)) 49) ((|#1| $ (-538) (-538) |#1|) 47)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-3446 ((|#3| $ (-538)) 45)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-56 |#1| |#2| |#3|) (-138) (-1185) (-367 |t#1|) (-367 |t#1|)) (T -56)) +((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3977 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-751)) (-4 *3 (-1185)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2306 (*1 *1 *1 *2) (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1185)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-538)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-538)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-538)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-538)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-751)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-751)))) (-4159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1185)))) (-3448 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-1185)))) (-4159 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-3447 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1185)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1185)) (-4 *5 (-367 *4)) (-4 *2 (-367 *4)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-622 *3)))) (-4147 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-1637 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2)) (-4 *5 (-367 *2)))) (-1309 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-538)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-367 *4)) (-4 *5 (-367 *4)))) (-1308 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-538)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1185)) (-4 *5 (-367 *4)) (-4 *3 (-367 *4)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4318 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4318 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3))))) +(-13 (-483 |t#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -3977 ($ (-751) (-751) |t#1|)) (-15 -2306 ($ $ |t#1|)) (-15 -3454 ((-538) $)) (-15 -3453 ((-538) $)) (-15 -3452 ((-538) $)) (-15 -3451 ((-538) $)) (-15 -3450 ((-751) $)) (-15 -3449 ((-751) $)) (-15 -4159 (|t#1| $ (-538) (-538))) (-15 -3448 (|t#1| $ (-538) (-538))) (-15 -4159 (|t#1| $ (-538) (-538) |t#1|)) (-15 -3447 (|t#2| $ (-538))) (-15 -3446 (|t#3| $ (-538))) (-15 -2068 ((-622 |t#1|) $)) (-15 -4147 (|t#1| $ (-538) (-538) |t#1|)) (-15 -1637 (|t#1| $ (-538) (-538) |t#1|)) (-15 -1309 ($ $ (-538) |t#2|)) (-15 -1308 ($ $ (-538) |t#3|)) (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (-15 -2072 ($ (-1 |t#1| |t#1|) $)) (-15 -4318 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4318 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) 11 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-1310 (($ (-622 |#1|)) 13) (($ (-751) |#1|) 14)) (-3977 (($ (-751) |#1|) 9)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 7)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1310 ($ (-622 |#1|))) (-15 -1310 ($ (-751) |#1|)))) (-1185)) (T -57)) +((-1310 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-57 *3)))) (-1310 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-57 *3)) (-4 *3 (-1185))))) +(-13 (-19 |#1|) (-10 -8 (-15 -1310 ($ (-622 |#1|))) (-15 -1310 ($ (-751) |#1|)))) +((-4201 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-4202 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-4318 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -4201 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4318 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1185) (-1185)) (T -58)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-58 *5 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -4201 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4318 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) NIL)) (-1309 (($ $ (-538) (-57 |#1|)) NIL)) (-1308 (($ $ (-538) (-57 |#1|)) NIL)) (-3896 (($) NIL T CONST)) (-3447 (((-57 |#1|) $ (-538)) NIL)) (-1637 ((|#1| $ (-538) (-538) |#1|) NIL)) (-3448 ((|#1| $ (-538) (-538)) NIL)) (-2068 (((-622 |#1|) $) NIL)) (-3450 (((-751) $) NIL)) (-3977 (($ (-751) (-751) |#1|) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) (-538)) NIL) ((|#1| $ (-538) (-538) |#1|) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3446 (((-57 |#1|) $ (-538)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-59 |#1|) (-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4354))) (-1185)) (T -59)) +NIL +(-13 (-56 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4354))) +((-3508 (((-3 $ #1="failed") (-309 (-373))) 41) (((-3 $ #1#) (-309 (-538))) 46) (((-3 $ #1#) (-922 (-373))) 50) (((-3 $ #1#) (-922 (-538))) 54) (((-3 $ #1#) (-402 (-922 (-373)))) 36) (((-3 $ #1#) (-402 (-922 (-538)))) 29)) (-3507 (($ (-309 (-373))) 39) (($ (-309 (-538))) 44) (($ (-922 (-373))) 48) (($ (-922 (-538))) 52) (($ (-402 (-922 (-373)))) 34) (($ (-402 (-922 (-538)))) 26)) (-3739 (((-1237) $) 76)) (-4317 (((-840) $) 69) (($ (-622 (-325))) 61) (($ (-325)) 66) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 64) (($ (-334 (-3884 (QUOTE X)) (-3884) (-679))) 25))) +(((-60 |#1|) (-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884 (QUOTE X)) (-3884) (-679)))))) (-1149)) (T -60)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-334 (-3884 (QUOTE X)) (-3884) (-679))) (-5 *1 (-60 *3)) (-14 *3 (-1149))))) +(-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884 (QUOTE X)) (-3884) (-679)))))) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 74) (((-3 $ #1#) (-1231 (-309 (-538)))) 63) (((-3 $ #1#) (-1231 (-922 (-373)))) 94) (((-3 $ #1#) (-1231 (-922 (-538)))) 84) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 52) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 39)) (-3507 (($ (-1231 (-309 (-373)))) 70) (($ (-1231 (-309 (-538)))) 59) (($ (-1231 (-922 (-373)))) 90) (($ (-1231 (-922 (-538)))) 80) (($ (-1231 (-402 (-922 (-373))))) 48) (($ (-1231 (-402 (-922 (-538))))) 32)) (-3739 (((-1237) $) 120)) (-4317 (((-840) $) 113) (($ (-622 (-325))) 103) (($ (-325)) 97) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 101) (($ (-1231 (-334 (-3884 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3884) (-679)))) 31))) +(((-61 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3884) (-679))))))) (-1149)) (T -61)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3884) (-679)))) (-5 *1 (-61 *3)) (-14 *3 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3884) (-679))))))) +((-3739 (((-1237) $) 53) (((-1237)) 54)) (-4317 (((-840) $) 50))) +(((-62 |#1|) (-13 (-391) (-10 -7 (-15 -3739 ((-1237))))) (-1149)) (T -62)) +((-3739 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-62 *3)) (-14 *3 (-1149))))) +(-13 (-391) (-10 -7 (-15 -3739 ((-1237))))) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 144) (((-3 $ #1#) (-1231 (-309 (-538)))) 134) (((-3 $ #1#) (-1231 (-922 (-373)))) 164) (((-3 $ #1#) (-1231 (-922 (-538)))) 154) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 123) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 111)) (-3507 (($ (-1231 (-309 (-373)))) 140) (($ (-1231 (-309 (-538)))) 130) (($ (-1231 (-922 (-373)))) 160) (($ (-1231 (-922 (-538)))) 150) (($ (-1231 (-402 (-922 (-373))))) 119) (($ (-1231 (-402 (-922 (-538))))) 104)) (-3739 (((-1237) $) 97)) (-4317 (((-840) $) 91) (($ (-622 (-325))) 29) (($ (-325)) 34) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 32) (($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679)))) 89))) +(((-63 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679))))))) (-1149)) (T -63)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679)))) (-5 *1 (-63 *3)) (-14 *3 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679))))))) +((-3508 (((-3 $ #1="failed") (-669 (-309 (-373)))) 109) (((-3 $ #1#) (-669 (-309 (-538)))) 97) (((-3 $ #1#) (-669 (-922 (-373)))) 131) (((-3 $ #1#) (-669 (-922 (-538)))) 120) (((-3 $ #1#) (-669 (-402 (-922 (-373))))) 85) (((-3 $ #1#) (-669 (-402 (-922 (-538))))) 71)) (-3507 (($ (-669 (-309 (-373)))) 105) (($ (-669 (-309 (-538)))) 93) (($ (-669 (-922 (-373)))) 127) (($ (-669 (-922 (-538)))) 116) (($ (-669 (-402 (-922 (-373))))) 81) (($ (-669 (-402 (-922 (-538))))) 64)) (-3739 (((-1237) $) 139)) (-4317 (((-840) $) 133) (($ (-622 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 31) (($ (-669 (-334 (-3884) (-3884 (QUOTE X) (QUOTE HESS)) (-679)))) 54))) +(((-64 |#1|) (-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884) (-3884 (QUOTE X) (QUOTE HESS)) (-679))))))) (-1149)) (T -64)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-3884) (-3884 (QUOTE X) (QUOTE HESS)) (-679)))) (-5 *1 (-64 *3)) (-14 *3 (-1149))))) +(-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884) (-3884 (QUOTE X) (QUOTE HESS)) (-679))))))) +((-3508 (((-3 $ #1="failed") (-309 (-373))) 59) (((-3 $ #1#) (-309 (-538))) 64) (((-3 $ #1#) (-922 (-373))) 68) (((-3 $ #1#) (-922 (-538))) 72) (((-3 $ #1#) (-402 (-922 (-373)))) 54) (((-3 $ #1#) (-402 (-922 (-538)))) 47)) (-3507 (($ (-309 (-373))) 57) (($ (-309 (-538))) 62) (($ (-922 (-373))) 66) (($ (-922 (-538))) 70) (($ (-402 (-922 (-373)))) 52) (($ (-402 (-922 (-538)))) 44)) (-3739 (((-1237) $) 81)) (-4317 (((-840) $) 75) (($ (-622 (-325))) 28) (($ (-325)) 33) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 31) (($ (-334 (-3884) (-3884 (QUOTE XC)) (-679))) 39))) +(((-65 |#1|) (-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE XC)) (-679)))))) (-1149)) (T -65)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-334 (-3884) (-3884 (QUOTE XC)) (-679))) (-5 *1 (-65 *3)) (-14 *3 (-1149))))) +(-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE XC)) (-679)))))) +((-3739 (((-1237) $) 63)) (-4317 (((-840) $) 57) (($ (-669 (-679))) 49) (($ (-622 (-325))) 48) (($ (-325)) 55) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 53))) +(((-66 |#1|) (-378) (-1149)) (T -66)) +NIL +(-378) +((-3739 (((-1237) $) 64)) (-4317 (((-840) $) 58) (($ (-669 (-679))) 50) (($ (-622 (-325))) 49) (($ (-325)) 52) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 55))) +(((-67 |#1|) (-378) (-1149)) (T -67)) +NIL +(-378) +((-3739 (((-1237) $) NIL) (((-1237)) 32)) (-4317 (((-840) $) NIL))) +(((-68 |#1|) (-13 (-391) (-10 -7 (-15 -3739 ((-1237))))) (-1149)) (T -68)) +((-3739 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-68 *3)) (-14 *3 (-1149))))) +(-13 (-391) (-10 -7 (-15 -3739 ((-1237))))) +((-3739 (((-1237) $) 73)) (-4317 (((-840) $) 67) (($ (-669 (-679))) 59) (($ (-622 (-325))) 61) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 58))) +(((-69 |#1|) (-378) (-1149)) (T -69)) +NIL +(-378) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 103) (((-3 $ #1#) (-1231 (-309 (-538)))) 92) (((-3 $ #1#) (-1231 (-922 (-373)))) 123) (((-3 $ #1#) (-1231 (-922 (-538)))) 113) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 81) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 68)) (-3507 (($ (-1231 (-309 (-373)))) 99) (($ (-1231 (-309 (-538)))) 88) (($ (-1231 (-922 (-373)))) 119) (($ (-1231 (-922 (-538)))) 109) (($ (-1231 (-402 (-922 (-373))))) 77) (($ (-1231 (-402 (-922 (-538))))) 61)) (-3739 (((-1237) $) 136)) (-4317 (((-840) $) 130) (($ (-622 (-325))) 125) (($ (-325)) 128) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 53) (($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))) 54))) +(((-70 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))))))) (-1149)) (T -70)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))) (-5 *1 (-70 *3)) (-14 *3 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))))))) +((-3739 (((-1237) $) 32) (((-1237)) 31)) (-4317 (((-840) $) 35))) +(((-71 |#1|) (-13 (-391) (-10 -7 (-15 -3739 ((-1237))))) (-1149)) (T -71)) +((-3739 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-71 *3)) (-14 *3 (-1149))))) +(-13 (-391) (-10 -7 (-15 -3739 ((-1237))))) +((-3739 (((-1237) $) 63)) (-4317 (((-840) $) 57) (($ (-669 (-679))) 49) (($ (-622 (-325))) 51) (($ (-325)) 54) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 48))) +(((-72 |#1|) (-378) (-1149)) (T -72)) +NIL +(-378) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 125) (((-3 $ #1#) (-1231 (-309 (-538)))) 115) (((-3 $ #1#) (-1231 (-922 (-373)))) 145) (((-3 $ #1#) (-1231 (-922 (-538)))) 135) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 105) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 93)) (-3507 (($ (-1231 (-309 (-373)))) 121) (($ (-1231 (-309 (-538)))) 111) (($ (-1231 (-922 (-373)))) 141) (($ (-1231 (-922 (-538)))) 131) (($ (-1231 (-402 (-922 (-373))))) 101) (($ (-1231 (-402 (-922 (-538))))) 86)) (-3739 (((-1237) $) 78)) (-4317 (((-840) $) 27) (($ (-622 (-325))) 68) (($ (-325)) 64) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 71) (($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) 65))) +(((-73 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679))))))) (-1149)) (T -73)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) (-5 *1 (-73 *3)) (-14 *3 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679))))))) +((-3508 (((-3 $ #1="failed") (-309 (-373))) 46) (((-3 $ #1#) (-309 (-538))) 51) (((-3 $ #1#) (-922 (-373))) 55) (((-3 $ #1#) (-922 (-538))) 59) (((-3 $ #1#) (-402 (-922 (-373)))) 41) (((-3 $ #1#) (-402 (-922 (-538)))) 34)) (-3507 (($ (-309 (-373))) 44) (($ (-309 (-538))) 49) (($ (-922 (-373))) 53) (($ (-922 (-538))) 57) (($ (-402 (-922 (-373)))) 39) (($ (-402 (-922 (-538)))) 31)) (-3739 (((-1237) $) 80)) (-4317 (((-840) $) 74) (($ (-622 (-325))) 66) (($ (-325)) 71) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 69) (($ (-334 (-3884) (-3884 (QUOTE X)) (-679))) 30))) +(((-74 |#1|) (-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE X)) (-679)))))) (-1149)) (T -74)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-334 (-3884) (-3884 (QUOTE X)) (-679))) (-5 *1 (-74 *3)) (-14 *3 (-1149))))) +(-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE X)) (-679)))))) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 130) (((-3 $ #1#) (-1231 (-309 (-538)))) 119) (((-3 $ #1#) (-1231 (-922 (-373)))) 150) (((-3 $ #1#) (-1231 (-922 (-538)))) 140) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 108) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 95)) (-3507 (($ (-1231 (-309 (-373)))) 126) (($ (-1231 (-309 (-538)))) 115) (($ (-1231 (-922 (-373)))) 146) (($ (-1231 (-922 (-538)))) 136) (($ (-1231 (-402 (-922 (-373))))) 104) (($ (-1231 (-402 (-922 (-538))))) 88)) (-3739 (((-1237) $) 79)) (-4317 (((-840) $) 71) (($ (-622 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) NIL) (($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE EPS)) (-3884 (QUOTE -4324)) (-679)))) 66))) +(((-75 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE EPS)) (-3884 (QUOTE -4324)) (-679))))))) (-1149) (-1149) (-1149)) (T -75)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE X) (QUOTE EPS)) (-3884 (QUOTE -4324)) (-679)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE EPS)) (-3884 (QUOTE -4324)) (-679))))))) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 134) (((-3 $ #1#) (-1231 (-309 (-538)))) 123) (((-3 $ #1#) (-1231 (-922 (-373)))) 154) (((-3 $ #1#) (-1231 (-922 (-538)))) 144) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 112) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 99)) (-3507 (($ (-1231 (-309 (-373)))) 130) (($ (-1231 (-309 (-538)))) 119) (($ (-1231 (-922 (-373)))) 150) (($ (-1231 (-922 (-538)))) 140) (($ (-1231 (-402 (-922 (-373))))) 108) (($ (-1231 (-402 (-922 (-538))))) 92)) (-3739 (((-1237) $) 83)) (-4317 (((-840) $) 75) (($ (-622 (-325))) NIL) (($ (-325)) NIL) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) NIL) (($ (-1231 (-334 (-3884 (QUOTE EPS)) (-3884 (QUOTE YA) (QUOTE YB)) (-679)))) 70))) +(((-76 |#1| |#2| |#3|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE EPS)) (-3884 (QUOTE YA) (QUOTE YB)) (-679))))))) (-1149) (-1149) (-1149)) (T -76)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE EPS)) (-3884 (QUOTE YA) (QUOTE YB)) (-679)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE EPS)) (-3884 (QUOTE YA) (QUOTE YB)) (-679))))))) +((-3508 (((-3 $ #1="failed") (-309 (-373))) 82) (((-3 $ #1#) (-309 (-538))) 87) (((-3 $ #1#) (-922 (-373))) 91) (((-3 $ #1#) (-922 (-538))) 95) (((-3 $ #1#) (-402 (-922 (-373)))) 77) (((-3 $ #1#) (-402 (-922 (-538)))) 70)) (-3507 (($ (-309 (-373))) 80) (($ (-309 (-538))) 85) (($ (-922 (-373))) 89) (($ (-922 (-538))) 93) (($ (-402 (-922 (-373)))) 75) (($ (-402 (-922 (-538)))) 67)) (-3739 (((-1237) $) 62)) (-4317 (((-840) $) 50) (($ (-622 (-325))) 46) (($ (-325)) 56) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 54) (($ (-334 (-3884) (-3884 (QUOTE X)) (-679))) 47))) +(((-77 |#1|) (-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE X)) (-679)))))) (-1149)) (T -77)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-334 (-3884) (-3884 (QUOTE X)) (-679))) (-5 *1 (-77 *3)) (-14 *3 (-1149))))) +(-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884) (-3884 (QUOTE X)) (-679)))))) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 89) (((-3 $ #1#) (-1231 (-309 (-538)))) 78) (((-3 $ #1#) (-1231 (-922 (-373)))) 109) (((-3 $ #1#) (-1231 (-922 (-538)))) 99) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 67) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 54)) (-3507 (($ (-1231 (-309 (-373)))) 85) (($ (-1231 (-309 (-538)))) 74) (($ (-1231 (-922 (-373)))) 105) (($ (-1231 (-922 (-538)))) 95) (($ (-1231 (-402 (-922 (-373))))) 63) (($ (-1231 (-402 (-922 (-538))))) 47)) (-3739 (((-1237) $) 125)) (-4317 (((-840) $) 119) (($ (-622 (-325))) 112) (($ (-325)) 37) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 115) (($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679)))) 38))) +(((-78 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679))))))) (-1149)) (T -78)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679)))) (-5 *1 (-78 *3)) (-14 *3 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE XC)) (-679))))))) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 142) (((-3 $ #1#) (-1231 (-309 (-538)))) 132) (((-3 $ #1#) (-1231 (-922 (-373)))) 162) (((-3 $ #1#) (-1231 (-922 (-538)))) 152) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 122) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 110)) (-3507 (($ (-1231 (-309 (-373)))) 138) (($ (-1231 (-309 (-538)))) 128) (($ (-1231 (-922 (-373)))) 158) (($ (-1231 (-922 (-538)))) 148) (($ (-1231 (-402 (-922 (-373))))) 118) (($ (-1231 (-402 (-922 (-538))))) 103)) (-3739 (((-1237) $) 96)) (-4317 (((-840) $) 90) (($ (-622 (-325))) 81) (($ (-325)) 88) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 86) (($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) 82))) +(((-79 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679))))))) (-1149)) (T -79)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) (-5 *1 (-79 *3)) (-14 *3 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679))))))) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 78) (((-3 $ #1#) (-1231 (-309 (-538)))) 67) (((-3 $ #1#) (-1231 (-922 (-373)))) 98) (((-3 $ #1#) (-1231 (-922 (-538)))) 88) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 56) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 43)) (-3507 (($ (-1231 (-309 (-373)))) 74) (($ (-1231 (-309 (-538)))) 63) (($ (-1231 (-922 (-373)))) 94) (($ (-1231 (-922 (-538)))) 84) (($ (-1231 (-402 (-922 (-373))))) 52) (($ (-1231 (-402 (-922 (-538))))) 36)) (-3739 (((-1237) $) 124)) (-4317 (((-840) $) 118) (($ (-622 (-325))) 109) (($ (-325)) 115) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 113) (($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) 35))) +(((-80 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679))))))) (-1149)) (T -80)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679)))) (-5 *1 (-80 *3)) (-14 *3 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884) (-3884 (QUOTE X)) (-679))))))) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 79) (((-3 $ #1#) (-1231 (-309 (-538)))) 68) (((-3 $ #1#) (-1231 (-922 (-373)))) 99) (((-3 $ #1#) (-1231 (-922 (-538)))) 89) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 57) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 44)) (-3507 (($ (-1231 (-309 (-373)))) 75) (($ (-1231 (-309 (-538)))) 64) (($ (-1231 (-922 (-373)))) 95) (($ (-1231 (-922 (-538)))) 85) (($ (-1231 (-402 (-922 (-373))))) 53) (($ (-1231 (-402 (-922 (-538))))) 37)) (-3739 (((-1237) $) 125)) (-4317 (((-840) $) 119) (($ (-622 (-325))) 110) (($ (-325)) 116) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 114) (($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))) 36))) +(((-81 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))))))) (-1149)) (T -81)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))) (-5 *1 (-81 *3)) (-14 *3 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))))))) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 95) (((-3 $ #1#) (-1231 (-309 (-538)))) 84) (((-3 $ #1#) (-1231 (-922 (-373)))) 115) (((-3 $ #1#) (-1231 (-922 (-538)))) 105) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 73) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 60)) (-3507 (($ (-1231 (-309 (-373)))) 91) (($ (-1231 (-309 (-538)))) 80) (($ (-1231 (-922 (-373)))) 111) (($ (-1231 (-922 (-538)))) 101) (($ (-1231 (-402 (-922 (-373))))) 69) (($ (-1231 (-402 (-922 (-538))))) 53)) (-3739 (((-1237) $) 45)) (-4317 (((-840) $) 39) (($ (-622 (-325))) 29) (($ (-325)) 32) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 35) (($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679)))) 30))) +(((-82 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679))))))) (-1149)) (T -82)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679)))) (-5 *1 (-82 *3)) (-14 *3 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679))))))) +((-3508 (((-3 $ #1="failed") (-669 (-309 (-373)))) 115) (((-3 $ #1#) (-669 (-309 (-538)))) 104) (((-3 $ #1#) (-669 (-922 (-373)))) 137) (((-3 $ #1#) (-669 (-922 (-538)))) 126) (((-3 $ #1#) (-669 (-402 (-922 (-373))))) 93) (((-3 $ #1#) (-669 (-402 (-922 (-538))))) 80)) (-3507 (($ (-669 (-309 (-373)))) 111) (($ (-669 (-309 (-538)))) 100) (($ (-669 (-922 (-373)))) 133) (($ (-669 (-922 (-538)))) 122) (($ (-669 (-402 (-922 (-373))))) 89) (($ (-669 (-402 (-922 (-538))))) 73)) (-3739 (((-1237) $) 63)) (-4317 (((-840) $) 50) (($ (-622 (-325))) 57) (($ (-325)) 46) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 55) (($ (-669 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679)))) 47))) +(((-83 |#1|) (-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679))))))) (-1149)) (T -83)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679)))) (-5 *1 (-83 *3)) (-14 *3 (-1149))))) +(-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE X) (QUOTE -4324)) (-3884) (-679))))))) +((-3508 (((-3 $ #1="failed") (-669 (-309 (-373)))) 112) (((-3 $ #1#) (-669 (-309 (-538)))) 100) (((-3 $ #1#) (-669 (-922 (-373)))) 134) (((-3 $ #1#) (-669 (-922 (-538)))) 123) (((-3 $ #1#) (-669 (-402 (-922 (-373))))) 88) (((-3 $ #1#) (-669 (-402 (-922 (-538))))) 74)) (-3507 (($ (-669 (-309 (-373)))) 108) (($ (-669 (-309 (-538)))) 96) (($ (-669 (-922 (-373)))) 130) (($ (-669 (-922 (-538)))) 119) (($ (-669 (-402 (-922 (-373))))) 84) (($ (-669 (-402 (-922 (-538))))) 67)) (-3739 (((-1237) $) 59)) (-4317 (((-840) $) 53) (($ (-622 (-325))) 47) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 44) (($ (-669 (-334 (-3884 (QUOTE X)) (-3884) (-679)))) 45))) +(((-84 |#1|) (-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE X)) (-3884) (-679))))))) (-1149)) (T -84)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-3884 (QUOTE X)) (-3884) (-679)))) (-5 *1 (-84 *3)) (-14 *3 (-1149))))) +(-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE X)) (-3884) (-679))))))) +((-3508 (((-3 $ #1="failed") (-1231 (-309 (-373)))) 104) (((-3 $ #1#) (-1231 (-309 (-538)))) 93) (((-3 $ #1#) (-1231 (-922 (-373)))) 124) (((-3 $ #1#) (-1231 (-922 (-538)))) 114) (((-3 $ #1#) (-1231 (-402 (-922 (-373))))) 82) (((-3 $ #1#) (-1231 (-402 (-922 (-538))))) 69)) (-3507 (($ (-1231 (-309 (-373)))) 100) (($ (-1231 (-309 (-538)))) 89) (($ (-1231 (-922 (-373)))) 120) (($ (-1231 (-922 (-538)))) 110) (($ (-1231 (-402 (-922 (-373))))) 78) (($ (-1231 (-402 (-922 (-538))))) 62)) (-3739 (((-1237) $) 46)) (-4317 (((-840) $) 40) (($ (-622 (-325))) 49) (($ (-325)) 36) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 52) (($ (-1231 (-334 (-3884 (QUOTE X)) (-3884) (-679)))) 37))) +(((-85 |#1|) (-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884) (-679))))))) (-1149)) (T -85)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-334 (-3884 (QUOTE X)) (-3884) (-679)))) (-5 *1 (-85 *3)) (-14 *3 (-1149))))) +(-13 (-435) (-10 -8 (-15 -4317 ($ (-1231 (-334 (-3884 (QUOTE X)) (-3884) (-679))))))) +((-3739 (((-1237) $) 44)) (-4317 (((-840) $) 38) (($ (-1231 (-679))) 92) (($ (-622 (-325))) 30) (($ (-325)) 35) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 33))) +(((-86 |#1|) (-434) (-1149)) (T -86)) +NIL +(-434) +((-3508 (((-3 $ #1="failed") (-669 (-309 (-373)))) 113) (((-3 $ #1#) (-669 (-309 (-538)))) 101) (((-3 $ #1#) (-669 (-922 (-373)))) 135) (((-3 $ #1#) (-669 (-922 (-538)))) 124) (((-3 $ #1#) (-669 (-402 (-922 (-373))))) 89) (((-3 $ #1#) (-669 (-402 (-922 (-538))))) 75)) (-3507 (($ (-669 (-309 (-373)))) 109) (($ (-669 (-309 (-538)))) 97) (($ (-669 (-922 (-373)))) 131) (($ (-669 (-922 (-538)))) 120) (($ (-669 (-402 (-922 (-373))))) 85) (($ (-669 (-402 (-922 (-538))))) 68)) (-3739 (((-1237) $) 59)) (-4317 (((-840) $) 53) (($ (-622 (-325))) 43) (($ (-325)) 50) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 48) (($ (-669 (-334 (-3884 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3884) (-679)))) 44))) +(((-87 |#1|) (-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3884) (-679))))))) (-1149)) (T -87)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-669 (-334 (-3884 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3884) (-679)))) (-5 *1 (-87 *3)) (-14 *3 (-1149))))) +(-13 (-380) (-10 -8 (-15 -4317 ($ (-669 (-334 (-3884 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3884) (-679))))))) +((-3508 (((-3 $ #1="failed") (-309 (-373))) 47) (((-3 $ #1#) (-309 (-538))) 52) (((-3 $ #1#) (-922 (-373))) 56) (((-3 $ #1#) (-922 (-538))) 60) (((-3 $ #1#) (-402 (-922 (-373)))) 42) (((-3 $ #1#) (-402 (-922 (-538)))) 35)) (-3507 (($ (-309 (-373))) 45) (($ (-309 (-538))) 50) (($ (-922 (-373))) 54) (($ (-922 (-538))) 58) (($ (-402 (-922 (-373)))) 40) (($ (-402 (-922 (-538)))) 32)) (-3739 (((-1237) $) 90)) (-4317 (((-840) $) 84) (($ (-622 (-325))) 78) (($ (-325)) 81) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 76) (($ (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))) 31))) +(((-88 |#1|) (-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))))) (-1149)) (T -88)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679))) (-5 *1 (-88 *3)) (-14 *3 (-1149))))) +(-13 (-392) (-10 -8 (-15 -4317 ($ (-334 (-3884 (QUOTE X)) (-3884 (QUOTE -4324)) (-679)))))) +((-1312 (((-1231 (-669 |#1|)) (-669 |#1|)) 54)) (-1311 (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 (-622 (-895))))) |#2| (-895)) 44)) (-1313 (((-2 (|:| |minor| (-622 (-895))) (|:| -3617 |#2|) (|:| |minors| (-622 (-622 (-895)))) (|:| |ops| (-622 |#2|))) |#2| (-895)) 65 (|has| |#1| (-358))))) +(((-89 |#1| |#2|) (-10 -7 (-15 -1311 ((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 (-622 (-895))))) |#2| (-895))) (-15 -1312 ((-1231 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-358)) (-15 -1313 ((-2 (|:| |minor| (-622 (-895))) (|:| -3617 |#2|) (|:| |minors| (-622 (-622 (-895)))) (|:| |ops| (-622 |#2|))) |#2| (-895))) |%noBranch|)) (-545) (-638 |#1|)) (T -89)) +((-1313 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |minor| (-622 (-895))) (|:| -3617 *3) (|:| |minors| (-622 (-622 (-895)))) (|:| |ops| (-622 *3)))) (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-638 *5)))) (-1312 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-1231 (-669 *4))) (-5 *1 (-89 *4 *5)) (-5 *3 (-669 *4)) (-4 *5 (-638 *4)))) (-1311 (*1 *2 *3 *4) (-12 (-4 *5 (-545)) (-5 *2 (-2 (|:| -1700 (-669 *5)) (|:| |vec| (-1231 (-622 (-895)))))) (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-638 *5))))) +(-10 -7 (-15 -1311 ((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 (-622 (-895))))) |#2| (-895))) (-15 -1312 ((-1231 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-358)) (-15 -1313 ((-2 (|:| |minor| (-622 (-895))) (|:| -3617 |#2|) (|:| |minors| (-622 (-622 (-895)))) (|:| |ops| (-622 |#2|))) |#2| (-895))) |%noBranch|)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3683 ((|#1| $) 35)) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-3685 ((|#1| |#1| $) 30)) (-3684 ((|#1| $) 28)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) NIL)) (-3970 (($ |#1| $) 31)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-1334 ((|#1| $) 29)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 16)) (-3928 (($) 39)) (-3682 (((-751) $) 26)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 15)) (-4317 (((-840) $) 25 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) NIL)) (-1314 (($ (-622 |#1|)) 37)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 13 (|has| |#1| (-1074)))) (-4316 (((-751) $) 10 (|has| $ (-6 -4353))))) +(((-90 |#1|) (-13 (-1094 |#1|) (-10 -8 (-15 -1314 ($ (-622 |#1|))))) (-1074)) (T -90)) +((-1314 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-90 *3))))) +(-13 (-1094 |#1|) (-10 -8 (-15 -1314 ($ (-622 |#1|))))) +((-4317 (((-840) $) 13) (((-1154) $) 8) (($ (-1154)) 9))) +(((-91 |#1|) (-10 -8 (-15 -4317 (|#1| (-1154))) (-15 -4317 ((-1154) |#1|)) (-15 -4317 ((-840) |#1|))) (-92)) (T -91)) +NIL +(-10 -8 (-15 -4317 (|#1| (-1154))) (-15 -4317 ((-1154) |#1|)) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-3387 (((-112) $ $) 6))) (((-92) (-138)) (T -92)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-92))))) -(-13 (-1072) (-595 (-1152)) (-10 -8 (-15 -4312 ($ (-1152))))) -(((-101) . T) ((-595 (-838)) . T) ((-595 (-1152)) . T) ((-1072) . T)) -((-3837 (($ $) 10)) (-3838 (($ $) 12))) -(((-93 |#1|) (-10 -8 (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|))) (-94)) (T -93)) -NIL -(-10 -8 (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|))) -((-3835 (($ $) 11)) (-3833 (($ $) 10)) (-3837 (($ $) 9)) (-3838 (($ $) 8)) (-3836 (($ $) 7)) (-3834 (($ $) 6))) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-92))))) +(-13 (-1074) (-597 (-1154)) (-10 -8 (-15 -4317 ($ (-1154))))) +(((-101) . T) ((-597 (-840)) . T) ((-597 (-1154)) . T) ((-1074) . T)) +((-3842 (($ $) 10)) (-3843 (($ $) 12))) +(((-93 |#1|) (-10 -8 (-15 -3843 (|#1| |#1|)) (-15 -3842 (|#1| |#1|))) (-94)) (T -93)) +NIL +(-10 -8 (-15 -3843 (|#1| |#1|)) (-15 -3842 (|#1| |#1|))) +((-3840 (($ $) 11)) (-3838 (($ $) 10)) (-3842 (($ $) 9)) (-3843 (($ $) 8)) (-3841 (($ $) 7)) (-3839 (($ $) 6))) (((-94) (-138)) (T -94)) -((-3835 (*1 *1 *1) (-4 *1 (-94))) (-3833 (*1 *1 *1) (-4 *1 (-94))) (-3837 (*1 *1 *1) (-4 *1 (-94))) (-3838 (*1 *1 *1) (-4 *1 (-94))) (-3836 (*1 *1 *1) (-4 *1 (-94))) (-3834 (*1 *1 *1) (-4 *1 (-94)))) -(-13 (-10 -8 (-15 -3834 ($ $)) (-15 -3836 ($ $)) (-15 -3838 ($ $)) (-15 -3837 ($ $)) (-15 -3833 ($ $)) (-15 -3835 ($ $)))) -((-2893 (((-112) $ $) NIL)) (-3900 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-95) (-13 (-1054) (-10 -8 (-15 -3900 ((-1106) $))))) (T -95)) -((-3900 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-95))))) -(-13 (-1054) (-10 -8 (-15 -3900 ((-1106) $)))) -((-2893 (((-112) $ $) NIL)) (-1313 (((-371) (-1129) (-371)) 42) (((-371) (-1129) (-1129) (-371)) 41)) (-1314 (((-371) (-371)) 33)) (-1315 (((-1235)) 36)) (-3588 (((-1129) $) NIL)) (-1318 (((-371) (-1129) (-1129)) 46) (((-371) (-1129)) 48)) (-3589 (((-1091) $) NIL)) (-1316 (((-371) (-1129) (-1129)) 47)) (-1317 (((-371) (-1129) (-1129)) 49) (((-371) (-1129)) 50)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-96) (-13 (-1072) (-10 -7 (-15 -1318 ((-371) (-1129) (-1129))) (-15 -1318 ((-371) (-1129))) (-15 -1317 ((-371) (-1129) (-1129))) (-15 -1317 ((-371) (-1129))) (-15 -1316 ((-371) (-1129) (-1129))) (-15 -1315 ((-1235))) (-15 -1314 ((-371) (-371))) (-15 -1313 ((-371) (-1129) (-371))) (-15 -1313 ((-371) (-1129) (-1129) (-371))) (-6 -4348)))) (T -96)) -((-1318 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1317 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1316 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) (-1315 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-96)))) (-1314 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96)))) (-1313 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1129)) (-5 *1 (-96)))) (-1313 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1129)) (-5 *1 (-96))))) -(-13 (-1072) (-10 -7 (-15 -1318 ((-371) (-1129) (-1129))) (-15 -1318 ((-371) (-1129))) (-15 -1317 ((-371) (-1129) (-1129))) (-15 -1317 ((-371) (-1129))) (-15 -1316 ((-371) (-1129) (-1129))) (-15 -1315 ((-1235))) (-15 -1314 ((-371) (-371))) (-15 -1313 ((-371) (-1129) (-371))) (-15 -1313 ((-371) (-1129) (-1129) (-371))) (-6 -4348))) +((-3840 (*1 *1 *1) (-4 *1 (-94))) (-3838 (*1 *1 *1) (-4 *1 (-94))) (-3842 (*1 *1 *1) (-4 *1 (-94))) (-3843 (*1 *1 *1) (-4 *1 (-94))) (-3841 (*1 *1 *1) (-4 *1 (-94))) (-3839 (*1 *1 *1) (-4 *1 (-94)))) +(-13 (-10 -8 (-15 -3839 ($ $)) (-15 -3841 ($ $)) (-15 -3843 ($ $)) (-15 -3842 ($ $)) (-15 -3838 ($ $)) (-15 -3840 ($ $)))) +((-2898 (((-112) $ $) NIL)) (-3905 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-95) (-13 (-1056) (-10 -8 (-15 -3905 ((-1108) $))))) (T -95)) +((-3905 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-95))))) +(-13 (-1056) (-10 -8 (-15 -3905 ((-1108) $)))) +((-2898 (((-112) $ $) NIL)) (-1315 (((-373) (-1131) (-373)) 42) (((-373) (-1131) (-1131) (-373)) 41)) (-1316 (((-373) (-373)) 33)) (-1317 (((-1237)) 36)) (-3593 (((-1131) $) NIL)) (-1320 (((-373) (-1131) (-1131)) 46) (((-373) (-1131)) 48)) (-3594 (((-1093) $) NIL)) (-1318 (((-373) (-1131) (-1131)) 47)) (-1319 (((-373) (-1131) (-1131)) 49) (((-373) (-1131)) 50)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-96) (-13 (-1074) (-10 -7 (-15 -1320 ((-373) (-1131) (-1131))) (-15 -1320 ((-373) (-1131))) (-15 -1319 ((-373) (-1131) (-1131))) (-15 -1319 ((-373) (-1131))) (-15 -1318 ((-373) (-1131) (-1131))) (-15 -1317 ((-1237))) (-15 -1316 ((-373) (-373))) (-15 -1315 ((-373) (-1131) (-373))) (-15 -1315 ((-373) (-1131) (-1131) (-373))) (-6 -4353)))) (T -96)) +((-1320 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1320 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1319 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1318 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) (-1317 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-96)))) (-1316 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96)))) (-1315 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1131)) (-5 *1 (-96)))) (-1315 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1131)) (-5 *1 (-96))))) +(-13 (-1074) (-10 -7 (-15 -1320 ((-373) (-1131) (-1131))) (-15 -1320 ((-373) (-1131))) (-15 -1319 ((-373) (-1131) (-1131))) (-15 -1319 ((-373) (-1131))) (-15 -1318 ((-373) (-1131) (-1131))) (-15 -1317 ((-1237))) (-15 -1316 ((-373) (-373))) (-15 -1315 ((-373) (-1131) (-373))) (-15 -1315 ((-373) (-1131) (-1131) (-373))) (-6 -4353))) NIL (((-97) (-138)) (T -97)) NIL -(-13 (-10 -7 (-6 -4348) (-6 (-4350 "*")) (-6 -4349) (-6 -4345) (-6 -4343) (-6 -4342) (-6 -4341) (-6 -4346) (-6 -4340) (-6 -4339) (-6 -4338) (-6 -4337) (-6 -4336) (-6 -4344) (-6 -4347) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4335))) -((-2893 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-1319 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-536))) 22)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 14)) (-3589 (((-1091) $) NIL)) (-4154 ((|#1| $ |#1|) 11)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) 20)) (-2992 (($) 8 T CONST)) (-3382 (((-112) $ $) 10)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) 27) (($ $ (-749)) NIL) (($ $ (-536)) 16)) (* (($ $ $) 28))) -(((-98 |#1|) (-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1319 ($ (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1| (-536)))))) (-1023)) (T -98)) -((-1319 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-98 *3)))) (-1319 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-98 *3)))) (-1319 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-536))) (-4 *3 (-1023)) (-5 *1 (-98 *3))))) -(-13 (-465) (-279 |#1| |#1|) (-10 -8 (-15 -1319 ($ (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1319 ($ (-1 |#1| |#1| (-536)))))) -((-1320 (((-398 |#2|) |#2| (-620 |#2|)) 10) (((-398 |#2|) |#2| |#2|) 11))) -(((-99 |#1| |#2|) (-10 -7 (-15 -1320 ((-398 |#2|) |#2| |#2|)) (-15 -1320 ((-398 |#2|) |#2| (-620 |#2|)))) (-13 (-444) (-145)) (-1205 |#1|)) (T -99)) -((-1320 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *5 *3)))) (-1320 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1205 *4))))) -(-10 -7 (-15 -1320 ((-398 |#2|) |#2| |#2|)) (-15 -1320 ((-398 |#2|) |#2| (-620 |#2|)))) -((-2893 (((-112) $ $) 10))) -(((-100 |#1|) (-10 -8 (-15 -2893 ((-112) |#1| |#1|))) (-101)) (T -100)) -NIL -(-10 -8 (-15 -2893 ((-112) |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3382 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4353) (-6 (-4355 "*")) (-6 -4354) (-6 -4350) (-6 -4348) (-6 -4347) (-6 -4346) (-6 -4351) (-6 -4345) (-6 -4344) (-6 -4343) (-6 -4342) (-6 -4341) (-6 -4349) (-6 -4352) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4340))) +((-2898 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-1321 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-538))) 22)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 14)) (-3594 (((-1093) $) NIL)) (-4159 ((|#1| $ |#1|) 11)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) 20)) (-2997 (($) 8 T CONST)) (-3387 (((-112) $ $) 10)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) 27) (($ $ (-751)) NIL) (($ $ (-538)) 16)) (* (($ $ $) 28))) +(((-98 |#1|) (-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -1321 ($ (-1 |#1| |#1|))) (-15 -1321 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1321 ($ (-1 |#1| |#1| (-538)))))) (-1025)) (T -98)) +((-1321 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) (-1321 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) (-1321 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-538))) (-4 *3 (-1025)) (-5 *1 (-98 *3))))) +(-13 (-467) (-281 |#1| |#1|) (-10 -8 (-15 -1321 ($ (-1 |#1| |#1|))) (-15 -1321 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1321 ($ (-1 |#1| |#1| (-538)))))) +((-1322 (((-400 |#2|) |#2| (-622 |#2|)) 10) (((-400 |#2|) |#2| |#2|) 11))) +(((-99 |#1| |#2|) (-10 -7 (-15 -1322 ((-400 |#2|) |#2| |#2|)) (-15 -1322 ((-400 |#2|) |#2| (-622 |#2|)))) (-13 (-446) (-145)) (-1207 |#1|)) (T -99)) +((-1322 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-13 (-446) (-145))) (-5 *2 (-400 *3)) (-5 *1 (-99 *5 *3)))) (-1322 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-400 *3)) (-5 *1 (-99 *4 *3)) (-4 *3 (-1207 *4))))) +(-10 -7 (-15 -1322 ((-400 |#2|) |#2| |#2|)) (-15 -1322 ((-400 |#2|) |#2| (-622 |#2|)))) +((-2898 (((-112) $ $) 10))) +(((-100 |#1|) (-10 -8 (-15 -2898 ((-112) |#1| |#1|))) (-101)) (T -100)) +NIL +(-10 -8 (-15 -2898 ((-112) |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3387 (((-112) $ $) 6))) (((-101) (-138)) (T -101)) -((-2893 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-3382 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -3382 ((-112) $ $)) (-15 -2893 ((-112) $ $)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) 13 (|has| $ (-6 -4349)))) (-1352 (($ $ $) NIL (|has| $ (-6 -4349)))) (-1353 (($ $ $) NIL (|has| $ (-6 -4349)))) (-1323 (($ $ (-620 |#1|)) 15)) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #2="left" $) NIL (|has| $ (-6 -4349))) (($ $ #3="right" $) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3467 (($ $) 11)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1361 (($ $ |#1| $) 17)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1322 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1321 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-620 |#1|) |#1| |#1| |#1|)) 35)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3468 (($ $) 10)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) 12)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 9)) (-3923 (($) 16)) (-4154 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1324 (($ (-749) |#1|) 19)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -1324 ($ (-749) |#1|)) (-15 -1323 ($ $ (-620 |#1|))) (-15 -1322 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1322 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1321 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1321 ($ $ |#1| (-1 (-620 |#1|) |#1| |#1| |#1|))))) (-1072)) (T -102)) -((-1324 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-102 *3)) (-4 *3 (-1072)))) (-1323 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-102 *3)))) (-1322 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1072)))) (-1322 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-102 *3)))) (-1321 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1072)) (-5 *1 (-102 *2)))) (-1321 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-620 *2) *2 *2 *2)) (-4 *2 (-1072)) (-5 *1 (-102 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -1324 ($ (-749) |#1|)) (-15 -1323 ($ $ (-620 |#1|))) (-15 -1322 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1322 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1321 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1321 ($ $ |#1| (-1 (-620 |#1|) |#1| |#1| |#1|))))) -((-1325 ((|#3| |#2| |#2|) 29)) (-1327 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4350 #1="*"))))) (-1326 ((|#3| |#2| |#2|) 30)) (-1328 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4350 #1#)))))) -(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1325 (|#3| |#2| |#2|)) (-15 -1326 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4350 "*"))) (PROGN (-15 -1327 (|#1| |#2| |#2|)) (-15 -1328 (|#1| |#2|))) |%noBranch|)) (-1023) (-1205 |#1|) (-664 |#1| |#4| |#5|) (-365 |#1|) (-365 |#1|)) (T -103)) -((-1328 (*1 *2 *3) (-12 (|has| *2 (-6 (-4350 #1="*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1023)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1205 *2)) (-4 *4 (-664 *2 *5 *6)))) (-1327 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4350 #1#))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) (-4 *2 (-1023)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1205 *2)) (-4 *4 (-664 *2 *5 *6)))) (-1326 (*1 *2 *3 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-664 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1205 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)))) (-1325 (*1 *2 *3 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-664 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1205 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) -(-10 -7 (-15 -1325 (|#3| |#2| |#2|)) (-15 -1326 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4350 "*"))) (PROGN (-15 -1327 (|#1| |#2| |#2|)) (-15 -1328 (|#1| |#2|))) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-1330 (((-620 (-1147))) 33)) (-1329 (((-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219)))) (-1147)) 35)) (-3382 (((-112) $ $) NIL))) -(((-104) (-13 (-1072) (-10 -7 (-15 -1330 ((-620 (-1147)))) (-15 -1329 ((-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219)))) (-1147))) (-6 -4348)))) (T -104)) -((-1330 (*1 *2) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-104)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219))))) (-5 *1 (-104))))) -(-13 (-1072) (-10 -7 (-15 -1330 ((-620 (-1147)))) (-15 -1329 ((-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) (|:| |singularities| (-1124 (-219)))) (-1147))) (-6 -4348))) -((-1333 (($ (-620 |#2|)) 11))) -(((-105 |#1| |#2|) (-10 -8 (-15 -1333 (|#1| (-620 |#2|)))) (-106 |#2|) (-1183)) (T -105)) -NIL -(-10 -8 (-15 -1333 (|#1| (-620 |#2|)))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-106 |#1|) (-138) (-1183)) (T -106)) -((-1333 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-106 *3)))) (-1332 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183)))) (-3965 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183))))) -(-13 (-481 |t#1|) (-10 -8 (-6 -4349) (-15 -1333 ($ (-620 |t#1|))) (-15 -1332 (|t#1| $)) (-15 -3965 ($ |t#1| $)) (-15 -1331 (|t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-536) $) NIL (|has| (-536) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-536) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-536) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-536) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-536) (-1012 (-536))))) (-3502 (((-536) $) NIL) (((-1147) $) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-536) (-1012 (-536)))) (((-536) $) NIL (|has| (-536) (-1012 (-536))))) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-536) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-536) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-536) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-536) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-536) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-536) (-1122)))) (-3533 (((-112) $) NIL (|has| (-536) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-536) (-825)))) (-4313 (($ (-1 (-536) (-536)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-536) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-536) (-300))) (((-400 (-536)) $) NIL)) (-3460 (((-536) $) NIL (|has| (-536) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-536)) (-620 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-536) (-536)) NIL (|has| (-536) (-302 (-536)))) (($ $ (-286 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-286 (-536)))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-1147)) (-620 (-536))) NIL (|has| (-536) (-505 (-1147) (-536)))) (($ $ (-1147) (-536)) NIL (|has| (-536) (-505 (-1147) (-536))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-536)) NIL (|has| (-536) (-279 (-536) (-536))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-536) $) NIL)) (-4325 (((-864 (-536)) $) NIL (|has| (-536) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-536) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-536) (-596 (-525)))) (((-371) $) NIL (|has| (-536) (-994))) (((-219) $) NIL (|has| (-536) (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-536) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) 8) (($ (-536)) NIL) (($ (-1147)) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL) (((-978 2) $) 10)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-536) (-884))) (|has| (-536) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-536) $) NIL (|has| (-536) (-535)))) (-2139 (($ (-400 (-536))) 9)) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| (-536) (-798)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-536) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-536) (-825)))) (-4303 (($ $ $) NIL) (($ (-536) (-536)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-536) $) NIL) (($ $ (-536)) NIL))) -(((-107) (-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 2) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -2139 ($ (-400 (-536))))))) (T -107)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-978 2)) (-5 *1 (-107)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107)))) (-2139 (*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107))))) -(-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 2) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -2139 ($ (-400 (-536)))))) -((-1347 (((-620 (-939)) $) 14)) (-3900 (((-1147) $) 10)) (-4312 (((-838) $) 23)) (-1334 (($ (-1147) (-620 (-939))) 15))) -(((-108) (-13 (-595 (-838)) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -1347 ((-620 (-939)) $)) (-15 -1334 ($ (-1147) (-620 (-939))))))) (T -108)) -((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-108)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-620 (-939))) (-5 *1 (-108)))) (-1334 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-939))) (-5 *1 (-108))))) -(-13 (-595 (-838)) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -1347 ((-620 (-939)) $)) (-15 -1334 ($ (-1147) (-620 (-939)))))) -((-2893 (((-112) $ $) NIL)) (-1808 (((-1091) $ (-1091)) 24)) (-1812 (($ $ (-1129)) 17)) (-3977 (((-3 (-1091) "failed") $) 23)) (-1809 (((-1091) $) 21)) (-1335 (((-1091) $ (-1091)) 26)) (-3773 (((-1091) $) 25)) (-1813 (($ (-381)) NIL) (($ (-381) (-1129)) 16)) (-3900 (((-381) $) NIL)) (-3588 (((-1129) $) NIL)) (-1810 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-1811 (($ $) 18)) (-3382 (((-112) $ $) NIL))) -(((-109) (-13 (-358 (-381) (-1091)) (-10 -8 (-15 -3977 ((-3 (-1091) "failed") $)) (-15 -3773 ((-1091) $)) (-15 -1335 ((-1091) $ (-1091)))))) (T -109)) -((-3977 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-109)))) (-3773 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-109)))) (-1335 (*1 *2 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-109))))) -(-13 (-358 (-381) (-1091)) (-10 -8 (-15 -3977 ((-3 (-1091) "failed") $)) (-15 -3773 ((-1091) $)) (-15 -1335 ((-1091) $ (-1091))))) -((-2893 (((-112) $ $) NIL)) (-3674 (($ $) NIL)) (-3670 (($ $ $) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) $) NIL (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-112) (-825)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4349)))) (-3237 (($ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-112) $ (-1196 (-536)) (-112)) NIL (|has| $ (-6 -4349))) (((-112) $ (-536) (-112)) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-3760 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-4197 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-1632 (((-112) $ (-536) (-112)) NIL (|has| $ (-6 -4349)))) (-3443 (((-112) $ (-536)) NIL)) (-3773 (((-536) (-112) $ (-536)) NIL (|has| (-112) (-1072))) (((-536) (-112) $) NIL (|has| (-112) (-1072))) (((-536) (-1 (-112) (-112)) $) NIL)) (-2063 (((-620 (-112)) $) NIL (|has| $ (-6 -4348)))) (-3185 (($ $ $) NIL)) (-3671 (($ $) NIL)) (-1359 (($ $ $) NIL)) (-3972 (($ (-749) (-112)) 8)) (-1360 (($ $ $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL)) (-3867 (($ $ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2506 (((-620 (-112)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL)) (-2067 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ (-112) $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-112) $) NIL (|has| (-536) (-825)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2301 (($ $ (-112)) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-112)) (-620 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-620 (-286 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-2307 (((-620 (-112)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (($ $ (-1196 (-536))) NIL) (((-112) $ (-536)) NIL) (((-112) $ (-536) (-112)) NIL)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2064 (((-749) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072)))) (((-749) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-112) (-596 (-525))))) (-3879 (($ (-620 (-112))) NIL)) (-4156 (($ (-620 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4312 (((-838) $) NIL)) (-1885 (($ (-749) (-112)) 9)) (-2066 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-3186 (($ $ $) NIL)) (-3676 (($ $ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-3675 (($ $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-110) (-13 (-123) (-10 -8 (-15 -1885 ($ (-749) (-112)))))) (T -110)) -((-1885 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -1885 ($ (-749) (-112))))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-111 |#1| |#2|) (-138) (-1023) (-1023)) (T -111)) -NIL -(-13 (-626 |t#1|) (-1029 |t#2|) (-10 -7 (-6 -4343) (-6 -4342))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-1029 |#2|) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3674 (($ $) 10)) (-3670 (($ $ $) 15)) (-2317 (($) 7 T CONST)) (-1336 (($ $) 6)) (-3466 (((-749)) 24)) (-3322 (($) 30)) (-3185 (($ $ $) 13)) (-3671 (($ $) 9)) (-1359 (($ $ $) 16)) (-1360 (($ $ $) 17)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-2121 (((-893) $) 29)) (-3588 (((-1129) $) NIL)) (-2487 (($ (-893)) 28)) (-3184 (($ $ $) 20)) (-3589 (((-1091) $) NIL)) (-2319 (($) 8 T CONST)) (-3183 (($ $ $) 21)) (-4325 (((-525) $) 36)) (-4312 (((-838) $) 39)) (-3186 (($ $ $) 11)) (-3676 (($ $ $) 14)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 19)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 22)) (-3675 (($ $ $) 12))) -(((-112) (-13 (-819) (-640) (-941) (-596 (-525)) (-10 -8 (-15 -2317 ($) -4306) (-15 -2319 ($) -4306) (-15 -3670 ($ $ $)) (-15 -1360 ($ $ $)) (-15 -1359 ($ $ $)) (-15 -1336 ($ $))))) (T -112)) -((-2317 (*1 *1) (-5 *1 (-112))) (-2319 (*1 *1) (-5 *1 (-112))) (-3670 (*1 *1 *1 *1) (-5 *1 (-112))) (-1360 (*1 *1 *1 *1) (-5 *1 (-112))) (-1359 (*1 *1 *1 *1) (-5 *1 (-112))) (-1336 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-819) (-640) (-941) (-596 (-525)) (-10 -8 (-15 -2317 ($) -4306) (-15 -2319 ($) -4306) (-15 -3670 ($ $ $)) (-15 -1360 ($ $ $)) (-15 -1359 ($ $ $)) (-15 -1336 ($ $)))) -((-2893 (((-112) $ $) NIL)) (-1572 (((-749) $) 72) (($ $ (-749)) 30)) (-1344 (((-112) $) 32)) (-1338 (($ $ (-1129) (-751)) 26)) (-1337 (($ $ (-45 (-1129) (-751))) 15)) (-3169 (((-3 (-751) "failed") $ (-1129)) 25)) (-1347 (((-45 (-1129) (-751)) $) 14)) (-3375 (($ (-1147)) 17) (($ (-1147) (-749)) 22)) (-1345 (((-112) $) 31)) (-1343 (((-112) $) 33)) (-3900 (((-1147) $) 8)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2959 (((-112) $ (-1147)) 10)) (-2241 (($ $ (-1 (-525) (-620 (-525)))) 52) (((-3 (-1 (-525) (-620 (-525))) "failed") $) 56)) (-3589 (((-1091) $) NIL)) (-1340 (((-112) $ (-1129)) 29)) (-1342 (($ $ (-1 (-112) $ $)) 35)) (-3975 (((-3 (-1 (-838) (-620 (-838))) "failed") $) 54) (($ $ (-1 (-838) (-620 (-838)))) 41) (($ $ (-1 (-838) (-838))) 43)) (-1339 (($ $ (-1129)) 45)) (-3754 (($ $) 63)) (-1341 (($ $ (-1 (-112) $ $)) 36)) (-4312 (((-838) $) 48)) (-3120 (($ $ (-1129)) 27)) (-1346 (((-3 (-749) "failed") $) 58)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 71)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 79))) -(((-113) (-13 (-825) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -1347 ((-45 (-1129) (-751)) $)) (-15 -3754 ($ $)) (-15 -3375 ($ (-1147))) (-15 -3375 ($ (-1147) (-749))) (-15 -1346 ((-3 (-749) "failed") $)) (-15 -1345 ((-112) $)) (-15 -1344 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -1572 ((-749) $)) (-15 -1572 ($ $ (-749))) (-15 -1342 ($ $ (-1 (-112) $ $))) (-15 -1341 ($ $ (-1 (-112) $ $))) (-15 -3975 ((-3 (-1 (-838) (-620 (-838))) "failed") $)) (-15 -3975 ($ $ (-1 (-838) (-620 (-838))))) (-15 -3975 ($ $ (-1 (-838) (-838)))) (-15 -2241 ($ $ (-1 (-525) (-620 (-525))))) (-15 -2241 ((-3 (-1 (-525) (-620 (-525))) "failed") $)) (-15 -2959 ((-112) $ (-1147))) (-15 -1340 ((-112) $ (-1129))) (-15 -3120 ($ $ (-1129))) (-15 -1339 ($ $ (-1129))) (-15 -3169 ((-3 (-751) "failed") $ (-1129))) (-15 -1338 ($ $ (-1129) (-751))) (-15 -1337 ($ $ (-45 (-1129) (-751))))))) (T -113)) -((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-113)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-45 (-1129) (-751))) (-5 *1 (-113)))) (-3754 (*1 *1 *1) (-5 *1 (-113))) (-3375 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-113)))) (-3375 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *1 (-113)))) (-1346 (*1 *2 *1) (|partial| -12 (-5 *2 (-749)) (-5 *1 (-113)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1344 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-113)))) (-1572 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-113)))) (-1342 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1341 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-3975 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-838) (-620 (-838)))) (-5 *1 (-113)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-838) (-620 (-838)))) (-5 *1 (-113)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-838) (-838))) (-5 *1 (-113)))) (-2241 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-525) (-620 (-525)))) (-5 *1 (-113)))) (-2241 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-525) (-620 (-525)))) (-5 *1 (-113)))) (-2959 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-112)) (-5 *1 (-113)))) (-1340 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3120 (*1 *1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-113)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-113)))) (-3169 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1129)) (-5 *2 (-751)) (-5 *1 (-113)))) (-1338 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-751)) (-5 *1 (-113)))) (-1337 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1129) (-751))) (-5 *1 (-113))))) -(-13 (-825) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -1347 ((-45 (-1129) (-751)) $)) (-15 -3754 ($ $)) (-15 -3375 ($ (-1147))) (-15 -3375 ($ (-1147) (-749))) (-15 -1346 ((-3 (-749) "failed") $)) (-15 -1345 ((-112) $)) (-15 -1344 ((-112) $)) (-15 -1343 ((-112) $)) (-15 -1572 ((-749) $)) (-15 -1572 ($ $ (-749))) (-15 -1342 ($ $ (-1 (-112) $ $))) (-15 -1341 ($ $ (-1 (-112) $ $))) (-15 -3975 ((-3 (-1 (-838) (-620 (-838))) "failed") $)) (-15 -3975 ($ $ (-1 (-838) (-620 (-838))))) (-15 -3975 ($ $ (-1 (-838) (-838)))) (-15 -2241 ($ $ (-1 (-525) (-620 (-525))))) (-15 -2241 ((-3 (-1 (-525) (-620 (-525))) "failed") $)) (-15 -2959 ((-112) $ (-1147))) (-15 -1340 ((-112) $ (-1129))) (-15 -3120 ($ $ (-1129))) (-15 -1339 ($ $ (-1129))) (-15 -3169 ((-3 (-751) "failed") $ (-1129))) (-15 -1338 ($ $ (-1129) (-751))) (-15 -1337 ($ $ (-45 (-1129) (-751)))))) -((-2847 (((-3 (-1 |#1| (-620 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-620 |#1|))) 11) (((-3 |#1| "failed") (-113) (-620 |#1|)) 21)) (-1348 (((-3 (-620 (-1 |#1| (-620 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-620 (-1 |#1| (-620 |#1|)))) 26)) (-1349 (((-113) |#1|) 56 (|has| |#1| (-825)))) (-1350 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-825))))) -(((-114 |#1|) (-10 -7 (-15 -2847 ((-3 |#1| "failed") (-113) (-620 |#1|))) (-15 -2847 ((-113) (-113) (-1 |#1| (-620 |#1|)))) (-15 -2847 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2847 ((-3 (-1 |#1| (-620 |#1|)) "failed") (-113))) (-15 -1348 ((-113) (-113) (-620 (-1 |#1| (-620 |#1|))))) (-15 -1348 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1348 ((-3 (-620 (-1 |#1| (-620 |#1|))) "failed") (-113))) (IF (|has| |#1| (-825)) (PROGN (-15 -1349 ((-113) |#1|)) (-15 -1350 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1072)) (T -114)) -((-1350 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1072)) (-4 *2 (-825)) (-5 *1 (-114 *2)))) (-1349 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-825)) (-4 *3 (-1072)))) (-1348 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-620 (-1 *4 (-620 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1072)))) (-1348 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) (-1348 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 (-1 *4 (-620 *4)))) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) (-2847 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-620 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1072)))) (-2847 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) (-2847 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-620 *4))) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) (-2847 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-620 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1072))))) -(-10 -7 (-15 -2847 ((-3 |#1| "failed") (-113) (-620 |#1|))) (-15 -2847 ((-113) (-113) (-1 |#1| (-620 |#1|)))) (-15 -2847 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2847 ((-3 (-1 |#1| (-620 |#1|)) "failed") (-113))) (-15 -1348 ((-113) (-113) (-620 (-1 |#1| (-620 |#1|))))) (-15 -1348 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1348 ((-3 (-620 (-1 |#1| (-620 |#1|))) "failed") (-113))) (IF (|has| |#1| (-825)) (PROGN (-15 -1349 ((-113) |#1|)) (-15 -1350 ((-3 |#1| "failed") (-113)))) |%noBranch|)) -((-1351 (((-536) |#2|) 37))) -(((-115 |#1| |#2|) (-10 -7 (-15 -1351 ((-536) |#2|))) (-13 (-356) (-1012 (-400 (-536)))) (-1205 |#1|)) (T -115)) -((-1351 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-1012 (-400 *2)))) (-5 *2 (-536)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1205 *4))))) -(-10 -7 (-15 -1351 ((-536) |#2|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $ (-536)) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2935 (($ (-1141 (-536)) (-536)) NIL)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2936 (($ $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4126 (((-749) $) NIL)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2938 (((-536)) NIL)) (-2937 (((-536) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4123 (($ $ (-536)) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-2939 (((-1124 (-536)) $) NIL)) (-3219 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-4124 (((-536) $ (-536)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-844 |#1|) (-536)) (T -116)) -NIL -(-844 |#1|) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-116 |#1|) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-116 |#1|) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-116 |#1|) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-116 |#1|) (-1012 (-536))))) (-3502 (((-116 |#1|) $) NIL) (((-1147) $) NIL (|has| (-116 |#1|) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-116 |#1|) (-1012 (-536)))) (((-536) $) NIL (|has| (-116 |#1|) (-1012 (-536))))) (-4085 (($ $) NIL) (($ (-536) $) NIL)) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-116 |#1|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-116 |#1|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-116 |#1|))) (|:| |vec| (-1229 (-116 |#1|)))) (-667 $) (-1229 $)) NIL) (((-667 (-116 |#1|)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-116 |#1|) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-116 |#1|) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-116 |#1|) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-116 |#1|) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-116 |#1|) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1122)))) (-3533 (((-112) $) NIL (|has| (-116 |#1|) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-116 |#1|) (-825)))) (-3673 (($ $ $) NIL (|has| (-116 |#1|) (-825)))) (-4313 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-116 |#1|) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-116 |#1|) (-300)))) (-3460 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-116 |#1|) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-116 |#1|)) (-620 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-286 (-116 |#1|))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-620 (-286 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-302 (-116 |#1|)))) (($ $ (-620 (-1147)) (-620 (-116 |#1|))) NIL (|has| (-116 |#1|) (-505 (-1147) (-116 |#1|)))) (($ $ (-1147) (-116 |#1|)) NIL (|has| (-116 |#1|) (-505 (-1147) (-116 |#1|))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-279 (-116 |#1|) (-116 |#1|))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1147)) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-749)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-116 |#1|) $) NIL)) (-4325 (((-864 (-536)) $) NIL (|has| (-116 |#1|) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-116 |#1|) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-116 |#1|) (-596 (-525)))) (((-371) $) NIL (|has| (-116 |#1|) (-994))) (((-219) $) NIL (|has| (-116 |#1|) (-994)))) (-2940 (((-172 (-400 (-536))) $) NIL)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-116 |#1|)) NIL) (($ (-1147)) NIL (|has| (-116 |#1|) (-1012 (-1147))))) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-884))) (|has| (-116 |#1|) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-535)))) (-2172 (((-112) $ $) NIL)) (-4124 (((-400 (-536)) $ (-536)) NIL)) (-3737 (($ $) NIL (|has| (-116 |#1|) (-798)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-116 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-116 |#1|) (-227))) (($ $ (-1147)) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-116 |#1|) (-874 (-1147)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-749)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-116 |#1|) (-825)))) (-4303 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-965 (-116 |#1|)) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) (-536)) (T -117)) -((-4124 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-536)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-117 *3)) (-14 *3 (-536)))) (-4085 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-536)))) (-4085 (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-965 (-116 |#1|)) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) -((-4142 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3359 (((-620 $) $) 27)) (-3355 (((-112) $ $) 32)) (-3591 (((-112) |#2| $) 36)) (-3358 (((-620 |#2|) $) 22)) (-3876 (((-112) $) 16)) (-4154 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3991 (((-112) $) 45)) (-4312 (((-838) $) 41)) (-3871 (((-620 $) $) 28)) (-3382 (((-112) $ $) 34)) (-4311 (((-749) $) 43))) -(((-118 |#1| |#2|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4142 (|#1| |#1| "right" |#1|)) (-15 -4142 (|#1| |#1| "left" |#1|)) (-15 -4154 (|#1| |#1| "right")) (-15 -4154 (|#1| |#1| "left")) (-15 -4142 (|#2| |#1| #1="value" |#2|)) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3358 ((-620 |#2|) |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -3591 ((-112) |#2| |#1|)) (-15 -4311 ((-749) |#1|))) (-119 |#2|) (-1183)) (T -118)) -NIL -(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4142 (|#1| |#1| "right" |#1|)) (-15 -4142 (|#1| |#1| "left" |#1|)) (-15 -4154 (|#1| |#1| "right")) (-15 -4154 (|#1| |#1| "left")) (-15 -4142 (|#2| |#1| #1="value" |#2|)) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3358 ((-620 |#2|) |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -3591 ((-112) |#2| |#1|)) (-15 -4311 ((-749) |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-1352 (($ $ $) 52 (|has| $ (-6 -4349)))) (-1353 (($ $ $) 54 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) (($ $ "left" $) 55 (|has| $ (-6 -4349))) (($ $ "right" $) 53 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-3467 (($ $) 57)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3468 (($ $) 59)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3357 (((-536) $ $) 44)) (-3991 (((-112) $) 46)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-119 |#1|) (-138) (-1183)) (T -119)) -((-3468 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1183)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1183)))) (-3467 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1183)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1183)))) (-4142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4349)) (-4 *1 (-119 *3)) (-4 *3 (-1183)))) (-1353 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-119 *2)) (-4 *2 (-1183)))) (-4142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4349)) (-4 *1 (-119 *3)) (-4 *3 (-1183)))) (-1352 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-119 *2)) (-4 *2 (-1183))))) -(-13 (-984 |t#1|) (-10 -8 (-15 -3468 ($ $)) (-15 -4154 ($ $ "left")) (-15 -3467 ($ $)) (-15 -4154 ($ $ "right")) (IF (|has| $ (-6 -4349)) (PROGN (-15 -4142 ($ $ "left" $)) (-15 -1353 ($ $ $)) (-15 -4142 ($ $ "right" $)) (-15 -1352 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-1356 (((-112) |#1|) 24)) (-1355 (((-749) (-749)) 23) (((-749)) 22)) (-1354 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) -(((-120 |#1|) (-10 -7 (-15 -1354 ((-112) |#1|)) (-15 -1354 ((-112) |#1| (-112))) (-15 -1355 ((-749))) (-15 -1355 ((-749) (-749))) (-15 -1356 ((-112) |#1|))) (-1205 (-536))) (T -120)) -((-1356 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) (-1355 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) (-1355 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) (-1354 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) (-1354 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536)))))) -(-10 -7 (-15 -1354 ((-112) |#1|)) (-15 -1354 ((-112) |#1| (-112))) (-15 -1355 ((-749))) (-15 -1355 ((-749) (-749))) (-15 -1356 ((-112) |#1|))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) 15)) (-3772 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-1352 (($ $ $) 18 (|has| $ (-6 -4349)))) (-1353 (($ $ $) 20 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #2="left" $) NIL (|has| $ (-6 -4349))) (($ $ #3="right" $) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3467 (($ $) 17)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1361 (($ $ |#1| $) 23)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3468 (($ $) 19)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1357 (($ |#1| $) 24)) (-3965 (($ |#1| $) 10)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 14)) (-3923 (($) 8)) (-4154 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1358 (($ (-620 |#1|)) 12)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4349) (-6 -4348) (-15 -1358 ($ (-620 |#1|))) (-15 -3965 ($ |#1| $)) (-15 -1357 ($ |#1| $)) (-15 -3772 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-825)) (T -121)) -((-1358 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-121 *3)))) (-3965 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) (-1357 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) (-3772 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-825))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4349) (-6 -4348) (-15 -1358 ($ (-620 |#1|))) (-15 -3965 ($ |#1| $)) (-15 -1357 ($ |#1| $)) (-15 -3772 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-3674 (($ $) 13)) (-3671 (($ $) 11)) (-1359 (($ $ $) 23)) (-1360 (($ $ $) 21)) (-3676 (($ $ $) 19)) (-3675 (($ $ $) 17))) -(((-122 |#1|) (-10 -8 (-15 -1359 (|#1| |#1| |#1|)) (-15 -1360 (|#1| |#1| |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3675 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -1359 (|#1| |#1| |#1|)) (-15 -1360 (|#1| |#1| |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -3674 (|#1| |#1|)) (-15 -3675 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3674 (($ $) 103)) (-3670 (($ $ $) 25)) (-2300 (((-1235) $ (-536) (-536)) 66 (|has| $ (-6 -4349)))) (-1843 (((-112) $) 98 (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1841 (($ $) 102 (-12 (|has| (-112) (-825)) (|has| $ (-6 -4349)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4349)))) (-3237 (($ $) 97 (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1269 (((-112) $ (-749)) 37)) (-4142 (((-112) $ (-1196 (-536)) (-112)) 88 (|has| $ (-6 -4349))) (((-112) $ (-536) (-112)) 54 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4348)))) (-3891 (($) 38 T CONST)) (-2372 (($ $) 100 (|has| $ (-6 -4349)))) (-2373 (($ $) 90)) (-1398 (($ $) 68 (-12 (|has| (-112) (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4348))) (($ (-112) $) 69 (-12 (|has| (-112) (-1072)) (|has| $ (-6 -4348))))) (-4197 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1072)) (|has| $ (-6 -4348))))) (-1632 (((-112) $ (-536) (-112)) 53 (|has| $ (-6 -4349)))) (-3443 (((-112) $ (-536)) 55)) (-3773 (((-536) (-112) $ (-536)) 95 (|has| (-112) (-1072))) (((-536) (-112) $) 94 (|has| (-112) (-1072))) (((-536) (-1 (-112) (-112)) $) 93)) (-2063 (((-620 (-112)) $) 45 (|has| $ (-6 -4348)))) (-3185 (($ $ $) 26)) (-3671 (($ $) 30)) (-1359 (($ $ $) 28)) (-3972 (($ (-749) (-112)) 77)) (-1360 (($ $ $) 29)) (-4077 (((-112) $ (-749)) 36)) (-2302 (((-536) $) 63 (|has| (-536) (-825)))) (-3672 (($ $ $) 13)) (-3867 (($ $ $) 96 (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2506 (((-620 (-112)) $) 46 (|has| $ (-6 -4348)))) (-3591 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 62 (|has| (-536) (-825)))) (-3673 (($ $ $) 14)) (-2067 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4074 (((-112) $ (-749)) 35)) (-3588 (((-1129) $) 9)) (-2377 (($ $ $ (-536)) 87) (($ (-112) $ (-536)) 86)) (-2305 (((-620 (-536)) $) 60)) (-2306 (((-112) (-536) $) 59)) (-3589 (((-1091) $) 10)) (-4155 (((-112) $) 64 (|has| (-536) (-825)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2301 (($ $ (-112)) 65 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-112)) (-620 (-112))) 52 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-286 (-112))) 50 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-620 (-286 (-112)))) 49 (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072))))) (-1270 (((-112) $ $) 31)) (-2304 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-2307 (((-620 (-112)) $) 58)) (-3757 (((-112) $) 34)) (-3923 (($) 33)) (-4154 (($ $ (-1196 (-536))) 83) (((-112) $ (-536)) 57) (((-112) $ (-536) (-112)) 56)) (-2378 (($ $ (-1196 (-536))) 85) (($ $ (-536)) 84)) (-2064 (((-749) (-112) $) 47 (-12 (|has| (-112) (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4348)))) (-1842 (($ $ $ (-536)) 99 (|has| $ (-6 -4349)))) (-3754 (($ $) 32)) (-4325 (((-525) $) 67 (|has| (-112) (-596 (-525))))) (-3879 (($ (-620 (-112))) 76)) (-4156 (($ (-620 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4312 (((-838) $) 11)) (-2066 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4348)))) (-3186 (($ $ $) 27)) (-3676 (($ $ $) 105)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-3675 (($ $ $) 104)) (-4311 (((-749) $) 39 (|has| $ (-6 -4348))))) +((-2898 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) (-3387 (*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -3387 ((-112) $ $)) (-15 -2898 ((-112) $ $)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) 13 (|has| $ (-6 -4354)))) (-1353 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1354 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1325 (($ $ (-622 |#1|)) 15)) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #2="left" $) NIL (|has| $ (-6 -4354))) (($ $ #3="right" $) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3472 (($ $) 11)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1362 (($ $ |#1| $) 17)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1324 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1323 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-622 |#1|) |#1| |#1| |#1|)) 35)) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3473 (($ $) 10)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) 12)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 9)) (-3928 (($) 16)) (-4159 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1326 (($ (-751) |#1|) 19)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-102 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -1326 ($ (-751) |#1|)) (-15 -1325 ($ $ (-622 |#1|))) (-15 -1324 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1324 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1323 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1323 ($ $ |#1| (-1 (-622 |#1|) |#1| |#1| |#1|))))) (-1074)) (T -102)) +((-1326 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-102 *3)) (-4 *3 (-1074)))) (-1325 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-102 *3)))) (-1324 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1074)))) (-1324 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-102 *3)))) (-1323 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1074)) (-5 *1 (-102 *2)))) (-1323 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-622 *2) *2 *2 *2)) (-4 *2 (-1074)) (-5 *1 (-102 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -1326 ($ (-751) |#1|)) (-15 -1325 ($ $ (-622 |#1|))) (-15 -1324 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1324 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1323 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1323 ($ $ |#1| (-1 (-622 |#1|) |#1| |#1| |#1|))))) +((-1327 ((|#3| |#2| |#2|) 29)) (-1329 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4355 #1="*"))))) (-1328 ((|#3| |#2| |#2|) 30)) (-1330 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4355 #1#)))))) +(((-103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1327 (|#3| |#2| |#2|)) (-15 -1328 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4355 "*"))) (PROGN (-15 -1329 (|#1| |#2| |#2|)) (-15 -1330 (|#1| |#2|))) |%noBranch|)) (-1025) (-1207 |#1|) (-666 |#1| |#4| |#5|) (-367 |#1|) (-367 |#1|)) (T -103)) +((-1330 (*1 *2 *3) (-12 (|has| *2 (-6 (-4355 #1="*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1207 *2)) (-4 *4 (-666 *2 *5 *6)))) (-1329 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4355 #1#))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1207 *2)) (-4 *4 (-666 *2 *5 *6)))) (-1328 (*1 *2 *3 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-666 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1207 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)))) (-1327 (*1 *2 *3 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-666 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) (-4 *3 (-1207 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))))) +(-10 -7 (-15 -1327 (|#3| |#2| |#2|)) (-15 -1328 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4355 "*"))) (PROGN (-15 -1329 (|#1| |#2| |#2|)) (-15 -1330 (|#1| |#2|))) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-1332 (((-622 (-1149))) 33)) (-1331 (((-2 (|:| |zeros| (-1126 (-221))) (|:| |ones| (-1126 (-221))) (|:| |singularities| (-1126 (-221)))) (-1149)) 35)) (-3387 (((-112) $ $) NIL))) +(((-104) (-13 (-1074) (-10 -7 (-15 -1332 ((-622 (-1149)))) (-15 -1331 ((-2 (|:| |zeros| (-1126 (-221))) (|:| |ones| (-1126 (-221))) (|:| |singularities| (-1126 (-221)))) (-1149))) (-6 -4353)))) (T -104)) +((-1332 (*1 *2) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-104)))) (-1331 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-2 (|:| |zeros| (-1126 (-221))) (|:| |ones| (-1126 (-221))) (|:| |singularities| (-1126 (-221))))) (-5 *1 (-104))))) +(-13 (-1074) (-10 -7 (-15 -1332 ((-622 (-1149)))) (-15 -1331 ((-2 (|:| |zeros| (-1126 (-221))) (|:| |ones| (-1126 (-221))) (|:| |singularities| (-1126 (-221)))) (-1149))) (-6 -4353))) +((-1335 (($ (-622 |#2|)) 11))) +(((-105 |#1| |#2|) (-10 -8 (-15 -1335 (|#1| (-622 |#2|)))) (-106 |#2|) (-1185)) (T -105)) +NIL +(-10 -8 (-15 -1335 (|#1| (-622 |#2|)))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-106 |#1|) (-138) (-1185)) (T -106)) +((-1335 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-106 *3)))) (-1334 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185)))) (-3970 (*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185))))) +(-13 (-483 |t#1|) (-10 -8 (-6 -4354) (-15 -1335 ($ (-622 |t#1|))) (-15 -1334 (|t#1| $)) (-15 -3970 ($ |t#1| $)) (-15 -1333 (|t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-538) $) NIL (|has| (-538) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-538) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-538) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-538) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-538) (-1014 (-538))))) (-3507 (((-538) $) NIL) (((-1149) $) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-538) (-1014 (-538)))) (((-538) $) NIL (|has| (-538) (-1014 (-538))))) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-538) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-538) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-538) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-538) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-538) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-538) (-1124)))) (-3538 (((-112) $) NIL (|has| (-538) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-538) (-827)))) (-4318 (($ (-1 (-538) (-538)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-538) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-538) (-302))) (((-402 (-538)) $) NIL)) (-3465 (((-538) $) NIL (|has| (-538) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-538)) (-622 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-538) (-538)) NIL (|has| (-538) (-304 (-538)))) (($ $ (-288 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-288 (-538)))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-1149)) (-622 (-538))) NIL (|has| (-538) (-507 (-1149) (-538)))) (($ $ (-1149) (-538)) NIL (|has| (-538) (-507 (-1149) (-538))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-538)) NIL (|has| (-538) (-281 (-538) (-538))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-538) $) NIL)) (-4330 (((-866 (-538)) $) NIL (|has| (-538) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-538) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-538) (-598 (-527)))) (((-373) $) NIL (|has| (-538) (-996))) (((-221) $) NIL (|has| (-538) (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-538) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) 8) (($ (-538)) NIL) (($ (-1149)) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL) (((-980 2) $) 10)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-538) (-886))) (|has| (-538) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-538) $) NIL (|has| (-538) (-537)))) (-2144 (($ (-402 (-538))) 9)) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| (-538) (-800)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-538) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-538) (-827)))) (-4308 (($ $ $) NIL) (($ (-538) (-538)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-538) $) NIL) (($ $ (-538)) NIL))) +(((-107) (-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 2) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -2144 ($ (-402 (-538))))))) (T -107)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-980 2)) (-5 *1 (-107)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107)))) (-2144 (*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107))))) +(-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 2) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -2144 ($ (-402 (-538)))))) +((-1348 (((-622 (-941)) $) 14)) (-3905 (((-1149) $) 10)) (-4317 (((-840) $) 23)) (-1336 (($ (-1149) (-622 (-941))) 15))) +(((-108) (-13 (-597 (-840)) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -1348 ((-622 (-941)) $)) (-15 -1336 ($ (-1149) (-622 (-941))))))) (T -108)) +((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-108)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-622 (-941))) (-5 *1 (-108)))) (-1336 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-941))) (-5 *1 (-108))))) +(-13 (-597 (-840)) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -1348 ((-622 (-941)) $)) (-15 -1336 ($ (-1149) (-622 (-941)))))) +((-2898 (((-112) $ $) NIL)) (-1813 (((-1093) $ (-1093)) 24)) (-1817 (($ $ (-1131)) 17)) (-3982 (((-3 (-1093) "failed") $) 23)) (-1814 (((-1093) $) 21)) (-1337 (((-1093) $ (-1093)) 26)) (-3778 (((-1093) $) 25)) (-1818 (($ (-383)) NIL) (($ (-383) (-1131)) 16)) (-3905 (((-383) $) NIL)) (-3593 (((-1131) $) NIL)) (-1815 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-1816 (($ $) 18)) (-3387 (((-112) $ $) NIL))) +(((-109) (-13 (-360 (-383) (-1093)) (-10 -8 (-15 -3982 ((-3 (-1093) "failed") $)) (-15 -3778 ((-1093) $)) (-15 -1337 ((-1093) $ (-1093)))))) (T -109)) +((-3982 (*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-109)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-109)))) (-1337 (*1 *2 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-109))))) +(-13 (-360 (-383) (-1093)) (-10 -8 (-15 -3982 ((-3 (-1093) "failed") $)) (-15 -3778 ((-1093) $)) (-15 -1337 ((-1093) $ (-1093))))) +((-2898 (((-112) $ $) NIL)) (-3679 (($ $) NIL)) (-3675 (($ $ $) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) $) NIL (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1846 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-112) (-827)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-3242 (($ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-112) $ (-1198 (-538)) (-112)) NIL (|has| $ (-6 -4354))) (((-112) $ (-538) (-112)) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-3765 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-4202 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-1637 (((-112) $ (-538) (-112)) NIL (|has| $ (-6 -4354)))) (-3448 (((-112) $ (-538)) NIL)) (-3778 (((-538) (-112) $ (-538)) NIL (|has| (-112) (-1074))) (((-538) (-112) $) NIL (|has| (-112) (-1074))) (((-538) (-1 (-112) (-112)) $) NIL)) (-2068 (((-622 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3190 (($ $ $) NIL)) (-3676 (($ $) NIL)) (-1360 (($ $ $) NIL)) (-3977 (($ (-751) (-112)) 8)) (-1361 (($ $ $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL)) (-3872 (($ $ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2511 (((-622 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL)) (-2072 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ (-112) $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-112) $) NIL (|has| (-538) (-827)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2306 (($ $ (-112)) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-112)) (-622 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-288 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-622 (-288 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-2312 (((-622 (-112)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (($ $ (-1198 (-538))) NIL) (((-112) $ (-538)) NIL) (((-112) $ (-538) (-112)) NIL)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2069 (((-751) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074)))) (((-751) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-112) (-598 (-527))))) (-3884 (($ (-622 (-112))) NIL)) (-4161 (($ (-622 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4317 (((-840) $) NIL)) (-1890 (($ (-751) (-112)) 9)) (-2071 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3191 (($ $ $) NIL)) (-3681 (($ $ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-3680 (($ $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-110) (-13 (-123) (-10 -8 (-15 -1890 ($ (-751) (-112)))))) (T -110)) +((-1890 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -1890 ($ (-751) (-112))))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-111 |#1| |#2|) (-138) (-1025) (-1025)) (T -111)) +NIL +(-13 (-628 |t#1|) (-1031 |t#2|) (-10 -7 (-6 -4348) (-6 -4347))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-1031 |#2|) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3679 (($ $) 10)) (-3675 (($ $ $) 15)) (-2322 (($) 7 T CONST)) (-1338 (($ $) 6)) (-3471 (((-751)) 24)) (-3327 (($) 30)) (-3190 (($ $ $) 13)) (-3676 (($ $) 9)) (-1360 (($ $ $) 16)) (-1361 (($ $ $) 17)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-2126 (((-895) $) 29)) (-3593 (((-1131) $) NIL)) (-2492 (($ (-895)) 28)) (-3189 (($ $ $) 20)) (-3594 (((-1093) $) NIL)) (-2324 (($) 8 T CONST)) (-3188 (($ $ $) 21)) (-4330 (((-527) $) 36)) (-4317 (((-840) $) 39)) (-3191 (($ $ $) 11)) (-3681 (($ $ $) 14)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 19)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 22)) (-3680 (($ $ $) 12))) +(((-112) (-13 (-821) (-642) (-943) (-598 (-527)) (-10 -8 (-15 -2322 ($) -4311) (-15 -2324 ($) -4311) (-15 -3675 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -1360 ($ $ $)) (-15 -1338 ($ $))))) (T -112)) +((-2322 (*1 *1) (-5 *1 (-112))) (-2324 (*1 *1) (-5 *1 (-112))) (-3675 (*1 *1 *1 *1) (-5 *1 (-112))) (-1361 (*1 *1 *1 *1) (-5 *1 (-112))) (-1360 (*1 *1 *1 *1) (-5 *1 (-112))) (-1338 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-821) (-642) (-943) (-598 (-527)) (-10 -8 (-15 -2322 ($) -4311) (-15 -2324 ($) -4311) (-15 -3675 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -1360 ($ $ $)) (-15 -1338 ($ $)))) +((-2898 (((-112) $ $) NIL)) (-1577 (((-751) $) 72) (($ $ (-751)) 30)) (-1346 (((-112) $) 32)) (-1340 (($ $ (-1131) (-753)) 26)) (-1339 (($ $ (-45 (-1131) (-753))) 15)) (-3174 (((-3 (-753) "failed") $ (-1131)) 25)) (-1348 (((-45 (-1131) (-753)) $) 14)) (-3380 (($ (-1149)) 17) (($ (-1149) (-751)) 22)) (-1347 (((-112) $) 31)) (-1345 (((-112) $) 33)) (-3905 (((-1149) $) 8)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2964 (((-112) $ (-1149)) 10)) (-2246 (($ $ (-1 (-527) (-622 (-527)))) 52) (((-3 (-1 (-527) (-622 (-527))) "failed") $) 56)) (-3594 (((-1093) $) NIL)) (-1342 (((-112) $ (-1131)) 29)) (-1344 (($ $ (-1 (-112) $ $)) 35)) (-3980 (((-3 (-1 (-840) (-622 (-840))) "failed") $) 54) (($ $ (-1 (-840) (-622 (-840)))) 41) (($ $ (-1 (-840) (-840))) 43)) (-1341 (($ $ (-1131)) 45)) (-3759 (($ $) 63)) (-1343 (($ $ (-1 (-112) $ $)) 36)) (-4317 (((-840) $) 48)) (-3125 (($ $ (-1131)) 27)) (-1464 (((-3 (-751) "failed") $) 58)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 71)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 79))) +(((-113) (-13 (-827) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -1348 ((-45 (-1131) (-753)) $)) (-15 -3759 ($ $)) (-15 -3380 ($ (-1149))) (-15 -3380 ($ (-1149) (-751))) (-15 -1464 ((-3 (-751) "failed") $)) (-15 -1347 ((-112) $)) (-15 -1346 ((-112) $)) (-15 -1345 ((-112) $)) (-15 -1577 ((-751) $)) (-15 -1577 ($ $ (-751))) (-15 -1344 ($ $ (-1 (-112) $ $))) (-15 -1343 ($ $ (-1 (-112) $ $))) (-15 -3980 ((-3 (-1 (-840) (-622 (-840))) "failed") $)) (-15 -3980 ($ $ (-1 (-840) (-622 (-840))))) (-15 -3980 ($ $ (-1 (-840) (-840)))) (-15 -2246 ($ $ (-1 (-527) (-622 (-527))))) (-15 -2246 ((-3 (-1 (-527) (-622 (-527))) "failed") $)) (-15 -2964 ((-112) $ (-1149))) (-15 -1342 ((-112) $ (-1131))) (-15 -3125 ($ $ (-1131))) (-15 -1341 ($ $ (-1131))) (-15 -3174 ((-3 (-753) "failed") $ (-1131))) (-15 -1340 ($ $ (-1131) (-753))) (-15 -1339 ($ $ (-45 (-1131) (-753))))))) (T -113)) +((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-113)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-45 (-1131) (-753))) (-5 *1 (-113)))) (-3759 (*1 *1 *1) (-5 *1 (-113))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-113)))) (-3380 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *1 (-113)))) (-1464 (*1 *2 *1) (|partial| -12 (-5 *2 (-751)) (-5 *1 (-113)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-113)))) (-1577 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-113)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-1343 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113)))) (-3980 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-840) (-622 (-840)))) (-5 *1 (-113)))) (-3980 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-840) (-622 (-840)))) (-5 *1 (-113)))) (-3980 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-840) (-840))) (-5 *1 (-113)))) (-2246 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-527) (-622 (-527)))) (-5 *1 (-113)))) (-2246 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-527) (-622 (-527)))) (-5 *1 (-113)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-113)))) (-1342 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-113)))) (-3125 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-113)))) (-1341 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-113)))) (-3174 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-753)) (-5 *1 (-113)))) (-1340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-753)) (-5 *1 (-113)))) (-1339 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1131) (-753))) (-5 *1 (-113))))) +(-13 (-827) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -1348 ((-45 (-1131) (-753)) $)) (-15 -3759 ($ $)) (-15 -3380 ($ (-1149))) (-15 -3380 ($ (-1149) (-751))) (-15 -1464 ((-3 (-751) "failed") $)) (-15 -1347 ((-112) $)) (-15 -1346 ((-112) $)) (-15 -1345 ((-112) $)) (-15 -1577 ((-751) $)) (-15 -1577 ($ $ (-751))) (-15 -1344 ($ $ (-1 (-112) $ $))) (-15 -1343 ($ $ (-1 (-112) $ $))) (-15 -3980 ((-3 (-1 (-840) (-622 (-840))) "failed") $)) (-15 -3980 ($ $ (-1 (-840) (-622 (-840))))) (-15 -3980 ($ $ (-1 (-840) (-840)))) (-15 -2246 ($ $ (-1 (-527) (-622 (-527))))) (-15 -2246 ((-3 (-1 (-527) (-622 (-527))) "failed") $)) (-15 -2964 ((-112) $ (-1149))) (-15 -1342 ((-112) $ (-1131))) (-15 -3125 ($ $ (-1131))) (-15 -1341 ($ $ (-1131))) (-15 -3174 ((-3 (-753) "failed") $ (-1131))) (-15 -1340 ($ $ (-1131) (-753))) (-15 -1339 ($ $ (-45 (-1131) (-753)))))) +((-2852 (((-3 (-1 |#1| (-622 |#1|)) "failed") (-113)) 19) (((-113) (-113) (-1 |#1| |#1|)) 13) (((-113) (-113) (-1 |#1| (-622 |#1|))) 11) (((-3 |#1| "failed") (-113) (-622 |#1|)) 21)) (-1349 (((-3 (-622 (-1 |#1| (-622 |#1|))) "failed") (-113)) 25) (((-113) (-113) (-1 |#1| |#1|)) 30) (((-113) (-113) (-622 (-1 |#1| (-622 |#1|)))) 26)) (-1350 (((-113) |#1|) 56 (|has| |#1| (-827)))) (-1351 (((-3 |#1| "failed") (-113)) 50 (|has| |#1| (-827))))) +(((-114 |#1|) (-10 -7 (-15 -2852 ((-3 |#1| "failed") (-113) (-622 |#1|))) (-15 -2852 ((-113) (-113) (-1 |#1| (-622 |#1|)))) (-15 -2852 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2852 ((-3 (-1 |#1| (-622 |#1|)) "failed") (-113))) (-15 -1349 ((-113) (-113) (-622 (-1 |#1| (-622 |#1|))))) (-15 -1349 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1349 ((-3 (-622 (-1 |#1| (-622 |#1|))) "failed") (-113))) (IF (|has| |#1| (-827)) (PROGN (-15 -1350 ((-113) |#1|)) (-15 -1351 ((-3 |#1| "failed") (-113)))) |%noBranch|)) (-1074)) (T -114)) +((-1351 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1074)) (-4 *2 (-827)) (-5 *1 (-114 *2)))) (-1350 (*1 *2 *3) (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-827)) (-4 *3 (-1074)))) (-1349 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-622 (-1 *4 (-622 *4)))) (-5 *1 (-114 *4)) (-4 *4 (-1074)))) (-1349 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) (-1349 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 (-1 *4 (-622 *4)))) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) (-2852 (*1 *2 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-622 *4))) (-5 *1 (-114 *4)) (-4 *4 (-1074)))) (-2852 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) (-2852 (*1 *2 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-622 *4))) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) (-2852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-622 *2)) (-5 *1 (-114 *2)) (-4 *2 (-1074))))) +(-10 -7 (-15 -2852 ((-3 |#1| "failed") (-113) (-622 |#1|))) (-15 -2852 ((-113) (-113) (-1 |#1| (-622 |#1|)))) (-15 -2852 ((-113) (-113) (-1 |#1| |#1|))) (-15 -2852 ((-3 (-1 |#1| (-622 |#1|)) "failed") (-113))) (-15 -1349 ((-113) (-113) (-622 (-1 |#1| (-622 |#1|))))) (-15 -1349 ((-113) (-113) (-1 |#1| |#1|))) (-15 -1349 ((-3 (-622 (-1 |#1| (-622 |#1|))) "failed") (-113))) (IF (|has| |#1| (-827)) (PROGN (-15 -1350 ((-113) |#1|)) (-15 -1351 ((-3 |#1| "failed") (-113)))) |%noBranch|)) +((-1352 (((-538) |#2|) 37))) +(((-115 |#1| |#2|) (-10 -7 (-15 -1352 ((-538) |#2|))) (-13 (-358) (-1014 (-402 (-538)))) (-1207 |#1|)) (T -115)) +((-1352 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-1014 (-402 *2)))) (-5 *2 (-538)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1207 *4))))) +(-10 -7 (-15 -1352 ((-538) |#2|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $ (-538)) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2940 (($ (-1143 (-538)) (-538)) NIL)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2941 (($ $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4131 (((-751) $) NIL)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2943 (((-538)) NIL)) (-2942 (((-538) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4128 (($ $ (-538)) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-2944 (((-1126 (-538)) $) NIL)) (-3224 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-4129 (((-538) $ (-538)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-846 |#1|) (-538)) (T -116)) +NIL +(-846 |#1|) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-116 |#1|) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-116 |#1|) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-116 |#1|) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-116 |#1|) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-116 |#1|) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-116 |#1|) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-116 |#1|) (-1014 (-538))))) (-3507 (((-116 |#1|) $) NIL) (((-1149) $) NIL (|has| (-116 |#1|) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-116 |#1|) (-1014 (-538)))) (((-538) $) NIL (|has| (-116 |#1|) (-1014 (-538))))) (-4090 (($ $) NIL) (($ (-538) $) NIL)) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-116 |#1|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-116 |#1|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-116 |#1|))) (|:| |vec| (-1231 (-116 |#1|)))) (-669 $) (-1231 $)) NIL) (((-669 (-116 |#1|)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-116 |#1|) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-116 |#1|) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-116 |#1|) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-116 |#1|) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-116 |#1|) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1124)))) (-3538 (((-112) $) NIL (|has| (-116 |#1|) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-116 |#1|) (-827)))) (-3678 (($ $ $) NIL (|has| (-116 |#1|) (-827)))) (-4318 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-116 |#1|) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-116 |#1|) (-302)))) (-3465 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-116 |#1|) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-116 |#1|) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-116 |#1|)) (-622 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-288 (-116 |#1|))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-622 (-288 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-304 (-116 |#1|)))) (($ $ (-622 (-1149)) (-622 (-116 |#1|))) NIL (|has| (-116 |#1|) (-507 (-1149) (-116 |#1|)))) (($ $ (-1149) (-116 |#1|)) NIL (|has| (-116 |#1|) (-507 (-1149) (-116 |#1|))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-281 (-116 |#1|) (-116 |#1|))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-751)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-116 |#1|) $) NIL)) (-4330 (((-866 (-538)) $) NIL (|has| (-116 |#1|) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-116 |#1|) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-116 |#1|) (-598 (-527)))) (((-373) $) NIL (|has| (-116 |#1|) (-996))) (((-221) $) NIL (|has| (-116 |#1|) (-996)))) (-2945 (((-172 (-402 (-538))) $) NIL)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-116 |#1|)) NIL) (($ (-1149)) NIL (|has| (-116 |#1|) (-1014 (-1149))))) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-116 |#1|) (-886))) (|has| (-116 |#1|) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-537)))) (-2177 (((-112) $ $) NIL)) (-4129 (((-402 (-538)) $ (-538)) NIL)) (-3742 (($ $) NIL (|has| (-116 |#1|) (-800)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-116 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-116 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-116 |#1|) (-876 (-1149)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-751)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-116 |#1|) (-827)))) (-4308 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-967 (-116 |#1|)) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)))) (-538)) (T -117)) +((-4129 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-538)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-117 *3)) (-14 *3 (-538)))) (-4090 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-538)))) (-4090 (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-967 (-116 |#1|)) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)))) +((-4147 ((|#2| $ #1="value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-3364 (((-622 $) $) 27)) (-3360 (((-112) $ $) 32)) (-3596 (((-112) |#2| $) 36)) (-3363 (((-622 |#2|) $) 22)) (-3881 (((-112) $) 16)) (-4159 ((|#2| $ #1#) NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3996 (((-112) $) 45)) (-4317 (((-840) $) 41)) (-3876 (((-622 $) $) 28)) (-3387 (((-112) $ $) 34)) (-4316 (((-751) $) 43))) +(((-118 |#1| |#2|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4147 (|#1| |#1| "right" |#1|)) (-15 -4147 (|#1| |#1| "left" |#1|)) (-15 -4159 (|#1| |#1| "right")) (-15 -4159 (|#1| |#1| "left")) (-15 -4147 (|#2| |#1| #1="value" |#2|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3363 ((-622 |#2|) |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -3596 ((-112) |#2| |#1|)) (-15 -4316 ((-751) |#1|))) (-119 |#2|) (-1185)) (T -118)) +NIL +(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4147 (|#1| |#1| "right" |#1|)) (-15 -4147 (|#1| |#1| "left" |#1|)) (-15 -4159 (|#1| |#1| "right")) (-15 -4159 (|#1| |#1| "left")) (-15 -4147 (|#2| |#1| #1="value" |#2|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3363 ((-622 |#2|) |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -3596 ((-112) |#2| |#1|)) (-15 -4316 ((-751) |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1353 (($ $ $) 52 (|has| $ (-6 -4354)))) (-1354 (($ $ $) 54 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) (($ $ "left" $) 55 (|has| $ (-6 -4354))) (($ $ "right" $) 53 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-3472 (($ $) 57)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3473 (($ $) 59)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) (($ $ "left") 58) (($ $ "right") 56)) (-3362 (((-538) $ $) 44)) (-3996 (((-112) $) 46)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-119 |#1|) (-138) (-1185)) (T -119)) +((-3473 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1185)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1185)))) (-3472 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1185)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1185)))) (-4147 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) (-4 *3 (-1185)))) (-1354 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1185)))) (-4147 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) (-4 *3 (-1185)))) (-1353 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1185))))) +(-13 (-986 |t#1|) (-10 -8 (-15 -3473 ($ $)) (-15 -4159 ($ $ "left")) (-15 -3472 ($ $)) (-15 -4159 ($ $ "right")) (IF (|has| $ (-6 -4354)) (PROGN (-15 -4147 ($ $ "left" $)) (-15 -1354 ($ $ $)) (-15 -4147 ($ $ "right" $)) (-15 -1353 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-1357 (((-112) |#1|) 24)) (-1356 (((-751) (-751)) 23) (((-751)) 22)) (-1355 (((-112) |#1| (-112)) 25) (((-112) |#1|) 26))) +(((-120 |#1|) (-10 -7 (-15 -1355 ((-112) |#1|)) (-15 -1355 ((-112) |#1| (-112))) (-15 -1356 ((-751))) (-15 -1356 ((-751) (-751))) (-15 -1357 ((-112) |#1|))) (-1207 (-538))) (T -120)) +((-1357 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))) (-1356 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))) (-1356 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))) (-1355 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))) (-1355 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538)))))) +(-10 -7 (-15 -1355 ((-112) |#1|)) (-15 -1355 ((-112) |#1| (-112))) (-15 -1356 ((-751))) (-15 -1356 ((-751) (-751))) (-15 -1357 ((-112) |#1|))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) 15)) (-3777 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1353 (($ $ $) 18 (|has| $ (-6 -4354)))) (-1354 (($ $ $) 20 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #2="left" $) NIL (|has| $ (-6 -4354))) (($ $ #3="right" $) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3472 (($ $) 17)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1362 (($ $ |#1| $) 23)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3473 (($ $) 19)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1358 (($ |#1| $) 24)) (-3970 (($ |#1| $) 10)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 14)) (-3928 (($) 8)) (-4159 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1359 (($ (-622 |#1|)) 12)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -1359 ($ (-622 |#1|))) (-15 -3970 ($ |#1| $)) (-15 -1358 ($ |#1| $)) (-15 -3777 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-827)) (T -121)) +((-1359 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-121 *3)))) (-3970 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))) (-1358 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))) (-3777 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-827))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -1359 ($ (-622 |#1|))) (-15 -3970 ($ |#1| $)) (-15 -1358 ($ |#1| $)) (-15 -3777 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-3679 (($ $) 13)) (-3676 (($ $) 11)) (-1360 (($ $ $) 23)) (-1361 (($ $ $) 21)) (-3681 (($ $ $) 19)) (-3680 (($ $ $) 17))) +(((-122 |#1|) (-10 -8 (-15 -1360 (|#1| |#1| |#1|)) (-15 -1361 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3680 (|#1| |#1| |#1|)) (-15 -3681 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -1360 (|#1| |#1| |#1|)) (-15 -1361 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3679 (|#1| |#1|)) (-15 -3680 (|#1| |#1| |#1|)) (-15 -3681 (|#1| |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3679 (($ $) 103)) (-3675 (($ $ $) 25)) (-2305 (((-1237) $ (-538) (-538)) 66 (|has| $ (-6 -4354)))) (-1848 (((-112) $) 98 (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-1846 (($ $) 102 (-12 (|has| (-112) (-827)) (|has| $ (-6 -4354)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4354)))) (-3242 (($ $) 97 (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-1271 (((-112) $ (-751)) 37)) (-4147 (((-112) $ (-1198 (-538)) (-112)) 88 (|has| $ (-6 -4354))) (((-112) $ (-538) (-112)) 54 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4353)))) (-3896 (($) 38 T CONST)) (-2377 (($ $) 100 (|has| $ (-6 -4354)))) (-2378 (($ $) 90)) (-1398 (($ $) 68 (-12 (|has| (-112) (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4353))) (($ (-112) $) 69 (-12 (|has| (-112) (-1074)) (|has| $ (-6 -4353))))) (-4202 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1074)) (|has| $ (-6 -4353))))) (-1637 (((-112) $ (-538) (-112)) 53 (|has| $ (-6 -4354)))) (-3448 (((-112) $ (-538)) 55)) (-3778 (((-538) (-112) $ (-538)) 95 (|has| (-112) (-1074))) (((-538) (-112) $) 94 (|has| (-112) (-1074))) (((-538) (-1 (-112) (-112)) $) 93)) (-2068 (((-622 (-112)) $) 45 (|has| $ (-6 -4353)))) (-3190 (($ $ $) 26)) (-3676 (($ $) 30)) (-1360 (($ $ $) 28)) (-3977 (($ (-751) (-112)) 77)) (-1361 (($ $ $) 29)) (-4082 (((-112) $ (-751)) 36)) (-2307 (((-538) $) 63 (|has| (-538) (-827)))) (-3677 (($ $ $) 13)) (-3872 (($ $ $) 96 (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-2511 (((-622 (-112)) $) 46 (|has| $ (-6 -4353)))) (-3596 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 62 (|has| (-538) (-827)))) (-3678 (($ $ $) 14)) (-2072 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-4079 (((-112) $ (-751)) 35)) (-3593 (((-1131) $) 9)) (-2382 (($ $ $ (-538)) 87) (($ (-112) $ (-538)) 86)) (-2310 (((-622 (-538)) $) 60)) (-2311 (((-112) (-538) $) 59)) (-3594 (((-1093) $) 10)) (-4160 (((-112) $) 64 (|has| (-538) (-827)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-2306 (($ $ (-112)) 65 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-112)) (-622 (-112))) 52 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-288 (-112))) 50 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-622 (-288 (-112)))) 49 (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074))))) (-1272 (((-112) $ $) 31)) (-2309 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-2312 (((-622 (-112)) $) 58)) (-3762 (((-112) $) 34)) (-3928 (($) 33)) (-4159 (($ $ (-1198 (-538))) 83) (((-112) $ (-538)) 57) (((-112) $ (-538) (-112)) 56)) (-2383 (($ $ (-1198 (-538))) 85) (($ $ (-538)) 84)) (-2069 (((-751) (-112) $) 47 (-12 (|has| (-112) (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4353)))) (-1847 (($ $ $ (-538)) 99 (|has| $ (-6 -4354)))) (-3759 (($ $) 32)) (-4330 (((-527) $) 67 (|has| (-112) (-598 (-527))))) (-3884 (($ (-622 (-112))) 76)) (-4161 (($ (-622 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-4317 (((-840) $) 11)) (-2071 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4353)))) (-3191 (($ $ $) 27)) (-3681 (($ $ $) 105)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-3680 (($ $ $) 104)) (-4316 (((-751) $) 39 (|has| $ (-6 -4353))))) (((-123) (-138)) (T -123)) -((-3671 (*1 *1 *1) (-4 *1 (-123))) (-1360 (*1 *1 *1 *1) (-4 *1 (-123))) (-1359 (*1 *1 *1 *1) (-4 *1 (-123))) (-3186 (*1 *1 *1 *1) (-4 *1 (-123))) (-3185 (*1 *1 *1 *1) (-4 *1 (-123))) (-3670 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-825) (-640) (-19 (-112)) (-10 -8 (-15 -3671 ($ $)) (-15 -1360 ($ $ $)) (-15 -1359 ($ $ $)) (-15 -3186 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3670 ($ $ $)))) -(((-34) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 #1=(-112)) . T) ((-596 (-525)) |has| (-112) (-596 (-525))) ((-279 #2=(-536) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072))) ((-365 #1#) . T) ((-481 #1#) . T) ((-586 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072))) ((-629 #1#) . T) ((-640) . T) ((-19 #1#) . T) ((-825) . T) ((-1072) . T) ((-1183) . T)) -((-2067 (($ (-1 |#2| |#2|) $) 22)) (-3754 (($ $) 16)) (-4311 (((-749) $) 24))) -(((-124 |#1| |#2|) (-10 -8 (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -3754 (|#1| |#1|))) (-125 |#2|) (-1072)) (T -124)) -NIL -(-10 -8 (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -3754 (|#1| |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-1352 (($ $ $) 52 (|has| $ (-6 -4349)))) (-1353 (($ $ $) 54 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) (($ $ #2="left" $) 55 (|has| $ (-6 -4349))) (($ $ #3="right" $) 53 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-3467 (($ $) 57)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-1361 (($ $ |#1| $) 60)) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3468 (($ $) 59)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3357 (((-536) $ $) 44)) (-3991 (((-112) $) 46)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-125 |#1|) (-138) (-1072)) (T -125)) -((-1361 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1072))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4349) (-6 -4348) (-15 -1361 ($ $ |t#1| $)))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-119 |#1|) . T) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) 15)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) 19 (|has| $ (-6 -4349)))) (-1352 (($ $ $) 20 (|has| $ (-6 -4349)))) (-1353 (($ $ $) 18 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #2="left" $) NIL (|has| $ (-6 -4349))) (($ $ #3="right" $) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3467 (($ $) 21)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1361 (($ $ |#1| $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3468 (($ $) NIL)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3965 (($ |#1| $) 10)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 14)) (-3923 (($) 8)) (-4154 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 17)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1362 (($ (-620 |#1|)) 12)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4349) (-15 -1362 ($ (-620 |#1|))) (-15 -3965 ($ |#1| $)))) (-825)) (T -126)) -((-1362 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-126 *3)))) (-3965 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-825))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4349) (-15 -1362 ($ (-620 |#1|))) (-15 -3965 ($ |#1| $)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) 24)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) 26 (|has| $ (-6 -4349)))) (-1352 (($ $ $) 30 (|has| $ (-6 -4349)))) (-1353 (($ $ $) 28 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #2="left" $) NIL (|has| $ (-6 -4349))) (($ $ #3="right" $) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3467 (($ $) 20)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1361 (($ $ |#1| $) 15)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3468 (($ $) 19)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) 21)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 18)) (-3923 (($) 11)) (-4154 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1363 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 10 (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1363 ($ |#1|)) (-15 -1363 ($ $ |#1| $)))) (-1072)) (T -127)) -((-1363 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1072)))) (-1363 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1072))))) -(-13 (-125 |#1|) (-10 -8 (-15 -1363 ($ |#1|)) (-15 -1363 ($ $ |#1| $)))) -((-2893 (((-112) $ $) NIL)) (-3891 (($) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) 9)) (-4312 (((-838) $) 19) (((-749) $) 11) (((-142) $) 16) (($ (-749)) 10) (($ (-142)) 14)) (-1366 (($ (-749)) 7)) (-1364 (($ $ $) 24)) (-1365 (($ $ $) 23)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 21)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 22))) -(((-128) (-13 (-825) (-595 (-749)) (-595 (-142)) (-10 -8 (-15 -1366 ($ (-749))) (-15 -4312 ($ (-749))) (-15 -4312 ($ (-142))) (-15 -1365 ($ $ $)) (-15 -1364 ($ $ $)) (-15 -3891 ($))))) (T -128)) -((-1366 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-128)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-128)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-128)))) (-1365 (*1 *1 *1 *1) (-5 *1 (-128))) (-1364 (*1 *1 *1 *1) (-5 *1 (-128))) (-3891 (*1 *1) (-5 *1 (-128)))) -(-13 (-825) (-595 (-749)) (-595 (-142)) (-10 -8 (-15 -1366 ($ (-749))) (-15 -4312 ($ (-749))) (-15 -4312 ($ (-142))) (-15 -1365 ($ $ $)) (-15 -1364 ($ $ $)) (-15 -3891 ($)))) -((-2893 (((-112) $ $) NIL (|has| (-128) (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-825)))) (-1841 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-128) (-825))))) (-3237 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-128) $ (-536) (-128)) NIL (|has| $ (-6 -4349))) (((-128) $ (-1196 (-536)) (-128)) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072))))) (-3760 (($ (-128) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4348))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4348)))) (-1632 (((-128) $ (-536) (-128)) NIL (|has| $ (-6 -4349)))) (-3443 (((-128) $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) (-128)) $) NIL) (((-536) (-128) $) NIL (|has| (-128) (-1072))) (((-536) (-128) $ (-536)) NIL (|has| (-128) (-1072)))) (-2063 (((-620 (-128)) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) (-128)) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| (-128) (-825)))) (-3867 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-825)))) (-2506 (((-620 (-128)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-128) (-825)))) (-2067 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| (-128) (-1072)))) (-2377 (($ (-128) $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| (-128) (-1072)))) (-4155 (((-128) $) NIL (|has| (-536) (-825)))) (-1399 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2301 (($ $ (-128)) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-128)))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1072)))) (($ $ (-286 (-128))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1072)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1072)))) (($ $ (-620 (-128)) (-620 (-128))) NIL (-12 (|has| (-128) (-302 (-128))) (|has| (-128) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072))))) (-2307 (((-620 (-128)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (((-128) $ (-536) (-128)) NIL) (((-128) $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4348))) (((-749) (-128) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-128) (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-128) (-596 (-525))))) (-3879 (($ (-620 (-128))) NIL)) (-4156 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| (-128) (-595 (-838))))) (-2066 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| (-128) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-128) (-825)))) (-3382 (((-112) $ $) NIL (|has| (-128) (-1072)))) (-3012 (((-112) $ $) NIL (|has| (-128) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-128) (-825)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) +((-3676 (*1 *1 *1) (-4 *1 (-123))) (-1361 (*1 *1 *1 *1) (-4 *1 (-123))) (-1360 (*1 *1 *1 *1) (-4 *1 (-123))) (-3191 (*1 *1 *1 *1) (-4 *1 (-123))) (-3190 (*1 *1 *1 *1) (-4 *1 (-123))) (-3675 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-827) (-642) (-19 (-112)) (-10 -8 (-15 -3676 ($ $)) (-15 -1361 ($ $ $)) (-15 -1360 ($ $ $)) (-15 -3191 ($ $ $)) (-15 -3190 ($ $ $)) (-15 -3675 ($ $ $)))) +(((-34) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 #1=(-112)) . T) ((-598 (-527)) |has| (-112) (-598 (-527))) ((-281 #2=(-538) #1#) . T) ((-283 #2# #1#) . T) ((-304 #1#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074))) ((-367 #1#) . T) ((-483 #1#) . T) ((-588 #2# #1#) . T) ((-507 #1# #1#) -12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074))) ((-631 #1#) . T) ((-642) . T) ((-19 #1#) . T) ((-827) . T) ((-1074) . T) ((-1185) . T)) +((-2072 (($ (-1 |#2| |#2|) $) 22)) (-3759 (($ $) 16)) (-4316 (((-751) $) 24))) +(((-124 |#1| |#2|) (-10 -8 (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -3759 (|#1| |#1|))) (-125 |#2|) (-1074)) (T -124)) +NIL +(-10 -8 (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -3759 (|#1| |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1353 (($ $ $) 52 (|has| $ (-6 -4354)))) (-1354 (($ $ $) 54 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) (($ $ #2="left" $) 55 (|has| $ (-6 -4354))) (($ $ #3="right" $) 53 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-3472 (($ $) 57)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-1362 (($ $ |#1| $) 60)) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3473 (($ $) 59)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) (($ $ #2#) 58) (($ $ #3#) 56)) (-3362 (((-538) $ $) 44)) (-3996 (((-112) $) 46)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-125 |#1|) (-138) (-1074)) (T -125)) +((-1362 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1074))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -1362 ($ $ |t#1| $)))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-119 |#1|) . T) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) 15)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) 19 (|has| $ (-6 -4354)))) (-1353 (($ $ $) 20 (|has| $ (-6 -4354)))) (-1354 (($ $ $) 18 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #2="left" $) NIL (|has| $ (-6 -4354))) (($ $ #3="right" $) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3472 (($ $) 21)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1362 (($ $ |#1| $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3473 (($ $) NIL)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3970 (($ |#1| $) 10)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 14)) (-3928 (($) 8)) (-4159 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 17)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1363 (($ (-622 |#1|)) 12)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4354) (-15 -1363 ($ (-622 |#1|))) (-15 -3970 ($ |#1| $)))) (-827)) (T -126)) +((-1363 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-126 *3)))) (-3970 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-827))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4354) (-15 -1363 ($ (-622 |#1|))) (-15 -3970 ($ |#1| $)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) 24)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) 26 (|has| $ (-6 -4354)))) (-1353 (($ $ $) 30 (|has| $ (-6 -4354)))) (-1354 (($ $ $) 28 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #2="left" $) NIL (|has| $ (-6 -4354))) (($ $ #3="right" $) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3472 (($ $) 20)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1362 (($ $ |#1| $) 15)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3473 (($ $) 19)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) 21)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 18)) (-3928 (($) 11)) (-4159 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1364 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 10 (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1364 ($ |#1|)) (-15 -1364 ($ $ |#1| $)))) (-1074)) (T -127)) +((-1364 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1074)))) (-1364 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1074))))) +(-13 (-125 |#1|) (-10 -8 (-15 -1364 ($ |#1|)) (-15 -1364 ($ $ |#1| $)))) +((-2898 (((-112) $ $) NIL)) (-3896 (($) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) 9)) (-4317 (((-840) $) 19) (((-751) $) 11) (((-142) $) 16) (($ (-751)) 10) (($ (-142)) 14)) (-1367 (($ (-751)) 7)) (-1365 (($ $ $) 24)) (-1366 (($ $ $) 23)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 21)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 22))) +(((-128) (-13 (-827) (-597 (-751)) (-597 (-142)) (-10 -8 (-15 -1367 ($ (-751))) (-15 -4317 ($ (-751))) (-15 -4317 ($ (-142))) (-15 -1366 ($ $ $)) (-15 -1365 ($ $ $)) (-15 -3896 ($))))) (T -128)) +((-1367 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-128)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-128)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-128)))) (-1366 (*1 *1 *1 *1) (-5 *1 (-128))) (-1365 (*1 *1 *1 *1) (-5 *1 (-128))) (-3896 (*1 *1) (-5 *1 (-128)))) +(-13 (-827) (-597 (-751)) (-597 (-142)) (-10 -8 (-15 -1367 ($ (-751))) (-15 -4317 ($ (-751))) (-15 -4317 ($ (-142))) (-15 -1366 ($ $ $)) (-15 -1365 ($ $ $)) (-15 -3896 ($)))) +((-2898 (((-112) $ $) NIL (|has| (-128) (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) (-128) (-128)) $) NIL) (((-112) $) NIL (|has| (-128) (-827)))) (-1846 (($ (-1 (-112) (-128) (-128)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-128) (-827))))) (-3242 (($ (-1 (-112) (-128) (-128)) $) NIL) (($ $) NIL (|has| (-128) (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-128) $ (-538) (-128)) NIL (|has| $ (-6 -4354))) (((-128) $ (-1198 (-538)) (-128)) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074))))) (-3765 (($ (-128) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074)))) (($ (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-128) (-1 (-128) (-128) (-128)) $ (-128) (-128)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074)))) (((-128) (-1 (-128) (-128) (-128)) $ (-128)) NIL (|has| $ (-6 -4353))) (((-128) (-1 (-128) (-128) (-128)) $) NIL (|has| $ (-6 -4353)))) (-1637 (((-128) $ (-538) (-128)) NIL (|has| $ (-6 -4354)))) (-3448 (((-128) $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) (-128)) $) NIL) (((-538) (-128) $) NIL (|has| (-128) (-1074))) (((-538) (-128) $ (-538)) NIL (|has| (-128) (-1074)))) (-2068 (((-622 (-128)) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) (-128)) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| (-128) (-827)))) (-3872 (($ (-1 (-112) (-128) (-128)) $ $) NIL) (($ $ $) NIL (|has| (-128) (-827)))) (-2511 (((-622 (-128)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-128) (-827)))) (-2072 (($ (-1 (-128) (-128)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-128) (-128)) $) NIL) (($ (-1 (-128) (-128) (-128)) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| (-128) (-1074)))) (-2382 (($ (-128) $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| (-128) (-1074)))) (-4160 (((-128) $) NIL (|has| (-538) (-827)))) (-1399 (((-3 (-128) "failed") (-1 (-112) (-128)) $) NIL)) (-2306 (($ $ (-128)) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-128)))) NIL (-12 (|has| (-128) (-304 (-128))) (|has| (-128) (-1074)))) (($ $ (-288 (-128))) NIL (-12 (|has| (-128) (-304 (-128))) (|has| (-128) (-1074)))) (($ $ (-128) (-128)) NIL (-12 (|has| (-128) (-304 (-128))) (|has| (-128) (-1074)))) (($ $ (-622 (-128)) (-622 (-128))) NIL (-12 (|has| (-128) (-304 (-128))) (|has| (-128) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-128) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074))))) (-2312 (((-622 (-128)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (((-128) $ (-538) (-128)) NIL) (((-128) $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4353))) (((-751) (-128) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-128) (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-128) (-598 (-527))))) (-3884 (($ (-622 (-128))) NIL)) (-4161 (($ $ (-128)) NIL) (($ (-128) $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| (-128) (-597 (-840))))) (-2071 (((-112) (-1 (-112) (-128)) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| (-128) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-128) (-827)))) (-3387 (((-112) $ $) NIL (|has| (-128) (-1074)))) (-3017 (((-112) $ $) NIL (|has| (-128) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-128) (-827)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) (((-129) (-19 (-128))) (T -129)) NIL (-19 (-128)) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15))) (((-130) (-138)) (T -130)) -((-1367 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(-13 (-23) (-10 -8 (-15 -1367 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 7)) (-1368 (((-1235) $ (-749)) 19)) (-3773 (((-749) $) 20)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18))) +((-1368 (*1 *1 *1 *1) (|partial| -4 *1 (-130)))) +(-13 (-23) (-10 -8 (-15 -1368 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 7)) (-1369 (((-1237) $ (-751)) 19)) (-3778 (((-751) $) 20)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18))) (((-131) (-138)) (T -131)) -((-3773 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-749)))) (-1368 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-749)) (-5 *2 (-1235))))) -(-13 (-825) (-10 -8 (-15 -3773 ((-749) $)) (-15 -1368 ((-1235) $ (-749))))) -(((-101) . T) ((-595 (-838)) . T) ((-825) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 18) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-620 (-1106)) $) 10)) (-3382 (((-112) $ $) NIL))) -(((-132) (-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $))))) (T -132)) -((-3579 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-132))))) -(-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $)))) -((-2893 (((-112) $ $) 34)) (-3534 (((-112) $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-749) "failed") $) 40)) (-3502 (((-749) $) 38)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) 27)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1370 (((-112)) 41)) (-1369 (((-112) (-112)) 43)) (-2856 (((-112) $) 24)) (-1371 (((-112) $) 37)) (-4312 (((-838) $) 22) (($ (-749)) 14)) (-2986 (($) 11 T CONST)) (-2992 (($) 12 T CONST)) (-1372 (($ (-749)) 15)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 25)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 26)) (-4192 (((-3 $ "failed") $ $) 30)) (-4194 (($ $ $) 28)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL) (($ $ $) 36)) (* (($ (-749) $) 33) (($ (-893) $) NIL) (($ $ $) 31))) -(((-133) (-13 (-825) (-23) (-705) (-1012 (-749)) (-10 -8 (-6 (-4350 "*")) (-15 -4192 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1372 ($ (-749))) (-15 -2856 ((-112) $)) (-15 -1371 ((-112) $)) (-15 -1370 ((-112))) (-15 -1369 ((-112) (-112)))))) (T -133)) -((-4192 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-1372 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-133)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1370 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1369 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(-13 (-825) (-23) (-705) (-1012 (-749)) (-10 -8 (-6 (-4350 "*")) (-15 -4192 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1372 ($ (-749))) (-15 -2856 ((-112) $)) (-15 -1371 ((-112) $)) (-15 -1370 ((-112))) (-15 -1369 ((-112) (-112))))) -((-2893 (((-112) $ $) NIL)) (-1373 (($ (-620 |#3|)) 40)) (-3768 (($ $) 99) (($ $ (-536) (-536)) 98)) (-3891 (($) 17)) (-3503 (((-3 |#3| "failed") $) 60)) (-3502 ((|#3| $) NIL)) (-1377 (($ $ (-620 (-536))) 100)) (-1374 (((-620 |#3|) $) 36)) (-3439 (((-749) $) 44)) (-4299 (($ $ $) 93)) (-1375 (($) 43)) (-3588 (((-1129) $) NIL)) (-1376 (($) 16)) (-3589 (((-1091) $) NIL)) (-4154 ((|#3| $) 46) ((|#3| $ (-536)) 47) ((|#3| $ (-536) (-536)) 48) ((|#3| $ (-536) (-536) (-536)) 49) ((|#3| $ (-536) (-536) (-536) (-536)) 50) ((|#3| $ (-620 (-536))) 52)) (-4302 (((-749) $) 45)) (-2100 (($ $ (-536) $ (-536)) 94) (($ $ (-536) (-536)) 96)) (-4312 (((-838) $) 67) (($ |#3|) 68) (($ (-233 |#2| |#3|)) 75) (($ (-1113 |#2| |#3|)) 78) (($ (-620 |#3|)) 53) (($ (-620 $)) 58)) (-2986 (($) 69 T CONST)) (-2992 (($) 70 T CONST)) (-3382 (((-112) $ $) 80)) (-4192 (($ $) 86) (($ $ $) 84)) (-4194 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-536)) 89) (($ (-536) $) 88) (($ $ $) 95))) -(((-134 |#1| |#2| |#3|) (-13 (-457 |#3| (-749)) (-462 (-536) (-749)) (-10 -8 (-15 -4312 ($ (-233 |#2| |#3|))) (-15 -4312 ($ (-1113 |#2| |#3|))) (-15 -4312 ($ (-620 |#3|))) (-15 -4312 ($ (-620 $))) (-15 -3439 ((-749) $)) (-15 -4154 (|#3| $)) (-15 -4154 (|#3| $ (-536))) (-15 -4154 (|#3| $ (-536) (-536))) (-15 -4154 (|#3| $ (-536) (-536) (-536))) (-15 -4154 (|#3| $ (-536) (-536) (-536) (-536))) (-15 -4154 (|#3| $ (-620 (-536)))) (-15 -4299 ($ $ $)) (-15 * ($ $ $)) (-15 -2100 ($ $ (-536) $ (-536))) (-15 -2100 ($ $ (-536) (-536))) (-15 -3768 ($ $)) (-15 -3768 ($ $ (-536) (-536))) (-15 -1377 ($ $ (-620 (-536)))) (-15 -1376 ($)) (-15 -1375 ($)) (-15 -1374 ((-620 |#3|) $)) (-15 -1373 ($ (-620 |#3|))) (-15 -3891 ($)))) (-536) (-749) (-170)) (T -134)) -((-4299 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1113 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 (-749)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 (-749)) (-4 *5 (-170)))) (-3439 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 *2) (-4 *5 (-170)))) (-4154 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-536)) (-14 *4 (-749)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-4154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-4154 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-4154 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-749)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-620 (-536))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-536)) (-14 *5 (-749)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) (-2100 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-2100 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) (-3768 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) (-4 *5 (-170)))) (-1377 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 (-749)) (-4 *5 (-170)))) (-1376 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) (-1375 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-620 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 (-749)) (-4 *5 (-170)))) (-1373 (*1 *1 *2) (-12 (-5 *2 (-620 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 (-749)))) (-3891 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170))))) -(-13 (-457 |#3| (-749)) (-462 (-536) (-749)) (-10 -8 (-15 -4312 ($ (-233 |#2| |#3|))) (-15 -4312 ($ (-1113 |#2| |#3|))) (-15 -4312 ($ (-620 |#3|))) (-15 -4312 ($ (-620 $))) (-15 -3439 ((-749) $)) (-15 -4154 (|#3| $)) (-15 -4154 (|#3| $ (-536))) (-15 -4154 (|#3| $ (-536) (-536))) (-15 -4154 (|#3| $ (-536) (-536) (-536))) (-15 -4154 (|#3| $ (-536) (-536) (-536) (-536))) (-15 -4154 (|#3| $ (-620 (-536)))) (-15 -4299 ($ $ $)) (-15 * ($ $ $)) (-15 -2100 ($ $ (-536) $ (-536))) (-15 -2100 ($ $ (-536) (-536))) (-15 -3768 ($ $)) (-15 -3768 ($ $ (-536) (-536))) (-15 -1377 ($ $ (-620 (-536)))) (-15 -1376 ($)) (-15 -1375 ($)) (-15 -1374 ((-620 |#3|) $)) (-15 -1373 ($ (-620 |#3|))) (-15 -3891 ($)))) -((-2500 (((-134 |#1| |#2| |#4|) (-620 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-4313 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18))) -(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2500 ((-134 |#1| |#2| |#4|) (-620 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4313 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-536) (-749) (-170) (-170)) (T -135)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-536)) (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-536)) (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) -(-10 -7 (-15 -2500 ((-134 |#1| |#2| |#4|) (-620 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4313 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) -((-2893 (((-112) $ $) NIL)) (-3877 (((-1106) $) 11)) (-3878 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-136) (-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $))))) (T -136)) -((-3878 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-136)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-136))))) -(-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $)))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-1378 (((-1147) $) 10)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-620 (-1106)) $) 12)) (-3382 (((-112) $ $) NIL))) -(((-137) (-13 (-1054) (-10 -8 (-15 -1378 ((-1147) $)) (-15 -3579 ((-620 (-1106)) $))))) (T -137)) -((-1378 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-137)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-137))))) -(-13 (-1054) (-10 -8 (-15 -1378 ((-1147) $)) (-15 -3579 ((-620 (-1106)) $)))) -((-4312 (((-838) $) 7))) -(((-138) (-595 (-838))) (T -138)) -NIL -(-595 (-838)) -((-2893 (((-112) $ $) NIL)) (-3781 (($) 15 T CONST)) (-1916 (($) NIL (|has| (-142) (-361)))) (-3580 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-3582 (($ $ $) NIL)) (-3581 (((-112) $ $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| (-142) (-361)))) (-3585 (($) NIL) (($ (-620 (-142))) NIL)) (-1626 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-3759 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348))) (($ (-142) $) 51 (|has| $ (-6 -4348)))) (-3760 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-4197 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-3322 (($) NIL (|has| (-142) (-361)))) (-2063 (((-620 (-142)) $) 60 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3672 (((-142) $) NIL (|has| (-142) (-825)))) (-2506 (((-620 (-142)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-3673 (((-142) $) NIL (|has| (-142) (-825)))) (-2067 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-142) (-142)) $) 55)) (-3783 (($) 16 T CONST)) (-2121 (((-893) $) NIL (|has| (-142) (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3584 (($ $ $) 29)) (-1331 (((-142) $) 52)) (-3965 (($ (-142) $) 50)) (-2487 (($ (-893)) NIL (|has| (-142) (-361)))) (-1381 (($) 14 T CONST)) (-3589 (((-1091) $) NIL)) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1332 (((-142) $) 53)) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-142)) (-620 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-620 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 48)) (-1382 (($) 13 T CONST)) (-3583 (($ $ $) 31) (($ $ (-142)) NIL)) (-1518 (($ (-620 (-142))) NIL) (($) NIL)) (-2064 (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072)))) (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-1129) $) 36) (((-525) $) NIL (|has| (-142) (-596 (-525)))) (((-620 (-142)) $) 34)) (-3879 (($ (-620 (-142))) NIL)) (-1917 (($ $) 32 (|has| (-142) (-361)))) (-4312 (((-838) $) 46)) (-1383 (($ (-1129)) 12) (($ (-620 (-142))) 43)) (-1918 (((-749) $) NIL)) (-3586 (($) 49) (($ (-620 (-142))) NIL)) (-1333 (($ (-620 (-142))) NIL)) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-1379 (($) 19 T CONST)) (-1380 (($) 18 T CONST)) (-3382 (((-112) $ $) 22)) (-4311 (((-749) $) 47 (|has| $ (-6 -4348))))) -(((-139) (-13 (-1072) (-596 (-1129)) (-419 (-142)) (-596 (-620 (-142))) (-10 -8 (-15 -1383 ($ (-1129))) (-15 -1383 ($ (-620 (-142)))) (-15 -1382 ($) -4306) (-15 -1381 ($) -4306) (-15 -3781 ($) -4306) (-15 -3783 ($) -4306) (-15 -1380 ($) -4306) (-15 -1379 ($) -4306)))) (T -139)) -((-1383 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-139)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-620 (-142))) (-5 *1 (-139)))) (-1382 (*1 *1) (-5 *1 (-139))) (-1381 (*1 *1) (-5 *1 (-139))) (-3781 (*1 *1) (-5 *1 (-139))) (-3783 (*1 *1) (-5 *1 (-139))) (-1380 (*1 *1) (-5 *1 (-139))) (-1379 (*1 *1) (-5 *1 (-139)))) -(-13 (-1072) (-596 (-1129)) (-419 (-142)) (-596 (-620 (-142))) (-10 -8 (-15 -1383 ($ (-1129))) (-15 -1383 ($ (-620 (-142)))) (-15 -1382 ($) -4306) (-15 -1381 ($) -4306) (-15 -3781 ($) -4306) (-15 -3783 ($) -4306) (-15 -1380 ($) -4306) (-15 -1379 ($) -4306))) -((-4096 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4094 ((|#1| |#3|) 9)) (-4095 ((|#3| |#3|) 15))) -(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -4094 (|#1| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-543) (-965 |#1|) (-365 |#2|)) (T -140)) -((-4096 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-365 *5)))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-543)) (-4 *4 (-965 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-365 *4)))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-365 *4))))) -(-10 -7 (-15 -4094 (|#1| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-1414 (($ $ $) 8)) (-1412 (($ $) 7)) (-3432 (($ $ $) 6))) +((-3778 (*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-751)))) (-1369 (*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-751)) (-5 *2 (-1237))))) +(-13 (-827) (-10 -8 (-15 -3778 ((-751) $)) (-15 -1369 ((-1237) $ (-751))))) +(((-101) . T) ((-597 (-840)) . T) ((-827) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 18) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-622 (-1108)) $) 10)) (-3387 (((-112) $ $) NIL))) +(((-132) (-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $))))) (T -132)) +((-3584 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-132))))) +(-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $)))) +((-2898 (((-112) $ $) 34)) (-3539 (((-112) $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-751) "failed") $) 40)) (-3507 (((-751) $) 38)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) 27)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1371 (((-112)) 41)) (-1370 (((-112) (-112)) 43)) (-2861 (((-112) $) 24)) (-1372 (((-112) $) 37)) (-4317 (((-840) $) 22) (($ (-751)) 14)) (-2991 (($) 11 T CONST)) (-2997 (($) 12 T CONST)) (-1373 (($ (-751)) 15)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 25)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 26)) (-4197 (((-3 $ "failed") $ $) 30)) (-4199 (($ $ $) 28)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL) (($ $ $) 36)) (* (($ (-751) $) 33) (($ (-895) $) NIL) (($ $ $) 31))) +(((-133) (-13 (-827) (-23) (-707) (-1014 (-751)) (-10 -8 (-6 (-4355 "*")) (-15 -4197 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1373 ($ (-751))) (-15 -2861 ((-112) $)) (-15 -1372 ((-112) $)) (-15 -1371 ((-112))) (-15 -1370 ((-112) (-112)))))) (T -133)) +((-4197 (*1 *1 *1 *1) (|partial| -5 *1 (-133))) (** (*1 *1 *1 *1) (-5 *1 (-133))) (-1373 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-133)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1372 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1371 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) (-1370 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) +(-13 (-827) (-23) (-707) (-1014 (-751)) (-10 -8 (-6 (-4355 "*")) (-15 -4197 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1373 ($ (-751))) (-15 -2861 ((-112) $)) (-15 -1372 ((-112) $)) (-15 -1371 ((-112))) (-15 -1370 ((-112) (-112))))) +((-2898 (((-112) $ $) NIL)) (-1374 (($ (-622 |#3|)) 40)) (-3773 (($ $) 99) (($ $ (-538) (-538)) 98)) (-3896 (($) 17)) (-3508 (((-3 |#3| "failed") $) 60)) (-3507 ((|#3| $) NIL)) (-1378 (($ $ (-622 (-538))) 100)) (-1375 (((-622 |#3|) $) 36)) (-3444 (((-751) $) 44)) (-4304 (($ $ $) 93)) (-1376 (($) 43)) (-3593 (((-1131) $) NIL)) (-1377 (($) 16)) (-3594 (((-1093) $) NIL)) (-4159 ((|#3| $) 46) ((|#3| $ (-538)) 47) ((|#3| $ (-538) (-538)) 48) ((|#3| $ (-538) (-538) (-538)) 49) ((|#3| $ (-538) (-538) (-538) (-538)) 50) ((|#3| $ (-622 (-538))) 52)) (-4307 (((-751) $) 45)) (-2105 (($ $ (-538) $ (-538)) 94) (($ $ (-538) (-538)) 96)) (-4317 (((-840) $) 67) (($ |#3|) 68) (($ (-235 |#2| |#3|)) 75) (($ (-1115 |#2| |#3|)) 78) (($ (-622 |#3|)) 53) (($ (-622 $)) 58)) (-2991 (($) 69 T CONST)) (-2997 (($) 70 T CONST)) (-3387 (((-112) $ $) 80)) (-4197 (($ $) 86) (($ $ $) 84)) (-4199 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-538)) 89) (($ (-538) $) 88) (($ $ $) 95))) +(((-134 |#1| |#2| |#3|) (-13 (-459 |#3| (-751)) (-464 (-538) (-751)) (-10 -8 (-15 -4317 ($ (-235 |#2| |#3|))) (-15 -4317 ($ (-1115 |#2| |#3|))) (-15 -4317 ($ (-622 |#3|))) (-15 -4317 ($ (-622 $))) (-15 -3444 ((-751) $)) (-15 -4159 (|#3| $)) (-15 -4159 (|#3| $ (-538))) (-15 -4159 (|#3| $ (-538) (-538))) (-15 -4159 (|#3| $ (-538) (-538) (-538))) (-15 -4159 (|#3| $ (-538) (-538) (-538) (-538))) (-15 -4159 (|#3| $ (-622 (-538)))) (-15 -4304 ($ $ $)) (-15 * ($ $ $)) (-15 -2105 ($ $ (-538) $ (-538))) (-15 -2105 ($ $ (-538) (-538))) (-15 -3773 ($ $)) (-15 -3773 ($ $ (-538) (-538))) (-15 -1378 ($ $ (-622 (-538)))) (-15 -1377 ($)) (-15 -1376 ($)) (-15 -1375 ((-622 |#3|) $)) (-15 -1374 ($ (-622 |#3|))) (-15 -3896 ($)))) (-538) (-751) (-170)) (T -134)) +((-4304 (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1115 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 (-751)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 (-751)) (-4 *5 (-170)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 *2) (-4 *5 (-170)))) (-4159 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-538)) (-14 *4 (-751)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-4159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-4159 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-4159 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-751)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-622 (-538))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 (-538)) (-14 *5 (-751)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) (-2105 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-2105 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-3773 (*1 *1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) (-3773 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) (-1378 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 (-751)) (-4 *5 (-170)))) (-1377 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) (-1376 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-622 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 (-751)) (-4 *5 (-170)))) (-1374 (*1 *1 *2) (-12 (-5 *2 (-622 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 (-751)))) (-3896 (*1 *1) (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170))))) +(-13 (-459 |#3| (-751)) (-464 (-538) (-751)) (-10 -8 (-15 -4317 ($ (-235 |#2| |#3|))) (-15 -4317 ($ (-1115 |#2| |#3|))) (-15 -4317 ($ (-622 |#3|))) (-15 -4317 ($ (-622 $))) (-15 -3444 ((-751) $)) (-15 -4159 (|#3| $)) (-15 -4159 (|#3| $ (-538))) (-15 -4159 (|#3| $ (-538) (-538))) (-15 -4159 (|#3| $ (-538) (-538) (-538))) (-15 -4159 (|#3| $ (-538) (-538) (-538) (-538))) (-15 -4159 (|#3| $ (-622 (-538)))) (-15 -4304 ($ $ $)) (-15 * ($ $ $)) (-15 -2105 ($ $ (-538) $ (-538))) (-15 -2105 ($ $ (-538) (-538))) (-15 -3773 ($ $)) (-15 -3773 ($ $ (-538) (-538))) (-15 -1378 ($ $ (-622 (-538)))) (-15 -1377 ($)) (-15 -1376 ($)) (-15 -1375 ((-622 |#3|) $)) (-15 -1374 ($ (-622 |#3|))) (-15 -3896 ($)))) +((-2505 (((-134 |#1| |#2| |#4|) (-622 |#4|) (-134 |#1| |#2| |#3|)) 14)) (-4318 (((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)) 18))) +(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2505 ((-134 |#1| |#2| |#4|) (-622 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4318 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) (-538) (-751) (-170) (-170)) (T -135)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-538)) (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-538)) (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) +(-10 -7 (-15 -2505 ((-134 |#1| |#2| |#4|) (-622 |#4|) (-134 |#1| |#2| |#3|))) (-15 -4318 ((-134 |#1| |#2| |#4|) (-1 |#4| |#3|) (-134 |#1| |#2| |#3|)))) +((-2898 (((-112) $ $) NIL)) (-3882 (((-1108) $) 11)) (-3883 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-136) (-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))) (T -136)) +((-3883 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136))))) +(-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $)))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-1465 (((-1149) $) 10)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-622 (-1108)) $) 12)) (-3387 (((-112) $ $) NIL))) +(((-137) (-13 (-1056) (-10 -8 (-15 -1465 ((-1149) $)) (-15 -3584 ((-622 (-1108)) $))))) (T -137)) +((-1465 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-137)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-137))))) +(-13 (-1056) (-10 -8 (-15 -1465 ((-1149) $)) (-15 -3584 ((-622 (-1108)) $)))) +((-4317 (((-840) $) 7))) +(((-138) (-597 (-840))) (T -138)) +NIL +(-597 (-840)) +((-2898 (((-112) $ $) NIL)) (-3786 (($) 15 T CONST)) (-1921 (($) NIL (|has| (-142) (-363)))) (-3585 (($ $ $) 17) (($ $ (-142)) NIL) (($ (-142) $) NIL)) (-3587 (($ $ $) NIL)) (-3586 (((-112) $ $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| (-142) (-363)))) (-3590 (($) NIL) (($ (-622 (-142))) NIL)) (-1631 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-3764 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (($ (-142) $) 51 (|has| $ (-6 -4353)))) (-3765 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-4202 (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-3327 (($) NIL (|has| (-142) (-363)))) (-2068 (((-622 (-142)) $) 60 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3677 (((-142) $) NIL (|has| (-142) (-827)))) (-2511 (((-622 (-142)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-142) $) 26 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-3678 (((-142) $) NIL (|has| (-142) (-827)))) (-2072 (($ (-1 (-142) (-142)) $) 59 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-142) (-142)) $) 55)) (-3788 (($) 16 T CONST)) (-2126 (((-895) $) NIL (|has| (-142) (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3589 (($ $ $) 29)) (-1333 (((-142) $) 52)) (-3970 (($ (-142) $) 50)) (-2492 (($ (-895)) NIL (|has| (-142) (-363)))) (-1381 (($) 14 T CONST)) (-3594 (((-1093) $) NIL)) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-1334 (((-142) $) 53)) (-2070 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-142)) (-622 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-288 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-622 (-288 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 48)) (-1382 (($) 13 T CONST)) (-3588 (($ $ $) 31) (($ $ (-142)) NIL)) (-1523 (($ (-622 (-142))) NIL) (($) NIL)) (-2069 (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074)))) (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-1131) $) 36) (((-527) $) NIL (|has| (-142) (-598 (-527)))) (((-622 (-142)) $) 34)) (-3884 (($ (-622 (-142))) NIL)) (-1922 (($ $) 32 (|has| (-142) (-363)))) (-4317 (((-840) $) 46)) (-1383 (($ (-1131)) 12) (($ (-622 (-142))) 43)) (-1923 (((-751) $) NIL)) (-3591 (($) 49) (($ (-622 (-142))) NIL)) (-1335 (($ (-622 (-142))) NIL)) (-2071 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-1379 (($) 19 T CONST)) (-1380 (($) 18 T CONST)) (-3387 (((-112) $ $) 22)) (-4316 (((-751) $) 47 (|has| $ (-6 -4353))))) +(((-139) (-13 (-1074) (-598 (-1131)) (-421 (-142)) (-598 (-622 (-142))) (-10 -8 (-15 -1383 ($ (-1131))) (-15 -1383 ($ (-622 (-142)))) (-15 -1382 ($) -4311) (-15 -1381 ($) -4311) (-15 -3786 ($) -4311) (-15 -3788 ($) -4311) (-15 -1380 ($) -4311) (-15 -1379 ($) -4311)))) (T -139)) +((-1383 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-139)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-622 (-142))) (-5 *1 (-139)))) (-1382 (*1 *1) (-5 *1 (-139))) (-1381 (*1 *1) (-5 *1 (-139))) (-3786 (*1 *1) (-5 *1 (-139))) (-3788 (*1 *1) (-5 *1 (-139))) (-1380 (*1 *1) (-5 *1 (-139))) (-1379 (*1 *1) (-5 *1 (-139)))) +(-13 (-1074) (-598 (-1131)) (-421 (-142)) (-598 (-622 (-142))) (-10 -8 (-15 -1383 ($ (-1131))) (-15 -1383 ($ (-622 (-142)))) (-15 -1382 ($) -4311) (-15 -1381 ($) -4311) (-15 -3786 ($) -4311) (-15 -3788 ($) -4311) (-15 -1380 ($) -4311) (-15 -1379 ($) -4311))) +((-4101 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-4099 ((|#1| |#3|) 9)) (-4100 ((|#3| |#3|) 15))) +(((-140 |#1| |#2| |#3|) (-10 -7 (-15 -4099 (|#1| |#3|)) (-15 -4100 (|#3| |#3|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-545) (-967 |#1|) (-367 |#2|)) (T -140)) +((-4101 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) (-4 *3 (-367 *5)))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-545)) (-4 *4 (-967 *3)) (-5 *1 (-140 *3 *4 *2)) (-4 *2 (-367 *4)))) (-4099 (*1 *2 *3) (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-140 *2 *4 *3)) (-4 *3 (-367 *4))))) +(-10 -7 (-15 -4099 (|#1| |#3|)) (-15 -4100 (|#3| |#3|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-1414 (($ $ $) 8)) (-1412 (($ $) 7)) (-3437 (($ $ $) 6))) (((-141) (-138)) (T -141)) -((-1414 (*1 *1 *1 *1) (-4 *1 (-141))) (-1412 (*1 *1 *1) (-4 *1 (-141))) (-3432 (*1 *1 *1 *1) (-4 *1 (-141)))) -(-13 (-10 -8 (-15 -3432 ($ $ $)) (-15 -1412 ($ $)) (-15 -1414 ($ $ $)))) -((-2893 (((-112) $ $) NIL)) (-1386 (((-112) $) 30)) (-3781 (($ $) 43)) (-1568 (($) 17)) (-3466 (((-749)) 10)) (-3322 (($) 16)) (-2904 (($) 18)) (-1392 (((-749) $) 14)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-1385 (((-112) $) 32)) (-3783 (($ $) 44)) (-2121 (((-893) $) 15)) (-3588 (((-1129) $) 38)) (-2487 (($ (-893)) 13)) (-1388 (((-112) $) 28)) (-3589 (((-1091) $) NIL)) (-1390 (($) 19)) (-1389 (((-112) $) 26)) (-4312 (((-838) $) 21)) (-1391 (($ (-749)) 11) (($ (-1129)) 42)) (-1384 (((-112) $) 36)) (-1387 (((-112) $) 34)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 7)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 8))) -(((-142) (-13 (-819) (-10 -8 (-15 -1392 ((-749) $)) (-15 -1391 ($ (-749))) (-15 -1391 ($ (-1129))) (-15 -1568 ($)) (-15 -2904 ($)) (-15 -1390 ($)) (-15 -3781 ($ $)) (-15 -3783 ($ $)) (-15 -1389 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -1387 ((-112) $)) (-15 -1386 ((-112) $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $))))) (T -142)) -((-1392 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-142)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-142)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-142)))) (-1568 (*1 *1) (-5 *1 (-142))) (-2904 (*1 *1) (-5 *1 (-142))) (-1390 (*1 *1) (-5 *1 (-142))) (-3781 (*1 *1 *1) (-5 *1 (-142))) (-3783 (*1 *1 *1) (-5 *1 (-142))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(-13 (-819) (-10 -8 (-15 -1392 ((-749) $)) (-15 -1391 ($ (-749))) (-15 -1391 ($ (-1129))) (-15 -1568 ($)) (-15 -2904 ($)) (-15 -1390 ($)) (-15 -3781 ($ $)) (-15 -3783 ($ $)) (-15 -1389 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -1387 ((-112) $)) (-15 -1386 ((-112) $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3030 (((-3 $ "failed") $) 33)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +((-1414 (*1 *1 *1 *1) (-4 *1 (-141))) (-1412 (*1 *1 *1) (-4 *1 (-141))) (-3437 (*1 *1 *1 *1) (-4 *1 (-141)))) +(-13 (-10 -8 (-15 -3437 ($ $ $)) (-15 -1412 ($ $)) (-15 -1414 ($ $ $)))) +((-2898 (((-112) $ $) NIL)) (-1386 (((-112) $) 30)) (-3786 (($ $) 43)) (-1573 (($) 17)) (-3471 (((-751)) 10)) (-3327 (($) 16)) (-2909 (($) 18)) (-1392 (((-751) $) 14)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-1385 (((-112) $) 32)) (-3788 (($ $) 44)) (-2126 (((-895) $) 15)) (-3593 (((-1131) $) 38)) (-2492 (($ (-895)) 13)) (-1388 (((-112) $) 28)) (-3594 (((-1093) $) NIL)) (-1390 (($) 19)) (-1389 (((-112) $) 26)) (-4317 (((-840) $) 21)) (-1391 (($ (-751)) 11) (($ (-1131)) 42)) (-1384 (((-112) $) 36)) (-1387 (((-112) $) 34)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 7)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 8))) +(((-142) (-13 (-821) (-10 -8 (-15 -1392 ((-751) $)) (-15 -1391 ($ (-751))) (-15 -1391 ($ (-1131))) (-15 -1573 ($)) (-15 -2909 ($)) (-15 -1390 ($)) (-15 -3786 ($ $)) (-15 -3788 ($ $)) (-15 -1389 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -1387 ((-112) $)) (-15 -1386 ((-112) $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $))))) (T -142)) +((-1392 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-142)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-142)))) (-1391 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-142)))) (-1573 (*1 *1) (-5 *1 (-142))) (-2909 (*1 *1) (-5 *1 (-142))) (-1390 (*1 *1) (-5 *1 (-142))) (-3786 (*1 *1 *1) (-5 *1 (-142))) (-3788 (*1 *1 *1) (-5 *1 (-142))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1388 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142)))) (-1384 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) +(-13 (-821) (-10 -8 (-15 -1392 ((-751) $)) (-15 -1391 ($ (-751))) (-15 -1391 ($ (-1131))) (-15 -1573 ($)) (-15 -2909 ($)) (-15 -1390 ($)) (-15 -3786 ($ $)) (-15 -3788 ($ $)) (-15 -1389 ((-112) $)) (-15 -1388 ((-112) $)) (-15 -1387 ((-112) $)) (-15 -1386 ((-112) $)) (-15 -1385 ((-112) $)) (-15 -1384 ((-112) $)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3035 (((-3 $ "failed") $) 33)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) (((-143) (-138)) (T -143)) -((-3030 (*1 *1 *1) (|partial| -4 *1 (-143)))) -(-13 (-1023) (-10 -8 (-15 -3030 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2693 ((|#1| (-667 |#1|) |#1|) 19))) -(((-144 |#1|) (-10 -7 (-15 -2693 (|#1| (-667 |#1|) |#1|))) (-170)) (T -144)) -((-2693 (*1 *2 *3 *2) (-12 (-5 *3 (-667 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))) -(-10 -7 (-15 -2693 (|#1| (-667 |#1|) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +((-3035 (*1 *1 *1) (|partial| -4 *1 (-143)))) +(-13 (-1025) (-10 -8 (-15 -3035 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2698 ((|#1| (-669 |#1|) |#1|) 19))) +(((-144 |#1|) (-10 -7 (-15 -2698 (|#1| (-669 |#1|) |#1|))) (-170)) (T -144)) +((-2698 (*1 *2 *3 *2) (-12 (-5 *3 (-669 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2))))) +(-10 -7 (-15 -2698 (|#1| (-669 |#1|) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) (((-145) (-138)) (T -145)) NIL -(-13 (-1023)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-1395 (((-2 (|:| -2488 (-749)) (|:| -4308 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749)) 70)) (-1394 (((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|) 52)) (-1393 (((-2 (|:| -4308 (-400 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1396 ((|#1| |#3| |#3|) 40)) (-4122 ((|#3| |#3| (-400 |#2|) (-400 |#2|)) 19)) (-1397 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|) 49))) -(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1393 ((-2 (|:| -4308 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1394 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|)) (-15 -1395 ((-2 (|:| -2488 (-749)) (|:| -4308 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749))) (-15 -1396 (|#1| |#3| |#3|)) (-15 -4122 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -1397 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|))) (-1188) (-1205 |#1|) (-1205 (-400 |#2|))) (T -146)) -((-1397 (*1 *2 *3 *3) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) (|:| |c2| (-400 *5)) (|:| |deg| (-749)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1205 (-400 *5))))) (-4122 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1205 *3)))) (-1396 (*1 *2 *3 *3) (-12 (-4 *4 (-1205 *2)) (-4 *2 (-1188)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1205 (-400 *4))))) (-1395 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *6)) (-4 *5 (-1188)) (-4 *6 (-1205 *5)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-749)) (-4 *7 (-1205 *3)))) (-1394 (*1 *2 *3) (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-749)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1205 (-400 *5))))) (-1393 (*1 *2 *3) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| -4308 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1205 (-400 *5)))))) -(-10 -7 (-15 -1393 ((-2 (|:| -4308 (-400 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1394 ((-3 (-2 (|:| |radicand| (-400 |#2|)) (|:| |deg| (-749))) "failed") |#3|)) (-15 -1395 ((-2 (|:| -2488 (-749)) (|:| -4308 (-400 |#2|)) (|:| |radicand| |#2|)) (-400 |#2|) (-749))) (-15 -1396 (|#1| |#3| |#3|)) (-15 -4122 (|#3| |#3| (-400 |#2|) (-400 |#2|))) (-15 -1397 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| |deg| (-749))) |#3| |#3|))) -((-3032 (((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|)) 32))) -(((-147 |#1| |#2|) (-10 -7 (-15 -3032 ((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|)))) (-535) (-164 |#1|)) (T -147)) -((-3032 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 *5))) (-5 *3 (-1141 *5)) (-4 *5 (-164 *4)) (-4 *4 (-535)) (-5 *1 (-147 *4 *5))))) -(-10 -7 (-15 -3032 ((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|)))) -((-4068 (($ (-1 (-112) |#2|) $) 29)) (-1398 (($ $) 36)) (-3760 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-4197 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2065 (((-112) (-1 (-112) |#2|) $) 16)) (-2064 (((-749) (-1 (-112) |#2|) $) 14) (((-749) |#2| $) NIL)) (-2066 (((-112) (-1 (-112) |#2|) $) 15)) (-4311 (((-749) $) 11))) -(((-148 |#1| |#2|) (-10 -8 (-15 -1398 (|#1| |#1|)) (-15 -3760 (|#1| |#2| |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3760 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|))) (-149 |#2|) (-1183)) (T -148)) -NIL -(-10 -8 (-15 -1398 (|#1| |#1|)) (-15 -3760 (|#1| |#2| |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3760 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-4068 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-1398 (($ $) 41 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348))) (($ |#1| $) 42 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 40 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 49)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-149 |#1|) (-138) (-1183)) (T -149)) -((-3879 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-149 *3)))) (-1399 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1183)))) (-4197 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)))) (-4197 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)))) (-3760 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *3)) (-4 *3 (-1183)))) (-4068 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *3)) (-4 *3 (-1183)))) (-4197 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1072)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)))) (-3760 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)) (-4 *2 (-1072)))) (-1398 (*1 *1 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)) (-4 *2 (-1072))))) -(-13 (-481 |t#1|) (-10 -8 (-15 -3879 ($ (-620 |t#1|))) (-15 -1399 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4348)) (PROGN (-15 -4197 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4197 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3760 ($ (-1 (-112) |t#1|) $)) (-15 -4068 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1072)) (PROGN (-15 -4197 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3760 ($ |t#1| $)) (-15 -1398 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) 86)) (-2497 (((-112) $) NIL)) (-3221 (($ |#2| (-620 (-893))) 56)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1400 (($ (-893)) 47)) (-4266 (((-133)) 23)) (-4312 (((-838) $) 69) (($ (-536)) 45) (($ |#2|) 46)) (-4035 ((|#2| $ (-620 (-893))) 59)) (-3456 (((-749)) 20)) (-2986 (($) 40 T CONST)) (-2992 (($) 43 T CONST)) (-3382 (((-112) $ $) 26)) (-4303 (($ $ |#2|) NIL)) (-4192 (($ $) 34) (($ $ $) 32)) (-4194 (($ $ $) 30)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) -(((-150 |#1| |#2| |#3|) (-13 (-1023) (-38 |#2|) (-1237 |#2|) (-10 -8 (-15 -1400 ($ (-893))) (-15 -3221 ($ |#2| (-620 (-893)))) (-15 -4035 (|#2| $ (-620 (-893)))) (-15 -3816 ((-3 $ "failed") $)))) (-893) (-356) (-967 |#1| |#2|)) (T -150)) -((-3816 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-893)) (-4 *3 (-356)) (-14 *4 (-967 *2 *3)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) (-14 *5 (-967 *3 *4)))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-620 (-893))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-893)) (-4 *2 (-356)) (-14 *5 (-967 *4 *2)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-620 (-893))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-893)) (-14 *5 (-967 *4 *2))))) -(-13 (-1023) (-38 |#2|) (-1237 |#2|) (-10 -8 (-15 -1400 ($ (-893))) (-15 -3221 ($ |#2| (-620 (-893)))) (-15 -4035 (|#2| $ (-620 (-893)))) (-15 -3816 ((-3 $ "failed") $)))) -((-1402 (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219)))) (-219) (-219) (-219) (-219)) 38)) (-1401 (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536))) 63) (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899)) 64)) (-1560 (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219))))) 67) (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-917 (-219)))) 66) (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536))) 58) (((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899)) 59))) -(((-151) (-10 -7 (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536)))) (-15 -1401 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899))) (-15 -1401 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536)))) (-15 -1402 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219)))) (-219) (-219) (-219) (-219))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-917 (-219))))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219)))))))) (T -151)) -((-1560 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)) (-5 *3 (-620 (-620 (-917 (-219))))))) (-1560 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)) (-5 *3 (-620 (-917 (-219)))))) (-1402 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-219)) (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 *4)))) (|:| |xValues| (-1060 *4)) (|:| |yValues| (-1060 *4)))) (-5 *1 (-151)) (-5 *3 (-620 (-620 (-917 *4)))))) (-1401 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-899)) (-5 *4 (-400 (-536))) (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-899)) (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)))) (-1560 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-899)) (-5 *4 (-400 (-536))) (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-899)) (-5 *2 (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) (-5 *1 (-151))))) -(-10 -7 (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536)))) (-15 -1401 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899))) (-15 -1401 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-899) (-400 (-536)) (-400 (-536)))) (-15 -1402 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219)))) (-219) (-219) (-219) (-219))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-917 (-219))))) (-15 -1560 ((-2 (|:| |brans| (-620 (-620 (-917 (-219))))) (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219)))) (-620 (-620 (-917 (-219))))))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3527 (((-620 (-1106)) $) 15)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 24) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 9)) (-3382 (((-112) $ $) NIL))) -(((-152) (-13 (-1054) (-10 -8 (-15 -3527 ((-620 (-1106)) $)) (-15 -3579 ((-1106) $))))) (T -152)) -((-3527 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-152)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-152))))) -(-13 (-1054) (-10 -8 (-15 -3527 ((-620 (-1106)) $)) (-15 -3579 ((-1106) $)))) -((-1452 (((-620 (-166 |#2|)) |#1| |#2|) 45))) -(((-153 |#1| |#2|) (-10 -7 (-15 -1452 ((-620 (-166 |#2|)) |#1| |#2|))) (-1205 (-166 (-536))) (-13 (-356) (-823))) (T -153)) -((-1452 (*1 *2 *3 *4) (-12 (-5 *2 (-620 (-166 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1205 (-166 (-536)))) (-4 *4 (-13 (-356) (-823)))))) -(-10 -7 (-15 -1452 ((-620 (-166 |#2|)) |#1| |#2|))) -((-2893 (((-112) $ $) NIL)) (-3877 (((-1184) $) 12)) (-3878 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-154) (-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1184) $))))) (T -154)) -((-3878 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-154)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-154))))) -(-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1184) $)))) -((-2893 (((-112) $ $) NIL)) (-1404 (($) 15)) (-3429 (($) 14)) (-1403 (((-893)) 22)) (-3588 (((-1129) $) NIL)) (-3284 (((-536) $) 19)) (-3589 (((-1091) $) NIL)) (-3428 (($) 16)) (-3283 (($ (-536)) 23)) (-4312 (((-838) $) 29)) (-3427 (($) 17)) (-3382 (((-112) $ $) 13)) (-4194 (($ $ $) 11)) (* (($ (-893) $) 21) (($ (-219) $) 8))) -(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-893) $)) (-15 * ($ (-219) $)) (-15 -4194 ($ $ $)) (-15 -3429 ($)) (-15 -1404 ($)) (-15 -3428 ($)) (-15 -3427 ($)) (-15 -3284 ((-536) $)) (-15 -1403 ((-893))) (-15 -3283 ($ (-536)))))) (T -155)) -((-4194 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) (-3429 (*1 *1) (-5 *1 (-155))) (-1404 (*1 *1) (-5 *1 (-155))) (-3428 (*1 *1) (-5 *1 (-155))) (-3427 (*1 *1) (-5 *1 (-155))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-155)))) (-1403 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-155)))) (-3283 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-155))))) -(-13 (-25) (-10 -8 (-15 * ($ (-893) $)) (-15 * ($ (-219) $)) (-15 -4194 ($ $ $)) (-15 -3429 ($)) (-15 -1404 ($)) (-15 -3428 ($)) (-15 -3427 ($)) (-15 -3284 ((-536) $)) (-15 -1403 ((-893))) (-15 -3283 ($ (-536))))) -((-1417 ((|#2| |#2| (-1063 |#2|)) 88) ((|#2| |#2| (-1147)) 68)) (-4299 ((|#2| |#2| (-1063 |#2|)) 87) ((|#2| |#2| (-1147)) 67)) (-1414 ((|#2| |#2| |#2|) 27)) (-3375 (((-113) (-113)) 99)) (-1411 ((|#2| (-620 |#2|)) 117)) (-1408 ((|#2| (-620 |#2|)) 135)) (-1407 ((|#2| (-620 |#2|)) 125)) (-1405 ((|#2| |#2|) 123)) (-1409 ((|#2| (-620 |#2|)) 111)) (-1410 ((|#2| (-620 |#2|)) 112)) (-1406 ((|#2| (-620 |#2|)) 133)) (-1418 ((|#2| |#2| (-1147)) 56) ((|#2| |#2|) 55)) (-1412 ((|#2| |#2|) 23)) (-3432 ((|#2| |#2| |#2|) 26)) (-2333 (((-112) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) -(((-156 |#1| |#2|) (-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3432 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -1418 (|#2| |#2| (-1147))) (-15 -1417 (|#2| |#2| (-1147))) (-15 -1417 (|#2| |#2| (-1063 |#2|))) (-15 -4299 (|#2| |#2| (-1147))) (-15 -4299 (|#2| |#2| (-1063 |#2|))) (-15 -1405 (|#2| |#2|)) (-15 -1406 (|#2| (-620 |#2|))) (-15 -1407 (|#2| (-620 |#2|))) (-15 -1408 (|#2| (-620 |#2|))) (-15 -1409 (|#2| (-620 |#2|))) (-15 -1410 (|#2| (-620 |#2|))) (-15 -1411 (|#2| (-620 |#2|)))) (-13 (-825) (-543)) (-414 |#1|)) (T -156)) -((-1411 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-825) (-543))))) (-1405 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-4299 (*1 *2 *2 *3) (-12 (-5 *3 (-1063 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)))) (-4299 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-1063 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)))) (-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1418 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) (-4 *2 (-414 *4)))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-1414 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-3432 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *4)) (-4 *4 (-414 *3)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-414 *4))))) -(-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3432 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -1418 (|#2| |#2| (-1147))) (-15 -1417 (|#2| |#2| (-1147))) (-15 -1417 (|#2| |#2| (-1063 |#2|))) (-15 -4299 (|#2| |#2| (-1147))) (-15 -4299 (|#2| |#2| (-1063 |#2|))) (-15 -1405 (|#2| |#2|)) (-15 -1406 (|#2| (-620 |#2|))) (-15 -1407 (|#2| (-620 |#2|))) (-15 -1408 (|#2| (-620 |#2|))) (-15 -1409 (|#2| (-620 |#2|))) (-15 -1410 (|#2| (-620 |#2|))) (-15 -1411 (|#2| (-620 |#2|)))) -((-1416 ((|#1| |#1| |#1|) 53)) (-1415 ((|#1| |#1| |#1|) 50)) (-1414 ((|#1| |#1| |#1|) 44)) (-3218 ((|#1| |#1|) 35)) (-1413 ((|#1| |#1| (-620 |#1|)) 43)) (-1412 ((|#1| |#1|) 37)) (-3432 ((|#1| |#1| |#1|) 40))) -(((-157 |#1|) (-10 -7 (-15 -3432 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -1413 (|#1| |#1| (-620 |#1|))) (-15 -3218 (|#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|))) (-535)) (T -157)) -((-1416 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-1415 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-1414 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-3218 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-1413 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-535)) (-5 *1 (-157 *2)))) (-1412 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) (-3432 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) -(-10 -7 (-15 -3432 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -1413 (|#1| |#1| (-620 |#1|))) (-15 -3218 (|#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|))) -((-1417 (($ $ (-1147)) 12) (($ $ (-1063 $)) 11)) (-4299 (($ $ (-1147)) 10) (($ $ (-1063 $)) 9)) (-1414 (($ $ $) 8)) (-1418 (($ $) 14) (($ $ (-1147)) 13)) (-1412 (($ $) 7)) (-3432 (($ $ $) 6))) +(-13 (-1025)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-1395 (((-2 (|:| -2493 (-751)) (|:| -4313 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751)) 70)) (-1394 (((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|) 52)) (-1393 (((-2 (|:| -4313 (-402 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-1396 ((|#1| |#3| |#3|) 40)) (-4127 ((|#3| |#3| (-402 |#2|) (-402 |#2|)) 19)) (-1397 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|) 49))) +(((-146 |#1| |#2| |#3|) (-10 -7 (-15 -1393 ((-2 (|:| -4313 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1394 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|)) (-15 -1395 ((-2 (|:| -2493 (-751)) (|:| -4313 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751))) (-15 -1396 (|#1| |#3| |#3|)) (-15 -4127 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -1397 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|))) (-1190) (-1207 |#1|) (-1207 (-402 |#2|))) (T -146)) +((-1397 (*1 *2 *3 *3) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5)) (|:| |c2| (-402 *5)) (|:| |deg| (-751)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1207 (-402 *5))))) (-4127 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1207 *3)))) (-1396 (*1 *2 *3 *3) (-12 (-4 *4 (-1207 *2)) (-4 *2 (-1190)) (-5 *1 (-146 *2 *4 *3)) (-4 *3 (-1207 (-402 *4))))) (-1395 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *6)) (-4 *5 (-1190)) (-4 *6 (-1207 *5)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| *6))) (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-751)) (-4 *7 (-1207 *3)))) (-1394 (*1 *2 *3) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-751)))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1207 (-402 *5))))) (-1393 (*1 *2 *3) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| -4313 (-402 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1207 (-402 *5)))))) +(-10 -7 (-15 -1393 ((-2 (|:| -4313 (-402 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1394 ((-3 (-2 (|:| |radicand| (-402 |#2|)) (|:| |deg| (-751))) "failed") |#3|)) (-15 -1395 ((-2 (|:| -2493 (-751)) (|:| -4313 (-402 |#2|)) (|:| |radicand| |#2|)) (-402 |#2|) (-751))) (-15 -1396 (|#1| |#3| |#3|)) (-15 -4127 (|#3| |#3| (-402 |#2|) (-402 |#2|))) (-15 -1397 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| |deg| (-751))) |#3| |#3|))) +((-3037 (((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|)) 32))) +(((-147 |#1| |#2|) (-10 -7 (-15 -3037 ((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|)))) (-537) (-164 |#1|)) (T -147)) +((-3037 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 *5))) (-5 *3 (-1143 *5)) (-4 *5 (-164 *4)) (-4 *4 (-537)) (-5 *1 (-147 *4 *5))))) +(-10 -7 (-15 -3037 ((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|)))) +((-4073 (($ (-1 (-112) |#2|) $) 29)) (-1398 (($ $) 36)) (-3765 (($ (-1 (-112) |#2|) $) 27) (($ |#2| $) 32)) (-4202 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 19)) (-2070 (((-112) (-1 (-112) |#2|) $) 16)) (-2069 (((-751) (-1 (-112) |#2|) $) 14) (((-751) |#2| $) NIL)) (-2071 (((-112) (-1 (-112) |#2|) $) 15)) (-4316 (((-751) $) 11))) +(((-148 |#1| |#2|) (-10 -8 (-15 -1398 (|#1| |#1|)) (-15 -3765 (|#1| |#2| |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4073 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3765 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|))) (-149 |#2|) (-1185)) (T -148)) +NIL +(-10 -8 (-15 -1398 (|#1| |#1|)) (-15 -3765 (|#1| |#2| |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4073 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3765 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-4073 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-1398 (($ $) 41 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353))) (($ |#1| $) 42 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 40 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 49)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-149 |#1|) (-138) (-1185)) (T -149)) +((-3884 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-149 *3)))) (-1399 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1185)))) (-4202 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)))) (-4202 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)))) (-3765 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) (-4 *3 (-1185)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) (-4 *3 (-1185)))) (-4202 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1074)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)))) (-3765 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)) (-4 *2 (-1074)))) (-1398 (*1 *1 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)) (-4 *2 (-1074))))) +(-13 (-483 |t#1|) (-10 -8 (-15 -3884 ($ (-622 |t#1|))) (-15 -1399 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4353)) (PROGN (-15 -4202 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4202 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3765 ($ (-1 (-112) |t#1|) $)) (-15 -4073 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -4202 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3765 ($ |t#1| $)) (-15 -1398 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) 86)) (-2502 (((-112) $) NIL)) (-3226 (($ |#2| (-622 (-895))) 56)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1400 (($ (-895)) 47)) (-4271 (((-133)) 23)) (-4317 (((-840) $) 69) (($ (-538)) 45) (($ |#2|) 46)) (-4040 ((|#2| $ (-622 (-895))) 59)) (-3461 (((-751)) 20)) (-2991 (($) 40 T CONST)) (-2997 (($) 43 T CONST)) (-3387 (((-112) $ $) 26)) (-4308 (($ $ |#2|) NIL)) (-4197 (($ $) 34) (($ $ $) 32)) (-4199 (($ $ $) 30)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL))) +(((-150 |#1| |#2| |#3|) (-13 (-1025) (-38 |#2|) (-1239 |#2|) (-10 -8 (-15 -1400 ($ (-895))) (-15 -3226 ($ |#2| (-622 (-895)))) (-15 -4040 (|#2| $ (-622 (-895)))) (-15 -3821 ((-3 $ "failed") $)))) (-895) (-358) (-969 |#1| |#2|)) (T -150)) +((-3821 (*1 *1 *1) (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-895)) (-4 *3 (-358)) (-14 *4 (-969 *2 *3)))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-358)) (-14 *5 (-969 *3 *4)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-622 (-895))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-895)) (-4 *2 (-358)) (-14 *5 (-969 *4 *2)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-622 (-895))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-895)) (-14 *5 (-969 *4 *2))))) +(-13 (-1025) (-38 |#2|) (-1239 |#2|) (-10 -8 (-15 -1400 ($ (-895))) (-15 -3226 ($ |#2| (-622 (-895)))) (-15 -4040 (|#2| $ (-622 (-895)))) (-15 -3821 ((-3 $ "failed") $)))) +((-1402 (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221)))) (-221) (-221) (-221) (-221)) 38)) (-1401 (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538))) 63) (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901)) 64)) (-1565 (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221))))) 67) (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-919 (-221)))) 66) (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538))) 58) (((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901)) 59))) +(((-151) (-10 -7 (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538)))) (-15 -1401 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901))) (-15 -1401 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538)))) (-15 -1402 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221)))) (-221) (-221) (-221) (-221))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-919 (-221))))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221)))))))) (T -151)) +((-1565 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)) (-5 *3 (-622 (-622 (-919 (-221))))))) (-1565 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)) (-5 *3 (-622 (-919 (-221)))))) (-1402 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-221)) (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 *4)))) (|:| |xValues| (-1062 *4)) (|:| |yValues| (-1062 *4)))) (-5 *1 (-151)) (-5 *3 (-622 (-622 (-919 *4)))))) (-1401 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901)) (-5 *4 (-402 (-538))) (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)))) (-1565 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-901)) (-5 *4 (-402 (-538))) (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-901)) (-5 *2 (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151))))) +(-10 -7 (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538)))) (-15 -1401 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901))) (-15 -1401 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-901) (-402 (-538)) (-402 (-538)))) (-15 -1402 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221)))) (-221) (-221) (-221) (-221))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-919 (-221))))) (-15 -1565 ((-2 (|:| |brans| (-622 (-622 (-919 (-221))))) (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221)))) (-622 (-622 (-919 (-221))))))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3532 (((-622 (-1108)) $) 15)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 24) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 9)) (-3387 (((-112) $ $) NIL))) +(((-152) (-13 (-1056) (-10 -8 (-15 -3532 ((-622 (-1108)) $)) (-15 -3584 ((-1108) $))))) (T -152)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-152)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-152))))) +(-13 (-1056) (-10 -8 (-15 -3532 ((-622 (-1108)) $)) (-15 -3584 ((-1108) $)))) +((-1452 (((-622 (-166 |#2|)) |#1| |#2|) 45))) +(((-153 |#1| |#2|) (-10 -7 (-15 -1452 ((-622 (-166 |#2|)) |#1| |#2|))) (-1207 (-166 (-538))) (-13 (-358) (-825))) (T -153)) +((-1452 (*1 *2 *3 *4) (-12 (-5 *2 (-622 (-166 *4))) (-5 *1 (-153 *3 *4)) (-4 *3 (-1207 (-166 (-538)))) (-4 *4 (-13 (-358) (-825)))))) +(-10 -7 (-15 -1452 ((-622 (-166 |#2|)) |#1| |#2|))) +((-2898 (((-112) $ $) NIL)) (-3882 (((-1186) $) 12)) (-3883 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-154) (-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1186) $))))) (T -154)) +((-3883 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-154)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-154))))) +(-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1186) $)))) +((-2898 (((-112) $ $) NIL)) (-1404 (($) 15)) (-3434 (($) 14)) (-1403 (((-895)) 22)) (-3593 (((-1131) $) NIL)) (-3289 (((-538) $) 19)) (-3594 (((-1093) $) NIL)) (-3433 (($) 16)) (-3288 (($ (-538)) 23)) (-4317 (((-840) $) 29)) (-3432 (($) 17)) (-3387 (((-112) $ $) 13)) (-4199 (($ $ $) 11)) (* (($ (-895) $) 21) (($ (-221) $) 8))) +(((-155) (-13 (-25) (-10 -8 (-15 * ($ (-895) $)) (-15 * ($ (-221) $)) (-15 -4199 ($ $ $)) (-15 -3434 ($)) (-15 -1404 ($)) (-15 -3433 ($)) (-15 -3432 ($)) (-15 -3289 ((-538) $)) (-15 -1403 ((-895))) (-15 -3288 ($ (-538)))))) (T -155)) +((-4199 (*1 *1 *1 *1) (-5 *1 (-155))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-155)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155)))) (-3434 (*1 *1) (-5 *1 (-155))) (-1404 (*1 *1) (-5 *1 (-155))) (-3433 (*1 *1) (-5 *1 (-155))) (-3432 (*1 *1) (-5 *1 (-155))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-155)))) (-1403 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-155)))) (-3288 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-155))))) +(-13 (-25) (-10 -8 (-15 * ($ (-895) $)) (-15 * ($ (-221) $)) (-15 -4199 ($ $ $)) (-15 -3434 ($)) (-15 -1404 ($)) (-15 -3433 ($)) (-15 -3432 ($)) (-15 -3289 ((-538) $)) (-15 -1403 ((-895))) (-15 -3288 ($ (-538))))) +((-1417 ((|#2| |#2| (-1065 |#2|)) 88) ((|#2| |#2| (-1149)) 68)) (-4304 ((|#2| |#2| (-1065 |#2|)) 87) ((|#2| |#2| (-1149)) 67)) (-1414 ((|#2| |#2| |#2|) 27)) (-3380 (((-113) (-113)) 99)) (-1411 ((|#2| (-622 |#2|)) 117)) (-1408 ((|#2| (-622 |#2|)) 135)) (-1407 ((|#2| (-622 |#2|)) 125)) (-1405 ((|#2| |#2|) 123)) (-1409 ((|#2| (-622 |#2|)) 111)) (-1410 ((|#2| (-622 |#2|)) 112)) (-1406 ((|#2| (-622 |#2|)) 133)) (-1418 ((|#2| |#2| (-1149)) 56) ((|#2| |#2|) 55)) (-1412 ((|#2| |#2|) 23)) (-3437 ((|#2| |#2| |#2|) 26)) (-2338 (((-112) (-113)) 49)) (** ((|#2| |#2| |#2|) 41))) +(((-156 |#1| |#2|) (-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3437 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -1418 (|#2| |#2| (-1149))) (-15 -1417 (|#2| |#2| (-1149))) (-15 -1417 (|#2| |#2| (-1065 |#2|))) (-15 -4304 (|#2| |#2| (-1149))) (-15 -4304 (|#2| |#2| (-1065 |#2|))) (-15 -1405 (|#2| |#2|)) (-15 -1406 (|#2| (-622 |#2|))) (-15 -1407 (|#2| (-622 |#2|))) (-15 -1408 (|#2| (-622 |#2|))) (-15 -1409 (|#2| (-622 |#2|))) (-15 -1410 (|#2| (-622 |#2|))) (-15 -1411 (|#2| (-622 |#2|)))) (-13 (-827) (-545)) (-416 |#1|)) (T -156)) +((-1411 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1410 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1406 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) (-4 *4 (-13 (-827) (-545))))) (-1405 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (-4304 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)))) (-4304 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)) (-4 *2 (-416 *4)))) (-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)))) (-1417 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)) (-4 *2 (-416 *4)))) (-1418 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)) (-4 *2 (-416 *4)))) (-1418 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (-1414 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (-3437 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *4)) (-4 *4 (-416 *3)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-156 *4 *5)) (-4 *5 (-416 *4))))) +(-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 ** (|#2| |#2| |#2|)) (-15 -3437 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -1418 (|#2| |#2|)) (-15 -1418 (|#2| |#2| (-1149))) (-15 -1417 (|#2| |#2| (-1149))) (-15 -1417 (|#2| |#2| (-1065 |#2|))) (-15 -4304 (|#2| |#2| (-1149))) (-15 -4304 (|#2| |#2| (-1065 |#2|))) (-15 -1405 (|#2| |#2|)) (-15 -1406 (|#2| (-622 |#2|))) (-15 -1407 (|#2| (-622 |#2|))) (-15 -1408 (|#2| (-622 |#2|))) (-15 -1409 (|#2| (-622 |#2|))) (-15 -1410 (|#2| (-622 |#2|))) (-15 -1411 (|#2| (-622 |#2|)))) +((-1416 ((|#1| |#1| |#1|) 53)) (-1415 ((|#1| |#1| |#1|) 50)) (-1414 ((|#1| |#1| |#1|) 44)) (-3223 ((|#1| |#1|) 35)) (-1413 ((|#1| |#1| (-622 |#1|)) 43)) (-1412 ((|#1| |#1|) 37)) (-3437 ((|#1| |#1| |#1|) 40))) +(((-157 |#1|) (-10 -7 (-15 -3437 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -1413 (|#1| |#1| (-622 |#1|))) (-15 -3223 (|#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|))) (-537)) (T -157)) +((-1416 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1415 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1414 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-3223 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-1413 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-537)) (-5 *1 (-157 *2)))) (-1412 (*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) (-3437 (*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))) +(-10 -7 (-15 -3437 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -1413 (|#1| |#1| (-622 |#1|))) (-15 -3223 (|#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -1416 (|#1| |#1| |#1|))) +((-1417 (($ $ (-1149)) 12) (($ $ (-1065 $)) 11)) (-4304 (($ $ (-1149)) 10) (($ $ (-1065 $)) 9)) (-1414 (($ $ $) 8)) (-1418 (($ $) 14) (($ $ (-1149)) 13)) (-1412 (($ $) 7)) (-3437 (($ $ $) 6))) (((-158) (-138)) (T -158)) -((-1418 (*1 *1 *1) (-4 *1 (-158))) (-1418 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147)))) (-1417 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147)))) (-1417 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-158)))) (-4299 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147)))) (-4299 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-158))))) -(-13 (-141) (-10 -8 (-15 -1418 ($ $)) (-15 -1418 ($ $ (-1147))) (-15 -1417 ($ $ (-1147))) (-15 -1417 ($ $ (-1063 $))) (-15 -4299 ($ $ (-1147))) (-15 -4299 ($ $ (-1063 $))))) +((-1418 (*1 *1 *1) (-4 *1 (-158))) (-1418 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-1417 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-1417 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158)))) (-4304 (*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) (-4304 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158))))) +(-13 (-141) (-10 -8 (-15 -1418 ($ $)) (-15 -1418 ($ $ (-1149))) (-15 -1417 ($ $ (-1149))) (-15 -1417 ($ $ (-1065 $))) (-15 -4304 ($ $ (-1149))) (-15 -4304 ($ $ (-1065 $))))) (((-141) . T)) -((-2893 (((-112) $ $) NIL)) (-1419 (($ (-536)) 13) (($ $ $) 14)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 17)) (-3382 (((-112) $ $) 9))) -(((-159) (-13 (-1072) (-10 -8 (-15 -1419 ($ (-536))) (-15 -1419 ($ $ $))))) (T -159)) -((-1419 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-159)))) (-1419 (*1 *1 *1 *1) (-5 *1 (-159)))) -(-13 (-1072) (-10 -8 (-15 -1419 ($ (-536))) (-15 -1419 ($ $ $)))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-620 (-1106)) $) 9)) (-3382 (((-112) $ $) NIL))) -(((-160) (-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $))))) (T -160)) -((-3579 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-160))))) -(-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $)))) -((-3375 (((-113) (-1147)) 97))) -(((-161) (-10 -7 (-15 -3375 ((-113) (-1147))))) (T -161)) -((-3375 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-113)) (-5 *1 (-161))))) -(-10 -7 (-15 -3375 ((-113) (-1147)))) -((-1650 ((|#3| |#3|) 19))) -(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1650 (|#3| |#3|))) (-1023) (-1205 |#1|) (-1205 |#2|)) (T -162)) -((-1650 (*1 *2 *2) (-12 (-4 *3 (-1023)) (-4 *4 (-1205 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1205 *4))))) -(-10 -7 (-15 -1650 (|#3| |#3|))) -((-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 217)) (-3684 ((|#2| $) 96)) (-3841 (($ $) 247)) (-3997 (($ $) 241)) (-3032 (((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $)) 40)) (-3839 (($ $) 245)) (-3996 (($ $) 239)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#2| #1#) $) 141)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL) ((|#2| $) 139)) (-2889 (($ $ $) 222)) (-2357 (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 155) (((-667 |#2|) (-667 $)) 149)) (-4197 (($ (-1141 |#2|)) 119) (((-3 $ "failed") (-400 (-1141 |#2|))) NIL)) (-3816 (((-3 $ "failed") $) 209)) (-3352 (((-3 (-400 (-536)) "failed") $) 199)) (-3351 (((-112) $) 194)) (-3350 (((-400 (-536)) $) 197)) (-3439 (((-893)) 89)) (-2888 (($ $ $) 224)) (-1420 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3985 (($) 236)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 186) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 191)) (-3462 ((|#2| $) 94)) (-2125 (((-1141 |#2|) $) 121)) (-4313 (($ (-1 |#2| |#2|) $) 102)) (-4297 (($ $) 238)) (-3408 (((-1141 |#2|) $) 120)) (-2729 (($ $) 202)) (-1422 (($) 97)) (-3033 (((-398 (-1141 $)) (-1141 $)) 88)) (-3034 (((-398 (-1141 $)) (-1141 $)) 57)) (-3815 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4298 (($ $) 237)) (-1699 (((-749) $) 219)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 229)) (-4112 ((|#2| (-1229 $)) NIL) ((|#2|) 91)) (-4165 (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-3531 (((-1141 |#2|)) 114)) (-3840 (($ $) 246)) (-3992 (($ $) 240)) (-3570 (((-1229 |#2|) $ (-1229 $)) 128) (((-667 |#2|) (-1229 $) (-1229 $)) NIL) (((-1229 |#2|) $) 110) (((-667 |#2|) (-1229 $)) NIL)) (-4325 (((-1229 |#2|) $) NIL) (($ (-1229 |#2|)) NIL) (((-1141 |#2|) $) NIL) (($ (-1141 |#2|)) NIL) (((-864 (-536)) $) 177) (((-864 (-371)) $) 181) (((-166 (-371)) $) 167) (((-166 (-219)) $) 162) (((-525) $) 173)) (-3337 (($ $) 98)) (-4312 (((-838) $) 138) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-400 (-536))) NIL) (($ $) NIL)) (-2693 (((-1141 |#2|) $) 23)) (-3456 (((-749)) 100)) (-3847 (($ $) 250)) (-3835 (($ $) 244)) (-3845 (($ $) 248)) (-3833 (($ $) 242)) (-2313 ((|#2| $) 233)) (-3846 (($ $) 249)) (-3834 (($ $) 243)) (-3737 (($ $) 157)) (-3382 (((-112) $ $) 104)) (-3013 (((-112) $ $) 193)) (-4192 (($ $) 106) (($ $ $) NIL)) (-4194 (($ $ $) 105)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-400 (-536))) 267) (($ $ $) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL))) -(((-163 |#1| |#2|) (-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4312 (|#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -1699 ((-749) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -2888 (|#1| |#1| |#1|)) (-15 -2889 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-166 (-219)) |#1|)) (-15 -4325 ((-166 (-371)) |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4297 (|#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3985 (|#1|)) (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -1420 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2313 (|#2| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3337 (|#1| |#1|)) (-15 -1422 (|#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4197 ((-3 |#1| "failed") (-400 (-1141 |#2|)))) (-15 -3408 ((-1141 |#2|) |#1|)) (-15 -4325 (|#1| (-1141 |#2|))) (-15 -4197 (|#1| (-1141 |#2|))) (-15 -3531 ((-1141 |#2|))) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 ((-1141 |#2|) |#1|)) (-15 -4112 (|#2|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -2125 ((-1141 |#2|) |#1|)) (-15 -2693 ((-1141 |#2|) |#1|)) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -3462 (|#2| |#1|)) (-15 -3684 (|#2| |#1|)) (-15 -3439 ((-893))) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163)) -((-3456 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3439 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-893)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-4112 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-3531 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1141 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))) -(-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4312 (|#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -1699 ((-749) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -2888 (|#1| |#1| |#1|)) (-15 -2889 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-166 (-219)) |#1|)) (-15 -4325 ((-166 (-371)) |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4297 (|#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3985 (|#1|)) (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -1420 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2313 (|#2| |#1|)) (-15 -3737 (|#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3337 (|#1| |#1|)) (-15 -1422 (|#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4197 ((-3 |#1| "failed") (-400 (-1141 |#2|)))) (-15 -3408 ((-1141 |#2|) |#1|)) (-15 -4325 (|#1| (-1141 |#2|))) (-15 -4197 (|#1| (-1141 |#2|))) (-15 -3531 ((-1141 |#2|))) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 ((-1141 |#2|) |#1|)) (-15 -4112 (|#2|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -2125 ((-1141 |#2|) |#1|)) (-15 -2693 ((-1141 |#2|) |#1|)) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -3462 (|#2| |#1|)) (-15 -3684 (|#2| |#1|)) (-15 -3439 ((-893))) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 91 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-2173 (($ $) 92 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-2171 (((-112) $) 94 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-1896 (((-667 |#1|) (-1229 $)) 44) (((-667 |#1|)) 59)) (-3684 ((|#1| $) 50)) (-3841 (($ $) 225 (|has| |#1| (-1169)))) (-3997 (($ $) 208 (|has| |#1| (-1169)))) (-1786 (((-1156 (-893) (-749)) (-536)) 144 (|has| |#1| (-343)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 239 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-4129 (($ $) 111 (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-4324 (((-398 $) $) 112 (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-3365 (($ $) 238 (-12 (|has| |#1| (-976)) (|has| |#1| (-1169))))) (-3032 (((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $)) 242 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-1700 (((-112) $ $) 102 (|has| |#1| (-300)))) (-3466 (((-749)) 85 (|has| |#1| (-361)))) (-3839 (($ $) 224 (|has| |#1| (-1169)))) (-3996 (($ $) 209 (|has| |#1| (-1169)))) (-3843 (($ $) 223 (|has| |#1| (-1169)))) (-3995 (($ $) 210 (|has| |#1| (-1169)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 166 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 164 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 163)) (-3502 (((-536) $) 167 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 165 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 162)) (-1906 (($ (-1229 |#1|) (-1229 $)) 46) (($ (-1229 |#1|)) 62)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2889 (($ $ $) 106 (|has| |#1| (-300)))) (-1895 (((-667 |#1|) $ (-1229 $)) 51) (((-667 |#1|) $) 57)) (-2357 (((-667 (-536)) (-667 $)) 161 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 160 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 159) (((-667 |#1|) (-667 $)) 158)) (-4197 (($ (-1141 |#1|)) 155) (((-3 $ "failed") (-400 (-1141 |#1|))) 152 (|has| |#1| (-356)))) (-3816 (((-3 $ "failed") $) 32)) (-4001 ((|#1| $) 250)) (-3352 (((-3 (-400 (-536)) "failed") $) 243 (|has| |#1| (-535)))) (-3351 (((-112) $) 245 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 244 (|has| |#1| (-535)))) (-3439 (((-893)) 52)) (-3322 (($) 88 (|has| |#1| (-361)))) (-2888 (($ $ $) 105 (|has| |#1| (-300)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 100 (|has| |#1| (-300)))) (-3161 (($) 146 (|has| |#1| (-343)))) (-1791 (((-112) $) 147 (|has| |#1| (-343)))) (-1881 (($ $ (-749)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-4081 (((-112) $) 113 (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-1420 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1032)) (|has| |#1| (-1169))))) (-3985 (($) 235 (|has| |#1| (-1169)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 258 (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 257 (|has| |#1| (-860 (-371))))) (-4126 (((-893) $) 149 (|has| |#1| (-343))) (((-810 (-893)) $) 135 (|has| |#1| (-343)))) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 237 (-12 (|has| |#1| (-976)) (|has| |#1| (-1169))))) (-3462 ((|#1| $) 49)) (-3798 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 109 (|has| |#1| (-300)))) (-2125 (((-1141 |#1|) $) 42 (|has| |#1| (-356)))) (-3672 (($ $ $) 204 (|has| |#1| (-825)))) (-3673 (($ $ $) 203 (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) 259)) (-2121 (((-893) $) 87 (|has| |#1| (-361)))) (-4297 (($ $) 232 (|has| |#1| (-1169)))) (-3408 (((-1141 |#1|) $) 153)) (-2008 (($ (-620 $)) 98 (-3886 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (($ $ $) 97 (-3886 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 114 (|has| |#1| (-356)))) (-3799 (($) 140 (|has| |#1| (-343)) CONST)) (-2487 (($ (-893)) 86 (|has| |#1| (-361)))) (-1422 (($) 254)) (-4002 ((|#1| $) 251)) (-3589 (((-1091) $) 10)) (-2496 (($) 157)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 99 (-3886 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-3490 (($ (-620 $)) 96 (-3886 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (($ $ $) 95 (-3886 (|has| |#1| (-300)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 143 (|has| |#1| (-343)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 241 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-3034 (((-398 (-1141 $)) (-1141 $)) 240 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-4087 (((-398 $) $) 110 (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 107 (|has| |#1| (-300)))) (-3815 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 90 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 101 (|has| |#1| (-300)))) (-4298 (($ $) 233 (|has| |#1| (-1169)))) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) 265 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 263 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) 262 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 261 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) 260 (|has| |#1| (-505 (-1147) |#1|)))) (-1699 (((-749) $) 103 (|has| |#1| (-300)))) (-4154 (($ $ |#1|) 266 (|has| |#1| (-279 |#1| |#1|)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 104 (|has| |#1| (-300)))) (-4112 ((|#1| (-1229 $)) 45) ((|#1|) 58)) (-1882 (((-749) $) 148 (|has| |#1| (-343))) (((-3 (-749) "failed") $ $) 136 (|has| |#1| (-343)))) (-4165 (($ $ (-1 |#1| |#1|) (-749)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-620 (-1147)) (-620 (-749))) 127 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 128 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 129 (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) 130 (|has| |#1| (-874 (-1147)))) (($ $ (-749)) 132 (-3886 (-3186 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 134 (-3886 (-3186 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3186 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2495 (((-667 |#1|) (-1229 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-3531 (((-1141 |#1|)) 156)) (-3844 (($ $) 222 (|has| |#1| (-1169)))) (-3994 (($ $) 211 (|has| |#1| (-1169)))) (-1785 (($) 145 (|has| |#1| (-343)))) (-3842 (($ $) 221 (|has| |#1| (-1169)))) (-3993 (($ $) 212 (|has| |#1| (-1169)))) (-3840 (($ $) 220 (|has| |#1| (-1169)))) (-3992 (($ $) 213 (|has| |#1| (-1169)))) (-3570 (((-1229 |#1|) $ (-1229 $)) 48) (((-667 |#1|) (-1229 $) (-1229 $)) 47) (((-1229 |#1|) $) 64) (((-667 |#1|) (-1229 $)) 63)) (-4325 (((-1229 |#1|) $) 61) (($ (-1229 |#1|)) 60) (((-1141 |#1|) $) 168) (($ (-1141 |#1|)) 154) (((-864 (-536)) $) 256 (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) 255 (|has| |#1| (-596 (-864 (-371))))) (((-166 (-371)) $) 207 (|has| |#1| (-994))) (((-166 (-219)) $) 206 (|has| |#1| (-994))) (((-525) $) 205 (|has| |#1| (-596 (-525))))) (-3337 (($ $) 253)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 142 (-3886 (-3186 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))) (|has| |#1| (-343))))) (-1421 (($ |#1| |#1|) 252)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35) (($ (-400 (-536))) 84 (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) 89 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-3030 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (-3886 (-3186 (|has| $ (-143)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))) (|has| |#1| (-143))))) (-2693 (((-1141 |#1|) $) 43)) (-3456 (((-749)) 28)) (-2123 (((-1229 $)) 65)) (-3847 (($ $) 231 (|has| |#1| (-1169)))) (-3835 (($ $) 219 (|has| |#1| (-1169)))) (-2172 (((-112) $ $) 93 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884)))))) (-3845 (($ $) 230 (|has| |#1| (-1169)))) (-3833 (($ $) 218 (|has| |#1| (-1169)))) (-3849 (($ $) 229 (|has| |#1| (-1169)))) (-3837 (($ $) 217 (|has| |#1| (-1169)))) (-2313 ((|#1| $) 247 (|has| |#1| (-1169)))) (-3850 (($ $) 228 (|has| |#1| (-1169)))) (-3838 (($ $) 216 (|has| |#1| (-1169)))) (-3848 (($ $) 227 (|has| |#1| (-1169)))) (-3836 (($ $) 215 (|has| |#1| (-1169)))) (-3846 (($ $) 226 (|has| |#1| (-1169)))) (-3834 (($ $) 214 (|has| |#1| (-1169)))) (-3737 (($ $) 248 (|has| |#1| (-1032)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1 |#1| |#1|) (-749)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-620 (-1147)) (-620 (-749))) 123 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 124 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 125 (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) 126 (|has| |#1| (-874 (-1147)))) (($ $ (-749)) 131 (-3886 (-3186 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))))) (($ $) 133 (-3886 (-3186 (|has| |#1| (-356)) (|has| |#1| (-227))) (|has| |#1| (-227)) (-3186 (|has| |#1| (-227)) (|has| |#1| (-356)))))) (-2891 (((-112) $ $) 201 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 200 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 202 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 199 (|has| |#1| (-825)))) (-4303 (($ $ $) 118 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-400 (-536))) 236 (-12 (|has| |#1| (-976)) (|has| |#1| (-1169)))) (($ $ $) 234 (|has| |#1| (-1169))) (($ $ (-536)) 115 (|has| |#1| (-356)))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-536)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-536))) 116 (|has| |#1| (-356))))) +((-2898 (((-112) $ $) NIL)) (-1419 (($ (-538)) 13) (($ $ $) 14)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 17)) (-3387 (((-112) $ $) 9))) +(((-159) (-13 (-1074) (-10 -8 (-15 -1419 ($ (-538))) (-15 -1419 ($ $ $))))) (T -159)) +((-1419 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-159)))) (-1419 (*1 *1 *1 *1) (-5 *1 (-159)))) +(-13 (-1074) (-10 -8 (-15 -1419 ($ (-538))) (-15 -1419 ($ $ $)))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-622 (-1108)) $) 9)) (-3387 (((-112) $ $) NIL))) +(((-160) (-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $))))) (T -160)) +((-3584 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-160))))) +(-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $)))) +((-3380 (((-113) (-1149)) 97))) +(((-161) (-10 -7 (-15 -3380 ((-113) (-1149))))) (T -161)) +((-3380 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-113)) (-5 *1 (-161))))) +(-10 -7 (-15 -3380 ((-113) (-1149)))) +((-1655 ((|#3| |#3|) 19))) +(((-162 |#1| |#2| |#3|) (-10 -7 (-15 -1655 (|#3| |#3|))) (-1025) (-1207 |#1|) (-1207 |#2|)) (T -162)) +((-1655 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-1207 *3)) (-5 *1 (-162 *3 *4 *2)) (-4 *2 (-1207 *4))))) +(-10 -7 (-15 -1655 (|#3| |#3|))) +((-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 217)) (-3689 ((|#2| $) 96)) (-3846 (($ $) 247)) (-4002 (($ $) 241)) (-3037 (((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $)) 40)) (-3844 (($ $) 245)) (-4001 (($ $) 239)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#2| #1#) $) 141)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL) ((|#2| $) 139)) (-2894 (($ $ $) 222)) (-2362 (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 155) (((-669 |#2|) (-669 $)) 149)) (-4202 (($ (-1143 |#2|)) 119) (((-3 $ "failed") (-402 (-1143 |#2|))) NIL)) (-3821 (((-3 $ "failed") $) 209)) (-3357 (((-3 (-402 (-538)) "failed") $) 199)) (-3356 (((-112) $) 194)) (-3355 (((-402 (-538)) $) 197)) (-3444 (((-895)) 89)) (-2893 (($ $ $) 224)) (-1420 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-3990 (($) 236)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 186) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 191)) (-3467 ((|#2| $) 94)) (-2130 (((-1143 |#2|) $) 121)) (-4318 (($ (-1 |#2| |#2|) $) 102)) (-4302 (($ $) 238)) (-3413 (((-1143 |#2|) $) 120)) (-2734 (($ $) 202)) (-1422 (($) 97)) (-3038 (((-400 (-1143 $)) (-1143 $)) 88)) (-3039 (((-400 (-1143 $)) (-1143 $)) 57)) (-3820 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-4303 (($ $) 237)) (-1704 (((-751) $) 219)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 229)) (-4117 ((|#2| (-1231 $)) NIL) ((|#2|) 91)) (-4170 (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-3536 (((-1143 |#2|)) 114)) (-3845 (($ $) 246)) (-3997 (($ $) 240)) (-3575 (((-1231 |#2|) $ (-1231 $)) 128) (((-669 |#2|) (-1231 $) (-1231 $)) NIL) (((-1231 |#2|) $) 110) (((-669 |#2|) (-1231 $)) NIL)) (-4330 (((-1231 |#2|) $) NIL) (($ (-1231 |#2|)) NIL) (((-1143 |#2|) $) NIL) (($ (-1143 |#2|)) NIL) (((-866 (-538)) $) 177) (((-866 (-373)) $) 181) (((-166 (-373)) $) 167) (((-166 (-221)) $) 162) (((-527) $) 173)) (-3342 (($ $) 98)) (-4317 (((-840) $) 138) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-402 (-538))) NIL) (($ $) NIL)) (-2698 (((-1143 |#2|) $) 23)) (-3461 (((-751)) 100)) (-3852 (($ $) 250)) (-3840 (($ $) 244)) (-3850 (($ $) 248)) (-3838 (($ $) 242)) (-2318 ((|#2| $) 233)) (-3851 (($ $) 249)) (-3839 (($ $) 243)) (-3742 (($ $) 157)) (-3387 (((-112) $ $) 104)) (-3018 (((-112) $ $) 193)) (-4197 (($ $) 106) (($ $ $) NIL)) (-4199 (($ $ $) 105)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-402 (-538))) 267) (($ $ $) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL))) +(((-163 |#1| |#2|) (-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4317 (|#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -1704 ((-751) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -2893 (|#1| |#1| |#1|)) (-15 -2894 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-166 (-221)) |#1|)) (-15 -4330 ((-166 (-373)) |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3990 (|#1|)) (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -1420 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2318 (|#2| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3342 (|#1| |#1|)) (-15 -1422 (|#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4202 ((-3 |#1| "failed") (-402 (-1143 |#2|)))) (-15 -3413 ((-1143 |#2|) |#1|)) (-15 -4330 (|#1| (-1143 |#2|))) (-15 -4202 (|#1| (-1143 |#2|))) (-15 -3536 ((-1143 |#2|))) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 ((-1143 |#2|) |#1|)) (-15 -4117 (|#2|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -2130 ((-1143 |#2|) |#1|)) (-15 -2698 ((-1143 |#2|) |#1|)) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -3467 (|#2| |#1|)) (-15 -3689 (|#2| |#1|)) (-15 -3444 ((-895))) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-164 |#2|) (-170)) (T -163)) +((-3461 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-3444 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-895)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) (-4117 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) (-3536 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1143 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4))))) +(-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4317 (|#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -1704 ((-751) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -2893 (|#1| |#1| |#1|)) (-15 -2894 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-166 (-221)) |#1|)) (-15 -4330 ((-166 (-373)) |#1|)) (-15 -4002 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3990 (|#1|)) (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -1420 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2318 (|#2| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3342 (|#1| |#1|)) (-15 -1422 (|#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4202 ((-3 |#1| "failed") (-402 (-1143 |#2|)))) (-15 -3413 ((-1143 |#2|) |#1|)) (-15 -4330 (|#1| (-1143 |#2|))) (-15 -4202 (|#1| (-1143 |#2|))) (-15 -3536 ((-1143 |#2|))) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 ((-1143 |#2|) |#1|)) (-15 -4117 (|#2|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -2130 ((-1143 |#2|) |#1|)) (-15 -2698 ((-1143 |#2|) |#1|)) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -3467 (|#2| |#1|)) (-15 -3689 (|#2| |#1|)) (-15 -3444 ((-895))) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-2178 (($ $) 92 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-2176 (((-112) $) 94 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-1901 (((-669 |#1|) (-1231 $)) 44) (((-669 |#1|)) 59)) (-3689 ((|#1| $) 50)) (-3846 (($ $) 225 (|has| |#1| (-1171)))) (-4002 (($ $) 208 (|has| |#1| (-1171)))) (-1791 (((-1158 (-895) (-751)) (-538)) 144 (|has| |#1| (-345)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 239 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-4134 (($ $) 111 (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-4329 (((-400 $) $) 112 (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-3370 (($ $) 238 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-3037 (((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $)) 242 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-1705 (((-112) $ $) 102 (|has| |#1| (-302)))) (-3471 (((-751)) 85 (|has| |#1| (-363)))) (-3844 (($ $) 224 (|has| |#1| (-1171)))) (-4001 (($ $) 209 (|has| |#1| (-1171)))) (-3848 (($ $) 223 (|has| |#1| (-1171)))) (-4000 (($ $) 210 (|has| |#1| (-1171)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 166 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 164 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 163)) (-3507 (((-538) $) 167 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 165 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 162)) (-1911 (($ (-1231 |#1|) (-1231 $)) 46) (($ (-1231 |#1|)) 62)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-345)))) (-2894 (($ $ $) 106 (|has| |#1| (-302)))) (-1900 (((-669 |#1|) $ (-1231 $)) 51) (((-669 |#1|) $) 57)) (-2362 (((-669 (-538)) (-669 $)) 161 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 160 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 159) (((-669 |#1|) (-669 $)) 158)) (-4202 (($ (-1143 |#1|)) 155) (((-3 $ "failed") (-402 (-1143 |#1|))) 152 (|has| |#1| (-358)))) (-3821 (((-3 $ "failed") $) 32)) (-4006 ((|#1| $) 250)) (-3357 (((-3 (-402 (-538)) "failed") $) 243 (|has| |#1| (-537)))) (-3356 (((-112) $) 245 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 244 (|has| |#1| (-537)))) (-3444 (((-895)) 52)) (-3327 (($) 88 (|has| |#1| (-363)))) (-2893 (($ $ $) 105 (|has| |#1| (-302)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 100 (|has| |#1| (-302)))) (-3166 (($) 146 (|has| |#1| (-345)))) (-1796 (((-112) $) 147 (|has| |#1| (-345)))) (-1886 (($ $ (-751)) 138 (|has| |#1| (-345))) (($ $) 137 (|has| |#1| (-345)))) (-4086 (((-112) $) 113 (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-1420 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-1034)) (|has| |#1| (-1171))))) (-3990 (($) 235 (|has| |#1| (-1171)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 258 (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 257 (|has| |#1| (-862 (-373))))) (-4131 (((-895) $) 149 (|has| |#1| (-345))) (((-812 (-895)) $) 135 (|has| |#1| (-345)))) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 237 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-3467 ((|#1| $) 49)) (-3803 (((-3 $ "failed") $) 139 (|has| |#1| (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 109 (|has| |#1| (-302)))) (-2130 (((-1143 |#1|) $) 42 (|has| |#1| (-358)))) (-3677 (($ $ $) 204 (|has| |#1| (-827)))) (-3678 (($ $ $) 203 (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) 259)) (-2126 (((-895) $) 87 (|has| |#1| (-363)))) (-4302 (($ $) 232 (|has| |#1| (-1171)))) (-3413 (((-1143 |#1|) $) 153)) (-2013 (($ (-622 $)) 98 (-3891 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (($ $ $) 97 (-3891 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 114 (|has| |#1| (-358)))) (-3804 (($) 140 (|has| |#1| (-345)) CONST)) (-2492 (($ (-895)) 86 (|has| |#1| (-363)))) (-1422 (($) 254)) (-4007 ((|#1| $) 251)) (-3594 (((-1093) $) 10)) (-2501 (($) 157)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 99 (-3891 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-3495 (($ (-622 $)) 96 (-3891 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (($ $ $) 95 (-3891 (|has| |#1| (-302)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 143 (|has| |#1| (-345)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 241 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-3039 (((-400 (-1143 $)) (-1143 $)) 240 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-4092 (((-400 $) $) 110 (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 107 (|has| |#1| (-302)))) (-3820 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 90 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 101 (|has| |#1| (-302)))) (-4303 (($ $) 233 (|has| |#1| (-1171)))) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) 265 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) 263 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) 262 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 261 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 260 (|has| |#1| (-507 (-1149) |#1|)))) (-1704 (((-751) $) 103 (|has| |#1| (-302)))) (-4159 (($ $ |#1|) 266 (|has| |#1| (-281 |#1| |#1|)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 104 (|has| |#1| (-302)))) (-4117 ((|#1| (-1231 $)) 45) ((|#1|) 58)) (-1887 (((-751) $) 148 (|has| |#1| (-345))) (((-3 (-751) "failed") $ $) 136 (|has| |#1| (-345)))) (-4170 (($ $ (-1 |#1| |#1|) (-751)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-622 (-1149)) (-622 (-751))) 127 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 128 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 129 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 130 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 132 (-3891 (-3191 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 134 (-3891 (-3191 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3191 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-2500 (((-669 |#1|) (-1231 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-358)))) (-3536 (((-1143 |#1|)) 156)) (-3849 (($ $) 222 (|has| |#1| (-1171)))) (-3999 (($ $) 211 (|has| |#1| (-1171)))) (-1790 (($) 145 (|has| |#1| (-345)))) (-3847 (($ $) 221 (|has| |#1| (-1171)))) (-3998 (($ $) 212 (|has| |#1| (-1171)))) (-3845 (($ $) 220 (|has| |#1| (-1171)))) (-3997 (($ $) 213 (|has| |#1| (-1171)))) (-3575 (((-1231 |#1|) $ (-1231 $)) 48) (((-669 |#1|) (-1231 $) (-1231 $)) 47) (((-1231 |#1|) $) 64) (((-669 |#1|) (-1231 $)) 63)) (-4330 (((-1231 |#1|) $) 61) (($ (-1231 |#1|)) 60) (((-1143 |#1|) $) 168) (($ (-1143 |#1|)) 154) (((-866 (-538)) $) 256 (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) 255 (|has| |#1| (-598 (-866 (-373))))) (((-166 (-373)) $) 207 (|has| |#1| (-996))) (((-166 (-221)) $) 206 (|has| |#1| (-996))) (((-527) $) 205 (|has| |#1| (-598 (-527))))) (-3342 (($ $) 253)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 142 (-3891 (-3191 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))) (|has| |#1| (-345))))) (-1421 (($ |#1| |#1|) 252)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35) (($ (-402 (-538))) 84 (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) 89 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-3035 (($ $) 141 (|has| |#1| (-345))) (((-3 $ "failed") $) 41 (-3891 (-3191 (|has| $ (-143)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))) (|has| |#1| (-143))))) (-2698 (((-1143 |#1|) $) 43)) (-3461 (((-751)) 28)) (-2128 (((-1231 $)) 65)) (-3852 (($ $) 231 (|has| |#1| (-1171)))) (-3840 (($ $) 219 (|has| |#1| (-1171)))) (-2177 (((-112) $ $) 93 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886)))))) (-3850 (($ $) 230 (|has| |#1| (-1171)))) (-3838 (($ $) 218 (|has| |#1| (-1171)))) (-3854 (($ $) 229 (|has| |#1| (-1171)))) (-3842 (($ $) 217 (|has| |#1| (-1171)))) (-2318 ((|#1| $) 247 (|has| |#1| (-1171)))) (-3855 (($ $) 228 (|has| |#1| (-1171)))) (-3843 (($ $) 216 (|has| |#1| (-1171)))) (-3853 (($ $) 227 (|has| |#1| (-1171)))) (-3841 (($ $) 215 (|has| |#1| (-1171)))) (-3851 (($ $) 226 (|has| |#1| (-1171)))) (-3839 (($ $) 214 (|has| |#1| (-1171)))) (-3742 (($ $) 248 (|has| |#1| (-1034)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1 |#1| |#1|) (-751)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-622 (-1149)) (-622 (-751))) 123 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 124 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 125 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 126 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 131 (-3891 (-3191 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))))) (($ $) 133 (-3891 (-3191 (|has| |#1| (-358)) (|has| |#1| (-229))) (|has| |#1| (-229)) (-3191 (|has| |#1| (-229)) (|has| |#1| (-358)))))) (-2896 (((-112) $ $) 201 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 200 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 202 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 199 (|has| |#1| (-827)))) (-4308 (($ $ $) 118 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-402 (-538))) 236 (-12 (|has| |#1| (-978)) (|has| |#1| (-1171)))) (($ $ $) 234 (|has| |#1| (-1171))) (($ $ (-538)) 115 (|has| |#1| (-358)))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-402 (-538)) $) 117 (|has| |#1| (-358))) (($ $ (-402 (-538))) 116 (|has| |#1| (-358))))) (((-164 |#1|) (-138) (-170)) (T -164)) -((-3462 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1422 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3337 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1421 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4002 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3815 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) (-3737 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1169)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1032)) (-4 *3 (-1169)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) (-3352 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536)))))) -(-13 (-703 |t#1| (-1141 |t#1|)) (-405 |t#1|) (-225 |t#1|) (-331 |t#1|) (-393 |t#1|) (-858 |t#1|) (-370 |t#1|) (-170) (-10 -8 (-6 -1421) (-15 -1422 ($)) (-15 -3337 ($ $)) (-15 -1421 ($ |t#1| |t#1|)) (-15 -4002 (|t#1| $)) (-15 -4001 (|t#1| $)) (-15 -3462 (|t#1| $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-6 (-543)) (-15 -3815 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-300)) (-6 (-300)) |%noBranch|) (IF (|has| |t#1| (-6 -4347)) (-6 -4347) |%noBranch|) (IF (|has| |t#1| (-6 -4344)) (-6 -4344) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-994)) (PROGN (-6 (-596 (-166 (-219)))) (-6 (-596 (-166 (-371))))) |%noBranch|) (IF (|has| |t#1| (-1032)) (-15 -3737 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1169)) (PROGN (-6 (-1169)) (-15 -2313 (|t#1| $)) (IF (|has| |t#1| (-976)) (-6 (-976)) |%noBranch|) (IF (|has| |t#1| (-1032)) (-15 -1420 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-884)) (IF (|has| |t#1| (-300)) (-6 (-884)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-35) |has| |#1| (-1169)) ((-94) |has| |#1| (-1169)) ((-101) . T) ((-111 #1# #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3886 (|has| |#1| (-343)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-596 (-166 (-219))) |has| |#1| (-994)) ((-596 (-166 (-371))) |has| |#1| (-994)) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-596 (-864 (-371))) |has| |#1| (-596 (-864 (-371)))) ((-596 (-864 (-536))) |has| |#1| (-596 (-864 (-536)))) ((-596 #2=(-1141 |#1|)) . T) ((-225 |#1|) . T) ((-227) -3886 (|has| |#1| (-343)) (|has| |#1| (-227))) ((-237) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-277) |has| |#1| (-1169)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -3886 (|has| |#1| (-543)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-300) -3886 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-395) |has| |#1| (-343)) ((-361) -3886 (|has| |#1| (-343)) (|has| |#1| (-361))) ((-343) |has| |#1| (-343)) ((-363 |#1| #2#) . T) ((-403 |#1| #2#) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-484) |has| |#1| (-1169)) ((-505 (-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-543) -3886 (|has| |#1| (-543)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-626 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-696 |#1|) . T) ((-696 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-703 |#1| #2#) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-860 (-371)) |has| |#1| (-860 (-371))) ((-860 (-536)) |has| |#1| (-860 (-536))) ((-858 |#1|) . T) ((-884) -12 (|has| |#1| (-300)) (|has| |#1| (-884))) ((-895) -3886 (|has| |#1| (-343)) (|has| |#1| (-356)) (|has| |#1| (-300))) ((-976) -12 (|has| |#1| (-976)) (|has| |#1| (-1169))) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1029 |#1|) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| |#1| (-343)) ((-1169) |has| |#1| (-1169)) ((-1172) |has| |#1| (-1169)) ((-1183) . T) ((-1188) -3886 (|has| |#1| (-343)) (|has| |#1| (-356)) (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) -((-4087 (((-398 |#2|) |#2|) 63))) -(((-165 |#1| |#2|) (-10 -7 (-15 -4087 ((-398 |#2|) |#2|))) (-300) (-1205 (-166 |#1|))) (T -165)) -((-4087 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1205 (-166 *4)))))) -(-10 -7 (-15 -4087 ((-398 |#2|) |#2|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 33)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-2173 (($ $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-2171 (((-112) $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-1896 (((-667 |#1|) (-1229 $)) NIL) (((-667 |#1|)) NIL)) (-3684 ((|#1| $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-1169)))) (-3997 (($ $) NIL (|has| |#1| (-1169)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| |#1| (-343)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-4129 (($ $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-4324 (((-398 $) $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-3365 (($ $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1169))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-300)))) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3839 (($ $) NIL (|has| |#1| (-1169)))) (-3996 (($ $) NIL (|has| |#1| (-1169)))) (-3843 (($ $) NIL (|has| |#1| (-1169)))) (-3995 (($ $) NIL (|has| |#1| (-1169)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-1906 (($ (-1229 |#1|) (-1229 $)) NIL) (($ (-1229 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2889 (($ $ $) NIL (|has| |#1| (-300)))) (-1895 (((-667 |#1|) $ (-1229 $)) NIL) (((-667 |#1|) $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-4197 (($ (-1141 |#1|)) NIL) (((-3 $ "failed") (-400 (-1141 |#1|))) NIL (|has| |#1| (-356)))) (-3816 (((-3 $ "failed") $) NIL)) (-4001 ((|#1| $) 13)) (-3352 (((-3 (-400 (-536)) #3="failed") $) NIL (|has| |#1| (-535)))) (-3351 (((-112) $) NIL (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) NIL (|has| |#1| (-535)))) (-3439 (((-893)) NIL)) (-3322 (($) NIL (|has| |#1| (-361)))) (-2888 (($ $ $) NIL (|has| |#1| (-300)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-300)))) (-3161 (($) NIL (|has| |#1| (-343)))) (-1791 (((-112) $) NIL (|has| |#1| (-343)))) (-1881 (($ $ (-749)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-4081 (((-112) $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-1420 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1032)) (|has| |#1| (-1169))))) (-3985 (($) NIL (|has| |#1| (-1169)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| |#1| (-860 (-371))))) (-4126 (((-893) $) NIL (|has| |#1| (-343))) (((-810 (-893)) $) NIL (|has| |#1| (-343)))) (-2497 (((-112) $) 35)) (-3339 (($ $ (-536)) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1169))))) (-3462 ((|#1| $) 46)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-1697 (((-3 (-620 $) #4="failed") (-620 $) $) NIL (|has| |#1| (-300)))) (-2125 (((-1141 |#1|) $) NIL (|has| |#1| (-356)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-4297 (($ $) NIL (|has| |#1| (-1169)))) (-3408 (((-1141 |#1|) $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-3799 (($) NIL (|has| |#1| (-343)) CONST)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-1422 (($) NIL)) (-4002 ((|#1| $) 15)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-300)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-300))) (($ $ $) NIL (|has| |#1| (-300)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| |#1| (-343)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-300)) (|has| |#1| (-884))))) (-4087 (((-398 $) $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-300)))) (-3815 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 47 (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-300)))) (-4298 (($ $) NIL (|has| |#1| (-1169)))) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-505 (-1147) |#1|)))) (-1699 (((-749) $) NIL (|has| |#1| (-300)))) (-4154 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-300)))) (-4112 ((|#1| (-1229 $)) NIL) ((|#1|) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-343))) (((-3 (-749) "failed") $ $) NIL (|has| |#1| (-343)))) (-4165 (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2495 (((-667 |#1|) (-1229 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3531 (((-1141 |#1|)) NIL)) (-3844 (($ $) NIL (|has| |#1| (-1169)))) (-3994 (($ $) NIL (|has| |#1| (-1169)))) (-1785 (($) NIL (|has| |#1| (-343)))) (-3842 (($ $) NIL (|has| |#1| (-1169)))) (-3993 (($ $) NIL (|has| |#1| (-1169)))) (-3840 (($ $) NIL (|has| |#1| (-1169)))) (-3992 (($ $) NIL (|has| |#1| (-1169)))) (-3570 (((-1229 |#1|) $ (-1229 $)) NIL) (((-667 |#1|) (-1229 $) (-1229 $)) NIL) (((-1229 |#1|) $) NIL) (((-667 |#1|) (-1229 $)) NIL)) (-4325 (((-1229 |#1|) $) NIL) (($ (-1229 |#1|)) NIL) (((-1141 |#1|) $) NIL) (($ (-1141 |#1|)) NIL) (((-864 (-536)) $) NIL (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| |#1| (-596 (-864 (-371))))) (((-166 (-371)) $) NIL (|has| |#1| (-994))) (((-166 (-219)) $) NIL (|has| |#1| (-994))) (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3337 (($ $) 45)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-343))))) (-1421 (($ |#1| |#1|) 37)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) 36) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-3030 (($ $) NIL (|has| |#1| (-343))) (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-2693 (((-1141 |#1|) $) NIL)) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL)) (-3847 (($ $) NIL (|has| |#1| (-1169)))) (-3835 (($ $) NIL (|has| |#1| (-1169)))) (-2172 (((-112) $ $) NIL (-3886 (-12 (|has| |#1| (-300)) (|has| |#1| (-884))) (|has| |#1| (-543))))) (-3845 (($ $) NIL (|has| |#1| (-1169)))) (-3833 (($ $) NIL (|has| |#1| (-1169)))) (-3849 (($ $) NIL (|has| |#1| (-1169)))) (-3837 (($ $) NIL (|has| |#1| (-1169)))) (-2313 ((|#1| $) NIL (|has| |#1| (-1169)))) (-3850 (($ $) NIL (|has| |#1| (-1169)))) (-3838 (($ $) NIL (|has| |#1| (-1169)))) (-3848 (($ $) NIL (|has| |#1| (-1169)))) (-3836 (($ $) NIL (|has| |#1| (-1169)))) (-3846 (($ $) NIL (|has| |#1| (-1169)))) (-3834 (($ $) NIL (|has| |#1| (-1169)))) (-3737 (($ $) NIL (|has| |#1| (-1032)))) (-2986 (($) 28 T CONST)) (-2992 (($) 30 T CONST)) (-2829 (((-1129) $) 23 (|has| |#1| (-799))) (((-1129) $ (-112)) 25 (|has| |#1| (-799))) (((-1235) (-801) $) 26 (|has| |#1| (-799))) (((-1235) (-801) $ (-112)) 27 (|has| |#1| (-799)))) (-2997 (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 39)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-400 (-536))) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1169)))) (($ $ $) NIL (|has| |#1| (-1169))) (($ $ (-536)) NIL (|has| |#1| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-536)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-536))) NIL (|has| |#1| (-356))))) -(((-166 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|))) (-170)) (T -166)) -NIL -(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|))) -((-4313 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) -(((-167 |#1| |#2|) (-10 -7 (-15 -4313 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-170) (-170)) (T -167)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6))))) -(-10 -7 (-15 -4313 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) -((-4325 (((-864 |#1|) |#3|) 22))) -(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -4325 ((-864 |#1|) |#3|))) (-1072) (-13 (-596 (-864 |#1|)) (-170)) (-164 |#2|)) (T -168)) -((-4325 (*1 *2 *3) (-12 (-4 *5 (-13 (-596 *2) (-170))) (-5 *2 (-864 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1072)) (-4 *3 (-164 *5))))) -(-10 -7 (-15 -4325 ((-864 |#1|) |#3|))) -((-2893 (((-112) $ $) NIL)) (-1424 (((-112) $) 9)) (-1423 (((-112) $ (-112)) 11)) (-3972 (($) 12)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3754 (($ $) 13)) (-4312 (((-838) $) 17)) (-4060 (((-112) $) 8)) (-4216 (((-112) $ (-112)) 10)) (-3382 (((-112) $ $) NIL))) -(((-169) (-13 (-1072) (-10 -8 (-15 -3972 ($)) (-15 -4060 ((-112) $)) (-15 -1424 ((-112) $)) (-15 -4216 ((-112) $ (-112))) (-15 -1423 ((-112) $ (-112))) (-15 -3754 ($ $))))) (T -169)) -((-3972 (*1 *1) (-5 *1 (-169))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-4216 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1423 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-3754 (*1 *1 *1) (-5 *1 (-169)))) -(-13 (-1072) (-10 -8 (-15 -3972 ($)) (-15 -4060 ((-112) $)) (-15 -1424 ((-112) $)) (-15 -4216 ((-112) $ (-112))) (-15 -1423 ((-112) $ (-112))) (-15 -3754 ($ $)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +((-3467 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1422 (*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3342 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-1421 (*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) (-3820 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) (-3742 (*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1171)))) (-1420 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1034)) (-4 *3 (-1171)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538)))))) +(-13 (-705 |t#1| (-1143 |t#1|)) (-407 |t#1|) (-227 |t#1|) (-333 |t#1|) (-395 |t#1|) (-860 |t#1|) (-372 |t#1|) (-170) (-10 -8 (-6 -1421) (-15 -1422 ($)) (-15 -3342 ($ $)) (-15 -1421 ($ |t#1| |t#1|)) (-15 -4007 (|t#1| $)) (-15 -4006 (|t#1| $)) (-15 -3467 (|t#1| $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-6 (-545)) (-15 -3820 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-6 -4352)) (-6 -4352) |%noBranch|) (IF (|has| |t#1| (-6 -4349)) (-6 -4349) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-996)) (PROGN (-6 (-598 (-166 (-221)))) (-6 (-598 (-166 (-373))))) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -3742 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1171)) (PROGN (-6 (-1171)) (-15 -2318 (|t#1| $)) (IF (|has| |t#1| (-978)) (-6 (-978)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -1420 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-886)) (IF (|has| |t#1| (-302)) (-6 (-886)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-35) |has| |#1| (-1171)) ((-94) |has| |#1| (-1171)) ((-101) . T) ((-111 #1# #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3891 (|has| |#1| (-345)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-598 (-166 (-221))) |has| |#1| (-996)) ((-598 (-166 (-373))) |has| |#1| (-996)) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-598 (-866 (-373))) |has| |#1| (-598 (-866 (-373)))) ((-598 (-866 (-538))) |has| |#1| (-598 (-866 (-538)))) ((-598 #2=(-1143 |#1|)) . T) ((-227 |#1|) . T) ((-229) -3891 (|has| |#1| (-345)) (|has| |#1| (-229))) ((-239) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-279) |has| |#1| (-1171)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -3891 (|has| |#1| (-545)) (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-302) -3891 (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-397) |has| |#1| (-345)) ((-363) -3891 (|has| |#1| (-345)) (|has| |#1| (-363))) ((-345) |has| |#1| (-345)) ((-365 |#1| #2#) . T) ((-405 |#1| #2#) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-486) |has| |#1| (-1171)) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-545) -3891 (|has| |#1| (-545)) (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-628 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-698 |#1|) . T) ((-698 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-705 |#1| #2#) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-373)) |has| |#1| (-862 (-373))) ((-862 (-538)) |has| |#1| (-862 (-538))) ((-860 |#1|) . T) ((-886) -12 (|has| |#1| (-302)) (|has| |#1| (-886))) ((-897) -3891 (|has| |#1| (-345)) (|has| |#1| (-358)) (|has| |#1| (-302))) ((-978) -12 (|has| |#1| (-978)) (|has| |#1| (-1171))) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| |#1| (-345)) ((-1171) |has| |#1| (-1171)) ((-1174) |has| |#1| (-1171)) ((-1185) . T) ((-1190) -3891 (|has| |#1| (-345)) (|has| |#1| (-358)) (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) +((-4092 (((-400 |#2|) |#2|) 63))) +(((-165 |#1| |#2|) (-10 -7 (-15 -4092 ((-400 |#2|) |#2|))) (-302) (-1207 (-166 |#1|))) (T -165)) +((-4092 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-165 *4 *3)) (-4 *3 (-1207 (-166 *4)))))) +(-10 -7 (-15 -4092 ((-400 |#2|) |#2|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 33)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-2178 (($ $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-2176 (((-112) $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-1901 (((-669 |#1|) (-1231 $)) NIL) (((-669 |#1|)) NIL)) (-3689 ((|#1| $) NIL)) (-3846 (($ $) NIL (|has| |#1| (-1171)))) (-4002 (($ $) NIL (|has| |#1| (-1171)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| |#1| (-345)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-4134 (($ $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-4329 (((-400 $) $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-3370 (($ $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-302)))) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3844 (($ $) NIL (|has| |#1| (-1171)))) (-4001 (($ $) NIL (|has| |#1| (-1171)))) (-3848 (($ $) NIL (|has| |#1| (-1171)))) (-4000 (($ $) NIL (|has| |#1| (-1171)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-1911 (($ (-1231 |#1|) (-1231 $)) NIL) (($ (-1231 |#1|)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-345)))) (-2894 (($ $ $) NIL (|has| |#1| (-302)))) (-1900 (((-669 |#1|) $ (-1231 $)) NIL) (((-669 |#1|) $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4202 (($ (-1143 |#1|)) NIL) (((-3 $ "failed") (-402 (-1143 |#1|))) NIL (|has| |#1| (-358)))) (-3821 (((-3 $ "failed") $) NIL)) (-4006 ((|#1| $) 13)) (-3357 (((-3 (-402 (-538)) #3="failed") $) NIL (|has| |#1| (-537)))) (-3356 (((-112) $) NIL (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) NIL (|has| |#1| (-537)))) (-3444 (((-895)) NIL)) (-3327 (($) NIL (|has| |#1| (-363)))) (-2893 (($ $ $) NIL (|has| |#1| (-302)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-302)))) (-3166 (($) NIL (|has| |#1| (-345)))) (-1796 (((-112) $) NIL (|has| |#1| (-345)))) (-1886 (($ $ (-751)) NIL (|has| |#1| (-345))) (($ $) NIL (|has| |#1| (-345)))) (-4086 (((-112) $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-1420 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1034)) (|has| |#1| (-1171))))) (-3990 (($) NIL (|has| |#1| (-1171)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| |#1| (-862 (-373))))) (-4131 (((-895) $) NIL (|has| |#1| (-345))) (((-812 (-895)) $) NIL (|has| |#1| (-345)))) (-2502 (((-112) $) 35)) (-3344 (($ $ (-538)) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171))))) (-3467 ((|#1| $) 46)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-345)))) (-1702 (((-3 (-622 $) #4="failed") (-622 $) $) NIL (|has| |#1| (-302)))) (-2130 (((-1143 |#1|) $) NIL (|has| |#1| (-358)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-4302 (($ $) NIL (|has| |#1| (-1171)))) (-3413 (((-1143 |#1|) $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-3804 (($) NIL (|has| |#1| (-345)) CONST)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-1422 (($) NIL)) (-4007 ((|#1| $) 15)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-302)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-302))) (($ $ $) NIL (|has| |#1| (-302)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| |#1| (-345)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-302)) (|has| |#1| (-886))))) (-4092 (((-400 $) $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-358))))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| |#1| (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-302)))) (-3820 (((-3 $ #3#) $ |#1|) 44 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 47 (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-302)))) (-4303 (($ $) NIL (|has| |#1| (-1171)))) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-1704 (((-751) $) NIL (|has| |#1| (-302)))) (-4159 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-302)))) (-4117 ((|#1| (-1231 $)) NIL) ((|#1|) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-345))) (((-3 (-751) "failed") $ $) NIL (|has| |#1| (-345)))) (-4170 (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-2500 (((-669 |#1|) (-1231 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3536 (((-1143 |#1|)) NIL)) (-3849 (($ $) NIL (|has| |#1| (-1171)))) (-3999 (($ $) NIL (|has| |#1| (-1171)))) (-1790 (($) NIL (|has| |#1| (-345)))) (-3847 (($ $) NIL (|has| |#1| (-1171)))) (-3998 (($ $) NIL (|has| |#1| (-1171)))) (-3845 (($ $) NIL (|has| |#1| (-1171)))) (-3997 (($ $) NIL (|has| |#1| (-1171)))) (-3575 (((-1231 |#1|) $ (-1231 $)) NIL) (((-669 |#1|) (-1231 $) (-1231 $)) NIL) (((-1231 |#1|) $) NIL) (((-669 |#1|) (-1231 $)) NIL)) (-4330 (((-1231 |#1|) $) NIL) (($ (-1231 |#1|)) NIL) (((-1143 |#1|) $) NIL) (($ (-1143 |#1|)) NIL) (((-866 (-538)) $) NIL (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| |#1| (-598 (-866 (-373))))) (((-166 (-373)) $) NIL (|has| |#1| (-996))) (((-166 (-221)) $) NIL (|has| |#1| (-996))) (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3342 (($ $) 45)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-345))))) (-1421 (($ |#1| |#1|) 37)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) 36) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-3035 (($ $) NIL (|has| |#1| (-345))) (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-2698 (((-1143 |#1|) $) NIL)) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL)) (-3852 (($ $) NIL (|has| |#1| (-1171)))) (-3840 (($ $) NIL (|has| |#1| (-1171)))) (-2177 (((-112) $ $) NIL (-3891 (-12 (|has| |#1| (-302)) (|has| |#1| (-886))) (|has| |#1| (-545))))) (-3850 (($ $) NIL (|has| |#1| (-1171)))) (-3838 (($ $) NIL (|has| |#1| (-1171)))) (-3854 (($ $) NIL (|has| |#1| (-1171)))) (-3842 (($ $) NIL (|has| |#1| (-1171)))) (-2318 ((|#1| $) NIL (|has| |#1| (-1171)))) (-3855 (($ $) NIL (|has| |#1| (-1171)))) (-3843 (($ $) NIL (|has| |#1| (-1171)))) (-3853 (($ $) NIL (|has| |#1| (-1171)))) (-3841 (($ $) NIL (|has| |#1| (-1171)))) (-3851 (($ $) NIL (|has| |#1| (-1171)))) (-3839 (($ $) NIL (|has| |#1| (-1171)))) (-3742 (($ $) NIL (|has| |#1| (-1034)))) (-2991 (($) 28 T CONST)) (-2997 (($) 30 T CONST)) (-2834 (((-1131) $) 23 (|has| |#1| (-801))) (((-1131) $ (-112)) 25 (|has| |#1| (-801))) (((-1237) (-803) $) 26 (|has| |#1| (-801))) (((-1237) (-803) $ (-112)) 27 (|has| |#1| (-801)))) (-3002 (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 39)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-402 (-538))) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1171)))) (($ $ $) NIL (|has| |#1| (-1171))) (($ $ (-538)) NIL (|has| |#1| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-538)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-538))) NIL (|has| |#1| (-358))))) +(((-166 |#1|) (-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|))) (-170)) (T -166)) +NIL +(-13 (-164 |#1|) (-10 -7 (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|))) +((-4318 (((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)) 14))) +(((-167 |#1| |#2|) (-10 -7 (-15 -4318 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) (-170) (-170)) (T -167)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6))))) +(-10 -7 (-15 -4318 ((-166 |#2|) (-1 |#2| |#1|) (-166 |#1|)))) +((-4330 (((-866 |#1|) |#3|) 22))) +(((-168 |#1| |#2| |#3|) (-10 -7 (-15 -4330 ((-866 |#1|) |#3|))) (-1074) (-13 (-598 (-866 |#1|)) (-170)) (-164 |#2|)) (T -168)) +((-4330 (*1 *2 *3) (-12 (-4 *5 (-13 (-598 *2) (-170))) (-5 *2 (-866 *4)) (-5 *1 (-168 *4 *5 *3)) (-4 *4 (-1074)) (-4 *3 (-164 *5))))) +(-10 -7 (-15 -4330 ((-866 |#1|) |#3|))) +((-2898 (((-112) $ $) NIL)) (-1424 (((-112) $) 9)) (-1423 (((-112) $ (-112)) 11)) (-3977 (($) 12)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3759 (($ $) 13)) (-4317 (((-840) $) 17)) (-4065 (((-112) $) 8)) (-4221 (((-112) $ (-112)) 10)) (-3387 (((-112) $ $) NIL))) +(((-169) (-13 (-1074) (-10 -8 (-15 -3977 ($)) (-15 -4065 ((-112) $)) (-15 -1424 ((-112) $)) (-15 -4221 ((-112) $ (-112))) (-15 -1423 ((-112) $ (-112))) (-15 -3759 ($ $))))) (T -169)) +((-3977 (*1 *1) (-5 *1 (-169))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-4221 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-1423 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) (-3759 (*1 *1 *1) (-5 *1 (-169)))) +(-13 (-1074) (-10 -8 (-15 -3977 ($)) (-15 -4065 ((-112) $)) (-15 -1424 ((-112) $)) (-15 -4221 ((-112) $ (-112))) (-15 -1423 ((-112) $ (-112))) (-15 -3759 ($ $)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) (((-170) (-138)) (T -170)) NIL -(-13 (-1023) (-111 $ $) (-10 -7 (-6 (-4350 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-1811 (($ $) 6))) +(-13 (-1025) (-111 $ $) (-10 -7 (-6 (-4355 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-1816 (($ $) 6))) (((-171) (-138)) (T -171)) -((-1811 (*1 *1 *1) (-4 *1 (-171)))) -(-13 (-10 -8 (-15 -1811 ($ $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 ((|#1| $) 75)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL)) (-1429 (($ $) 19)) (-1433 (($ |#1| (-1124 |#1|)) 48)) (-3816 (((-3 $ "failed") $) 117)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-1430 (((-1124 |#1|) $) 82)) (-1432 (((-1124 |#1|) $) 79)) (-1431 (((-1124 |#1|) $) 80)) (-2497 (((-112) $) NIL)) (-1426 (((-1124 |#1|) $) 88)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2008 (($ (-620 $)) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ (-620 $)) NIL) (($ $ $) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-4123 (($ $ (-536)) 91)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1425 (((-1124 |#1|) $) 89)) (-1427 (((-1124 (-400 |#1|)) $) 14)) (-2940 (($ (-400 |#1|)) 17) (($ |#1| (-1124 |#1|) (-1124 |#1|)) 38)) (-3219 (($ $) 93)) (-4312 (((-838) $) 127) (($ (-536)) 51) (($ |#1|) 52) (($ (-400 |#1|)) 36) (($ (-400 (-536))) NIL) (($ $) NIL)) (-3456 (((-749)) 64)) (-2172 (((-112) $ $) NIL)) (-1428 (((-1124 (-400 |#1|)) $) 18)) (-2986 (($) 25 T CONST)) (-2992 (($) 28 T CONST)) (-3382 (((-112) $ $) 35)) (-4303 (($ $ $) 115)) (-4192 (($ $) 106) (($ $ $) 103)) (-4194 (($ $ $) 101)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-400 |#1|) $) 111) (($ $ (-400 |#1|)) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL))) -(((-172 |#1|) (-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -2940 ($ (-400 |#1|))) (-15 -2940 ($ |#1| (-1124 |#1|) (-1124 |#1|))) (-15 -1433 ($ |#1| (-1124 |#1|))) (-15 -1432 ((-1124 |#1|) $)) (-15 -1431 ((-1124 |#1|) $)) (-15 -1430 ((-1124 |#1|) $)) (-15 -3459 (|#1| $)) (-15 -1429 ($ $)) (-15 -1428 ((-1124 (-400 |#1|)) $)) (-15 -1427 ((-1124 (-400 |#1|)) $)) (-15 -1426 ((-1124 |#1|) $)) (-15 -1425 ((-1124 |#1|) $)) (-15 -4123 ($ $ (-536))) (-15 -3219 ($ $)))) (-300)) (T -172)) -((-2940 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) (-2940 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1433 (*1 *1 *2 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3459 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1429 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-4123 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) (-3219 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))) -(-13 (-38 |#1|) (-38 (-400 |#1|)) (-356) (-10 -8 (-15 -2940 ($ (-400 |#1|))) (-15 -2940 ($ |#1| (-1124 |#1|) (-1124 |#1|))) (-15 -1433 ($ |#1| (-1124 |#1|))) (-15 -1432 ((-1124 |#1|) $)) (-15 -1431 ((-1124 |#1|) $)) (-15 -1430 ((-1124 |#1|) $)) (-15 -3459 (|#1| $)) (-15 -1429 ($ $)) (-15 -1428 ((-1124 (-400 |#1|)) $)) (-15 -1427 ((-1124 (-400 |#1|)) $)) (-15 -1426 ((-1124 |#1|) $)) (-15 -1425 ((-1124 |#1|) $)) (-15 -4123 ($ $ (-536))) (-15 -3219 ($ $)))) -((-1434 (($ (-108) $) 13)) (-3567 (((-3 (-108) "failed") (-1147) $) 12)) (-4312 (((-838) $) 16)) (-1435 (((-620 (-108)) $) 8))) -(((-173) (-13 (-595 (-838)) (-10 -8 (-15 -1435 ((-620 (-108)) $)) (-15 -1434 ($ (-108) $)) (-15 -3567 ((-3 (-108) "failed") (-1147) $))))) (T -173)) -((-1435 (*1 *2 *1) (-12 (-5 *2 (-620 (-108))) (-5 *1 (-173)))) (-1434 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-3567 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-108)) (-5 *1 (-173))))) -(-13 (-595 (-838)) (-10 -8 (-15 -1435 ((-620 (-108)) $)) (-15 -1434 ($ (-108) $)) (-15 -3567 ((-3 (-108) "failed") (-1147) $)))) -((-1448 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 40)) (-1439 (((-917 |#1|) (-917 |#1|)) 19)) (-1444 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 36)) (-1437 (((-917 |#1|) (-917 |#1|)) 17)) (-1442 (((-917 |#1|) (-917 |#1|)) 25)) (-1441 (((-917 |#1|) (-917 |#1|)) 24)) (-1440 (((-917 |#1|) (-917 |#1|)) 23)) (-1445 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 37)) (-1443 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 35)) (-1754 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 34)) (-1438 (((-917 |#1|) (-917 |#1|)) 18)) (-1449 (((-1 (-917 |#1|) (-917 |#1|)) |#1| |#1|) 43)) (-1436 (((-917 |#1|) (-917 |#1|)) 8)) (-1447 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 39)) (-1446 (((-1 (-917 |#1|) (-917 |#1|)) |#1|) 38))) -(((-174 |#1|) (-10 -7 (-15 -1436 ((-917 |#1|) (-917 |#1|))) (-15 -1437 ((-917 |#1|) (-917 |#1|))) (-15 -1438 ((-917 |#1|) (-917 |#1|))) (-15 -1439 ((-917 |#1|) (-917 |#1|))) (-15 -1440 ((-917 |#1|) (-917 |#1|))) (-15 -1441 ((-917 |#1|) (-917 |#1|))) (-15 -1442 ((-917 |#1|) (-917 |#1|))) (-15 -1754 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1443 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1444 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1445 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1446 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1447 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1448 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1449 ((-1 (-917 |#1|) (-917 |#1|)) |#1| |#1|))) (-13 (-356) (-1169) (-976))) (T -174)) -((-1449 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1448 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1447 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1446 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1445 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1444 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1754 (*1 *2 *3) (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-356) (-1169) (-976))))) (-1442 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1438 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1437 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) (-5 *1 (-174 *3))))) -(-10 -7 (-15 -1436 ((-917 |#1|) (-917 |#1|))) (-15 -1437 ((-917 |#1|) (-917 |#1|))) (-15 -1438 ((-917 |#1|) (-917 |#1|))) (-15 -1439 ((-917 |#1|) (-917 |#1|))) (-15 -1440 ((-917 |#1|) (-917 |#1|))) (-15 -1441 ((-917 |#1|) (-917 |#1|))) (-15 -1442 ((-917 |#1|) (-917 |#1|))) (-15 -1754 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1443 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1444 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1445 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1446 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1447 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1448 ((-1 (-917 |#1|) (-917 |#1|)) |#1|)) (-15 -1449 ((-1 (-917 |#1|) (-917 |#1|)) |#1| |#1|))) -((-2693 ((|#2| |#3|) 27))) -(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -2693 (|#2| |#3|))) (-170) (-1205 |#1|) (-703 |#1| |#2|)) (T -175)) -((-2693 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1205 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-703 *4 *2))))) -(-10 -7 (-15 -2693 (|#2| |#3|))) -((-3124 (((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)) 47 (|has| (-920 |#2|) (-860 |#1|))))) -(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-920 |#2|) (-860 |#1|)) (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))) |%noBranch|)) (-1072) (-13 (-860 |#1|) (-170)) (-164 |#2|)) (T -176)) -((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *3 (-164 *6)) (-4 (-920 *6) (-860 *5)) (-4 *6 (-13 (-860 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))) -(-10 -7 (IF (|has| (-920 |#2|) (-860 |#1|)) (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))) |%noBranch|)) -((-1451 (((-620 |#1|) (-620 |#1|) |#1|) 38)) (-1450 (((-620 |#1|) |#1| (-620 |#1|)) 19)) (-2192 (((-620 |#1|) (-620 (-620 |#1|)) (-620 |#1|)) 33) ((|#1| (-620 |#1|) (-620 |#1|)) 31))) -(((-177 |#1|) (-10 -7 (-15 -1450 ((-620 |#1|) |#1| (-620 |#1|))) (-15 -2192 (|#1| (-620 |#1|) (-620 |#1|))) (-15 -2192 ((-620 |#1|) (-620 (-620 |#1|)) (-620 |#1|))) (-15 -1451 ((-620 |#1|) (-620 |#1|) |#1|))) (-300)) (T -177)) -((-1451 (*1 *2 *2 *3) (-12 (-5 *2 (-620 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3)))) (-2192 (*1 *2 *3 *2) (-12 (-5 *3 (-620 (-620 *4))) (-5 *2 (-620 *4)) (-4 *4 (-300)) (-5 *1 (-177 *4)))) (-2192 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) (-1450 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) -(-10 -7 (-15 -1450 ((-620 |#1|) |#1| (-620 |#1|))) (-15 -2192 (|#1| (-620 |#1|) (-620 |#1|))) (-15 -2192 ((-620 |#1|) (-620 (-620 |#1|)) (-620 |#1|))) (-15 -1451 ((-620 |#1|) (-620 |#1|) |#1|))) -((-2893 (((-112) $ $) NIL)) (-3664 (((-1184) $) 13)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 10)) (-4312 (((-838) $) 22) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-178) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $))))) (T -178)) -((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-178)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-178))))) -(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $)))) -((-1460 (((-2 (|:| |start| |#2|) (|:| -2762 (-398 |#2|))) |#2|) 61)) (-1459 ((|#1| |#1|) 54)) (-1458 (((-166 |#1|) |#2|) 84)) (-1457 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1456 ((|#2| |#2|) 83)) (-1455 (((-398 |#2|) |#2| |#1|) 113) (((-398 |#2|) |#2| |#1| (-112)) 81)) (-3462 ((|#1| |#2|) 112)) (-1454 ((|#2| |#2|) 119)) (-4087 (((-398 |#2|) |#2|) 134) (((-398 |#2|) |#2| |#1|) 32) (((-398 |#2|) |#2| |#1| (-112)) 133)) (-1453 (((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2|) 132) (((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112)) 76)) (-1452 (((-620 (-166 |#1|)) |#2| |#1|) 40) (((-620 (-166 |#1|)) |#2|) 41))) -(((-179 |#1| |#2|) (-10 -7 (-15 -1452 ((-620 (-166 |#1|)) |#2|)) (-15 -1452 ((-620 (-166 |#1|)) |#2| |#1|)) (-15 -1453 ((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112))) (-15 -1453 ((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2|)) (-15 -4087 ((-398 |#2|) |#2| |#1| (-112))) (-15 -4087 ((-398 |#2|) |#2| |#1|)) (-15 -4087 ((-398 |#2|) |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -3462 (|#1| |#2|)) (-15 -1455 ((-398 |#2|) |#2| |#1| (-112))) (-15 -1455 ((-398 |#2|) |#2| |#1|)) (-15 -1456 (|#2| |#2|)) (-15 -1457 (|#1| |#2| |#1|)) (-15 -1457 (|#1| |#2|)) (-15 -1458 ((-166 |#1|) |#2|)) (-15 -1459 (|#1| |#1|)) (-15 -1460 ((-2 (|:| |start| |#2|) (|:| -2762 (-398 |#2|))) |#2|))) (-13 (-356) (-823)) (-1205 (-166 |#1|))) (T -179)) -((-1460 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-2 (|:| |start| *3) (|:| -2762 (-398 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-1459 (*1 *2 *2) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1205 (-166 *2))))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-823))) (-4 *3 (-1205 *2)))) (-1457 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1205 (-166 *2))))) (-1457 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1205 (-166 *2))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1205 (-166 *3))))) (-1455 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-1455 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-3462 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1205 (-166 *2))))) (-1454 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1205 (-166 *3))))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-4087 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-4087 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-1453 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-620 (-2 (|:| -2762 (-620 *3)) (|:| -1651 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-1453 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-823))) (-5 *2 (-620 (-2 (|:| -2762 (-620 *3)) (|:| -1651 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1205 (-166 *5))))) (-1452 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-620 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-620 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4)))))) -(-10 -7 (-15 -1452 ((-620 (-166 |#1|)) |#2|)) (-15 -1452 ((-620 (-166 |#1|)) |#2| |#1|)) (-15 -1453 ((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2| (-112))) (-15 -1453 ((-620 (-2 (|:| -2762 (-620 |#2|)) (|:| -1651 |#1|))) |#2| |#2|)) (-15 -4087 ((-398 |#2|) |#2| |#1| (-112))) (-15 -4087 ((-398 |#2|) |#2| |#1|)) (-15 -4087 ((-398 |#2|) |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -3462 (|#1| |#2|)) (-15 -1455 ((-398 |#2|) |#2| |#1| (-112))) (-15 -1455 ((-398 |#2|) |#2| |#1|)) (-15 -1456 (|#2| |#2|)) (-15 -1457 (|#1| |#2| |#1|)) (-15 -1457 (|#1| |#2|)) (-15 -1458 ((-166 |#1|) |#2|)) (-15 -1459 (|#1| |#1|)) (-15 -1460 ((-2 (|:| |start| |#2|) (|:| -2762 (-398 |#2|))) |#2|))) -((-1461 (((-3 |#2| "failed") |#2|) 14)) (-1462 (((-749) |#2|) 16)) (-1463 ((|#2| |#2| |#2|) 18))) -(((-180 |#1| |#2|) (-10 -7 (-15 -1461 ((-3 |#2| "failed") |#2|)) (-15 -1462 ((-749) |#2|)) (-15 -1463 (|#2| |#2| |#2|))) (-1183) (-652 |#1|)) (T -180)) -((-1463 (*1 *2 *2 *2) (-12 (-4 *3 (-1183)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3)))) (-1462 (*1 *2 *3) (-12 (-4 *4 (-1183)) (-5 *2 (-749)) (-5 *1 (-180 *4 *3)) (-4 *3 (-652 *4)))) (-1461 (*1 *2 *2) (|partial| -12 (-4 *3 (-1183)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3))))) -(-10 -7 (-15 -1461 ((-3 |#2| "failed") |#2|)) (-15 -1462 ((-749) |#2|)) (-15 -1463 (|#2| |#2| |#2|))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1465 (((-1147) $) 10)) (-4312 (((-838) $) 17)) (-1464 (((-620 (-1152)) $) 12)) (-3382 (((-112) $ $) 15))) -(((-181) (-13 (-1072) (-10 -8 (-15 -1465 ((-1147) $)) (-15 -1464 ((-620 (-1152)) $))))) (T -181)) -((-1465 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-181)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-181))))) -(-13 (-1072) (-10 -8 (-15 -1465 ((-1147) $)) (-15 -1464 ((-620 (-1152)) $)))) -((-4000 ((|#2| |#2|) 28)) (-4003 (((-112) |#2|) 19)) (-4001 (((-307 |#1|) |#2|) 12)) (-4002 (((-307 |#1|) |#2|) 14)) (-3998 ((|#2| |#2| (-1147)) 68) ((|#2| |#2|) 69)) (-4004 (((-166 (-307 |#1|)) |#2|) 10)) (-3999 ((|#2| |#2| (-1147)) 65) ((|#2| |#2|) 59))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3998 (|#2| |#2|)) (-15 -3998 (|#2| |#2| (-1147))) (-15 -3999 (|#2| |#2|)) (-15 -3999 (|#2| |#2| (-1147))) (-15 -4001 ((-307 |#1|) |#2|)) (-15 -4002 ((-307 |#1|) |#2|)) (-15 -4003 ((-112) |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4004 ((-166 (-307 |#1|)) |#2|))) (-13 (-543) (-825) (-1012 (-536))) (-13 (-27) (-1169) (-414 (-166 |#1|)))) (T -182)) -((-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-166 (-307 *4))) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3)))))) (-4003 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-112)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-4002 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-307 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-4001 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-307 *4)) (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-3999 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3)))))) (-3998 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *4)))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3))))))) -(-10 -7 (-15 -3998 (|#2| |#2|)) (-15 -3998 (|#2| |#2| (-1147))) (-15 -3999 (|#2| |#2|)) (-15 -3999 (|#2| |#2| (-1147))) (-15 -4001 ((-307 |#1|) |#2|)) (-15 -4002 ((-307 |#1|) |#2|)) (-15 -4003 ((-112) |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -4004 ((-166 (-307 |#1|)) |#2|))) -((-1466 (((-1229 (-667 (-920 |#1|))) (-1229 (-667 |#1|))) 24)) (-4312 (((-1229 (-667 (-400 (-920 |#1|)))) (-1229 (-667 |#1|))) 33))) -(((-183 |#1|) (-10 -7 (-15 -1466 ((-1229 (-667 (-920 |#1|))) (-1229 (-667 |#1|)))) (-15 -4312 ((-1229 (-667 (-400 (-920 |#1|)))) (-1229 (-667 |#1|))))) (-170)) (T -183)) -((-4312 (*1 *2 *3) (-12 (-5 *3 (-1229 (-667 *4))) (-4 *4 (-170)) (-5 *2 (-1229 (-667 (-400 (-920 *4))))) (-5 *1 (-183 *4)))) (-1466 (*1 *2 *3) (-12 (-5 *3 (-1229 (-667 *4))) (-4 *4 (-170)) (-5 *2 (-1229 (-667 (-920 *4)))) (-5 *1 (-183 *4))))) -(-10 -7 (-15 -1466 ((-1229 (-667 (-920 |#1|))) (-1229 (-667 |#1|)))) (-15 -4312 ((-1229 (-667 (-400 (-920 |#1|)))) (-1229 (-667 |#1|))))) -((-1474 (((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536)))) 66)) (-1476 (((-1149 (-400 (-536))) (-620 (-536)) (-620 (-536))) 75)) (-1467 (((-1149 (-400 (-536))) (-536)) 40)) (-4209 (((-1149 (-400 (-536))) (-536)) 52)) (-4122 (((-400 (-536)) (-1149 (-400 (-536)))) 62)) (-1468 (((-1149 (-400 (-536))) (-536)) 32)) (-1471 (((-1149 (-400 (-536))) (-536)) 48)) (-1470 (((-1149 (-400 (-536))) (-536)) 46)) (-1473 (((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536)))) 60)) (-3219 (((-1149 (-400 (-536))) (-536)) 25)) (-1472 (((-400 (-536)) (-1149 (-400 (-536))) (-1149 (-400 (-536)))) 64)) (-1469 (((-1149 (-400 (-536))) (-536)) 30)) (-1475 (((-1149 (-400 (-536))) (-620 (-536))) 72))) -(((-184) (-10 -7 (-15 -3219 ((-1149 (-400 (-536))) (-536))) (-15 -1467 ((-1149 (-400 (-536))) (-536))) (-15 -1468 ((-1149 (-400 (-536))) (-536))) (-15 -1469 ((-1149 (-400 (-536))) (-536))) (-15 -1470 ((-1149 (-400 (-536))) (-536))) (-15 -1471 ((-1149 (-400 (-536))) (-536))) (-15 -4209 ((-1149 (-400 (-536))) (-536))) (-15 -1472 ((-400 (-536)) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -1473 ((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -4122 ((-400 (-536)) (-1149 (-400 (-536))))) (-15 -1474 ((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -1475 ((-1149 (-400 (-536))) (-620 (-536)))) (-15 -1476 ((-1149 (-400 (-536))) (-620 (-536)) (-620 (-536)))))) (T -184)) -((-1476 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)))) (-1474 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-1149 (-400 (-536)))) (-5 *2 (-400 (-536))) (-5 *1 (-184)))) (-1473 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)))) (-1472 (*1 *2 *3 *3) (-12 (-5 *3 (-1149 (-400 (-536)))) (-5 *2 (-400 (-536))) (-5 *1 (-184)))) (-4209 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-1471 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-1470 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-1469 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-1468 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-1467 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) (-3219 (*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) -(-10 -7 (-15 -3219 ((-1149 (-400 (-536))) (-536))) (-15 -1467 ((-1149 (-400 (-536))) (-536))) (-15 -1468 ((-1149 (-400 (-536))) (-536))) (-15 -1469 ((-1149 (-400 (-536))) (-536))) (-15 -1470 ((-1149 (-400 (-536))) (-536))) (-15 -1471 ((-1149 (-400 (-536))) (-536))) (-15 -4209 ((-1149 (-400 (-536))) (-536))) (-15 -1472 ((-400 (-536)) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -1473 ((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -4122 ((-400 (-536)) (-1149 (-400 (-536))))) (-15 -1474 ((-1149 (-400 (-536))) (-1149 (-400 (-536))) (-1149 (-400 (-536))))) (-15 -1475 ((-1149 (-400 (-536))) (-620 (-536)))) (-15 -1476 ((-1149 (-400 (-536))) (-620 (-536)) (-620 (-536))))) -((-1478 (((-398 (-1141 (-536))) (-536)) 28)) (-1477 (((-620 (-1141 (-536))) (-536)) 23)) (-3129 (((-1141 (-536)) (-536)) 21))) -(((-185) (-10 -7 (-15 -1477 ((-620 (-1141 (-536))) (-536))) (-15 -3129 ((-1141 (-536)) (-536))) (-15 -1478 ((-398 (-1141 (-536))) (-536))))) (T -185)) -((-1478 (*1 *2 *3) (-12 (-5 *2 (-398 (-1141 (-536)))) (-5 *1 (-185)) (-5 *3 (-536)))) (-3129 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-185)) (-5 *3 (-536)))) (-1477 (*1 *2 *3) (-12 (-5 *2 (-620 (-1141 (-536)))) (-5 *1 (-185)) (-5 *3 (-536))))) -(-10 -7 (-15 -1477 ((-620 (-1141 (-536))) (-536))) (-15 -3129 ((-1141 (-536)) (-536))) (-15 -1478 ((-398 (-1141 (-536))) (-536)))) -((-1663 (((-1124 (-219)) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 105)) (-1684 (((-620 (-1129)) (-1124 (-219))) NIL)) (-1479 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 81)) (-1661 (((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219)))) NIL)) (-1683 (((-620 (-1129)) (-620 (-219))) NIL)) (-1685 (((-219) (-1060 (-817 (-219)))) 24)) (-1686 (((-219) (-1060 (-817 (-219)))) 25)) (-1481 (((-371) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 98)) (-1480 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1681 (((-1129) (-219)) NIL)) (-2896 (((-1129) (-620 (-1129))) 20)) (-1482 (((-1009) (-1147) (-1147) (-1009)) 13))) -(((-186) (-10 -7 (-15 -1479 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1480 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -1481 ((-371) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219)))) (-15 -2896 ((-1129) (-620 (-1129)))) (-15 -1482 ((-1009) (-1147) (-1147) (-1009))))) (T -186)) -((-1482 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1147)) (-5 *1 (-186)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-186)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-186)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-186)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-186)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-186)))) (-1661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1147)) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-620 (-219))) (-5 *1 (-186)))) (-1481 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-186)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-186)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-186))))) -(-10 -7 (-15 -1479 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1480 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -1481 ((-371) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219)))) (-15 -2896 ((-1129) (-620 (-1129)))) (-15 -1482 ((-1009) (-1147) (-1147) (-1009)))) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 55) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-187) (-765)) (T -187)) -NIL -(-765) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 60) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-188) (-765)) (T -188)) -NIL -(-765) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 69) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-189) (-765)) (T -189)) -NIL -(-765) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 56) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-190) (-765)) (T -190)) -NIL -(-765) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 67) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 38) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-191) (-765)) (T -191)) -NIL -(-765) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 73) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-192) (-765)) (T -192)) -NIL -(-765) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 80) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 44) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-193) (-765)) (T -193)) -NIL -(-765) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 70) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-194) (-765)) (T -194)) -NIL -(-765) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 66)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 32)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-195) (-765)) (T -195)) -NIL -(-765) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 63)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 34)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-196) (-765)) (T -196)) -NIL -(-765) -((-2893 (((-112) $ $) NIL)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 90) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 78) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-197) (-765)) (T -197)) -NIL -(-765) -((-1483 (((-3 (-2 (|:| -2831 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 85)) (-1485 (((-536) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 42)) (-1484 (((-3 (-620 (-219)) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 73))) -(((-198) (-10 -7 (-15 -1483 ((-3 (-2 (|:| -2831 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1484 ((-3 (-620 (-219)) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1485 ((-536) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -198)) -((-1485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-536)) (-5 *1 (-198)))) (-1484 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-620 (-219))) (-5 *1 (-198)))) (-1483 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2831 (-113)) (|:| |w| (-219)))) (-5 *1 (-198))))) -(-10 -7 (-15 -1483 ((-3 (-2 (|:| -2831 (-113)) (|:| |w| (-219))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1484 ((-3 (-620 (-219)) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1485 ((-536) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-1490 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-1489 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 130)) (-1488 (((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-667 (-307 (-219)))) 89)) (-1487 (((-371) (-667 (-307 (-219)))) 113)) (-2447 (((-667 (-307 (-219))) (-1229 (-307 (-219))) (-620 (-1147))) 110)) (-1493 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 30)) (-1491 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 43)) (-4122 (((-667 (-307 (-219))) (-667 (-307 (-219))) (-620 (-1147)) (-1229 (-307 (-219)))) 102)) (-1486 (((-371) (-371) (-620 (-371))) 107) (((-371) (-371) (-371)) 105)) (-1492 (((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 36))) -(((-199) (-10 -7 (-15 -1486 ((-371) (-371) (-371))) (-15 -1486 ((-371) (-371) (-620 (-371)))) (-15 -1487 ((-371) (-667 (-307 (-219))))) (-15 -2447 ((-667 (-307 (-219))) (-1229 (-307 (-219))) (-620 (-1147)))) (-15 -4122 ((-667 (-307 (-219))) (-667 (-307 (-219))) (-620 (-1147)) (-1229 (-307 (-219))))) (-15 -1488 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-667 (-307 (-219))))) (-15 -1489 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1490 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1491 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1492 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1493 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -199)) -((-1493 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-199)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-667 (-307 (-219)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) (-5 *1 (-199)))) (-4122 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-667 (-307 (-219)))) (-5 *3 (-620 (-1147))) (-5 *4 (-1229 (-307 (-219)))) (-5 *1 (-199)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *4 (-620 (-1147))) (-5 *2 (-667 (-307 (-219)))) (-5 *1 (-199)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-667 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1486 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-371))) (-5 *2 (-371)) (-5 *1 (-199)))) (-1486 (*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-199))))) -(-10 -7 (-15 -1486 ((-371) (-371) (-371))) (-15 -1486 ((-371) (-371) (-620 (-371)))) (-15 -1487 ((-371) (-667 (-307 (-219))))) (-15 -2447 ((-667 (-307 (-219))) (-1229 (-307 (-219))) (-620 (-1147)))) (-15 -4122 ((-667 (-307 (-219))) (-667 (-307 (-219))) (-620 (-1147)) (-1229 (-307 (-219))))) (-15 -1488 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-667 (-307 (-219))))) (-15 -1489 ((-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371))) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1490 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1491 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1492 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1493 ((-371) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2735 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 64)) (-3382 (((-112) $ $) NIL))) -(((-200) (-778)) (T -200)) -NIL -(-778) -((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 41)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2735 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 62)) (-3382 (((-112) $ $) NIL))) -(((-201) (-778)) (T -201)) -NIL -(-778) -((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 40)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2735 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 66)) (-3382 (((-112) $ $) NIL))) -(((-202) (-778)) (T -202)) -NIL -(-778) -((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 46)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2735 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 75)) (-3382 (((-112) $ $) NIL))) -(((-203) (-778)) (T -203)) -NIL -(-778) -((-4289 (((-620 (-1147)) (-1147) (-749)) 23)) (-1494 (((-307 (-219)) (-307 (-219))) 31)) (-1496 (((-112) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 74)) (-1495 (((-112) (-219) (-219) (-620 (-307 (-219)))) 45))) -(((-204) (-10 -7 (-15 -4289 ((-620 (-1147)) (-1147) (-749))) (-15 -1494 ((-307 (-219)) (-307 (-219)))) (-15 -1495 ((-112) (-219) (-219) (-620 (-307 (-219))))) (-15 -1496 ((-112) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))))))) (T -204)) -((-1496 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) (-5 *2 (-112)) (-5 *1 (-204)))) (-1495 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-620 (-307 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-204)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-204)))) (-4289 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-620 (-1147))) (-5 *1 (-204)) (-5 *3 (-1147))))) -(-10 -7 (-15 -4289 ((-620 (-1147)) (-1147) (-749))) (-15 -1494 ((-307 (-219)) (-307 (-219)))) (-15 -1495 ((-112) (-219) (-219) (-620 (-307 (-219))))) (-15 -1496 ((-112) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))))) -((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 26)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2993 (((-1009) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 57)) (-3382 (((-112) $ $) NIL))) -(((-205) (-869)) (T -205)) -NIL -(-869) -((-2893 (((-112) $ $) NIL)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 21)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2993 (((-1009) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) NIL)) (-3382 (((-112) $ $) NIL))) -(((-206) (-869)) (T -206)) -NIL -(-869) -((-2893 (((-112) $ $) NIL)) (-4142 ((|#2| $ (-749) |#2|) 11)) (-3972 (($) 8)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4154 ((|#2| $ (-749)) 10)) (-4312 (((-838) $) 18)) (-3382 (((-112) $ $) 13))) -(((-207 |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -3972 ($)) (-15 -4154 (|#2| $ (-749))) (-15 -4142 (|#2| $ (-749) |#2|)))) (-893) (-1072)) (T -207)) -((-3972 (*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1072)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *2 (-1072)) (-5 *1 (-207 *4 *2)) (-14 *4 (-893)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-207 *4 *2)) (-14 *4 (-893)) (-4 *2 (-1072))))) -(-13 (-1072) (-10 -8 (-15 -3972 ($)) (-15 -4154 (|#2| $ (-749))) (-15 -4142 (|#2| $ (-749) |#2|)))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2082 (((-1235) $) 36) (((-1235) $ (-893) (-893)) 38)) (-4154 (($ $ (-963)) 19) (((-239 (-1129)) $ (-1147)) 15)) (-3975 (((-1235) $) 34)) (-4312 (((-838) $) 31) (($ (-620 |#1|)) 8)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $ $) 27)) (-4194 (($ $ $) 22))) -(((-208 |#1|) (-13 (-1072) (-10 -8 (-15 -4154 ($ $ (-963))) (-15 -4154 ((-239 (-1129)) $ (-1147))) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -4312 ($ (-620 |#1|))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $)) (-15 -2082 ((-1235) $ (-893) (-893))))) (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))) (T -208)) -((-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-963)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-239 (-1129))) (-5 *1 (-208 *4)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ *3)) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))))) (-4194 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))))) (-4192 (*1 *1 *1 *1) (-12 (-5 *1 (-208 *2)) (-4 *2 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $))))) (-5 *1 (-208 *3)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) (-15 -2082 (*2 $))))))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-208 *3)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) (-15 -2082 (*2 $))))))) (-2082 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-208 *4)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) (-15 -2082 (*2 $)))))))) -(-13 (-1072) (-10 -8 (-15 -4154 ($ $ (-963))) (-15 -4154 ((-239 (-1129)) $ (-1147))) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -4312 ($ (-620 |#1|))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $)) (-15 -2082 ((-1235) $ (-893) (-893))))) -((-1497 ((|#2| |#4| (-1 |#2| |#2|)) 46))) -(((-209 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1497 (|#2| |#4| (-1 |#2| |#2|)))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -209)) -((-1497 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1205 (-400 *2))) (-4 *2 (-1205 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6))))) -(-10 -7 (-15 -1497 (|#2| |#4| (-1 |#2| |#2|)))) -((-1501 ((|#2| |#2| (-749) |#2|) 42)) (-1500 ((|#2| |#2| (-749) |#2|) 38)) (-2453 (((-620 |#2|) (-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|)))) 57)) (-1499 (((-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|))) |#2|) 53)) (-1502 (((-112) |#2|) 50)) (-4088 (((-398 |#2|) |#2|) 77)) (-4087 (((-398 |#2|) |#2|) 76)) (-2454 ((|#2| |#2| (-749) |#2|) 36)) (-1498 (((-2 (|:| |cont| |#1|) (|:| -2762 (-620 (-2 (|:| |irr| |#2|) (|:| -2482 (-536)))))) |#2| (-112)) 69))) -(((-210 |#1| |#2|) (-10 -7 (-15 -4087 ((-398 |#2|) |#2|)) (-15 -4088 ((-398 |#2|) |#2|)) (-15 -1498 ((-2 (|:| |cont| |#1|) (|:| -2762 (-620 (-2 (|:| |irr| |#2|) (|:| -2482 (-536)))))) |#2| (-112))) (-15 -1499 ((-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|))) |#2|)) (-15 -2453 ((-620 |#2|) (-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|))))) (-15 -2454 (|#2| |#2| (-749) |#2|)) (-15 -1500 (|#2| |#2| (-749) |#2|)) (-15 -1501 (|#2| |#2| (-749) |#2|)) (-15 -1502 ((-112) |#2|))) (-343) (-1205 |#1|)) (T -210)) -((-1502 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4)))) (-1501 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4)))) (-1500 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4)))) (-2454 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| |deg| (-749)) (|:| -2900 *5)))) (-4 *5 (-1205 *4)) (-4 *4 (-343)) (-5 *2 (-620 *5)) (-5 *1 (-210 *4 *5)))) (-1499 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-620 (-2 (|:| |deg| (-749)) (|:| -2900 *3)))) (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4)))) (-1498 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-343)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) (-5 *1 (-210 *5 *3)) (-4 *3 (-1205 *5)))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4)))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4))))) -(-10 -7 (-15 -4087 ((-398 |#2|) |#2|)) (-15 -4088 ((-398 |#2|) |#2|)) (-15 -1498 ((-2 (|:| |cont| |#1|) (|:| -2762 (-620 (-2 (|:| |irr| |#2|) (|:| -2482 (-536)))))) |#2| (-112))) (-15 -1499 ((-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|))) |#2|)) (-15 -2453 ((-620 |#2|) (-620 (-2 (|:| |deg| (-749)) (|:| -2900 |#2|))))) (-15 -2454 (|#2| |#2| (-749) |#2|)) (-15 -1500 (|#2| |#2| (-749) |#2|)) (-15 -1501 (|#2| |#2| (-749) |#2|)) (-15 -1502 ((-112) |#2|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-536) $) NIL (|has| (-536) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-536) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-536) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-536) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-536) (-1012 (-536))))) (-3502 (((-536) $) NIL) (((-1147) $) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-536) (-1012 (-536)))) (((-536) $) NIL (|has| (-536) (-1012 (-536))))) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-536) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-536) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-536) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-536) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-536) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-536) (-1122)))) (-3533 (((-112) $) NIL (|has| (-536) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-536) (-825)))) (-4313 (($ (-1 (-536) (-536)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-536) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-536) (-300))) (((-400 (-536)) $) NIL)) (-3460 (((-536) $) NIL (|has| (-536) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-536)) (-620 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-536) (-536)) NIL (|has| (-536) (-302 (-536)))) (($ $ (-286 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-286 (-536)))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-1147)) (-620 (-536))) NIL (|has| (-536) (-505 (-1147) (-536)))) (($ $ (-1147) (-536)) NIL (|has| (-536) (-505 (-1147) (-536))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-536)) NIL (|has| (-536) (-279 (-536) (-536))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-536) $) NIL)) (-1503 (($ (-400 (-536))) 9)) (-4325 (((-864 (-536)) $) NIL (|has| (-536) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-536) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-536) (-596 (-525)))) (((-371) $) NIL (|has| (-536) (-994))) (((-219) $) NIL (|has| (-536) (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-536) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) 8) (($ (-536)) NIL) (($ (-1147)) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL) (((-978 10) $) 10)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-536) (-884))) (|has| (-536) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-536) $) NIL (|has| (-536) (-535)))) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| (-536) (-798)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-536) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-536) (-825)))) (-4303 (($ $ $) NIL) (($ (-536) (-536)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-536) $) NIL) (($ $ (-536)) NIL))) -(((-211) (-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 10) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -1503 ($ (-400 (-536))))))) (T -211)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-978 10)) (-5 *1 (-211)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211))))) -(-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 10) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -1503 ($ (-400 (-536)))))) -((-2893 (((-112) $ $) NIL)) (-3665 (((-1086) $) 13)) (-3588 (((-1129) $) NIL)) (-3524 (((-475) $) 10)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 25) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 15)) (-3382 (((-112) $ $) NIL))) -(((-212) (-13 (-1054) (-10 -8 (-15 -3524 ((-475) $)) (-15 -3665 ((-1086) $)) (-15 -3579 ((-1106) $))))) (T -212)) -((-3524 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-212)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-212))))) -(-13 (-1054) (-10 -8 (-15 -3524 ((-475) $)) (-15 -3665 ((-1086) $)) (-15 -3579 ((-1106) $)))) -((-4167 (((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1063 (-817 |#2|)) (-1129)) 28) (((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1063 (-817 |#2|))) 24)) (-1504 (((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1147) (-817 |#2|) (-817 |#2|) (-112)) 17))) -(((-213 |#1| |#2|) (-10 -7 (-15 -4167 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1063 (-817 |#2|)))) (-15 -4167 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1063 (-817 |#2|)) (-1129))) (-15 -1504 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1147) (-817 |#2|) (-817 |#2|) (-112)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-934) (-29 |#1|))) (T -213)) -((-1504 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1147)) (-5 *6 (-112)) (-4 *7 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-4 *3 (-13 (-1169) (-934) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-213 *7 *3)) (-5 *5 (-817 *3)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1063 (-817 *3))) (-5 *5 (-1129)) (-4 *3 (-13 (-1169) (-934) (-29 *6))) (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-213 *6 *3)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-817 *3))) (-4 *3 (-13 (-1169) (-934) (-29 *5))) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-213 *5 *3))))) -(-10 -7 (-15 -4167 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1063 (-817 |#2|)))) (-15 -4167 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1063 (-817 |#2|)) (-1129))) (-15 -1504 ((-3 (|:| |f1| (-817 |#2|)) (|:| |f2| (-620 (-817 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1147) (-817 |#2|) (-817 |#2|) (-112)))) -((-4167 (((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|)))) (-1129)) 46) (((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|))))) 43) (((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|))) (-1129)) 47) (((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|)))) 20))) -(((-214 |#1|) (-10 -7 (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|))))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|))) (-1129))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|)))))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|)))) (-1129)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (T -214)) -((-4167 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1063 (-817 (-400 (-920 *6))))) (-5 *5 (-1129)) (-5 *3 (-400 (-920 *6))) (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 (-307 *6))) (|:| |f2| (-620 (-817 (-307 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-214 *6)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-817 (-400 (-920 *5))))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 (-307 *5))) (|:| |f2| (-620 (-817 (-307 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *5)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-400 (-920 *6))) (-5 *4 (-1063 (-817 (-307 *6)))) (-5 *5 (-1129)) (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 (-307 *6))) (|:| |f2| (-620 (-817 (-307 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *6)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1063 (-817 (-307 *5)))) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |f1| (-817 (-307 *5))) (|:| |f2| (-620 (-817 (-307 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-214 *5))))) -(-10 -7 (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|))))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-307 |#1|))) (-1129))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|)))))) (-15 -4167 ((-3 (|:| |f1| (-817 (-307 |#1|))) (|:| |f2| (-620 (-817 (-307 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-400 (-920 |#1|)) (-1063 (-817 (-400 (-920 |#1|)))) (-1129)))) -((-4197 (((-2 (|:| -2115 (-1141 |#1|)) (|:| |deg| (-893))) (-1141 |#1|)) 21)) (-4318 (((-620 (-307 |#2|)) (-307 |#2|) (-893)) 42))) -(((-215 |#1| |#2|) (-10 -7 (-15 -4197 ((-2 (|:| -2115 (-1141 |#1|)) (|:| |deg| (-893))) (-1141 |#1|))) (-15 -4318 ((-620 (-307 |#2|)) (-307 |#2|) (-893)))) (-1023) (-13 (-543) (-825))) (T -215)) -((-4318 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-4 *6 (-13 (-543) (-825))) (-5 *2 (-620 (-307 *6))) (-5 *1 (-215 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1023)))) (-4197 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-2 (|:| -2115 (-1141 *4)) (|:| |deg| (-893)))) (-5 *1 (-215 *4 *5)) (-5 *3 (-1141 *4)) (-4 *5 (-13 (-543) (-825)))))) -(-10 -7 (-15 -4197 ((-2 (|:| -2115 (-1141 |#1|)) (|:| |deg| (-893))) (-1141 |#1|))) (-15 -4318 ((-620 (-307 |#2|)) (-307 |#2|) (-893)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1545 ((|#1| $) NIL)) (-3678 ((|#1| $) 25)) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-3330 (($ $) NIL)) (-2372 (($ $) 31)) (-3680 ((|#1| |#1| $) NIL)) (-3679 ((|#1| $) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-4188 (((-749) $) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) NIL)) (-1543 ((|#1| |#1| $) 28)) (-1542 ((|#1| |#1| $) 30)) (-3965 (($ |#1| $) NIL)) (-2928 (((-749) $) 27)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-3329 ((|#1| $) NIL)) (-1541 ((|#1| $) 26)) (-1540 ((|#1| $) 24)) (-1332 ((|#1| $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3332 ((|#1| |#1| $) NIL)) (-3757 (((-112) $) 9)) (-3923 (($) NIL)) (-3331 ((|#1| $) NIL)) (-1546 (($) NIL) (($ (-620 |#1|)) 16)) (-3677 (((-749) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-1544 ((|#1| $) 13)) (-1333 (($ (-620 |#1|)) NIL)) (-3328 ((|#1| $) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-216 |#1|) (-13 (-247 |#1|) (-10 -8 (-15 -1546 ($ (-620 |#1|))))) (-1072)) (T -216)) -((-1546 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-216 *3))))) -(-13 (-247 |#1|) (-10 -8 (-15 -1546 ($ (-620 |#1|))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1506 (($ (-307 |#1|)) 23)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2990 (((-112) $) NIL)) (-3503 (((-3 (-307 |#1|) "failed") $) NIL)) (-3502 (((-307 |#1|) $) NIL)) (-4314 (($ $) 31)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-4313 (($ (-1 (-307 |#1|) (-307 |#1|)) $) NIL)) (-3520 (((-307 |#1|) $) NIL)) (-1508 (($ $) 30)) (-3588 (((-1129) $) NIL)) (-1507 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($ (-749)) NIL)) (-1505 (($ $) 32)) (-4302 (((-536) $) NIL)) (-4312 (((-838) $) 57) (($ (-536)) NIL) (($ (-307 |#1|)) NIL)) (-4035 (((-307 |#1|) $ $) NIL)) (-3456 (((-749)) NIL)) (-2986 (($) 25 T CONST)) (-2992 (($) 50 T CONST)) (-3382 (((-112) $ $) 28)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 19)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 24) (($ (-307 |#1|) $) 18))) -(((-217 |#1| |#2|) (-13 (-601 (-307 |#1|)) (-1012 (-307 |#1|)) (-10 -8 (-15 -3520 ((-307 |#1|) $)) (-15 -1508 ($ $)) (-15 -4314 ($ $)) (-15 -4035 ((-307 |#1|) $ $)) (-15 -2496 ($ (-749))) (-15 -1507 ((-112) $)) (-15 -2990 ((-112) $)) (-15 -4302 ((-536) $)) (-15 -4313 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -1506 ($ (-307 |#1|))) (-15 -1505 ($ $)))) (-13 (-1023) (-825)) (-620 (-1147))) (T -217)) -((-3520 (*1 *2 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-1508 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) (-14 *3 (-620 (-1147))))) (-4314 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) (-14 *3 (-620 (-1147))))) (-4035 (*1 *2 *1 *1) (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) (-14 *4 (-620 (-1147))))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1023) (-825))) (-5 *1 (-217 *3 *4)) (-14 *4 (-620 (-1147))))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1023) (-825))) (-5 *1 (-217 *3 *4)) (-14 *4 (-620 (-1147))))) (-1505 (*1 *1 *1) (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) (-14 *3 (-620 (-1147)))))) -(-13 (-601 (-307 |#1|)) (-1012 (-307 |#1|)) (-10 -8 (-15 -3520 ((-307 |#1|) $)) (-15 -1508 ($ $)) (-15 -4314 ($ $)) (-15 -4035 ((-307 |#1|) $ $)) (-15 -2496 ($ (-749))) (-15 -1507 ((-112) $)) (-15 -2990 ((-112) $)) (-15 -4302 ((-536) $)) (-15 -4313 ($ (-1 (-307 |#1|) (-307 |#1|)) $)) (-15 -1506 ($ (-307 |#1|))) (-15 -1505 ($ $)))) -((-1509 (((-112) (-1129)) 22)) (-1510 (((-3 (-817 |#2|) "failed") (-593 |#2|) |#2| (-817 |#2|) (-817 |#2|) (-112)) 32)) (-1511 (((-3 (-112) "failed") (-1141 |#2|) (-817 |#2|) (-817 |#2|) (-112)) 73) (((-3 (-112) "failed") (-920 |#1|) (-1147) (-817 |#2|) (-817 |#2|) (-112)) 74))) -(((-218 |#1| |#2|) (-10 -7 (-15 -1509 ((-112) (-1129))) (-15 -1510 ((-3 (-817 |#2|) "failed") (-593 |#2|) |#2| (-817 |#2|) (-817 |#2|) (-112))) (-15 -1511 ((-3 (-112) "failed") (-920 |#1|) (-1147) (-817 |#2|) (-817 |#2|) (-112))) (-15 -1511 ((-3 (-112) "failed") (-1141 |#2|) (-817 |#2|) (-817 |#2|) (-112)))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-29 |#1|))) (T -218)) -((-1511 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1141 *6)) (-5 *4 (-817 *6)) (-4 *6 (-13 (-1169) (-29 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-218 *5 *6)))) (-1511 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-920 *6)) (-5 *4 (-1147)) (-5 *5 (-817 *7)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-4 *7 (-13 (-1169) (-29 *6))) (-5 *1 (-218 *6 *7)))) (-1510 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-817 *4)) (-5 *3 (-593 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1169) (-29 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-218 *6 *4)))) (-1509 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1169) (-29 *4)))))) -(-10 -7 (-15 -1509 ((-112) (-1129))) (-15 -1510 ((-3 (-817 |#2|) "failed") (-593 |#2|) |#2| (-817 |#2|) (-817 |#2|) (-112))) (-15 -1511 ((-3 (-112) "failed") (-920 |#1|) (-1147) (-817 |#2|) (-817 |#2|) (-112))) (-15 -1511 ((-3 (-112) "failed") (-1141 |#2|) (-817 |#2|) (-817 |#2|) (-112)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 87)) (-3459 (((-536) $) 98)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4125 (($ $) NIL)) (-3841 (($ $) 75)) (-3997 (($ $) 63)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) 54)) (-1700 (((-112) $ $) NIL)) (-3839 (($ $) 73)) (-3996 (($ $) 61)) (-3981 (((-536) $) 115)) (-3843 (($ $) 78)) (-3995 (($ $) 65)) (-3891 (($) NIL T CONST)) (-3457 (($ $) NIL)) (-3503 (((-3 (-536) #1="failed") $) 114) (((-3 (-400 (-536)) #1#) $) 111)) (-3502 (((-536) $) 112) (((-400 (-536)) $) 109)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) 91)) (-1855 (((-400 (-536)) $ (-749)) 107) (((-400 (-536)) $ (-749) (-749)) 106)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2461 (((-893)) 27) (((-893) (-893)) NIL (|has| $ (-6 -4339)))) (-3532 (((-112) $) NIL)) (-3985 (($) 37)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL)) (-4126 (((-536) $) 33)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL)) (-3462 (($ $) NIL)) (-3533 (((-112) $) 86)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-3672 (($ $ $) 51) (($) 32 (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-3673 (($ $ $) 50) (($) 31 (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-2462 (((-536) $) 25)) (-1854 (($ $) 28)) (-1853 (($ $) 55)) (-4297 (($ $) 60)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-1884 (((-893) (-536)) NIL (|has| $ (-6 -4339)))) (-3589 (((-1091) $) 89)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL)) (-3460 (($ $) NIL)) (-3600 (($ (-536) (-536)) NIL) (($ (-536) (-536) (-893)) 99)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-2488 (((-536) $) 26)) (-1852 (($) 36)) (-4298 (($ $) 59)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-2939 (((-893)) NIL) (((-893) (-893)) NIL (|has| $ (-6 -4339)))) (-4165 (($ $ (-749)) NIL) (($ $) 92)) (-1883 (((-893) (-536)) NIL (|has| $ (-6 -4339)))) (-3844 (($ $) 76)) (-3994 (($ $) 66)) (-3842 (($ $) 77)) (-3993 (($ $) 64)) (-3840 (($ $) 74)) (-3992 (($ $) 62)) (-4325 (((-371) $) 103) (((-219) $) 100) (((-864 (-371)) $) NIL) (((-525) $) 43)) (-4312 (((-838) $) 40) (($ (-536)) 58) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-536)) 58) (($ (-400 (-536))) NIL)) (-3456 (((-749)) NIL)) (-3461 (($ $) NIL)) (-1885 (((-893)) 30) (((-893) (-893)) NIL (|has| $ (-6 -4339)))) (-3022 (((-893)) 23)) (-3847 (($ $) 81)) (-3835 (($ $) 69) (($ $ $) 108)) (-2172 (((-112) $ $) NIL)) (-3845 (($ $) 79)) (-3833 (($ $) 67)) (-3849 (($ $) 84)) (-3837 (($ $) 72)) (-3850 (($ $) 82)) (-3838 (($ $) 70)) (-3848 (($ $) 83)) (-3836 (($ $) 71)) (-3846 (($ $) 80)) (-3834 (($ $) 68)) (-3737 (($ $) 116)) (-2986 (($) 34 T CONST)) (-2992 (($) 35 T CONST)) (-2829 (((-1129) $) 17) (((-1129) $ (-112)) 19) (((-1235) (-801) $) 20) (((-1235) (-801) $ (-112)) 21)) (-3741 (($ $) 95)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-3738 (($ $ $) 97)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 52)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 44)) (-4303 (($ $ $) 85) (($ $ (-536)) 53)) (-4192 (($ $) 45) (($ $ $) 47)) (-4194 (($ $ $) 46)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 56) (($ $ (-400 (-536))) 128) (($ $ $) 57)) (* (($ (-893) $) 29) (($ (-749) $) NIL) (($ (-536) $) 49) (($ $ $) 48) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) -(((-219) (-13 (-397) (-227) (-799) (-1169) (-596 (-525)) (-10 -8 (-15 -4303 ($ $ (-536))) (-15 ** ($ $ $)) (-15 -1852 ($)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -3835 ($ $ $)) (-15 -3741 ($ $)) (-15 -3738 ($ $ $)) (-15 -1855 ((-400 (-536)) $ (-749))) (-15 -1855 ((-400 (-536)) $ (-749) (-749)))))) (T -219)) -((** (*1 *1 *1 *1) (-5 *1 (-219))) (-4303 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-219)))) (-1852 (*1 *1) (-5 *1 (-219))) (-1854 (*1 *1 *1) (-5 *1 (-219))) (-1853 (*1 *1 *1) (-5 *1 (-219))) (-3835 (*1 *1 *1 *1) (-5 *1 (-219))) (-3741 (*1 *1 *1) (-5 *1 (-219))) (-3738 (*1 *1 *1 *1) (-5 *1 (-219))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-219)))) (-1855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-219))))) -(-13 (-397) (-227) (-799) (-1169) (-596 (-525)) (-10 -8 (-15 -4303 ($ $ (-536))) (-15 ** ($ $ $)) (-15 -1852 ($)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -3835 ($ $ $)) (-15 -3741 ($ $)) (-15 -3738 ($ $ $)) (-15 -1855 ((-400 (-536)) $ (-749))) (-15 -1855 ((-400 (-536)) $ (-749) (-749))))) -((-3740 (((-166 (-219)) (-749) (-166 (-219))) 11) (((-219) (-749) (-219)) 12)) (-1512 (((-166 (-219)) (-166 (-219))) 13) (((-219) (-219)) 14)) (-1513 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 19) (((-219) (-219) (-219)) 22)) (-3739 (((-166 (-219)) (-166 (-219))) 25) (((-219) (-219)) 24)) (-3743 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 43) (((-219) (-219) (-219)) 35)) (-3745 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 48) (((-219) (-219) (-219)) 45)) (-3742 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 15) (((-219) (-219) (-219)) 16)) (-3744 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 17) (((-219) (-219) (-219)) 18)) (-3747 (((-166 (-219)) (-166 (-219))) 60) (((-219) (-219)) 59)) (-3746 (((-219) (-219)) 54) (((-166 (-219)) (-166 (-219))) 58)) (-3741 (((-166 (-219)) (-166 (-219))) 8) (((-219) (-219)) 9)) (-3738 (((-166 (-219)) (-166 (-219)) (-166 (-219))) 30) (((-219) (-219) (-219)) 26))) -(((-220) (-10 -7 (-15 -3741 ((-219) (-219))) (-15 -3741 ((-166 (-219)) (-166 (-219)))) (-15 -3738 ((-219) (-219) (-219))) (-15 -3738 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -1512 ((-219) (-219))) (-15 -1512 ((-166 (-219)) (-166 (-219)))) (-15 -3739 ((-219) (-219))) (-15 -3739 ((-166 (-219)) (-166 (-219)))) (-15 -3740 ((-219) (-749) (-219))) (-15 -3740 ((-166 (-219)) (-749) (-166 (-219)))) (-15 -3742 ((-219) (-219) (-219))) (-15 -3742 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3743 ((-219) (-219) (-219))) (-15 -3743 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3744 ((-219) (-219) (-219))) (-15 -3744 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3745 ((-219) (-219) (-219))) (-15 -3745 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3746 ((-166 (-219)) (-166 (-219)))) (-15 -3746 ((-219) (-219))) (-15 -3747 ((-219) (-219))) (-15 -3747 ((-166 (-219)) (-166 (-219)))) (-15 -1513 ((-219) (-219) (-219))) (-15 -1513 ((-166 (-219)) (-166 (-219)) (-166 (-219)))))) (T -220)) -((-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-1513 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3745 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3745 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3744 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3744 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3743 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3743 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3742 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3742 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-219))) (-5 *3 (-749)) (-5 *1 (-220)))) (-3740 (*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-749)) (-5 *1 (-220)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3739 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3738 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3738 (*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) (-3741 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220))))) -(-10 -7 (-15 -3741 ((-219) (-219))) (-15 -3741 ((-166 (-219)) (-166 (-219)))) (-15 -3738 ((-219) (-219) (-219))) (-15 -3738 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -1512 ((-219) (-219))) (-15 -1512 ((-166 (-219)) (-166 (-219)))) (-15 -3739 ((-219) (-219))) (-15 -3739 ((-166 (-219)) (-166 (-219)))) (-15 -3740 ((-219) (-749) (-219))) (-15 -3740 ((-166 (-219)) (-749) (-166 (-219)))) (-15 -3742 ((-219) (-219) (-219))) (-15 -3742 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3743 ((-219) (-219) (-219))) (-15 -3743 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3744 ((-219) (-219) (-219))) (-15 -3744 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3745 ((-219) (-219) (-219))) (-15 -3745 ((-166 (-219)) (-166 (-219)) (-166 (-219)))) (-15 -3746 ((-166 (-219)) (-166 (-219)))) (-15 -3746 ((-219) (-219))) (-15 -3747 ((-219) (-219))) (-15 -3747 ((-166 (-219)) (-166 (-219)))) (-15 -1513 ((-219) (-219) (-219))) (-15 -1513 ((-166 (-219)) (-166 (-219)) (-166 (-219))))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749) (-749)) NIL)) (-2426 (($ $ $) NIL)) (-3768 (($ (-1229 |#1|)) NIL) (($ $) NIL)) (-4228 (($ |#1| |#1| |#1|) 32)) (-3451 (((-112) $) NIL)) (-2425 (($ $ (-536) (-536)) NIL)) (-2424 (($ $ (-536) (-536)) NIL)) (-2423 (($ $ (-536) (-536) (-536) (-536)) NIL)) (-2428 (($ $) NIL)) (-3453 (((-112) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-2422 (($ $ (-536) (-536) $) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536)) $) NIL)) (-1307 (($ $ (-536) (-1229 |#1|)) NIL)) (-1306 (($ $ (-536) (-1229 |#1|)) NIL)) (-4202 (($ |#1| |#1| |#1|) 31)) (-3687 (($ (-749) |#1|) NIL)) (-3891 (($) NIL T CONST)) (-3440 (($ $) NIL (|has| |#1| (-300)))) (-3442 (((-1229 |#1|) $ (-536)) NIL)) (-1514 (($ |#1|) 30)) (-1515 (($ |#1|) 29)) (-1516 (($ |#1|) 28)) (-3439 (((-749) $) NIL (|has| |#1| (-543)))) (-1632 ((|#1| $ (-536) (-536) |#1|) NIL)) (-3443 ((|#1| $ (-536) (-536)) NIL)) (-2063 (((-620 |#1|) $) NIL)) (-3438 (((-749) $) NIL (|has| |#1| (-543)))) (-3437 (((-620 (-1229 |#1|)) $) NIL (|has| |#1| (-543)))) (-3445 (((-749) $) NIL)) (-3972 (($ (-749) (-749) |#1|) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3681 ((|#1| $) NIL (|has| |#1| (-6 (-4350 #1="*"))))) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-3454 (($ (-620 (-620 |#1|))) 11)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3951 (((-620 (-620 |#1|)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3947 (((-3 $ #2="failed") $) NIL (|has| |#1| (-356)))) (-1517 (($) 12)) (-2427 (($ $ $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-3815 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-543)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) (-536)) NIL) ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536))) NIL)) (-3686 (($ (-620 |#1|)) NIL) (($ (-620 $)) NIL)) (-3452 (((-112) $) NIL)) (-3682 ((|#1| $) NIL (|has| |#1| (-6 (-4350 #1#))))) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3441 (((-1229 |#1|) $ (-536)) NIL)) (-4312 (($ (-1229 |#1|)) NIL) (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-536) $) NIL) (((-1229 |#1|) $ (-1229 |#1|)) 15) (((-1229 |#1|) (-1229 |#1|) $) NIL) (((-917 |#1|) $ (-917 |#1|)) 20)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-221 |#1|) (-13 (-664 |#1| (-1229 |#1|) (-1229 |#1|)) (-10 -8 (-15 * ((-917 |#1|) $ (-917 |#1|))) (-15 -1517 ($)) (-15 -1516 ($ |#1|)) (-15 -1515 ($ |#1|)) (-15 -1514 ($ |#1|)) (-15 -4202 ($ |#1| |#1| |#1|)) (-15 -4228 ($ |#1| |#1| |#1|)))) (-13 (-356) (-1169))) (T -221)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169))) (-5 *1 (-221 *3)))) (-1517 (*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) (-1516 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) (-1515 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) (-1514 (*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) (-4202 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) (-4228 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169)))))) -(-13 (-664 |#1| (-1229 |#1|) (-1229 |#1|)) (-10 -8 (-15 * ((-917 |#1|) $ (-917 |#1|))) (-15 -1517 ($)) (-15 -1516 ($ |#1|)) (-15 -1515 ($ |#1|)) (-15 -1514 ($ |#1|)) (-15 -4202 ($ |#1| |#1| |#1|)) (-15 -4228 ($ |#1| |#1| |#1|)))) -((-1626 (($ (-1 (-112) |#2|) $) 16)) (-3759 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-1518 (($) NIL) (($ (-620 |#2|)) 11)) (-3382 (((-112) $ $) 23))) -(((-222 |#1| |#2|) (-10 -8 (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -1518 (|#1| (-620 |#2|))) (-15 -1518 (|#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-223 |#2|) (-1072)) (T -222)) -NIL -(-10 -8 (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -1518 (|#1| (-620 |#2|))) (-15 -1518 (|#1|)) (-15 -3382 ((-112) |#1| |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-223 |#1|) (-138) (-1072)) (T -223)) -NIL -(-13 (-229 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-4165 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) 11) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) 19) (($ $ (-749)) NIL) (($ $) 16)) (-2997 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-749)) 14) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL))) -(((-224 |#1| |#2|) (-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -2997 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2997 (|#1| |#1| (-1147))) (-15 -2997 (|#1| |#1| (-620 (-1147)))) (-15 -2997 (|#1| |#1| (-1147) (-749))) (-15 -2997 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2997 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2997 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|)))) (-225 |#2|) (-1023)) (T -224)) -NIL -(-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -2997 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -2997 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2997 (|#1| |#1| (-1147))) (-15 -2997 (|#1| |#1| (-620 (-1147)))) (-15 -2997 (|#1| |#1| (-1147) (-749))) (-15 -2997 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2997 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2997 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4165 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-749)) 49) (($ $ (-620 (-1147)) (-620 (-749))) 42 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 41 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 40 (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) 39 (|has| |#1| (-874 (-1147)))) (($ $ (-749)) 37 (|has| |#1| (-227))) (($ $) 35 (|has| |#1| (-227)))) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-749)) 47) (($ $ (-620 (-1147)) (-620 (-749))) 46 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 45 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 44 (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) 43 (|has| |#1| (-874 (-1147)))) (($ $ (-749)) 38 (|has| |#1| (-227))) (($ $) 36 (|has| |#1| (-227)))) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-225 |#1|) (-138) (-1023)) (T -225)) -((-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1023)))) (-4165 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1023)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1023)))) (-2997 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1023))))) -(-13 (-1023) (-10 -8 (-15 -4165 ($ $ (-1 |t#1| |t#1|))) (-15 -4165 ($ $ (-1 |t#1| |t#1|) (-749))) (-15 -2997 ($ $ (-1 |t#1| |t#1|))) (-15 -2997 ($ $ (-1 |t#1| |t#1|) (-749))) (IF (|has| |t#1| (-227)) (-6 (-227)) |%noBranch|) (IF (|has| |t#1| (-874 (-1147))) (-6 (-874 (-1147))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-227) |has| |#1| (-227)) ((-626 $) . T) ((-705) . T) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-4165 (($ $) NIL) (($ $ (-749)) 10)) (-2997 (($ $) 8) (($ $ (-749)) 12))) -(((-226 |#1|) (-10 -8 (-15 -2997 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-749))) (-15 -2997 (|#1| |#1|)) (-15 -4165 (|#1| |#1|))) (-227)) (T -226)) -NIL -(-10 -8 (-15 -2997 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-749))) (-15 -2997 (|#1| |#1|)) (-15 -4165 (|#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4165 (($ $) 36) (($ $ (-749)) 34)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $) 35) (($ $ (-749)) 33)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-227) (-138)) (T -227)) -((-4165 (*1 *1 *1) (-4 *1 (-227))) (-2997 (*1 *1 *1) (-4 *1 (-227))) (-4165 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) (-2997 (*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749))))) -(-13 (-1023) (-10 -8 (-15 -4165 ($ $)) (-15 -2997 ($ $)) (-15 -4165 ($ $ (-749))) (-15 -2997 ($ $ (-749))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-1518 (($) 12) (($ (-620 |#2|)) NIL)) (-3754 (($ $) 14)) (-3879 (($ (-620 |#2|)) 10)) (-4312 (((-838) $) 21))) -(((-228 |#1| |#2|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -1518 (|#1| (-620 |#2|))) (-15 -1518 (|#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -3754 (|#1| |#1|))) (-229 |#2|) (-1072)) (T -228)) -NIL -(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -1518 (|#1| (-620 |#2|))) (-15 -1518 (|#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -3754 (|#1| |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-229 |#1|) (-138) (-1072)) (T -229)) -((-1518 (*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1072)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-229 *3)))) (-3759 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-229 *2)) (-4 *2 (-1072)))) (-3759 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-229 *3)) (-4 *3 (-1072)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-229 *3)) (-4 *3 (-1072))))) -(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -1518 ($)) (-15 -1518 ($ (-620 |t#1|))) (IF (|has| $ (-6 -4348)) (PROGN (-15 -3759 ($ |t#1| $)) (-15 -3759 ($ (-1 (-112) |t#1|) $)) (-15 -1626 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-1519 (((-2 (|:| |varOrder| (-620 (-1147))) (|:| |inhom| (-3 (-620 (-1229 (-749))) "failed")) (|:| |hom| (-620 (-1229 (-749))))) (-286 (-920 (-536)))) 27))) -(((-230) (-10 -7 (-15 -1519 ((-2 (|:| |varOrder| (-620 (-1147))) (|:| |inhom| (-3 (-620 (-1229 (-749))) "failed")) (|:| |hom| (-620 (-1229 (-749))))) (-286 (-920 (-536))))))) (T -230)) -((-1519 (*1 *2 *3) (-12 (-5 *3 (-286 (-920 (-536)))) (-5 *2 (-2 (|:| |varOrder| (-620 (-1147))) (|:| |inhom| (-3 (-620 (-1229 (-749))) "failed")) (|:| |hom| (-620 (-1229 (-749)))))) (-5 *1 (-230))))) -(-10 -7 (-15 -1519 ((-2 (|:| |varOrder| (-620 (-1147))) (|:| |inhom| (-3 (-620 (-1229 (-749))) "failed")) (|:| |hom| (-620 (-1229 (-749))))) (-286 (-920 (-536)))))) -((-3466 (((-749)) 51)) (-2357 (((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 $) (-1229 $)) 49) (((-667 |#3|) (-667 $)) 41) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-4266 (((-133)) 57)) (-4165 (($ $ (-1 |#3| |#3|) (-749)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-4312 (((-1229 |#3|) $) NIL) (($ |#3|) NIL) (((-838) $) NIL) (($ (-536)) 12) (($ (-400 (-536))) NIL)) (-3456 (((-749)) 15)) (-4303 (($ $ |#3|) 54))) -(((-231 |#1| |#2| |#3|) (-10 -8 (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|)) (-15 -3456 ((-749))) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -4312 (|#1| |#3|)) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -2357 ((-667 |#3|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 |#1|) (-1229 |#1|))) (-15 -3466 ((-749))) (-15 -4303 (|#1| |#1| |#3|)) (-15 -4266 ((-133))) (-15 -4312 ((-1229 |#3|) |#1|))) (-232 |#2| |#3|) (-749) (-1183)) (T -231)) -((-4266 (*1 *2) (-12 (-14 *4 (-749)) (-4 *5 (-1183)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3466 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1183)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5)))) (-3456 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1183)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) (-4 *3 (-232 *4 *5))))) -(-10 -8 (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|)) (-15 -3456 ((-749))) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -4312 (|#1| |#3|)) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -2357 ((-667 |#3|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 |#1|) (-1229 |#1|))) (-15 -3466 ((-749))) (-15 -4303 (|#1| |#1| |#3|)) (-15 -4266 ((-133))) (-15 -4312 ((-1229 |#3|) |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#2| (-1072)))) (-3534 (((-112) $) 72 (|has| |#2| (-130)))) (-4065 (($ (-893)) 125 (|has| |#2| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-2728 (($ $ $) 121 (|has| |#2| (-771)))) (-1367 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1269 (((-112) $ (-749)) 8)) (-3466 (((-749)) 107 (|has| |#2| (-361)))) (-3981 (((-536) $) 119 (|has| |#2| (-823)))) (-4142 ((|#2| $ (-536) |#2|) 52 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 67 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-3 (-400 (-536)) #1#) $) 64 (-3186 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1072)))) (-3502 (((-536) $) 68 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-400 (-536)) $) 65 (-3186 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) ((|#2| $) 60 (|has| |#2| (-1072)))) (-2357 (((-667 (-536)) (-667 $)) 106 (-3186 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 105 (-3186 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 104 (|has| |#2| (-1023))) (((-667 |#2|) (-667 $)) 103 (|has| |#2| (-1023)))) (-3816 (((-3 $ "failed") $) 79 (|has| |#2| (-705)))) (-3322 (($) 110 (|has| |#2| (-361)))) (-1632 ((|#2| $ (-536) |#2|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#2| $ (-536)) 51)) (-3532 (((-112) $) 117 (|has| |#2| (-823)))) (-2063 (((-620 |#2|) $) 30 (|has| $ (-6 -4348)))) (-2497 (((-112) $) 81 (|has| |#2| (-705)))) (-3533 (((-112) $) 118 (|has| |#2| (-823)))) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 116 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2506 (((-620 |#2|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 115 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2067 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2|) $) 35)) (-2121 (((-893) $) 109 (|has| |#2| (-361)))) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#2| (-1072)))) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-2487 (($ (-893)) 108 (|has| |#2| (-361)))) (-3589 (((-1091) $) 21 (|has| |#2| (-1072)))) (-4155 ((|#2| $) 42 (|has| (-536) (-825)))) (-2301 (($ $ |#2|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#2| $ (-536) |#2|) 50) ((|#2| $ (-536)) 49)) (-4191 ((|#2| $ $) 124 (|has| |#2| (-1023)))) (-1520 (($ (-1229 |#2|)) 126)) (-4266 (((-133)) 123 (|has| |#2| (-356)))) (-4165 (($ $) 98 (-3186 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) 96 (-3186 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) 94 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) 93 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) 92 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) 91 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) 84 (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1023)))) (-2064 (((-749) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4348))) (((-749) |#2| $) 28 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-1229 |#2|) $) 127) (($ (-536)) 66 (-3886 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (|has| |#2| (-1023)))) (($ (-400 (-536))) 63 (-3186 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (($ |#2|) 62 (|has| |#2| (-1072))) (((-838) $) 18 (|has| |#2| (-595 (-838))))) (-3456 (((-749)) 102 (|has| |#2| (-1023)))) (-2066 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4348)))) (-3737 (($ $) 120 (|has| |#2| (-823)))) (-2986 (($) 71 (|has| |#2| (-130)) CONST)) (-2992 (($) 82 (|has| |#2| (-705)) CONST)) (-2997 (($ $) 97 (-3186 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) 95 (-3186 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) 90 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) 89 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) 88 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) 87 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) 86 (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1023)))) (-2891 (((-112) $ $) 113 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-2892 (((-112) $ $) 112 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-3382 (((-112) $ $) 20 (|has| |#2| (-1072)))) (-3012 (((-112) $ $) 114 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-3013 (((-112) $ $) 111 (-3886 (|has| |#2| (-823)) (|has| |#2| (-771))))) (-4303 (($ $ |#2|) 122 (|has| |#2| (-356)))) (-4192 (($ $ $) 100 (|has| |#2| (-1023))) (($ $) 99 (|has| |#2| (-1023)))) (-4194 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-749)) 80 (|has| |#2| (-705))) (($ $ (-893)) 77 (|has| |#2| (-705)))) (* (($ (-536) $) 101 (|has| |#2| (-1023))) (($ $ $) 78 (|has| |#2| (-705))) (($ $ |#2|) 76 (|has| |#2| (-705))) (($ |#2| $) 75 (|has| |#2| (-705))) (($ (-749) $) 73 (|has| |#2| (-130))) (($ (-893) $) 70 (|has| |#2| (-25)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-232 |#1| |#2|) (-138) (-749) (-1183)) (T -232)) -((-1520 (*1 *1 *2) (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1183)) (-4 *1 (-232 *3 *4)))) (-4065 (*1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1023)) (-4 *4 (-1183)))) (-4191 (*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-1023)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-705))))) -(-13 (-586 (-536) |t#2|) (-595 (-1229 |t#2|)) (-10 -8 (-6 -4348) (-15 -1520 ($ (-1229 |t#2|))) (IF (|has| |t#2| (-1072)) (-6 (-405 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1023)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-225 |t#2|)) (-6 (-370 |t#2|)) (-15 -4065 ($ (-893))) (-15 -4191 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-705)) (PROGN (-6 (-705)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4345)) (-6 -4345) |%noBranch|) (IF (|has| |t#2| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |t#2| (-771)) (-6 (-771)) |%noBranch|) (IF (|has| |t#2| (-356)) (-6 (-1237 |t#2|)) |%noBranch|))) -(((-21) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-23) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -3886 (|has| |#2| (-1072)) (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3886 (|has| |#2| (-1023)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-595 (-838)) -3886 (|has| |#2| (-1072)) (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-595 (-838))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-595 (-1229 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-225 |#2|) |has| |#2| (-1023)) ((-227) -12 (|has| |#2| (-227)) (|has| |#2| (-1023))) ((-279 #1=(-536) |#2|) . T) ((-281 #1# |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-361) |has| |#2| (-361)) ((-370 |#2|) |has| |#2| (-1023)) ((-405 |#2|) |has| |#2| (-1072)) ((-481 |#2|) . T) ((-586 #1# |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-626 |#2|) -3886 (|has| |#2| (-1023)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-626 $) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-619 (-536)) -12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023))) ((-619 |#2|) |has| |#2| (-1023)) ((-696 |#2|) -3886 (|has| |#2| (-356)) (|has| |#2| (-170))) ((-705) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-705)) (|has| |#2| (-170))) ((-769) |has| |#2| (-823)) ((-770) -3886 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-771) |has| |#2| (-771)) ((-772) -3886 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-775) -3886 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-823) |has| |#2| (-823)) ((-825) -3886 (|has| |#2| (-823)) (|has| |#2| (-771))) ((-874 (-1147)) -12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023))) ((-1012 (-400 (-536))) -12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072))) ((-1012 (-536)) -12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) ((-1012 |#2|) |has| |#2| (-1072)) ((-1029 |#2|) -3886 (|has| |#2| (-1023)) (|has| |#2| (-356)) (|has| |#2| (-170))) ((-1029 $) |has| |#2| (-170)) ((-1023) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-1030) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-170))) ((-1083) -3886 (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-705)) (|has| |#2| (-170))) ((-1072) -3886 (|has| |#2| (-1072)) (|has| |#2| (-1023)) (|has| |#2| (-823)) (|has| |#2| (-771)) (|has| |#2| (-705)) (|has| |#2| (-361)) (|has| |#2| (-356)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1183) . T) ((-1237 |#2|) |has| |#2| (-356))) -((-2893 (((-112) $ $) NIL (|has| |#2| (-1072)))) (-3534 (((-112) $) NIL (|has| |#2| (-130)))) (-4065 (($ (-893)) 56 (|has| |#2| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) 60 (|has| |#2| (-771)))) (-1367 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1269 (((-112) $ (-749)) 17)) (-3466 (((-749)) NIL (|has| |#2| (-361)))) (-3981 (((-536) $) NIL (|has| |#2| (-823)))) (-4142 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1072)))) (-3502 (((-536) $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) ((|#2| $) 27 (|has| |#2| (-1072)))) (-2357 (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL (|has| |#2| (-1023))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1023)))) (-3816 (((-3 $ "failed") $) 53 (|has| |#2| (-705)))) (-3322 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ (-536)) 51)) (-3532 (((-112) $) NIL (|has| |#2| (-823)))) (-2063 (((-620 |#2|) $) 15 (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (|has| |#2| (-705)))) (-3533 (((-112) $) NIL (|has| |#2| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 20 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2506 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 (((-536) $) 50 (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2|) $) 41)) (-2121 (((-893) $) NIL (|has| |#2| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#2| (-1072)))) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#2| (-361)))) (-3589 (((-1091) $) NIL (|has| |#2| (-1072)))) (-4155 ((|#2| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ (-536) |#2|) NIL) ((|#2| $ (-536)) 21)) (-4191 ((|#2| $ $) NIL (|has| |#2| (-1023)))) (-1520 (($ (-1229 |#2|)) 18)) (-4266 (((-133)) NIL (|has| |#2| (-356)))) (-4165 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2064 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#2|) $) 10) (($ (-536)) NIL (-3886 (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (|has| |#2| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (($ |#2|) 13 (|has| |#2| (-1072))) (((-838) $) NIL (|has| |#2| (-595 (-838))))) (-3456 (((-749)) NIL (|has| |#2| (-1023)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#2| (-823)))) (-2986 (($) 35 (|has| |#2| (-130)) CONST)) (-2992 (($) 38 (|has| |#2| (-705)) CONST)) (-2997 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3382 (((-112) $ $) 26 (|has| |#2| (-1072)))) (-3012 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3013 (((-112) $ $) 58 (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $ $) NIL (|has| |#2| (-1023))) (($ $) NIL (|has| |#2| (-1023)))) (-4194 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-893)) NIL (|has| |#2| (-705)))) (* (($ (-536) $) NIL (|has| |#2| (-1023))) (($ $ $) 44 (|has| |#2| (-705))) (($ $ |#2|) 42 (|has| |#2| (-705))) (($ |#2| $) 43 (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-893) $) NIL (|has| |#2| (-25)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-233 |#1| |#2|) (-232 |#1| |#2|) (-749) (-1183)) (T -233)) -NIL -(-232 |#1| |#2|) -((-4196 (((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 21)) (-4197 ((|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|) 23)) (-4313 (((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)) 18))) -(((-234 |#1| |#2| |#3|) (-10 -7 (-15 -4196 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4197 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4313 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) (-749) (-1183) (-1183)) (T -234)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-749)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-5 *2 (-233 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-749)) (-4 *6 (-1183)) (-4 *2 (-1183)) (-5 *1 (-234 *5 *6 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-749)) (-4 *7 (-1183)) (-4 *5 (-1183)) (-5 *2 (-233 *6 *5)) (-5 *1 (-234 *6 *7 *5))))) -(-10 -7 (-15 -4196 ((-233 |#1| |#3|) (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4197 (|#3| (-1 |#3| |#2| |#3|) (-233 |#1| |#2|) |#3|)) (-15 -4313 ((-233 |#1| |#3|) (-1 |#3| |#2|) (-233 |#1| |#2|)))) -((-1524 (((-536) (-620 (-1129))) 24) (((-536) (-1129)) 19)) (-1523 (((-1235) (-620 (-1129))) 29) (((-1235) (-1129)) 28)) (-1521 (((-1129)) 14)) (-1522 (((-1129) (-536) (-1129)) 16)) (-4127 (((-620 (-1129)) (-620 (-1129)) (-536) (-1129)) 25) (((-1129) (-1129) (-536) (-1129)) 23)) (-2944 (((-620 (-1129)) (-620 (-1129))) 13) (((-620 (-1129)) (-1129)) 11))) -(((-235) (-10 -7 (-15 -2944 ((-620 (-1129)) (-1129))) (-15 -2944 ((-620 (-1129)) (-620 (-1129)))) (-15 -1521 ((-1129))) (-15 -1522 ((-1129) (-536) (-1129))) (-15 -4127 ((-1129) (-1129) (-536) (-1129))) (-15 -4127 ((-620 (-1129)) (-620 (-1129)) (-536) (-1129))) (-15 -1523 ((-1235) (-1129))) (-15 -1523 ((-1235) (-620 (-1129)))) (-15 -1524 ((-536) (-1129))) (-15 -1524 ((-536) (-620 (-1129)))))) (T -235)) -((-1524 (*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-536)) (-5 *1 (-235)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-536)) (-5 *1 (-235)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1235)) (-5 *1 (-235)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-235)))) (-4127 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-620 (-1129))) (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *1 (-235)))) (-4127 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-235)))) (-1522 (*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-235)))) (-1521 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-235)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-235)))) (-2944 (*1 *2 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-235)) (-5 *3 (-1129))))) -(-10 -7 (-15 -2944 ((-620 (-1129)) (-1129))) (-15 -2944 ((-620 (-1129)) (-620 (-1129)))) (-15 -1521 ((-1129))) (-15 -1522 ((-1129) (-536) (-1129))) (-15 -4127 ((-1129) (-1129) (-536) (-1129))) (-15 -4127 ((-620 (-1129)) (-620 (-1129)) (-536) (-1129))) (-15 -1523 ((-1235) (-1129))) (-15 -1523 ((-1235) (-620 (-1129)))) (-15 -1524 ((-536) (-1129))) (-15 -1524 ((-536) (-620 (-1129))))) -((** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 16)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ (-400 (-536)) $) 23) (($ $ (-400 (-536))) NIL))) -(((-236 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-536))) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) (-237)) (T -236)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-536))) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 37)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 41)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 38)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ (-400 (-536)) $) 40) (($ $ (-400 (-536))) 39))) -(((-237) (-138)) (T -237)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-536)))) (-2729 (*1 *1 *1) (-4 *1 (-237)))) -(-13 (-283) (-38 (-400 (-536))) (-10 -8 (-15 ** ($ $ (-536))) (-15 -2729 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-283) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-705) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-4151 (($ $) 57)) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-1526 (($ $ $) 53 (|has| $ (-6 -4349)))) (-1525 (($ $ $) 52 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-1528 (($ $) 56)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-1527 (($ $) 55)) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-4152 ((|#1| $) 59)) (-3524 (($ $) 58)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47)) (-3357 (((-536) $ $) 44)) (-3991 (((-112) $) 46)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4145 (($ $ $) 54 (|has| $ (-6 -4349)))) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-238 |#1|) (-138) (-1183)) (T -238)) -((-4152 (*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-3524 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-1528 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-1527 (*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-4145 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-1526 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183)))) (-1525 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183))))) -(-13 (-984 |t#1|) (-10 -8 (-15 -4152 (|t#1| $)) (-15 -3524 ($ $)) (-15 -4151 ($ $)) (-15 -1528 ($ $)) (-15 -1527 ($ $)) (IF (|has| $ (-6 -4349)) (PROGN (-15 -4145 ($ $ $)) (-15 -1526 ($ $ $)) (-15 -1525 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) NIL)) (-4149 ((|#1| $) NIL)) (-4151 (($ $) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-3237 (($ $) 10 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4141 (($ $ $) NIL (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4150 ((|#1| $) NIL)) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-4153 (($ $) NIL) (($ $ (-749)) NIL)) (-2450 (($ $) NIL (|has| |#1| (-1072)))) (-1398 (($ $) 7 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) NIL (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) NIL)) (-3760 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3796 (((-112) $) NIL)) (-3773 (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072))) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) (-1 (-112) |#1|) $) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3187 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3867 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3892 (($ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-4152 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-3965 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-3797 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1196 (-536))) NIL) ((|#1| $ (-536)) NIL) ((|#1| $ (-536) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-749) $ "count") 16)) (-3357 (((-536) $ $) NIL)) (-1627 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-1529 (($ (-620 |#1|)) 22)) (-3991 (((-112) $) NIL)) (-4146 (($ $) NIL)) (-4144 (($ $) NIL (|has| $ (-6 -4349)))) (-4147 (((-749) $) NIL)) (-4148 (($ $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4145 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-620 $)) NIL) (($ $ |#1|) NIL)) (-4312 (($ (-620 |#1|)) 17) (((-620 |#1|) $) 18) (((-838) $) 21 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) 14 (|has| $ (-6 -4348))))) -(((-239 |#1|) (-13 (-644 |#1|) (-10 -8 (-15 -4312 ($ (-620 |#1|))) (-15 -4312 ((-620 |#1|) $)) (-15 -1529 ($ (-620 |#1|))) (-15 -4154 ($ $ "unique")) (-15 -4154 ($ $ "sort")) (-15 -4154 ((-749) $ "count")))) (-825)) (T -239)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-1529 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-825)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-749)) (-5 *1 (-239 *4)) (-4 *4 (-825))))) -(-13 (-644 |#1|) (-10 -8 (-15 -4312 ($ (-620 |#1|))) (-15 -4312 ((-620 |#1|) $)) (-15 -1529 ($ (-620 |#1|))) (-15 -4154 ($ $ "unique")) (-15 -4154 ($ $ "sort")) (-15 -4154 ((-749) $ "count")))) -((-1530 (((-3 (-749) "failed") |#1| |#1| (-749)) 27))) -(((-240 |#1|) (-10 -7 (-15 -1530 ((-3 (-749) "failed") |#1| |#1| (-749)))) (-13 (-705) (-361) (-10 -7 (-15 ** (|#1| |#1| (-536)))))) (T -240)) -((-1530 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-749)) (-4 *3 (-13 (-705) (-361) (-10 -7 (-15 ** (*3 *3 (-536)))))) (-5 *1 (-240 *3))))) -(-10 -7 (-15 -1530 ((-3 (-749) "failed") |#1| |#1| (-749)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-839 |#1|)) $) NIL)) (-3414 (((-1141 $) $ (-839 |#1|)) NIL) (((-1141 |#2|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-543)))) (-2173 (($ $) NIL (|has| |#2| (-543)))) (-2171 (((-112) $) NIL (|has| |#2| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-839 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL (|has| |#2| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-839 |#1|) #2#) $) NIL)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-839 |#1|) $) NIL)) (-4111 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-620 (-536))) NIL)) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#2| (-884)))) (-1716 (($ $ |#2| (-233 (-4311 |#1|) (-749)) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#2|) (-839 |#1|)) NIL) (($ (-1141 $) (-839 |#1|)) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#2| (-233 (-4311 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-839 |#1|)) NIL)) (-3148 (((-233 (-4311 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-1717 (($ (-1 (-233 (-4311 |#1|) (-749)) (-233 (-4311 |#1|) (-749))) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-3413 (((-3 (-839 |#1|) #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#2| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -2488 (-749))) #3#) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-884)))) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-839 |#1|) |#2|) NIL) (($ $ (-620 (-839 |#1|)) (-620 |#2|)) NIL) (($ $ (-839 |#1|) $) NIL) (($ $ (-620 (-839 |#1|)) (-620 $)) NIL)) (-4112 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-4165 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4302 (((-233 (-4311 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-839 |#1|) (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-839 |#1|)) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#2| (-38 (-400 (-536)))) (|has| |#2| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#2| (-543)))) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-233 (-4311 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#2| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#2| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#2| (-38 (-400 (-536))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-241 |#1| |#2|) (-13 (-924 |#2| (-233 (-4311 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) (-620 (-1147)) (-1023)) (T -241)) -((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-241 *3 *4)) (-14 *3 (-620 (-1147))) (-4 *4 (-1023))))) -(-13 (-924 |#2| (-233 (-4311 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) -((-2893 (((-112) $ $) NIL)) (-1531 (((-1235) $) 15)) (-1533 (((-181) $) 9)) (-1532 (($ (-181)) 10)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 7)) (-3382 (((-112) $ $) 13))) -(((-242) (-13 (-1072) (-10 -8 (-15 -1533 ((-181) $)) (-15 -1532 ($ (-181))) (-15 -1531 ((-1235) $))))) (T -242)) -((-1533 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-1532 (*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242)))) (-1531 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-242))))) -(-13 (-1072) (-10 -8 (-15 -1533 ((-181) $)) (-15 -1532 ($ (-181))) (-15 -1531 ((-1235) $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4065 (($ (-893)) NIL (|has| |#4| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) NIL (|has| |#4| (-771)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#4| (-361)))) (-3981 (((-536) $) NIL (|has| |#4| (-823)))) (-4142 ((|#4| $ (-536) |#4|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1072))) (((-3 (-536) #1#) $) NIL (-12 (|has| |#4| (-1012 (-536))) (|has| |#4| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#4| (-1012 (-400 (-536)))) (|has| |#4| (-1072))))) (-3502 ((|#4| $) NIL (|has| |#4| (-1072))) (((-536) $) NIL (-12 (|has| |#4| (-1012 (-536))) (|has| |#4| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#4| (-1012 (-400 (-536)))) (|has| |#4| (-1072))))) (-2357 (((-2 (|:| -1695 (-667 |#4|)) (|:| |vec| (-1229 |#4|))) (-667 $) (-1229 $)) NIL (|has| |#4| (-1023))) (((-667 |#4|) (-667 $)) NIL (|has| |#4| (-1023))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023)))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))))) (-3816 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))))) (-3322 (($) NIL (|has| |#4| (-361)))) (-1632 ((|#4| $ (-536) |#4|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#4| $ (-536)) NIL)) (-3532 (((-112) $) NIL (|has| |#4| (-823)))) (-2063 (((-620 |#4|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))))) (-3533 (((-112) $) NIL (|has| |#4| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2506 (((-620 |#4|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2067 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#4| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#4| (-361)))) (-3589 (((-1091) $) NIL)) (-4155 ((|#4| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#4|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2307 (((-620 |#4|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#4| $ (-536) |#4|) NIL) ((|#4| $ (-536)) 12)) (-4191 ((|#4| $ $) NIL (|has| |#4| (-1023)))) (-1520 (($ (-1229 |#4|)) NIL)) (-4266 (((-133)) NIL (|has| |#4| (-356)))) (-4165 (($ $ (-1 |#4| |#4|) (-749)) NIL (|has| |#4| (-1023))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1023)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))))) (-2064 (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348))) (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#4|) $) NIL) (((-838) $) NIL) (($ |#4|) NIL (|has| |#4| (-1072))) (($ (-536)) NIL (-3886 (-12 (|has| |#4| (-1012 (-536))) (|has| |#4| (-1072))) (|has| |#4| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#4| (-1012 (-400 (-536)))) (|has| |#4| (-1072))))) (-3456 (((-749)) NIL (|has| |#4| (-1023)))) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#4| (-823)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) CONST)) (-2997 (($ $ (-1 |#4| |#4|) (-749)) NIL (|has| |#4| (-1023))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1023)))) (($ $) NIL (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-3013 (((-112) $ $) NIL (-3886 (|has| |#4| (-771)) (|has| |#4| (-823))))) (-4303 (($ $ |#4|) NIL (|has| |#4| (-356)))) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023))))) (($ $ (-893)) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))))) (* (($ |#2| $) 14) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-705))) (($ |#4| $) NIL (|has| |#4| (-705))) (($ $ $) NIL (-3886 (-12 (|has| |#4| (-227)) (|has| |#4| (-1023))) (-12 (|has| |#4| (-619 (-536))) (|has| |#4| (-1023))) (|has| |#4| (-705)) (-12 (|has| |#4| (-874 (-1147))) (|has| |#4| (-1023)))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-243 |#1| |#2| |#3| |#4|) (-13 (-232 |#1| |#4|) (-626 |#2|) (-626 |#3|)) (-893) (-1023) (-1094 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-626 |#2|)) (T -243)) -NIL -(-13 (-232 |#1| |#4|) (-626 |#2|) (-626 |#3|)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4065 (($ (-893)) NIL (|has| |#3| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) NIL (|has| |#3| (-771)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#3| (-361)))) (-3981 (((-536) $) NIL (|has| |#3| (-823)))) (-4142 ((|#3| $ (-536) |#3|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1072))) (((-3 (-536) #1#) $) NIL (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072))))) (-3502 ((|#3| $) NIL (|has| |#3| (-1072))) (((-536) $) NIL (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072))))) (-2357 (((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 $) (-1229 $)) NIL (|has| |#3| (-1023))) (((-667 |#3|) (-667 $)) NIL (|has| |#3| (-1023))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023)))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))))) (-3816 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))))) (-3322 (($) NIL (|has| |#3| (-361)))) (-1632 ((|#3| $ (-536) |#3|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#3| $ (-536)) NIL)) (-3532 (((-112) $) NIL (|has| |#3| (-823)))) (-2063 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))))) (-3533 (((-112) $) NIL (|has| |#3| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2506 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#3| |#3|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#3| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#3| (-361)))) (-3589 (((-1091) $) NIL)) (-4155 ((|#3| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#3|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-620 |#3|) (-620 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-2307 (((-620 |#3|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#3| $ (-536) |#3|) NIL) ((|#3| $ (-536)) 11)) (-4191 ((|#3| $ $) NIL (|has| |#3| (-1023)))) (-1520 (($ (-1229 |#3|)) NIL)) (-4266 (((-133)) NIL (|has| |#3| (-356)))) (-4165 (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1023))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))))) (-2064 (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348))) (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#3|) $) NIL) (((-838) $) NIL) (($ |#3|) NIL (|has| |#3| (-1072))) (($ (-536)) NIL (-3886 (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072))) (|has| |#3| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072))))) (-3456 (((-749)) NIL (|has| |#3| (-1023)))) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#3| (-823)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) CONST)) (-2997 (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1023))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1023))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3013 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-4303 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023))))) (($ $ (-893)) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))))) (* (($ |#2| $) 13) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-705))) (($ |#3| $) NIL (|has| |#3| (-705))) (($ $ $) NIL (-3886 (-12 (|has| |#3| (-227)) (|has| |#3| (-1023))) (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023))) (|has| |#3| (-705)) (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-244 |#1| |#2| |#3|) (-13 (-232 |#1| |#3|) (-626 |#2|)) (-749) (-1023) (-626 |#2|)) (T -244)) -NIL -(-13 (-232 |#1| |#3|) (-626 |#2|)) -((-1538 (((-620 (-749)) $) 47) (((-620 (-749)) $ |#3|) 50)) (-1572 (((-749) $) 49) (((-749) $ |#3|) 52)) (-1534 (($ $) 65)) (-3503 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 (-536) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4126 (((-749) $ |#3|) 39) (((-749) $) 36)) (-1573 (((-1 $ (-749)) |#3|) 15) (((-1 $ (-749)) $) 77)) (-1536 ((|#4| $) 58)) (-1537 (((-112) $) 56)) (-1535 (($ $) 64)) (-4122 (($ $ (-620 (-286 $))) 97) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-620 |#4|) (-620 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-620 |#4|) (-620 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-620 |#3|) (-620 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-620 |#3|) (-620 |#2|)) 84)) (-4165 (($ $ |#4|) NIL) (($ $ (-620 |#4|)) NIL) (($ $ |#4| (-749)) NIL) (($ $ (-620 |#4|) (-620 (-749))) NIL) (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1539 (((-620 |#3|) $) 75)) (-4302 ((|#5| $) NIL) (((-749) $ |#4|) NIL) (((-620 (-749)) $ (-620 |#4|)) NIL) (((-749) $ |#3|) 44)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-400 (-536))) NIL) (($ $) NIL))) -(((-245 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4122 (|#1| |#1| (-620 |#3|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#3| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#3|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#3| |#1|)) (-15 -1573 ((-1 |#1| (-749)) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 -1536 (|#4| |#1|)) (-15 -1537 ((-112) |#1|)) (-15 -1572 ((-749) |#1| |#3|)) (-15 -1538 ((-620 (-749)) |#1| |#3|)) (-15 -1572 ((-749) |#1|)) (-15 -1538 ((-620 (-749)) |#1|)) (-15 -4302 ((-749) |#1| |#3|)) (-15 -4126 ((-749) |#1|)) (-15 -4126 ((-749) |#1| |#3|)) (-15 -1539 ((-620 |#3|) |#1|)) (-15 -1573 ((-1 |#1| (-749)) |#3|)) (-15 -3503 ((-3 |#3| #1="failed") |#1|)) (-15 -4312 (|#1| |#3|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -4302 ((-620 (-749)) |#1| (-620 |#4|))) (-15 -4302 ((-749) |#1| |#4|)) (-15 -3503 ((-3 |#4| #1#) |#1|)) (-15 -4312 (|#1| |#4|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#4| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#4| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4302 (|#5| |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4165 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -4165 (|#1| |#1| |#4| (-749))) (-15 -4165 (|#1| |#1| (-620 |#4|))) (-15 -4165 (|#1| |#1| |#4|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-246 |#2| |#3| |#4| |#5|) (-1023) (-825) (-259 |#3|) (-771)) (T -245)) -NIL -(-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4122 (|#1| |#1| (-620 |#3|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#3| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#3|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#3| |#1|)) (-15 -1573 ((-1 |#1| (-749)) |#1|)) (-15 -1534 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 -1536 (|#4| |#1|)) (-15 -1537 ((-112) |#1|)) (-15 -1572 ((-749) |#1| |#3|)) (-15 -1538 ((-620 (-749)) |#1| |#3|)) (-15 -1572 ((-749) |#1|)) (-15 -1538 ((-620 (-749)) |#1|)) (-15 -4302 ((-749) |#1| |#3|)) (-15 -4126 ((-749) |#1|)) (-15 -4126 ((-749) |#1| |#3|)) (-15 -1539 ((-620 |#3|) |#1|)) (-15 -1573 ((-1 |#1| (-749)) |#3|)) (-15 -3503 ((-3 |#3| #1="failed") |#1|)) (-15 -4312 (|#1| |#3|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -4302 ((-620 (-749)) |#1| (-620 |#4|))) (-15 -4302 ((-749) |#1| |#4|)) (-15 -3503 ((-3 |#4| #1#) |#1|)) (-15 -4312 (|#1| |#4|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#4| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#4| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4302 (|#5| |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4165 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -4165 (|#1| |#1| |#4| (-749))) (-15 -4165 (|#1| |#1| (-620 |#4|))) (-15 -4165 (|#1| |#1| |#4|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1538 (((-620 (-749)) $) 212) (((-620 (-749)) $ |#2|) 210)) (-1572 (((-749) $) 211) (((-749) $ |#2|) 209)) (-3412 (((-620 |#3|) $) 108)) (-3414 (((-1141 $) $ |#3|) 123) (((-1141 |#1|) $) 122)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 85 (|has| |#1| (-543)))) (-2173 (($ $) 86 (|has| |#1| (-543)))) (-2171 (((-112) $) 88 (|has| |#1| (-543)))) (-3147 (((-749) $) 110) (((-749) $ (-620 |#3|)) 109)) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-884)))) (-4129 (($ $) 96 (|has| |#1| (-444)))) (-4324 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-884)))) (-1534 (($ $) 205)) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-536)) #2#) $) 160 (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) 158 (|has| |#1| (-1012 (-536)))) (((-3 |#3| #2#) $) 134) (((-3 |#2| #2#) $) 219)) (-3502 ((|#1| $) 163) (((-400 (-536)) $) 159 (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) 157 (|has| |#1| (-1012 (-536)))) ((|#3| $) 133) ((|#2| $) 218)) (-4111 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4314 (($ $) 152)) (-2357 (((-667 (-536)) (-667 $)) 132 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 131 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-3816 (((-3 $ "failed") $) 32)) (-3852 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3146 (((-620 $) $) 107)) (-4081 (((-112) $) 94 (|has| |#1| (-884)))) (-1716 (($ $ |#1| |#4| $) 170)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 82 (-12 (|has| |#3| (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 81 (-12 (|has| |#3| (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ |#2|) 215) (((-749) $) 214)) (-2497 (((-112) $) 30)) (-2505 (((-749) $) 167)) (-3415 (($ (-1141 |#1|) |#3|) 115) (($ (-1141 $) |#3|) 114)) (-3149 (((-620 $) $) 124)) (-4292 (((-112) $) 150)) (-3221 (($ |#1| |#4|) 151) (($ $ |#3| (-749)) 117) (($ $ (-620 |#3|) (-620 (-749))) 116)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#3|) 118)) (-3148 ((|#4| $) 168) (((-749) $ |#3|) 120) (((-620 (-749)) $ (-620 |#3|)) 119)) (-3672 (($ $ $) 77 (|has| |#1| (-825)))) (-3673 (($ $ $) 76 (|has| |#1| (-825)))) (-1717 (($ (-1 |#4| |#4|) $) 169)) (-4313 (($ (-1 |#1| |#1|) $) 149)) (-1573 (((-1 $ (-749)) |#2|) 217) (((-1 $ (-749)) $) 204 (|has| |#1| (-227)))) (-3413 (((-3 |#3| #3="failed") $) 121)) (-3222 (($ $) 147)) (-3520 ((|#1| $) 146)) (-1536 ((|#3| $) 207)) (-2008 (($ (-620 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3588 (((-1129) $) 9)) (-1537 (((-112) $) 208)) (-3151 (((-3 (-620 $) #3#) $) 112)) (-3150 (((-3 (-620 $) #3#) $) 113)) (-3152 (((-3 (-2 (|:| |var| |#3|) (|:| -2488 (-749))) #3#) $) 111)) (-1535 (($ $) 206)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3490 (($ (-620 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 97 (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-620 $) (-620 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-620 |#3|) (-620 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-620 |#3|) (-620 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-227))) (($ $ (-620 |#2|) (-620 $)) 202 (|has| |#1| (-227))) (($ $ |#2| |#1|) 201 (|has| |#1| (-227))) (($ $ (-620 |#2|) (-620 |#1|)) 200 (|has| |#1| (-227)))) (-4112 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4165 (($ $ |#3|) 40) (($ $ (-620 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-620 |#3|) (-620 (-749))) 37) (($ $) 236 (|has| |#1| (-227))) (($ $ (-749)) 234 (|has| |#1| (-227))) (($ $ (-1147)) 232 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 231 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 230 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 229 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-1539 (((-620 |#2|) $) 216)) (-4302 ((|#4| $) 148) (((-749) $ |#3|) 128) (((-620 (-749)) $ (-620 |#3|)) 127) (((-749) $ |#2|) 213)) (-4325 (((-864 (-371)) $) 80 (-12 (|has| |#3| (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) 79 (-12 (|has| |#3| (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) 78 (-12 (|has| |#3| (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 102 (-3186 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-400 (-536))) 70 (-3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| |#1| (-38 (-400 (-536)))))) (($ $) 83 (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) 166)) (-4035 ((|#1| $ |#4|) 153) (($ $ |#3| (-749)) 126) (($ $ (-620 |#3|) (-620 (-749))) 125)) (-3030 (((-3 $ #1#) $) 71 (-3886 (-3186 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 28)) (-1715 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 87 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ |#3|) 36) (($ $ (-620 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-620 |#3|) (-620 (-749))) 33) (($ $) 235 (|has| |#1| (-227))) (($ $ (-749)) 233 (|has| |#1| (-227))) (($ $ (-1147)) 228 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 227 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 226 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 225 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2891 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 73 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 75 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 72 (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 156 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 155 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-246 |#1| |#2| |#3| |#4|) (-138) (-1023) (-825) (-259 |t#2|) (-771)) (T -246)) -((-1573 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *4 *3 *5 *6)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-620 *4)))) (-4126 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) (-4302 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-620 (-749))))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) (-1538 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-620 (-749))))) (-1572 (*1 *2 *1 *3) (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-112)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) (-4 *2 (-259 *4)))) (-1535 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1023)) (-4 *3 (-825)) (-4 *4 (-259 *3)) (-4 *5 (-771)))) (-1534 (*1 *1 *1) (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1023)) (-4 *3 (-825)) (-4 *4 (-259 *3)) (-4 *5 (-771)))) (-1573 (*1 *2 *1) (-12 (-4 *3 (-227)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *3 *4 *5 *6))))) -(-13 (-924 |t#1| |t#4| |t#3|) (-225 |t#1|) (-1012 |t#2|) (-10 -8 (-15 -1573 ((-1 $ (-749)) |t#2|)) (-15 -1539 ((-620 |t#2|) $)) (-15 -4126 ((-749) $ |t#2|)) (-15 -4126 ((-749) $)) (-15 -4302 ((-749) $ |t#2|)) (-15 -1538 ((-620 (-749)) $)) (-15 -1572 ((-749) $)) (-15 -1538 ((-620 (-749)) $ |t#2|)) (-15 -1572 ((-749) $ |t#2|)) (-15 -1537 ((-112) $)) (-15 -1536 (|t#3| $)) (-15 -1535 ($ $)) (-15 -1534 ($ $)) (IF (|has| |t#1| (-227)) (PROGN (-6 (-505 |t#2| |t#1|)) (-6 (-505 |t#2| $)) (-6 (-302 $)) (-15 -1573 ((-1 $ (-749)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#3| (-596 (-525)))) ((-596 (-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#3| (-596 (-864 (-371))))) ((-596 (-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#3| (-596 (-864 (-536))))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-283) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#4|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-884)) (|has| |#1| (-444))) ((-505 |#2| |#1|) |has| |#1| (-227)) ((-505 |#2| $) |has| |#1| (-227)) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-543) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-874 |#3|) . T) ((-860 (-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#3| (-860 (-371)))) ((-860 (-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#3| (-860 (-536)))) ((-924 |#1| |#4| |#3|) . T) ((-884) |has| |#1| (-884)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1012 |#2|) . T) ((-1012 |#3|) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) |has| |#1| (-884))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1545 ((|#1| $) 54)) (-3678 ((|#1| $) 44)) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-3330 (($ $) 60)) (-2372 (($ $) 48)) (-3680 ((|#1| |#1| $) 46)) (-3679 ((|#1| $) 45)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-4188 (((-749) $) 61)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-1543 ((|#1| |#1| $) 52)) (-1542 ((|#1| |#1| $) 51)) (-3965 (($ |#1| $) 40)) (-2928 (((-749) $) 55)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-3329 ((|#1| $) 62)) (-1541 ((|#1| $) 50)) (-1540 ((|#1| $) 49)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3332 ((|#1| |#1| $) 58)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-3331 ((|#1| $) 59)) (-1546 (($) 57) (($ (-620 |#1|)) 56)) (-3677 (((-749) $) 43)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1544 ((|#1| $) 53)) (-1333 (($ (-620 |#1|)) 42)) (-3328 ((|#1| $) 63)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-247 |#1|) (-138) (-1183)) (T -247)) -((-1546 (*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1546 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-247 *3)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1543 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1542 (*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) (-2372 (*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) -(-13 (-1092 |t#1|) (-969 |t#1|) (-10 -8 (-15 -1546 ($)) (-15 -1546 ($ (-620 |t#1|))) (-15 -2928 ((-749) $)) (-15 -1545 (|t#1| $)) (-15 -1544 (|t#1| $)) (-15 -1543 (|t#1| |t#1| $)) (-15 -1542 (|t#1| |t#1| $)) (-15 -1541 (|t#1| $)) (-15 -1540 (|t#1| $)) (-15 -2372 ($ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-969 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1092 |#1|) . T) ((-1183) . T)) -((-1547 (((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371))) 71) (((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254))) 70) (((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371))) 61) (((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254))) 60) (((-1104 (-219)) (-853 |#1|) (-1063 (-371))) 52) (((-1104 (-219)) (-853 |#1|) (-1063 (-371)) (-620 (-254))) 51)) (-1554 (((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371))) 74) (((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254))) 73) (((-1233) |#1| (-1063 (-371)) (-1063 (-371))) 64) (((-1233) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254))) 63) (((-1233) (-853 |#1|) (-1063 (-371))) 56) (((-1233) (-853 |#1|) (-1063 (-371)) (-620 (-254))) 55) (((-1232) (-851 |#1|) (-1063 (-371))) 43) (((-1232) (-851 |#1|) (-1063 (-371)) (-620 (-254))) 42) (((-1232) |#1| (-1063 (-371))) 35) (((-1232) |#1| (-1063 (-371)) (-620 (-254))) 34))) -(((-248 |#1|) (-10 -7 (-15 -1554 ((-1232) |#1| (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) |#1| (-1063 (-371)))) (-15 -1554 ((-1232) (-851 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-851 |#1|) (-1063 (-371)))) (-15 -1554 ((-1233) (-853 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-853 |#1|) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) (-853 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-853 |#1|) (-1063 (-371)))) (-15 -1554 ((-1233) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) |#1| (-1063 (-371)) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371)))) (-15 -1554 ((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371))))) (-13 (-596 (-525)) (-1072))) (T -248)) -((-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-1063 (-371))) (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *5)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 *5)) (-5 *4 (-1063 (-371))) (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *6)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1233)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1063 (-371))) (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *5)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1063 (-371))) (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-851 *5)) (-5 *4 (-1063 (-371))) (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1232)) (-5 *1 (-248 *5)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-851 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1232)) (-5 *1 (-248 *6)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1232)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072)))))) -(-10 -7 (-15 -1554 ((-1232) |#1| (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) |#1| (-1063 (-371)))) (-15 -1554 ((-1232) (-851 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-851 |#1|) (-1063 (-371)))) (-15 -1554 ((-1233) (-853 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-853 |#1|) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) (-853 |#1|) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-853 |#1|) (-1063 (-371)))) (-15 -1554 ((-1233) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) |#1| (-1063 (-371)) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) |#1| (-1063 (-371)) (-1063 (-371)))) (-15 -1554 ((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-856 |#1|) (-1063 (-371)) (-1063 (-371)))) (-15 -1547 ((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-856 |#1|) (-1063 (-371)) (-1063 (-371))))) -((-1548 (((-1 (-917 (-219)) (-219) (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 139)) (-1547 (((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371))) 160) (((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 158) (((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371))) 163) (((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 159) (((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371))) 150) (((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 149) (((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371))) 129) (((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254))) 127) (((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371))) 128) (((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254))) 125)) (-1554 (((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371))) 162) (((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 161) (((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371))) 165) (((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 164) (((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371))) 152) (((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254))) 151) (((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371))) 135) (((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254))) 134) (((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371))) 133) (((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254))) 132) (((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371))) 100) (((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254))) 99) (((-1232) (-1 (-219) (-219)) (-1060 (-371))) 96) (((-1232) (-1 (-219) (-219)) (-1060 (-371)) (-620 (-254))) 95))) -(((-249) (-10 -7 (-15 -1554 ((-1232) (-1 (-219) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-1 (-219) (-219)) (-1060 (-371)))) (-15 -1554 ((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1554 ((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1554 ((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)))) (-15 -1548 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -249)) -((-1548 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219) (-219))) (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1547 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1232)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1232)) (-5 *1 (-249)))) (-1554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-249))))) -(-10 -7 (-15 -1554 ((-1232) (-1 (-219) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-1 (-219) (-219)) (-1060 (-371)))) (-15 -1554 ((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1232) (-851 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1554 ((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-853 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-853 (-1 (-219) (-219))) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219)) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-371)) (-1060 (-371)))) (-15 -1554 ((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1554 ((-1233) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)))) (-15 -1547 ((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)) (-620 (-254)))) (-15 -1547 ((-1104 (-219)) (-856 (-1 (-219) (-219) (-219))) (-1060 (-371)) (-1060 (-371)))) (-15 -1548 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))))) -((-1554 (((-1232) (-286 |#2|) (-1147) (-1147) (-620 (-254))) 96))) -(((-250 |#1| |#2|) (-10 -7 (-15 -1554 ((-1232) (-286 |#2|) (-1147) (-1147) (-620 (-254))))) (-13 (-543) (-825) (-1012 (-536))) (-414 |#1|)) (T -250)) -((-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-1147)) (-5 *5 (-620 (-254))) (-4 *7 (-414 *6)) (-4 *6 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-1232)) (-5 *1 (-250 *6 *7))))) -(-10 -7 (-15 -1554 ((-1232) (-286 |#2|) (-1147) (-1147) (-620 (-254))))) -((-1551 (((-536) (-536)) 50)) (-1552 (((-536) (-536)) 51)) (-1553 (((-219) (-219)) 52)) (-1550 (((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219))) 49)) (-1549 (((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219)) (-112)) 47))) -(((-251) (-10 -7 (-15 -1549 ((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219)) (-112))) (-15 -1550 ((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -1551 ((-536) (-536))) (-15 -1552 ((-536) (-536))) (-15 -1553 ((-219) (-219))))) (T -251)) -((-1553 (*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-251)))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-251)))) (-1551 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-251)))) (-1550 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1060 (-219))) (-5 *2 (-1233)) (-5 *1 (-251)))) (-1549 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1060 (-219))) (-5 *5 (-112)) (-5 *2 (-1233)) (-5 *1 (-251))))) -(-10 -7 (-15 -1549 ((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219)) (-112))) (-15 -1550 ((-1233) (-1 (-166 (-219)) (-166 (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -1551 ((-536) (-536))) (-15 -1552 ((-536) (-536))) (-15 -1553 ((-219) (-219)))) -((-4312 (((-1063 (-371)) (-1063 (-307 |#1|))) 16))) -(((-252 |#1|) (-10 -7 (-15 -4312 ((-1063 (-371)) (-1063 (-307 |#1|))))) (-13 (-825) (-543) (-596 (-371)))) (T -252)) -((-4312 (*1 *2 *3) (-12 (-5 *3 (-1063 (-307 *4))) (-4 *4 (-13 (-825) (-543) (-596 (-371)))) (-5 *2 (-1063 (-371))) (-5 *1 (-252 *4))))) -(-10 -7 (-15 -4312 ((-1063 (-371)) (-1063 (-307 |#1|))))) -((-1554 (((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219)) (-620 (-254))) 23) (((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219))) 24) (((-1232) (-620 (-917 (-219))) (-620 (-254))) 16) (((-1232) (-620 (-917 (-219)))) 17) (((-1232) (-620 (-219)) (-620 (-219)) (-620 (-254))) 20) (((-1232) (-620 (-219)) (-620 (-219))) 21))) -(((-253) (-10 -7 (-15 -1554 ((-1232) (-620 (-219)) (-620 (-219)))) (-15 -1554 ((-1232) (-620 (-219)) (-620 (-219)) (-620 (-254)))) (-15 -1554 ((-1232) (-620 (-917 (-219))))) (-15 -1554 ((-1232) (-620 (-917 (-219))) (-620 (-254)))) (-15 -1554 ((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219)))) (-15 -1554 ((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219)) (-620 (-254)))))) (T -253)) -((-1554 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-620 (-219))) (-5 *4 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1233)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *4 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-253)))) (-1554 (*1 *2 *3) (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *2 (-1232)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-620 (-219))) (-5 *4 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1232)) (-5 *1 (-253))))) -(-10 -7 (-15 -1554 ((-1232) (-620 (-219)) (-620 (-219)))) (-15 -1554 ((-1232) (-620 (-219)) (-620 (-219)) (-620 (-254)))) (-15 -1554 ((-1232) (-620 (-917 (-219))))) (-15 -1554 ((-1232) (-620 (-917 (-219))) (-620 (-254)))) (-15 -1554 ((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219)))) (-15 -1554 ((-1233) (-620 (-219)) (-620 (-219)) (-620 (-219)) (-620 (-254))))) -((-2893 (((-112) $ $) NIL)) (-4236 (($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 15)) (-1567 (($ (-893)) 76)) (-1566 (($ (-893)) 75)) (-1887 (($ (-620 (-371))) 82)) (-1570 (($ (-371)) 58)) (-1569 (($ (-893)) 77)) (-1563 (($ (-112)) 23)) (-4238 (($ (-1129)) 18)) (-1562 (($ (-1129)) 19)) (-1568 (($ (-1104 (-219))) 71)) (-2045 (($ (-620 (-1060 (-371)))) 67)) (-1556 (($ (-620 (-1060 (-371)))) 59) (($ (-620 (-1060 (-400 (-536))))) 66)) (-1559 (($ (-371)) 29) (($ (-848)) 33)) (-1555 (((-112) (-620 $) (-1147)) 91)) (-1571 (((-3 (-51) "failed") (-620 $) (-1147)) 93)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1558 (($ (-371)) 34) (($ (-848)) 35)) (-3570 (($ (-1 (-917 (-219)) (-917 (-219)))) 57)) (-2345 (($ (-1 (-917 (-219)) (-917 (-219)))) 78)) (-1557 (($ (-1 (-219) (-219))) 39) (($ (-1 (-219) (-219) (-219))) 43) (($ (-1 (-219) (-219) (-219) (-219))) 47)) (-4312 (((-838) $) 87)) (-1560 (($ (-112)) 24) (($ (-620 (-1060 (-371)))) 52)) (-2040 (($ (-112)) 25)) (-3382 (((-112) $ $) 89))) -(((-254) (-13 (-1072) (-10 -8 (-15 -2040 ($ (-112))) (-15 -1560 ($ (-112))) (-15 -4236 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4238 ($ (-1129))) (-15 -1562 ($ (-1129))) (-15 -1563 ($ (-112))) (-15 -1560 ($ (-620 (-1060 (-371))))) (-15 -3570 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -1559 ($ (-371))) (-15 -1559 ($ (-848))) (-15 -1558 ($ (-371))) (-15 -1558 ($ (-848))) (-15 -1557 ($ (-1 (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -1570 ($ (-371))) (-15 -1556 ($ (-620 (-1060 (-371))))) (-15 -1556 ($ (-620 (-1060 (-400 (-536)))))) (-15 -2045 ($ (-620 (-1060 (-371))))) (-15 -1568 ($ (-1104 (-219)))) (-15 -1566 ($ (-893))) (-15 -1567 ($ (-893))) (-15 -1569 ($ (-893))) (-15 -2345 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -1887 ($ (-620 (-371)))) (-15 -1571 ((-3 (-51) "failed") (-620 $) (-1147))) (-15 -1555 ((-112) (-620 $) (-1147)))))) (T -254)) -((-2040 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-4236 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-254)))) (-4238 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-254)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-254)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254)))) (-3570 (*1 *1 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-254)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1559 (*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-254)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1558 (*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-254)))) (-1557 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-254)))) (-1570 (*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254)))) (-1556 (*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-400 (-536))))) (-5 *1 (-254)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254)))) (-1568 (*1 *1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-254)))) (-1566 (*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) (-1569 (*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) (-2345 (*1 *1 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-254)))) (-1887 (*1 *1 *2) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-254)))) (-1571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *2 (-51)) (-5 *1 (-254)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *2 (-112)) (-5 *1 (-254))))) -(-13 (-1072) (-10 -8 (-15 -2040 ($ (-112))) (-15 -1560 ($ (-112))) (-15 -4236 ($ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4238 ($ (-1129))) (-15 -1562 ($ (-1129))) (-15 -1563 ($ (-112))) (-15 -1560 ($ (-620 (-1060 (-371))))) (-15 -3570 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -1559 ($ (-371))) (-15 -1559 ($ (-848))) (-15 -1558 ($ (-371))) (-15 -1558 ($ (-848))) (-15 -1557 ($ (-1 (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219)))) (-15 -1557 ($ (-1 (-219) (-219) (-219) (-219)))) (-15 -1570 ($ (-371))) (-15 -1556 ($ (-620 (-1060 (-371))))) (-15 -1556 ($ (-620 (-1060 (-400 (-536)))))) (-15 -2045 ($ (-620 (-1060 (-371))))) (-15 -1568 ($ (-1104 (-219)))) (-15 -1566 ($ (-893))) (-15 -1567 ($ (-893))) (-15 -1569 ($ (-893))) (-15 -2345 ($ (-1 (-917 (-219)) (-917 (-219))))) (-15 -1887 ($ (-620 (-371)))) (-15 -1571 ((-3 (-51) "failed") (-620 $) (-1147))) (-15 -1555 ((-112) (-620 $) (-1147))))) -((-4236 (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-620 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 26)) (-1567 (((-893) (-620 (-254)) (-893)) 53)) (-1566 (((-893) (-620 (-254)) (-893)) 52)) (-4206 (((-620 (-371)) (-620 (-254)) (-620 (-371))) 69)) (-1570 (((-371) (-620 (-254)) (-371)) 58)) (-1569 (((-893) (-620 (-254)) (-893)) 54)) (-1563 (((-112) (-620 (-254)) (-112)) 28)) (-4238 (((-1129) (-620 (-254)) (-1129)) 20)) (-1562 (((-1129) (-620 (-254)) (-1129)) 27)) (-1568 (((-1104 (-219)) (-620 (-254))) 47)) (-2045 (((-620 (-1060 (-371))) (-620 (-254)) (-620 (-1060 (-371)))) 41)) (-1564 (((-848) (-620 (-254)) (-848)) 33)) (-1565 (((-848) (-620 (-254)) (-848)) 34)) (-2345 (((-1 (-917 (-219)) (-917 (-219))) (-620 (-254)) (-1 (-917 (-219)) (-917 (-219)))) 64)) (-1561 (((-112) (-620 (-254)) (-112)) 16)) (-2040 (((-112) (-620 (-254)) (-112)) 15))) -(((-255) (-10 -7 (-15 -2040 ((-112) (-620 (-254)) (-112))) (-15 -1561 ((-112) (-620 (-254)) (-112))) (-15 -4236 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-620 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4238 ((-1129) (-620 (-254)) (-1129))) (-15 -1562 ((-1129) (-620 (-254)) (-1129))) (-15 -1563 ((-112) (-620 (-254)) (-112))) (-15 -1564 ((-848) (-620 (-254)) (-848))) (-15 -1565 ((-848) (-620 (-254)) (-848))) (-15 -2045 ((-620 (-1060 (-371))) (-620 (-254)) (-620 (-1060 (-371))))) (-15 -1566 ((-893) (-620 (-254)) (-893))) (-15 -1567 ((-893) (-620 (-254)) (-893))) (-15 -1568 ((-1104 (-219)) (-620 (-254)))) (-15 -1569 ((-893) (-620 (-254)) (-893))) (-15 -1570 ((-371) (-620 (-254)) (-371))) (-15 -2345 ((-1 (-917 (-219)) (-917 (-219))) (-620 (-254)) (-1 (-917 (-219)) (-917 (-219))))) (-15 -4206 ((-620 (-371)) (-620 (-254)) (-620 (-371)))))) (T -255)) -((-4206 (*1 *2 *3 *2) (-12 (-5 *2 (-620 (-371))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-2345 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1570 (*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1569 (*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-255)))) (-1567 (*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1566 (*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-2045 (*1 *2 *3 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1565 (*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1564 (*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1563 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1562 (*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-4238 (*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-4236 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-1561 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) (-2040 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) -(-10 -7 (-15 -2040 ((-112) (-620 (-254)) (-112))) (-15 -1561 ((-112) (-620 (-254)) (-112))) (-15 -4236 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) (-620 (-254)) (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4238 ((-1129) (-620 (-254)) (-1129))) (-15 -1562 ((-1129) (-620 (-254)) (-1129))) (-15 -1563 ((-112) (-620 (-254)) (-112))) (-15 -1564 ((-848) (-620 (-254)) (-848))) (-15 -1565 ((-848) (-620 (-254)) (-848))) (-15 -2045 ((-620 (-1060 (-371))) (-620 (-254)) (-620 (-1060 (-371))))) (-15 -1566 ((-893) (-620 (-254)) (-893))) (-15 -1567 ((-893) (-620 (-254)) (-893))) (-15 -1568 ((-1104 (-219)) (-620 (-254)))) (-15 -1569 ((-893) (-620 (-254)) (-893))) (-15 -1570 ((-371) (-620 (-254)) (-371))) (-15 -2345 ((-1 (-917 (-219)) (-917 (-219))) (-620 (-254)) (-1 (-917 (-219)) (-917 (-219))))) (-15 -4206 ((-620 (-371)) (-620 (-254)) (-620 (-371))))) -((-1571 (((-3 |#1| "failed") (-620 (-254)) (-1147)) 17))) -(((-256 |#1|) (-10 -7 (-15 -1571 ((-3 |#1| "failed") (-620 (-254)) (-1147)))) (-1183)) (T -256)) -((-1571 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *1 (-256 *2)) (-4 *2 (-1183))))) -(-10 -7 (-15 -1571 ((-3 |#1| "failed") (-620 (-254)) (-1147)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1538 (((-620 (-749)) $) NIL) (((-620 (-749)) $ |#2|) NIL)) (-1572 (((-749) $) NIL) (((-749) $ |#2|) NIL)) (-3412 (((-620 |#3|) $) NIL)) (-3414 (((-1141 $) $ |#3|) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 |#3|)) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1534 (($ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1096 |#1| |#2|) #2#) $) 21)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1096 |#1| |#2|) $) NIL)) (-4111 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-522 |#3|) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| |#1| (-860 (-371))) (|has| |#3| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| |#1| (-860 (-536))) (|has| |#3| (-860 (-536)))))) (-4126 (((-749) $ |#2|) NIL) (((-749) $) 10)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#1|) |#3|) NIL) (($ (-1141 $) |#3|) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-522 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-620 |#3|) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#3|) NIL)) (-3148 (((-522 |#3|) $) NIL) (((-749) $ |#3|) NIL) (((-620 (-749)) $ (-620 |#3|)) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 |#3|) (-522 |#3|)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-749)) |#2|) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-3413 (((-3 |#3| #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-1536 ((|#3| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-1537 (((-112) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| |#3|) (|:| -2488 (-749))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-620 |#3|) (-620 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-620 |#3|) (-620 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-227))) (($ $ (-620 |#2|) (-620 $)) NIL (|has| |#1| (-227))) (($ $ |#2| |#1|) NIL (|has| |#1| (-227))) (($ $ (-620 |#2|) (-620 |#1|)) NIL (|has| |#1| (-227)))) (-4112 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-4165 (($ $ |#3|) NIL) (($ $ (-620 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-620 |#3|) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-620 |#2|) $) NIL)) (-4302 (((-522 |#3|) $) NIL) (((-749) $ |#3|) NIL) (((-620 (-749)) $ (-620 |#3|)) NIL) (((-749) $ |#2|) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#3| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#3| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| |#1| (-596 (-525))) (|has| |#3| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ |#3|) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1096 |#1| |#2|)) 30) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-522 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-620 |#3|) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ |#3|) NIL) (($ $ (-620 |#3|)) NIL) (($ $ |#3| (-749)) NIL) (($ $ (-620 |#3|) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-257 |#1| |#2| |#3|) (-13 (-246 |#1| |#2| |#3| (-522 |#3|)) (-1012 (-1096 |#1| |#2|))) (-1023) (-825) (-259 |#2|)) (T -257)) -NIL -(-13 (-246 |#1| |#2| |#3| (-522 |#3|)) (-1012 (-1096 |#1| |#2|))) -((-1572 (((-749) $) 30)) (-3503 (((-3 |#2| "failed") $) 17)) (-3502 ((|#2| $) 27)) (-4165 (($ $) 12) (($ $ (-749)) 15)) (-4312 (((-838) $) 26) (($ |#2|) 10)) (-3382 (((-112) $ $) 20)) (-3013 (((-112) $ $) 29))) -(((-258 |#1| |#2|) (-10 -8 (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -1572 ((-749) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| "failed") |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-259 |#2|) (-825)) (T -258)) -NIL -(-10 -8 (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -1572 ((-749) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| "failed") |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-1572 (((-749) $) 22)) (-4186 ((|#1| $) 23)) (-3503 (((-3 |#1| "failed") $) 27)) (-3502 ((|#1| $) 26)) (-4126 (((-749) $) 24)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-1573 (($ |#1| (-749)) 25)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4165 (($ $) 21) (($ $ (-749)) 20)) (-4312 (((-838) $) 11) (($ |#1|) 28)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18))) -(((-259 |#1|) (-138) (-825)) (T -259)) -((-4312 (*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-1573 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-1572 (*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) (-4165 (*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-259 *3)) (-4 *3 (-825))))) -(-13 (-825) (-1012 |t#1|) (-10 -8 (-15 -1573 ($ |t#1| (-749))) (-15 -4126 ((-749) $)) (-15 -4186 (|t#1| $)) (-15 -1572 ((-749) $)) (-15 -4165 ($ $)) (-15 -4165 ($ $ (-749))) (-15 -4312 ($ |t#1|)))) -(((-101) . T) ((-595 (-838)) . T) ((-825) . T) ((-1012 |#1|) . T) ((-1072) . T)) -((-3412 (((-620 (-1147)) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 41)) (-4289 (((-620 (-1147)) (-307 (-219)) (-749)) 80)) (-1576 (((-3 (-307 (-219)) "failed") (-307 (-219))) 51)) (-1577 (((-307 (-219)) (-307 (-219))) 67)) (-1575 (((-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 26)) (-1578 (((-112) (-620 (-307 (-219)))) 84)) (-1582 (((-112) (-307 (-219))) 24)) (-1584 (((-620 (-1129)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) 106)) (-1581 (((-620 (-307 (-219))) (-620 (-307 (-219)))) 88)) (-1580 (((-620 (-307 (-219))) (-620 (-307 (-219)))) 86)) (-1579 (((-667 (-219)) (-620 (-307 (-219))) (-749)) 95)) (-3255 (((-112) (-307 (-219))) 20) (((-112) (-620 (-307 (-219)))) 85)) (-1574 (((-620 (-219)) (-620 (-817 (-219))) (-219)) 14)) (-1672 (((-371) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 101)) (-1583 (((-1009) (-1147) (-1009)) 34))) -(((-260) (-10 -7 (-15 -1574 ((-620 (-219)) (-620 (-817 (-219))) (-219))) (-15 -1575 ((-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))) (-15 -1576 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1577 ((-307 (-219)) (-307 (-219)))) (-15 -1578 ((-112) (-620 (-307 (-219))))) (-15 -3255 ((-112) (-620 (-307 (-219))))) (-15 -3255 ((-112) (-307 (-219)))) (-15 -1579 ((-667 (-219)) (-620 (-307 (-219))) (-749))) (-15 -1580 ((-620 (-307 (-219))) (-620 (-307 (-219))))) (-15 -1581 ((-620 (-307 (-219))) (-620 (-307 (-219))))) (-15 -1582 ((-112) (-307 (-219)))) (-15 -3412 ((-620 (-1147)) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -4289 ((-620 (-1147)) (-307 (-219)) (-749))) (-15 -1583 ((-1009) (-1147) (-1009))) (-15 -1672 ((-371) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -1584 ((-620 (-1129)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))))))) (T -260)) -((-1584 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) (-5 *2 (-620 (-1129))) (-5 *1 (-260)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) (-5 *2 (-371)) (-5 *1 (-260)))) (-1583 (*1 *2 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1147)) (-5 *1 (-260)))) (-4289 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-749)) (-5 *2 (-620 (-1147))) (-5 *1 (-260)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) (-5 *2 (-620 (-1147))) (-5 *1 (-260)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1581 (*1 *2 *2) (-12 (-5 *2 (-620 (-307 (-219)))) (-5 *1 (-260)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-620 (-307 (-219)))) (-5 *1 (-260)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) (-5 *1 (-260)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-260)))) (-1576 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-260)))) (-1575 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (-5 *1 (-260)))) (-1574 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-817 (-219)))) (-5 *4 (-219)) (-5 *2 (-620 *4)) (-5 *1 (-260))))) -(-10 -7 (-15 -1574 ((-620 (-219)) (-620 (-817 (-219))) (-219))) (-15 -1575 ((-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))) (-15 -1576 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1577 ((-307 (-219)) (-307 (-219)))) (-15 -1578 ((-112) (-620 (-307 (-219))))) (-15 -3255 ((-112) (-620 (-307 (-219))))) (-15 -3255 ((-112) (-307 (-219)))) (-15 -1579 ((-667 (-219)) (-620 (-307 (-219))) (-749))) (-15 -1580 ((-620 (-307 (-219))) (-620 (-307 (-219))))) (-15 -1581 ((-620 (-307 (-219))) (-620 (-307 (-219))))) (-15 -1582 ((-112) (-307 (-219)))) (-15 -3412 ((-620 (-1147)) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -4289 ((-620 (-1147)) (-307 (-219)) (-749))) (-15 -1583 ((-1009) (-1147) (-1009))) (-15 -1672 ((-371) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -1584 ((-620 (-1129)) (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))))) -((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 44)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 26) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-261) (-814)) (T -261)) -NIL -(-814) -((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 58) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 54)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 34) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 36)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-262) (-814)) (T -262)) -NIL -(-814) -((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 76) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 73)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 44) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 55)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-263) (-814)) (T -263)) -NIL -(-814) -((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 50)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 31) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-264) (-814)) (T -264)) -NIL -(-814) -((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 50)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 28) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-265) (-814)) (T -265)) -NIL -(-814) -((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 73)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 28) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-266) (-814)) (T -266)) -NIL -(-814) -((-2893 (((-112) $ $) NIL)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 77)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 25) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-267) (-814)) (T -267)) -NIL -(-814) -((-2893 (((-112) $ $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1586 (((-620 (-536)) $) 19)) (-4302 (((-749) $) 17)) (-4312 (((-838) $) 23) (($ (-620 (-536))) 15)) (-1585 (($ (-749)) 20)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 9)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 11))) -(((-268) (-13 (-825) (-10 -8 (-15 -4312 ($ (-620 (-536)))) (-15 -4302 ((-749) $)) (-15 -1586 ((-620 (-536)) $)) (-15 -1585 ($ (-749)))))) (T -268)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-268)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-268)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-268)))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-268))))) -(-13 (-825) (-10 -8 (-15 -4312 ($ (-620 (-536)))) (-15 -4302 ((-749) $)) (-15 -1586 ((-620 (-536)) $)) (-15 -1585 ($ (-749))))) -((-3841 ((|#2| |#2|) 77)) (-3997 ((|#2| |#2|) 65)) (-1615 (((-3 |#2| "failed") |#2| (-620 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3839 ((|#2| |#2|) 75)) (-3996 ((|#2| |#2|) 63)) (-3843 ((|#2| |#2|) 79)) (-3995 ((|#2| |#2|) 67)) (-3985 ((|#2|) 46)) (-3375 (((-113) (-113)) 95)) (-4297 ((|#2| |#2|) 61)) (-1616 (((-112) |#2|) 134)) (-1605 ((|#2| |#2|) 181)) (-1593 ((|#2| |#2|) 157)) (-1588 ((|#2|) 59)) (-1587 ((|#2|) 58)) (-1603 ((|#2| |#2|) 177)) (-1591 ((|#2| |#2|) 153)) (-1607 ((|#2| |#2|) 185)) (-1595 ((|#2| |#2|) 161)) (-1590 ((|#2| |#2|) 149)) (-1589 ((|#2| |#2|) 151)) (-1608 ((|#2| |#2|) 187)) (-1596 ((|#2| |#2|) 163)) (-1606 ((|#2| |#2|) 183)) (-1594 ((|#2| |#2|) 159)) (-1604 ((|#2| |#2|) 179)) (-1592 ((|#2| |#2|) 155)) (-1611 ((|#2| |#2|) 193)) (-1599 ((|#2| |#2|) 169)) (-1609 ((|#2| |#2|) 189)) (-1597 ((|#2| |#2|) 165)) (-1613 ((|#2| |#2|) 197)) (-1601 ((|#2| |#2|) 173)) (-1614 ((|#2| |#2|) 199)) (-1602 ((|#2| |#2|) 175)) (-1612 ((|#2| |#2|) 195)) (-1600 ((|#2| |#2|) 171)) (-1610 ((|#2| |#2|) 191)) (-1598 ((|#2| |#2|) 167)) (-4298 ((|#2| |#2|) 62)) (-3844 ((|#2| |#2|) 80)) (-3994 ((|#2| |#2|) 68)) (-3842 ((|#2| |#2|) 78)) (-3993 ((|#2| |#2|) 66)) (-3840 ((|#2| |#2|) 76)) (-3992 ((|#2| |#2|) 64)) (-2333 (((-112) (-113)) 93)) (-3847 ((|#2| |#2|) 83)) (-3835 ((|#2| |#2|) 71)) (-3845 ((|#2| |#2|) 81)) (-3833 ((|#2| |#2|) 69)) (-3849 ((|#2| |#2|) 85)) (-3837 ((|#2| |#2|) 73)) (-3850 ((|#2| |#2|) 86)) (-3838 ((|#2| |#2|) 74)) (-3848 ((|#2| |#2|) 84)) (-3836 ((|#2| |#2|) 72)) (-3846 ((|#2| |#2|) 82)) (-3834 ((|#2| |#2|) 70))) -(((-269 |#1| |#2|) (-10 -7 (-15 -4298 (|#2| |#2|)) (-15 -4297 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3985 (|#2|)) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1587 (|#2|)) (-15 -1588 (|#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 ((-3 |#2| "failed") |#2| (-620 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1616 ((-112) |#2|))) (-13 (-825) (-543)) (-13 (-414 |#1|) (-976))) (T -269)) -((-1616 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) (-4 *3 (-13 (-414 *4) (-976))))) (-1615 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-620 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-414 *4) (-976))) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-269 *4 *2)))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1611 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1604 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1602 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1593 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1591 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1590 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-1588 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-543))))) (-1587 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-543))))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *4)) (-4 *4 (-13 (-414 *3) (-976))))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-414 *4) (-976))))) (-3985 (*1 *2) (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) (-4 *3 (-13 (-825) (-543))))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-4297 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976))))) (-4298 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) (-4 *2 (-13 (-414 *3) (-976)))))) -(-10 -7 (-15 -4298 (|#2| |#2|)) (-15 -4297 (|#2| |#2|)) (-15 -3996 (|#2| |#2|)) (-15 -3992 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3994 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3835 (|#2| |#2|)) (-15 -3836 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3985 (|#2|)) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1587 (|#2|)) (-15 -1588 (|#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1590 (|#2| |#2|)) (-15 -1591 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1593 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 ((-3 |#2| "failed") |#2| (-620 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1616 ((-112) |#2|))) -((-1619 (((-3 |#2| "failed") (-620 (-593 |#2|)) |#2| (-1147)) 135)) (-1621 ((|#2| (-400 (-536)) |#2|) 51)) (-1620 ((|#2| |#2| (-593 |#2|)) 128)) (-1617 (((-2 (|:| |func| |#2|) (|:| |kers| (-620 (-593 |#2|))) (|:| |vals| (-620 |#2|))) |#2| (-1147)) 127)) (-1618 ((|#2| |#2| (-1147)) 20) ((|#2| |#2|) 23)) (-2687 ((|#2| |#2| (-1147)) 141) ((|#2| |#2|) 139))) -(((-270 |#1| |#2|) (-10 -7 (-15 -2687 (|#2| |#2|)) (-15 -2687 (|#2| |#2| (-1147))) (-15 -1617 ((-2 (|:| |func| |#2|) (|:| |kers| (-620 (-593 |#2|))) (|:| |vals| (-620 |#2|))) |#2| (-1147))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1147))) (-15 -1619 ((-3 |#2| "failed") (-620 (-593 |#2|)) |#2| (-1147))) (-15 -1620 (|#2| |#2| (-593 |#2|))) (-15 -1621 (|#2| (-400 (-536)) |#2|))) (-13 (-543) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -270)) -((-1621 (*1 *2 *3 *2) (-12 (-5 *3 (-400 (-536))) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-1620 (*1 *2 *2 *3) (-12 (-5 *3 (-593 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *4 *2)))) (-1619 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-620 (-593 *2))) (-5 *4 (-1147)) (-4 *2 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *5 *2)))) (-1618 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) (-1617 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-620 (-593 *3))) (|:| |vals| (-620 *3)))) (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-2687 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3)))))) -(-10 -7 (-15 -2687 (|#2| |#2|)) (-15 -2687 (|#2| |#2| (-1147))) (-15 -1617 ((-2 (|:| |func| |#2|) (|:| |kers| (-620 (-593 |#2|))) (|:| |vals| (-620 |#2|))) |#2| (-1147))) (-15 -1618 (|#2| |#2|)) (-15 -1618 (|#2| |#2| (-1147))) (-15 -1619 ((-3 |#2| "failed") (-620 (-593 |#2|)) |#2| (-1147))) (-15 -1620 (|#2| |#2| (-593 |#2|))) (-15 -1621 (|#2| (-400 (-536)) |#2|))) -((-3303 (((-3 |#3| #1="failed") |#3|) 110)) (-3841 ((|#3| |#3|) 131)) (-3291 (((-3 |#3| #1#) |#3|) 82)) (-3997 ((|#3| |#3|) 121)) (-3301 (((-3 |#3| #1#) |#3|) 58)) (-3839 ((|#3| |#3|) 129)) (-3289 (((-3 |#3| #1#) |#3|) 46)) (-3996 ((|#3| |#3|) 119)) (-3305 (((-3 |#3| #1#) |#3|) 112)) (-3843 ((|#3| |#3|) 133)) (-3293 (((-3 |#3| #1#) |#3|) 84)) (-3995 ((|#3| |#3|) 123)) (-3286 (((-3 |#3| #1#) |#3| (-749)) 36)) (-3288 (((-3 |#3| #1#) |#3|) 74)) (-4297 ((|#3| |#3|) 118)) (-3287 (((-3 |#3| #1#) |#3|) 44)) (-4298 ((|#3| |#3|) 117)) (-3306 (((-3 |#3| #1#) |#3|) 113)) (-3844 ((|#3| |#3|) 134)) (-3294 (((-3 |#3| #1#) |#3|) 85)) (-3994 ((|#3| |#3|) 124)) (-3304 (((-3 |#3| #1#) |#3|) 111)) (-3842 ((|#3| |#3|) 132)) (-3292 (((-3 |#3| #1#) |#3|) 83)) (-3993 ((|#3| |#3|) 122)) (-3302 (((-3 |#3| #1#) |#3|) 60)) (-3840 ((|#3| |#3|) 130)) (-3290 (((-3 |#3| #1#) |#3|) 48)) (-3992 ((|#3| |#3|) 120)) (-3309 (((-3 |#3| #1#) |#3|) 66)) (-3847 ((|#3| |#3|) 137)) (-3297 (((-3 |#3| #1#) |#3|) 104)) (-3835 ((|#3| |#3|) 142)) (-3307 (((-3 |#3| #1#) |#3|) 62)) (-3845 ((|#3| |#3|) 135)) (-3295 (((-3 |#3| #1#) |#3|) 50)) (-3833 ((|#3| |#3|) 125)) (-3311 (((-3 |#3| #1#) |#3|) 70)) (-3849 ((|#3| |#3|) 139)) (-3299 (((-3 |#3| #1#) |#3|) 54)) (-3837 ((|#3| |#3|) 127)) (-3312 (((-3 |#3| #1#) |#3|) 72)) (-3850 ((|#3| |#3|) 140)) (-3300 (((-3 |#3| #1#) |#3|) 56)) (-3838 ((|#3| |#3|) 128)) (-3310 (((-3 |#3| #1#) |#3|) 68)) (-3848 ((|#3| |#3|) 138)) (-3298 (((-3 |#3| #1#) |#3|) 107)) (-3836 ((|#3| |#3|) 143)) (-3308 (((-3 |#3| #1#) |#3|) 64)) (-3846 ((|#3| |#3|) 136)) (-3296 (((-3 |#3| #1#) |#3|) 52)) (-3834 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-400 (-536))) 40 (|has| |#1| (-356))))) -(((-271 |#1| |#2| |#3|) (-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-536)))) |%noBranch|) (-15 -4298 (|#3| |#3|)) (-15 -4297 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)))) (-38 (-400 (-536))) (-1222 |#1|) (-1193 |#1| |#2|)) (T -271)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-536))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1222 *4)) (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1193 *4 *5)))) (-4298 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-4297 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) (-4 *2 (-1193 *3 *4))))) -(-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-536)))) |%noBranch|) (-15 -4298 (|#3| |#3|)) (-15 -4297 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)))) -((-3303 (((-3 |#3| #1="failed") |#3|) 66)) (-3841 ((|#3| |#3|) 129)) (-3291 (((-3 |#3| #1#) |#3|) 50)) (-3997 ((|#3| |#3|) 117)) (-3301 (((-3 |#3| #1#) |#3|) 62)) (-3839 ((|#3| |#3|) 127)) (-3289 (((-3 |#3| #1#) |#3|) 46)) (-3996 ((|#3| |#3|) 115)) (-3305 (((-3 |#3| #1#) |#3|) 70)) (-3843 ((|#3| |#3|) 131)) (-3293 (((-3 |#3| #1#) |#3|) 54)) (-3995 ((|#3| |#3|) 119)) (-3286 (((-3 |#3| #1#) |#3| (-749)) 35)) (-3288 (((-3 |#3| #1#) |#3|) 44)) (-4297 ((|#3| |#3|) 104)) (-3287 (((-3 |#3| #1#) |#3|) 42)) (-4298 ((|#3| |#3|) 114)) (-3306 (((-3 |#3| #1#) |#3|) 72)) (-3844 ((|#3| |#3|) 132)) (-3294 (((-3 |#3| #1#) |#3|) 56)) (-3994 ((|#3| |#3|) 120)) (-3304 (((-3 |#3| #1#) |#3|) 68)) (-3842 ((|#3| |#3|) 130)) (-3292 (((-3 |#3| #1#) |#3|) 52)) (-3993 ((|#3| |#3|) 118)) (-3302 (((-3 |#3| #1#) |#3|) 64)) (-3840 ((|#3| |#3|) 128)) (-3290 (((-3 |#3| #1#) |#3|) 48)) (-3992 ((|#3| |#3|) 116)) (-3309 (((-3 |#3| #1#) |#3|) 74)) (-3847 ((|#3| |#3|) 135)) (-3297 (((-3 |#3| #1#) |#3|) 58)) (-3835 ((|#3| |#3|) 123)) (-3307 (((-3 |#3| #1#) |#3|) 105)) (-3845 ((|#3| |#3|) 133)) (-3295 (((-3 |#3| #1#) |#3|) 94)) (-3833 ((|#3| |#3|) 121)) (-3311 (((-3 |#3| #1#) |#3|) 109)) (-3849 ((|#3| |#3|) 137)) (-3299 (((-3 |#3| #1#) |#3|) 101)) (-3837 ((|#3| |#3|) 125)) (-3312 (((-3 |#3| #1#) |#3|) 110)) (-3850 ((|#3| |#3|) 138)) (-3300 (((-3 |#3| #1#) |#3|) 103)) (-3838 ((|#3| |#3|) 126)) (-3310 (((-3 |#3| #1#) |#3|) 76)) (-3848 ((|#3| |#3|) 136)) (-3298 (((-3 |#3| #1#) |#3|) 60)) (-3836 ((|#3| |#3|) 124)) (-3308 (((-3 |#3| #1#) |#3|) 106)) (-3846 ((|#3| |#3|) 134)) (-3296 (((-3 |#3| #1#) |#3|) 97)) (-3834 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-400 (-536))) 40 (|has| |#1| (-356))))) -(((-272 |#1| |#2| |#3| |#4|) (-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-536)))) |%noBranch|) (-15 -4298 (|#3| |#3|)) (-15 -4297 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)))) (-38 (-400 (-536))) (-1191 |#1|) (-1214 |#1| |#2|) (-957 |#2|)) (T -272)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-400 (-536))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1191 *4)) (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1214 *4 *5)) (-4 *6 (-957 *5)))) (-4298 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-4297 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3996 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3992 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3994 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3835 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3836 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4))))) -(-13 (-957 |#3|) (-10 -7 (IF (|has| |#1| (-356)) (-15 ** (|#3| |#3| (-400 (-536)))) |%noBranch|) (-15 -4298 (|#3| |#3|)) (-15 -4297 (|#3| |#3|)) (-15 -3996 (|#3| |#3|)) (-15 -3992 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -3993 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3994 (|#3| |#3|)) (-15 -3833 (|#3| |#3|)) (-15 -3834 (|#3| |#3|)) (-15 -3835 (|#3| |#3|)) (-15 -3836 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)))) -((-3180 (((-112) $) 19)) (-1625 (((-181) $) 7)) (-3927 (((-3 (-1147) "failed") $) 14)) (-3926 (((-3 (-620 $) "failed") $) NIL)) (-1623 (((-3 (-1147) "failed") $) 21)) (-1624 (((-3 (-1074) "failed") $) 17)) (-4307 (((-112) $) 15)) (-4312 (((-838) $) NIL)) (-1622 (((-112) $) 9))) -(((-273) (-13 (-595 (-838)) (-10 -8 (-15 -1625 ((-181) $)) (-15 -4307 ((-112) $)) (-15 -1624 ((-3 (-1074) "failed") $)) (-15 -3180 ((-112) $)) (-15 -1623 ((-3 (-1147) "failed") $)) (-15 -1622 ((-112) $)) (-15 -3927 ((-3 (-1147) "failed") $)) (-15 -3926 ((-3 (-620 $) "failed") $))))) (T -273)) -((-1625 (*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1624 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-273)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-1623 (*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-273)))) (-1622 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) (-3927 (*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-273)))) (-3926 (*1 *2 *1) (|partial| -12 (-5 *2 (-620 (-273))) (-5 *1 (-273))))) -(-13 (-595 (-838)) (-10 -8 (-15 -1625 ((-181) $)) (-15 -4307 ((-112) $)) (-15 -1624 ((-3 (-1074) "failed") $)) (-15 -3180 ((-112) $)) (-15 -1623 ((-3 (-1147) "failed") $)) (-15 -1622 ((-112) $)) (-15 -3927 ((-3 (-1147) "failed") $)) (-15 -3926 ((-3 (-620 $) "failed") $)))) -((-4068 (($ (-1 (-112) |#2|) $) 24)) (-1398 (($ $) 36)) (-3759 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3760 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3187 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2377 (($ |#2| $ (-536)) 20) (($ $ $ (-536)) 22)) (-2378 (($ $ (-536)) 11) (($ $ (-1196 (-536))) 14)) (-4145 (($ $ |#2|) 30) (($ $ $) NIL)) (-4156 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-620 $)) NIL))) -(((-274 |#1| |#2|) (-10 -8 (-15 -3187 (|#1| |#1| |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -3187 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4145 (|#1| |#1| |#1|)) (-15 -4145 (|#1| |#1| |#2|)) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3760 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3760 (|#1| |#2| |#1|)) (-15 -1398 (|#1| |#1|))) (-275 |#2|) (-1183)) (T -274)) -NIL -(-10 -8 (-15 -3187 (|#1| |#1| |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -3187 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4145 (|#1| |#1| |#1|)) (-15 -4145 (|#1| |#1| |#2|)) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -3760 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3760 (|#1| |#2| |#1|)) (-15 -1398 (|#1| |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) 85)) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2450 (($ $) 83 (|has| |#1| (-1072)))) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1072)))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3187 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3965 (($ |#1| $ (-536)) 88) (($ $ $ (-536)) 87)) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-1627 (($ $ (-536)) 91) (($ $ (-1196 (-536))) 90)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 70)) (-4145 (($ $ |#1|) 93) (($ $ $) 92)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-275 |#1|) (-138) (-1183)) (T -275)) -((-4145 (*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)))) (-4145 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-3759 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-3965 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-275 *2)) (-4 *2 (-1183)))) (-3965 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-3187 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-1626 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) (-3759 (*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-1072)))) (-2450 (*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-1072)))) (-3187 (*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-825))))) -(-13 (-629 |t#1|) (-10 -8 (-6 -4349) (-15 -4145 ($ $ |t#1|)) (-15 -4145 ($ $ $)) (-15 -1627 ($ $ (-536))) (-15 -1627 ($ $ (-1196 (-536)))) (-15 -3759 ($ (-1 (-112) |t#1|) $)) (-15 -3965 ($ |t#1| $ (-536))) (-15 -3965 ($ $ $ (-536))) (-15 -3187 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1626 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1072)) (PROGN (-15 -3759 ($ |t#1| $)) (-15 -2450 ($ $))) |%noBranch|) (IF (|has| |t#1| (-825)) (-15 -3187 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) +((-1816 (*1 *1 *1) (-4 *1 (-171)))) +(-13 (-10 -8 (-15 -1816 ($ $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 ((|#1| $) 75)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL)) (-1429 (($ $) 19)) (-1433 (($ |#1| (-1126 |#1|)) 48)) (-3821 (((-3 $ "failed") $) 117)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-1430 (((-1126 |#1|) $) 82)) (-1432 (((-1126 |#1|) $) 79)) (-1431 (((-1126 |#1|) $) 80)) (-2502 (((-112) $) NIL)) (-1426 (((-1126 |#1|) $) 88)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2013 (($ (-622 $)) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ (-622 $)) NIL) (($ $ $) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-4128 (($ $ (-538)) 91)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1425 (((-1126 |#1|) $) 89)) (-1427 (((-1126 (-402 |#1|)) $) 14)) (-2945 (($ (-402 |#1|)) 17) (($ |#1| (-1126 |#1|) (-1126 |#1|)) 38)) (-3224 (($ $) 93)) (-4317 (((-840) $) 127) (($ (-538)) 51) (($ |#1|) 52) (($ (-402 |#1|)) 36) (($ (-402 (-538))) NIL) (($ $) NIL)) (-3461 (((-751)) 64)) (-2177 (((-112) $ $) NIL)) (-1428 (((-1126 (-402 |#1|)) $) 18)) (-2991 (($) 25 T CONST)) (-2997 (($) 28 T CONST)) (-3387 (((-112) $ $) 35)) (-4308 (($ $ $) 115)) (-4197 (($ $) 106) (($ $ $) 103)) (-4199 (($ $ $) 101)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-402 |#1|) $) 111) (($ $ (-402 |#1|)) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL))) +(((-172 |#1|) (-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -2945 ($ (-402 |#1|))) (-15 -2945 ($ |#1| (-1126 |#1|) (-1126 |#1|))) (-15 -1433 ($ |#1| (-1126 |#1|))) (-15 -1432 ((-1126 |#1|) $)) (-15 -1431 ((-1126 |#1|) $)) (-15 -1430 ((-1126 |#1|) $)) (-15 -3464 (|#1| $)) (-15 -1429 ($ $)) (-15 -1428 ((-1126 (-402 |#1|)) $)) (-15 -1427 ((-1126 (-402 |#1|)) $)) (-15 -1426 ((-1126 |#1|) $)) (-15 -1425 ((-1126 |#1|) $)) (-15 -4128 ($ $ (-538))) (-15 -3224 ($ $)))) (-302)) (T -172)) +((-2945 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3)))) (-2945 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1126 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-1433 (*1 *1 *2 *3) (-12 (-5 *3 (-1126 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1431 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3464 (*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-1429 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-1126 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1126 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1426 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) (-3224 (*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))) +(-13 (-38 |#1|) (-38 (-402 |#1|)) (-358) (-10 -8 (-15 -2945 ($ (-402 |#1|))) (-15 -2945 ($ |#1| (-1126 |#1|) (-1126 |#1|))) (-15 -1433 ($ |#1| (-1126 |#1|))) (-15 -1432 ((-1126 |#1|) $)) (-15 -1431 ((-1126 |#1|) $)) (-15 -1430 ((-1126 |#1|) $)) (-15 -3464 (|#1| $)) (-15 -1429 ($ $)) (-15 -1428 ((-1126 (-402 |#1|)) $)) (-15 -1427 ((-1126 (-402 |#1|)) $)) (-15 -1426 ((-1126 |#1|) $)) (-15 -1425 ((-1126 |#1|) $)) (-15 -4128 ($ $ (-538))) (-15 -3224 ($ $)))) +((-1434 (($ (-108) $) 13)) (-3572 (((-3 (-108) "failed") (-1149) $) 12)) (-4317 (((-840) $) 16)) (-1435 (((-622 (-108)) $) 8))) +(((-173) (-13 (-597 (-840)) (-10 -8 (-15 -1435 ((-622 (-108)) $)) (-15 -1434 ($ (-108) $)) (-15 -3572 ((-3 (-108) "failed") (-1149) $))))) (T -173)) +((-1435 (*1 *2 *1) (-12 (-5 *2 (-622 (-108))) (-5 *1 (-173)))) (-1434 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173)))) (-3572 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-173))))) +(-13 (-597 (-840)) (-10 -8 (-15 -1435 ((-622 (-108)) $)) (-15 -1434 ($ (-108) $)) (-15 -3572 ((-3 (-108) "failed") (-1149) $)))) +((-1448 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 40)) (-1439 (((-919 |#1|) (-919 |#1|)) 19)) (-1444 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 36)) (-1437 (((-919 |#1|) (-919 |#1|)) 17)) (-1442 (((-919 |#1|) (-919 |#1|)) 25)) (-1441 (((-919 |#1|) (-919 |#1|)) 24)) (-1440 (((-919 |#1|) (-919 |#1|)) 23)) (-1445 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 37)) (-1443 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 35)) (-1759 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 34)) (-1438 (((-919 |#1|) (-919 |#1|)) 18)) (-1449 (((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|) 43)) (-1436 (((-919 |#1|) (-919 |#1|)) 8)) (-1447 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 39)) (-1446 (((-1 (-919 |#1|) (-919 |#1|)) |#1|) 38))) +(((-174 |#1|) (-10 -7 (-15 -1436 ((-919 |#1|) (-919 |#1|))) (-15 -1437 ((-919 |#1|) (-919 |#1|))) (-15 -1438 ((-919 |#1|) (-919 |#1|))) (-15 -1439 ((-919 |#1|) (-919 |#1|))) (-15 -1440 ((-919 |#1|) (-919 |#1|))) (-15 -1441 ((-919 |#1|) (-919 |#1|))) (-15 -1442 ((-919 |#1|) (-919 |#1|))) (-15 -1759 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1443 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1444 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1445 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1446 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1447 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1448 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1449 ((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|))) (-13 (-358) (-1171) (-978))) (T -174)) +((-1449 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1448 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1447 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1446 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1445 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1444 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1443 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1759 (*1 *2 *3) (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) (-4 *3 (-13 (-358) (-1171) (-978))))) (-1442 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1440 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1439 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1438 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1437 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3)))) (-1436 (*1 *2 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3))))) +(-10 -7 (-15 -1436 ((-919 |#1|) (-919 |#1|))) (-15 -1437 ((-919 |#1|) (-919 |#1|))) (-15 -1438 ((-919 |#1|) (-919 |#1|))) (-15 -1439 ((-919 |#1|) (-919 |#1|))) (-15 -1440 ((-919 |#1|) (-919 |#1|))) (-15 -1441 ((-919 |#1|) (-919 |#1|))) (-15 -1442 ((-919 |#1|) (-919 |#1|))) (-15 -1759 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1443 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1444 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1445 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1446 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1447 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1448 ((-1 (-919 |#1|) (-919 |#1|)) |#1|)) (-15 -1449 ((-1 (-919 |#1|) (-919 |#1|)) |#1| |#1|))) +((-2698 ((|#2| |#3|) 27))) +(((-175 |#1| |#2| |#3|) (-10 -7 (-15 -2698 (|#2| |#3|))) (-170) (-1207 |#1|) (-705 |#1| |#2|)) (T -175)) +((-2698 (*1 *2 *3) (-12 (-4 *4 (-170)) (-4 *2 (-1207 *4)) (-5 *1 (-175 *4 *2 *3)) (-4 *3 (-705 *4 *2))))) +(-10 -7 (-15 -2698 (|#2| |#3|))) +((-3129 (((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)) 47 (|has| (-922 |#2|) (-862 |#1|))))) +(((-176 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-922 |#2|) (-862 |#1|)) (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))) |%noBranch|)) (-1074) (-13 (-862 |#1|) (-170)) (-164 |#2|)) (T -176)) +((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *3 (-164 *6)) (-4 (-922 *6) (-862 *5)) (-4 *6 (-13 (-862 *5) (-170))) (-5 *1 (-176 *5 *6 *3))))) +(-10 -7 (IF (|has| (-922 |#2|) (-862 |#1|)) (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))) |%noBranch|)) +((-1451 (((-622 |#1|) (-622 |#1|) |#1|) 38)) (-1450 (((-622 |#1|) |#1| (-622 |#1|)) 19)) (-2197 (((-622 |#1|) (-622 (-622 |#1|)) (-622 |#1|)) 33) ((|#1| (-622 |#1|) (-622 |#1|)) 31))) +(((-177 |#1|) (-10 -7 (-15 -1450 ((-622 |#1|) |#1| (-622 |#1|))) (-15 -2197 (|#1| (-622 |#1|) (-622 |#1|))) (-15 -2197 ((-622 |#1|) (-622 (-622 |#1|)) (-622 |#1|))) (-15 -1451 ((-622 |#1|) (-622 |#1|) |#1|))) (-302)) (T -177)) +((-1451 (*1 *2 *2 *3) (-12 (-5 *2 (-622 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3)))) (-2197 (*1 *2 *3 *2) (-12 (-5 *3 (-622 (-622 *4))) (-5 *2 (-622 *4)) (-4 *4 (-302)) (-5 *1 (-177 *4)))) (-2197 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302)))) (-1450 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3))))) +(-10 -7 (-15 -1450 ((-622 |#1|) |#1| (-622 |#1|))) (-15 -2197 (|#1| (-622 |#1|) (-622 |#1|))) (-15 -2197 ((-622 |#1|) (-622 (-622 |#1|)) (-622 |#1|))) (-15 -1451 ((-622 |#1|) (-622 |#1|) |#1|))) +((-2898 (((-112) $ $) NIL)) (-3669 (((-1186) $) 13)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 10)) (-4317 (((-840) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-178) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $))))) (T -178)) +((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-178)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-178))))) +(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $)))) +((-1460 (((-2 (|:| |start| |#2|) (|:| -2767 (-400 |#2|))) |#2|) 61)) (-1459 ((|#1| |#1|) 54)) (-1458 (((-166 |#1|) |#2|) 84)) (-1457 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1456 ((|#2| |#2|) 83)) (-1455 (((-400 |#2|) |#2| |#1|) 113) (((-400 |#2|) |#2| |#1| (-112)) 81)) (-3467 ((|#1| |#2|) 112)) (-1454 ((|#2| |#2|) 119)) (-4092 (((-400 |#2|) |#2|) 134) (((-400 |#2|) |#2| |#1|) 32) (((-400 |#2|) |#2| |#1| (-112)) 133)) (-1453 (((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2|) 132) (((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2| (-112)) 76)) (-1452 (((-622 (-166 |#1|)) |#2| |#1|) 40) (((-622 (-166 |#1|)) |#2|) 41))) +(((-179 |#1| |#2|) (-10 -7 (-15 -1452 ((-622 (-166 |#1|)) |#2|)) (-15 -1452 ((-622 (-166 |#1|)) |#2| |#1|)) (-15 -1453 ((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2| (-112))) (-15 -1453 ((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2|)) (-15 -4092 ((-400 |#2|) |#2| |#1| (-112))) (-15 -4092 ((-400 |#2|) |#2| |#1|)) (-15 -4092 ((-400 |#2|) |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -3467 (|#1| |#2|)) (-15 -1455 ((-400 |#2|) |#2| |#1| (-112))) (-15 -1455 ((-400 |#2|) |#2| |#1|)) (-15 -1456 (|#2| |#2|)) (-15 -1457 (|#1| |#2| |#1|)) (-15 -1457 (|#1| |#2|)) (-15 -1458 ((-166 |#1|) |#2|)) (-15 -1459 (|#1| |#1|)) (-15 -1460 ((-2 (|:| |start| |#2|) (|:| -2767 (-400 |#2|))) |#2|))) (-13 (-358) (-825)) (-1207 (-166 |#1|))) (T -179)) +((-1460 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-2 (|:| |start| *3) (|:| -2767 (-400 *3)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-1459 (*1 *2 *2) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1207 (-166 *2))))) (-1458 (*1 *2 *3) (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-358) (-825))) (-4 *3 (-1207 *2)))) (-1457 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1207 (-166 *2))))) (-1457 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1207 (-166 *2))))) (-1456 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1207 (-166 *3))))) (-1455 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-1455 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-3467 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) (-4 *3 (-1207 (-166 *2))))) (-1454 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) (-4 *2 (-1207 (-166 *3))))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-4092 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-4092 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-1453 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-622 (-2 (|:| -2767 (-622 *3)) (|:| -1656 *4)))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-1453 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-825))) (-5 *2 (-622 (-2 (|:| -2767 (-622 *3)) (|:| -1656 *5)))) (-5 *1 (-179 *5 *3)) (-4 *3 (-1207 (-166 *5))))) (-1452 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-622 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) (-1452 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-622 (-166 *4))) (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4)))))) +(-10 -7 (-15 -1452 ((-622 (-166 |#1|)) |#2|)) (-15 -1452 ((-622 (-166 |#1|)) |#2| |#1|)) (-15 -1453 ((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2| (-112))) (-15 -1453 ((-622 (-2 (|:| -2767 (-622 |#2|)) (|:| -1656 |#1|))) |#2| |#2|)) (-15 -4092 ((-400 |#2|) |#2| |#1| (-112))) (-15 -4092 ((-400 |#2|) |#2| |#1|)) (-15 -4092 ((-400 |#2|) |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -3467 (|#1| |#2|)) (-15 -1455 ((-400 |#2|) |#2| |#1| (-112))) (-15 -1455 ((-400 |#2|) |#2| |#1|)) (-15 -1456 (|#2| |#2|)) (-15 -1457 (|#1| |#2| |#1|)) (-15 -1457 (|#1| |#2|)) (-15 -1458 ((-166 |#1|) |#2|)) (-15 -1459 (|#1| |#1|)) (-15 -1460 ((-2 (|:| |start| |#2|) (|:| -2767 (-400 |#2|))) |#2|))) +((-1461 (((-3 |#2| "failed") |#2|) 14)) (-1462 (((-751) |#2|) 16)) (-1463 ((|#2| |#2| |#2|) 18))) +(((-180 |#1| |#2|) (-10 -7 (-15 -1461 ((-3 |#2| "failed") |#2|)) (-15 -1462 ((-751) |#2|)) (-15 -1463 (|#2| |#2| |#2|))) (-1185) (-654 |#1|)) (T -180)) +((-1463 (*1 *2 *2 *2) (-12 (-4 *3 (-1185)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3)))) (-1462 (*1 *2 *3) (-12 (-4 *4 (-1185)) (-5 *2 (-751)) (-5 *1 (-180 *4 *3)) (-4 *3 (-654 *4)))) (-1461 (*1 *2 *2) (|partial| -12 (-4 *3 (-1185)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3))))) +(-10 -7 (-15 -1461 ((-3 |#2| "failed") |#2|)) (-15 -1462 ((-751) |#2|)) (-15 -1463 (|#2| |#2| |#2|))) +((-2898 (((-112) $ $) NIL)) (-3905 (((-499) $) 8)) (-3593 (((-1131) $) NIL)) (-1465 (((-183) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-1464 (((-1093) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-181) (-13 (-1074) (-10 -8 (-15 -3905 ((-499) $)) (-15 -1465 ((-183) $)) (-15 -1464 ((-1093) $))))) (T -181)) +((-3905 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-181)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-181)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-181))))) +(-13 (-1074) (-10 -8 (-15 -3905 ((-499) $)) (-15 -1465 ((-183) $)) (-15 -1464 ((-1093) $)))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1467 (((-1149) $) 10)) (-4317 (((-840) $) 17)) (-1466 (((-622 (-1154)) $) 12)) (-3387 (((-112) $ $) 15))) +(((-182) (-13 (-1074) (-10 -8 (-15 -1467 ((-1149) $)) (-15 -1466 ((-622 (-1154)) $))))) (T -182)) +((-1467 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-182)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-182))))) +(-13 (-1074) (-10 -8 (-15 -1467 ((-1149) $)) (-15 -1466 ((-622 (-1154)) $)))) +((-2898 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-8 (($) 7 T CONST)) (-4317 (((-840) $) 14)) (-9 (($) 6 T CONST)) (-3387 (((-112) $ $) 10))) +(((-183) (-13 (-1074) (-10 -8 (-15 -9 ($) -4311) (-15 -8 ($) -4311) (-15 -7 ($) -4311)))) (T -183)) +((-9 (*1 *1) (-5 *1 (-183))) (-8 (*1 *1) (-5 *1 (-183))) (-7 (*1 *1) (-5 *1 (-183)))) +(-13 (-1074) (-10 -8 (-15 -9 ($) -4311) (-15 -8 ($) -4311) (-15 -7 ($) -4311))) +((-4005 ((|#2| |#2|) 28)) (-4008 (((-112) |#2|) 19)) (-4006 (((-309 |#1|) |#2|) 12)) (-4007 (((-309 |#1|) |#2|) 14)) (-4003 ((|#2| |#2| (-1149)) 68) ((|#2| |#2|) 69)) (-4009 (((-166 (-309 |#1|)) |#2|) 10)) (-4004 ((|#2| |#2| (-1149)) 65) ((|#2| |#2|) 59))) +(((-184 |#1| |#2|) (-10 -7 (-15 -4003 (|#2| |#2|)) (-15 -4003 (|#2| |#2| (-1149))) (-15 -4004 (|#2| |#2|)) (-15 -4004 (|#2| |#2| (-1149))) (-15 -4006 ((-309 |#1|) |#2|)) (-15 -4007 ((-309 |#1|) |#2|)) (-15 -4008 ((-112) |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4009 ((-166 (-309 |#1|)) |#2|))) (-13 (-545) (-827) (-1014 (-538))) (-13 (-27) (-1171) (-416 (-166 |#1|)))) (T -184)) +((-4009 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-166 (-309 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3)))))) (-4008 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-112)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4007 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-309 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-309 *4)) (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4004 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3)))))) (-4003 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *4)))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3))))))) +(-10 -7 (-15 -4003 (|#2| |#2|)) (-15 -4003 (|#2| |#2| (-1149))) (-15 -4004 (|#2| |#2|)) (-15 -4004 (|#2| |#2| (-1149))) (-15 -4006 ((-309 |#1|) |#2|)) (-15 -4007 ((-309 |#1|) |#2|)) (-15 -4008 ((-112) |#2|)) (-15 -4005 (|#2| |#2|)) (-15 -4009 ((-166 (-309 |#1|)) |#2|))) +((-1471 (((-1231 (-669 (-922 |#1|))) (-1231 (-669 |#1|))) 24)) (-4317 (((-1231 (-669 (-402 (-922 |#1|)))) (-1231 (-669 |#1|))) 33))) +(((-185 |#1|) (-10 -7 (-15 -1471 ((-1231 (-669 (-922 |#1|))) (-1231 (-669 |#1|)))) (-15 -4317 ((-1231 (-669 (-402 (-922 |#1|)))) (-1231 (-669 |#1|))))) (-170)) (T -185)) +((-4317 (*1 *2 *3) (-12 (-5 *3 (-1231 (-669 *4))) (-4 *4 (-170)) (-5 *2 (-1231 (-669 (-402 (-922 *4))))) (-5 *1 (-185 *4)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1231 (-669 *4))) (-4 *4 (-170)) (-5 *2 (-1231 (-669 (-922 *4)))) (-5 *1 (-185 *4))))) +(-10 -7 (-15 -1471 ((-1231 (-669 (-922 |#1|))) (-1231 (-669 |#1|)))) (-15 -4317 ((-1231 (-669 (-402 (-922 |#1|)))) (-1231 (-669 |#1|))))) +((-1479 (((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538)))) 66)) (-1481 (((-1151 (-402 (-538))) (-622 (-538)) (-622 (-538))) 75)) (-1472 (((-1151 (-402 (-538))) (-538)) 40)) (-4214 (((-1151 (-402 (-538))) (-538)) 52)) (-4127 (((-402 (-538)) (-1151 (-402 (-538)))) 62)) (-1473 (((-1151 (-402 (-538))) (-538)) 32)) (-1476 (((-1151 (-402 (-538))) (-538)) 48)) (-1475 (((-1151 (-402 (-538))) (-538)) 46)) (-1478 (((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538)))) 60)) (-3224 (((-1151 (-402 (-538))) (-538)) 25)) (-1477 (((-402 (-538)) (-1151 (-402 (-538))) (-1151 (-402 (-538)))) 64)) (-1474 (((-1151 (-402 (-538))) (-538)) 30)) (-1480 (((-1151 (-402 (-538))) (-622 (-538))) 72))) +(((-186) (-10 -7 (-15 -3224 ((-1151 (-402 (-538))) (-538))) (-15 -1472 ((-1151 (-402 (-538))) (-538))) (-15 -1473 ((-1151 (-402 (-538))) (-538))) (-15 -1474 ((-1151 (-402 (-538))) (-538))) (-15 -1475 ((-1151 (-402 (-538))) (-538))) (-15 -1476 ((-1151 (-402 (-538))) (-538))) (-15 -4214 ((-1151 (-402 (-538))) (-538))) (-15 -1477 ((-402 (-538)) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -1478 ((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -4127 ((-402 (-538)) (-1151 (-402 (-538))))) (-15 -1479 ((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -1480 ((-1151 (-402 (-538))) (-622 (-538)))) (-15 -1481 ((-1151 (-402 (-538))) (-622 (-538)) (-622 (-538)))))) (T -186)) +((-1481 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))) (-1479 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-1151 (-402 (-538)))) (-5 *2 (-402 (-538))) (-5 *1 (-186)))) (-1478 (*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)))) (-1477 (*1 *2 *3 *3) (-12 (-5 *3 (-1151 (-402 (-538)))) (-5 *2 (-402 (-538))) (-5 *1 (-186)))) (-4214 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-1475 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-1472 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) (-3224 (*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538))))) +(-10 -7 (-15 -3224 ((-1151 (-402 (-538))) (-538))) (-15 -1472 ((-1151 (-402 (-538))) (-538))) (-15 -1473 ((-1151 (-402 (-538))) (-538))) (-15 -1474 ((-1151 (-402 (-538))) (-538))) (-15 -1475 ((-1151 (-402 (-538))) (-538))) (-15 -1476 ((-1151 (-402 (-538))) (-538))) (-15 -4214 ((-1151 (-402 (-538))) (-538))) (-15 -1477 ((-402 (-538)) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -1478 ((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -4127 ((-402 (-538)) (-1151 (-402 (-538))))) (-15 -1479 ((-1151 (-402 (-538))) (-1151 (-402 (-538))) (-1151 (-402 (-538))))) (-15 -1480 ((-1151 (-402 (-538))) (-622 (-538)))) (-15 -1481 ((-1151 (-402 (-538))) (-622 (-538)) (-622 (-538))))) +((-1483 (((-400 (-1143 (-538))) (-538)) 28)) (-1482 (((-622 (-1143 (-538))) (-538)) 23)) (-3134 (((-1143 (-538)) (-538)) 21))) +(((-187) (-10 -7 (-15 -1482 ((-622 (-1143 (-538))) (-538))) (-15 -3134 ((-1143 (-538)) (-538))) (-15 -1483 ((-400 (-1143 (-538))) (-538))))) (T -187)) +((-1483 (*1 *2 *3) (-12 (-5 *2 (-400 (-1143 (-538)))) (-5 *1 (-187)) (-5 *3 (-538)))) (-3134 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-187)) (-5 *3 (-538)))) (-1482 (*1 *2 *3) (-12 (-5 *2 (-622 (-1143 (-538)))) (-5 *1 (-187)) (-5 *3 (-538))))) +(-10 -7 (-15 -1482 ((-622 (-1143 (-538))) (-538))) (-15 -3134 ((-1143 (-538)) (-538))) (-15 -1483 ((-400 (-1143 (-538))) (-538)))) +((-1668 (((-1126 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 105)) (-1689 (((-622 (-1131)) (-1126 (-221))) NIL)) (-1484 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 81)) (-1666 (((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221)))) NIL)) (-1688 (((-622 (-1131)) (-622 (-221))) NIL)) (-1690 (((-221) (-1062 (-819 (-221)))) 24)) (-1691 (((-221) (-1062 (-819 (-221)))) 25)) (-1486 (((-373) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 98)) (-1485 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-1686 (((-1131) (-221)) NIL)) (-2901 (((-1131) (-622 (-1131))) 20)) (-1487 (((-1011) (-1149) (-1149) (-1011)) 13))) +(((-188) (-10 -7 (-15 -1484 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1485 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -1486 ((-373) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1666 ((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))) (-15 -2901 ((-1131) (-622 (-1131)))) (-15 -1487 ((-1011) (-1149) (-1149) (-1011))))) (T -188)) +((-1487 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-188)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-188)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-188)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-188)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-188)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-188)))) (-1666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-221))) (-5 *4 (-1149)) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-622 (-221))) (-5 *1 (-188)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-373)) (-5 *1 (-188)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) (-1485 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-188)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-188))))) +(-10 -7 (-15 -1484 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1485 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -1486 ((-373) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1666 ((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))) (-15 -2901 ((-1131) (-622 (-1131)))) (-15 -1487 ((-1011) (-1149) (-1149) (-1011)))) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 55) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-189) (-767)) (T -189)) +NIL +(-767) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 60) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-190) (-767)) (T -190)) +NIL +(-767) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 69) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-191) (-767)) (T -191)) +NIL +(-767) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 56) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-192) (-767)) (T -192)) +NIL +(-767) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 67) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 38) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-193) (-767)) (T -193)) +NIL +(-767) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 73) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-194) (-767)) (T -194)) +NIL +(-767) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 80) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 44) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-195) (-767)) (T -195)) +NIL +(-767) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 70) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-196) (-767)) (T -196)) +NIL +(-767) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 66)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 32)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-197) (-767)) (T -197)) +NIL +(-767) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 63)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 34)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-198) (-767)) (T -198)) +NIL +(-767) +((-2898 (((-112) $ $) NIL)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 90) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 78) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-199) (-767)) (T -199)) +NIL +(-767) +((-1488 (((-3 (-2 (|:| -2836 (-113)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 85)) (-1490 (((-538) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 42)) (-1489 (((-3 (-622 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 73))) +(((-200) (-10 -7 (-15 -1488 ((-3 (-2 (|:| -2836 (-113)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1489 ((-3 (-622 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1490 ((-538) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -200)) +((-1490 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-538)) (-5 *1 (-200)))) (-1489 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-622 (-221))) (-5 *1 (-200)))) (-1488 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -2836 (-113)) (|:| |w| (-221)))) (-5 *1 (-200))))) +(-10 -7 (-15 -1488 ((-3 (-2 (|:| -2836 (-113)) (|:| |w| (-221))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1489 ((-3 (-622 (-221)) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1490 ((-538) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) +((-1495 (((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-1494 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 130)) (-1493 (((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-669 (-309 (-221)))) 89)) (-1492 (((-373) (-669 (-309 (-221)))) 113)) (-2452 (((-669 (-309 (-221))) (-1231 (-309 (-221))) (-622 (-1149))) 110)) (-1498 (((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 30)) (-1496 (((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 43)) (-4127 (((-669 (-309 (-221))) (-669 (-309 (-221))) (-622 (-1149)) (-1231 (-309 (-221)))) 102)) (-1491 (((-373) (-373) (-622 (-373))) 107) (((-373) (-373) (-373)) 105)) (-1497 (((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 36))) +(((-201) (-10 -7 (-15 -1491 ((-373) (-373) (-373))) (-15 -1491 ((-373) (-373) (-622 (-373)))) (-15 -1492 ((-373) (-669 (-309 (-221))))) (-15 -2452 ((-669 (-309 (-221))) (-1231 (-309 (-221))) (-622 (-1149)))) (-15 -4127 ((-669 (-309 (-221))) (-669 (-309 (-221))) (-622 (-1149)) (-1231 (-309 (-221))))) (-15 -1493 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-669 (-309 (-221))))) (-15 -1494 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1495 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1496 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1497 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1498 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -201)) +((-1498 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1494 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-201)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-669 (-309 (-221)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) (-5 *1 (-201)))) (-4127 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-669 (-309 (-221)))) (-5 *3 (-622 (-1149))) (-5 *4 (-1231 (-309 (-221)))) (-5 *1 (-201)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *4 (-622 (-1149))) (-5 *2 (-669 (-309 (-221)))) (-5 *1 (-201)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-669 (-309 (-221)))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1491 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-373))) (-5 *2 (-373)) (-5 *1 (-201)))) (-1491 (*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-201))))) +(-10 -7 (-15 -1491 ((-373) (-373) (-373))) (-15 -1491 ((-373) (-373) (-622 (-373)))) (-15 -1492 ((-373) (-669 (-309 (-221))))) (-15 -2452 ((-669 (-309 (-221))) (-1231 (-309 (-221))) (-622 (-1149)))) (-15 -4127 ((-669 (-309 (-221))) (-669 (-309 (-221))) (-622 (-1149)) (-1231 (-309 (-221))))) (-15 -1493 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-669 (-309 (-221))))) (-15 -1494 ((-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373))) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1495 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1496 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1497 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1498 ((-373) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) +((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2740 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 64)) (-3387 (((-112) $ $) NIL))) +(((-202) (-780)) (T -202)) +NIL +(-780) +((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 41)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2740 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 62)) (-3387 (((-112) $ $) NIL))) +(((-203) (-780)) (T -203)) +NIL +(-780) +((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 40)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2740 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 66)) (-3387 (((-112) $ $) NIL))) +(((-204) (-780)) (T -204)) +NIL +(-780) +((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 46)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2740 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 75)) (-3387 (((-112) $ $) NIL))) +(((-205) (-780)) (T -205)) +NIL +(-780) +((-4294 (((-622 (-1149)) (-1149) (-751)) 23)) (-1499 (((-309 (-221)) (-309 (-221))) 31)) (-1501 (((-112) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 74)) (-1500 (((-112) (-221) (-221) (-622 (-309 (-221)))) 45))) +(((-206) (-10 -7 (-15 -4294 ((-622 (-1149)) (-1149) (-751))) (-15 -1499 ((-309 (-221)) (-309 (-221)))) (-15 -1500 ((-112) (-221) (-221) (-622 (-309 (-221))))) (-15 -1501 ((-112) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))))) (T -206)) +((-1501 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-112)) (-5 *1 (-206)))) (-1500 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-622 (-309 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-206)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-309 (-221))) (-5 *1 (-206)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-622 (-1149))) (-5 *1 (-206)) (-5 *3 (-1149))))) +(-10 -7 (-15 -4294 ((-622 (-1149)) (-1149) (-751))) (-15 -1499 ((-309 (-221)) (-309 (-221)))) (-15 -1500 ((-112) (-221) (-221) (-622 (-309 (-221))))) (-15 -1501 ((-112) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))))) +((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 26)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2998 (((-1011) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 57)) (-3387 (((-112) $ $) NIL))) +(((-207) (-871)) (T -207)) +NIL +(-871) +((-2898 (((-112) $ $) NIL)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 21)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2998 (((-1011) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) NIL)) (-3387 (((-112) $ $) NIL))) +(((-208) (-871)) (T -208)) +NIL +(-871) +((-2898 (((-112) $ $) NIL)) (-4147 ((|#2| $ (-751) |#2|) 11)) (-3977 (($) 8)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4159 ((|#2| $ (-751)) 10)) (-4317 (((-840) $) 18)) (-3387 (((-112) $ $) 13))) +(((-209 |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -3977 ($)) (-15 -4159 (|#2| $ (-751))) (-15 -4147 (|#2| $ (-751) |#2|)))) (-895) (-1074)) (T -209)) +((-3977 (*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1074)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *2 (-1074)) (-5 *1 (-209 *4 *2)) (-14 *4 (-895)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-209 *4 *2)) (-14 *4 (-895)) (-4 *2 (-1074))))) +(-13 (-1074) (-10 -8 (-15 -3977 ($)) (-15 -4159 (|#2| $ (-751))) (-15 -4147 (|#2| $ (-751) |#2|)))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2087 (((-1237) $) 36) (((-1237) $ (-895) (-895)) 38)) (-4159 (($ $ (-965)) 19) (((-241 (-1131)) $ (-1149)) 15)) (-3980 (((-1237) $) 34)) (-4317 (((-840) $) 31) (($ (-622 |#1|)) 8)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $ $) 27)) (-4199 (($ $ $) 22))) +(((-210 |#1|) (-13 (-1074) (-10 -8 (-15 -4159 ($ $ (-965))) (-15 -4159 ((-241 (-1131)) $ (-1149))) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -4317 ($ (-622 |#1|))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $)) (-15 -2087 ((-1237) $ (-895) (-895))))) (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))) (T -210)) +((-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-965)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-241 (-1131))) (-5 *1 (-210 *4)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ *3)) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))))) (-4199 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))))) (-4197 (*1 *1 *1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $))))) (-5 *1 (-210 *3)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $)) (-15 -2087 (*2 $))))))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $)) (-15 -2087 (*2 $))))))) (-2087 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-210 *4)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $)) (-15 -2087 (*2 $)))))))) +(-13 (-1074) (-10 -8 (-15 -4159 ($ $ (-965))) (-15 -4159 ((-241 (-1131)) $ (-1149))) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -4317 ($ (-622 |#1|))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $)) (-15 -2087 ((-1237) $ (-895) (-895))))) +((-1502 ((|#2| |#4| (-1 |#2| |#2|)) 46))) +(((-211 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1502 (|#2| |#4| (-1 |#2| |#2|)))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -211)) +((-1502 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1207 (-402 *2))) (-4 *2 (-1207 *5)) (-5 *1 (-211 *5 *2 *6 *3)) (-4 *3 (-337 *5 *2 *6))))) +(-10 -7 (-15 -1502 (|#2| |#4| (-1 |#2| |#2|)))) +((-1506 ((|#2| |#2| (-751) |#2|) 42)) (-1505 ((|#2| |#2| (-751) |#2|) 38)) (-2458 (((-622 |#2|) (-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|)))) 57)) (-1504 (((-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|))) |#2|) 53)) (-1507 (((-112) |#2|) 50)) (-4093 (((-400 |#2|) |#2|) 77)) (-4092 (((-400 |#2|) |#2|) 76)) (-2459 ((|#2| |#2| (-751) |#2|) 36)) (-1503 (((-2 (|:| |cont| |#1|) (|:| -2767 (-622 (-2 (|:| |irr| |#2|) (|:| -2487 (-538)))))) |#2| (-112)) 69))) +(((-212 |#1| |#2|) (-10 -7 (-15 -4092 ((-400 |#2|) |#2|)) (-15 -4093 ((-400 |#2|) |#2|)) (-15 -1503 ((-2 (|:| |cont| |#1|) (|:| -2767 (-622 (-2 (|:| |irr| |#2|) (|:| -2487 (-538)))))) |#2| (-112))) (-15 -1504 ((-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|))) |#2|)) (-15 -2458 ((-622 |#2|) (-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|))))) (-15 -2459 (|#2| |#2| (-751) |#2|)) (-15 -1505 (|#2| |#2| (-751) |#2|)) (-15 -1506 (|#2| |#2| (-751) |#2|)) (-15 -1507 ((-112) |#2|))) (-345) (-1207 |#1|)) (T -212)) +((-1507 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4)))) (-1506 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4)))) (-1505 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4)))) (-2459 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| |deg| (-751)) (|:| -2905 *5)))) (-4 *5 (-1207 *4)) (-4 *4 (-345)) (-5 *2 (-622 *5)) (-5 *1 (-212 *4 *5)))) (-1504 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-622 (-2 (|:| |deg| (-751)) (|:| -2905 *3)))) (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-345)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) (-5 *1 (-212 *5 *3)) (-4 *3 (-1207 *5)))) (-4093 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-400 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4)))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-400 *3)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4))))) +(-10 -7 (-15 -4092 ((-400 |#2|) |#2|)) (-15 -4093 ((-400 |#2|) |#2|)) (-15 -1503 ((-2 (|:| |cont| |#1|) (|:| -2767 (-622 (-2 (|:| |irr| |#2|) (|:| -2487 (-538)))))) |#2| (-112))) (-15 -1504 ((-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|))) |#2|)) (-15 -2458 ((-622 |#2|) (-622 (-2 (|:| |deg| (-751)) (|:| -2905 |#2|))))) (-15 -2459 (|#2| |#2| (-751) |#2|)) (-15 -1505 (|#2| |#2| (-751) |#2|)) (-15 -1506 (|#2| |#2| (-751) |#2|)) (-15 -1507 ((-112) |#2|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-538) $) NIL (|has| (-538) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-538) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-538) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-538) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-538) (-1014 (-538))))) (-3507 (((-538) $) NIL) (((-1149) $) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-538) (-1014 (-538)))) (((-538) $) NIL (|has| (-538) (-1014 (-538))))) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-538) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-538) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-538) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-538) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-538) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-538) (-1124)))) (-3538 (((-112) $) NIL (|has| (-538) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-538) (-827)))) (-4318 (($ (-1 (-538) (-538)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-538) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-538) (-302))) (((-402 (-538)) $) NIL)) (-3465 (((-538) $) NIL (|has| (-538) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-538)) (-622 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-538) (-538)) NIL (|has| (-538) (-304 (-538)))) (($ $ (-288 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-288 (-538)))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-1149)) (-622 (-538))) NIL (|has| (-538) (-507 (-1149) (-538)))) (($ $ (-1149) (-538)) NIL (|has| (-538) (-507 (-1149) (-538))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-538)) NIL (|has| (-538) (-281 (-538) (-538))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-538) $) NIL)) (-1508 (($ (-402 (-538))) 9)) (-4330 (((-866 (-538)) $) NIL (|has| (-538) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-538) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-538) (-598 (-527)))) (((-373) $) NIL (|has| (-538) (-996))) (((-221) $) NIL (|has| (-538) (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-538) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) 8) (($ (-538)) NIL) (($ (-1149)) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL) (((-980 10) $) 10)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-538) (-886))) (|has| (-538) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-538) $) NIL (|has| (-538) (-537)))) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| (-538) (-800)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-538) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-538) (-827)))) (-4308 (($ $ $) NIL) (($ (-538) (-538)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-538) $) NIL) (($ $ (-538)) NIL))) +(((-213) (-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 10) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -1508 ($ (-402 (-538))))))) (T -213)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-980 10)) (-5 *1 (-213)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213)))) (-1508 (*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213))))) +(-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 10) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -1508 ($ (-402 (-538)))))) +((-2898 (((-112) $ $) NIL)) (-3670 (((-1088) $) 13)) (-3593 (((-1131) $) NIL)) (-3529 (((-477) $) 10)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 25) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 15)) (-3387 (((-112) $ $) NIL))) +(((-214) (-13 (-1056) (-10 -8 (-15 -3529 ((-477) $)) (-15 -3670 ((-1088) $)) (-15 -3584 ((-1108) $))))) (T -214)) +((-3529 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-214)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-214))))) +(-13 (-1056) (-10 -8 (-15 -3529 ((-477) $)) (-15 -3670 ((-1088) $)) (-15 -3584 ((-1108) $)))) +((-4172 (((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1065 (-819 |#2|)) (-1131)) 28) (((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1065 (-819 |#2|))) 24)) (-1509 (((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1149) (-819 |#2|) (-819 |#2|) (-112)) 17))) +(((-215 |#1| |#2|) (-10 -7 (-15 -4172 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1065 (-819 |#2|)))) (-15 -4172 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1065 (-819 |#2|)) (-1131))) (-15 -1509 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1149) (-819 |#2|) (-819 |#2|) (-112)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-936) (-29 |#1|))) (T -215)) +((-1509 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1149)) (-5 *6 (-112)) (-4 *7 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-4 *3 (-13 (-1171) (-936) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-215 *7 *3)) (-5 *5 (-819 *3)))) (-4172 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-819 *3))) (-5 *5 (-1131)) (-4 *3 (-13 (-1171) (-936) (-29 *6))) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-215 *6 *3)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-819 *3))) (-4 *3 (-13 (-1171) (-936) (-29 *5))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-215 *5 *3))))) +(-10 -7 (-15 -4172 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1065 (-819 |#2|)))) (-15 -4172 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1065 (-819 |#2|)) (-1131))) (-15 -1509 ((-3 (|:| |f1| (-819 |#2|)) (|:| |f2| (-622 (-819 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1149) (-819 |#2|) (-819 |#2|) (-112)))) +((-4172 (((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|)))) (-1131)) 46) (((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|))))) 43) (((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|))) (-1131)) 47) (((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|)))) 20))) +(((-216 |#1|) (-10 -7 (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|))))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|))) (-1131))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|)))))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|)))) (-1131)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (T -216)) +((-4172 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-819 (-402 (-922 *6))))) (-5 *5 (-1131)) (-5 *3 (-402 (-922 *6))) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 (-309 *6))) (|:| |f2| (-622 (-819 (-309 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-216 *6)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-819 (-402 (-922 *5))))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 (-309 *5))) (|:| |f2| (-622 (-819 (-309 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-216 *5)))) (-4172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-402 (-922 *6))) (-5 *4 (-1065 (-819 (-309 *6)))) (-5 *5 (-1131)) (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 (-309 *6))) (|:| |f2| (-622 (-819 (-309 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-216 *6)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1065 (-819 (-309 *5)))) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |f1| (-819 (-309 *5))) (|:| |f2| (-622 (-819 (-309 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-216 *5))))) +(-10 -7 (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|))))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-309 |#1|))) (-1131))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|)))))) (-15 -4172 ((-3 (|:| |f1| (-819 (-309 |#1|))) (|:| |f2| (-622 (-819 (-309 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-402 (-922 |#1|)) (-1065 (-819 (-402 (-922 |#1|)))) (-1131)))) +((-4202 (((-2 (|:| -2120 (-1143 |#1|)) (|:| |deg| (-895))) (-1143 |#1|)) 21)) (-4323 (((-622 (-309 |#2|)) (-309 |#2|) (-895)) 42))) +(((-217 |#1| |#2|) (-10 -7 (-15 -4202 ((-2 (|:| -2120 (-1143 |#1|)) (|:| |deg| (-895))) (-1143 |#1|))) (-15 -4323 ((-622 (-309 |#2|)) (-309 |#2|) (-895)))) (-1025) (-13 (-545) (-827))) (T -217)) +((-4323 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *6 (-13 (-545) (-827))) (-5 *2 (-622 (-309 *6))) (-5 *1 (-217 *5 *6)) (-5 *3 (-309 *6)) (-4 *5 (-1025)))) (-4202 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-2 (|:| -2120 (-1143 *4)) (|:| |deg| (-895)))) (-5 *1 (-217 *4 *5)) (-5 *3 (-1143 *4)) (-4 *5 (-13 (-545) (-827)))))) +(-10 -7 (-15 -4202 ((-2 (|:| -2120 (-1143 |#1|)) (|:| |deg| (-895))) (-1143 |#1|))) (-15 -4323 ((-622 (-309 |#2|)) (-309 |#2|) (-895)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1550 ((|#1| $) NIL)) (-3683 ((|#1| $) 25)) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-3335 (($ $) NIL)) (-2377 (($ $) 31)) (-3685 ((|#1| |#1| $) NIL)) (-3684 ((|#1| $) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-4193 (((-751) $) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) NIL)) (-1548 ((|#1| |#1| $) 28)) (-1547 ((|#1| |#1| $) 30)) (-3970 (($ |#1| $) NIL)) (-2933 (((-751) $) 27)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-3334 ((|#1| $) NIL)) (-1546 ((|#1| $) 26)) (-1545 ((|#1| $) 24)) (-1334 ((|#1| $) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3337 ((|#1| |#1| $) NIL)) (-3762 (((-112) $) 9)) (-3928 (($) NIL)) (-3336 ((|#1| $) NIL)) (-1551 (($) NIL) (($ (-622 |#1|)) 16)) (-3682 (((-751) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-1549 ((|#1| $) 13)) (-1335 (($ (-622 |#1|)) NIL)) (-3333 ((|#1| $) NIL)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-218 |#1|) (-13 (-249 |#1|) (-10 -8 (-15 -1551 ($ (-622 |#1|))))) (-1074)) (T -218)) +((-1551 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-218 *3))))) +(-13 (-249 |#1|) (-10 -8 (-15 -1551 ($ (-622 |#1|))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1511 (($ (-309 |#1|)) 23)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2995 (((-112) $) NIL)) (-3508 (((-3 (-309 |#1|) "failed") $) NIL)) (-3507 (((-309 |#1|) $) NIL)) (-4319 (($ $) 31)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-4318 (($ (-1 (-309 |#1|) (-309 |#1|)) $) NIL)) (-3525 (((-309 |#1|) $) NIL)) (-1513 (($ $) 30)) (-3593 (((-1131) $) NIL)) (-1512 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($ (-751)) NIL)) (-1510 (($ $) 32)) (-4307 (((-538) $) NIL)) (-4317 (((-840) $) 57) (($ (-538)) NIL) (($ (-309 |#1|)) NIL)) (-4040 (((-309 |#1|) $ $) NIL)) (-3461 (((-751)) NIL)) (-2991 (($) 25 T CONST)) (-2997 (($) 50 T CONST)) (-3387 (((-112) $ $) 28)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 19)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 24) (($ (-309 |#1|) $) 18))) +(((-219 |#1| |#2|) (-13 (-603 (-309 |#1|)) (-1014 (-309 |#1|)) (-10 -8 (-15 -3525 ((-309 |#1|) $)) (-15 -1513 ($ $)) (-15 -4319 ($ $)) (-15 -4040 ((-309 |#1|) $ $)) (-15 -2501 ($ (-751))) (-15 -1512 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -4307 ((-538) $)) (-15 -4318 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -1511 ($ (-309 |#1|))) (-15 -1510 ($ $)))) (-13 (-1025) (-827)) (-622 (-1149))) (T -219)) +((-3525 (*1 *2 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-1513 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-622 (-1149))))) (-4319 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-622 (-1149))))) (-4040 (*1 *2 *1 *1) (-12 (-5 *2 (-309 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-2501 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) (-14 *4 (-622 (-1149))))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1025) (-827))) (-5 *1 (-219 *3 *4)) (-14 *4 (-622 (-1149))))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1025) (-827))) (-5 *1 (-219 *3 *4)) (-14 *4 (-622 (-1149))))) (-1510 (*1 *1 *1) (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) (-14 *3 (-622 (-1149)))))) +(-13 (-603 (-309 |#1|)) (-1014 (-309 |#1|)) (-10 -8 (-15 -3525 ((-309 |#1|) $)) (-15 -1513 ($ $)) (-15 -4319 ($ $)) (-15 -4040 ((-309 |#1|) $ $)) (-15 -2501 ($ (-751))) (-15 -1512 ((-112) $)) (-15 -2995 ((-112) $)) (-15 -4307 ((-538) $)) (-15 -4318 ($ (-1 (-309 |#1|) (-309 |#1|)) $)) (-15 -1511 ($ (-309 |#1|))) (-15 -1510 ($ $)))) +((-1514 (((-112) (-1131)) 22)) (-1515 (((-3 (-819 |#2|) "failed") (-595 |#2|) |#2| (-819 |#2|) (-819 |#2|) (-112)) 32)) (-1516 (((-3 (-112) "failed") (-1143 |#2|) (-819 |#2|) (-819 |#2|) (-112)) 73) (((-3 (-112) "failed") (-922 |#1|) (-1149) (-819 |#2|) (-819 |#2|) (-112)) 74))) +(((-220 |#1| |#2|) (-10 -7 (-15 -1514 ((-112) (-1131))) (-15 -1515 ((-3 (-819 |#2|) "failed") (-595 |#2|) |#2| (-819 |#2|) (-819 |#2|) (-112))) (-15 -1516 ((-3 (-112) "failed") (-922 |#1|) (-1149) (-819 |#2|) (-819 |#2|) (-112))) (-15 -1516 ((-3 (-112) "failed") (-1143 |#2|) (-819 |#2|) (-819 |#2|) (-112)))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-29 |#1|))) (T -220)) +((-1516 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1143 *6)) (-5 *4 (-819 *6)) (-4 *6 (-13 (-1171) (-29 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-220 *5 *6)))) (-1516 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-922 *6)) (-5 *4 (-1149)) (-5 *5 (-819 *7)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-4 *7 (-13 (-1171) (-29 *6))) (-5 *1 (-220 *6 *7)))) (-1515 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-819 *4)) (-5 *3 (-595 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1171) (-29 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-220 *6 *4)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1171) (-29 *4)))))) +(-10 -7 (-15 -1514 ((-112) (-1131))) (-15 -1515 ((-3 (-819 |#2|) "failed") (-595 |#2|) |#2| (-819 |#2|) (-819 |#2|) (-112))) (-15 -1516 ((-3 (-112) "failed") (-922 |#1|) (-1149) (-819 |#2|) (-819 |#2|) (-112))) (-15 -1516 ((-3 (-112) "failed") (-1143 |#2|) (-819 |#2|) (-819 |#2|) (-112)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 87)) (-3464 (((-538) $) 98)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4130 (($ $) NIL)) (-3846 (($ $) 75)) (-4002 (($ $) 63)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) 54)) (-1705 (((-112) $ $) NIL)) (-3844 (($ $) 73)) (-4001 (($ $) 61)) (-3986 (((-538) $) 115)) (-3848 (($ $) 78)) (-4000 (($ $) 65)) (-3896 (($) NIL T CONST)) (-3462 (($ $) NIL)) (-3508 (((-3 (-538) #1="failed") $) 114) (((-3 (-402 (-538)) #1#) $) 111)) (-3507 (((-538) $) 112) (((-402 (-538)) $) 109)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) 91)) (-1860 (((-402 (-538)) $ (-751)) 107) (((-402 (-538)) $ (-751) (-751)) 106)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2466 (((-895)) 27) (((-895) (-895)) NIL (|has| $ (-6 -4344)))) (-3537 (((-112) $) NIL)) (-3990 (($) 37)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL)) (-4131 (((-538) $) 33)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL)) (-3467 (($ $) NIL)) (-3538 (((-112) $) 86)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-3677 (($ $ $) 51) (($) 32 (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-3678 (($ $ $) 50) (($) 31 (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-2467 (((-538) $) 25)) (-1859 (($ $) 28)) (-1858 (($ $) 55)) (-4302 (($ $) 60)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-1889 (((-895) (-538)) NIL (|has| $ (-6 -4344)))) (-3594 (((-1093) $) 89)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL)) (-3465 (($ $) NIL)) (-3605 (($ (-538) (-538)) NIL) (($ (-538) (-538) (-895)) 99)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-2493 (((-538) $) 26)) (-1857 (($) 36)) (-4303 (($ $) 59)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-2944 (((-895)) NIL) (((-895) (-895)) NIL (|has| $ (-6 -4344)))) (-4170 (($ $ (-751)) NIL) (($ $) 92)) (-1888 (((-895) (-538)) NIL (|has| $ (-6 -4344)))) (-3849 (($ $) 76)) (-3999 (($ $) 66)) (-3847 (($ $) 77)) (-3998 (($ $) 64)) (-3845 (($ $) 74)) (-3997 (($ $) 62)) (-4330 (((-373) $) 103) (((-221) $) 100) (((-866 (-373)) $) NIL) (((-527) $) 43)) (-4317 (((-840) $) 40) (($ (-538)) 58) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-538)) 58) (($ (-402 (-538))) NIL)) (-3461 (((-751)) NIL)) (-3466 (($ $) NIL)) (-1890 (((-895)) 30) (((-895) (-895)) NIL (|has| $ (-6 -4344)))) (-3027 (((-895)) 23)) (-3852 (($ $) 81)) (-3840 (($ $) 69) (($ $ $) 108)) (-2177 (((-112) $ $) NIL)) (-3850 (($ $) 79)) (-3838 (($ $) 67)) (-3854 (($ $) 84)) (-3842 (($ $) 72)) (-3855 (($ $) 82)) (-3843 (($ $) 70)) (-3853 (($ $) 83)) (-3841 (($ $) 71)) (-3851 (($ $) 80)) (-3839 (($ $) 68)) (-3742 (($ $) 116)) (-2991 (($) 34 T CONST)) (-2997 (($) 35 T CONST)) (-2834 (((-1131) $) 17) (((-1131) $ (-112)) 19) (((-1237) (-803) $) 20) (((-1237) (-803) $ (-112)) 21)) (-3746 (($ $) 95)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-3743 (($ $ $) 97)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 52)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 44)) (-4308 (($ $ $) 85) (($ $ (-538)) 53)) (-4197 (($ $) 45) (($ $ $) 47)) (-4199 (($ $ $) 46)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 56) (($ $ (-402 (-538))) 128) (($ $ $) 57)) (* (($ (-895) $) 29) (($ (-751) $) NIL) (($ (-538) $) 49) (($ $ $) 48) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL))) +(((-221) (-13 (-399) (-229) (-801) (-1171) (-598 (-527)) (-10 -8 (-15 -4308 ($ $ (-538))) (-15 ** ($ $ $)) (-15 -1857 ($)) (-15 -1859 ($ $)) (-15 -1858 ($ $)) (-15 -3840 ($ $ $)) (-15 -3746 ($ $)) (-15 -3743 ($ $ $)) (-15 -1860 ((-402 (-538)) $ (-751))) (-15 -1860 ((-402 (-538)) $ (-751) (-751)))))) (T -221)) +((** (*1 *1 *1 *1) (-5 *1 (-221))) (-4308 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-221)))) (-1857 (*1 *1) (-5 *1 (-221))) (-1859 (*1 *1 *1) (-5 *1 (-221))) (-1858 (*1 *1 *1) (-5 *1 (-221))) (-3840 (*1 *1 *1 *1) (-5 *1 (-221))) (-3746 (*1 *1 *1) (-5 *1 (-221))) (-3743 (*1 *1 *1 *1) (-5 *1 (-221))) (-1860 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-221)))) (-1860 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-221))))) +(-13 (-399) (-229) (-801) (-1171) (-598 (-527)) (-10 -8 (-15 -4308 ($ $ (-538))) (-15 ** ($ $ $)) (-15 -1857 ($)) (-15 -1859 ($ $)) (-15 -1858 ($ $)) (-15 -3840 ($ $ $)) (-15 -3746 ($ $)) (-15 -3743 ($ $ $)) (-15 -1860 ((-402 (-538)) $ (-751))) (-15 -1860 ((-402 (-538)) $ (-751) (-751))))) +((-3745 (((-166 (-221)) (-751) (-166 (-221))) 11) (((-221) (-751) (-221)) 12)) (-1517 (((-166 (-221)) (-166 (-221))) 13) (((-221) (-221)) 14)) (-1518 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 19) (((-221) (-221) (-221)) 22)) (-3744 (((-166 (-221)) (-166 (-221))) 25) (((-221) (-221)) 24)) (-3748 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 43) (((-221) (-221) (-221)) 35)) (-3750 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 48) (((-221) (-221) (-221)) 45)) (-3747 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 15) (((-221) (-221) (-221)) 16)) (-3749 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 17) (((-221) (-221) (-221)) 18)) (-3752 (((-166 (-221)) (-166 (-221))) 60) (((-221) (-221)) 59)) (-3751 (((-221) (-221)) 54) (((-166 (-221)) (-166 (-221))) 58)) (-3746 (((-166 (-221)) (-166 (-221))) 8) (((-221) (-221)) 9)) (-3743 (((-166 (-221)) (-166 (-221)) (-166 (-221))) 30) (((-221) (-221) (-221)) 26))) +(((-222) (-10 -7 (-15 -3746 ((-221) (-221))) (-15 -3746 ((-166 (-221)) (-166 (-221)))) (-15 -3743 ((-221) (-221) (-221))) (-15 -3743 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -1517 ((-221) (-221))) (-15 -1517 ((-166 (-221)) (-166 (-221)))) (-15 -3744 ((-221) (-221))) (-15 -3744 ((-166 (-221)) (-166 (-221)))) (-15 -3745 ((-221) (-751) (-221))) (-15 -3745 ((-166 (-221)) (-751) (-166 (-221)))) (-15 -3747 ((-221) (-221) (-221))) (-15 -3747 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3748 ((-221) (-221) (-221))) (-15 -3748 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3749 ((-221) (-221) (-221))) (-15 -3749 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3750 ((-221) (-221) (-221))) (-15 -3750 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3751 ((-166 (-221)) (-166 (-221)))) (-15 -3751 ((-221) (-221))) (-15 -3752 ((-221) (-221))) (-15 -3752 ((-166 (-221)) (-166 (-221)))) (-15 -1518 ((-221) (-221) (-221))) (-15 -1518 ((-166 (-221)) (-166 (-221)) (-166 (-221)))))) (T -222)) +((-1518 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-1518 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3751 (*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3750 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3749 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3749 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3748 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3748 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3747 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3747 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3745 (*1 *2 *3 *2) (-12 (-5 *2 (-166 (-221))) (-5 *3 (-751)) (-5 *1 (-222)))) (-3745 (*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-751)) (-5 *1 (-222)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-1517 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3743 (*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3743 (*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) (-3746 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222))))) +(-10 -7 (-15 -3746 ((-221) (-221))) (-15 -3746 ((-166 (-221)) (-166 (-221)))) (-15 -3743 ((-221) (-221) (-221))) (-15 -3743 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -1517 ((-221) (-221))) (-15 -1517 ((-166 (-221)) (-166 (-221)))) (-15 -3744 ((-221) (-221))) (-15 -3744 ((-166 (-221)) (-166 (-221)))) (-15 -3745 ((-221) (-751) (-221))) (-15 -3745 ((-166 (-221)) (-751) (-166 (-221)))) (-15 -3747 ((-221) (-221) (-221))) (-15 -3747 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3748 ((-221) (-221) (-221))) (-15 -3748 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3749 ((-221) (-221) (-221))) (-15 -3749 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3750 ((-221) (-221) (-221))) (-15 -3750 ((-166 (-221)) (-166 (-221)) (-166 (-221)))) (-15 -3751 ((-166 (-221)) (-166 (-221)))) (-15 -3751 ((-221) (-221))) (-15 -3752 ((-221) (-221))) (-15 -3752 ((-166 (-221)) (-166 (-221)))) (-15 -1518 ((-221) (-221) (-221))) (-15 -1518 ((-166 (-221)) (-166 (-221)) (-166 (-221))))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751) (-751)) NIL)) (-2431 (($ $ $) NIL)) (-3773 (($ (-1231 |#1|)) NIL) (($ $) NIL)) (-4233 (($ |#1| |#1| |#1|) 32)) (-3456 (((-112) $) NIL)) (-2430 (($ $ (-538) (-538)) NIL)) (-2429 (($ $ (-538) (-538)) NIL)) (-2428 (($ $ (-538) (-538) (-538) (-538)) NIL)) (-2433 (($ $) NIL)) (-3458 (((-112) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-2427 (($ $ (-538) (-538) $) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538)) $) NIL)) (-1309 (($ $ (-538) (-1231 |#1|)) NIL)) (-1308 (($ $ (-538) (-1231 |#1|)) NIL)) (-4207 (($ |#1| |#1| |#1|) 31)) (-3692 (($ (-751) |#1|) NIL)) (-3896 (($) NIL T CONST)) (-3445 (($ $) NIL (|has| |#1| (-302)))) (-3447 (((-1231 |#1|) $ (-538)) NIL)) (-1519 (($ |#1|) 30)) (-1520 (($ |#1|) 29)) (-1521 (($ |#1|) 28)) (-3444 (((-751) $) NIL (|has| |#1| (-545)))) (-1637 ((|#1| $ (-538) (-538) |#1|) NIL)) (-3448 ((|#1| $ (-538) (-538)) NIL)) (-2068 (((-622 |#1|) $) NIL)) (-3443 (((-751) $) NIL (|has| |#1| (-545)))) (-3442 (((-622 (-1231 |#1|)) $) NIL (|has| |#1| (-545)))) (-3450 (((-751) $) NIL)) (-3977 (($ (-751) (-751) |#1|) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3686 ((|#1| $) NIL (|has| |#1| (-6 (-4355 #1="*"))))) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-3459 (($ (-622 (-622 |#1|))) 11)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3956 (((-622 (-622 |#1|)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3952 (((-3 $ #2="failed") $) NIL (|has| |#1| (-358)))) (-1522 (($) 12)) (-2432 (($ $ $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-3820 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-545)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) (-538)) NIL) ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538))) NIL)) (-3691 (($ (-622 |#1|)) NIL) (($ (-622 $)) NIL)) (-3457 (((-112) $) NIL)) (-3687 ((|#1| $) NIL (|has| |#1| (-6 (-4355 #1#))))) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3446 (((-1231 |#1|) $ (-538)) NIL)) (-4317 (($ (-1231 |#1|)) NIL) (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-538) $) NIL) (((-1231 |#1|) $ (-1231 |#1|)) 15) (((-1231 |#1|) (-1231 |#1|) $) NIL) (((-919 |#1|) $ (-919 |#1|)) 20)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-223 |#1|) (-13 (-666 |#1| (-1231 |#1|) (-1231 |#1|)) (-10 -8 (-15 * ((-919 |#1|) $ (-919 |#1|))) (-15 -1522 ($)) (-15 -1521 ($ |#1|)) (-15 -1520 ($ |#1|)) (-15 -1519 ($ |#1|)) (-15 -4207 ($ |#1| |#1| |#1|)) (-15 -4233 ($ |#1| |#1| |#1|)))) (-13 (-358) (-1171))) (T -223)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171))) (-5 *1 (-223 *3)))) (-1522 (*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-1521 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-1520 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-1519 (*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-4207 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) (-4233 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))) +(-13 (-666 |#1| (-1231 |#1|) (-1231 |#1|)) (-10 -8 (-15 * ((-919 |#1|) $ (-919 |#1|))) (-15 -1522 ($)) (-15 -1521 ($ |#1|)) (-15 -1520 ($ |#1|)) (-15 -1519 ($ |#1|)) (-15 -4207 ($ |#1| |#1| |#1|)) (-15 -4233 ($ |#1| |#1| |#1|)))) +((-1631 (($ (-1 (-112) |#2|) $) 16)) (-3764 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 25)) (-1523 (($) NIL) (($ (-622 |#2|)) 11)) (-3387 (((-112) $ $) 23))) +(((-224 |#1| |#2|) (-10 -8 (-15 -1631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -1523 (|#1| (-622 |#2|))) (-15 -1523 (|#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-225 |#2|) (-1074)) (T -224)) +NIL +(-10 -8 (-15 -1631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -1523 (|#1| (-622 |#2|))) (-15 -1523 (|#1|)) (-15 -3387 ((-112) |#1| |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-225 |#1|) (-138) (-1074)) (T -225)) +NIL +(-13 (-231 |t#1|)) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-4170 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) 11) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) 19) (($ $ (-751)) NIL) (($ $) 16)) (-3002 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-751)) 14) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL))) +(((-226 |#1| |#2|) (-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3002 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3002 (|#1| |#1| (-1149))) (-15 -3002 (|#1| |#1| (-622 (-1149)))) (-15 -3002 (|#1| |#1| (-1149) (-751))) (-15 -3002 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3002 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3002 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|)))) (-227 |#2|) (-1025)) (T -226)) +NIL +(-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -3002 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3002 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3002 (|#1| |#1| (-1149))) (-15 -3002 (|#1| |#1| (-622 (-1149)))) (-15 -3002 (|#1| |#1| (-1149) (-751))) (-15 -3002 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3002 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -3002 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4170 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-751)) 49) (($ $ (-622 (-1149)) (-622 (-751))) 42 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 41 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 40 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 39 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 37 (|has| |#1| (-229))) (($ $) 35 (|has| |#1| (-229)))) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-751)) 47) (($ $ (-622 (-1149)) (-622 (-751))) 46 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 45 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 44 (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 43 (|has| |#1| (-876 (-1149)))) (($ $ (-751)) 38 (|has| |#1| (-229))) (($ $) 36 (|has| |#1| (-229)))) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-227 |#1|) (-138) (-1025)) (T -227)) +((-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) (-4170 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025)))) (-3002 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) (-3002 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025))))) +(-13 (-1025) (-10 -8 (-15 -4170 ($ $ (-1 |t#1| |t#1|))) (-15 -4170 ($ $ (-1 |t#1| |t#1|) (-751))) (-15 -3002 ($ $ (-1 |t#1| |t#1|))) (-15 -3002 ($ $ (-1 |t#1| |t#1|) (-751))) (IF (|has| |t#1| (-229)) (-6 (-229)) |%noBranch|) (IF (|has| |t#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-229) |has| |#1| (-229)) ((-628 $) . T) ((-707) . T) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-4170 (($ $) NIL) (($ $ (-751)) 10)) (-3002 (($ $) 8) (($ $ (-751)) 12))) +(((-228 |#1|) (-10 -8 (-15 -3002 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-751))) (-15 -3002 (|#1| |#1|)) (-15 -4170 (|#1| |#1|))) (-229)) (T -228)) +NIL +(-10 -8 (-15 -3002 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-751))) (-15 -3002 (|#1| |#1|)) (-15 -4170 (|#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4170 (($ $) 36) (($ $ (-751)) 34)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $) 35) (($ $ (-751)) 33)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-229) (-138)) (T -229)) +((-4170 (*1 *1 *1) (-4 *1 (-229))) (-3002 (*1 *1 *1) (-4 *1 (-229))) (-4170 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751)))) (-3002 (*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751))))) +(-13 (-1025) (-10 -8 (-15 -4170 ($ $)) (-15 -3002 ($ $)) (-15 -4170 ($ $ (-751))) (-15 -3002 ($ $ (-751))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-1523 (($) 12) (($ (-622 |#2|)) NIL)) (-3759 (($ $) 14)) (-3884 (($ (-622 |#2|)) 10)) (-4317 (((-840) $) 21))) +(((-230 |#1| |#2|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -1523 (|#1| (-622 |#2|))) (-15 -1523 (|#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -3759 (|#1| |#1|))) (-231 |#2|) (-1074)) (T -230)) +NIL +(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -1523 (|#1| (-622 |#2|))) (-15 -1523 (|#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -3759 (|#1| |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-231 |#1|) (-138) (-1074)) (T -231)) +((-1523 (*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1074)))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-231 *3)))) (-3764 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-231 *2)) (-4 *2 (-1074)))) (-3764 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) (-4 *3 (-1074)))) (-1631 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) (-4 *3 (-1074))))) +(-13 (-106 |t#1|) (-149 |t#1|) (-10 -8 (-15 -1523 ($)) (-15 -1523 ($ (-622 |t#1|))) (IF (|has| $ (-6 -4353)) (PROGN (-15 -3764 ($ |t#1| $)) (-15 -3764 ($ (-1 (-112) |t#1|) $)) (-15 -1631 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-1524 (((-2 (|:| |varOrder| (-622 (-1149))) (|:| |inhom| (-3 (-622 (-1231 (-751))) "failed")) (|:| |hom| (-622 (-1231 (-751))))) (-288 (-922 (-538)))) 27))) +(((-232) (-10 -7 (-15 -1524 ((-2 (|:| |varOrder| (-622 (-1149))) (|:| |inhom| (-3 (-622 (-1231 (-751))) "failed")) (|:| |hom| (-622 (-1231 (-751))))) (-288 (-922 (-538))))))) (T -232)) +((-1524 (*1 *2 *3) (-12 (-5 *3 (-288 (-922 (-538)))) (-5 *2 (-2 (|:| |varOrder| (-622 (-1149))) (|:| |inhom| (-3 (-622 (-1231 (-751))) "failed")) (|:| |hom| (-622 (-1231 (-751)))))) (-5 *1 (-232))))) +(-10 -7 (-15 -1524 ((-2 (|:| |varOrder| (-622 (-1149))) (|:| |inhom| (-3 (-622 (-1231 (-751))) "failed")) (|:| |hom| (-622 (-1231 (-751))))) (-288 (-922 (-538)))))) +((-3471 (((-751)) 51)) (-2362 (((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 $) (-1231 $)) 49) (((-669 |#3|) (-669 $)) 41) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-4271 (((-133)) 57)) (-4170 (($ $ (-1 |#3| |#3|) (-751)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-4317 (((-1231 |#3|) $) NIL) (($ |#3|) NIL) (((-840) $) NIL) (($ (-538)) 12) (($ (-402 (-538))) NIL)) (-3461 (((-751)) 15)) (-4308 (($ $ |#3|) 54))) +(((-233 |#1| |#2| |#3|) (-10 -8 (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)) (-15 -3461 ((-751))) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -4317 (|#1| |#3|)) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -2362 ((-669 |#3|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 |#1|) (-1231 |#1|))) (-15 -3471 ((-751))) (-15 -4308 (|#1| |#1| |#3|)) (-15 -4271 ((-133))) (-15 -4317 ((-1231 |#3|) |#1|))) (-234 |#2| |#3|) (-751) (-1185)) (T -233)) +((-4271 (*1 *2) (-12 (-14 *4 (-751)) (-4 *5 (-1185)) (-5 *2 (-133)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-3471 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1185)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5)))) (-3461 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1185)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5)) (-4 *3 (-234 *4 *5))))) +(-10 -8 (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|)) (-15 -3461 ((-751))) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -4317 (|#1| |#3|)) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -2362 ((-669 |#3|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 |#1|) (-1231 |#1|))) (-15 -3471 ((-751))) (-15 -4308 (|#1| |#1| |#3|)) (-15 -4271 ((-133))) (-15 -4317 ((-1231 |#3|) |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#2| (-1074)))) (-3539 (((-112) $) 72 (|has| |#2| (-130)))) (-4070 (($ (-895)) 125 (|has| |#2| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-2733 (($ $ $) 121 (|has| |#2| (-773)))) (-1368 (((-3 $ "failed") $ $) 74 (|has| |#2| (-130)))) (-1271 (((-112) $ (-751)) 8)) (-3471 (((-751)) 107 (|has| |#2| (-363)))) (-3986 (((-538) $) 119 (|has| |#2| (-825)))) (-4147 ((|#2| $ (-538) |#2|) 52 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 67 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-3 (-402 (-538)) #1#) $) 64 (-3191 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (((-3 |#2| #1#) $) 61 (|has| |#2| (-1074)))) (-3507 (((-538) $) 68 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-402 (-538)) $) 65 (-3191 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) ((|#2| $) 60 (|has| |#2| (-1074)))) (-2362 (((-669 (-538)) (-669 $)) 106 (-3191 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 105 (-3191 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 104 (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) 103 (|has| |#2| (-1025)))) (-3821 (((-3 $ "failed") $) 79 (|has| |#2| (-707)))) (-3327 (($) 110 (|has| |#2| (-363)))) (-1637 ((|#2| $ (-538) |#2|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#2| $ (-538)) 51)) (-3537 (((-112) $) 117 (|has| |#2| (-825)))) (-2068 (((-622 |#2|) $) 30 (|has| $ (-6 -4353)))) (-2502 (((-112) $) 81 (|has| |#2| (-707)))) (-3538 (((-112) $) 118 (|has| |#2| (-825)))) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 116 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2511 (((-622 |#2|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 115 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2072 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2|) $) 35)) (-2126 (((-895) $) 109 (|has| |#2| (-363)))) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#2| (-1074)))) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-2492 (($ (-895)) 108 (|has| |#2| (-363)))) (-3594 (((-1093) $) 21 (|has| |#2| (-1074)))) (-4160 ((|#2| $) 42 (|has| (-538) (-827)))) (-2306 (($ $ |#2|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#2| $ (-538) |#2|) 50) ((|#2| $ (-538)) 49)) (-4196 ((|#2| $ $) 124 (|has| |#2| (-1025)))) (-1525 (($ (-1231 |#2|)) 126)) (-4271 (((-133)) 123 (|has| |#2| (-358)))) (-4170 (($ $) 98 (-3191 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) 96 (-3191 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) 94 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) 93 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) 92 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) 91 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) 84 (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1025)))) (-2069 (((-751) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4353))) (((-751) |#2| $) 28 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-1231 |#2|) $) 127) (($ (-538)) 66 (-3891 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (|has| |#2| (-1025)))) (($ (-402 (-538))) 63 (-3191 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (($ |#2|) 62 (|has| |#2| (-1074))) (((-840) $) 18 (|has| |#2| (-597 (-840))))) (-3461 (((-751)) 102 (|has| |#2| (-1025)))) (-2071 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4353)))) (-3742 (($ $) 120 (|has| |#2| (-825)))) (-2991 (($) 71 (|has| |#2| (-130)) CONST)) (-2997 (($) 82 (|has| |#2| (-707)) CONST)) (-3002 (($ $) 97 (-3191 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) 95 (-3191 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) 90 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) 89 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) 88 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) 87 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) 86 (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1025)))) (-2896 (((-112) $ $) 113 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-2897 (((-112) $ $) 112 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-3387 (((-112) $ $) 20 (|has| |#2| (-1074)))) (-3017 (((-112) $ $) 114 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-3018 (((-112) $ $) 111 (-3891 (|has| |#2| (-825)) (|has| |#2| (-773))))) (-4308 (($ $ |#2|) 122 (|has| |#2| (-358)))) (-4197 (($ $ $) 100 (|has| |#2| (-1025))) (($ $) 99 (|has| |#2| (-1025)))) (-4199 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-751)) 80 (|has| |#2| (-707))) (($ $ (-895)) 77 (|has| |#2| (-707)))) (* (($ (-538) $) 101 (|has| |#2| (-1025))) (($ $ $) 78 (|has| |#2| (-707))) (($ $ |#2|) 76 (|has| |#2| (-707))) (($ |#2| $) 75 (|has| |#2| (-707))) (($ (-751) $) 73 (|has| |#2| (-130))) (($ (-895) $) 70 (|has| |#2| (-25)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-234 |#1| |#2|) (-138) (-751) (-1185)) (T -234)) +((-1525 (*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1185)) (-4 *1 (-234 *3 *4)))) (-4070 (*1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1025)) (-4 *4 (-1185)))) (-4196 (*1 *2 *1 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-707))))) +(-13 (-588 (-538) |t#2|) (-597 (-1231 |t#2|)) (-10 -8 (-6 -4353) (-15 -1525 ($ (-1231 |t#2|))) (IF (|has| |t#2| (-1074)) (-6 (-407 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1025)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-227 |t#2|)) (-6 (-372 |t#2|)) (-15 -4070 ($ (-895))) (-15 -4196 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-130)) (-6 (-130)) |%noBranch|) (IF (|has| |t#2| (-707)) (PROGN (-6 (-707)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#2| (-170)) (PROGN (-6 (-38 |t#2|)) (-6 (-170))) |%noBranch|) (IF (|has| |t#2| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |t#2| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#2| (-773)) (-6 (-773)) |%noBranch|) (IF (|has| |t#2| (-358)) (-6 (-1239 |t#2|)) |%noBranch|))) +(((-21) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-23) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-25) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) -3891 (|has| |#2| (-1074)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -3891 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-111 $ $) |has| |#2| (-170)) ((-130) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130))) ((-597 (-840)) -3891 (|has| |#2| (-1074)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-597 (-840))) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-597 (-1231 |#2|)) . T) ((-170) |has| |#2| (-170)) ((-227 |#2|) |has| |#2| (-1025)) ((-229) -12 (|has| |#2| (-229)) (|has| |#2| (-1025))) ((-281 #1=(-538) |#2|) . T) ((-283 #1# |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-363) |has| |#2| (-363)) ((-372 |#2|) |has| |#2| (-1025)) ((-407 |#2|) |has| |#2| (-1074)) ((-483 |#2|) . T) ((-588 #1# |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-628 |#2|) -3891 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-628 $) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-621 (-538)) -12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025))) ((-621 |#2|) |has| |#2| (-1025)) ((-698 |#2|) -3891 (|has| |#2| (-358)) (|has| |#2| (-170))) ((-707) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-707)) (|has| |#2| (-170))) ((-771) |has| |#2| (-825)) ((-772) -3891 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-773) |has| |#2| (-773)) ((-774) -3891 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-777) -3891 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-825) |has| |#2| (-825)) ((-827) -3891 (|has| |#2| (-825)) (|has| |#2| (-773))) ((-876 (-1149)) -12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025))) ((-1014 (-402 (-538))) -12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074))) ((-1014 (-538)) -12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) ((-1014 |#2|) |has| |#2| (-1074)) ((-1031 |#2|) -3891 (|has| |#2| (-1025)) (|has| |#2| (-358)) (|has| |#2| (-170))) ((-1031 $) |has| |#2| (-170)) ((-1025) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-1032) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-170))) ((-1085) -3891 (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-707)) (|has| |#2| (-170))) ((-1074) -3891 (|has| |#2| (-1074)) (|has| |#2| (-1025)) (|has| |#2| (-825)) (|has| |#2| (-773)) (|has| |#2| (-707)) (|has| |#2| (-363)) (|has| |#2| (-358)) (|has| |#2| (-170)) (|has| |#2| (-130)) (|has| |#2| (-25))) ((-1185) . T) ((-1239 |#2|) |has| |#2| (-358))) +((-2898 (((-112) $ $) NIL (|has| |#2| (-1074)))) (-3539 (((-112) $) NIL (|has| |#2| (-130)))) (-4070 (($ (-895)) 56 (|has| |#2| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) 60 (|has| |#2| (-773)))) (-1368 (((-3 $ "failed") $ $) 49 (|has| |#2| (-130)))) (-1271 (((-112) $ (-751)) 17)) (-3471 (((-751)) NIL (|has| |#2| (-363)))) (-3986 (((-538) $) NIL (|has| |#2| (-825)))) (-4147 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (((-3 |#2| #1#) $) 29 (|has| |#2| (-1074)))) (-3507 (((-538) $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) ((|#2| $) 27 (|has| |#2| (-1074)))) (-2362 (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-3821 (((-3 $ "failed") $) 53 (|has| |#2| (-707)))) (-3327 (($) NIL (|has| |#2| (-363)))) (-1637 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ (-538)) 51)) (-3537 (((-112) $) NIL (|has| |#2| (-825)))) (-2068 (((-622 |#2|) $) 15 (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (|has| |#2| (-707)))) (-3538 (((-112) $) NIL (|has| |#2| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 20 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2511 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 (((-538) $) 50 (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2072 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2|) $) 41)) (-2126 (((-895) $) NIL (|has| |#2| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#2| (-1074)))) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#2| (-363)))) (-3594 (((-1093) $) NIL (|has| |#2| (-1074)))) (-4160 ((|#2| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ (-538) |#2|) NIL) ((|#2| $ (-538)) 21)) (-4196 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-1525 (($ (-1231 |#2|)) 18)) (-4271 (((-133)) NIL (|has| |#2| (-358)))) (-4170 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2069 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#2|) $) 10) (($ (-538)) NIL (-3891 (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (|has| |#2| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (($ |#2|) 13 (|has| |#2| (-1074))) (((-840) $) NIL (|has| |#2| (-597 (-840))))) (-3461 (((-751)) NIL (|has| |#2| (-1025)))) (-2071 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#2| (-825)))) (-2991 (($) 35 (|has| |#2| (-130)) CONST)) (-2997 (($) 38 (|has| |#2| (-707)) CONST)) (-3002 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3387 (((-112) $ $) 26 (|has| |#2| (-1074)))) (-3017 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3018 (((-112) $ $) 58 (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-4199 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-895)) NIL (|has| |#2| (-707)))) (* (($ (-538) $) NIL (|has| |#2| (-1025))) (($ $ $) 44 (|has| |#2| (-707))) (($ $ |#2|) 42 (|has| |#2| (-707))) (($ |#2| $) 43 (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-895) $) NIL (|has| |#2| (-25)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-235 |#1| |#2|) (-234 |#1| |#2|) (-751) (-1185)) (T -235)) +NIL +(-234 |#1| |#2|) +((-4201 (((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 21)) (-4202 ((|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|) 23)) (-4318 (((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)) 18))) +(((-236 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -4202 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -4318 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) (-751) (-1185) (-1185)) (T -236)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-751)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-5 *2 (-235 *5 *7)) (-5 *1 (-236 *5 *6 *7)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-751)) (-4 *6 (-1185)) (-4 *2 (-1185)) (-5 *1 (-236 *5 *6 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-751)) (-4 *7 (-1185)) (-4 *5 (-1185)) (-5 *2 (-235 *6 *5)) (-5 *1 (-236 *6 *7 *5))))) +(-10 -7 (-15 -4201 ((-235 |#1| |#3|) (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -4202 (|#3| (-1 |#3| |#2| |#3|) (-235 |#1| |#2|) |#3|)) (-15 -4318 ((-235 |#1| |#3|) (-1 |#3| |#2|) (-235 |#1| |#2|)))) +((-1529 (((-538) (-622 (-1131))) 24) (((-538) (-1131)) 19)) (-1528 (((-1237) (-622 (-1131))) 29) (((-1237) (-1131)) 28)) (-1526 (((-1131)) 14)) (-1527 (((-1131) (-538) (-1131)) 16)) (-4132 (((-622 (-1131)) (-622 (-1131)) (-538) (-1131)) 25) (((-1131) (-1131) (-538) (-1131)) 23)) (-2949 (((-622 (-1131)) (-622 (-1131))) 13) (((-622 (-1131)) (-1131)) 11))) +(((-237) (-10 -7 (-15 -2949 ((-622 (-1131)) (-1131))) (-15 -2949 ((-622 (-1131)) (-622 (-1131)))) (-15 -1526 ((-1131))) (-15 -1527 ((-1131) (-538) (-1131))) (-15 -4132 ((-1131) (-1131) (-538) (-1131))) (-15 -4132 ((-622 (-1131)) (-622 (-1131)) (-538) (-1131))) (-15 -1528 ((-1237) (-1131))) (-15 -1528 ((-1237) (-622 (-1131)))) (-15 -1529 ((-538) (-1131))) (-15 -1529 ((-538) (-622 (-1131)))))) (T -237)) +((-1529 (*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-538)) (-5 *1 (-237)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-538)) (-5 *1 (-237)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1237)) (-5 *1 (-237)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-237)))) (-4132 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-622 (-1131))) (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *1 (-237)))) (-4132 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-237)))) (-1527 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-237)))) (-1526 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-237)))) (-2949 (*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-237)))) (-2949 (*1 *2 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-237)) (-5 *3 (-1131))))) +(-10 -7 (-15 -2949 ((-622 (-1131)) (-1131))) (-15 -2949 ((-622 (-1131)) (-622 (-1131)))) (-15 -1526 ((-1131))) (-15 -1527 ((-1131) (-538) (-1131))) (-15 -4132 ((-1131) (-1131) (-538) (-1131))) (-15 -4132 ((-622 (-1131)) (-622 (-1131)) (-538) (-1131))) (-15 -1528 ((-1237) (-1131))) (-15 -1528 ((-1237) (-622 (-1131)))) (-15 -1529 ((-538) (-1131))) (-15 -1529 ((-538) (-622 (-1131))))) +((** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 16)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ (-402 (-538)) $) 23) (($ $ (-402 (-538))) NIL))) +(((-238 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-538))) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) (-239)) (T -238)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-538))) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 37)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 41)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 38)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ (-402 (-538)) $) 40) (($ $ (-402 (-538))) 39))) +(((-239) (-138)) (T -239)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-538)))) (-2734 (*1 *1 *1) (-4 *1 (-239)))) +(-13 (-285) (-38 (-402 (-538))) (-10 -8 (-15 ** ($ $ (-538))) (-15 -2734 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-285) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-707) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-4156 (($ $) 57)) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-1531 (($ $ $) 53 (|has| $ (-6 -4354)))) (-1530 (($ $ $) 52 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-1533 (($ $) 56)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-1532 (($ $) 55)) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-4157 ((|#1| $) 59)) (-3529 (($ $) 58)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47)) (-3362 (((-538) $ $) 44)) (-3996 (((-112) $) 46)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4150 (($ $ $) 54 (|has| $ (-6 -4354)))) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-240 |#1|) (-138) (-1185)) (T -240)) +((-4157 (*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-3529 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-1533 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-1532 (*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-4150 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-1531 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185)))) (-1530 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185))))) +(-13 (-986 |t#1|) (-10 -8 (-15 -4157 (|t#1| $)) (-15 -3529 ($ $)) (-15 -4156 ($ $)) (-15 -1533 ($ $)) (-15 -1532 ($ $)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -4150 ($ $ $)) (-15 -1531 ($ $ $)) (-15 -1530 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) NIL)) (-4154 ((|#1| $) NIL)) (-4156 (($ $) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1846 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-3242 (($ $) 10 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4146 (($ $ $) NIL (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) NIL)) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4155 ((|#1| $) NIL)) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-4158 (($ $) NIL) (($ $ (-751)) NIL)) (-2455 (($ $) NIL (|has| |#1| (-1074)))) (-1398 (($ $) 7 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) NIL (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) NIL)) (-3765 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3801 (((-112) $) NIL)) (-3778 (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074))) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) (-1 (-112) |#1|) $) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3192 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3872 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3897 (($ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-4157 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3970 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-3802 (((-112) $) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1198 (-538))) NIL) ((|#1| $ (-538)) NIL) ((|#1| $ (-538) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-751) $ "count") 16)) (-3362 (((-538) $ $) NIL)) (-1632 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-1534 (($ (-622 |#1|)) 22)) (-3996 (((-112) $) NIL)) (-4151 (($ $) NIL)) (-4149 (($ $) NIL (|has| $ (-6 -4354)))) (-4152 (((-751) $) NIL)) (-4153 (($ $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4150 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4161 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-622 $)) NIL) (($ $ |#1|) NIL)) (-4317 (($ (-622 |#1|)) 17) (((-622 |#1|) $) 18) (((-840) $) 21 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) 14 (|has| $ (-6 -4353))))) +(((-241 |#1|) (-13 (-646 |#1|) (-10 -8 (-15 -4317 ($ (-622 |#1|))) (-15 -4317 ((-622 |#1|) $)) (-15 -1534 ($ (-622 |#1|))) (-15 -4159 ($ $ "unique")) (-15 -4159 ($ $ "sort")) (-15 -4159 ((-751) $ "count")))) (-827)) (T -241)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-1534 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-827)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-751)) (-5 *1 (-241 *4)) (-4 *4 (-827))))) +(-13 (-646 |#1|) (-10 -8 (-15 -4317 ($ (-622 |#1|))) (-15 -4317 ((-622 |#1|) $)) (-15 -1534 ($ (-622 |#1|))) (-15 -4159 ($ $ "unique")) (-15 -4159 ($ $ "sort")) (-15 -4159 ((-751) $ "count")))) +((-1535 (((-3 (-751) "failed") |#1| |#1| (-751)) 27))) +(((-242 |#1|) (-10 -7 (-15 -1535 ((-3 (-751) "failed") |#1| |#1| (-751)))) (-13 (-707) (-363) (-10 -7 (-15 ** (|#1| |#1| (-538)))))) (T -242)) +((-1535 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-751)) (-4 *3 (-13 (-707) (-363) (-10 -7 (-15 ** (*3 *3 (-538)))))) (-5 *1 (-242 *3))))) +(-10 -7 (-15 -1535 ((-3 (-751) "failed") |#1| |#1| (-751)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-841 |#1|)) $) NIL)) (-3419 (((-1143 $) $ (-841 |#1|)) NIL) (((-1143 |#2|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-2178 (($ $) NIL (|has| |#2| (-545)))) (-2176 (((-112) $) NIL (|has| |#2| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-841 |#1|))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL (|has| |#2| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-841 |#1|) #2#) $) NIL)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-841 |#1|) $) NIL)) (-4116 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-2059 (($ $ (-622 (-538))) NIL)) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#2| (-886)))) (-1721 (($ $ |#2| (-235 (-4316 |#1|) (-751)) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#2|) (-841 |#1|)) NIL) (($ (-1143 $) (-841 |#1|)) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#2| (-235 (-4316 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-841 |#1|)) NIL)) (-3153 (((-235 (-4316 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-1722 (($ (-1 (-235 (-4316 |#1|) (-751)) (-235 (-4316 |#1|) (-751))) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-3418 (((-3 (-841 |#1|) #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#2| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -2493 (-751))) #3#) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#2| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-886)))) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-622 (-841 |#1|)) (-622 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-622 (-841 |#1|)) (-622 $)) NIL)) (-4117 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4170 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4307 (((-235 (-4316 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-841 |#1|) (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#2| (-38 (-402 (-538)))) (|has| |#2| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#2| (-545)))) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-235 (-4316 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#2| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#2| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#2| (-38 (-402 (-538))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-243 |#1| |#2|) (-13 (-926 |#2| (-235 (-4316 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538)))))) (-622 (-1149)) (-1025)) (T -243)) +((-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-243 *3 *4)) (-14 *3 (-622 (-1149))) (-4 *4 (-1025))))) +(-13 (-926 |#2| (-235 (-4316 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538)))))) +((-2898 (((-112) $ $) NIL)) (-1536 (((-1237) $) 15)) (-1538 (((-182) $) 9)) (-1537 (($ (-182)) 10)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 7)) (-3387 (((-112) $ $) 13))) +(((-244) (-13 (-1074) (-10 -8 (-15 -1538 ((-182) $)) (-15 -1537 ($ (-182))) (-15 -1536 ((-1237) $))))) (T -244)) +((-1538 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-244)))) (-1537 (*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-244)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-244))))) +(-13 (-1074) (-10 -8 (-15 -1538 ((-182) $)) (-15 -1537 ($ (-182))) (-15 -1536 ((-1237) $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4070 (($ (-895)) NIL (|has| |#4| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) NIL (|has| |#4| (-773)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#4| (-363)))) (-3986 (((-538) $) NIL (|has| |#4| (-825)))) (-4147 ((|#4| $ (-538) |#4|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#4| #1="failed") $) NIL (|has| |#4| (-1074))) (((-3 (-538) #1#) $) NIL (-12 (|has| |#4| (-1014 (-538))) (|has| |#4| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#4| (-1014 (-402 (-538)))) (|has| |#4| (-1074))))) (-3507 ((|#4| $) NIL (|has| |#4| (-1074))) (((-538) $) NIL (-12 (|has| |#4| (-1014 (-538))) (|has| |#4| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#4| (-1014 (-402 (-538)))) (|has| |#4| (-1074))))) (-2362 (((-2 (|:| -1700 (-669 |#4|)) (|:| |vec| (-1231 |#4|))) (-669 $) (-1231 $)) NIL (|has| |#4| (-1025))) (((-669 |#4|) (-669 $)) NIL (|has| |#4| (-1025))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025)))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))))) (-3821 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-3327 (($) NIL (|has| |#4| (-363)))) (-1637 ((|#4| $ (-538) |#4|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#4| $ (-538)) NIL)) (-3537 (((-112) $) NIL (|has| |#4| (-825)))) (-2068 (((-622 |#4|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-3538 (((-112) $) NIL (|has| |#4| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2511 (((-622 |#4|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2072 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#4| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#4| (-363)))) (-3594 (((-1093) $) NIL)) (-4160 ((|#4| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#4|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2312 (((-622 |#4|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#4| $ (-538) |#4|) NIL) ((|#4| $ (-538)) 12)) (-4196 ((|#4| $ $) NIL (|has| |#4| (-1025)))) (-1525 (($ (-1231 |#4|)) NIL)) (-4271 (((-133)) NIL (|has| |#4| (-358)))) (-4170 (($ $ (-1 |#4| |#4|) (-751)) NIL (|has| |#4| (-1025))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))))) (-2069 (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#4|) $) NIL) (((-840) $) NIL) (($ |#4|) NIL (|has| |#4| (-1074))) (($ (-538)) NIL (-3891 (-12 (|has| |#4| (-1014 (-538))) (|has| |#4| (-1074))) (|has| |#4| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#4| (-1014 (-402 (-538)))) (|has| |#4| (-1074))))) (-3461 (((-751)) NIL (|has| |#4| (-1025)))) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#4| (-825)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) CONST)) (-3002 (($ $ (-1 |#4| |#4|) (-751)) NIL (|has| |#4| (-1025))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025)))) (($ $) NIL (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-3018 (((-112) $ $) NIL (-3891 (|has| |#4| (-773)) (|has| |#4| (-825))))) (-4308 (($ $ |#4|) NIL (|has| |#4| (-358)))) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025))))) (($ $ (-895)) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (* (($ |#2| $) 14) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-707))) (($ |#4| $) NIL (|has| |#4| (-707))) (($ $ $) NIL (-3891 (-12 (|has| |#4| (-229)) (|has| |#4| (-1025))) (-12 (|has| |#4| (-621 (-538))) (|has| |#4| (-1025))) (|has| |#4| (-707)) (-12 (|has| |#4| (-876 (-1149))) (|has| |#4| (-1025)))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-245 |#1| |#2| |#3| |#4|) (-13 (-234 |#1| |#4|) (-628 |#2|) (-628 |#3|)) (-895) (-1025) (-1096 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-628 |#2|)) (T -245)) +NIL +(-13 (-234 |#1| |#4|) (-628 |#2|) (-628 |#3|)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4070 (($ (-895)) NIL (|has| |#3| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) NIL (|has| |#3| (-773)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#3| (-363)))) (-3986 (((-538) $) NIL (|has| |#3| (-825)))) (-4147 ((|#3| $ (-538) |#3|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#3| #1="failed") $) NIL (|has| |#3| (-1074))) (((-3 (-538) #1#) $) NIL (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074))))) (-3507 ((|#3| $) NIL (|has| |#3| (-1074))) (((-538) $) NIL (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074))))) (-2362 (((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 $) (-1231 $)) NIL (|has| |#3| (-1025))) (((-669 |#3|) (-669 $)) NIL (|has| |#3| (-1025))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025)))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))))) (-3821 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-3327 (($) NIL (|has| |#3| (-363)))) (-1637 ((|#3| $ (-538) |#3|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#3| $ (-538)) NIL)) (-3537 (((-112) $) NIL (|has| |#3| (-825)))) (-2068 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-3538 (((-112) $) NIL (|has| |#3| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2511 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2072 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#3| |#3|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#3| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#3| (-363)))) (-3594 (((-1093) $) NIL)) (-4160 ((|#3| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#3|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-622 |#3|) (-622 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-2312 (((-622 |#3|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#3| $ (-538) |#3|) NIL) ((|#3| $ (-538)) 11)) (-4196 ((|#3| $ $) NIL (|has| |#3| (-1025)))) (-1525 (($ (-1231 |#3|)) NIL)) (-4271 (((-133)) NIL (|has| |#3| (-358)))) (-4170 (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))))) (-2069 (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353))) (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#3|) $) NIL) (((-840) $) NIL) (($ |#3|) NIL (|has| |#3| (-1074))) (($ (-538)) NIL (-3891 (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074))) (|has| |#3| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074))))) (-3461 (((-751)) NIL (|has| |#3| (-1025)))) (-2071 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#3| (-825)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) CONST)) (-3002 (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3018 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-4308 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025))))) (($ $ (-895)) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (* (($ |#2| $) 13) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-707))) (($ |#3| $) NIL (|has| |#3| (-707))) (($ $ $) NIL (-3891 (-12 (|has| |#3| (-229)) (|has| |#3| (-1025))) (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025))) (|has| |#3| (-707)) (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-246 |#1| |#2| |#3|) (-13 (-234 |#1| |#3|) (-628 |#2|)) (-751) (-1025) (-628 |#2|)) (T -246)) +NIL +(-13 (-234 |#1| |#3|) (-628 |#2|)) +((-1543 (((-622 (-751)) $) 47) (((-622 (-751)) $ |#3|) 50)) (-1577 (((-751) $) 49) (((-751) $ |#3|) 52)) (-1539 (($ $) 65)) (-3508 (((-3 |#2| #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 (-538) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 |#3| #1#) $) 72)) (-4131 (((-751) $ |#3|) 39) (((-751) $) 36)) (-1578 (((-1 $ (-751)) |#3|) 15) (((-1 $ (-751)) $) 77)) (-1541 ((|#4| $) 58)) (-1542 (((-112) $) 56)) (-1540 (($ $) 64)) (-4127 (($ $ (-622 (-288 $))) 97) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-622 |#4|) (-622 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-622 |#4|) (-622 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-622 |#3|) (-622 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-622 |#3|) (-622 |#2|)) 84)) (-4170 (($ $ |#4|) NIL) (($ $ (-622 |#4|)) NIL) (($ $ |#4| (-751)) NIL) (($ $ (-622 |#4|) (-622 (-751))) NIL) (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1544 (((-622 |#3|) $) 75)) (-4307 ((|#5| $) NIL) (((-751) $ |#4|) NIL) (((-622 (-751)) $ (-622 |#4|)) NIL) (((-751) $ |#3|) 44)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-402 (-538))) NIL) (($ $) NIL))) +(((-247 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4127 (|#1| |#1| (-622 |#3|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#3| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#3|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#3| |#1|)) (-15 -1578 ((-1 |#1| (-751)) |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1541 (|#4| |#1|)) (-15 -1542 ((-112) |#1|)) (-15 -1577 ((-751) |#1| |#3|)) (-15 -1543 ((-622 (-751)) |#1| |#3|)) (-15 -1577 ((-751) |#1|)) (-15 -1543 ((-622 (-751)) |#1|)) (-15 -4307 ((-751) |#1| |#3|)) (-15 -4131 ((-751) |#1|)) (-15 -4131 ((-751) |#1| |#3|)) (-15 -1544 ((-622 |#3|) |#1|)) (-15 -1578 ((-1 |#1| (-751)) |#3|)) (-15 -3508 ((-3 |#3| #1="failed") |#1|)) (-15 -4317 (|#1| |#3|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -4307 ((-622 (-751)) |#1| (-622 |#4|))) (-15 -4307 ((-751) |#1| |#4|)) (-15 -3508 ((-3 |#4| #1#) |#1|)) (-15 -4317 (|#1| |#4|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#4| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#4| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4307 (|#5| |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4170 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -4170 (|#1| |#1| |#4| (-751))) (-15 -4170 (|#1| |#1| (-622 |#4|))) (-15 -4170 (|#1| |#1| |#4|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-248 |#2| |#3| |#4| |#5|) (-1025) (-827) (-261 |#3|) (-773)) (T -247)) +NIL +(-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4127 (|#1| |#1| (-622 |#3|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#3| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#3|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#3| |#1|)) (-15 -1578 ((-1 |#1| (-751)) |#1|)) (-15 -1539 (|#1| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1541 (|#4| |#1|)) (-15 -1542 ((-112) |#1|)) (-15 -1577 ((-751) |#1| |#3|)) (-15 -1543 ((-622 (-751)) |#1| |#3|)) (-15 -1577 ((-751) |#1|)) (-15 -1543 ((-622 (-751)) |#1|)) (-15 -4307 ((-751) |#1| |#3|)) (-15 -4131 ((-751) |#1|)) (-15 -4131 ((-751) |#1| |#3|)) (-15 -1544 ((-622 |#3|) |#1|)) (-15 -1578 ((-1 |#1| (-751)) |#3|)) (-15 -3508 ((-3 |#3| #1="failed") |#1|)) (-15 -4317 (|#1| |#3|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -4307 ((-622 (-751)) |#1| (-622 |#4|))) (-15 -4307 ((-751) |#1| |#4|)) (-15 -3508 ((-3 |#4| #1#) |#1|)) (-15 -4317 (|#1| |#4|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#4| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#4| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4307 (|#5| |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4170 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -4170 (|#1| |#1| |#4| (-751))) (-15 -4170 (|#1| |#1| (-622 |#4|))) (-15 -4170 (|#1| |#1| |#4|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1543 (((-622 (-751)) $) 212) (((-622 (-751)) $ |#2|) 210)) (-1577 (((-751) $) 211) (((-751) $ |#2|) 209)) (-3417 (((-622 |#3|) $) 108)) (-3419 (((-1143 $) $ |#3|) 123) (((-1143 |#1|) $) 122)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-545)))) (-2178 (($ $) 86 (|has| |#1| (-545)))) (-2176 (((-112) $) 88 (|has| |#1| (-545)))) (-3152 (((-751) $) 110) (((-751) $ (-622 |#3|)) 109)) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 98 (|has| |#1| (-886)))) (-4134 (($ $) 96 (|has| |#1| (-446)))) (-4329 (((-400 $) $) 95 (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 101 (|has| |#1| (-886)))) (-1539 (($ $) 205)) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| #2="failed") $) 162) (((-3 (-402 (-538)) #2#) $) 160 (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) 158 (|has| |#1| (-1014 (-538)))) (((-3 |#3| #2#) $) 134) (((-3 |#2| #2#) $) 219)) (-3507 ((|#1| $) 163) (((-402 (-538)) $) 159 (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) 157 (|has| |#1| (-1014 (-538)))) ((|#3| $) 133) ((|#2| $) 218)) (-4116 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4319 (($ $) 152)) (-2362 (((-669 (-538)) (-669 $)) 132 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 131 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-3821 (((-3 $ "failed") $) 32)) (-3857 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-3151 (((-622 $) $) 107)) (-4086 (((-112) $) 94 (|has| |#1| (-886)))) (-1721 (($ $ |#1| |#4| $) 170)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 82 (-12 (|has| |#3| (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 81 (-12 (|has| |#3| (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ |#2|) 215) (((-751) $) 214)) (-2502 (((-112) $) 30)) (-2510 (((-751) $) 167)) (-3420 (($ (-1143 |#1|) |#3|) 115) (($ (-1143 $) |#3|) 114)) (-3154 (((-622 $) $) 124)) (-4297 (((-112) $) 150)) (-3226 (($ |#1| |#4|) 151) (($ $ |#3| (-751)) 117) (($ $ (-622 |#3|) (-622 (-751))) 116)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#3|) 118)) (-3153 ((|#4| $) 168) (((-751) $ |#3|) 120) (((-622 (-751)) $ (-622 |#3|)) 119)) (-3677 (($ $ $) 77 (|has| |#1| (-827)))) (-3678 (($ $ $) 76 (|has| |#1| (-827)))) (-1722 (($ (-1 |#4| |#4|) $) 169)) (-4318 (($ (-1 |#1| |#1|) $) 149)) (-1578 (((-1 $ (-751)) |#2|) 217) (((-1 $ (-751)) $) 204 (|has| |#1| (-229)))) (-3418 (((-3 |#3| #3="failed") $) 121)) (-3227 (($ $) 147)) (-3525 ((|#1| $) 146)) (-1541 ((|#3| $) 207)) (-2013 (($ (-622 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-3593 (((-1131) $) 9)) (-1542 (((-112) $) 208)) (-3156 (((-3 (-622 $) #3#) $) 112)) (-3155 (((-3 (-622 $) #3#) $) 113)) (-3157 (((-3 (-2 (|:| |var| |#3|) (|:| -2493 (-751))) #3#) $) 111)) (-1540 (($ $) 206)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 164)) (-1915 ((|#1| $) 165)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 93 (|has| |#1| (-446)))) (-3495 (($ (-622 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 100 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 99 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 97 (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-622 $) (-622 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-622 |#3|) (-622 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-622 |#3|) (-622 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-229))) (($ $ (-622 |#2|) (-622 $)) 202 (|has| |#1| (-229))) (($ $ |#2| |#1|) 201 (|has| |#1| (-229))) (($ $ (-622 |#2|) (-622 |#1|)) 200 (|has| |#1| (-229)))) (-4117 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4170 (($ $ |#3|) 40) (($ $ (-622 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-622 |#3|) (-622 (-751))) 37) (($ $) 236 (|has| |#1| (-229))) (($ $ (-751)) 234 (|has| |#1| (-229))) (($ $ (-1149)) 232 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 231 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 230 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 229 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-1544 (((-622 |#2|) $) 216)) (-4307 ((|#4| $) 148) (((-751) $ |#3|) 128) (((-622 (-751)) $ (-622 |#3|)) 127) (((-751) $ |#2|) 213)) (-4330 (((-866 (-373)) $) 80 (-12 (|has| |#3| (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) 79 (-12 (|has| |#3| (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) 78 (-12 (|has| |#3| (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 102 (-3191 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-402 (-538))) 70 (-3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| |#1| (-38 (-402 (-538)))))) (($ $) 83 (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) 166)) (-4040 ((|#1| $ |#4|) 153) (($ $ |#3| (-751)) 126) (($ $ (-622 |#3|) (-622 (-751))) 125)) (-3035 (((-3 $ #1#) $) 71 (-3891 (-3191 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 28)) (-1720 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 87 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ |#3|) 36) (($ $ (-622 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-622 |#3|) (-622 (-751))) 33) (($ $) 235 (|has| |#1| (-229))) (($ $ (-751)) 233 (|has| |#1| (-229))) (($ $ (-1149)) 228 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 227 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 226 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 225 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2896 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 73 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 75 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 72 (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 156 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 155 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-248 |#1| |#2| |#3| |#4|) (-138) (-1025) (-827) (-261 |t#2|) (-773)) (T -248)) +((-1578 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *4 *3 *5 *6)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-622 *4)))) (-4131 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) (-4307 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-622 (-751))))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) (-1543 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-622 (-751))))) (-1577 (*1 *2 *1 *3) (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-112)))) (-1541 (*1 *2 *1) (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-4 *2 (-261 *4)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-261 *3)) (-4 *5 (-773)))) (-1539 (*1 *1 *1) (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-261 *3)) (-4 *5 (-773)))) (-1578 (*1 *2 *1) (-12 (-4 *3 (-229)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *3 *4 *5 *6))))) +(-13 (-926 |t#1| |t#4| |t#3|) (-227 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -1578 ((-1 $ (-751)) |t#2|)) (-15 -1544 ((-622 |t#2|) $)) (-15 -4131 ((-751) $ |t#2|)) (-15 -4131 ((-751) $)) (-15 -4307 ((-751) $ |t#2|)) (-15 -1543 ((-622 (-751)) $)) (-15 -1577 ((-751) $)) (-15 -1543 ((-622 (-751)) $ |t#2|)) (-15 -1577 ((-751) $ |t#2|)) (-15 -1542 ((-112) $)) (-15 -1541 (|t#3| $)) (-15 -1540 ($ $)) (-15 -1539 ($ $)) (IF (|has| |t#1| (-229)) (PROGN (-6 (-507 |t#2| |t#1|)) (-6 (-507 |t#2| $)) (-6 (-304 $)) (-15 -1578 ((-1 $ (-751)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#3| (-598 (-527)))) ((-598 (-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#3| (-598 (-866 (-373))))) ((-598 (-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#3| (-598 (-866 (-538))))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-285) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#4|) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-886)) (|has| |#1| (-446))) ((-507 |#2| |#1|) |has| |#1| (-229)) ((-507 |#2| $) |has| |#1| (-229)) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-545) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-876 |#3|) . T) ((-862 (-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#3| (-862 (-373)))) ((-862 (-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#3| (-862 (-538)))) ((-926 |#1| |#4| |#3|) . T) ((-886) |has| |#1| (-886)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1014 |#2|) . T) ((-1014 |#3|) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) |has| |#1| (-886))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1550 ((|#1| $) 54)) (-3683 ((|#1| $) 44)) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-3335 (($ $) 60)) (-2377 (($ $) 48)) (-3685 ((|#1| |#1| $) 46)) (-3684 ((|#1| $) 45)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-4193 (((-751) $) 61)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-1548 ((|#1| |#1| $) 52)) (-1547 ((|#1| |#1| $) 51)) (-3970 (($ |#1| $) 40)) (-2933 (((-751) $) 55)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-3334 ((|#1| $) 62)) (-1546 ((|#1| $) 50)) (-1545 ((|#1| $) 49)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3337 ((|#1| |#1| $) 58)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-3336 ((|#1| $) 59)) (-1551 (($) 57) (($ (-622 |#1|)) 56)) (-3682 (((-751) $) 43)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1549 ((|#1| $) 53)) (-1335 (($ (-622 |#1|)) 42)) (-3333 ((|#1| $) 63)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-249 |#1|) (-138) (-1185)) (T -249)) +((-1551 (*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1551 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-249 *3)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))) (-1550 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1548 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1547 (*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1546 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) (-2377 (*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185))))) +(-13 (-1094 |t#1|) (-971 |t#1|) (-10 -8 (-15 -1551 ($)) (-15 -1551 ($ (-622 |t#1|))) (-15 -2933 ((-751) $)) (-15 -1550 (|t#1| $)) (-15 -1549 (|t#1| $)) (-15 -1548 (|t#1| |t#1| $)) (-15 -1547 (|t#1| |t#1| $)) (-15 -1546 (|t#1| $)) (-15 -1545 (|t#1| $)) (-15 -2377 ($ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-971 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1094 |#1|) . T) ((-1185) . T)) +((-1552 (((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373))) 71) (((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256))) 70) (((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373))) 61) (((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256))) 60) (((-1106 (-221)) (-855 |#1|) (-1065 (-373))) 52) (((-1106 (-221)) (-855 |#1|) (-1065 (-373)) (-622 (-256))) 51)) (-1559 (((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373))) 74) (((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256))) 73) (((-1235) |#1| (-1065 (-373)) (-1065 (-373))) 64) (((-1235) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256))) 63) (((-1235) (-855 |#1|) (-1065 (-373))) 56) (((-1235) (-855 |#1|) (-1065 (-373)) (-622 (-256))) 55) (((-1234) (-853 |#1|) (-1065 (-373))) 43) (((-1234) (-853 |#1|) (-1065 (-373)) (-622 (-256))) 42) (((-1234) |#1| (-1065 (-373))) 35) (((-1234) |#1| (-1065 (-373)) (-622 (-256))) 34))) +(((-250 |#1|) (-10 -7 (-15 -1559 ((-1234) |#1| (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) |#1| (-1065 (-373)))) (-15 -1559 ((-1234) (-853 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-853 |#1|) (-1065 (-373)))) (-15 -1559 ((-1235) (-855 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-855 |#1|) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) (-855 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-855 |#1|) (-1065 (-373)))) (-15 -1559 ((-1235) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) |#1| (-1065 (-373)) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373)))) (-15 -1559 ((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373))))) (-13 (-598 (-527)) (-1074))) (T -250)) +((-1552 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-373))) (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *5)))) (-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *6)))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-373))) (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *5)))) (-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *6)))) (-1552 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) (-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1235)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) (-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) (-1552 (*1 *2 *3 *4) (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-373))) (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *5)))) (-1552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *6)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-373))) (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *5)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *6)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-853 *5)) (-5 *4 (-1065 (-373))) (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1234)) (-5 *1 (-250 *5)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1234)) (-5 *1 (-250 *6)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1234)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074)))))) +(-10 -7 (-15 -1559 ((-1234) |#1| (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) |#1| (-1065 (-373)))) (-15 -1559 ((-1234) (-853 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-853 |#1|) (-1065 (-373)))) (-15 -1559 ((-1235) (-855 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-855 |#1|) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) (-855 |#1|) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-855 |#1|) (-1065 (-373)))) (-15 -1559 ((-1235) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) |#1| (-1065 (-373)) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) |#1| (-1065 (-373)) (-1065 (-373)))) (-15 -1559 ((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-858 |#1|) (-1065 (-373)) (-1065 (-373)))) (-15 -1552 ((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-858 |#1|) (-1065 (-373)) (-1065 (-373))))) +((-1553 (((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 139)) (-1552 (((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373))) 160) (((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 158) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373))) 163) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 159) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373))) 150) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 149) (((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373))) 129) (((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256))) 127) (((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373))) 128) (((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256))) 125)) (-1559 (((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373))) 162) (((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 161) (((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373))) 165) (((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 164) (((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373))) 152) (((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256))) 151) (((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373))) 135) (((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256))) 134) (((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373))) 133) (((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256))) 132) (((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373))) 100) (((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256))) 99) (((-1234) (-1 (-221) (-221)) (-1062 (-373))) 96) (((-1234) (-1 (-221) (-221)) (-1062 (-373)) (-622 (-256))) 95))) +(((-251) (-10 -7 (-15 -1559 ((-1234) (-1 (-221) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-1 (-221) (-221)) (-1062 (-373)))) (-15 -1559 ((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1559 ((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1559 ((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)))) (-15 -1553 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -251)) +((-1553 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1552 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1234)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1234)) (-5 *1 (-251)))) (-1559 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-251))))) +(-10 -7 (-15 -1559 ((-1234) (-1 (-221) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-1 (-221) (-221)) (-1062 (-373)))) (-15 -1559 ((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1234) (-853 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1559 ((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-855 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-855 (-1 (-221) (-221))) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221)) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-373)) (-1062 (-373)))) (-15 -1559 ((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1559 ((-1235) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)))) (-15 -1552 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)) (-622 (-256)))) (-15 -1552 ((-1106 (-221)) (-858 (-1 (-221) (-221) (-221))) (-1062 (-373)) (-1062 (-373)))) (-15 -1553 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))))) +((-1559 (((-1234) (-288 |#2|) (-1149) (-1149) (-622 (-256))) 96))) +(((-252 |#1| |#2|) (-10 -7 (-15 -1559 ((-1234) (-288 |#2|) (-1149) (-1149) (-622 (-256))))) (-13 (-545) (-827) (-1014 (-538))) (-416 |#1|)) (T -252)) +((-1559 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-1149)) (-5 *5 (-622 (-256))) (-4 *7 (-416 *6)) (-4 *6 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-1234)) (-5 *1 (-252 *6 *7))))) +(-10 -7 (-15 -1559 ((-1234) (-288 |#2|) (-1149) (-1149) (-622 (-256))))) +((-1556 (((-538) (-538)) 50)) (-1557 (((-538) (-538)) 51)) (-1558 (((-221) (-221)) 52)) (-1555 (((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221))) 49)) (-1554 (((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221)) (-112)) 47))) +(((-253) (-10 -7 (-15 -1554 ((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221)) (-112))) (-15 -1555 ((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221)))) (-15 -1556 ((-538) (-538))) (-15 -1557 ((-538) (-538))) (-15 -1558 ((-221) (-221))))) (T -253)) +((-1558 (*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-253)))) (-1557 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-253)))) (-1556 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-253)))) (-1555 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-166 (-221)) (-166 (-221)))) (-5 *4 (-1062 (-221))) (-5 *2 (-1235)) (-5 *1 (-253)))) (-1554 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-166 (-221)) (-166 (-221)))) (-5 *4 (-1062 (-221))) (-5 *5 (-112)) (-5 *2 (-1235)) (-5 *1 (-253))))) +(-10 -7 (-15 -1554 ((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221)) (-112))) (-15 -1555 ((-1235) (-1 (-166 (-221)) (-166 (-221))) (-1062 (-221)) (-1062 (-221)))) (-15 -1556 ((-538) (-538))) (-15 -1557 ((-538) (-538))) (-15 -1558 ((-221) (-221)))) +((-4317 (((-1065 (-373)) (-1065 (-309 |#1|))) 16))) +(((-254 |#1|) (-10 -7 (-15 -4317 ((-1065 (-373)) (-1065 (-309 |#1|))))) (-13 (-827) (-545) (-598 (-373)))) (T -254)) +((-4317 (*1 *2 *3) (-12 (-5 *3 (-1065 (-309 *4))) (-4 *4 (-13 (-827) (-545) (-598 (-373)))) (-5 *2 (-1065 (-373))) (-5 *1 (-254 *4))))) +(-10 -7 (-15 -4317 ((-1065 (-373)) (-1065 (-309 |#1|))))) +((-1559 (((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221)) (-622 (-256))) 23) (((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221))) 24) (((-1234) (-622 (-919 (-221))) (-622 (-256))) 16) (((-1234) (-622 (-919 (-221)))) 17) (((-1234) (-622 (-221)) (-622 (-221)) (-622 (-256))) 20) (((-1234) (-622 (-221)) (-622 (-221))) 21))) +(((-255) (-10 -7 (-15 -1559 ((-1234) (-622 (-221)) (-622 (-221)))) (-15 -1559 ((-1234) (-622 (-221)) (-622 (-221)) (-622 (-256)))) (-15 -1559 ((-1234) (-622 (-919 (-221))))) (-15 -1559 ((-1234) (-622 (-919 (-221))) (-622 (-256)))) (-15 -1559 ((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221)))) (-15 -1559 ((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221)) (-622 (-256)))))) (T -255)) +((-1559 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-622 (-221))) (-5 *4 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-255)))) (-1559 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1235)) (-5 *1 (-255)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *4 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-255)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *2 (-1234)) (-5 *1 (-255)))) (-1559 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-622 (-221))) (-5 *4 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-255)))) (-1559 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1234)) (-5 *1 (-255))))) +(-10 -7 (-15 -1559 ((-1234) (-622 (-221)) (-622 (-221)))) (-15 -1559 ((-1234) (-622 (-221)) (-622 (-221)) (-622 (-256)))) (-15 -1559 ((-1234) (-622 (-919 (-221))))) (-15 -1559 ((-1234) (-622 (-919 (-221))) (-622 (-256)))) (-15 -1559 ((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221)))) (-15 -1559 ((-1235) (-622 (-221)) (-622 (-221)) (-622 (-221)) (-622 (-256))))) +((-2898 (((-112) $ $) NIL)) (-4241 (($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 15)) (-1572 (($ (-895)) 76)) (-1571 (($ (-895)) 75)) (-1892 (($ (-622 (-373))) 82)) (-1575 (($ (-373)) 58)) (-1574 (($ (-895)) 77)) (-1568 (($ (-112)) 23)) (-4243 (($ (-1131)) 18)) (-1567 (($ (-1131)) 19)) (-1573 (($ (-1106 (-221))) 71)) (-2050 (($ (-622 (-1062 (-373)))) 67)) (-1561 (($ (-622 (-1062 (-373)))) 59) (($ (-622 (-1062 (-402 (-538))))) 66)) (-1564 (($ (-373)) 29) (($ (-850)) 33)) (-1560 (((-112) (-622 $) (-1149)) 91)) (-1576 (((-3 (-51) "failed") (-622 $) (-1149)) 93)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1563 (($ (-373)) 34) (($ (-850)) 35)) (-3575 (($ (-1 (-919 (-221)) (-919 (-221)))) 57)) (-2350 (($ (-1 (-919 (-221)) (-919 (-221)))) 78)) (-1562 (($ (-1 (-221) (-221))) 39) (($ (-1 (-221) (-221) (-221))) 43) (($ (-1 (-221) (-221) (-221) (-221))) 47)) (-4317 (((-840) $) 87)) (-1565 (($ (-112)) 24) (($ (-622 (-1062 (-373)))) 52)) (-2045 (($ (-112)) 25)) (-3387 (((-112) $ $) 89))) +(((-256) (-13 (-1074) (-10 -8 (-15 -2045 ($ (-112))) (-15 -1565 ($ (-112))) (-15 -4241 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4243 ($ (-1131))) (-15 -1567 ($ (-1131))) (-15 -1568 ($ (-112))) (-15 -1565 ($ (-622 (-1062 (-373))))) (-15 -3575 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -1564 ($ (-373))) (-15 -1564 ($ (-850))) (-15 -1563 ($ (-373))) (-15 -1563 ($ (-850))) (-15 -1562 ($ (-1 (-221) (-221)))) (-15 -1562 ($ (-1 (-221) (-221) (-221)))) (-15 -1562 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -1575 ($ (-373))) (-15 -1561 ($ (-622 (-1062 (-373))))) (-15 -1561 ($ (-622 (-1062 (-402 (-538)))))) (-15 -2050 ($ (-622 (-1062 (-373))))) (-15 -1573 ($ (-1106 (-221)))) (-15 -1571 ($ (-895))) (-15 -1572 ($ (-895))) (-15 -1574 ($ (-895))) (-15 -2350 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -1892 ($ (-622 (-373)))) (-15 -1576 ((-3 (-51) "failed") (-622 $) (-1149))) (-15 -1560 ((-112) (-622 $) (-1149)))))) (T -256)) +((-2045 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-1565 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-4241 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-256)))) (-4243 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-256)))) (-1567 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-256)))) (-1568 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) (-1565 (*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256)))) (-3575 (*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-256)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256)))) (-1564 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-256)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-256)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-256)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-256)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-256)))) (-1575 (*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256)))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256)))) (-1561 (*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-402 (-538))))) (-5 *1 (-256)))) (-2050 (*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256)))) (-1573 (*1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-256)))) (-1571 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) (-2350 (*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-256)))) (-1892 (*1 *1 *2) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-256)))) (-1576 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *2 (-51)) (-5 *1 (-256)))) (-1560 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *2 (-112)) (-5 *1 (-256))))) +(-13 (-1074) (-10 -8 (-15 -2045 ($ (-112))) (-15 -1565 ($ (-112))) (-15 -4241 ($ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4243 ($ (-1131))) (-15 -1567 ($ (-1131))) (-15 -1568 ($ (-112))) (-15 -1565 ($ (-622 (-1062 (-373))))) (-15 -3575 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -1564 ($ (-373))) (-15 -1564 ($ (-850))) (-15 -1563 ($ (-373))) (-15 -1563 ($ (-850))) (-15 -1562 ($ (-1 (-221) (-221)))) (-15 -1562 ($ (-1 (-221) (-221) (-221)))) (-15 -1562 ($ (-1 (-221) (-221) (-221) (-221)))) (-15 -1575 ($ (-373))) (-15 -1561 ($ (-622 (-1062 (-373))))) (-15 -1561 ($ (-622 (-1062 (-402 (-538)))))) (-15 -2050 ($ (-622 (-1062 (-373))))) (-15 -1573 ($ (-1106 (-221)))) (-15 -1571 ($ (-895))) (-15 -1572 ($ (-895))) (-15 -1574 ($ (-895))) (-15 -2350 ($ (-1 (-919 (-221)) (-919 (-221))))) (-15 -1892 ($ (-622 (-373)))) (-15 -1576 ((-3 (-51) "failed") (-622 $) (-1149))) (-15 -1560 ((-112) (-622 $) (-1149))))) +((-4241 (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-622 (-256)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 26)) (-1572 (((-895) (-622 (-256)) (-895)) 53)) (-1571 (((-895) (-622 (-256)) (-895)) 52)) (-4211 (((-622 (-373)) (-622 (-256)) (-622 (-373))) 69)) (-1575 (((-373) (-622 (-256)) (-373)) 58)) (-1574 (((-895) (-622 (-256)) (-895)) 54)) (-1568 (((-112) (-622 (-256)) (-112)) 28)) (-4243 (((-1131) (-622 (-256)) (-1131)) 20)) (-1567 (((-1131) (-622 (-256)) (-1131)) 27)) (-1573 (((-1106 (-221)) (-622 (-256))) 47)) (-2050 (((-622 (-1062 (-373))) (-622 (-256)) (-622 (-1062 (-373)))) 41)) (-1569 (((-850) (-622 (-256)) (-850)) 33)) (-1570 (((-850) (-622 (-256)) (-850)) 34)) (-2350 (((-1 (-919 (-221)) (-919 (-221))) (-622 (-256)) (-1 (-919 (-221)) (-919 (-221)))) 64)) (-1566 (((-112) (-622 (-256)) (-112)) 16)) (-2045 (((-112) (-622 (-256)) (-112)) 15))) +(((-257) (-10 -7 (-15 -2045 ((-112) (-622 (-256)) (-112))) (-15 -1566 ((-112) (-622 (-256)) (-112))) (-15 -4241 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-622 (-256)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4243 ((-1131) (-622 (-256)) (-1131))) (-15 -1567 ((-1131) (-622 (-256)) (-1131))) (-15 -1568 ((-112) (-622 (-256)) (-112))) (-15 -1569 ((-850) (-622 (-256)) (-850))) (-15 -1570 ((-850) (-622 (-256)) (-850))) (-15 -2050 ((-622 (-1062 (-373))) (-622 (-256)) (-622 (-1062 (-373))))) (-15 -1571 ((-895) (-622 (-256)) (-895))) (-15 -1572 ((-895) (-622 (-256)) (-895))) (-15 -1573 ((-1106 (-221)) (-622 (-256)))) (-15 -1574 ((-895) (-622 (-256)) (-895))) (-15 -1575 ((-373) (-622 (-256)) (-373))) (-15 -2350 ((-1 (-919 (-221)) (-919 (-221))) (-622 (-256)) (-1 (-919 (-221)) (-919 (-221))))) (-15 -4211 ((-622 (-373)) (-622 (-256)) (-622 (-373)))))) (T -257)) +((-4211 (*1 *2 *3 *2) (-12 (-5 *2 (-622 (-373))) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-2350 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1575 (*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1574 (*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-257)))) (-1572 (*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1571 (*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-2050 (*1 *2 *3 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1570 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1569 (*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1568 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1567 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-4243 (*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-4241 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-1566 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) (-2045 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))) +(-10 -7 (-15 -2045 ((-112) (-622 (-256)) (-112))) (-15 -1566 ((-112) (-622 (-256)) (-112))) (-15 -4241 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) (-622 (-256)) (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4243 ((-1131) (-622 (-256)) (-1131))) (-15 -1567 ((-1131) (-622 (-256)) (-1131))) (-15 -1568 ((-112) (-622 (-256)) (-112))) (-15 -1569 ((-850) (-622 (-256)) (-850))) (-15 -1570 ((-850) (-622 (-256)) (-850))) (-15 -2050 ((-622 (-1062 (-373))) (-622 (-256)) (-622 (-1062 (-373))))) (-15 -1571 ((-895) (-622 (-256)) (-895))) (-15 -1572 ((-895) (-622 (-256)) (-895))) (-15 -1573 ((-1106 (-221)) (-622 (-256)))) (-15 -1574 ((-895) (-622 (-256)) (-895))) (-15 -1575 ((-373) (-622 (-256)) (-373))) (-15 -2350 ((-1 (-919 (-221)) (-919 (-221))) (-622 (-256)) (-1 (-919 (-221)) (-919 (-221))))) (-15 -4211 ((-622 (-373)) (-622 (-256)) (-622 (-373))))) +((-1576 (((-3 |#1| "failed") (-622 (-256)) (-1149)) 17))) +(((-258 |#1|) (-10 -7 (-15 -1576 ((-3 |#1| "failed") (-622 (-256)) (-1149)))) (-1185)) (T -258)) +((-1576 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *1 (-258 *2)) (-4 *2 (-1185))))) +(-10 -7 (-15 -1576 ((-3 |#1| "failed") (-622 (-256)) (-1149)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1543 (((-622 (-751)) $) NIL) (((-622 (-751)) $ |#2|) NIL)) (-1577 (((-751) $) NIL) (((-751) $ |#2|) NIL)) (-3417 (((-622 |#3|) $) NIL)) (-3419 (((-1143 $) $ |#3|) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 |#3|)) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1539 (($ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 |#3| #2#) $) NIL) (((-3 |#2| #2#) $) NIL) (((-3 (-1098 |#1| |#2|) #2#) $) 21)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1098 |#1| |#2|) $) NIL)) (-4116 (($ $ $ |#3|) NIL (|has| |#1| (-170)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-524 |#3|) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| |#1| (-862 (-373))) (|has| |#3| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| |#1| (-862 (-538))) (|has| |#3| (-862 (-538)))))) (-4131 (((-751) $ |#2|) NIL) (((-751) $) 10)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#1|) |#3|) NIL) (($ (-1143 $) |#3|) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-524 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-622 |#3|) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#3|) NIL)) (-3153 (((-524 |#3|) $) NIL) (((-751) $ |#3|) NIL) (((-622 (-751)) $ (-622 |#3|)) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 |#3|) (-524 |#3|)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1 $ (-751)) |#2|) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-3418 (((-3 |#3| #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-1541 ((|#3| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-1542 (((-112) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| |#3|) (|:| -2493 (-751))) #3#) $) NIL)) (-1540 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-622 |#3|) (-622 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-622 |#3|) (-622 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-229))) (($ $ (-622 |#2|) (-622 $)) NIL (|has| |#1| (-229))) (($ $ |#2| |#1|) NIL (|has| |#1| (-229))) (($ $ (-622 |#2|) (-622 |#1|)) NIL (|has| |#1| (-229)))) (-4117 (($ $ |#3|) NIL (|has| |#1| (-170)))) (-4170 (($ $ |#3|) NIL) (($ $ (-622 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-622 |#3|) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1544 (((-622 |#2|) $) NIL)) (-4307 (((-524 |#3|) $) NIL) (((-751) $ |#3|) NIL) (((-622 (-751)) $ (-622 |#3|)) NIL) (((-751) $ |#2|) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#3| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#3| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| |#1| (-598 (-527))) (|has| |#3| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ |#3|) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1098 |#1| |#2|)) 30) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-524 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-622 |#3|) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ |#3|) NIL) (($ $ (-622 |#3|)) NIL) (($ $ |#3| (-751)) NIL) (($ $ (-622 |#3|) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-259 |#1| |#2| |#3|) (-13 (-248 |#1| |#2| |#3| (-524 |#3|)) (-1014 (-1098 |#1| |#2|))) (-1025) (-827) (-261 |#2|)) (T -259)) +NIL +(-13 (-248 |#1| |#2| |#3| (-524 |#3|)) (-1014 (-1098 |#1| |#2|))) +((-1577 (((-751) $) 30)) (-3508 (((-3 |#2| "failed") $) 17)) (-3507 ((|#2| $) 27)) (-4170 (($ $) 12) (($ $ (-751)) 15)) (-4317 (((-840) $) 26) (($ |#2|) 10)) (-3387 (((-112) $ $) 20)) (-3018 (((-112) $ $) 29))) +(((-260 |#1| |#2|) (-10 -8 (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -1577 ((-751) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| "failed") |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-261 |#2|) (-827)) (T -260)) +NIL +(-10 -8 (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -1577 ((-751) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| "failed") |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-1577 (((-751) $) 22)) (-4191 ((|#1| $) 23)) (-3508 (((-3 |#1| "failed") $) 27)) (-3507 ((|#1| $) 26)) (-4131 (((-751) $) 24)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-1578 (($ |#1| (-751)) 25)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4170 (($ $) 21) (($ $ (-751)) 20)) (-4317 (((-840) $) 11) (($ |#1|) 28)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18))) +(((-261 |#1|) (-138) (-827)) (T -261)) +((-4317 (*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-1578 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4170 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-261 *3)) (-4 *3 (-827))))) +(-13 (-827) (-1014 |t#1|) (-10 -8 (-15 -1578 ($ |t#1| (-751))) (-15 -4131 ((-751) $)) (-15 -4191 (|t#1| $)) (-15 -1577 ((-751) $)) (-15 -4170 ($ $)) (-15 -4170 ($ $ (-751))) (-15 -4317 ($ |t#1|)))) +(((-101) . T) ((-597 (-840)) . T) ((-827) . T) ((-1014 |#1|) . T) ((-1074) . T)) +((-3417 (((-622 (-1149)) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 41)) (-4294 (((-622 (-1149)) (-309 (-221)) (-751)) 80)) (-1581 (((-3 (-309 (-221)) "failed") (-309 (-221))) 51)) (-1582 (((-309 (-221)) (-309 (-221))) 67)) (-1580 (((-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 26)) (-1583 (((-112) (-622 (-309 (-221)))) 84)) (-1587 (((-112) (-309 (-221))) 24)) (-1589 (((-622 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) 106)) (-1586 (((-622 (-309 (-221))) (-622 (-309 (-221)))) 88)) (-1585 (((-622 (-309 (-221))) (-622 (-309 (-221)))) 86)) (-1584 (((-669 (-221)) (-622 (-309 (-221))) (-751)) 95)) (-3260 (((-112) (-309 (-221))) 20) (((-112) (-622 (-309 (-221)))) 85)) (-1579 (((-622 (-221)) (-622 (-819 (-221))) (-221)) 14)) (-1677 (((-373) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 101)) (-1588 (((-1011) (-1149) (-1011)) 34))) +(((-262) (-10 -7 (-15 -1579 ((-622 (-221)) (-622 (-819 (-221))) (-221))) (-15 -1580 ((-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))) (-15 -1581 ((-3 (-309 (-221)) "failed") (-309 (-221)))) (-15 -1582 ((-309 (-221)) (-309 (-221)))) (-15 -1583 ((-112) (-622 (-309 (-221))))) (-15 -3260 ((-112) (-622 (-309 (-221))))) (-15 -3260 ((-112) (-309 (-221)))) (-15 -1584 ((-669 (-221)) (-622 (-309 (-221))) (-751))) (-15 -1585 ((-622 (-309 (-221))) (-622 (-309 (-221))))) (-15 -1586 ((-622 (-309 (-221))) (-622 (-309 (-221))))) (-15 -1587 ((-112) (-309 (-221)))) (-15 -3417 ((-622 (-1149)) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -4294 ((-622 (-1149)) (-309 (-221)) (-751))) (-15 -1588 ((-1011) (-1149) (-1011))) (-15 -1677 ((-373) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -1589 ((-622 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))))))) (T -262)) +((-1589 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) (-5 *2 (-622 (-1131))) (-5 *1 (-262)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) (-5 *2 (-373)) (-5 *1 (-262)))) (-1588 (*1 *2 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-262)))) (-4294 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-221))) (-5 *4 (-751)) (-5 *2 (-622 (-1149))) (-5 *1 (-262)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) (-5 *2 (-622 (-1149))) (-5 *1 (-262)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-1586 (*1 *2 *2) (-12 (-5 *2 (-622 (-309 (-221)))) (-5 *1 (-262)))) (-1585 (*1 *2 *2) (-12 (-5 *2 (-622 (-309 (-221)))) (-5 *1 (-262)))) (-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) (-5 *1 (-262)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-1583 (*1 *2 *3) (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) (-1582 (*1 *2 *2) (-12 (-5 *2 (-309 (-221))) (-5 *1 (-262)))) (-1581 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-221))) (-5 *1 (-262)))) (-1580 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (-5 *1 (-262)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-819 (-221)))) (-5 *4 (-221)) (-5 *2 (-622 *4)) (-5 *1 (-262))))) +(-10 -7 (-15 -1579 ((-622 (-221)) (-622 (-819 (-221))) (-221))) (-15 -1580 ((-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))) (-15 -1581 ((-3 (-309 (-221)) "failed") (-309 (-221)))) (-15 -1582 ((-309 (-221)) (-309 (-221)))) (-15 -1583 ((-112) (-622 (-309 (-221))))) (-15 -3260 ((-112) (-622 (-309 (-221))))) (-15 -3260 ((-112) (-309 (-221)))) (-15 -1584 ((-669 (-221)) (-622 (-309 (-221))) (-751))) (-15 -1585 ((-622 (-309 (-221))) (-622 (-309 (-221))))) (-15 -1586 ((-622 (-309 (-221))) (-622 (-309 (-221))))) (-15 -1587 ((-112) (-309 (-221)))) (-15 -3417 ((-622 (-1149)) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -4294 ((-622 (-1149)) (-309 (-221)) (-751))) (-15 -1588 ((-1011) (-1149) (-1011))) (-15 -1677 ((-373) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -1589 ((-622 (-1131)) (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))))) +((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 44)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 26) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-263) (-816)) (T -263)) +NIL +(-816) +((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 58) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 54)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 34) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 36)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-264) (-816)) (T -264)) +NIL +(-816) +((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 76) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 73)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 44) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 55)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-265) (-816)) (T -265)) +NIL +(-816) +((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 50)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 31) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-266) (-816)) (T -266)) +NIL +(-816) +((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 50)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 28) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-267) (-816)) (T -267)) +NIL +(-816) +((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 73)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 28) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-268) (-816)) (T -268)) +NIL +(-816) +((-2898 (((-112) $ $) NIL)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 77)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 25) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-269) (-816)) (T -269)) +NIL +(-816) +((-2898 (((-112) $ $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1591 (((-622 (-538)) $) 19)) (-4307 (((-751) $) 17)) (-4317 (((-840) $) 23) (($ (-622 (-538))) 15)) (-1590 (($ (-751)) 20)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 9)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 11))) +(((-270) (-13 (-827) (-10 -8 (-15 -4317 ($ (-622 (-538)))) (-15 -4307 ((-751) $)) (-15 -1591 ((-622 (-538)) $)) (-15 -1590 ($ (-751)))))) (T -270)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-270)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-270)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-270)))) (-1590 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-270))))) +(-13 (-827) (-10 -8 (-15 -4317 ($ (-622 (-538)))) (-15 -4307 ((-751) $)) (-15 -1591 ((-622 (-538)) $)) (-15 -1590 ($ (-751))))) +((-3846 ((|#2| |#2|) 77)) (-4002 ((|#2| |#2|) 65)) (-1620 (((-3 |#2| "failed") |#2| (-622 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 116)) (-3844 ((|#2| |#2|) 75)) (-4001 ((|#2| |#2|) 63)) (-3848 ((|#2| |#2|) 79)) (-4000 ((|#2| |#2|) 67)) (-3990 ((|#2|) 46)) (-3380 (((-113) (-113)) 95)) (-4302 ((|#2| |#2|) 61)) (-1621 (((-112) |#2|) 134)) (-1610 ((|#2| |#2|) 181)) (-1598 ((|#2| |#2|) 157)) (-1593 ((|#2|) 59)) (-1592 ((|#2|) 58)) (-1608 ((|#2| |#2|) 177)) (-1596 ((|#2| |#2|) 153)) (-1612 ((|#2| |#2|) 185)) (-1600 ((|#2| |#2|) 161)) (-1595 ((|#2| |#2|) 149)) (-1594 ((|#2| |#2|) 151)) (-1613 ((|#2| |#2|) 187)) (-1601 ((|#2| |#2|) 163)) (-1611 ((|#2| |#2|) 183)) (-1599 ((|#2| |#2|) 159)) (-1609 ((|#2| |#2|) 179)) (-1597 ((|#2| |#2|) 155)) (-1616 ((|#2| |#2|) 193)) (-1604 ((|#2| |#2|) 169)) (-1614 ((|#2| |#2|) 189)) (-1602 ((|#2| |#2|) 165)) (-1618 ((|#2| |#2|) 197)) (-1606 ((|#2| |#2|) 173)) (-1619 ((|#2| |#2|) 199)) (-1607 ((|#2| |#2|) 175)) (-1617 ((|#2| |#2|) 195)) (-1605 ((|#2| |#2|) 171)) (-1615 ((|#2| |#2|) 191)) (-1603 ((|#2| |#2|) 167)) (-4303 ((|#2| |#2|) 62)) (-3849 ((|#2| |#2|) 80)) (-3999 ((|#2| |#2|) 68)) (-3847 ((|#2| |#2|) 78)) (-3998 ((|#2| |#2|) 66)) (-3845 ((|#2| |#2|) 76)) (-3997 ((|#2| |#2|) 64)) (-2338 (((-112) (-113)) 93)) (-3852 ((|#2| |#2|) 83)) (-3840 ((|#2| |#2|) 71)) (-3850 ((|#2| |#2|) 81)) (-3838 ((|#2| |#2|) 69)) (-3854 ((|#2| |#2|) 85)) (-3842 ((|#2| |#2|) 73)) (-3855 ((|#2| |#2|) 86)) (-3843 ((|#2| |#2|) 74)) (-3853 ((|#2| |#2|) 84)) (-3841 ((|#2| |#2|) 72)) (-3851 ((|#2| |#2|) 82)) (-3839 ((|#2| |#2|) 70))) +(((-271 |#1| |#2|) (-10 -7 (-15 -4303 (|#2| |#2|)) (-15 -4302 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3854 (|#2| |#2|)) (-15 -3855 (|#2| |#2|)) (-15 -3990 (|#2|)) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1592 (|#2|)) (-15 -1593 (|#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -1619 (|#2| |#2|)) (-15 -1620 ((-3 |#2| "failed") |#2| (-622 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1621 ((-112) |#2|))) (-13 (-827) (-545)) (-13 (-416 |#1|) (-978))) (T -271)) +((-1621 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3)) (-4 *3 (-13 (-416 *4) (-978))))) (-1620 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-622 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-416 *4) (-978))) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-271 *4 *2)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1615 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1614 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1613 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1611 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1610 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1608 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1604 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1602 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1601 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1599 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1597 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1596 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1595 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-1593 (*1 *2) (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-545))))) (-1592 (*1 *2) (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-545))))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *4)) (-4 *4 (-13 (-416 *3) (-978))))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-416 *4) (-978))))) (-3990 (*1 *2) (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2)) (-4 *3 (-13 (-827) (-545))))) (-3855 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-4302 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978))))) (-4303 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) (-4 *2 (-13 (-416 *3) (-978)))))) +(-10 -7 (-15 -4303 (|#2| |#2|)) (-15 -4302 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -3997 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -3998 (|#2| |#2|)) (-15 -4000 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -3838 (|#2| |#2|)) (-15 -3839 (|#2| |#2|)) (-15 -3840 (|#2| |#2|)) (-15 -3841 (|#2| |#2|)) (-15 -3842 (|#2| |#2|)) (-15 -3843 (|#2| |#2|)) (-15 -3844 (|#2| |#2|)) (-15 -3845 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3848 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3850 (|#2| |#2|)) (-15 -3851 (|#2| |#2|)) (-15 -3852 (|#2| |#2|)) (-15 -3853 (|#2| |#2|)) (-15 -3854 (|#2| |#2|)) (-15 -3855 (|#2| |#2|)) (-15 -3990 (|#2|)) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1592 (|#2|)) (-15 -1593 (|#2|)) (-15 -1594 (|#2| |#2|)) (-15 -1595 (|#2| |#2|)) (-15 -1596 (|#2| |#2|)) (-15 -1597 (|#2| |#2|)) (-15 -1598 (|#2| |#2|)) (-15 -1599 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1601 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -1604 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -1608 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -1610 (|#2| |#2|)) (-15 -1611 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -1613 (|#2| |#2|)) (-15 -1614 (|#2| |#2|)) (-15 -1615 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -1619 (|#2| |#2|)) (-15 -1620 ((-3 |#2| "failed") |#2| (-622 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1621 ((-112) |#2|))) +((-1624 (((-3 |#2| "failed") (-622 (-595 |#2|)) |#2| (-1149)) 135)) (-1626 ((|#2| (-402 (-538)) |#2|) 51)) (-1625 ((|#2| |#2| (-595 |#2|)) 128)) (-1622 (((-2 (|:| |func| |#2|) (|:| |kers| (-622 (-595 |#2|))) (|:| |vals| (-622 |#2|))) |#2| (-1149)) 127)) (-1623 ((|#2| |#2| (-1149)) 20) ((|#2| |#2|) 23)) (-2692 ((|#2| |#2| (-1149)) 141) ((|#2| |#2|) 139))) +(((-272 |#1| |#2|) (-10 -7 (-15 -2692 (|#2| |#2|)) (-15 -2692 (|#2| |#2| (-1149))) (-15 -1622 ((-2 (|:| |func| |#2|) (|:| |kers| (-622 (-595 |#2|))) (|:| |vals| (-622 |#2|))) |#2| (-1149))) (-15 -1623 (|#2| |#2|)) (-15 -1623 (|#2| |#2| (-1149))) (-15 -1624 ((-3 |#2| "failed") (-622 (-595 |#2|)) |#2| (-1149))) (-15 -1625 (|#2| |#2| (-595 |#2|))) (-15 -1626 (|#2| (-402 (-538)) |#2|))) (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -272)) +((-1626 (*1 *2 *3 *2) (-12 (-5 *3 (-402 (-538))) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-1625 (*1 *2 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *4 *2)))) (-1624 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-622 (-595 *2))) (-5 *4 (-1149)) (-4 *2 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *5 *2)))) (-1623 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) (-1622 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-622 (-595 *3))) (|:| |vals| (-622 *3)))) (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-2692 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3)))))) +(-10 -7 (-15 -2692 (|#2| |#2|)) (-15 -2692 (|#2| |#2| (-1149))) (-15 -1622 ((-2 (|:| |func| |#2|) (|:| |kers| (-622 (-595 |#2|))) (|:| |vals| (-622 |#2|))) |#2| (-1149))) (-15 -1623 (|#2| |#2|)) (-15 -1623 (|#2| |#2| (-1149))) (-15 -1624 ((-3 |#2| "failed") (-622 (-595 |#2|)) |#2| (-1149))) (-15 -1625 (|#2| |#2| (-595 |#2|))) (-15 -1626 (|#2| (-402 (-538)) |#2|))) +((-3308 (((-3 |#3| #1="failed") |#3|) 110)) (-3846 ((|#3| |#3|) 131)) (-3296 (((-3 |#3| #1#) |#3|) 82)) (-4002 ((|#3| |#3|) 121)) (-3306 (((-3 |#3| #1#) |#3|) 58)) (-3844 ((|#3| |#3|) 129)) (-3294 (((-3 |#3| #1#) |#3|) 46)) (-4001 ((|#3| |#3|) 119)) (-3310 (((-3 |#3| #1#) |#3|) 112)) (-3848 ((|#3| |#3|) 133)) (-3298 (((-3 |#3| #1#) |#3|) 84)) (-4000 ((|#3| |#3|) 123)) (-3291 (((-3 |#3| #1#) |#3| (-751)) 36)) (-3293 (((-3 |#3| #1#) |#3|) 74)) (-4302 ((|#3| |#3|) 118)) (-3292 (((-3 |#3| #1#) |#3|) 44)) (-4303 ((|#3| |#3|) 117)) (-3311 (((-3 |#3| #1#) |#3|) 113)) (-3849 ((|#3| |#3|) 134)) (-3299 (((-3 |#3| #1#) |#3|) 85)) (-3999 ((|#3| |#3|) 124)) (-3309 (((-3 |#3| #1#) |#3|) 111)) (-3847 ((|#3| |#3|) 132)) (-3297 (((-3 |#3| #1#) |#3|) 83)) (-3998 ((|#3| |#3|) 122)) (-3307 (((-3 |#3| #1#) |#3|) 60)) (-3845 ((|#3| |#3|) 130)) (-3295 (((-3 |#3| #1#) |#3|) 48)) (-3997 ((|#3| |#3|) 120)) (-3314 (((-3 |#3| #1#) |#3|) 66)) (-3852 ((|#3| |#3|) 137)) (-3302 (((-3 |#3| #1#) |#3|) 104)) (-3840 ((|#3| |#3|) 142)) (-3312 (((-3 |#3| #1#) |#3|) 62)) (-3850 ((|#3| |#3|) 135)) (-3300 (((-3 |#3| #1#) |#3|) 50)) (-3838 ((|#3| |#3|) 125)) (-3316 (((-3 |#3| #1#) |#3|) 70)) (-3854 ((|#3| |#3|) 139)) (-3304 (((-3 |#3| #1#) |#3|) 54)) (-3842 ((|#3| |#3|) 127)) (-3317 (((-3 |#3| #1#) |#3|) 72)) (-3855 ((|#3| |#3|) 140)) (-3305 (((-3 |#3| #1#) |#3|) 56)) (-3843 ((|#3| |#3|) 128)) (-3315 (((-3 |#3| #1#) |#3|) 68)) (-3853 ((|#3| |#3|) 138)) (-3303 (((-3 |#3| #1#) |#3|) 107)) (-3841 ((|#3| |#3|) 143)) (-3313 (((-3 |#3| #1#) |#3|) 64)) (-3851 ((|#3| |#3|) 136)) (-3301 (((-3 |#3| #1#) |#3|) 52)) (-3839 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-402 (-538))) 40 (|has| |#1| (-358))))) +(((-273 |#1| |#2| |#3|) (-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-538)))) |%noBranch|) (-15 -4303 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3855 (|#3| |#3|)))) (-38 (-402 (-538))) (-1224 |#1|) (-1195 |#1| |#2|)) (T -273)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-538))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1224 *4)) (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1195 *4 *5)))) (-4303 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-4302 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4)))) (-3855 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) (-4 *2 (-1195 *3 *4))))) +(-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-538)))) |%noBranch|) (-15 -4303 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3855 (|#3| |#3|)))) +((-3308 (((-3 |#3| #1="failed") |#3|) 66)) (-3846 ((|#3| |#3|) 129)) (-3296 (((-3 |#3| #1#) |#3|) 50)) (-4002 ((|#3| |#3|) 117)) (-3306 (((-3 |#3| #1#) |#3|) 62)) (-3844 ((|#3| |#3|) 127)) (-3294 (((-3 |#3| #1#) |#3|) 46)) (-4001 ((|#3| |#3|) 115)) (-3310 (((-3 |#3| #1#) |#3|) 70)) (-3848 ((|#3| |#3|) 131)) (-3298 (((-3 |#3| #1#) |#3|) 54)) (-4000 ((|#3| |#3|) 119)) (-3291 (((-3 |#3| #1#) |#3| (-751)) 35)) (-3293 (((-3 |#3| #1#) |#3|) 44)) (-4302 ((|#3| |#3|) 104)) (-3292 (((-3 |#3| #1#) |#3|) 42)) (-4303 ((|#3| |#3|) 114)) (-3311 (((-3 |#3| #1#) |#3|) 72)) (-3849 ((|#3| |#3|) 132)) (-3299 (((-3 |#3| #1#) |#3|) 56)) (-3999 ((|#3| |#3|) 120)) (-3309 (((-3 |#3| #1#) |#3|) 68)) (-3847 ((|#3| |#3|) 130)) (-3297 (((-3 |#3| #1#) |#3|) 52)) (-3998 ((|#3| |#3|) 118)) (-3307 (((-3 |#3| #1#) |#3|) 64)) (-3845 ((|#3| |#3|) 128)) (-3295 (((-3 |#3| #1#) |#3|) 48)) (-3997 ((|#3| |#3|) 116)) (-3314 (((-3 |#3| #1#) |#3|) 74)) (-3852 ((|#3| |#3|) 135)) (-3302 (((-3 |#3| #1#) |#3|) 58)) (-3840 ((|#3| |#3|) 123)) (-3312 (((-3 |#3| #1#) |#3|) 105)) (-3850 ((|#3| |#3|) 133)) (-3300 (((-3 |#3| #1#) |#3|) 94)) (-3838 ((|#3| |#3|) 121)) (-3316 (((-3 |#3| #1#) |#3|) 109)) (-3854 ((|#3| |#3|) 137)) (-3304 (((-3 |#3| #1#) |#3|) 101)) (-3842 ((|#3| |#3|) 125)) (-3317 (((-3 |#3| #1#) |#3|) 110)) (-3855 ((|#3| |#3|) 138)) (-3305 (((-3 |#3| #1#) |#3|) 103)) (-3843 ((|#3| |#3|) 126)) (-3315 (((-3 |#3| #1#) |#3|) 76)) (-3853 ((|#3| |#3|) 136)) (-3303 (((-3 |#3| #1#) |#3|) 60)) (-3841 ((|#3| |#3|) 124)) (-3313 (((-3 |#3| #1#) |#3|) 106)) (-3851 ((|#3| |#3|) 134)) (-3301 (((-3 |#3| #1#) |#3|) 97)) (-3839 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-402 (-538))) 40 (|has| |#1| (-358))))) +(((-274 |#1| |#2| |#3| |#4|) (-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-538)))) |%noBranch|) (-15 -4303 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3855 (|#3| |#3|)))) (-38 (-402 (-538))) (-1193 |#1|) (-1216 |#1| |#2|) (-959 |#2|)) (T -274)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-402 (-538))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1193 *4)) (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1216 *4 *5)) (-4 *6 (-959 *5)))) (-4303 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-4302 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3997 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3838 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3840 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3842 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3843 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3844 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3845 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3850 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3851 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3853 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) (-3855 (*1 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4))))) +(-13 (-959 |#3|) (-10 -7 (IF (|has| |#1| (-358)) (-15 ** (|#3| |#3| (-402 (-538)))) |%noBranch|) (-15 -4303 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4001 (|#3| |#3|)) (-15 -3997 (|#3| |#3|)) (-15 -4002 (|#3| |#3|)) (-15 -3998 (|#3| |#3|)) (-15 -4000 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -3838 (|#3| |#3|)) (-15 -3839 (|#3| |#3|)) (-15 -3840 (|#3| |#3|)) (-15 -3841 (|#3| |#3|)) (-15 -3842 (|#3| |#3|)) (-15 -3843 (|#3| |#3|)) (-15 -3844 (|#3| |#3|)) (-15 -3845 (|#3| |#3|)) (-15 -3846 (|#3| |#3|)) (-15 -3847 (|#3| |#3|)) (-15 -3848 (|#3| |#3|)) (-15 -3849 (|#3| |#3|)) (-15 -3850 (|#3| |#3|)) (-15 -3851 (|#3| |#3|)) (-15 -3852 (|#3| |#3|)) (-15 -3853 (|#3| |#3|)) (-15 -3854 (|#3| |#3|)) (-15 -3855 (|#3| |#3|)))) +((-3185 (((-112) $) 19)) (-1630 (((-182) $) 7)) (-3932 (((-3 (-1149) "failed") $) 14)) (-3931 (((-3 (-622 $) "failed") $) NIL)) (-1628 (((-3 (-1149) "failed") $) 21)) (-1629 (((-3 (-1076) "failed") $) 17)) (-4312 (((-112) $) 15)) (-4317 (((-840) $) NIL)) (-1627 (((-112) $) 9))) +(((-275) (-13 (-597 (-840)) (-10 -8 (-15 -1630 ((-182) $)) (-15 -4312 ((-112) $)) (-15 -1629 ((-3 (-1076) "failed") $)) (-15 -3185 ((-112) $)) (-15 -1628 ((-3 (-1149) "failed") $)) (-15 -1627 ((-112) $)) (-15 -3932 ((-3 (-1149) "failed") $)) (-15 -3931 ((-3 (-622 $) "failed") $))))) (T -275)) +((-1630 (*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-275)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-1629 (*1 *2 *1) (|partial| -12 (-5 *2 (-1076)) (-5 *1 (-275)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-1628 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))) (-1627 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) (-3932 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))) (-3931 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 (-275))) (-5 *1 (-275))))) +(-13 (-597 (-840)) (-10 -8 (-15 -1630 ((-182) $)) (-15 -4312 ((-112) $)) (-15 -1629 ((-3 (-1076) "failed") $)) (-15 -3185 ((-112) $)) (-15 -1628 ((-3 (-1149) "failed") $)) (-15 -1627 ((-112) $)) (-15 -3932 ((-3 (-1149) "failed") $)) (-15 -3931 ((-3 (-622 $) "failed") $)))) +((-4073 (($ (-1 (-112) |#2|) $) 24)) (-1398 (($ $) 36)) (-3764 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 34)) (-3765 (($ |#2| $) 32) (($ (-1 (-112) |#2|) $) 18)) (-3192 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2382 (($ |#2| $ (-538)) 20) (($ $ $ (-538)) 22)) (-2383 (($ $ (-538)) 11) (($ $ (-1198 (-538))) 14)) (-4150 (($ $ |#2|) 30) (($ $ $) NIL)) (-4161 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-622 $)) NIL))) +(((-276 |#1| |#2|) (-10 -8 (-15 -3192 (|#1| |#1| |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -3765 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4073 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3765 (|#1| |#2| |#1|)) (-15 -1398 (|#1| |#1|))) (-277 |#2|) (-1185)) (T -276)) +NIL +(-10 -8 (-15 -3192 (|#1| |#1| |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -3765 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -4073 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3765 (|#1| |#2| |#1|)) (-15 -1398 (|#1| |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) 85)) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2455 (($ $) 83 (|has| |#1| (-1074)))) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1074)))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3192 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3970 (($ |#1| $ (-538)) 88) (($ $ $ (-538)) 87)) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-1632 (($ $ (-538)) 91) (($ $ (-1198 (-538))) 90)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 70)) (-4150 (($ $ |#1|) 93) (($ $ $) 92)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-277 |#1|) (-138) (-1185)) (T -277)) +((-4150 (*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)))) (-4150 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)))) (-1632 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-1632 (*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-3764 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-3970 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-277 *2)) (-4 *2 (-1185)))) (-3970 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-3192 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-1631 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) (-3764 (*1 *1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-1074)))) (-2455 (*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-1074)))) (-3192 (*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-827))))) +(-13 (-631 |t#1|) (-10 -8 (-6 -4354) (-15 -4150 ($ $ |t#1|)) (-15 -4150 ($ $ $)) (-15 -1632 ($ $ (-538))) (-15 -1632 ($ $ (-1198 (-538)))) (-15 -3764 ($ (-1 (-112) |t#1|) $)) (-15 -3970 ($ |t#1| $ (-538))) (-15 -3970 ($ $ $ (-538))) (-15 -3192 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1631 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -3764 ($ |t#1| $)) (-15 -2455 ($ $))) |%noBranch|) (IF (|has| |t#1| (-827)) (-15 -3192 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) ((** (($ $ $) 10))) -(((-276 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-277)) (T -276)) +(((-278 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-279)) (T -278)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-4297 (($ $) 6)) (-4298 (($ $) 7)) (** (($ $ $) 8))) -(((-277) (-138)) (T -277)) -((** (*1 *1 *1 *1) (-4 *1 (-277))) (-4298 (*1 *1 *1) (-4 *1 (-277))) (-4297 (*1 *1 *1) (-4 *1 (-277)))) -(-13 (-10 -8 (-15 -4297 ($ $)) (-15 -4298 ($ $)) (-15 ** ($ $ $)))) -((-1631 (((-620 (-1124 |#1|)) (-1124 |#1|) |#1|) 35)) (-1628 ((|#2| |#2| |#1|) 38)) (-1630 ((|#2| |#2| |#1|) 40)) (-1629 ((|#2| |#2| |#1|) 39))) -(((-278 |#1| |#2|) (-10 -7 (-15 -1628 (|#2| |#2| |#1|)) (-15 -1629 (|#2| |#2| |#1|)) (-15 -1630 (|#2| |#2| |#1|)) (-15 -1631 ((-620 (-1124 |#1|)) (-1124 |#1|) |#1|))) (-356) (-1222 |#1|)) (T -278)) -((-1631 (*1 *2 *3 *4) (-12 (-4 *4 (-356)) (-5 *2 (-620 (-1124 *4))) (-5 *1 (-278 *4 *5)) (-5 *3 (-1124 *4)) (-4 *5 (-1222 *4)))) (-1630 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3)))) (-1629 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3)))) (-1628 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3))))) -(-10 -7 (-15 -1628 (|#2| |#2| |#1|)) (-15 -1629 (|#2| |#2| |#1|)) (-15 -1630 (|#2| |#2| |#1|)) (-15 -1631 ((-620 (-1124 |#1|)) (-1124 |#1|) |#1|))) -((-4154 ((|#2| $ |#1|) 6))) -(((-279 |#1| |#2|) (-138) (-1072) (-1183)) (T -279)) -((-4154 (*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183))))) -(-13 (-10 -8 (-15 -4154 (|t#2| $ |t#1|)))) -((-1632 ((|#3| $ |#2| |#3|) 12)) (-3443 ((|#3| $ |#2|) 10))) -(((-280 |#1| |#2| |#3|) (-10 -8 (-15 -1632 (|#3| |#1| |#2| |#3|)) (-15 -3443 (|#3| |#1| |#2|))) (-281 |#2| |#3|) (-1072) (-1183)) (T -280)) -NIL -(-10 -8 (-15 -1632 (|#3| |#1| |#2| |#3|)) (-15 -3443 (|#3| |#1| |#2|))) -((-4142 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4349)))) (-1632 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) 11)) (-4154 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-281 |#1| |#2|) (-138) (-1072) (-1183)) (T -281)) -((-4154 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) (-3443 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) (-4142 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) (-1632 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183))))) -(-13 (-279 |t#1| |t#2|) (-10 -8 (-15 -4154 (|t#2| $ |t#1| |t#2|)) (-15 -3443 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4349)) (PROGN (-15 -4142 (|t#2| $ |t#1| |t#2|)) (-15 -1632 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-279 |#1| |#2|) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 35)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 40)) (-2173 (($ $) 38)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) 33)) (-4197 (($ |#2| |#3|) 19)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2938 ((|#3| $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 20)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-2489 (((-3 $ "failed") $ $) NIL)) (-1699 (((-749) $) 34)) (-4154 ((|#2| $ |#2|) 42)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 24)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 29 T CONST)) (-2992 (($) 36 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 37))) -(((-282 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-300) (-10 -8 (-15 -2938 (|#3| $)) (-15 -4312 (|#2| $)) (-15 -4197 ($ |#2| |#3|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3816 ((-3 $ "failed") $)) (-15 -2729 ($ $)) (-15 -4154 (|#2| $ |#2|)))) (-170) (-1205 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -282)) -((-3816 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2938 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1205 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4197 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1205 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2729 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4154 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1205 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4))))) -(-13 (-300) (-10 -8 (-15 -2938 (|#3| $)) (-15 -4312 (|#2| $)) (-15 -4197 ($ |#2| |#3|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3816 ((-3 $ "failed") $)) (-15 -2729 ($ $)) (-15 -4154 (|#2| $ |#2|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-283) (-138)) (T -283)) -NIL -(-13 (-1023) (-111 $ $) (-10 -7 (-6 -4341))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-1637 (($ (-1147) (-1147) (-1074) $) 17)) (-1635 (($ (-1147) (-620 (-939)) $) 22)) (-1639 (((-620 (-1056)) $) 10)) (-1638 (((-3 (-1074) "failed") (-1147) (-1147) $) 16)) (-1636 (((-3 (-620 (-939)) "failed") (-1147) $) 21)) (-3923 (($) 7)) (-1634 (($) 23)) (-4312 (((-838) $) 27)) (-1633 (($) 24))) -(((-284) (-13 (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -1639 ((-620 (-1056)) $)) (-15 -1638 ((-3 (-1074) "failed") (-1147) (-1147) $)) (-15 -1637 ($ (-1147) (-1147) (-1074) $)) (-15 -1636 ((-3 (-620 (-939)) "failed") (-1147) $)) (-15 -1635 ($ (-1147) (-620 (-939)) $)) (-15 -1634 ($)) (-15 -1633 ($))))) (T -284)) -((-3923 (*1 *1) (-5 *1 (-284))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-620 (-1056))) (-5 *1 (-284)))) (-1638 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-284)))) (-1637 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1147)) (-5 *3 (-1074)) (-5 *1 (-284)))) (-1636 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-620 (-939))) (-5 *1 (-284)))) (-1635 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-939))) (-5 *1 (-284)))) (-1634 (*1 *1) (-5 *1 (-284))) (-1633 (*1 *1) (-5 *1 (-284)))) -(-13 (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -1639 ((-620 (-1056)) $)) (-15 -1638 ((-3 (-1074) "failed") (-1147) (-1147) $)) (-15 -1637 ($ (-1147) (-1147) (-1074) $)) (-15 -1636 ((-3 (-620 (-939)) "failed") (-1147) $)) (-15 -1635 ($ (-1147) (-620 (-939)) $)) (-15 -1634 ($)) (-15 -1633 ($)))) -((-1643 (((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |geneigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|)))) 85)) (-1642 (((-620 (-667 (-400 (-920 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|)))))) (-667 (-400 (-920 |#1|)))) 80) (((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|))) (-749) (-749)) 38)) (-1644 (((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|)))) 82)) (-1641 (((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|)))) 62)) (-1640 (((-620 (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (-667 (-400 (-920 |#1|)))) 61)) (-2693 (((-920 |#1|) (-667 (-400 (-920 |#1|)))) 50) (((-920 |#1|) (-667 (-400 (-920 |#1|))) (-1147)) 51))) -(((-285 |#1|) (-10 -7 (-15 -2693 ((-920 |#1|) (-667 (-400 (-920 |#1|))) (-1147))) (-15 -2693 ((-920 |#1|) (-667 (-400 (-920 |#1|))))) (-15 -1640 ((-620 (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (-667 (-400 (-920 |#1|))))) (-15 -1641 ((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|))))) (-15 -1642 ((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|))) (-749) (-749))) (-15 -1642 ((-620 (-667 (-400 (-920 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|)))))) (-667 (-400 (-920 |#1|))))) (-15 -1643 ((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |geneigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|))))) (-15 -1644 ((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|)))))) (-444)) (T -285)) -((-1644 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-620 (-2 (|:| |eigval| (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-920 *4)))))) (-1643 (*1 *2 *3) (-12 (-4 *4 (-444)) (-5 *2 (-620 (-2 (|:| |eigval| (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4)))) (|:| |geneigvec| (-620 (-667 (-400 (-920 *4)))))))) (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-920 *4)))))) (-1642 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-400 (-920 *5)) (-1136 (-1147) (-920 *5)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 *4)))) (-4 *5 (-444)) (-5 *2 (-620 (-667 (-400 (-920 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-920 *5)))))) (-1642 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-400 (-920 *6)) (-1136 (-1147) (-920 *6)))) (-5 *5 (-749)) (-4 *6 (-444)) (-5 *2 (-620 (-667 (-400 (-920 *6))))) (-5 *1 (-285 *6)) (-5 *4 (-667 (-400 (-920 *6)))))) (-1641 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-400 (-920 *5)) (-1136 (-1147) (-920 *5)))) (-4 *5 (-444)) (-5 *2 (-620 (-667 (-400 (-920 *5))))) (-5 *1 (-285 *5)) (-5 *4 (-667 (-400 (-920 *5)))))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-920 *4)))) (-4 *4 (-444)) (-5 *2 (-620 (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4))))) (-5 *1 (-285 *4)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-920 *4)))) (-5 *2 (-920 *4)) (-5 *1 (-285 *4)) (-4 *4 (-444)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-920 *5)))) (-5 *4 (-1147)) (-5 *2 (-920 *5)) (-5 *1 (-285 *5)) (-4 *5 (-444))))) -(-10 -7 (-15 -2693 ((-920 |#1|) (-667 (-400 (-920 |#1|))) (-1147))) (-15 -2693 ((-920 |#1|) (-667 (-400 (-920 |#1|))))) (-15 -1640 ((-620 (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (-667 (-400 (-920 |#1|))))) (-15 -1641 ((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|))))) (-15 -1642 ((-620 (-667 (-400 (-920 |#1|)))) (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|))) (-667 (-400 (-920 |#1|))) (-749) (-749))) (-15 -1642 ((-620 (-667 (-400 (-920 |#1|)))) (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|)))))) (-667 (-400 (-920 |#1|))))) (-15 -1643 ((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |geneigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|))))) (-15 -1644 ((-620 (-2 (|:| |eigval| (-3 (-400 (-920 |#1|)) (-1136 (-1147) (-920 |#1|)))) (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 |#1|))))))) (-667 (-400 (-920 |#1|)))))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3534 (((-112) $) NIL (|has| |#1| (-21)))) (-1650 (($ $) 12)) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1659 (($ $ $) 94 (|has| |#1| (-291)))) (-3891 (($) NIL (-3886 (|has| |#1| (-21)) (|has| |#1| (-705))) CONST)) (-1648 (($ $) 50 (|has| |#1| (-21)))) (-1646 (((-3 $ "failed") $) 61 (|has| |#1| (-705)))) (-3877 ((|#1| $) 11)) (-3816 (((-3 $ "failed") $) 59 (|has| |#1| (-705)))) (-2497 (((-112) $) NIL (|has| |#1| (-705)))) (-4313 (($ (-1 |#1| |#1|) $) 14)) (-3878 ((|#1| $) 10)) (-1649 (($ $) 49 (|has| |#1| (-21)))) (-1647 (((-3 $ "failed") $) 60 (|has| |#1| (-705)))) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2729 (($ $) 63 (-3886 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-1645 (((-620 $) $) 84 (|has| |#1| (-543)))) (-4122 (($ $ $) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 $)) 28 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-1147) |#1|) 17 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 21 (|has| |#1| (-505 (-1147) |#1|)))) (-3572 (($ |#1| |#1|) 9)) (-4266 (((-133)) 89 (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) 86 (|has| |#1| (-874 (-1147))))) (-3337 (($ $ $) NIL (|has| |#1| (-465)))) (-2681 (($ $ $) NIL (|has| |#1| (-465)))) (-4312 (($ (-536)) NIL (|has| |#1| (-1023))) (((-112) $) 36 (|has| |#1| (-1072))) (((-838) $) 35 (|has| |#1| (-1072)))) (-3456 (((-749)) 66 (|has| |#1| (-1023)))) (-2986 (($) 46 (|has| |#1| (-21)) CONST)) (-2992 (($) 56 (|has| |#1| (-705)) CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147))))) (-3382 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1072)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 91 (-3886 (|has| |#1| (-356)) (|has| |#1| (-465))))) (-4192 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4194 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-536)) NIL (|has| |#1| (-465))) (($ $ (-749)) NIL (|has| |#1| (-705))) (($ $ (-893)) NIL (|has| |#1| (-1083)))) (* (($ $ |#1|) 54 (|has| |#1| (-1083))) (($ |#1| $) 53 (|has| |#1| (-1083))) (($ $ $) 52 (|has| |#1| (-1083))) (($ (-536) $) 69 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-893) $) NIL (|has| |#1| (-25))))) -(((-286 |#1|) (-13 (-1183) (-10 -8 (-15 -3382 ($ |#1| |#1|)) (-15 -3572 ($ |#1| |#1|)) (-15 -1650 ($ $)) (-15 -3878 (|#1| $)) (-15 -3877 (|#1| $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1147) |#1|)) (-6 (-505 (-1147) |#1|)) |%noBranch|) (IF (|has| |#1| (-1072)) (PROGN (-6 (-1072)) (-6 (-595 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -4122 ($ $ $)) (-15 -4122 ($ $ (-620 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4194 ($ |#1| $)) (-15 -4194 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1649 ($ $)) (-15 -1648 ($ $)) (-15 -4192 ($ |#1| $)) (-15 -4192 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1083)) (PROGN (-6 (-1083)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-705)) (PROGN (-6 (-705)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-6 (-1023)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -1645 ((-620 $) $)) |%noBranch|) (IF (|has| |#1| (-874 (-1147))) (-6 (-874 (-1147))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1237 |#1|)) (-15 -4303 ($ $ $)) (-15 -2729 ($ $))) |%noBranch|) (IF (|has| |#1| (-291)) (-15 -1659 ($ $ $)) |%noBranch|))) (-1183)) (T -286)) -((-3382 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) (-3572 (*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) (-1650 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) (-3878 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) (-3877 (*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-286 *3)))) (-4122 (*1 *1 *1 *1) (-12 (-4 *2 (-302 *2)) (-4 *2 (-1072)) (-4 *2 (-1183)) (-5 *1 (-286 *2)))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-286 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1072)) (-4 *3 (-1183)) (-5 *1 (-286 *3)))) (-4194 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1183)))) (-4194 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1183)))) (-1649 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) (-1648 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) (-4192 (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) (-4192 (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) (-1647 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-705)) (-4 *2 (-1183)))) (-1646 (*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-705)) (-4 *2 (-1183)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-620 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-543)) (-4 *3 (-1183)))) (-1659 (*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-291)) (-4 *2 (-1183)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1083)) (-4 *2 (-1183)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1083)) (-4 *2 (-1183)))) (-4303 (*1 *1 *1 *1) (-3886 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1183))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1183))))) (-2729 (*1 *1 *1) (-3886 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1183))) (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1183)))))) -(-13 (-1183) (-10 -8 (-15 -3382 ($ |#1| |#1|)) (-15 -3572 ($ |#1| |#1|)) (-15 -1650 ($ $)) (-15 -3878 (|#1| $)) (-15 -3877 (|#1| $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-505 (-1147) |#1|)) (-6 (-505 (-1147) |#1|)) |%noBranch|) (IF (|has| |#1| (-1072)) (PROGN (-6 (-1072)) (-6 (-595 (-112))) (IF (|has| |#1| (-302 |#1|)) (PROGN (-15 -4122 ($ $ $)) (-15 -4122 ($ $ (-620 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4194 ($ |#1| $)) (-15 -4194 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1649 ($ $)) (-15 -1648 ($ $)) (-15 -4192 ($ |#1| $)) (-15 -4192 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1083)) (PROGN (-6 (-1083)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-705)) (PROGN (-6 (-705)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-465)) (PROGN (-6 (-465)) (-15 -1647 ((-3 $ "failed") $)) (-15 -1646 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-6 (-1023)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|) (IF (|has| |#1| (-543)) (-15 -1645 ((-620 $) $)) |%noBranch|) (IF (|has| |#1| (-874 (-1147))) (-6 (-874 (-1147))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-1237 |#1|)) (-15 -4303 ($ $ $)) (-15 -2729 ($ $))) |%noBranch|) (IF (|has| |#1| (-291)) (-15 -1659 ($ $ $)) |%noBranch|))) -((-4313 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 14))) -(((-287 |#1| |#2|) (-10 -7 (-15 -4313 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-1183) (-1183)) (T -287)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-286 *6)) (-5 *1 (-287 *5 *6))))) -(-10 -7 (-15 -4313 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) NIL)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) NIL)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-288 |#1| |#2|) (-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) (-1072) (-1072)) (T -288)) -NIL -(-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) -((-1651 (((-304) (-1129) (-620 (-1129))) 16) (((-304) (-1129) (-1129)) 15) (((-304) (-620 (-1129))) 14) (((-304) (-1129)) 12))) -(((-289) (-10 -7 (-15 -1651 ((-304) (-1129))) (-15 -1651 ((-304) (-620 (-1129)))) (-15 -1651 ((-304) (-1129) (-1129))) (-15 -1651 ((-304) (-1129) (-620 (-1129)))))) (T -289)) -((-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-1129))) (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-304)) (-5 *1 (-289)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289))))) -(-10 -7 (-15 -1651 ((-304) (-1129))) (-15 -1651 ((-304) (-620 (-1129)))) (-15 -1651 ((-304) (-1129) (-1129))) (-15 -1651 ((-304) (-1129) (-620 (-1129))))) -((-1655 (((-620 (-593 $)) $) 30)) (-1659 (($ $ (-286 $)) 81) (($ $ (-620 (-286 $))) 123) (($ $ (-620 (-593 $)) (-620 $)) NIL)) (-3503 (((-3 (-593 $) "failed") $) 113)) (-3502 (((-593 $) $) 112)) (-2898 (($ $) 19) (($ (-620 $)) 56)) (-1654 (((-620 (-113)) $) 38)) (-3375 (((-113) (-113)) 91)) (-3001 (((-112) $) 131)) (-4313 (($ (-1 $ $) (-593 $)) 89)) (-1657 (((-3 (-593 $) "failed") $) 93)) (-2312 (($ (-113) $) 61) (($ (-113) (-620 $)) 100)) (-2959 (((-112) $ (-113)) 117) (((-112) $ (-1147)) 116)) (-2928 (((-749) $) 46)) (-1653 (((-112) $ $) 59) (((-112) $ (-1147)) 51)) (-3002 (((-112) $) 129)) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL) (($ $ (-620 (-286 $))) 121) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) 84) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-1147) (-1 $ (-620 $))) 69) (($ $ (-1147) (-1 $ $)) 75) (($ $ (-620 (-113)) (-620 (-1 $ $))) 83) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) 85) (($ $ (-113) (-1 $ (-620 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-4154 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-620 $)) 109)) (-1658 (($ $) 53) (($ $ $) 119)) (-2915 (($ $) 17) (($ (-620 $)) 55)) (-2333 (((-112) (-113)) 22))) -(((-290 |#1|) (-10 -8 (-15 -3001 ((-112) |#1|)) (-15 -3002 ((-112) |#1|)) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| |#1|)))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| |#1|)))) (-15 -1653 ((-112) |#1| (-1147))) (-15 -1653 ((-112) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#1| |#1|) (-593 |#1|))) (-15 -2312 (|#1| (-113) (-620 |#1|))) (-15 -2312 (|#1| (-113) |#1|)) (-15 -2959 ((-112) |#1| (-1147))) (-15 -2959 ((-112) |#1| (-113))) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1654 ((-620 (-113)) |#1|)) (-15 -1655 ((-620 (-593 |#1|)) |#1|)) (-15 -1657 ((-3 (-593 |#1|) "failed") |#1|)) (-15 -2928 ((-749) |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -1658 (|#1| |#1|)) (-15 -2898 (|#1| (-620 |#1|))) (-15 -2898 (|#1| |#1|)) (-15 -2915 (|#1| (-620 |#1|))) (-15 -2915 (|#1| |#1|)) (-15 -1659 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -1659 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4154 (|#1| (-113) (-620 |#1|))) (-15 -4154 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-593 |#1|) |#1|)) (-15 -3502 ((-593 |#1|) |#1|)) (-15 -3503 ((-3 (-593 |#1|) "failed") |#1|))) (-291)) (T -290)) -((-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-290 *3)) (-4 *3 (-291)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-290 *4)) (-4 *4 (-291))))) -(-10 -8 (-15 -3001 ((-112) |#1|)) (-15 -3002 ((-112) |#1|)) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| |#1|)))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| |#1|)))) (-15 -1653 ((-112) |#1| (-1147))) (-15 -1653 ((-112) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#1| |#1|) (-593 |#1|))) (-15 -2312 (|#1| (-113) (-620 |#1|))) (-15 -2312 (|#1| (-113) |#1|)) (-15 -2959 ((-112) |#1| (-1147))) (-15 -2959 ((-112) |#1| (-113))) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1654 ((-620 (-113)) |#1|)) (-15 -1655 ((-620 (-593 |#1|)) |#1|)) (-15 -1657 ((-3 (-593 |#1|) "failed") |#1|)) (-15 -2928 ((-749) |#1|)) (-15 -1658 (|#1| |#1| |#1|)) (-15 -1658 (|#1| |#1|)) (-15 -2898 (|#1| (-620 |#1|))) (-15 -2898 (|#1| |#1|)) (-15 -2915 (|#1| (-620 |#1|))) (-15 -2915 (|#1| |#1|)) (-15 -1659 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -1659 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4154 (|#1| (-113) (-620 |#1|))) (-15 -4154 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-593 |#1|) |#1|)) (-15 -3502 ((-593 |#1|) |#1|)) (-15 -3503 ((-3 (-593 |#1|) "failed") |#1|))) -((-2893 (((-112) $ $) 7)) (-1655 (((-620 (-593 $)) $) 44)) (-1659 (($ $ (-286 $)) 56) (($ $ (-620 (-286 $))) 55) (($ $ (-620 (-593 $)) (-620 $)) 54)) (-3503 (((-3 (-593 $) "failed") $) 69)) (-3502 (((-593 $) $) 68)) (-2898 (($ $) 51) (($ (-620 $)) 50)) (-1654 (((-620 (-113)) $) 43)) (-3375 (((-113) (-113)) 42)) (-3001 (((-112) $) 22 (|has| $ (-1012 (-536))))) (-1652 (((-1141 $) (-593 $)) 25 (|has| $ (-1023)))) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-4313 (($ (-1 $ $) (-593 $)) 36)) (-1657 (((-3 (-593 $) "failed") $) 46)) (-3588 (((-1129) $) 9)) (-1656 (((-620 (-593 $)) $) 45)) (-2312 (($ (-113) $) 38) (($ (-113) (-620 $)) 37)) (-2959 (((-112) $ (-113)) 40) (((-112) $ (-1147)) 39)) (-2928 (((-749) $) 47)) (-3589 (((-1091) $) 10)) (-1653 (((-112) $ $) 35) (((-112) $ (-1147)) 34)) (-3002 (((-112) $) 23 (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) 67) (($ $ (-620 (-593 $)) (-620 $)) 66) (($ $ (-620 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-620 $) (-620 $)) 62) (($ $ (-620 (-1147)) (-620 (-1 $ $))) 33) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) 32) (($ $ (-1147) (-1 $ (-620 $))) 31) (($ $ (-1147) (-1 $ $)) 30) (($ $ (-620 (-113)) (-620 (-1 $ $))) 29) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) 28) (($ $ (-113) (-1 $ (-620 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-4154 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-620 $)) 57)) (-1658 (($ $) 49) (($ $ $) 48)) (-3531 (($ $) 24 (|has| $ (-1023)))) (-4312 (((-838) $) 11) (($ (-593 $)) 70)) (-2915 (($ $) 53) (($ (-620 $)) 52)) (-2333 (((-112) (-113)) 41)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18))) -(((-291) (-138)) (T -291)) -((-4154 (*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4154 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4154 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4154 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-4154 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 *1)) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-286 *1))) (-4 *1 (-291)))) (-1659 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-593 *1))) (-5 *3 (-620 *1)) (-4 *1 (-291)))) (-2915 (*1 *1 *1) (-4 *1 (-291))) (-2915 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-291)))) (-2898 (*1 *1 *1) (-4 *1 (-291))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-291)))) (-1658 (*1 *1 *1) (-4 *1 (-291))) (-1658 (*1 *1 *1 *1) (-4 *1 (-291))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-749)))) (-1657 (*1 *2 *1) (|partial| -12 (-5 *2 (-593 *1)) (-4 *1 (-291)))) (-1656 (*1 *2 *1) (-12 (-5 *2 (-620 (-593 *1))) (-4 *1 (-291)))) (-1655 (*1 *2 *1) (-12 (-5 *2 (-620 (-593 *1))) (-4 *1 (-291)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-620 (-113))))) (-3375 (*1 *2 *2) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-2333 (*1 *2 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2959 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2959 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1147)) (-5 *2 (-112)))) (-2312 (*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) (-2312 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 *1)) (-4 *1 (-291)))) (-4313 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-593 *1)) (-4 *1 (-291)))) (-1653 (*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-112)))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1147)) (-5 *2 (-112)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-1 *1 *1))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1 *1 (-620 *1))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 (-1 *1 *1))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-620 *1))) (-4 *1 (-291)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-593 *1)) (-4 *1 (-1023)) (-4 *1 (-291)) (-5 *2 (-1141 *1)))) (-3531 (*1 *1 *1) (-12 (-4 *1 (-1023)) (-4 *1 (-291)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-1012 (-536))) (-4 *1 (-291)) (-5 *2 (-112)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-1012 (-536))) (-4 *1 (-291)) (-5 *2 (-112))))) -(-13 (-825) (-1012 (-593 $)) (-505 (-593 $) $) (-302 $) (-10 -8 (-15 -4154 ($ (-113) $)) (-15 -4154 ($ (-113) $ $)) (-15 -4154 ($ (-113) $ $ $)) (-15 -4154 ($ (-113) $ $ $ $)) (-15 -4154 ($ (-113) (-620 $))) (-15 -1659 ($ $ (-286 $))) (-15 -1659 ($ $ (-620 (-286 $)))) (-15 -1659 ($ $ (-620 (-593 $)) (-620 $))) (-15 -2915 ($ $)) (-15 -2915 ($ (-620 $))) (-15 -2898 ($ $)) (-15 -2898 ($ (-620 $))) (-15 -1658 ($ $)) (-15 -1658 ($ $ $)) (-15 -2928 ((-749) $)) (-15 -1657 ((-3 (-593 $) "failed") $)) (-15 -1656 ((-620 (-593 $)) $)) (-15 -1655 ((-620 (-593 $)) $)) (-15 -1654 ((-620 (-113)) $)) (-15 -3375 ((-113) (-113))) (-15 -2333 ((-112) (-113))) (-15 -2959 ((-112) $ (-113))) (-15 -2959 ((-112) $ (-1147))) (-15 -2312 ($ (-113) $)) (-15 -2312 ($ (-113) (-620 $))) (-15 -4313 ($ (-1 $ $) (-593 $))) (-15 -1653 ((-112) $ $)) (-15 -1653 ((-112) $ (-1147))) (-15 -4122 ($ $ (-620 (-1147)) (-620 (-1 $ $)))) (-15 -4122 ($ $ (-620 (-1147)) (-620 (-1 $ (-620 $))))) (-15 -4122 ($ $ (-1147) (-1 $ (-620 $)))) (-15 -4122 ($ $ (-1147) (-1 $ $))) (-15 -4122 ($ $ (-620 (-113)) (-620 (-1 $ $)))) (-15 -4122 ($ $ (-620 (-113)) (-620 (-1 $ (-620 $))))) (-15 -4122 ($ $ (-113) (-1 $ (-620 $)))) (-15 -4122 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1023)) (PROGN (-15 -1652 ((-1141 $) (-593 $))) (-15 -3531 ($ $))) |%noBranch|) (IF (|has| $ (-1012 (-536))) (PROGN (-15 -3002 ((-112) $)) (-15 -3001 ((-112) $))) |%noBranch|))) -(((-101) . T) ((-595 (-838)) . T) ((-302 $) . T) ((-505 (-593 $) $) . T) ((-505 $ $) . T) ((-825) . T) ((-1012 (-593 $)) . T) ((-1072) . T)) -((-4313 ((|#2| (-1 |#2| |#1|) (-1129) (-593 |#1|)) 18))) -(((-292 |#1| |#2|) (-10 -7 (-15 -4313 (|#2| (-1 |#2| |#1|) (-1129) (-593 |#1|)))) (-291) (-1183)) (T -292)) -((-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1129)) (-5 *5 (-593 *6)) (-4 *6 (-291)) (-4 *2 (-1183)) (-5 *1 (-292 *6 *2))))) -(-10 -7 (-15 -4313 (|#2| (-1 |#2| |#1|) (-1129) (-593 |#1|)))) -((-4313 ((|#2| (-1 |#2| |#1|) (-593 |#1|)) 17))) -(((-293 |#1| |#2|) (-10 -7 (-15 -4313 (|#2| (-1 |#2| |#1|) (-593 |#1|)))) (-291) (-291)) (T -293)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-593 *5)) (-4 *5 (-291)) (-4 *2 (-291)) (-5 *1 (-293 *5 *2))))) -(-10 -7 (-15 -4313 (|#2| (-1 |#2| |#1|) (-593 |#1|)))) -((-1662 (((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219)))) 93)) (-1663 (((-1124 (-219)) (-1229 (-307 (-219))) (-620 (-1147)) (-1060 (-817 (-219)))) 107) (((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219)))) 61)) (-1684 (((-620 (-1129)) (-1124 (-219))) NIL)) (-1661 (((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219)))) 58)) (-1664 (((-620 (-219)) (-920 (-400 (-536))) (-1147) (-1060 (-817 (-219)))) 49)) (-1683 (((-620 (-1129)) (-620 (-219))) NIL)) (-1685 (((-219) (-1060 (-817 (-219)))) 25)) (-1686 (((-219) (-1060 (-817 (-219)))) 26)) (-1660 (((-112) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 54)) (-1681 (((-1129) (-219)) NIL))) -(((-294) (-10 -7 (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -1660 ((-112) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219))))) (-15 -1662 ((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-1229 (-307 (-219))) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1664 ((-620 (-219)) (-920 (-400 (-536))) (-1147) (-1060 (-817 (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219)))))) (T -294)) -((-1684 (*1 *2 *3) (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-294)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-294)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-294)))) (-1664 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *4 (-1147)) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-620 (-219))) (-5 *1 (-294)))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *4 (-620 (-1147))) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294)))) (-1663 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-620 (-1147))) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294)))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-620 (-1147))) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294)))) (-1661 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1147)) (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-620 (-219))) (-5 *1 (-294)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-112)) (-5 *1 (-294)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-294))))) -(-10 -7 (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -1660 ((-112) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -1661 ((-620 (-219)) (-307 (-219)) (-1147) (-1060 (-817 (-219))))) (-15 -1662 ((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-307 (-219)) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1663 ((-1124 (-219)) (-1229 (-307 (-219))) (-620 (-1147)) (-1060 (-817 (-219))))) (-15 -1664 ((-620 (-219)) (-920 (-400 (-536))) (-1147) (-1060 (-817 (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219))))) -((-2094 (((-112) (-219)) 10))) -(((-295 |#1| |#2|) (-10 -7 (-15 -2094 ((-112) (-219)))) (-219) (-219)) (T -295)) -((-2094 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-295 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2094 ((-112) (-219)))) -((-1680 (((-1229 (-307 (-371))) (-1229 (-307 (-219)))) 105)) (-1668 (((-1060 (-817 (-219))) (-1060 (-817 (-371)))) 40)) (-1684 (((-620 (-1129)) (-1124 (-219))) 87)) (-1691 (((-307 (-371)) (-920 (-219))) 50)) (-1692 (((-219) (-920 (-219))) 46)) (-1687 (((-1129) (-371)) 169)) (-1667 (((-817 (-219)) (-817 (-371))) 34)) (-1673 (((-2 (|:| |additions| (-536)) (|:| |multiplications| (-536)) (|:| |exponentiations| (-536)) (|:| |functionCalls| (-536))) (-1229 (-307 (-219)))) 143)) (-1688 (((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) 181) (((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) 179)) (-1695 (((-667 (-219)) (-620 (-219)) (-749)) 14)) (-1678 (((-1229 (-677)) (-620 (-219))) 94)) (-1683 (((-620 (-1129)) (-620 (-219))) 75)) (-2984 (((-3 (-307 (-219)) "failed") (-307 (-219))) 120)) (-2094 (((-112) (-219) (-1060 (-817 (-219)))) 109)) (-1690 (((-1009) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) 198)) (-1685 (((-219) (-1060 (-817 (-219)))) 107)) (-1686 (((-219) (-1060 (-817 (-219)))) 108)) (-1694 (((-219) (-400 (-536))) 27)) (-1682 (((-1129) (-371)) 73)) (-1665 (((-219) (-371)) 17)) (-1672 (((-371) (-1229 (-307 (-219)))) 154)) (-1666 (((-307 (-219)) (-307 (-371))) 23)) (-1670 (((-400 (-536)) (-307 (-219))) 53)) (-1674 (((-307 (-400 (-536))) (-307 (-219))) 69)) (-1679 (((-307 (-371)) (-307 (-219))) 98)) (-1671 (((-219) (-307 (-219))) 54)) (-1676 (((-620 (-219)) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) 64)) (-1675 (((-1060 (-817 (-219))) (-1060 (-817 (-219)))) 61)) (-1681 (((-1129) (-219)) 72)) (-1677 (((-677) (-219)) 90)) (-1669 (((-400 (-536)) (-219)) 55)) (-1693 (((-307 (-371)) (-219)) 49)) (-4325 (((-620 (-1060 (-817 (-219)))) (-620 (-1060 (-817 (-371))))) 43)) (-4156 (((-1009) (-620 (-1009))) 165) (((-1009) (-1009) (-1009)) 162)) (-1689 (((-1009) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) -(((-296) (-10 -7 (-15 -1665 ((-219) (-371))) (-15 -1666 ((-307 (-219)) (-307 (-371)))) (-15 -1667 ((-817 (-219)) (-817 (-371)))) (-15 -1668 ((-1060 (-817 (-219))) (-1060 (-817 (-371))))) (-15 -4325 ((-620 (-1060 (-817 (-219)))) (-620 (-1060 (-817 (-371)))))) (-15 -1669 ((-400 (-536)) (-219))) (-15 -1670 ((-400 (-536)) (-307 (-219)))) (-15 -1671 ((-219) (-307 (-219)))) (-15 -2984 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1672 ((-371) (-1229 (-307 (-219))))) (-15 -1673 ((-2 (|:| |additions| (-536)) (|:| |multiplications| (-536)) (|:| |exponentiations| (-536)) (|:| |functionCalls| (-536))) (-1229 (-307 (-219))))) (-15 -1674 ((-307 (-400 (-536))) (-307 (-219)))) (-15 -1675 ((-1060 (-817 (-219))) (-1060 (-817 (-219))))) (-15 -1676 ((-620 (-219)) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) (-15 -1677 ((-677) (-219))) (-15 -1678 ((-1229 (-677)) (-620 (-219)))) (-15 -1679 ((-307 (-371)) (-307 (-219)))) (-15 -1680 ((-1229 (-307 (-371))) (-1229 (-307 (-219))))) (-15 -2094 ((-112) (-219) (-1060 (-817 (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1682 ((-1129) (-371))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219)))) (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -4156 ((-1009) (-1009) (-1009))) (-15 -4156 ((-1009) (-620 (-1009)))) (-15 -1687 ((-1129) (-371))) (-15 -1688 ((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))))) (-15 -1688 ((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))))) (-15 -1689 ((-1009) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1690 ((-1009) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -1691 ((-307 (-371)) (-920 (-219)))) (-15 -1692 ((-219) (-920 (-219)))) (-15 -1693 ((-307 (-371)) (-219))) (-15 -1694 ((-219) (-400 (-536)))) (-15 -1695 ((-667 (-219)) (-620 (-219)) (-749))))) (T -296)) -((-1695 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-219))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) (-5 *1 (-296)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-400 (-536))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-920 (-219))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-920 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *2 (-1009)) (-5 *1 (-296)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1009)) (-5 *1 (-296)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) (-5 *2 (-1009)) (-5 *1 (-296)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *2 (-1009)) (-5 *1 (-296)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1129)) (-5 *1 (-296)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-620 (-1009))) (-5 *2 (-1009)) (-5 *1 (-296)))) (-4156 (*1 *2 *2 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-296)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-296)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-296)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1129)) (-5 *1 (-296)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-296)))) (-2094 (*1 *2 *3 *4) (-12 (-5 *4 (-1060 (-817 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-296)))) (-1680 (*1 *2 *3) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *2 (-1229 (-307 (-371)))) (-5 *1 (-296)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1229 (-677))) (-5 *1 (-296)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-677)) (-5 *1 (-296)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *2 (-620 (-219))) (-5 *1 (-296)))) (-1675 (*1 *2 *2) (-12 (-5 *2 (-1060 (-817 (-219)))) (-5 *1 (-296)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-400 (-536)))) (-5 *1 (-296)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *2 (-2 (|:| |additions| (-536)) (|:| |multiplications| (-536)) (|:| |exponentiations| (-536)) (|:| |functionCalls| (-536)))) (-5 *1 (-296)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-296)))) (-2984 (*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-296)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-219)) (-5 *1 (-296)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-400 (-536))) (-5 *1 (-296)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-536))) (-5 *1 (-296)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-620 (-1060 (-817 (-371))))) (-5 *2 (-620 (-1060 (-817 (-219))))) (-5 *1 (-296)))) (-1668 (*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-371)))) (-5 *2 (-1060 (-817 (-219)))) (-5 *1 (-296)))) (-1667 (*1 *2 *3) (-12 (-5 *3 (-817 (-371))) (-5 *2 (-817 (-219))) (-5 *1 (-296)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-307 (-371))) (-5 *2 (-307 (-219))) (-5 *1 (-296)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-296))))) -(-10 -7 (-15 -1665 ((-219) (-371))) (-15 -1666 ((-307 (-219)) (-307 (-371)))) (-15 -1667 ((-817 (-219)) (-817 (-371)))) (-15 -1668 ((-1060 (-817 (-219))) (-1060 (-817 (-371))))) (-15 -4325 ((-620 (-1060 (-817 (-219)))) (-620 (-1060 (-817 (-371)))))) (-15 -1669 ((-400 (-536)) (-219))) (-15 -1670 ((-400 (-536)) (-307 (-219)))) (-15 -1671 ((-219) (-307 (-219)))) (-15 -2984 ((-3 (-307 (-219)) "failed") (-307 (-219)))) (-15 -1672 ((-371) (-1229 (-307 (-219))))) (-15 -1673 ((-2 (|:| |additions| (-536)) (|:| |multiplications| (-536)) (|:| |exponentiations| (-536)) (|:| |functionCalls| (-536))) (-1229 (-307 (-219))))) (-15 -1674 ((-307 (-400 (-536))) (-307 (-219)))) (-15 -1675 ((-1060 (-817 (-219))) (-1060 (-817 (-219))))) (-15 -1676 ((-620 (-219)) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) (-15 -1677 ((-677) (-219))) (-15 -1678 ((-1229 (-677)) (-620 (-219)))) (-15 -1679 ((-307 (-371)) (-307 (-219)))) (-15 -1680 ((-1229 (-307 (-371))) (-1229 (-307 (-219))))) (-15 -2094 ((-112) (-219) (-1060 (-817 (-219))))) (-15 -1681 ((-1129) (-219))) (-15 -1682 ((-1129) (-371))) (-15 -1683 ((-620 (-1129)) (-620 (-219)))) (-15 -1684 ((-620 (-1129)) (-1124 (-219)))) (-15 -1685 ((-219) (-1060 (-817 (-219))))) (-15 -1686 ((-219) (-1060 (-817 (-219))))) (-15 -4156 ((-1009) (-1009) (-1009))) (-15 -4156 ((-1009) (-620 (-1009)))) (-15 -1687 ((-1129) (-371))) (-15 -1688 ((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))))) (-15 -1688 ((-1009) (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))))) (-15 -1689 ((-1009) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1690 ((-1009) (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))) (-15 -1691 ((-307 (-371)) (-920 (-219)))) (-15 -1692 ((-219) (-920 (-219)))) (-15 -1693 ((-307 (-371)) (-219))) (-15 -1694 ((-219) (-400 (-536)))) (-15 -1695 ((-667 (-219)) (-620 (-219)) (-749)))) -((-1696 (((-620 |#1|) (-620 |#1|)) 10))) -(((-297 |#1|) (-10 -7 (-15 -1696 ((-620 |#1|) (-620 |#1|)))) (-823)) (T -297)) -((-1696 (*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-823)) (-5 *1 (-297 *3))))) -(-10 -7 (-15 -1696 ((-620 |#1|) (-620 |#1|)))) -((-4313 (((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)) 17))) -(((-298 |#1| |#2|) (-10 -7 (-15 -4313 ((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)))) (-1023) (-1023)) (T -298)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-667 *6)) (-5 *1 (-298 *5 *6))))) -(-10 -7 (-15 -4313 ((-667 |#2|) (-1 |#2| |#1|) (-667 |#1|)))) -((-1700 (((-112) $ $) 11)) (-2889 (($ $ $) 15)) (-2888 (($ $ $) 14)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 44)) (-1697 (((-3 (-620 $) "failed") (-620 $) $) 53)) (-3490 (($ $ $) 21) (($ (-620 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3815 (((-3 $ "failed") $ $) 17)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 46))) -(((-299 |#1|) (-10 -8 (-15 -1697 ((-3 (-620 |#1|) "failed") (-620 |#1|) |#1|)) (-15 -1698 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1698 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2889 (|#1| |#1| |#1|)) (-15 -2888 (|#1| |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -3068 ((-3 (-620 |#1|) "failed") (-620 |#1|) |#1|)) (-15 -3069 ((-2 (|:| -4308 (-620 |#1|)) (|:| -2496 |#1|)) (-620 |#1|))) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|))) (-300)) (T -299)) -NIL -(-10 -8 (-15 -1697 ((-3 (-620 |#1|) "failed") (-620 |#1|) |#1|)) (-15 -1698 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1698 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2889 (|#1| |#1| |#1|)) (-15 -2888 (|#1| |#1| |#1|)) (-15 -1700 ((-112) |#1| |#1|)) (-15 -3068 ((-3 (-620 |#1|) "failed") (-620 |#1|) |#1|)) (-15 -3069 ((-2 (|:| -4308 (-620 |#1|)) (|:| -2496 |#1|)) (-620 |#1|))) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-2497 (((-112) $) 30)) (-1697 (((-3 (-620 $) "failed") (-620 $) $) 50)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-300) (-138)) (T -300)) -((-1700 (*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112)))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-749)))) (-3209 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-300)))) (-2888 (*1 *1 *1 *1) (-4 *1 (-300))) (-2889 (*1 *1 *1 *1) (-4 *1 (-300))) (-1698 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) (-4 *1 (-300)))) (-1698 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-300)))) (-1697 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-300))))) -(-13 (-895) (-10 -8 (-15 -1700 ((-112) $ $)) (-15 -1699 ((-749) $)) (-15 -3209 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2888 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -1698 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $)) (-15 -1698 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1697 ((-3 (-620 $) "failed") (-620 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-4122 (($ $ (-620 |#2|) (-620 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-286 |#2|)) 11) (($ $ (-620 (-286 |#2|))) NIL))) -(((-301 |#1| |#2|) (-10 -8 (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|)))) (-302 |#2|) (-1072)) (T -301)) -NIL -(-10 -8 (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|)))) -((-4122 (($ $ (-620 |#1|) (-620 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-286 |#1|)) 11) (($ $ (-620 (-286 |#1|))) 10))) -(((-302 |#1|) (-138) (-1072)) (T -302)) -((-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1072)))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-286 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1072))))) -(-13 (-505 |t#1| |t#1|) (-10 -8 (-15 -4122 ($ $ (-286 |t#1|))) (-15 -4122 ($ $ (-620 (-286 |t#1|)))))) -(((-505 |#1| |#1|) . T)) -((-4122 ((|#1| (-1 |#1| (-536)) (-1149 (-400 (-536)))) 25))) -(((-303 |#1|) (-10 -7 (-15 -4122 (|#1| (-1 |#1| (-536)) (-1149 (-400 (-536)))))) (-38 (-400 (-536)))) (T -303)) -((-4122 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-536))) (-5 *4 (-1149 (-400 (-536)))) (-5 *1 (-303 *2)) (-4 *2 (-38 (-400 (-536))))))) -(-10 -7 (-15 -4122 (|#1| (-1 |#1| (-536)) (-1149 (-400 (-536)))))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 7)) (-3382 (((-112) $ $) 9))) -(((-304) (-1072)) (T -304)) -NIL -(-1072) -((-2893 (((-112) $ $) NIL)) (-3855 (((-536) $) 12)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 9)) (-4312 (((-838) $) 21) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-305) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3855 ((-536) $))))) (T -305)) -((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-305)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-305))))) -(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3855 ((-536) $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 62)) (-3459 (((-1216 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-1216 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-536)))) (((-3 (-1210 |#2| |#3| |#4|) #2#) $) 25)) (-3502 (((-1216 |#1| |#2| |#3| |#4|) $) NIL) (((-1147) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-536)))) (((-536) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-536)))) (((-1210 |#2| |#3| |#4|) $) NIL)) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-1216 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1229 (-1216 |#1| |#2| |#3| |#4|)))) (-667 $) (-1229 $)) NIL) (((-667 (-1216 |#1| |#2| |#3| |#4|)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-1216 |#1| |#2| |#3| |#4|) $) 21)) (-3798 (((-3 $ "failed") $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1122)))) (-3533 (((-112) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-3673 (($ $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-4313 (($ (-1 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|)) $) NIL)) (-4138 (((-3 (-817 |#2|) "failed") $) 78)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-300)))) (-3460 (((-1216 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-1216 |#1| |#2| |#3| |#4|)) (-620 (-1216 |#1| |#2| |#3| |#4|))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-302 (-1216 |#1| |#2| |#3| |#4|)))) (($ $ (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-302 (-1216 |#1| |#2| |#3| |#4|)))) (($ $ (-286 (-1216 |#1| |#2| |#3| |#4|))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-302 (-1216 |#1| |#2| |#3| |#4|)))) (($ $ (-620 (-286 (-1216 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-302 (-1216 |#1| |#2| |#3| |#4|)))) (($ $ (-620 (-1147)) (-620 (-1216 |#1| |#2| |#3| |#4|))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-505 (-1147) (-1216 |#1| |#2| |#3| |#4|)))) (($ $ (-1147) (-1216 |#1| |#2| |#3| |#4|)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-505 (-1147) (-1216 |#1| |#2| |#3| |#4|))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-1216 |#1| |#2| |#3| |#4|)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-279 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-749)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1147)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-1 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|)) (-749)) NIL) (($ $ (-1 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-1216 |#1| |#2| |#3| |#4|) $) 17)) (-4325 (((-864 (-536)) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-596 (-525)))) (((-371) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-994))) (((-219) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1216 |#1| |#2| |#3| |#4|) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-1216 |#1| |#2| |#3| |#4|)) 29) (($ (-1147)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-1012 (-1147)))) (($ (-1210 |#2| |#3| |#4|)) 36)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-1216 |#1| |#2| |#3| |#4|) (-884))) (|has| (-1216 |#1| |#2| |#3| |#4|) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-1216 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-535)))) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-798)))) (-2986 (($) 41 T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-749)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-227))) (($ $ (-1147)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-874 (-1147)))) (($ $ (-1 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|)) (-749)) NIL) (($ $ (-1 (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-1216 |#1| |#2| |#3| |#4|) (-825)))) (-4303 (($ $ $) 34) (($ (-1216 |#1| |#2| |#3| |#4|) (-1216 |#1| |#2| |#3| |#4|)) 31)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-1216 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1216 |#1| |#2| |#3| |#4|)) NIL))) -(((-306 |#1| |#2| |#3| |#4|) (-13 (-965 (-1216 |#1| |#2| |#3| |#4|)) (-1012 (-1210 |#2| |#3| |#4|)) (-10 -8 (-15 -4138 ((-3 (-817 |#2|) "failed") $)) (-15 -4312 ($ (-1210 |#2| |#3| |#4|))))) (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444)) (-13 (-27) (-1169) (-414 |#1|)) (-1147) |#2|) (T -306)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1210 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4) (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) (-5 *1 (-306 *3 *4 *5 *6)))) (-4138 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) (-5 *2 (-817 *4)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4)))) -(-13 (-965 (-1216 |#1| |#2| |#3| |#4|)) (-1012 (-1210 |#2| |#3| |#4|)) (-10 -8 (-15 -4138 ((-3 (-817 |#2|) "failed") $)) (-15 -4312 ($ (-1210 |#2| |#3| |#4|))))) -((-2893 (((-112) $ $) NIL)) (-1662 (((-620 $) $ (-1147)) NIL (|has| |#1| (-543))) (((-620 $) $) NIL (|has| |#1| (-543))) (((-620 $) (-1141 $) (-1147)) NIL (|has| |#1| (-543))) (((-620 $) (-1141 $)) NIL (|has| |#1| (-543))) (((-620 $) (-920 $)) NIL (|has| |#1| (-543)))) (-1263 (($ $ (-1147)) NIL (|has| |#1| (-543))) (($ $) NIL (|has| |#1| (-543))) (($ (-1141 $) (-1147)) NIL (|has| |#1| (-543))) (($ (-1141 $)) NIL (|has| |#1| (-543))) (($ (-920 $)) NIL (|has| |#1| (-543)))) (-3534 (((-112) $) 27 (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))))) (-3412 (((-620 (-1147)) $) 351)) (-3414 (((-400 (-1141 $)) $ (-593 $)) NIL (|has| |#1| (-543)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-1655 (((-620 (-593 $)) $) NIL)) (-3841 (($ $) 161 (|has| |#1| (-543)))) (-3997 (($ $) 137 (|has| |#1| (-543)))) (-1417 (($ $ (-1063 $)) 222 (|has| |#1| (-543))) (($ $ (-1147)) 218 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) NIL (-3886 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))))) (-1659 (($ $ (-286 $)) NIL) (($ $ (-620 (-286 $))) 368) (($ $ (-620 (-593 $)) (-620 $)) 412)) (-3035 (((-398 (-1141 $)) (-1141 $)) 295 (-12 (|has| |#1| (-444)) (|has| |#1| (-543))))) (-4129 (($ $) NIL (|has| |#1| (-543)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-543)))) (-3365 (($ $) NIL (|has| |#1| (-543)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3839 (($ $) 157 (|has| |#1| (-543)))) (-3996 (($ $) 133 (|has| |#1| (-543)))) (-1701 (($ $ (-536)) 72 (|has| |#1| (-543)))) (-3843 (($ $) 165 (|has| |#1| (-543)))) (-3995 (($ $) 141 (|has| |#1| (-543)))) (-3891 (($) NIL (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083))) CONST)) (-1264 (((-620 $) $ (-1147)) NIL (|has| |#1| (-543))) (((-620 $) $) NIL (|has| |#1| (-543))) (((-620 $) (-1141 $) (-1147)) NIL (|has| |#1| (-543))) (((-620 $) (-1141 $)) NIL (|has| |#1| (-543))) (((-620 $) (-920 $)) NIL (|has| |#1| (-543)))) (-3529 (($ $ (-1147)) NIL (|has| |#1| (-543))) (($ $) NIL (|has| |#1| (-543))) (($ (-1141 $) (-1147)) 124 (|has| |#1| (-543))) (($ (-1141 $)) NIL (|has| |#1| (-543))) (($ (-920 $)) NIL (|has| |#1| (-543)))) (-3503 (((-3 (-593 $) #1="failed") $) 17) (((-3 (-1147) #1#) $) NIL) (((-3 |#1| #1#) $) 421) (((-3 (-48) #1#) $) 323 (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536))))) (((-3 (-536) #1#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-920 |#1|)) #1#) $) NIL (|has| |#1| (-543))) (((-3 (-920 |#1|) #1#) $) NIL (|has| |#1| (-1023))) (((-3 (-400 (-536)) #1#) $) 46 (-3886 (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-3502 (((-593 $) $) 11) (((-1147) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-920 |#1|)) $) NIL (|has| |#1| (-543))) (((-920 |#1|) $) NIL (|has| |#1| (-1023))) (((-400 (-536)) $) 306 (-3886 (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-2889 (($ $ $) NIL (|has| |#1| (-543)))) (-2357 (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 117 (|has| |#1| (-1023))) (((-667 |#1|) (-667 $)) 107 (|has| |#1| (-1023))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))) (-4197 (($ $) 89 (|has| |#1| (-543)))) (-3816 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083))))) (-2888 (($ $ $) NIL (|has| |#1| (-543)))) (-4299 (($ $ (-1063 $)) 226 (|has| |#1| (-543))) (($ $ (-1147)) 224 (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-543)))) (-4081 (((-112) $) NIL (|has| |#1| (-543)))) (-3740 (($ $ $) 192 (|has| |#1| (-543)))) (-3985 (($) 127 (|has| |#1| (-543)))) (-1414 (($ $ $) 212 (|has| |#1| (-543)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 374 (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 381 (|has| |#1| (-860 (-371))))) (-2898 (($ $) NIL) (($ (-620 $)) NIL)) (-1654 (((-620 (-113)) $) NIL)) (-3375 (((-113) (-113)) 267)) (-2497 (((-112) $) 25 (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083))))) (-3001 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-3324 (($ $) 71 (|has| |#1| (-1023)))) (-3326 (((-1096 |#1| (-593 $)) $) 84 (|has| |#1| (-1023)))) (-1702 (((-112) $) 64 (|has| |#1| (-543)))) (-3339 (($ $ (-536)) NIL (|has| |#1| (-543)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| |#1| (-543)))) (-1652 (((-1141 $) (-593 $)) 268 (|has| $ (-1023)))) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 $ $) (-593 $)) 408)) (-1657 (((-3 (-593 $) "failed") $) NIL)) (-4297 (($ $) 131 (|has| |#1| (-543)))) (-2336 (($ $) 237 (|has| |#1| (-543)))) (-2008 (($ (-620 $)) NIL (|has| |#1| (-543))) (($ $ $) NIL (|has| |#1| (-543)))) (-3588 (((-1129) $) NIL)) (-1656 (((-620 (-593 $)) $) 49)) (-2312 (($ (-113) $) NIL) (($ (-113) (-620 $)) 413)) (-3151 (((-3 (-620 $) #3="failed") $) NIL (|has| |#1| (-1083)))) (-3153 (((-3 (-2 (|:| |val| $) (|:| -2488 (-536))) #3#) $) NIL (|has| |#1| (-1023)))) (-3150 (((-3 (-620 $) #3#) $) 416 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 $))) #3#) $) 420 (|has| |#1| (-25)))) (-3152 (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $) NIL (|has| |#1| (-1083))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $ (-113)) NIL (|has| |#1| (-1023))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) #3#) $ (-1147)) NIL (|has| |#1| (-1023)))) (-2959 (((-112) $ (-113)) NIL) (((-112) $ (-1147)) 53)) (-2729 (($ $) NIL (-3886 (|has| |#1| (-465)) (|has| |#1| (-543))))) (-3160 (($ $ (-1147)) 241 (|has| |#1| (-543))) (($ $ (-1063 $)) 243 (|has| |#1| (-543)))) (-2928 (((-749) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) 43)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 288 (|has| |#1| (-543)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-543))) (($ $ $) NIL (|has| |#1| (-543)))) (-1653 (((-112) $ $) NIL) (((-112) $ (-1147)) NIL)) (-1418 (($ $ (-1147)) 216 (|has| |#1| (-543))) (($ $) 214 (|has| |#1| (-543)))) (-1412 (($ $) 208 (|has| |#1| (-543)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 293 (-12 (|has| |#1| (-444)) (|has| |#1| (-543))))) (-4087 (((-398 $) $) NIL (|has| |#1| (-543)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-543))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-543)))) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-543)))) (-4298 (($ $) 129 (|has| |#1| (-543)))) (-3002 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) 407) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-1147) (-1 $ (-620 $))) NIL) (($ $ (-1147) (-1 $ $)) NIL) (($ $ (-620 (-113)) (-620 (-1 $ $))) 361) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-113) (-1 $ (-620 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1147)) NIL (|has| |#1| (-596 (-525)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-596 (-525)))) (($ $) NIL (|has| |#1| (-596 (-525)))) (($ $ (-113) $ (-1147)) 349 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-113)) (-620 $) (-1147)) 348 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ $))) NIL (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ (-620 $)))) NIL (|has| |#1| (-1023))) (($ $ (-1147) (-749) (-1 $ (-620 $))) NIL (|has| |#1| (-1023))) (($ $ (-1147) (-749) (-1 $ $)) NIL (|has| |#1| (-1023)))) (-1699 (((-749) $) NIL (|has| |#1| (-543)))) (-2334 (($ $) 229 (|has| |#1| (-543)))) (-4154 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-620 $)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-1658 (($ $) NIL) (($ $ $) NIL)) (-2335 (($ $) 239 (|has| |#1| (-543)))) (-3739 (($ $) 190 (|has| |#1| (-543)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-1023))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-1023))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-1023))) (($ $ (-1147)) NIL (|has| |#1| (-1023)))) (-3323 (($ $) 73 (|has| |#1| (-543)))) (-3325 (((-1096 |#1| (-593 $)) $) 86 (|has| |#1| (-543)))) (-3531 (($ $) 304 (|has| $ (-1023)))) (-3844 (($ $) 167 (|has| |#1| (-543)))) (-3994 (($ $) 143 (|has| |#1| (-543)))) (-3842 (($ $) 163 (|has| |#1| (-543)))) (-3993 (($ $) 139 (|has| |#1| (-543)))) (-3840 (($ $) 159 (|has| |#1| (-543)))) (-3992 (($ $) 135 (|has| |#1| (-543)))) (-4325 (((-864 (-536)) $) NIL (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| |#1| (-596 (-864 (-371))))) (($ (-398 $)) NIL (|has| |#1| (-543))) (((-525) $) 346 (|has| |#1| (-596 (-525))))) (-3337 (($ $ $) NIL (|has| |#1| (-465)))) (-2681 (($ $ $) NIL (|has| |#1| (-465)))) (-4312 (((-838) $) 406) (($ (-593 $)) 397) (($ (-1147)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-543))) (($ (-48)) 299 (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536))))) (($ (-1096 |#1| (-593 $))) 88 (|has| |#1| (-1023))) (($ (-400 |#1|)) NIL (|has| |#1| (-543))) (($ (-920 (-400 |#1|))) NIL (|has| |#1| (-543))) (($ (-400 (-920 (-400 |#1|)))) NIL (|has| |#1| (-543))) (($ (-400 (-920 |#1|))) NIL (|has| |#1| (-543))) (($ (-920 |#1|)) NIL (|has| |#1| (-1023))) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-543)) (|has| |#1| (-1012 (-400 (-536)))))) (($ (-536)) 34 (-3886 (|has| |#1| (-1012 (-536))) (|has| |#1| (-1023))))) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL (|has| |#1| (-1023)))) (-2915 (($ $) NIL) (($ (-620 $)) NIL)) (-3432 (($ $ $) 210 (|has| |#1| (-543)))) (-3743 (($ $ $) 196 (|has| |#1| (-543)))) (-3745 (($ $ $) 200 (|has| |#1| (-543)))) (-3742 (($ $ $) 194 (|has| |#1| (-543)))) (-3744 (($ $ $) 198 (|has| |#1| (-543)))) (-2333 (((-112) (-113)) 9)) (-3847 (($ $) 173 (|has| |#1| (-543)))) (-3835 (($ $) 149 (|has| |#1| (-543)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) 169 (|has| |#1| (-543)))) (-3833 (($ $) 145 (|has| |#1| (-543)))) (-3849 (($ $) 177 (|has| |#1| (-543)))) (-3837 (($ $) 153 (|has| |#1| (-543)))) (-1909 (($ (-1147) $) NIL) (($ (-1147) $ $) NIL) (($ (-1147) $ $ $) NIL) (($ (-1147) $ $ $ $) NIL) (($ (-1147) (-620 $)) NIL)) (-3747 (($ $) 204 (|has| |#1| (-543)))) (-3746 (($ $) 202 (|has| |#1| (-543)))) (-3850 (($ $) 179 (|has| |#1| (-543)))) (-3838 (($ $) 155 (|has| |#1| (-543)))) (-3848 (($ $) 175 (|has| |#1| (-543)))) (-3836 (($ $) 151 (|has| |#1| (-543)))) (-3846 (($ $) 171 (|has| |#1| (-543)))) (-3834 (($ $) 147 (|has| |#1| (-543)))) (-3737 (($ $) 182 (|has| |#1| (-543)))) (-2986 (($) 20 (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))) CONST)) (-2338 (($ $) 233 (|has| |#1| (-543)))) (-2992 (($) 22 (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083))) CONST)) (-3741 (($ $) 184 (|has| |#1| (-543))) (($ $ $) 186 (|has| |#1| (-543)))) (-2339 (($ $) 231 (|has| |#1| (-543)))) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-1023))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-1023))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-1023))) (($ $ (-1147)) NIL (|has| |#1| (-1023)))) (-2337 (($ $) 235 (|has| |#1| (-543)))) (-3738 (($ $ $) 188 (|has| |#1| (-543)))) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 81)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 80)) (-4303 (($ (-1096 |#1| (-593 $)) (-1096 |#1| (-593 $))) 98 (|has| |#1| (-543))) (($ $ $) 42 (-3886 (|has| |#1| (-465)) (|has| |#1| (-543))))) (-4192 (($ $ $) 40 (-3886 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))) (($ $) 29 (-3886 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))))) (-4194 (($ $ $) 38 (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))))) (** (($ $ $) 66 (|has| |#1| (-543))) (($ $ (-400 (-536))) 301 (|has| |#1| (-543))) (($ $ (-536)) 76 (-3886 (|has| |#1| (-465)) (|has| |#1| (-543)))) (($ $ (-749)) 74 (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083)))) (($ $ (-893)) 78 (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083))))) (* (($ (-400 (-536)) $) NIL (|has| |#1| (-543))) (($ $ (-400 (-536))) NIL (|has| |#1| (-543))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-3886 (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) (|has| |#1| (-1083)))) (($ (-536) $) 32 (-3886 (|has| |#1| (-21)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))) (($ (-749) $) NIL (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))) (($ (-893) $) NIL (-3886 (|has| |#1| (-25)) (-12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))))))) -(((-307 |#1|) (-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-543)) (PROGN (-6 (-29 |#1|)) (-6 (-1169)) (-6 (-158)) (-6 (-610)) (-6 (-1110)) (-15 -4197 ($ $)) (-15 -1702 ((-112) $)) (-15 -1701 ($ $ (-536))) (IF (|has| |#1| (-444)) (PROGN (-15 -3034 ((-398 (-1141 $)) (-1141 $))) (-15 -3035 ((-398 (-1141 $)) (-1141 $)))) |%noBranch|) (IF (|has| |#1| (-1012 (-536))) (-6 (-1012 (-48))) |%noBranch|)) |%noBranch|))) (-825)) (T -307)) -((-4197 (*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-543)) (-4 *2 (-825)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-543)) (-4 *3 (-825)))) (-1701 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-307 *3)) (-4 *3 (-543)) (-4 *3 (-825)))) (-3034 (*1 *2 *3) (-12 (-5 *2 (-398 (-1141 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1141 *1)) (-4 *4 (-444)) (-4 *4 (-543)) (-4 *4 (-825)))) (-3035 (*1 *2 *3) (-12 (-5 *2 (-398 (-1141 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1141 *1)) (-4 *4 (-444)) (-4 *4 (-543)) (-4 *4 (-825))))) -(-13 (-414 |#1|) (-10 -8 (IF (|has| |#1| (-543)) (PROGN (-6 (-29 |#1|)) (-6 (-1169)) (-6 (-158)) (-6 (-610)) (-6 (-1110)) (-15 -4197 ($ $)) (-15 -1702 ((-112) $)) (-15 -1701 ($ $ (-536))) (IF (|has| |#1| (-444)) (PROGN (-15 -3034 ((-398 (-1141 $)) (-1141 $))) (-15 -3035 ((-398 (-1141 $)) (-1141 $)))) |%noBranch|) (IF (|has| |#1| (-1012 (-536))) (-6 (-1012 (-48))) |%noBranch|)) |%noBranch|))) -((-4313 (((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)) 13))) -(((-308 |#1| |#2|) (-10 -7 (-15 -4313 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)))) (-825) (-825)) (T -308)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-5 *2 (-307 *6)) (-5 *1 (-308 *5 *6))))) -(-10 -7 (-15 -4313 ((-307 |#2|) (-1 |#2| |#1|) (-307 |#1|)))) -((-4084 (((-51) |#2| (-286 |#2|) (-749)) 33) (((-51) |#2| (-286 |#2|)) 24) (((-51) |#2| (-749)) 28) (((-51) |#2|) 25) (((-51) (-1147)) 21)) (-4173 (((-51) |#2| (-286 |#2|) (-400 (-536))) 51) (((-51) |#2| (-286 |#2|)) 48) (((-51) |#2| (-400 (-536))) 50) (((-51) |#2|) 49) (((-51) (-1147)) 47)) (-4136 (((-51) |#2| (-286 |#2|) (-400 (-536))) 46) (((-51) |#2| (-286 |#2|)) 43) (((-51) |#2| (-400 (-536))) 45) (((-51) |#2|) 44) (((-51) (-1147)) 42)) (-4133 (((-51) |#2| (-286 |#2|) (-536)) 39) (((-51) |#2| (-286 |#2|)) 35) (((-51) |#2| (-536)) 38) (((-51) |#2|) 36) (((-51) (-1147)) 34))) -(((-309 |#1| |#2|) (-10 -7 (-15 -4084 ((-51) (-1147))) (-15 -4084 ((-51) |#2|)) (-15 -4084 ((-51) |#2| (-749))) (-15 -4084 ((-51) |#2| (-286 |#2|))) (-15 -4084 ((-51) |#2| (-286 |#2|) (-749))) (-15 -4133 ((-51) (-1147))) (-15 -4133 ((-51) |#2|)) (-15 -4133 ((-51) |#2| (-536))) (-15 -4133 ((-51) |#2| (-286 |#2|))) (-15 -4133 ((-51) |#2| (-286 |#2|) (-536))) (-15 -4136 ((-51) (-1147))) (-15 -4136 ((-51) |#2|)) (-15 -4136 ((-51) |#2| (-400 (-536)))) (-15 -4136 ((-51) |#2| (-286 |#2|))) (-15 -4136 ((-51) |#2| (-286 |#2|) (-400 (-536)))) (-15 -4173 ((-51) (-1147))) (-15 -4173 ((-51) |#2|)) (-15 -4173 ((-51) |#2| (-400 (-536)))) (-15 -4173 ((-51) |#2| (-286 |#2|))) (-15 -4173 ((-51) |#2| (-286 |#2|) (-400 (-536))))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -309)) -((-4173 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4173 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4173 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-536))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-4173 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) (-4136 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4136 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-536))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-4136 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) (-4133 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-1012 *5) (-619 *5))) (-5 *5 (-536)) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-4 *5 (-13 (-444) (-825) (-1012 *4) (-619 *4))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-4133 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) (-4084 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-286 *3)) (-5 *5 (-749)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-4084 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4)))))) -(-10 -7 (-15 -4084 ((-51) (-1147))) (-15 -4084 ((-51) |#2|)) (-15 -4084 ((-51) |#2| (-749))) (-15 -4084 ((-51) |#2| (-286 |#2|))) (-15 -4084 ((-51) |#2| (-286 |#2|) (-749))) (-15 -4133 ((-51) (-1147))) (-15 -4133 ((-51) |#2|)) (-15 -4133 ((-51) |#2| (-536))) (-15 -4133 ((-51) |#2| (-286 |#2|))) (-15 -4133 ((-51) |#2| (-286 |#2|) (-536))) (-15 -4136 ((-51) (-1147))) (-15 -4136 ((-51) |#2|)) (-15 -4136 ((-51) |#2| (-400 (-536)))) (-15 -4136 ((-51) |#2| (-286 |#2|))) (-15 -4136 ((-51) |#2| (-286 |#2|) (-400 (-536)))) (-15 -4173 ((-51) (-1147))) (-15 -4173 ((-51) |#2|)) (-15 -4173 ((-51) |#2| (-400 (-536)))) (-15 -4173 ((-51) |#2| (-286 |#2|))) (-15 -4173 ((-51) |#2| (-286 |#2|) (-400 (-536))))) -((-1703 (((-51) |#2| (-113) (-286 |#2|) (-620 |#2|)) 88) (((-51) |#2| (-113) (-286 |#2|) (-286 |#2|)) 84) (((-51) |#2| (-113) (-286 |#2|) |#2|) 86) (((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|) 87) (((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|))) 80) (((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 |#2|)) 82) (((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 |#2|)) 83) (((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|))) 81) (((-51) (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|)) 89) (((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|)) 85))) -(((-310 |#1| |#2|) (-10 -7 (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|)))) (-15 -1703 ((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|)))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-620 |#2|)))) (-13 (-825) (-543) (-596 (-525))) (-414 |#1|)) (T -310)) -((-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-5 *6 (-620 *3)) (-4 *3 (-414 *7)) (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *3)))) (-1703 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *3)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *3)))) (-1703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *5)))) (-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 (-113))) (-5 *6 (-620 (-286 *8))) (-4 *8 (-414 *7)) (-5 *5 (-286 *8)) (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *8)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-620 *7)) (-5 *4 (-620 (-113))) (-5 *5 (-286 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-620 (-286 *8))) (-5 *4 (-620 (-113))) (-5 *5 (-286 *8)) (-5 *6 (-620 *8)) (-4 *8 (-414 *7)) (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *7 *8)))) (-1703 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-620 (-286 *7))) (-5 *4 (-620 (-113))) (-5 *5 (-286 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-620 *7)) (-4 *7 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *6 *7)))) (-1703 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-286 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) (-4 *5 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) (-5 *1 (-310 *5 *6))))) -(-10 -7 (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|)))) (-15 -1703 ((-51) (-620 (-286 |#2|)) (-620 (-113)) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 |#2|))) (-15 -1703 ((-51) (-620 |#2|) (-620 (-113)) (-286 |#2|) (-620 (-286 |#2|)))) (-15 -1703 ((-51) (-286 |#2|) (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) |#2|)) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-286 |#2|))) (-15 -1703 ((-51) |#2| (-113) (-286 |#2|) (-620 |#2|)))) -((-1705 (((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536) (-1129)) 46) (((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536)) 47) (((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536) (-1129)) 43) (((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536)) 44)) (-1704 (((-1 (-219) (-219)) (-219)) 45))) -(((-311) (-10 -7 (-15 -1704 ((-1 (-219) (-219)) (-219))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536) (-1129))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536) (-1129))))) (T -311)) -((-1705 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-219)) (-5 *7 (-536)) (-5 *8 (-1129)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-219)) (-5 *7 (-536)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-536)) (-5 *7 (-1129)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) (-1705 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-536)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) (-1704 (*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219))))) -(-10 -7 (-15 -1704 ((-1 (-219) (-219)) (-219))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-1 (-219) (-219)) (-536) (-1129))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536))) (-15 -1705 ((-1179 (-901)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-219) (-536) (-1129)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 25)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) NIL) (($ $ (-400 (-536)) (-400 (-536))) NIL)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) 20)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) 32)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) NIL) (((-400 (-536)) $ (-400 (-536))) 16)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) NIL) (($ $ (-400 (-536))) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-400 (-536))) NIL) (($ $ (-1053) (-400 (-536))) NIL) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))))))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-1706 (((-400 (-536)) $) 17)) (-3421 (($ (-1210 |#1| |#2| |#3|)) 11)) (-2488 (((-1210 |#1| |#2| |#3|) $) 12)) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) NIL) (($ $ $) NIL (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-4302 (((-400 (-536)) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 10)) (-4312 (((-838) $) 38) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) 30)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) NIL)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 27)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 33)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-312 |#1| |#2| |#3|) (-13 (-1212 |#1|) (-770) (-10 -8 (-15 -3421 ($ (-1210 |#1| |#2| |#3|))) (-15 -2488 ((-1210 |#1| |#2| |#3|) $)) (-15 -1706 ((-400 (-536)) $)))) (-13 (-356) (-825)) (-1147) |#1|) (T -312)) -((-3421 (*1 *1 *2) (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-1210 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) (-14 *5 *3))) (-1706 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-312 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) (-14 *5 *3)))) -(-13 (-1212 |#1|) (-770) (-10 -8 (-15 -3421 ($ (-1210 |#1| |#2| |#3|))) (-15 -2488 ((-1210 |#1| |#2| |#3|) $)) (-15 -1706 ((-400 (-536)) $)))) -((-3339 (((-2 (|:| -2488 (-749)) (|:| -4308 |#1|) (|:| |radicand| (-620 |#1|))) (-398 |#1|) (-749)) 24)) (-4297 (((-620 (-2 (|:| -4308 (-749)) (|:| |logand| |#1|))) (-398 |#1|)) 28))) -(((-313 |#1|) (-10 -7 (-15 -3339 ((-2 (|:| -2488 (-749)) (|:| -4308 |#1|) (|:| |radicand| (-620 |#1|))) (-398 |#1|) (-749))) (-15 -4297 ((-620 (-2 (|:| -4308 (-749)) (|:| |logand| |#1|))) (-398 |#1|)))) (-543)) (T -313)) -((-4297 (*1 *2 *3) (-12 (-5 *3 (-398 *4)) (-4 *4 (-543)) (-5 *2 (-620 (-2 (|:| -4308 (-749)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) (-3339 (*1 *2 *3 *4) (-12 (-5 *3 (-398 *5)) (-4 *5 (-543)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *5) (|:| |radicand| (-620 *5)))) (-5 *1 (-313 *5)) (-5 *4 (-749))))) -(-10 -7 (-15 -3339 ((-2 (|:| -2488 (-749)) (|:| -4308 |#1|) (|:| |radicand| (-620 |#1|))) (-398 |#1|) (-749))) (-15 -4297 ((-620 (-2 (|:| -4308 (-749)) (|:| |logand| |#1|))) (-398 |#1|)))) -((-3412 (((-620 |#2|) (-1141 |#4|)) 43)) (-1711 ((|#3| (-536)) 46)) (-1709 (((-1141 |#4|) (-1141 |#3|)) 30)) (-1710 (((-1141 |#4|) (-1141 |#4|) (-536)) 56)) (-1708 (((-1141 |#3|) (-1141 |#4|)) 21)) (-4302 (((-620 (-749)) (-1141 |#4|) (-620 |#2|)) 40)) (-1707 (((-1141 |#3|) (-1141 |#4|) (-620 |#2|) (-620 |#3|)) 35))) -(((-314 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1707 ((-1141 |#3|) (-1141 |#4|) (-620 |#2|) (-620 |#3|))) (-15 -4302 ((-620 (-749)) (-1141 |#4|) (-620 |#2|))) (-15 -3412 ((-620 |#2|) (-1141 |#4|))) (-15 -1708 ((-1141 |#3|) (-1141 |#4|))) (-15 -1709 ((-1141 |#4|) (-1141 |#3|))) (-15 -1710 ((-1141 |#4|) (-1141 |#4|) (-536))) (-15 -1711 (|#3| (-536)))) (-771) (-825) (-1023) (-924 |#3| |#1| |#2|)) (T -314)) -((-1711 (*1 *2 *3) (-12 (-5 *3 (-536)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1023)) (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-924 *2 *4 *5)))) (-1710 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 *7)) (-5 *3 (-536)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-5 *1 (-314 *4 *5 *6 *7)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-1141 *6)) (-4 *6 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-1141 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) (-1708 (*1 *2 *3) (-12 (-5 *3 (-1141 *7)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-5 *2 (-1141 *6)) (-5 *1 (-314 *4 *5 *6 *7)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-1141 *7)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-5 *2 (-620 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) (-4302 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *8)) (-5 *4 (-620 *6)) (-4 *6 (-825)) (-4 *8 (-924 *7 *5 *6)) (-4 *5 (-771)) (-4 *7 (-1023)) (-5 *2 (-620 (-749))) (-5 *1 (-314 *5 *6 *7 *8)))) (-1707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-5 *5 (-620 *8)) (-4 *7 (-825)) (-4 *8 (-1023)) (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) (-5 *2 (-1141 *8)) (-5 *1 (-314 *6 *7 *8 *9))))) -(-10 -7 (-15 -1707 ((-1141 |#3|) (-1141 |#4|) (-620 |#2|) (-620 |#3|))) (-15 -4302 ((-620 (-749)) (-1141 |#4|) (-620 |#2|))) (-15 -3412 ((-620 |#2|) (-1141 |#4|))) (-15 -1708 ((-1141 |#3|) (-1141 |#4|))) (-15 -1709 ((-1141 |#4|) (-1141 |#3|))) (-15 -1710 ((-1141 |#4|) (-1141 |#4|) (-536))) (-15 -1711 (|#3| (-536)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 14)) (-4128 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-536)))) $) 18)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749) $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-2763 ((|#1| $ (-536)) NIL)) (-1714 (((-536) $ (-536)) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2366 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (($ (-1 (-536) (-536)) $) 10)) (-3588 (((-1129) $) NIL)) (-1712 (($ $ $) NIL (|has| (-536) (-770)))) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (($ |#1|) NIL)) (-4035 (((-536) |#1| $) NIL)) (-2986 (($) 15 T CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) 21 (|has| |#1| (-825)))) (-4192 (($ $) 11) (($ $ $) 20)) (-4194 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ (-536)) NIL) (($ (-536) |#1|) 19))) -(((-315 |#1|) (-13 (-21) (-696 (-536)) (-316 |#1| (-536)) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1072)) (T -315)) -NIL -(-13 (-21) (-696 (-536)) (-316 |#1| (-536)) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-4128 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))) $) 27)) (-1367 (((-3 $ "failed") $ $) 19)) (-3466 (((-749) $) 28)) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| "failed") $) 32)) (-3502 ((|#1| $) 31)) (-2763 ((|#1| $ (-536)) 25)) (-1714 ((|#2| $ (-536)) 26)) (-2366 (($ (-1 |#1| |#1|) $) 22)) (-1713 (($ (-1 |#2| |#2|) $) 23)) (-3588 (((-1129) $) 9)) (-1712 (($ $ $) 21 (|has| |#2| (-770)))) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ |#1|) 33)) (-4035 ((|#2| |#1| $) 24)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ |#2| |#1|) 29))) -(((-316 |#1| |#2|) (-138) (-1072) (-130)) (T -316)) -((-4194 (*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-130)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)) (-5 *2 (-749)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)) (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))))) (-1714 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1072)) (-4 *2 (-130)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1072)))) (-4035 (*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-130)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)))) (-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)))) (-1712 (*1 *1 *1 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-130)) (-4 *3 (-770))))) -(-13 (-130) (-1012 |t#1|) (-10 -8 (-15 -4194 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3466 ((-749) $)) (-15 -4128 ((-620 (-2 (|:| |gen| |t#1|) (|:| -4298 |t#2|))) $)) (-15 -1714 (|t#2| $ (-536))) (-15 -2763 (|t#1| $ (-536))) (-15 -4035 (|t#2| |t#1| $)) (-15 -1713 ($ (-1 |t#2| |t#2|) $)) (-15 -2366 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-770)) (-15 -1712 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1012 |#1|) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4128 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749) $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-2763 ((|#1| $ (-536)) NIL)) (-1714 (((-749) $ (-536)) NIL)) (-2366 (($ (-1 |#1| |#1|) $) NIL)) (-1713 (($ (-1 (-749) (-749)) $) NIL)) (-3588 (((-1129) $) NIL)) (-1712 (($ $ $) NIL (|has| (-749) (-770)))) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (($ |#1|) NIL)) (-4035 (((-749) |#1| $) NIL)) (-2986 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4194 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-749) |#1|) NIL))) -(((-317 |#1|) (-316 |#1| (-749)) (-1072)) (T -317)) -NIL -(-316 |#1| (-749)) -((-3852 (($ $) 53)) (-1716 (($ $ |#2| |#3| $) 14)) (-1717 (($ (-1 |#3| |#3|) $) 33)) (-1911 (((-112) $) 24)) (-1910 ((|#2| $) 26)) (-3815 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3145 ((|#2| $) 49)) (-4172 (((-620 |#2|) $) 36)) (-1715 (($ $ $ (-749)) 20)) (-4303 (($ $ |#2|) 40))) -(((-318 |#1| |#2| |#3|) (-10 -8 (-15 -3852 (|#1| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1715 (|#1| |#1| |#1| (-749))) (-15 -1716 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1717 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4172 ((-620 |#2|) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4303 (|#1| |#1| |#2|))) (-319 |#2| |#3|) (-1023) (-770)) (T -318)) -NIL -(-10 -8 (-15 -3852 (|#1| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1715 (|#1| |#1| |#1| (-749))) (-15 -1716 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1717 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4172 ((-620 |#2|) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4303 (|#1| |#1| |#2|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 88 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 86 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 85)) (-3502 (((-536) $) 89 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 87 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 84)) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-3852 (($ $) 73 (|has| |#1| (-444)))) (-1716 (($ $ |#1| |#2| $) 77)) (-2497 (((-112) $) 30)) (-2505 (((-749) $) 80)) (-4292 (((-112) $) 60)) (-3221 (($ |#1| |#2|) 59)) (-3148 ((|#2| $) 79)) (-1717 (($ (-1 |#2| |#2|) $) 78)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 83)) (-1910 ((|#1| $) 82)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-543)))) (-4302 ((|#2| $) 62)) (-3145 ((|#1| $) 74 (|has| |#1| (-444)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 47 (|has| |#1| (-543))) (($ |#1|) 45) (($ (-400 (-536))) 55 (-3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| |#1| (-38 (-400 (-536))))))) (-4172 (((-620 |#1|) $) 81)) (-4035 ((|#1| $ |#2|) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-1715 (($ $ $ (-749)) 76 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) -(((-319 |#1| |#2|) (-138) (-1023) (-770)) (T -319)) -((-1911 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-112)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-620 *3)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-749)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-1717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)))) (-1716 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) (-1715 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-4 *3 (-170)))) (-3815 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *2 (-543)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)) (-4 *2 (-444)))) (-3852 (*1 *1 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *2 (-444))))) -(-13 (-47 |t#1| |t#2|) (-405 |t#1|) (-10 -8 (-15 -1911 ((-112) $)) (-15 -1910 (|t#1| $)) (-15 -4172 ((-620 |t#1|) $)) (-15 -2505 ((-749) $)) (-15 -3148 (|t#2| $)) (-15 -1717 ($ (-1 |t#2| |t#2|) $)) (-15 -1716 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -1715 ($ $ $ (-749))) |%noBranch|) (IF (|has| |t#1| (-543)) (-15 -3815 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3145 (|t#1| $)) (-15 -3852 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-283) |has| |#1| (-543)) ((-405 |#1|) . T) ((-543) |has| |#1| (-543)) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-2102 (((-112) (-112)) NIL)) (-4142 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-2450 (($ $) NIL (|has| |#1| (-1072)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) NIL (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) NIL)) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2103 (($ $ (-536)) NIL)) (-2104 (((-749) $) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3187 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3965 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2105 (($ (-620 |#1|)) NIL)) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-1627 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4145 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-320 |#1|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-620 |#1|))) (-15 -2104 ((-749) $)) (-15 -2103 ($ $ (-536))) (-15 -2102 ((-112) (-112))))) (-1183)) (T -320)) -((-2105 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-320 *3)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-320 *3)) (-4 *3 (-1183)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-320 *3)) (-4 *3 (-1183)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1183))))) -(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-620 |#1|))) (-15 -2104 ((-749) $)) (-15 -2103 ($ $ (-536))) (-15 -2102 ((-112) (-112))))) -((-4287 (((-112) $) 42)) (-4284 (((-749)) 22)) (-3684 ((|#2| $) 46) (($ $ (-893)) 101)) (-3466 (((-749)) 102)) (-1906 (($ (-1229 |#2|)) 20)) (-2122 (((-112) $) 115)) (-3462 ((|#2| $) 48) (($ $ (-893)) 99)) (-2125 (((-1141 |#2|) $) NIL) (((-1141 $) $ (-893)) 95)) (-1719 (((-1141 |#2|) $) 82)) (-1718 (((-1141 |#2|) $) 79) (((-3 (-1141 |#2|) "failed") $ $) 76)) (-1720 (($ $ (-1141 |#2|)) 53)) (-4285 (((-810 (-893))) 28) (((-893)) 43)) (-4266 (((-133)) 25)) (-4302 (((-810 (-893)) $) 30) (((-893) $) 117)) (-1721 (($) 108)) (-3570 (((-1229 |#2|) $) NIL) (((-667 |#2|) (-1229 $)) 39)) (-3030 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4288 (((-112) $) 41))) -(((-321 |#1| |#2|) (-10 -8 (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3466 ((-749))) (-15 -3030 (|#1| |#1|)) (-15 -1718 ((-3 (-1141 |#2|) "failed") |#1| |#1|)) (-15 -1718 ((-1141 |#2|) |#1|)) (-15 -1719 ((-1141 |#2|) |#1|)) (-15 -1720 (|#1| |#1| (-1141 |#2|))) (-15 -2122 ((-112) |#1|)) (-15 -1721 (|#1|)) (-15 -3684 (|#1| |#1| (-893))) (-15 -3462 (|#1| |#1| (-893))) (-15 -2125 ((-1141 |#1|) |#1| (-893))) (-15 -3684 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -4302 ((-893) |#1|)) (-15 -4285 ((-893))) (-15 -2125 ((-1141 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -4284 ((-749))) (-15 -4285 ((-810 (-893)))) (-15 -4302 ((-810 (-893)) |#1|)) (-15 -4287 ((-112) |#1|)) (-15 -4288 ((-112) |#1|)) (-15 -4266 ((-133)))) (-322 |#2|) (-356)) (T -321)) -((-4266 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4285 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-810 (-893))) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4284 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-4285 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-893)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) (-3466 (*1 *2) (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4))))) -(-10 -8 (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3466 ((-749))) (-15 -3030 (|#1| |#1|)) (-15 -1718 ((-3 (-1141 |#2|) "failed") |#1| |#1|)) (-15 -1718 ((-1141 |#2|) |#1|)) (-15 -1719 ((-1141 |#2|) |#1|)) (-15 -1720 (|#1| |#1| (-1141 |#2|))) (-15 -2122 ((-112) |#1|)) (-15 -1721 (|#1|)) (-15 -3684 (|#1| |#1| (-893))) (-15 -3462 (|#1| |#1| (-893))) (-15 -2125 ((-1141 |#1|) |#1| (-893))) (-15 -3684 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -4302 ((-893) |#1|)) (-15 -4285 ((-893))) (-15 -2125 ((-1141 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -4284 ((-749))) (-15 -4285 ((-810 (-893)))) (-15 -4302 ((-810 (-893)) |#1|)) (-15 -4287 ((-112) |#1|)) (-15 -4288 ((-112) |#1|)) (-15 -4266 ((-133)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-4287 (((-112) $) 91)) (-4284 (((-749)) 87)) (-3684 ((|#1| $) 137) (($ $ (-893)) 134 (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) 119 (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3466 (((-749)) 109 (|has| |#1| (-361)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| "failed") $) 98)) (-3502 ((|#1| $) 97)) (-1906 (($ (-1229 |#1|)) 143)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-361)))) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-3322 (($) 106 (|has| |#1| (-361)))) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-3161 (($) 121 (|has| |#1| (-361)))) (-1791 (((-112) $) 122 (|has| |#1| (-361)))) (-1881 (($ $ (-749)) 84 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) 68)) (-4126 (((-893) $) 124 (|has| |#1| (-361))) (((-810 (-893)) $) 81 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) 30)) (-2124 (($) 132 (|has| |#1| (-361)))) (-2122 (((-112) $) 131 (|has| |#1| (-361)))) (-3462 ((|#1| $) 138) (($ $ (-893)) 135 (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) 110 (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2125 (((-1141 |#1|) $) 142) (((-1141 $) $ (-893)) 136 (|has| |#1| (-361)))) (-2121 (((-893) $) 107 (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) 128 (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) 127 (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) 126 (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) 129 (|has| |#1| (-361)))) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3799 (($) 111 (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) 108 (|has| |#1| (-361)))) (-4286 (((-112) $) 90)) (-3589 (((-1091) $) 10)) (-2496 (($) 130 (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 118 (|has| |#1| (-361)))) (-4087 (((-398 $) $) 71)) (-4285 (((-810 (-893))) 88) (((-893)) 140)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-1882 (((-749) $) 123 (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) 82 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) 96)) (-4165 (($ $) 115 (|has| |#1| (-361))) (($ $ (-749)) 113 (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) 89) (((-893) $) 139)) (-3531 (((-1141 |#1|)) 141)) (-1785 (($) 120 (|has| |#1| (-361)))) (-1721 (($) 133 (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) 145) (((-667 |#1|) (-1229 $)) 144)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 117 (|has| |#1| (-361)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ |#1|) 99)) (-3030 (($ $) 116 (|has| |#1| (-361))) (((-3 $ "failed") $) 80 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) 28)) (-2123 (((-1229 $)) 147) (((-1229 $) (-893)) 146)) (-2172 (((-112) $ $) 37)) (-4288 (((-112) $) 92)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-4283 (($ $) 86 (|has| |#1| (-361))) (($ $ (-749)) 85 (|has| |#1| (-361)))) (-2997 (($ $) 114 (|has| |#1| (-361))) (($ $ (-749)) 112 (|has| |#1| (-361)))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62) (($ $ |#1|) 95)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-322 |#1|) (-138) (-356)) (T -322)) -((-2123 (*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1229 *1)) (-4 *1 (-322 *3)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-893)) (-4 *4 (-356)) (-5 *2 (-1229 *1)) (-4 *1 (-322 *4)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1229 *3)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) (-3531 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) (-4285 (*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-893)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-893)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-893)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1141 *1)) (-4 *1 (-322 *4)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-3684 (*1 *1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) (-1721 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2124 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-2122 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) (-2496 (*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) (-1720 (*1 *1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3)))) (-1718 (*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3)))) (-1718 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3))))) -(-13 (-1248 |t#1|) (-1012 |t#1|) (-10 -8 (-15 -2123 ((-1229 $))) (-15 -2123 ((-1229 $) (-893))) (-15 -3570 ((-1229 |t#1|) $)) (-15 -3570 ((-667 |t#1|) (-1229 $))) (-15 -1906 ($ (-1229 |t#1|))) (-15 -2125 ((-1141 |t#1|) $)) (-15 -3531 ((-1141 |t#1|))) (-15 -4285 ((-893))) (-15 -4302 ((-893) $)) (-15 -3462 (|t#1| $)) (-15 -3684 (|t#1| $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-343)) (-15 -2125 ((-1141 $) $ (-893))) (-15 -3462 ($ $ (-893))) (-15 -3684 ($ $ (-893))) (-15 -1721 ($)) (-15 -2124 ($)) (-15 -2122 ((-112) $)) (-15 -2496 ($)) (-15 -1720 ($ $ (-1141 |t#1|))) (-15 -1719 ((-1141 |t#1|) $)) (-15 -1718 ((-1141 |t#1|) $)) (-15 -1718 ((-3 (-1141 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3886 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-227) |has| |#1| (-361)) ((-237) . T) ((-283) . T) ((-300) . T) ((-1248 |#1|) . T) ((-356) . T) ((-395) -3886 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-361) |has| |#1| (-361)) ((-343) |has| |#1| (-361)) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1012 |#1|) . T) ((-1029 #1#) . T) ((-1029 |#1|) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| |#1| (-361)) ((-1188) . T) ((-1237 |#1|) . T)) -((-2893 (((-112) $ $) NIL)) (-1739 (($ (-1146) $) 88)) (-1730 (($) 77)) (-1722 (((-1091) (-1091)) 11)) (-1729 (($) 78)) (-1733 (($) 90) (($ (-307 (-677))) 98) (($ (-307 (-679))) 94) (($ (-307 (-672))) 102) (($ (-307 (-371))) 109) (($ (-307 (-536))) 105) (($ (-307 (-166 (-371)))) 113)) (-1738 (($ (-1146) $) 89)) (-1728 (($ (-620 (-838))) 79)) (-1724 (((-1235) $) 75)) (-1726 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1737 (($ (-1091)) 51)) (-1723 (((-1074) $) 25)) (-1740 (($ (-1063 (-920 (-536))) $) 85) (($ (-1063 (-920 (-536))) (-920 (-536)) $) 86)) (-1736 (($ (-1091)) 87)) (-1732 (($ (-1146) $) 115) (($ (-1146) $ $) 116)) (-1727 (($ (-1147) (-620 (-1147))) 76)) (-1735 (($ (-1129)) 82) (($ (-620 (-1129))) 80)) (-4312 (((-838) $) 118)) (-1725 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1147)) (|:| |arrayIndex| (-620 (-920 (-536)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1147)) (|:| |rand| (-838)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1146)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3757 (-112)) (|:| -3756 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |blockBranch| (-620 $)) (|:| |commentBranch| (-620 (-1129))) (|:| |callBranch| (-1129)) (|:| |forBranch| (-2 (|:| -1556 (-1063 (-920 (-536)))) (|:| |span| (-920 (-536))) (|:| -3579 $))) (|:| |labelBranch| (-1091)) (|:| |loopBranch| (-2 (|:| |switch| (-1146)) (|:| -3579 $))) (|:| |commonBranch| (-2 (|:| -3900 (-1147)) (|:| |contents| (-620 (-1147))))) (|:| |printBranch| (-620 (-838)))) $) 44)) (-1734 (($ (-1129)) 187)) (-1731 (($ (-620 $)) 114)) (-2911 (($ (-1147) (-1129)) 120) (($ (-1147) (-307 (-679))) 160) (($ (-1147) (-307 (-677))) 161) (($ (-1147) (-307 (-672))) 162) (($ (-1147) (-667 (-679))) 123) (($ (-1147) (-667 (-677))) 126) (($ (-1147) (-667 (-672))) 129) (($ (-1147) (-1229 (-679))) 132) (($ (-1147) (-1229 (-677))) 135) (($ (-1147) (-1229 (-672))) 138) (($ (-1147) (-667 (-307 (-679)))) 141) (($ (-1147) (-667 (-307 (-677)))) 144) (($ (-1147) (-667 (-307 (-672)))) 147) (($ (-1147) (-1229 (-307 (-679)))) 150) (($ (-1147) (-1229 (-307 (-677)))) 153) (($ (-1147) (-1229 (-307 (-672)))) 156) (($ (-1147) (-620 (-920 (-536))) (-307 (-679))) 157) (($ (-1147) (-620 (-920 (-536))) (-307 (-677))) 158) (($ (-1147) (-620 (-920 (-536))) (-307 (-672))) 159) (($ (-1147) (-307 (-536))) 184) (($ (-1147) (-307 (-371))) 185) (($ (-1147) (-307 (-166 (-371)))) 186) (($ (-1147) (-667 (-307 (-536)))) 165) (($ (-1147) (-667 (-307 (-371)))) 168) (($ (-1147) (-667 (-307 (-166 (-371))))) 171) (($ (-1147) (-1229 (-307 (-536)))) 174) (($ (-1147) (-1229 (-307 (-371)))) 177) (($ (-1147) (-1229 (-307 (-166 (-371))))) 180) (($ (-1147) (-620 (-920 (-536))) (-307 (-536))) 181) (($ (-1147) (-620 (-920 (-536))) (-307 (-371))) 182) (($ (-1147) (-620 (-920 (-536))) (-307 (-166 (-371)))) 183)) (-3382 (((-112) $ $) NIL))) -(((-323) (-13 (-1072) (-10 -8 (-15 -4312 ((-838) $)) (-15 -1740 ($ (-1063 (-920 (-536))) $)) (-15 -1740 ($ (-1063 (-920 (-536))) (-920 (-536)) $)) (-15 -1739 ($ (-1146) $)) (-15 -1738 ($ (-1146) $)) (-15 -1737 ($ (-1091))) (-15 -1736 ($ (-1091))) (-15 -1735 ($ (-1129))) (-15 -1735 ($ (-620 (-1129)))) (-15 -1734 ($ (-1129))) (-15 -1733 ($)) (-15 -1733 ($ (-307 (-677)))) (-15 -1733 ($ (-307 (-679)))) (-15 -1733 ($ (-307 (-672)))) (-15 -1733 ($ (-307 (-371)))) (-15 -1733 ($ (-307 (-536)))) (-15 -1733 ($ (-307 (-166 (-371))))) (-15 -1732 ($ (-1146) $)) (-15 -1732 ($ (-1146) $ $)) (-15 -2911 ($ (-1147) (-1129))) (-15 -2911 ($ (-1147) (-307 (-679)))) (-15 -2911 ($ (-1147) (-307 (-677)))) (-15 -2911 ($ (-1147) (-307 (-672)))) (-15 -2911 ($ (-1147) (-667 (-679)))) (-15 -2911 ($ (-1147) (-667 (-677)))) (-15 -2911 ($ (-1147) (-667 (-672)))) (-15 -2911 ($ (-1147) (-1229 (-679)))) (-15 -2911 ($ (-1147) (-1229 (-677)))) (-15 -2911 ($ (-1147) (-1229 (-672)))) (-15 -2911 ($ (-1147) (-667 (-307 (-679))))) (-15 -2911 ($ (-1147) (-667 (-307 (-677))))) (-15 -2911 ($ (-1147) (-667 (-307 (-672))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-679))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-677))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-672))))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-679)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-677)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-672)))) (-15 -2911 ($ (-1147) (-307 (-536)))) (-15 -2911 ($ (-1147) (-307 (-371)))) (-15 -2911 ($ (-1147) (-307 (-166 (-371))))) (-15 -2911 ($ (-1147) (-667 (-307 (-536))))) (-15 -2911 ($ (-1147) (-667 (-307 (-371))))) (-15 -2911 ($ (-1147) (-667 (-307 (-166 (-371)))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-536))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-371))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-166 (-371)))))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-536)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-371)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-166 (-371))))) (-15 -1731 ($ (-620 $))) (-15 -1730 ($)) (-15 -1729 ($)) (-15 -1728 ($ (-620 (-838)))) (-15 -1727 ($ (-1147) (-620 (-1147)))) (-15 -1726 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1725 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1147)) (|:| |arrayIndex| (-620 (-920 (-536)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1147)) (|:| |rand| (-838)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1146)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3757 (-112)) (|:| -3756 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |blockBranch| (-620 $)) (|:| |commentBranch| (-620 (-1129))) (|:| |callBranch| (-1129)) (|:| |forBranch| (-2 (|:| -1556 (-1063 (-920 (-536)))) (|:| |span| (-920 (-536))) (|:| -3579 $))) (|:| |labelBranch| (-1091)) (|:| |loopBranch| (-2 (|:| |switch| (-1146)) (|:| -3579 $))) (|:| |commonBranch| (-2 (|:| -3900 (-1147)) (|:| |contents| (-620 (-1147))))) (|:| |printBranch| (-620 (-838)))) $)) (-15 -1724 ((-1235) $)) (-15 -1723 ((-1074) $)) (-15 -1722 ((-1091) (-1091)))))) (T -323)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-323)))) (-1740 (*1 *1 *2 *1) (-12 (-5 *2 (-1063 (-920 (-536)))) (-5 *1 (-323)))) (-1740 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1063 (-920 (-536)))) (-5 *3 (-920 (-536))) (-5 *1 (-323)))) (-1739 (*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323)))) (-1738 (*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323)))) (-1737 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323)))) (-1735 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-323)))) (-1735 (*1 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-323)))) (-1734 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-323)))) (-1733 (*1 *1) (-5 *1 (-323))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-679))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-672))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-5 *1 (-323)))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-1732 (*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323)))) (-1732 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1129)) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-679))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-677))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-672))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-679))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-677))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-672))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-679))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-677))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-672))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-679)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-677)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-672)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-679)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-677)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-672)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-679))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-677))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-672))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-536))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-371))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-536)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-371)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-166 (-371))))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-536)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-371)))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-166 (-371))))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-536))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-371))) (-5 *1 (-323)))) (-2911 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-166 (-371)))) (-5 *1 (-323)))) (-1731 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-5 *1 (-323)))) (-1730 (*1 *1) (-5 *1 (-323))) (-1729 (*1 *1) (-5 *1 (-323))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-323)))) (-1727 (*1 *1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1147)) (-5 *1 (-323)))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-323)))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1147)) (|:| |arrayIndex| (-620 (-920 (-536)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1147)) (|:| |rand| (-838)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1146)) (|:| |thenClause| (-323)) (|:| |elseClause| (-323)))) (|:| |returnBranch| (-2 (|:| -3757 (-112)) (|:| -3756 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |blockBranch| (-620 (-323))) (|:| |commentBranch| (-620 (-1129))) (|:| |callBranch| (-1129)) (|:| |forBranch| (-2 (|:| -1556 (-1063 (-920 (-536)))) (|:| |span| (-920 (-536))) (|:| -3579 (-323)))) (|:| |labelBranch| (-1091)) (|:| |loopBranch| (-2 (|:| |switch| (-1146)) (|:| -3579 (-323)))) (|:| |commonBranch| (-2 (|:| -3900 (-1147)) (|:| |contents| (-620 (-1147))))) (|:| |printBranch| (-620 (-838))))) (-5 *1 (-323)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-323)))) (-1723 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-323)))) (-1722 (*1 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323))))) -(-13 (-1072) (-10 -8 (-15 -4312 ((-838) $)) (-15 -1740 ($ (-1063 (-920 (-536))) $)) (-15 -1740 ($ (-1063 (-920 (-536))) (-920 (-536)) $)) (-15 -1739 ($ (-1146) $)) (-15 -1738 ($ (-1146) $)) (-15 -1737 ($ (-1091))) (-15 -1736 ($ (-1091))) (-15 -1735 ($ (-1129))) (-15 -1735 ($ (-620 (-1129)))) (-15 -1734 ($ (-1129))) (-15 -1733 ($)) (-15 -1733 ($ (-307 (-677)))) (-15 -1733 ($ (-307 (-679)))) (-15 -1733 ($ (-307 (-672)))) (-15 -1733 ($ (-307 (-371)))) (-15 -1733 ($ (-307 (-536)))) (-15 -1733 ($ (-307 (-166 (-371))))) (-15 -1732 ($ (-1146) $)) (-15 -1732 ($ (-1146) $ $)) (-15 -2911 ($ (-1147) (-1129))) (-15 -2911 ($ (-1147) (-307 (-679)))) (-15 -2911 ($ (-1147) (-307 (-677)))) (-15 -2911 ($ (-1147) (-307 (-672)))) (-15 -2911 ($ (-1147) (-667 (-679)))) (-15 -2911 ($ (-1147) (-667 (-677)))) (-15 -2911 ($ (-1147) (-667 (-672)))) (-15 -2911 ($ (-1147) (-1229 (-679)))) (-15 -2911 ($ (-1147) (-1229 (-677)))) (-15 -2911 ($ (-1147) (-1229 (-672)))) (-15 -2911 ($ (-1147) (-667 (-307 (-679))))) (-15 -2911 ($ (-1147) (-667 (-307 (-677))))) (-15 -2911 ($ (-1147) (-667 (-307 (-672))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-679))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-677))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-672))))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-679)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-677)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-672)))) (-15 -2911 ($ (-1147) (-307 (-536)))) (-15 -2911 ($ (-1147) (-307 (-371)))) (-15 -2911 ($ (-1147) (-307 (-166 (-371))))) (-15 -2911 ($ (-1147) (-667 (-307 (-536))))) (-15 -2911 ($ (-1147) (-667 (-307 (-371))))) (-15 -2911 ($ (-1147) (-667 (-307 (-166 (-371)))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-536))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-371))))) (-15 -2911 ($ (-1147) (-1229 (-307 (-166 (-371)))))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-536)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-371)))) (-15 -2911 ($ (-1147) (-620 (-920 (-536))) (-307 (-166 (-371))))) (-15 -1731 ($ (-620 $))) (-15 -1730 ($)) (-15 -1729 ($)) (-15 -1728 ($ (-620 (-838)))) (-15 -1727 ($ (-1147) (-620 (-1147)))) (-15 -1726 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1725 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1147)) (|:| |arrayIndex| (-620 (-920 (-536)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1147)) (|:| |rand| (-838)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1146)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3757 (-112)) (|:| -3756 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) (|:| |blockBranch| (-620 $)) (|:| |commentBranch| (-620 (-1129))) (|:| |callBranch| (-1129)) (|:| |forBranch| (-2 (|:| -1556 (-1063 (-920 (-536)))) (|:| |span| (-920 (-536))) (|:| -3579 $))) (|:| |labelBranch| (-1091)) (|:| |loopBranch| (-2 (|:| |switch| (-1146)) (|:| -3579 $))) (|:| |commonBranch| (-2 (|:| -3900 (-1147)) (|:| |contents| (-620 (-1147))))) (|:| |printBranch| (-620 (-838)))) $)) (-15 -1724 ((-1235) $)) (-15 -1723 ((-1074) $)) (-15 -1722 ((-1091) (-1091))))) -((-2893 (((-112) $ $) NIL)) (-1741 (((-112) $) 11)) (-3996 (($ |#1|) 8)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3992 (($ |#1|) 9)) (-4312 (((-838) $) 17)) (-2313 ((|#1| $) 12)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 19))) -(((-324 |#1|) (-13 (-825) (-10 -8 (-15 -3996 ($ |#1|)) (-15 -3992 ($ |#1|)) (-15 -1741 ((-112) $)) (-15 -2313 (|#1| $)))) (-825)) (T -324)) -((-3996 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) (-3992 (*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-825)))) (-2313 (*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825))))) -(-13 (-825) (-10 -8 (-15 -3996 ($ |#1|)) (-15 -3992 ($ |#1|)) (-15 -1741 ((-112) $)) (-15 -2313 (|#1| $)))) -((-1742 (((-323) (-1147) (-920 (-536))) 23)) (-1743 (((-323) (-1147) (-920 (-536))) 27)) (-2404 (((-323) (-1147) (-1063 (-920 (-536))) (-1063 (-920 (-536)))) 26) (((-323) (-1147) (-920 (-536)) (-920 (-536))) 24)) (-1744 (((-323) (-1147) (-920 (-536))) 31))) -(((-325) (-10 -7 (-15 -1742 ((-323) (-1147) (-920 (-536)))) (-15 -2404 ((-323) (-1147) (-920 (-536)) (-920 (-536)))) (-15 -2404 ((-323) (-1147) (-1063 (-920 (-536))) (-1063 (-920 (-536))))) (-15 -1743 ((-323) (-1147) (-920 (-536)))) (-15 -1744 ((-323) (-1147) (-920 (-536)))))) (T -325)) -((-1744 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2404 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-1063 (-920 (-536)))) (-5 *2 (-323)) (-5 *1 (-325)))) (-2404 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325)))) (-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325))))) -(-10 -7 (-15 -1742 ((-323) (-1147) (-920 (-536)))) (-15 -2404 ((-323) (-1147) (-920 (-536)) (-920 (-536)))) (-15 -2404 ((-323) (-1147) (-1063 (-920 (-536))) (-1063 (-920 (-536))))) (-15 -1743 ((-323) (-1147) (-920 (-536)))) (-15 -1744 ((-323) (-1147) (-920 (-536))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4197 (($ $) 33)) (-1747 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-1745 (((-1229 |#4|) $) 125)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 31)) (-3589 (((-1091) $) NIL)) (-2496 (((-3 |#4| "failed") $) 36)) (-1746 (((-1229 |#4|) $) 118)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-536)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3789 (((-2 (|:| -2412 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4312 (((-838) $) 17)) (-2986 (($) 14 T CONST)) (-3382 (((-112) $ $) 20)) (-4192 (($ $) 27) (($ $ $) NIL)) (-4194 (($ $ $) 25)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 23))) -(((-326 |#1| |#2| |#3| |#4|) (-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1746 ((-1229 |#4|) $)) (-15 -1745 ((-1229 |#4|) $)))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -326)) -((-1746 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-1229 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5)))) (-1745 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-1229 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) -(-13 (-329 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1746 ((-1229 |#4|) $)) (-15 -1745 ((-1229 |#4|) $)))) -((-4313 (((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)) 33))) -(((-327 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4313 ((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-356) (-1205 |#5|) (-1205 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -327)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-326 *5 *6 *7 *8)) (-4 *5 (-356)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *9 (-356)) (-4 *10 (-1205 *9)) (-4 *11 (-1205 (-400 *10))) (-5 *2 (-326 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-335 *9 *10 *11))))) -(-10 -7 (-15 -4313 ((-326 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-326 |#1| |#2| |#3| |#4|)))) -((-1747 (((-112) $) 14))) -(((-328 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1747 ((-112) |#1|))) (-329 |#2| |#3| |#4| |#5|) (-356) (-1205 |#2|) (-1205 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -328)) -NIL -(-10 -8 (-15 -1747 ((-112) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4197 (($ $) 26)) (-1747 (((-112) $) 25)) (-3588 (((-1129) $) 9)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 32)) (-3589 (((-1091) $) 10)) (-2496 (((-3 |#4| "failed") $) 24)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-536)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3789 (((-2 (|:| -2412 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20))) -(((-329 |#1| |#2| |#3| |#4|) (-138) (-356) (-1205 |t#1|) (-1205 (-400 |t#2|)) (-335 |t#1| |t#2| |t#3|)) (T -329)) -((-2087 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-406 *4 (-400 *4) *5 *6)))) (-1748 (*1 *1 *2) (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) (-4 *1 (-329 *3 *4 *5 *6)))) (-1748 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) (-1748 (*1 *1 *2 *2) (-12 (-4 *2 (-356)) (-4 *3 (-1205 *2)) (-4 *4 (-1205 (-400 *3))) (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) (-1748 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-536)) (-4 *2 (-356)) (-4 *4 (-1205 *2)) (-4 *5 (-1205 (-400 *4))) (-4 *1 (-329 *2 *4 *5 *6)) (-4 *6 (-335 *2 *4 *5)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-2 (|:| -2412 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1205 *2)) (-4 *4 (-1205 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112)))) (-2496 (*1 *2 *1) (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) (-1748 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-356)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2087 ((-406 |t#2| (-400 |t#2|) |t#3| |t#4|) $)) (-15 -1748 ($ (-406 |t#2| (-400 |t#2|) |t#3| |t#4|))) (-15 -1748 ($ |t#4|)) (-15 -1748 ($ |t#1| |t#1|)) (-15 -1748 ($ |t#1| |t#1| (-536))) (-15 -3789 ((-2 (|:| -2412 (-406 |t#2| (-400 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4197 ($ $)) (-15 -1747 ((-112) $)) (-15 -2496 ((-3 |t#4| "failed") $)) (-15 -1748 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-4122 (($ $ (-1147) |#2|) NIL) (($ $ (-620 (-1147)) (-620 |#2|)) 20) (($ $ (-620 (-286 |#2|))) 15) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-620 |#2|) (-620 |#2|)) NIL)) (-4154 (($ $ |#2|) 11))) -(((-330 |#1| |#2|) (-10 -8 (-15 -4154 (|#1| |#1| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 |#2|))) (-15 -4122 (|#1| |#1| (-1147) |#2|))) (-331 |#2|) (-1072)) (T -330)) -NIL -(-10 -8 (-15 -4154 (|#1| |#1| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 |#2|))) (-15 -4122 (|#1| |#1| (-1147) |#2|))) -((-4313 (($ (-1 |#1| |#1|) $) 6)) (-4122 (($ $ (-1147) |#1|) 17 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 16 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-620 (-286 |#1|))) 15 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 14 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-302 |#1|))) (($ $ (-620 |#1|) (-620 |#1|)) 12 (|has| |#1| (-302 |#1|)))) (-4154 (($ $ |#1|) 11 (|has| |#1| (-279 |#1| |#1|))))) -(((-331 |#1|) (-138) (-1072)) (T -331)) -((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1072))))) -(-13 (-10 -8 (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-279 |t#1| |t#1|)) (-6 (-279 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-505 (-1147) |t#1|)) (-6 (-505 (-1147) |t#1|)) |%noBranch|))) -(((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-505 (-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1147)) $) NIL)) (-1749 (((-112)) 91) (((-112) (-112)) 92)) (-1655 (((-620 (-593 $)) $) NIL)) (-3841 (($ $) NIL)) (-3997 (($ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL)) (-3365 (($ $) NIL)) (-3839 (($ $) NIL)) (-3996 (($ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-593 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-307 |#3|)) 71) (((-3 $ "failed") (-1147)) 97) (((-3 $ "failed") (-307 (-536))) 59 (|has| |#3| (-1012 (-536)))) (((-3 $ "failed") (-400 (-920 (-536)))) 65 (|has| |#3| (-1012 (-536)))) (((-3 $ "failed") (-920 (-536))) 60 (|has| |#3| (-1012 (-536)))) (((-3 $ "failed") (-307 (-371))) 89 (|has| |#3| (-1012 (-371)))) (((-3 $ "failed") (-400 (-920 (-371)))) 83 (|has| |#3| (-1012 (-371)))) (((-3 $ "failed") (-920 (-371))) 78 (|has| |#3| (-1012 (-371))))) (-3502 (((-593 $) $) NIL) ((|#3| $) NIL) (($ (-307 |#3|)) 72) (($ (-1147)) 98) (($ (-307 (-536))) 61 (|has| |#3| (-1012 (-536)))) (($ (-400 (-920 (-536)))) 66 (|has| |#3| (-1012 (-536)))) (($ (-920 (-536))) 62 (|has| |#3| (-1012 (-536)))) (($ (-307 (-371))) 90 (|has| |#3| (-1012 (-371)))) (($ (-400 (-920 (-371)))) 84 (|has| |#3| (-1012 (-371)))) (($ (-920 (-371))) 80 (|has| |#3| (-1012 (-371))))) (-3816 (((-3 $ "failed") $) NIL)) (-3985 (($) 10)) (-2898 (($ $) NIL) (($ (-620 $)) NIL)) (-1654 (((-620 (-113)) $) NIL)) (-3375 (((-113) (-113)) NIL)) (-2497 (((-112) $) NIL)) (-3001 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-1652 (((-1141 $) (-593 $)) NIL (|has| $ (-1023)))) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 $ $) (-593 $)) NIL)) (-1657 (((-3 (-593 $) "failed") $) NIL)) (-1853 (($ $) 94)) (-4297 (($ $) NIL)) (-3588 (((-1129) $) NIL)) (-1656 (((-620 (-593 $)) $) NIL)) (-2312 (($ (-113) $) 93) (($ (-113) (-620 $)) NIL)) (-2959 (((-112) $ (-113)) NIL) (((-112) $ (-1147)) NIL)) (-2928 (((-749) $) NIL)) (-3589 (((-1091) $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1147)) NIL)) (-4298 (($ $) NIL)) (-3002 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-1147) (-1 $ (-620 $))) NIL) (($ $ (-1147) (-1 $ $)) NIL) (($ $ (-620 (-113)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-113) (-1 $ (-620 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4154 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-620 $)) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL)) (-3531 (($ $) NIL (|has| $ (-1023)))) (-3840 (($ $) NIL)) (-3992 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-593 $)) NIL) (($ |#3|) NIL) (($ (-536)) NIL) (((-307 |#3|) $) 96)) (-3456 (((-749)) NIL)) (-2915 (($ $) NIL) (($ (-620 $)) NIL)) (-2333 (((-112) (-113)) NIL)) (-3835 (($ $) NIL)) (-3833 (($ $) NIL)) (-3834 (($ $) NIL)) (-3737 (($ $) NIL)) (-2986 (($) 95 T CONST)) (-2992 (($) 24 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL))) -(((-332 |#1| |#2| |#3|) (-13 (-291) (-38 |#3|) (-1012 |#3|) (-874 (-1147)) (-10 -8 (-15 -3502 ($ (-307 |#3|))) (-15 -3503 ((-3 $ "failed") (-307 |#3|))) (-15 -3502 ($ (-1147))) (-15 -3503 ((-3 $ "failed") (-1147))) (-15 -4312 ((-307 |#3|) $)) (IF (|has| |#3| (-1012 (-536))) (PROGN (-15 -3502 ($ (-307 (-536)))) (-15 -3503 ((-3 $ "failed") (-307 (-536)))) (-15 -3502 ($ (-400 (-920 (-536))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-536))))) (-15 -3502 ($ (-920 (-536)))) (-15 -3503 ((-3 $ "failed") (-920 (-536))))) |%noBranch|) (IF (|has| |#3| (-1012 (-371))) (PROGN (-15 -3502 ($ (-307 (-371)))) (-15 -3503 ((-3 $ "failed") (-307 (-371)))) (-15 -3502 ($ (-400 (-920 (-371))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-371))))) (-15 -3502 ($ (-920 (-371)))) (-15 -3503 ((-3 $ "failed") (-920 (-371))))) |%noBranch|) (-15 -3737 ($ $)) (-15 -3365 ($ $)) (-15 -4298 ($ $)) (-15 -4297 ($ $)) (-15 -1853 ($ $)) (-15 -3996 ($ $)) (-15 -3992 ($ $)) (-15 -3997 ($ $)) (-15 -3833 ($ $)) (-15 -3834 ($ $)) (-15 -3835 ($ $)) (-15 -3839 ($ $)) (-15 -3840 ($ $)) (-15 -3841 ($ $)) (-15 -3985 ($)) (-15 -3412 ((-620 (-1147)) $)) (-15 -1749 ((-112))) (-15 -1749 ((-112) (-112))))) (-620 (-1147)) (-620 (-1147)) (-380)) (T -332)) -((-3502 (*1 *1 *2) (-12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 *2)) (-14 *4 (-620 *2)) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 *2)) (-14 *4 (-620 *2)) (-4 *5 (-380)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-307 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-536)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-536)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-920 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-371)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-371)))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-920 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-3737 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3365 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-4298 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-4297 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-1853 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3996 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3992 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3997 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3834 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3835 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3839 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3840 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3841 (*1 *1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3985 (*1 *1) (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) (-4 *4 (-380)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-380)))) (-1749 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) (-1749 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380))))) -(-13 (-291) (-38 |#3|) (-1012 |#3|) (-874 (-1147)) (-10 -8 (-15 -3502 ($ (-307 |#3|))) (-15 -3503 ((-3 $ "failed") (-307 |#3|))) (-15 -3502 ($ (-1147))) (-15 -3503 ((-3 $ "failed") (-1147))) (-15 -4312 ((-307 |#3|) $)) (IF (|has| |#3| (-1012 (-536))) (PROGN (-15 -3502 ($ (-307 (-536)))) (-15 -3503 ((-3 $ "failed") (-307 (-536)))) (-15 -3502 ($ (-400 (-920 (-536))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-536))))) (-15 -3502 ($ (-920 (-536)))) (-15 -3503 ((-3 $ "failed") (-920 (-536))))) |%noBranch|) (IF (|has| |#3| (-1012 (-371))) (PROGN (-15 -3502 ($ (-307 (-371)))) (-15 -3503 ((-3 $ "failed") (-307 (-371)))) (-15 -3502 ($ (-400 (-920 (-371))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-371))))) (-15 -3502 ($ (-920 (-371)))) (-15 -3503 ((-3 $ "failed") (-920 (-371))))) |%noBranch|) (-15 -3737 ($ $)) (-15 -3365 ($ $)) (-15 -4298 ($ $)) (-15 -4297 ($ $)) (-15 -1853 ($ $)) (-15 -3996 ($ $)) (-15 -3992 ($ $)) (-15 -3997 ($ $)) (-15 -3833 ($ $)) (-15 -3834 ($ $)) (-15 -3835 ($ $)) (-15 -3839 ($ $)) (-15 -3840 ($ $)) (-15 -3841 ($ $)) (-15 -3985 ($)) (-15 -3412 ((-620 (-1147)) $)) (-15 -1749 ((-112))) (-15 -1749 ((-112) (-112))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-880 |#1|) (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| (-880 |#1|) (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-880 |#1|) "failed") $) NIL)) (-3502 (((-880 |#1|) $) NIL)) (-1906 (($ (-1229 (-880 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-880 |#1|) (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-880 |#1|) (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| (-880 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361)))) (($ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| (-880 |#1|) (-361))) (((-810 (-893)) $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-880 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-3462 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 (-880 |#1|)) $) NIL) (((-1141 $) $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-2121 (((-893) $) NIL (|has| (-880 |#1|) (-361)))) (-1719 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361)))) (-1718 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-1141 (-880 |#1|)) "failed") $ $) NIL (|has| (-880 |#1|) (-361)))) (-1720 (($ $ (-1141 (-880 |#1|))) NIL (|has| (-880 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-880 |#1|) (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL (|has| (-880 |#1|) (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-880 |#1|) (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 (-880 |#1|))) NIL)) (-1785 (($) NIL (|has| (-880 |#1|) (-361)))) (-1721 (($) NIL (|has| (-880 |#1|) (-361)))) (-3570 (((-1229 (-880 |#1|)) $) NIL) (((-667 (-880 |#1|)) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-880 |#1|) (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-880 |#1|)) NIL)) (-3030 (($ $) NIL (|has| (-880 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-2997 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ (-880 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-880 |#1|)) NIL) (($ (-880 |#1|) $) NIL))) -(((-333 |#1| |#2|) (-322 (-880 |#1|)) (-893) (-893)) (T -333)) -NIL -(-322 (-880 |#1|)) -((-1758 (((-2 (|:| |num| (-1229 |#3|)) (|:| |den| |#3|)) $) 38)) (-1906 (($ (-1229 (-400 |#3|)) (-1229 $)) NIL) (($ (-1229 (-400 |#3|))) NIL) (($ (-1229 |#3|) |#3|) 161)) (-1763 (((-1229 $) (-1229 $)) 145)) (-1750 (((-620 (-620 |#2|))) 119)) (-1775 (((-112) |#2| |#2|) 73)) (-3852 (($ $) 139)) (-3731 (((-749)) 31)) (-1764 (((-1229 $) (-1229 $)) 198)) (-1751 (((-620 (-920 |#2|)) (-1147)) 110)) (-1767 (((-112) $) 158)) (-1766 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1753 (((-3 |#3| "failed")) 50)) (-1777 (((-749)) 170)) (-4154 ((|#2| $ |#2| |#2|) 132)) (-1754 (((-3 |#3| "failed")) 68)) (-4165 (($ $ (-1 (-400 |#3|) (-400 |#3|)) (-749)) NIL) (($ $ (-1 (-400 |#3|) (-400 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-1765 (((-1229 $) (-1229 $)) 151)) (-1752 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1776 (((-112)) 33))) -(((-334 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -1750 ((-620 (-620 |#2|)))) (-15 -1751 ((-620 (-920 |#2|)) (-1147))) (-15 -1752 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1753 ((-3 |#3| "failed"))) (-15 -1754 ((-3 |#3| "failed"))) (-15 -4154 (|#2| |#1| |#2| |#2|)) (-15 -3852 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1766 ((-112) |#1| |#3|)) (-15 -1766 ((-112) |#1| |#2|)) (-15 -1906 (|#1| (-1229 |#3|) |#3|)) (-15 -1758 ((-2 (|:| |num| (-1229 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1763 ((-1229 |#1|) (-1229 |#1|))) (-15 -1764 ((-1229 |#1|) (-1229 |#1|))) (-15 -1765 ((-1229 |#1|) (-1229 |#1|))) (-15 -1766 ((-112) |#1|)) (-15 -1767 ((-112) |#1|)) (-15 -1775 ((-112) |#2| |#2|)) (-15 -1776 ((-112))) (-15 -1777 ((-749))) (-15 -3731 ((-749))) (-15 -4165 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -4165 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-749))) (-15 -1906 (|#1| (-1229 (-400 |#3|)))) (-15 -1906 (|#1| (-1229 (-400 |#3|)) (-1229 |#1|)))) (-335 |#2| |#3| |#4|) (-1188) (-1205 |#2|) (-1205 (-400 |#3|))) (T -334)) -((-3731 (*1 *2) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1777 (*1 *2) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1776 (*1 *2) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) (-1775 (*1 *2 *3 *3) (-12 (-4 *3 (-1188)) (-4 *5 (-1205 *3)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) (-1754 (*1 *2) (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1753 (*1 *2) (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *5 (-1188)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-5 *2 (-620 (-920 *5))) (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) (-1750 (*1 *2) (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-620 (-620 *4))) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6))))) -(-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -1750 ((-620 (-620 |#2|)))) (-15 -1751 ((-620 (-920 |#2|)) (-1147))) (-15 -1752 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1753 ((-3 |#3| "failed"))) (-15 -1754 ((-3 |#3| "failed"))) (-15 -4154 (|#2| |#1| |#2| |#2|)) (-15 -3852 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1766 ((-112) |#1| |#3|)) (-15 -1766 ((-112) |#1| |#2|)) (-15 -1906 (|#1| (-1229 |#3|) |#3|)) (-15 -1758 ((-2 (|:| |num| (-1229 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1763 ((-1229 |#1|) (-1229 |#1|))) (-15 -1764 ((-1229 |#1|) (-1229 |#1|))) (-15 -1765 ((-1229 |#1|) (-1229 |#1|))) (-15 -1766 ((-112) |#1|)) (-15 -1767 ((-112) |#1|)) (-15 -1775 ((-112) |#2| |#2|)) (-15 -1776 ((-112))) (-15 -1777 ((-749))) (-15 -3731 ((-749))) (-15 -4165 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)))) (-15 -4165 (|#1| |#1| (-1 (-400 |#3|) (-400 |#3|)) (-749))) (-15 -1906 (|#1| (-1229 (-400 |#3|)))) (-15 -1906 (|#1| (-1229 (-400 |#3|)) (-1229 |#1|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1758 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) 193)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 91 (|has| (-400 |#2|) (-356)))) (-2173 (($ $) 92 (|has| (-400 |#2|) (-356)))) (-2171 (((-112) $) 94 (|has| (-400 |#2|) (-356)))) (-1896 (((-667 (-400 |#2|)) (-1229 $)) 44) (((-667 (-400 |#2|))) 59)) (-3684 (((-400 |#2|) $) 50)) (-1786 (((-1156 (-893) (-749)) (-536)) 144 (|has| (-400 |#2|) (-343)))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 111 (|has| (-400 |#2|) (-356)))) (-4324 (((-398 $) $) 112 (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) 102 (|has| (-400 |#2|) (-356)))) (-3466 (((-749)) 85 (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) 210)) (-1771 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 166 (|has| (-400 |#2|) (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 164 (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-3 (-400 |#2|) #1#) $) 163)) (-3502 (((-536) $) 167 (|has| (-400 |#2|) (-1012 (-536)))) (((-400 (-536)) $) 165 (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-400 |#2|) $) 162)) (-1906 (($ (-1229 (-400 |#2|)) (-1229 $)) 46) (($ (-1229 (-400 |#2|))) 62) (($ (-1229 |#2|) |#2|) 192)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-400 |#2|) (-343)))) (-2889 (($ $ $) 106 (|has| (-400 |#2|) (-356)))) (-1895 (((-667 (-400 |#2|)) $ (-1229 $)) 51) (((-667 (-400 |#2|)) $) 57)) (-2357 (((-667 (-536)) (-667 $)) 161 (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 160 (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-400 |#2|))) (|:| |vec| (-1229 (-400 |#2|)))) (-667 $) (-1229 $)) 159) (((-667 (-400 |#2|)) (-667 $)) 158)) (-1763 (((-1229 $) (-1229 $)) 198)) (-4197 (($ |#3|) 155) (((-3 $ "failed") (-400 |#3|)) 152 (|has| (-400 |#2|) (-356)))) (-3816 (((-3 $ "failed") $) 32)) (-1750 (((-620 (-620 |#1|))) 179 (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) 214)) (-3439 (((-893)) 52)) (-3322 (($) 88 (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) 207)) (-1769 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2888 (($ $ $) 105 (|has| (-400 |#2|) (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 100 (|has| (-400 |#2|) (-356)))) (-3852 (($ $) 185)) (-3161 (($) 146 (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) 147 (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-749)) 138 (|has| (-400 |#2|) (-343))) (($ $) 137 (|has| (-400 |#2|) (-343)))) (-4081 (((-112) $) 113 (|has| (-400 |#2|) (-356)))) (-4126 (((-893) $) 149 (|has| (-400 |#2|) (-343))) (((-810 (-893)) $) 135 (|has| (-400 |#2|) (-343)))) (-2497 (((-112) $) 30)) (-3731 (((-749)) 217)) (-1764 (((-1229 $) (-1229 $)) 199)) (-3462 (((-400 |#2|) $) 49)) (-1751 (((-620 (-920 |#1|)) (-1147)) 180 (|has| |#1| (-356)))) (-3798 (((-3 $ "failed") $) 139 (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 109 (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) 42 (|has| (-400 |#2|) (-356)))) (-2121 (((-893) $) 87 (|has| (-400 |#2|) (-361)))) (-3408 ((|#3| $) 153)) (-2008 (($ (-620 $)) 98 (|has| (-400 |#2|) (-356))) (($ $ $) 97 (|has| (-400 |#2|) (-356)))) (-3588 (((-1129) $) 9)) (-1759 (((-667 (-400 |#2|))) 194)) (-1761 (((-667 (-400 |#2|))) 196)) (-2729 (($ $) 114 (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1229 |#2|) |#2|) 190)) (-1760 (((-667 (-400 |#2|))) 195)) (-1762 (((-667 (-400 |#2|))) 197)) (-1755 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1757 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) 191)) (-1768 (((-1229 $)) 203)) (-4273 (((-1229 $)) 204)) (-1767 (((-112) $) 202)) (-1766 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3799 (($) 140 (|has| (-400 |#2|) (-343)) CONST)) (-2487 (($ (-893)) 86 (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| "failed")) 182)) (-3589 (((-1091) $) 10)) (-1777 (((-749)) 216)) (-2496 (($) 157)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 99 (|has| (-400 |#2|) (-356)))) (-3490 (($ (-620 $)) 96 (|has| (-400 |#2|) (-356))) (($ $ $) 95 (|has| (-400 |#2|) (-356)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 143 (|has| (-400 |#2|) (-343)))) (-4087 (((-398 $) $) 110 (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 107 (|has| (-400 |#2|) (-356)))) (-3815 (((-3 $ "failed") $ $) 90 (|has| (-400 |#2|) (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 101 (|has| (-400 |#2|) (-356)))) (-1699 (((-749) $) 103 (|has| (-400 |#2|) (-356)))) (-4154 ((|#1| $ |#1| |#1|) 184)) (-1754 (((-3 |#2| "failed")) 183)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 104 (|has| (-400 |#2|) (-356)))) (-4112 (((-400 |#2|) (-1229 $)) 45) (((-400 |#2|)) 58)) (-1882 (((-749) $) 148 (|has| (-400 |#2|) (-343))) (((-3 (-749) "failed") $ $) 136 (|has| (-400 |#2|) (-343)))) (-4165 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) 120 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 119 (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-620 (-1147)) (-620 (-749))) 127 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-1147) (-749)) 128 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-620 (-1147))) 129 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-1147)) 130 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-749)) 132 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3186 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) 134 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3186 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2495 (((-667 (-400 |#2|)) (-1229 $) (-1 (-400 |#2|) (-400 |#2|))) 151 (|has| (-400 |#2|) (-356)))) (-3531 ((|#3|) 156)) (-1785 (($) 145 (|has| (-400 |#2|) (-343)))) (-3570 (((-1229 (-400 |#2|)) $ (-1229 $)) 48) (((-667 (-400 |#2|)) (-1229 $) (-1229 $)) 47) (((-1229 (-400 |#2|)) $) 64) (((-667 (-400 |#2|)) (-1229 $)) 63)) (-4325 (((-1229 (-400 |#2|)) $) 61) (($ (-1229 (-400 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 142 (|has| (-400 |#2|) (-343)))) (-1765 (((-1229 $) (-1229 $)) 200)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 |#2|)) 35) (($ (-400 (-536))) 84 (-3886 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1012 (-400 (-536)))))) (($ $) 89 (|has| (-400 |#2|) (-356)))) (-3030 (($ $) 141 (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) 41 (|has| (-400 |#2|) (-143)))) (-2693 ((|#3| $) 43)) (-3456 (((-749)) 28)) (-1774 (((-112)) 213)) (-1773 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-2123 (((-1229 $)) 65)) (-2172 (((-112) $ $) 93 (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1776 (((-112)) 215)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) 122 (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) 121 (|has| (-400 |#2|) (-356))) (($ $ (-620 (-1147)) (-620 (-749))) 123 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-1147) (-749)) 124 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-620 (-1147))) 125 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-1147)) 126 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) (-3186 (|has| (-400 |#2|) (-874 (-1147))) (|has| (-400 |#2|) (-356))))) (($ $ (-749)) 131 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3186 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) 133 (-3886 (-3186 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-227))) (-3186 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 118 (|has| (-400 |#2|) (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 115 (|has| (-400 |#2|) (-356)))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 |#2|)) 37) (($ (-400 |#2|) $) 36) (($ (-400 (-536)) $) 117 (|has| (-400 |#2|) (-356))) (($ $ (-400 (-536))) 116 (|has| (-400 |#2|) (-356))))) -(((-335 |#1| |#2| |#3|) (-138) (-1188) (-1205 |t#1|) (-1205 (-400 |t#2|))) (T -335)) -((-3731 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-749)))) (-1777 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-749)))) (-1776 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1775 (*1 *2 *3 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1774 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1773 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1773 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) (-1772 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) (-1770 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1769 (*1 *2 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1769 (*1 *2 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) (-4273 (*1 *2) (-12 (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)))) (-1768 (*1 *2) (-12 (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1766 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))))) (-1763 (*1 *2 *2) (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))))) (-1762 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-1761 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-1760 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-1759 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4))))) (-1758 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1229 *4)) (|:| |den| *4))))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1205 *4)) (-4 *4 (-1188)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1205 (-400 *3))))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-2 (|:| |num| (-1229 *4)) (|:| |den| *4))))) (-1756 (*1 *1 *2 *3) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1205 *4)) (-4 *4 (-1188)) (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1205 (-400 *3))))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-2 (|:| |num| (-667 *5)) (|:| |den| *5))))) (-1766 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) (-1766 (*1 *2 *1 *3) (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))))) (-3852 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1188)) (-4 *3 (-1205 *2)) (-4 *4 (-1205 (-400 *3))))) (-4154 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1188)) (-4 *3 (-1205 *2)) (-4 *4 (-1205 (-400 *3))))) (-1754 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1188)) (-4 *4 (-1205 (-400 *2))) (-4 *2 (-1205 *3)))) (-1753 (*1 *2) (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1188)) (-4 *4 (-1205 (-400 *2))) (-4 *2 (-1205 *3)))) (-1752 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-1188)) (-4 *6 (-1205 (-400 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-335 *4 *5 *6)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-4 *4 (-356)) (-5 *2 (-620 (-920 *4))))) (-1750 (*1 *2) (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-620 (-620 *3)))))) -(-13 (-703 (-400 |t#2|) |t#3|) (-10 -8 (-15 -3731 ((-749))) (-15 -1777 ((-749))) (-15 -1776 ((-112))) (-15 -1775 ((-112) |t#1| |t#1|)) (-15 -1774 ((-112))) (-15 -1773 ((-112) |t#1|)) (-15 -1773 ((-112) |t#2|)) (-15 -1772 ((-112))) (-15 -1771 ((-112) |t#1|)) (-15 -1771 ((-112) |t#2|)) (-15 -1770 ((-112))) (-15 -1769 ((-112) |t#1|)) (-15 -1769 ((-112) |t#2|)) (-15 -4273 ((-1229 $))) (-15 -1768 ((-1229 $))) (-15 -1767 ((-112) $)) (-15 -1766 ((-112) $)) (-15 -1765 ((-1229 $) (-1229 $))) (-15 -1764 ((-1229 $) (-1229 $))) (-15 -1763 ((-1229 $) (-1229 $))) (-15 -1762 ((-667 (-400 |t#2|)))) (-15 -1761 ((-667 (-400 |t#2|)))) (-15 -1760 ((-667 (-400 |t#2|)))) (-15 -1759 ((-667 (-400 |t#2|)))) (-15 -1758 ((-2 (|:| |num| (-1229 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1906 ($ (-1229 |t#2|) |t#2|)) (-15 -1757 ((-2 (|:| |num| (-1229 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1756 ($ (-1229 |t#2|) |t#2|)) (-15 -1755 ((-2 (|:| |num| (-667 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1766 ((-112) $ |t#1|)) (-15 -1766 ((-112) $ |t#2|)) (-15 -4165 ($ $ (-1 |t#2| |t#2|))) (-15 -3852 ($ $)) (-15 -4154 (|t#1| $ |t#1| |t#1|)) (-15 -1754 ((-3 |t#2| "failed"))) (-15 -1753 ((-3 |t#2| "failed"))) (-15 -1752 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-356)) (-15 -1751 ((-620 (-920 |t#1|)) (-1147))) |%noBranch|) (IF (|has| |t#1| (-361)) (-15 -1750 ((-620 (-620 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-38 #2=(-400 |#2|)) . T) ((-38 $) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-101) . T) ((-111 #1# #1#) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-143))) ((-145) |has| (-400 |#2|) (-145)) ((-595 (-838)) . T) ((-170) . T) ((-596 |#3|) . T) ((-225 #2#) |has| (-400 |#2|) (-356)) ((-227) -3886 (|has| (-400 |#2|) (-343)) (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356)))) ((-237) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-283) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-300) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-356) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-395) |has| (-400 |#2|) (-343)) ((-361) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-361))) ((-343) |has| (-400 |#2|) (-343)) ((-363 #2# |#3|) . T) ((-403 #2# |#3|) . T) ((-370 #2#) . T) ((-405 #2#) . T) ((-444) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-543) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-626 #1#) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-626 #2#) . T) ((-626 $) . T) ((-619 #2#) . T) ((-619 (-536)) |has| (-400 |#2|) (-619 (-536))) ((-696 #1#) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-696 #2#) . T) ((-696 $) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-703 #2# |#3|) . T) ((-705) . T) ((-874 (-1147)) -12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147)))) ((-895) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-1012 (-400 (-536))) |has| (-400 |#2|) (-1012 (-400 (-536)))) ((-1012 #2#) . T) ((-1012 (-536)) |has| (-400 |#2|) (-1012 (-536))) ((-1029 #1#) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356))) ((-1029 #2#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| (-400 |#2|) (-343)) ((-1188) -3886 (|has| (-400 |#2|) (-343)) (|has| (-400 |#2|) (-356)))) -((-4313 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-336 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4313 (|#8| (-1 |#5| |#1|) |#4|))) (-1188) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-1188) (-1205 |#5|) (-1205 (-400 |#6|)) (-335 |#5| |#6| |#7|)) (T -336)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1188)) (-4 *8 (-1188)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *9 (-1205 *8)) (-4 *2 (-335 *8 *9 *10)) (-5 *1 (-336 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) (-4 *10 (-1205 (-400 *9)))))) -(-10 -7 (-15 -4313 (|#8| (-1 |#5| |#1|) |#4|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-880 |#1|) (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| (-880 |#1|) (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-880 |#1|) "failed") $) NIL)) (-3502 (((-880 |#1|) $) NIL)) (-1906 (($ (-1229 (-880 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-880 |#1|) (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-880 |#1|) (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| (-880 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361)))) (($ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| (-880 |#1|) (-361))) (((-810 (-893)) $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-880 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-3462 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 (-880 |#1|)) $) NIL) (((-1141 $) $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-2121 (((-893) $) NIL (|has| (-880 |#1|) (-361)))) (-1719 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361)))) (-1718 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-1141 (-880 |#1|)) "failed") $ $) NIL (|has| (-880 |#1|) (-361)))) (-1720 (($ $ (-1141 (-880 |#1|))) NIL (|has| (-880 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-880 |#1|) (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-1778 (((-932 (-1091))) NIL)) (-2496 (($) NIL (|has| (-880 |#1|) (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-880 |#1|) (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 (-880 |#1|))) NIL)) (-1785 (($) NIL (|has| (-880 |#1|) (-361)))) (-1721 (($) NIL (|has| (-880 |#1|) (-361)))) (-3570 (((-1229 (-880 |#1|)) $) NIL) (((-667 (-880 |#1|)) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-880 |#1|) (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-880 |#1|)) NIL)) (-3030 (($ $) NIL (|has| (-880 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-2997 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ (-880 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-880 |#1|)) NIL) (($ (-880 |#1|) $) NIL))) -(((-337 |#1| |#2|) (-13 (-322 (-880 |#1|)) (-10 -7 (-15 -1778 ((-932 (-1091)))))) (-893) (-893)) (T -337)) -((-1778 (*1 *2) (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-337 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893))))) -(-13 (-322 (-880 |#1|)) (-10 -7 (-15 -1778 ((-932 (-1091)))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 44)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) 41 (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) 115)) (-3502 ((|#1| $) 86)) (-1906 (($ (-1229 |#1|)) 104)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) 98 (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) 129 (|has| |#1| (-361)))) (-1791 (((-112) $) 48 (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) 45 (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) 131 (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3462 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) 90) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) 139 (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 146)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) 71 (|has| |#1| (-361)))) (-4286 (((-112) $) 118)) (-3589 (((-1091) $) NIL)) (-1778 (((-932 (-1091))) 42)) (-2496 (($) 127 (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 93 (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) 67) (((-893)) 68)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) 130 (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) 125 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 |#1|)) 96)) (-1785 (($) 128 (|has| |#1| (-361)))) (-1721 (($) 136 (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) 59) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) 142) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 75)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) 138)) (-2123 (((-1229 $)) 117) (((-1229 $) (-893)) 73)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) 49 T CONST)) (-2992 (($) 46 T CONST)) (-4283 (($ $) 81 (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) 47)) (-4303 (($ $ $) 144) (($ $ |#1|) 145)) (-4192 (($ $) 126) (($ $ $) NIL)) (-4194 (($ $ $) 61)) (** (($ $ (-893)) 148) (($ $ (-749)) 149) (($ $ (-536)) 147)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 77) (($ $ $) 76) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) -(((-338 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-932 (-1091)))))) (-343) (-1141 |#1|)) (T -338)) -((-1778 (*1 *2) (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) (-14 *4 (-1141 *3))))) -(-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-932 (-1091)))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-1906 (($ (-1229 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3462 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) NIL) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-1778 (((-932 (-1091))) NIL)) (-2496 (($) NIL (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) NIL) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) NIL)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-339 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-932 (-1091)))))) (-343) (-893)) (T -339)) -((-1778 (*1 *2) (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893))))) -(-13 (-322 |#1|) (-10 -7 (-15 -1778 ((-932 (-1091)))))) -((-1788 (((-749) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) 42)) (-1779 (((-932 (-1091)) (-1141 |#1|)) 85)) (-1780 (((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) (-1141 |#1|)) 78)) (-1781 (((-667 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) 86)) (-1782 (((-3 (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) "failed") (-893)) 13)) (-1783 (((-3 (-1141 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) (-893)) 18))) -(((-340 |#1|) (-10 -7 (-15 -1779 ((-932 (-1091)) (-1141 |#1|))) (-15 -1780 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) (-1141 |#1|))) (-15 -1781 ((-667 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1788 ((-749) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1782 ((-3 (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) "failed") (-893))) (-15 -1783 ((-3 (-1141 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) (-893)))) (-343)) (T -340)) -((-1783 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-3 (-1141 *4) (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091))))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-1782 (*1 *2 *3) (|partial| -12 (-5 *3 (-893)) (-5 *2 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) (-5 *1 (-340 *4)) (-4 *4 (-343)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) (-4 *4 (-343)) (-5 *2 (-749)) (-5 *1 (-340 *4)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) (-4 *4 (-343)) (-5 *2 (-667 *4)) (-5 *1 (-340 *4)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) (-5 *1 (-340 *4)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-932 (-1091))) (-5 *1 (-340 *4))))) -(-10 -7 (-15 -1779 ((-932 (-1091)) (-1141 |#1|))) (-15 -1780 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) (-1141 |#1|))) (-15 -1781 ((-667 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1788 ((-749) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1782 ((-3 (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) "failed") (-893))) (-15 -1783 ((-3 (-1141 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) (-893)))) -((-4312 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) -(((-341 |#1| |#2| |#3|) (-10 -7 (-15 -4312 (|#3| |#1|)) (-15 -4312 (|#1| |#3|))) (-322 |#2|) (-343) (-322 |#2|)) (T -341)) -((-4312 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *2 *4 *3)) (-4 *3 (-322 *4)))) (-4312 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *3 *4 *2)) (-4 *3 (-322 *4))))) -(-10 -7 (-15 -4312 (|#3| |#1|)) (-15 -4312 (|#1| |#3|))) -((-1791 (((-112) $) 51)) (-4126 (((-810 (-893)) $) 21) (((-893) $) 52)) (-3798 (((-3 $ "failed") $) 16)) (-3799 (($) 9)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 93)) (-1882 (((-3 (-749) "failed") $ $) 71) (((-749) $) 60)) (-4165 (($ $ (-749)) NIL) (($ $) 8)) (-1785 (($) 44)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 34)) (-3030 (((-3 $ "failed") $) 38) (($ $) 37))) -(((-342 |#1|) (-10 -8 (-15 -4126 ((-893) |#1|)) (-15 -1882 ((-749) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1785 (|#1|)) (-15 -3031 ((-3 (-1229 |#1|) "failed") (-667 |#1|))) (-15 -3030 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-3 (-749) "failed") |#1| |#1|)) (-15 -4126 ((-810 (-893)) |#1|)) (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) (-343)) (T -342)) -NIL -(-10 -8 (-15 -4126 ((-893) |#1|)) (-15 -1882 ((-749) |#1|)) (-15 -1791 ((-112) |#1|)) (-15 -1785 (|#1|)) (-15 -3031 ((-3 (-1229 |#1|) "failed") (-667 |#1|))) (-15 -3030 (|#1| |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-3 (-749) "failed") |#1| |#1|)) (-15 -4126 ((-810 (-893)) |#1|)) (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1786 (((-1156 (-893) (-749)) (-536)) 90)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3466 (((-749)) 100)) (-3891 (($) 17 T CONST)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-3322 (($) 103)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-3161 (($) 88)) (-1791 (((-112) $) 87)) (-1881 (($ $) 76) (($ $ (-749)) 75)) (-4081 (((-112) $) 68)) (-4126 (((-810 (-893)) $) 78) (((-893) $) 85)) (-2497 (((-112) $) 30)) (-3798 (((-3 $ "failed") $) 99)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2121 (((-893) $) 102)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3799 (($) 98 T CONST)) (-2487 (($ (-893)) 101)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 91)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-1882 (((-3 (-749) "failed") $ $) 77) (((-749) $) 86)) (-4165 (($ $ (-749)) 96) (($ $) 94)) (-1785 (($) 89)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 92)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63)) (-3030 (((-3 $ "failed") $) 79) (($ $) 93)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-749)) 97) (($ $) 95)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) -(((-343) (-138)) (T -343)) -((-3030 (*1 *1 *1) (-4 *1 (-343))) (-3031 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-343)) (-5 *2 (-1229 *1)))) (-1787 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))))) (-1786 (*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-536)) (-5 *2 (-1156 (-893) (-749))))) (-1785 (*1 *1) (-4 *1 (-343))) (-3161 (*1 *1) (-4 *1 (-343))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-112)))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-749)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-893)))) (-1784 (*1 *2) (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-395) (-361) (-1122) (-227) (-10 -8 (-15 -3030 ($ $)) (-15 -3031 ((-3 (-1229 $) "failed") (-667 $))) (-15 -1787 ((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536)))))) (-15 -1786 ((-1156 (-893) (-749)) (-536))) (-15 -1785 ($)) (-15 -3161 ($)) (-15 -1791 ((-112) $)) (-15 -1882 ((-749) $)) (-15 -4126 ((-893) $)) (-15 -1784 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-595 (-838)) . T) ((-170) . T) ((-227) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) . T) ((-361) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) . T) ((-1188) . T)) -((-4274 (((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|) 53)) (-4273 (((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))) 51))) -(((-344 |#1| |#2| |#3|) (-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|))) (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $)))) (-1205 |#1|) (-403 |#1| |#2|)) (T -344)) -((-4274 (*1 *2 *3) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-4273 (*1 *2) (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) -(-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) |#1|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-880 |#1|) (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1788 (((-749)) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| (-880 |#1|) (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-880 |#1|) "failed") $) NIL)) (-3502 (((-880 |#1|) $) NIL)) (-1906 (($ (-1229 (-880 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-880 |#1|) (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-880 |#1|) (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| (-880 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361)))) (($ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| (-880 |#1|) (-361))) (((-810 (-893)) $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-880 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-880 |#1|) (-361)))) (-3462 (((-880 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-880 |#1|) (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 (-880 |#1|)) $) NIL) (((-1141 $) $ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-2121 (((-893) $) NIL (|has| (-880 |#1|) (-361)))) (-1719 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361)))) (-1718 (((-1141 (-880 |#1|)) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-1141 (-880 |#1|)) "failed") $ $) NIL (|has| (-880 |#1|) (-361)))) (-1720 (($ $ (-1141 (-880 |#1|))) NIL (|has| (-880 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-880 |#1|) (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| (-880 |#1|) (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-1790 (((-1229 (-620 (-2 (|:| -3756 (-880 |#1|)) (|:| -2487 (-1091)))))) NIL)) (-1789 (((-667 (-880 |#1|))) NIL)) (-2496 (($) NIL (|has| (-880 |#1|) (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-880 |#1|) (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| (-880 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 (-880 |#1|))) NIL)) (-1785 (($) NIL (|has| (-880 |#1|) (-361)))) (-1721 (($) NIL (|has| (-880 |#1|) (-361)))) (-3570 (((-1229 (-880 |#1|)) $) NIL) (((-667 (-880 |#1|)) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-880 |#1|) (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-880 |#1|)) NIL)) (-3030 (($ $) NIL (|has| (-880 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| (-880 |#1|) (-143)) (|has| (-880 |#1|) (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-2997 (($ $) NIL (|has| (-880 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-880 |#1|) (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ (-880 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-880 |#1|)) NIL) (($ (-880 |#1|) $) NIL))) -(((-345 |#1| |#2|) (-13 (-322 (-880 |#1|)) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 (-880 |#1|)) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 (-880 |#1|)))) (-15 -1788 ((-749))))) (-893) (-893)) (T -345)) -((-1790 (*1 *2) (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 (-880 *3)) (|:| -2487 (-1091)))))) (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) (-1789 (*1 *2) (-12 (-5 *2 (-667 (-880 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) (-1788 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893))))) -(-13 (-322 (-880 |#1|)) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 (-880 |#1|)) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 (-880 |#1|)))) (-15 -1788 ((-749))))) -((-2893 (((-112) $ $) 61)) (-3534 (((-112) $) 74)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) 92) (($ $ (-893)) 90 (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) 148 (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1788 (((-749)) 89)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) 162 (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) 112)) (-3502 ((|#1| $) 91)) (-1906 (($ (-1229 |#1|)) 58)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) 158 (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) 149 (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) 98 (|has| |#1| (-361)))) (-2122 (((-112) $) 175 (|has| |#1| (-361)))) (-3462 ((|#1| $) 94) (($ $ (-893)) 93 (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) 189) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) 134 (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) 73 (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) 70 (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) 82 (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) 69 (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 192)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) 137 (|has| |#1| (-361)))) (-4286 (((-112) $) 108)) (-3589 (((-1091) $) NIL)) (-1790 (((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) 83)) (-1789 (((-667 |#1|)) 87)) (-2496 (($) 96 (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 150 (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) 151)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) 62)) (-3531 (((-1141 |#1|)) 152)) (-1785 (($) 133 (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) 106) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) 124) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 57)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) 156)) (-2123 (((-1229 $)) 172) (((-1229 $) (-893)) 101)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) 117 T CONST)) (-2992 (($) 33 T CONST)) (-4283 (($ $) 107 (|has| |#1| (-361))) (($ $ (-749)) 99 (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) 183)) (-4303 (($ $ $) 104) (($ $ |#1|) 105)) (-4192 (($ $) 177) (($ $ $) 181)) (-4194 (($ $ $) 179)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 138)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 186) (($ $ $) 142) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) -(((-346 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 |#1|))) (-15 -1788 ((-749))))) (-343) (-3 (-1141 |#1|) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (T -346)) -((-1790 (*1 *2) (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091)))))) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1141 *3) *2)))) (-1789 (*1 *2) (-12 (-5 *2 (-667 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1141 *3) (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091))))))))) (-1788 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1141 *3) (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091)))))))))) -(-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 |#1|))) (-15 -1788 ((-749))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1788 (((-749)) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-1906 (($ (-1229 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3462 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) NIL) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-1790 (((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091)))))) NIL)) (-1789 (((-667 |#1|)) NIL)) (-2496 (($) NIL (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) NIL) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) NIL)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-347 |#1| |#2|) (-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 |#1|))) (-15 -1788 ((-749))))) (-343) (-893)) (T -347)) -((-1790 (*1 *2) (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091)))))) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893)))) (-1789 (*1 *2) (-12 (-5 *2 (-667 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893)))) (-1788 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893))))) -(-13 (-322 |#1|) (-10 -7 (-15 -1790 ((-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))))) (-15 -1789 ((-667 |#1|))) (-15 -1788 ((-749))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) 120 (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) 140 (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) 93)) (-3502 ((|#1| $) 90)) (-1906 (($ (-1229 |#1|)) 85)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) 82 (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) 42 (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) 121 (|has| |#1| (-361)))) (-2122 (((-112) $) 74 (|has| |#1| (-361)))) (-3462 ((|#1| $) 39) (($ $ (-893)) 43 (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) 65) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) 97 (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) 95 (|has| |#1| (-361)))) (-4286 (((-112) $) 142)) (-3589 (((-1091) $) NIL)) (-2496 (($) 36 (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 115 (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) 139)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) 59)) (-3531 (((-1141 |#1|)) 88)) (-1785 (($) 126 (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) 53) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) 138) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 87)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) 144)) (-2123 (((-1229 $)) 109) (((-1229 $) (-893)) 49)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) 111 T CONST)) (-2992 (($) 32 T CONST)) (-4283 (($ $) 68 (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) 107)) (-4303 (($ $ $) 99) (($ $ |#1|) 100)) (-4192 (($ $) 80) (($ $ $) 105)) (-4194 (($ $ $) 103)) (** (($ $ (-893)) NIL) (($ $ (-749)) 44) (($ $ (-536)) 130)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 78) (($ $ $) 56) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) -(((-348 |#1| |#2|) (-322 |#1|) (-343) (-1141 |#1|)) (T -348)) -NIL -(-322 |#1|) -((-1806 (((-932 (-1141 |#1|)) (-1141 |#1|)) 36)) (-3322 (((-1141 |#1|) (-893) (-893)) 113) (((-1141 |#1|) (-893)) 112)) (-1791 (((-112) (-1141 |#1|)) 84)) (-1793 (((-893) (-893)) 71)) (-1794 (((-893) (-893)) 74)) (-1792 (((-893) (-893)) 69)) (-2122 (((-112) (-1141 |#1|)) 88)) (-1801 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 101)) (-1804 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 104)) (-1803 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 103)) (-1802 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 102)) (-1800 (((-3 (-1141 |#1|) "failed") (-1141 |#1|)) 98)) (-1805 (((-1141 |#1|) (-1141 |#1|)) 62)) (-1796 (((-1141 |#1|) (-893)) 107)) (-1799 (((-1141 |#1|) (-893)) 110)) (-1798 (((-1141 |#1|) (-893)) 109)) (-1797 (((-1141 |#1|) (-893)) 108)) (-1795 (((-1141 |#1|) (-893)) 105))) -(((-349 |#1|) (-10 -7 (-15 -1791 ((-112) (-1141 |#1|))) (-15 -2122 ((-112) (-1141 |#1|))) (-15 -1792 ((-893) (-893))) (-15 -1793 ((-893) (-893))) (-15 -1794 ((-893) (-893))) (-15 -1795 ((-1141 |#1|) (-893))) (-15 -1796 ((-1141 |#1|) (-893))) (-15 -1797 ((-1141 |#1|) (-893))) (-15 -1798 ((-1141 |#1|) (-893))) (-15 -1799 ((-1141 |#1|) (-893))) (-15 -1800 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1801 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1802 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1803 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1804 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -3322 ((-1141 |#1|) (-893))) (-15 -3322 ((-1141 |#1|) (-893) (-893))) (-15 -1805 ((-1141 |#1|) (-1141 |#1|))) (-15 -1806 ((-932 (-1141 |#1|)) (-1141 |#1|)))) (-343)) (T -349)) -((-1806 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-932 (-1141 *4))) (-5 *1 (-349 *4)) (-5 *3 (-1141 *4)))) (-1805 (*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-3322 (*1 *2 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1804 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1803 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1802 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1801 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1800 (*1 *2 *2) (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4)))) (-1791 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4))))) -(-10 -7 (-15 -1791 ((-112) (-1141 |#1|))) (-15 -2122 ((-112) (-1141 |#1|))) (-15 -1792 ((-893) (-893))) (-15 -1793 ((-893) (-893))) (-15 -1794 ((-893) (-893))) (-15 -1795 ((-1141 |#1|) (-893))) (-15 -1796 ((-1141 |#1|) (-893))) (-15 -1797 ((-1141 |#1|) (-893))) (-15 -1798 ((-1141 |#1|) (-893))) (-15 -1799 ((-1141 |#1|) (-893))) (-15 -1800 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1801 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1802 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1803 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -1804 ((-3 (-1141 |#1|) "failed") (-1141 |#1|))) (-15 -3322 ((-1141 |#1|) (-893))) (-15 -3322 ((-1141 |#1|) (-893) (-893))) (-15 -1805 ((-1141 |#1|) (-1141 |#1|))) (-15 -1806 ((-932 (-1141 |#1|)) (-1141 |#1|)))) -((-1807 ((|#1| (-1141 |#2|)) 52))) -(((-350 |#1| |#2|) (-10 -7 (-15 -1807 (|#1| (-1141 |#2|)))) (-13 (-395) (-10 -7 (-15 -4312 (|#1| |#2|)) (-15 -2121 ((-893) |#1|)) (-15 -2123 ((-1229 |#1|) (-893))) (-15 -4283 (|#1| |#1|)))) (-343)) (T -350)) -((-1807 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-4 *2 (-13 (-395) (-10 -7 (-15 -4312 (*2 *4)) (-15 -2121 ((-893) *2)) (-15 -2123 ((-1229 *2) (-893))) (-15 -4283 (*2 *2))))) (-5 *1 (-350 *2 *4))))) -(-10 -7 (-15 -1807 (|#1| (-1141 |#2|)))) -((-3032 (((-3 (-620 |#3|) "failed") (-620 |#3|) |#3|) 34))) -(((-351 |#1| |#2| |#3|) (-10 -7 (-15 -3032 ((-3 (-620 |#3|) "failed") (-620 |#3|) |#3|))) (-343) (-1205 |#1|) (-1205 |#2|)) (T -351)) -((-3032 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-343)) (-5 *1 (-351 *4 *5 *3))))) -(-10 -7 (-15 -3032 ((-3 (-620 |#3|) "failed") (-620 |#3|) |#3|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| |#1| (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-1906 (($ (-1229 |#1|)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| |#1| (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| |#1| (-361)))) (-1791 (((-112) $) NIL (|has| |#1| (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| |#1| (-361))) (((-810 (-893)) $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| |#1| (-361)))) (-2122 (((-112) $) NIL (|has| |#1| (-361)))) (-3462 ((|#1| $) NIL) (($ $ (-893)) NIL (|has| |#1| (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 |#1|) $) NIL) (((-1141 $) $ (-893)) NIL (|has| |#1| (-361)))) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-1719 (((-1141 |#1|) $) NIL (|has| |#1| (-361)))) (-1718 (((-1141 |#1|) $) NIL (|has| |#1| (-361))) (((-3 (-1141 |#1|) "failed") $ $) NIL (|has| |#1| (-361)))) (-1720 (($ $ (-1141 |#1|)) NIL (|has| |#1| (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| |#1| (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL (|has| |#1| (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| |#1| (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| |#1| (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 |#1|)) NIL)) (-1785 (($) NIL (|has| |#1| (-361)))) (-1721 (($) NIL (|has| |#1| (-361)))) (-3570 (((-1229 |#1|) $) NIL) (((-667 |#1|) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) NIL)) (-3030 (($ $) NIL (|has| |#1| (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-2997 (($ $) NIL (|has| |#1| (-361))) (($ $ (-749)) NIL (|has| |#1| (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-352 |#1| |#2|) (-322 |#1|) (-343) (-893)) (T -352)) -NIL -(-322 |#1|) -((-2328 (((-112) (-620 (-920 |#1|))) 34)) (-2330 (((-620 (-920 |#1|)) (-620 (-920 |#1|))) 46)) (-2329 (((-3 (-620 (-920 |#1|)) "failed") (-620 (-920 |#1|))) 41))) -(((-353 |#1| |#2|) (-10 -7 (-15 -2328 ((-112) (-620 (-920 |#1|)))) (-15 -2329 ((-3 (-620 (-920 |#1|)) "failed") (-620 (-920 |#1|)))) (-15 -2330 ((-620 (-920 |#1|)) (-620 (-920 |#1|))))) (-444) (-620 (-1147))) (T -353)) -((-2330 (*1 *2 *2) (-12 (-5 *2 (-620 (-920 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-620 (-1147))))) (-2329 (*1 *2 *2) (|partial| -12 (-5 *2 (-620 (-920 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) (-14 *4 (-620 (-1147))))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-444)) (-5 *2 (-112)) (-5 *1 (-353 *4 *5)) (-14 *5 (-620 (-1147)))))) -(-10 -7 (-15 -2328 ((-112) (-620 (-920 |#1|)))) (-15 -2329 ((-3 (-620 (-920 |#1|)) "failed") (-620 (-920 |#1|)))) (-15 -2330 ((-620 (-920 |#1|)) (-620 (-920 |#1|))))) -((-2893 (((-112) $ $) NIL)) (-3466 (((-749) $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) 15)) (-2763 ((|#1| $ (-536)) NIL)) (-2764 (((-536) $ (-536)) NIL)) (-2366 (($ (-1 |#1| |#1|) $) 32)) (-2367 (($ (-1 (-536) (-536)) $) 24)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 26)) (-3589 (((-1091) $) NIL)) (-2762 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-536)))) $) 28)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) 38) (($ |#1|) NIL)) (-2992 (($) 9 T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL) (($ |#1| (-536)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) -(((-354 |#1|) (-13 (-465) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-536))) (-15 -3466 ((-749) $)) (-15 -2764 ((-536) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2367 ($ (-1 (-536) (-536)) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-536)))) $)))) (-1072)) (T -354)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1072)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1072)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-354 *2)) (-4 *2 (-1072)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) (-2764 (*1 *2 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-354 *2)) (-4 *2 (-1072)))) (-2367 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-536) (-536))) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) (-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-354 *3)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-536))))) (-5 *1 (-354 *3)) (-4 *3 (-1072))))) -(-13 (-465) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-536))) (-15 -3466 ((-749) $)) (-15 -2764 ((-536) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2367 ($ (-1 (-536) (-536)) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-536)))) $)))) -((-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 13)) (-2173 (($ $) 14)) (-4324 (((-398 $) $) 30)) (-4081 (((-112) $) 26)) (-2729 (($ $) 19)) (-3490 (($ $ $) 23) (($ (-620 $)) NIL)) (-4087 (((-398 $) $) 31)) (-3815 (((-3 $ "failed") $ $) 22)) (-1699 (((-749) $) 25)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 35)) (-2172 (((-112) $ $) 16)) (-4303 (($ $ $) 33))) -(((-355 |#1|) (-10 -8 (-15 -4303 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -4081 ((-112) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -1699 ((-749) |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|)) (-15 -2172 ((-112) |#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|))) (-356)) (T -355)) -NIL -(-10 -8 (-15 -4303 (|#1| |#1| |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -4081 ((-112) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -1699 ((-749) |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|)) (-15 -2172 ((-112) |#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-2497 (((-112) $) 30)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) -(((-356) (-138)) (T -356)) -((-4303 (*1 *1 *1 *1) (-4 *1 (-356)))) -(-13 (-300) (-1188) (-237) (-10 -8 (-15 -4303 ($ $ $)) (-6 -4346) (-6 -4340))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) -((-2893 (((-112) $ $) NIL)) (-1808 ((|#1| $ |#1|) 30)) (-1812 (($ $ (-1129)) 22)) (-3977 (((-3 |#1| "failed") $) 29)) (-1809 ((|#1| $) 27)) (-1813 (($ (-381)) 21) (($ (-381) (-1129)) 20)) (-3900 (((-381) $) 24)) (-3588 (((-1129) $) NIL)) (-1810 (((-1129) $) 25)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19)) (-1811 (($ $) 23)) (-3382 (((-112) $ $) 18))) -(((-357 |#1|) (-13 (-358 (-381) |#1|) (-10 -8 (-15 -3977 ((-3 |#1| "failed") $)))) (-1072)) (T -357)) -((-3977 (*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1072))))) -(-13 (-358 (-381) |#1|) (-10 -8 (-15 -3977 ((-3 |#1| "failed") $)))) -((-2893 (((-112) $ $) 7)) (-1808 ((|#2| $ |#2|) 13)) (-1812 (($ $ (-1129)) 18)) (-1809 ((|#2| $) 14)) (-1813 (($ |#1|) 20) (($ |#1| (-1129)) 19)) (-3900 ((|#1| $) 16)) (-3588 (((-1129) $) 9)) (-1810 (((-1129) $) 15)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-1811 (($ $) 17)) (-3382 (((-112) $ $) 6))) -(((-358 |#1| |#2|) (-138) (-1072) (-1072)) (T -358)) -((-1813 (*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-1813 (*1 *1 *2 *3) (-12 (-5 *3 (-1129)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1072)) (-4 *4 (-1072)))) (-1812 (*1 *1 *1 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-1811 (*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1072)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-1129)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) (-1808 (*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) -(-13 (-1072) (-10 -8 (-15 -1813 ($ |t#1|)) (-15 -1813 ($ |t#1| (-1129))) (-15 -1812 ($ $ (-1129))) (-15 -1811 ($ $)) (-15 -3900 (|t#1| $)) (-15 -1810 ((-1129) $)) (-15 -1809 (|t#2| $)) (-15 -1808 (|t#2| $ |t#2|)))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-3569 (((-1229 (-667 |#2|)) (-1229 $)) 61)) (-1902 (((-667 |#2|) (-1229 $)) 120)) (-1838 ((|#2| $) 32)) (-1900 (((-667 |#2|) $ (-1229 $)) 123)) (-2491 (((-3 $ "failed") $) 75)) (-1836 ((|#2| $) 35)) (-1816 (((-1141 |#2|) $) 83)) (-1904 ((|#2| (-1229 $)) 106)) (-1834 (((-1141 |#2|) $) 28)) (-1828 (((-112)) 100)) (-1906 (($ (-1229 |#2|) (-1229 $)) 113)) (-3816 (((-3 $ "failed") $) 79)) (-1821 (((-112)) 95)) (-1819 (((-112)) 90)) (-1823 (((-112)) 53)) (-1903 (((-667 |#2|) (-1229 $)) 118)) (-1839 ((|#2| $) 31)) (-1901 (((-667 |#2|) $ (-1229 $)) 122)) (-2492 (((-3 $ "failed") $) 73)) (-1837 ((|#2| $) 34)) (-1817 (((-1141 |#2|) $) 82)) (-1905 ((|#2| (-1229 $)) 104)) (-1835 (((-1141 |#2|) $) 26)) (-1829 (((-112)) 99)) (-1820 (((-112)) 92)) (-1822 (((-112)) 51)) (-1824 (((-112)) 87)) (-1827 (((-112)) 101)) (-3570 (((-1229 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) (-1229 $) (-1229 $)) 111)) (-1833 (((-112)) 97)) (-1818 (((-620 (-1229 |#2|))) 86)) (-1831 (((-112)) 98)) (-1832 (((-112)) 96)) (-1830 (((-112)) 46)) (-1826 (((-112)) 102))) -(((-359 |#1| |#2|) (-10 -8 (-15 -1816 ((-1141 |#2|) |#1|)) (-15 -1817 ((-1141 |#2|) |#1|)) (-15 -1818 ((-620 (-1229 |#2|)))) (-15 -2491 ((-3 |#1| "failed") |#1|)) (-15 -2492 ((-3 |#1| "failed") |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 -1819 ((-112))) (-15 -1820 ((-112))) (-15 -1821 ((-112))) (-15 -1822 ((-112))) (-15 -1823 ((-112))) (-15 -1824 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1830 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-1141 |#2|) |#1|)) (-15 -1835 ((-1141 |#2|) |#1|)) (-15 -1902 ((-667 |#2|) (-1229 |#1|))) (-15 -1903 ((-667 |#2|) (-1229 |#1|))) (-15 -1904 (|#2| (-1229 |#1|))) (-15 -1905 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1836 (|#2| |#1|)) (-15 -1837 (|#2| |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1839 (|#2| |#1|)) (-15 -1900 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -1901 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -3569 ((-1229 (-667 |#2|)) (-1229 |#1|)))) (-360 |#2|) (-170)) (T -359)) -((-1833 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1832 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1831 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1830 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1829 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1828 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1827 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1826 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1824 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1823 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1822 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1821 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1820 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1819 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) (-1818 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-620 (-1229 *4))) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4))))) -(-10 -8 (-15 -1816 ((-1141 |#2|) |#1|)) (-15 -1817 ((-1141 |#2|) |#1|)) (-15 -1818 ((-620 (-1229 |#2|)))) (-15 -2491 ((-3 |#1| "failed") |#1|)) (-15 -2492 ((-3 |#1| "failed") |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 -1819 ((-112))) (-15 -1820 ((-112))) (-15 -1821 ((-112))) (-15 -1822 ((-112))) (-15 -1823 ((-112))) (-15 -1824 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1830 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-1141 |#2|) |#1|)) (-15 -1835 ((-1141 |#2|) |#1|)) (-15 -1902 ((-667 |#2|) (-1229 |#1|))) (-15 -1903 ((-667 |#2|) (-1229 |#1|))) (-15 -1904 (|#2| (-1229 |#1|))) (-15 -1905 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1836 (|#2| |#1|)) (-15 -1837 (|#2| |#1|)) (-15 -1838 (|#2| |#1|)) (-15 -1839 (|#2| |#1|)) (-15 -1900 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -1901 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -3569 ((-1229 (-667 |#2|)) (-1229 |#1|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1887 (((-3 $ "failed")) 37 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3569 (((-1229 (-667 |#1|)) (-1229 $)) 78)) (-1840 (((-1229 $)) 81)) (-3891 (($) 17 T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed")) 40 (|has| |#1| (-543)))) (-1814 (((-3 $ "failed")) 38 (|has| |#1| (-543)))) (-1902 (((-667 |#1|) (-1229 $)) 65)) (-1838 ((|#1| $) 74)) (-1900 (((-667 |#1|) $ (-1229 $)) 76)) (-2491 (((-3 $ "failed") $) 45 (|has| |#1| (-543)))) (-2494 (($ $ (-893)) 28)) (-1836 ((|#1| $) 72)) (-1816 (((-1141 |#1|) $) 42 (|has| |#1| (-543)))) (-1904 ((|#1| (-1229 $)) 67)) (-1834 (((-1141 |#1|) $) 63)) (-1828 (((-112)) 57)) (-1906 (($ (-1229 |#1|) (-1229 $)) 69)) (-3816 (((-3 $ "failed") $) 47 (|has| |#1| (-543)))) (-3439 (((-893)) 80)) (-1825 (((-112)) 54)) (-2519 (($ $ (-893)) 33)) (-1821 (((-112)) 50)) (-1819 (((-112)) 48)) (-1823 (((-112)) 52)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed")) 41 (|has| |#1| (-543)))) (-1815 (((-3 $ "failed")) 39 (|has| |#1| (-543)))) (-1903 (((-667 |#1|) (-1229 $)) 66)) (-1839 ((|#1| $) 75)) (-1901 (((-667 |#1|) $ (-1229 $)) 77)) (-2492 (((-3 $ "failed") $) 46 (|has| |#1| (-543)))) (-2493 (($ $ (-893)) 29)) (-1837 ((|#1| $) 73)) (-1817 (((-1141 |#1|) $) 43 (|has| |#1| (-543)))) (-1905 ((|#1| (-1229 $)) 68)) (-1835 (((-1141 |#1|) $) 64)) (-1829 (((-112)) 58)) (-3588 (((-1129) $) 9)) (-1820 (((-112)) 49)) (-1822 (((-112)) 51)) (-1824 (((-112)) 53)) (-3589 (((-1091) $) 10)) (-1827 (((-112)) 56)) (-3570 (((-1229 |#1|) $ (-1229 $)) 71) (((-667 |#1|) (-1229 $) (-1229 $)) 70)) (-2009 (((-620 (-920 |#1|)) (-1229 $)) 79)) (-2681 (($ $ $) 25)) (-1833 (((-112)) 62)) (-4312 (((-838) $) 11)) (-1818 (((-620 (-1229 |#1|))) 44 (|has| |#1| (-543)))) (-2682 (($ $ $ $) 26)) (-1831 (((-112)) 60)) (-2680 (($ $ $) 24)) (-1832 (((-112)) 61)) (-1830 (((-112)) 59)) (-1826 (((-112)) 55)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 30)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-360 |#1|) (-138) (-170)) (T -360)) -((-1840 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1229 *1)) (-4 *1 (-360 *3)))) (-3439 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-893)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-620 (-920 *4))))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1229 (-667 *4))))) (-1901 (*1 *2 *1 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1900 (*1 *2 *1 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1837 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1836 (*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1229 *4)))) (-3570 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1229 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3)))) (-1833 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1832 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1831 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1830 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1829 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1828 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1827 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1826 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1825 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1824 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1823 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1822 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1821 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1820 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1819 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3816 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) (-2492 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) (-2491 (*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) (-1818 (*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) (-5 *2 (-620 (-1229 *3))))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) (-5 *2 (-1141 *3)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) (-5 *2 (-1141 *3)))) (-2024 (*1 *2) (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-620 *1)))) (-4 *1 (-360 *3)))) (-2023 (*1 *2) (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-620 *1)))) (-4 *1 (-360 *3)))) (-1815 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170)))) (-1814 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170)))) (-1887 (*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170))))) -(-13 (-723 |t#1|) (-10 -8 (-15 -1840 ((-1229 $))) (-15 -3439 ((-893))) (-15 -2009 ((-620 (-920 |t#1|)) (-1229 $))) (-15 -3569 ((-1229 (-667 |t#1|)) (-1229 $))) (-15 -1901 ((-667 |t#1|) $ (-1229 $))) (-15 -1900 ((-667 |t#1|) $ (-1229 $))) (-15 -1839 (|t#1| $)) (-15 -1838 (|t#1| $)) (-15 -1837 (|t#1| $)) (-15 -1836 (|t#1| $)) (-15 -3570 ((-1229 |t#1|) $ (-1229 $))) (-15 -3570 ((-667 |t#1|) (-1229 $) (-1229 $))) (-15 -1906 ($ (-1229 |t#1|) (-1229 $))) (-15 -1905 (|t#1| (-1229 $))) (-15 -1904 (|t#1| (-1229 $))) (-15 -1903 ((-667 |t#1|) (-1229 $))) (-15 -1902 ((-667 |t#1|) (-1229 $))) (-15 -1835 ((-1141 |t#1|) $)) (-15 -1834 ((-1141 |t#1|) $)) (-15 -1833 ((-112))) (-15 -1832 ((-112))) (-15 -1831 ((-112))) (-15 -1830 ((-112))) (-15 -1829 ((-112))) (-15 -1828 ((-112))) (-15 -1827 ((-112))) (-15 -1826 ((-112))) (-15 -1825 ((-112))) (-15 -1824 ((-112))) (-15 -1823 ((-112))) (-15 -1822 ((-112))) (-15 -1821 ((-112))) (-15 -1820 ((-112))) (-15 -1819 ((-112))) (IF (|has| |t#1| (-543)) (PROGN (-15 -3816 ((-3 $ "failed") $)) (-15 -2492 ((-3 $ "failed") $)) (-15 -2491 ((-3 $ "failed") $)) (-15 -1818 ((-620 (-1229 |t#1|)))) (-15 -1817 ((-1141 |t#1|) $)) (-15 -1816 ((-1141 |t#1|) $)) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -1815 ((-3 $ "failed"))) (-15 -1814 ((-3 $ "failed"))) (-15 -1887 ((-3 $ "failed"))) (-6 -4345)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-723 |#1|) . T) ((-740) . T) ((-1029 |#1|) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 7)) (-3466 (((-749)) 16)) (-3322 (($) 13)) (-2121 (((-893) $) 14)) (-3588 (((-1129) $) 9)) (-2487 (($ (-893)) 15)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) -(((-361) (-138)) (T -361)) -((-3466 (*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-749)))) (-2487 (*1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-361)))) (-2121 (*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-893)))) (-3322 (*1 *1) (-4 *1 (-361)))) -(-13 (-1072) (-10 -8 (-15 -3466 ((-749))) (-15 -2487 ($ (-893))) (-15 -2121 ((-893) $)) (-15 -3322 ($)))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-1896 (((-667 |#2|) (-1229 $)) 40)) (-1906 (($ (-1229 |#2|) (-1229 $)) 34)) (-1895 (((-667 |#2|) $ (-1229 $)) 42)) (-4112 ((|#2| (-1229 $)) 13)) (-3570 (((-1229 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) (-1229 $) (-1229 $)) 25))) -(((-362 |#1| |#2| |#3|) (-10 -8 (-15 -1896 ((-667 |#2|) (-1229 |#1|))) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1895 ((-667 |#2|) |#1| (-1229 |#1|)))) (-363 |#2| |#3|) (-170) (-1205 |#2|)) (T -362)) -NIL -(-10 -8 (-15 -1896 ((-667 |#2|) (-1229 |#1|))) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1895 ((-667 |#2|) |#1| (-1229 |#1|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1896 (((-667 |#1|) (-1229 $)) 44)) (-3684 ((|#1| $) 50)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-1906 (($ (-1229 |#1|) (-1229 $)) 46)) (-1895 (((-667 |#1|) $ (-1229 $)) 51)) (-3816 (((-3 $ "failed") $) 32)) (-3439 (((-893)) 52)) (-2497 (((-112) $) 30)) (-3462 ((|#1| $) 49)) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4112 ((|#1| (-1229 $)) 45)) (-3570 (((-1229 |#1|) $ (-1229 $)) 48) (((-667 |#1|) (-1229 $) (-1229 $)) 47)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35)) (-3030 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2693 ((|#2| $) 43)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-363 |#1| |#2|) (-138) (-170) (-1205 |t#1|)) (T -363)) -((-3439 (*1 *2) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-893)))) (-1895 (*1 *2 *1 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) (-3570 (*1 *2 *1 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *4)))) (-3570 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1229 *1)) (-4 *4 (-170)) (-4 *1 (-363 *4 *5)) (-4 *5 (-1205 *4)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1205 *2)) (-4 *2 (-170)))) (-1896 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) (-2693 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1205 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3439 ((-893))) (-15 -1895 ((-667 |t#1|) $ (-1229 $))) (-15 -3684 (|t#1| $)) (-15 -3462 (|t#1| $)) (-15 -3570 ((-1229 |t#1|) $ (-1229 $))) (-15 -3570 ((-667 |t#1|) (-1229 $) (-1229 $))) (-15 -1906 ($ (-1229 |t#1|) (-1229 $))) (-15 -4112 (|t#1| (-1229 $))) (-15 -1896 ((-667 |t#1|) (-1229 $))) (-15 -2693 (|t#2| $)) (IF (|has| |t#1| (-356)) (-15 -2125 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-1843 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1841 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3237 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2373 (($ $) 25)) (-3773 (((-536) (-1 (-112) |#2|) $) NIL) (((-536) |#2| $) 11) (((-536) |#2| $ (-536)) NIL)) (-3867 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-364 |#1| |#2|) (-10 -8 (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3237 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-365 |#2|) (-1183)) (T -364)) -NIL -(-10 -8 (-15 -1841 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -3237 (|#1| |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3237 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-3773 (((-536) (-1 (-112) |#1|) $) 97) (((-536) |#1| $) 96 (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) 95 (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 83 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) 85 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 82 (|has| |#1| (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-365 |#1|) (-138) (-1183)) (T -365)) -((-3867 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) (-2373 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)))) (-3237 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) (-1843 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1183)) (-5 *2 (-112)))) (-3773 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1183)) (-5 *2 (-536)))) (-3773 (*1 *2 *3 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-536)))) (-3773 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)))) (-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) (-3237 (*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-825)) (-5 *2 (-112)))) (-1842 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-536)) (|has| *1 (-6 -4349)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) (-2372 (*1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-365 *2)) (-4 *2 (-1183)))) (-1841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4349)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) (-1841 (*1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825))))) -(-13 (-629 |t#1|) (-10 -8 (-6 -4348) (-15 -3867 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2373 ($ $)) (-15 -3237 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1843 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3773 ((-536) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1072)) (PROGN (-15 -3773 ((-536) |t#1| $)) (-15 -3773 ((-536) |t#1| $ (-536)))) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-6 (-825)) (-15 -3867 ($ $ $)) (-15 -3237 ($ $)) (-15 -1843 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4349)) (PROGN (-15 -1842 ($ $ $ (-536))) (-15 -2372 ($ $)) (-15 -1841 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-825)) (-15 -1841 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1072) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-1183) . T)) -((-4196 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4197 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4313 ((|#4| (-1 |#3| |#1|) |#2|) 21))) -(((-366 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4197 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4196 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1183) (-365 |#1|) (-1183) (-365 |#3|)) (T -366)) -((-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-4 *2 (-365 *5)) (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *2 (-365 *6)) (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-365 *5))))) -(-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4197 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4196 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-4289 (((-620 |#1|) $) 32)) (-4301 (($ $ (-749)) 33)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4294 (((-1254 |#1| |#2|) (-1254 |#1| |#2|) $) 36)) (-4291 (($ $) 34)) (-4295 (((-1254 |#1| |#2|) (-1254 |#1| |#2|) $) 37)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4122 (($ $ |#1| $) 31) (($ $ (-620 |#1|) (-620 $)) 30)) (-4302 (((-749) $) 38)) (-3879 (($ $ $) 29)) (-4312 (((-838) $) 11) (($ |#1|) 41) (((-1245 |#1| |#2|) $) 40) (((-1254 |#1| |#2|) $) 39)) (-4308 ((|#2| (-1254 |#1| |#2|) $) 42)) (-2986 (($) 18 T CONST)) (-1844 (($ (-650 |#1|)) 35)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#2|) 28 (|has| |#2| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-367 |#1| |#2|) (-138) (-825) (-170)) (T -367)) -((-4308 (*1 *2 *3 *1) (-12 (-5 *3 (-1254 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-825)) (-4 *2 (-170)))) (-4312 (*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-1245 *3 *4)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-1254 *3 *4)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-749)))) (-4295 (*1 *2 *2 *1) (-12 (-5 *2 (-1254 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4294 (*1 *2 *2 *1) (-12 (-5 *2 (-1254 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-1844 (*1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170)))) (-4291 (*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-4301 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4289 (*1 *2 *1) (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-620 *3)))) (-4122 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-825)) (-4 *5 (-170))))) -(-13 (-615 |t#2|) (-10 -8 (-15 -4308 (|t#2| (-1254 |t#1| |t#2|) $)) (-15 -4312 ($ |t#1|)) (-15 -4312 ((-1245 |t#1| |t#2|) $)) (-15 -4312 ((-1254 |t#1| |t#2|) $)) (-15 -4302 ((-749) $)) (-15 -4295 ((-1254 |t#1| |t#2|) (-1254 |t#1| |t#2|) $)) (-15 -4294 ((-1254 |t#1| |t#2|) (-1254 |t#1| |t#2|) $)) (-15 -1844 ($ (-650 |t#1|))) (-15 -4291 ($ $)) (-15 -4301 ($ $ (-749))) (-15 -4289 ((-620 |t#1|) $)) (-15 -4122 ($ $ |t#1| $)) (-15 -4122 ($ $ (-620 |t#1|) (-620 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#2|) . T) ((-615 |#2|) . T) ((-696 |#2|) . T) ((-1029 |#2|) . T) ((-1072) . T)) -((-1847 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-1845 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1846 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) -(((-368 |#1| |#2|) (-10 -7 (-15 -1845 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1846 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1847 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1183) (-13 (-365 |#1|) (-10 -7 (-6 -4349)))) (T -368)) -((-1847 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349)))))) (-1846 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349)))))) (-1845 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349))))))) -(-10 -7 (-15 -1845 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1846 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1847 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-2357 (((-667 |#2|) (-667 $)) NIL) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 22) (((-667 (-536)) (-667 $)) 14))) -(((-369 |#1| |#2|) (-10 -8 (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 |#2|) (-667 |#1|)))) (-370 |#2|) (-1023)) (T -369)) -NIL -(-10 -8 (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 |#2|) (-667 |#1|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2357 (((-667 |#1|) (-667 $)) 34) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 33) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 41 (|has| |#1| (-619 (-536)))) (((-667 (-536)) (-667 $)) 40 (|has| |#1| (-619 (-536))))) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-370 |#1|) (-138) (-1023)) (T -370)) -NIL -(-13 (-619 |t#1|) (-10 -7 (IF (|has| |t#1| (-619 (-536))) (-6 (-619 (-536))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 33)) (-3459 (((-536) $) 55)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4125 (($ $) 110)) (-3841 (($ $) 82)) (-3997 (($ $) 71)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) 44)) (-1700 (((-112) $ $) NIL)) (-3839 (($ $) 80)) (-3996 (($ $) 69)) (-3981 (((-536) $) 64)) (-2685 (($ $ (-536)) 62)) (-3843 (($ $) NIL)) (-3995 (($ $) NIL)) (-3891 (($) NIL T CONST)) (-3457 (($ $) 112)) (-3503 (((-3 (-536) #1="failed") $) 189) (((-3 (-400 (-536)) #1#) $) 185)) (-3502 (((-536) $) 187) (((-400 (-536)) $) 183)) (-2889 (($ $ $) NIL)) (-1856 (((-536) $ $) 102)) (-3816 (((-3 $ "failed") $) 114)) (-1855 (((-400 (-536)) $ (-749)) 190) (((-400 (-536)) $ (-749) (-749)) 182)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2461 (((-893)) 73) (((-893) (-893)) 98 (|has| $ (-6 -4339)))) (-3532 (((-112) $) 106)) (-3985 (($) 40)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL)) (-1848 (((-1235) (-749)) 152)) (-1849 (((-1235)) 157) (((-1235) (-749)) 158)) (-1851 (((-1235)) 159) (((-1235) (-749)) 160)) (-1850 (((-1235)) 155) (((-1235) (-749)) 156)) (-4126 (((-536) $) 58)) (-2497 (((-112) $) 104)) (-3339 (($ $ (-536)) NIL)) (-2687 (($ $) 48)) (-3462 (($ $) NIL)) (-3533 (((-112) $) 35)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL) (($) NIL (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-3673 (($ $ $) NIL) (($) 99 (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-2462 (((-536) $) 17)) (-1854 (($) 87) (($ $) 92)) (-1853 (($) 91) (($ $) 93)) (-4297 (($ $) 83)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 116)) (-1884 (((-893) (-536)) 43 (|has| $ (-6 -4339)))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) 53)) (-3460 (($ $) 109)) (-3600 (($ (-536) (-536)) 107) (($ (-536) (-536) (-893)) 108)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-2488 (((-536) $) 19)) (-1852 (($) 94)) (-4298 (($ $) 79)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-2939 (((-893)) 100) (((-893) (-893)) 101 (|has| $ (-6 -4339)))) (-4165 (($ $ (-749)) NIL) (($ $) 115)) (-1883 (((-893) (-536)) 47 (|has| $ (-6 -4339)))) (-3844 (($ $) NIL)) (-3994 (($ $) NIL)) (-3842 (($ $) NIL)) (-3993 (($ $) NIL)) (-3840 (($ $) 81)) (-3992 (($ $) 70)) (-4325 (((-371) $) 175) (((-219) $) 177) (((-864 (-371)) $) NIL) (((-1129) $) 162) (((-525) $) 173) (($ (-219)) 181)) (-4312 (((-838) $) 164) (($ (-536)) 186) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-536)) 186) (($ (-400 (-536))) NIL) (((-219) $) 178)) (-3456 (((-749)) NIL)) (-3461 (($ $) 111)) (-1885 (((-893)) 54) (((-893) (-893)) 66 (|has| $ (-6 -4339)))) (-3022 (((-893)) 103)) (-3847 (($ $) 86)) (-3835 (($ $) 46) (($ $ $) 52)) (-2172 (((-112) $ $) NIL)) (-3845 (($ $) 84)) (-3833 (($ $) 37)) (-3849 (($ $) NIL)) (-3837 (($ $) NIL)) (-3850 (($ $) NIL)) (-3838 (($ $) NIL)) (-3848 (($ $) NIL)) (-3836 (($ $) NIL)) (-3846 (($ $) 85)) (-3834 (($ $) 49)) (-3737 (($ $) 51)) (-2986 (($) 34 T CONST)) (-2992 (($) 38 T CONST)) (-2829 (((-1129) $) 27) (((-1129) $ (-112)) 29) (((-1235) (-801) $) 30) (((-1235) (-801) $ (-112)) 31)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 39)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 42)) (-4303 (($ $ $) 45) (($ $ (-536)) 41)) (-4192 (($ $) 36) (($ $ $) 50)) (-4194 (($ $ $) 61)) (** (($ $ (-893)) 67) (($ $ (-749)) NIL) (($ $ (-536)) 88) (($ $ (-400 (-536))) 125) (($ $ $) 117)) (* (($ (-893) $) 65) (($ (-749) $) NIL) (($ (-536) $) 68) (($ $ $) 60) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) -(((-371) (-13 (-397) (-227) (-596 (-1129)) (-799) (-595 (-219)) (-1169) (-596 (-525)) (-10 -8 (-15 -4303 ($ $ (-536))) (-15 ** ($ $ $)) (-15 -2687 ($ $)) (-15 -1856 ((-536) $ $)) (-15 -2685 ($ $ (-536))) (-15 -1855 ((-400 (-536)) $ (-749))) (-15 -1855 ((-400 (-536)) $ (-749) (-749))) (-15 -1854 ($)) (-15 -1853 ($)) (-15 -1852 ($)) (-15 -3835 ($ $ $)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -4325 ($ (-219))) (-15 -1851 ((-1235))) (-15 -1851 ((-1235) (-749))) (-15 -1850 ((-1235))) (-15 -1850 ((-1235) (-749))) (-15 -1849 ((-1235))) (-15 -1849 ((-1235) (-749))) (-15 -1848 ((-1235) (-749))) (-6 -4339) (-6 -4331)))) (T -371)) -((** (*1 *1 *1 *1) (-5 *1 (-371))) (-4303 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-371)))) (-2687 (*1 *1 *1) (-5 *1 (-371))) (-1856 (*1 *2 *1 *1) (-12 (-5 *2 (-536)) (-5 *1 (-371)))) (-2685 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-371)))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-371)))) (-1855 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-371)))) (-1854 (*1 *1) (-5 *1 (-371))) (-1853 (*1 *1) (-5 *1 (-371))) (-1852 (*1 *1) (-5 *1 (-371))) (-3835 (*1 *1 *1 *1) (-5 *1 (-371))) (-1854 (*1 *1 *1) (-5 *1 (-371))) (-1853 (*1 *1 *1) (-5 *1 (-371))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-371)))) (-1851 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) (-1850 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371)))) (-1850 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) (-1849 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) (-1848 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371))))) -(-13 (-397) (-227) (-596 (-1129)) (-799) (-595 (-219)) (-1169) (-596 (-525)) (-10 -8 (-15 -4303 ($ $ (-536))) (-15 ** ($ $ $)) (-15 -2687 ($ $)) (-15 -1856 ((-536) $ $)) (-15 -2685 ($ $ (-536))) (-15 -1855 ((-400 (-536)) $ (-749))) (-15 -1855 ((-400 (-536)) $ (-749) (-749))) (-15 -1854 ($)) (-15 -1853 ($)) (-15 -1852 ($)) (-15 -3835 ($ $ $)) (-15 -1854 ($ $)) (-15 -1853 ($ $)) (-15 -4325 ($ (-219))) (-15 -1851 ((-1235))) (-15 -1851 ((-1235) (-749))) (-15 -1850 ((-1235))) (-15 -1850 ((-1235) (-749))) (-15 -1849 ((-1235))) (-15 -1849 ((-1235) (-749))) (-15 -1848 ((-1235) (-749))) (-6 -4339) (-6 -4331))) -((-1857 (((-620 (-286 (-920 (-166 |#1|)))) (-286 (-400 (-920 (-166 (-536))))) |#1|) 51) (((-620 (-286 (-920 (-166 |#1|)))) (-400 (-920 (-166 (-536)))) |#1|) 50) (((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-286 (-400 (-920 (-166 (-536)))))) |#1|) 47) (((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-400 (-920 (-166 (-536))))) |#1|) 41)) (-1858 (((-620 (-620 (-166 |#1|))) (-620 (-400 (-920 (-166 (-536))))) (-620 (-1147)) |#1|) 30) (((-620 (-166 |#1|)) (-400 (-920 (-166 (-536)))) |#1|) 18))) -(((-372 |#1|) (-10 -7 (-15 -1857 ((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-400 (-920 (-166 (-536))))) |#1|)) (-15 -1857 ((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-286 (-400 (-920 (-166 (-536)))))) |#1|)) (-15 -1857 ((-620 (-286 (-920 (-166 |#1|)))) (-400 (-920 (-166 (-536)))) |#1|)) (-15 -1857 ((-620 (-286 (-920 (-166 |#1|)))) (-286 (-400 (-920 (-166 (-536))))) |#1|)) (-15 -1858 ((-620 (-166 |#1|)) (-400 (-920 (-166 (-536)))) |#1|)) (-15 -1858 ((-620 (-620 (-166 |#1|))) (-620 (-400 (-920 (-166 (-536))))) (-620 (-1147)) |#1|))) (-13 (-356) (-823))) (T -372)) -((-1858 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-400 (-920 (-166 (-536)))))) (-5 *4 (-620 (-1147))) (-5 *2 (-620 (-620 (-166 *5)))) (-5 *1 (-372 *5)) (-4 *5 (-13 (-356) (-823))))) (-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 (-166 (-536))))) (-5 *2 (-620 (-166 *4))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-920 (-166 (-536)))))) (-5 *2 (-620 (-286 (-920 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 (-166 (-536))))) (-5 *2 (-620 (-286 (-920 (-166 *4))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-286 (-400 (-920 (-166 (-536))))))) (-5 *2 (-620 (-620 (-286 (-920 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823))))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 (-166 (-536)))))) (-5 *2 (-620 (-620 (-286 (-920 (-166 *4)))))) (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823)))))) -(-10 -7 (-15 -1857 ((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-400 (-920 (-166 (-536))))) |#1|)) (-15 -1857 ((-620 (-620 (-286 (-920 (-166 |#1|))))) (-620 (-286 (-400 (-920 (-166 (-536)))))) |#1|)) (-15 -1857 ((-620 (-286 (-920 (-166 |#1|)))) (-400 (-920 (-166 (-536)))) |#1|)) (-15 -1857 ((-620 (-286 (-920 (-166 |#1|)))) (-286 (-400 (-920 (-166 (-536))))) |#1|)) (-15 -1858 ((-620 (-166 |#1|)) (-400 (-920 (-166 (-536)))) |#1|)) (-15 -1858 ((-620 (-620 (-166 |#1|))) (-620 (-400 (-920 (-166 (-536))))) (-620 (-1147)) |#1|))) -((-3931 (((-620 (-286 (-920 |#1|))) (-286 (-400 (-920 (-536)))) |#1|) 46) (((-620 (-286 (-920 |#1|))) (-400 (-920 (-536))) |#1|) 45) (((-620 (-620 (-286 (-920 |#1|)))) (-620 (-286 (-400 (-920 (-536))))) |#1|) 42) (((-620 (-620 (-286 (-920 |#1|)))) (-620 (-400 (-920 (-536)))) |#1|) 36)) (-1859 (((-620 |#1|) (-400 (-920 (-536))) |#1|) 20) (((-620 (-620 |#1|)) (-620 (-400 (-920 (-536)))) (-620 (-1147)) |#1|) 30))) -(((-373 |#1|) (-10 -7 (-15 -3931 ((-620 (-620 (-286 (-920 |#1|)))) (-620 (-400 (-920 (-536)))) |#1|)) (-15 -3931 ((-620 (-620 (-286 (-920 |#1|)))) (-620 (-286 (-400 (-920 (-536))))) |#1|)) (-15 -3931 ((-620 (-286 (-920 |#1|))) (-400 (-920 (-536))) |#1|)) (-15 -3931 ((-620 (-286 (-920 |#1|))) (-286 (-400 (-920 (-536)))) |#1|)) (-15 -1859 ((-620 (-620 |#1|)) (-620 (-400 (-920 (-536)))) (-620 (-1147)) |#1|)) (-15 -1859 ((-620 |#1|) (-400 (-920 (-536))) |#1|))) (-13 (-823) (-356))) (T -373)) -((-1859 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 (-536)))) (-5 *2 (-620 *4)) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-1859 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-400 (-920 (-536))))) (-5 *4 (-620 (-1147))) (-5 *2 (-620 (-620 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-823) (-356))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-920 (-536))))) (-5 *2 (-620 (-286 (-920 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 (-536)))) (-5 *2 (-620 (-286 (-920 *4)))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-286 (-400 (-920 (-536)))))) (-5 *2 (-620 (-620 (-286 (-920 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 (-536))))) (-5 *2 (-620 (-620 (-286 (-920 *4))))) (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356)))))) -(-10 -7 (-15 -3931 ((-620 (-620 (-286 (-920 |#1|)))) (-620 (-400 (-920 (-536)))) |#1|)) (-15 -3931 ((-620 (-620 (-286 (-920 |#1|)))) (-620 (-286 (-400 (-920 (-536))))) |#1|)) (-15 -3931 ((-620 (-286 (-920 |#1|))) (-400 (-920 (-536))) |#1|)) (-15 -3931 ((-620 (-286 (-920 |#1|))) (-286 (-400 (-920 (-536)))) |#1|)) (-15 -1859 ((-620 (-620 |#1|)) (-620 (-400 (-920 (-536)))) (-620 (-1147)) |#1|)) (-15 -1859 ((-620 |#1|) (-400 (-920 (-536))) |#1|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3221 (($ |#1| |#2|) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 28)) (-2986 (($) 12 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) -(((-374 |#1| |#2|) (-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|))) (-1023) (-825)) (T -374)) -NIL -(-13 (-111 |#1| |#1|) (-500 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-696 |#1|)) |%noBranch|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| "failed") $) 26)) (-3502 ((|#2| $) 28)) (-4314 (($ $) NIL)) (-2505 (((-749) $) 10)) (-3149 (((-620 $) $) 20)) (-4292 (((-112) $) NIL)) (-4293 (($ |#2| |#1|) 18)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3222 ((|#2| $) 15)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 45) (($ |#2|) 27)) (-4172 (((-620 |#1|) $) 17)) (-4035 ((|#1| $ |#2|) 47)) (-2986 (($) 29 T CONST)) (-2991 (((-620 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) -(((-375 |#1| |#2|) (-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1023) (-825)) (T -375)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-825))))) -(-13 (-377 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8) (($ (-667 (-677))) 14) (($ (-620 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 11))) -(((-376) (-138)) (T -376)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-667 (-677))) (-4 *1 (-376)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-376)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-4 *1 (-376))))) -(-13 (-389) (-10 -8 (-15 -4312 ($ (-667 (-677)))) (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-323))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))))) -(((-595 (-838)) . T) ((-389) . T) ((-1183) . T)) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#2| "failed") $) 44)) (-3502 ((|#2| $) 43)) (-4314 (($ $) 30)) (-2505 (((-749) $) 34)) (-3149 (((-620 $) $) 35)) (-4292 (((-112) $) 38)) (-4293 (($ |#2| |#1|) 39)) (-4313 (($ (-1 |#1| |#1|) $) 40)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3222 ((|#2| $) 33)) (-3520 ((|#1| $) 32)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ |#2|) 45)) (-4172 (((-620 |#1|) $) 36)) (-4035 ((|#1| $ |#2|) 41)) (-2986 (($) 18 T CONST)) (-2991 (((-620 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-377 |#1| |#2|) (-138) (-1023) (-1072)) (T -377)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1072)))) (-4035 (*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1023)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)))) (-4293 (*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1072)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-112)))) (-2991 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-620 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-620 *3)))) (-3149 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-620 *1)) (-4 *1 (-377 *3 *4)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-749)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1072)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1023)))) (-1860 (*1 *2 *1) (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1072))))) -(-13 (-111 |t#1| |t#1|) (-1012 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4035 (|t#1| $ |t#2|)) (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (-15 -4293 ($ |t#2| |t#1|)) (-15 -4292 ((-112) $)) (-15 -2991 ((-620 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4172 ((-620 |t#1|) $)) (-15 -3149 ((-620 $) $)) (-15 -2505 ((-749) $)) (-15 -3222 (|t#2| $)) (-15 -3520 (|t#1| $)) (-15 -1860 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4314 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-696 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-696 |#1|) |has| |#1| (-170)) ((-1012 |#2|) . T) ((-1029 |#1|) . T) ((-1072) . T)) -((-3503 (((-3 $ "failed") (-667 (-307 (-371)))) 21) (((-3 $ "failed") (-667 (-307 (-536)))) 19) (((-3 $ "failed") (-667 (-920 (-371)))) 17) (((-3 $ "failed") (-667 (-920 (-536)))) 15) (((-3 $ "failed") (-667 (-400 (-920 (-371))))) 13) (((-3 $ "failed") (-667 (-400 (-920 (-536))))) 11)) (-3502 (($ (-667 (-307 (-371)))) 22) (($ (-667 (-307 (-536)))) 20) (($ (-667 (-920 (-371)))) 18) (($ (-667 (-920 (-536)))) 16) (($ (-667 (-400 (-920 (-371))))) 14) (($ (-667 (-400 (-920 (-536))))) 12)) (-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8) (($ (-620 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 23))) +((-4302 (($ $) 6)) (-4303 (($ $) 7)) (** (($ $ $) 8))) +(((-279) (-138)) (T -279)) +((** (*1 *1 *1 *1) (-4 *1 (-279))) (-4303 (*1 *1 *1) (-4 *1 (-279))) (-4302 (*1 *1 *1) (-4 *1 (-279)))) +(-13 (-10 -8 (-15 -4302 ($ $)) (-15 -4303 ($ $)) (-15 ** ($ $ $)))) +((-1636 (((-622 (-1126 |#1|)) (-1126 |#1|) |#1|) 35)) (-1633 ((|#2| |#2| |#1|) 38)) (-1635 ((|#2| |#2| |#1|) 40)) (-1634 ((|#2| |#2| |#1|) 39))) +(((-280 |#1| |#2|) (-10 -7 (-15 -1633 (|#2| |#2| |#1|)) (-15 -1634 (|#2| |#2| |#1|)) (-15 -1635 (|#2| |#2| |#1|)) (-15 -1636 ((-622 (-1126 |#1|)) (-1126 |#1|) |#1|))) (-358) (-1224 |#1|)) (T -280)) +((-1636 (*1 *2 *3 *4) (-12 (-4 *4 (-358)) (-5 *2 (-622 (-1126 *4))) (-5 *1 (-280 *4 *5)) (-5 *3 (-1126 *4)) (-4 *5 (-1224 *4)))) (-1635 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3)))) (-1634 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3)))) (-1633 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3))))) +(-10 -7 (-15 -1633 (|#2| |#2| |#1|)) (-15 -1634 (|#2| |#2| |#1|)) (-15 -1635 (|#2| |#2| |#1|)) (-15 -1636 ((-622 (-1126 |#1|)) (-1126 |#1|) |#1|))) +((-4159 ((|#2| $ |#1|) 6))) +(((-281 |#1| |#2|) (-138) (-1074) (-1185)) (T -281)) +((-4159 (*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185))))) +(-13 (-10 -8 (-15 -4159 (|t#2| $ |t#1|)))) +((-1637 ((|#3| $ |#2| |#3|) 12)) (-3448 ((|#3| $ |#2|) 10))) +(((-282 |#1| |#2| |#3|) (-10 -8 (-15 -1637 (|#3| |#1| |#2| |#3|)) (-15 -3448 (|#3| |#1| |#2|))) (-283 |#2| |#3|) (-1074) (-1185)) (T -282)) +NIL +(-10 -8 (-15 -1637 (|#3| |#1| |#2| |#3|)) (-15 -3448 (|#3| |#1| |#2|))) +((-4147 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4354)))) (-1637 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) 11)) (-4159 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-283 |#1| |#2|) (-138) (-1074) (-1185)) (T -283)) +((-4159 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) (-3448 (*1 *2 *1 *3) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) (-4147 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) (-1637 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185))))) +(-13 (-281 |t#1| |t#2|) (-10 -8 (-15 -4159 (|t#2| $ |t#1| |t#2|)) (-15 -3448 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -4147 (|t#2| $ |t#1| |t#2|)) (-15 -1637 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-281 |#1| |#2|) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 35)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 40)) (-2178 (($ $) 38)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) 33)) (-4202 (($ |#2| |#3|) 19)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2943 ((|#3| $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 20)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-2494 (((-3 $ "failed") $ $) NIL)) (-1704 (((-751) $) 34)) (-4159 ((|#2| $ |#2|) 42)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 24)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 29 T CONST)) (-2997 (($) 36 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 37))) +(((-284 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-302) (-10 -8 (-15 -2943 (|#3| $)) (-15 -4317 (|#2| $)) (-15 -4202 ($ |#2| |#3|)) (-15 -2494 ((-3 $ "failed") $ $)) (-15 -3821 ((-3 $ "failed") $)) (-15 -2734 ($ $)) (-15 -4159 (|#2| $ |#2|)))) (-170) (-1207 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -284)) +((-3821 (*1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-2943 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1207 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4202 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1207 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2494 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2734 (*1 *1 *1) (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-4159 (*1 *2 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1207 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4))))) +(-13 (-302) (-10 -8 (-15 -2943 (|#3| $)) (-15 -4317 (|#2| $)) (-15 -4202 ($ |#2| |#3|)) (-15 -2494 ((-3 $ "failed") $ $)) (-15 -3821 ((-3 $ "failed") $)) (-15 -2734 ($ $)) (-15 -4159 (|#2| $ |#2|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-285) (-138)) (T -285)) +NIL +(-13 (-1025) (-111 $ $) (-10 -7 (-6 -4346))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-1642 (($ (-1149) (-1149) (-1076) $) 17)) (-1640 (($ (-1149) (-622 (-941)) $) 22)) (-1644 (((-622 (-1058)) $) 10)) (-1643 (((-3 (-1076) "failed") (-1149) (-1149) $) 16)) (-1641 (((-3 (-622 (-941)) "failed") (-1149) $) 21)) (-3928 (($) 7)) (-1639 (($) 23)) (-4317 (((-840) $) 27)) (-1638 (($) 24))) +(((-286) (-13 (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -1644 ((-622 (-1058)) $)) (-15 -1643 ((-3 (-1076) "failed") (-1149) (-1149) $)) (-15 -1642 ($ (-1149) (-1149) (-1076) $)) (-15 -1641 ((-3 (-622 (-941)) "failed") (-1149) $)) (-15 -1640 ($ (-1149) (-622 (-941)) $)) (-15 -1639 ($)) (-15 -1638 ($))))) (T -286)) +((-3928 (*1 *1) (-5 *1 (-286))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-622 (-1058))) (-5 *1 (-286)))) (-1643 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-286)))) (-1642 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-1076)) (-5 *1 (-286)))) (-1641 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-622 (-941))) (-5 *1 (-286)))) (-1640 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-941))) (-5 *1 (-286)))) (-1639 (*1 *1) (-5 *1 (-286))) (-1638 (*1 *1) (-5 *1 (-286)))) +(-13 (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -1644 ((-622 (-1058)) $)) (-15 -1643 ((-3 (-1076) "failed") (-1149) (-1149) $)) (-15 -1642 ($ (-1149) (-1149) (-1076) $)) (-15 -1641 ((-3 (-622 (-941)) "failed") (-1149) $)) (-15 -1640 ($ (-1149) (-622 (-941)) $)) (-15 -1639 ($)) (-15 -1638 ($)))) +((-1648 (((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |geneigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|)))) 85)) (-1647 (((-622 (-669 (-402 (-922 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|)))))) (-669 (-402 (-922 |#1|)))) 80) (((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|))) (-751) (-751)) 38)) (-1649 (((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|)))) 82)) (-1646 (((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|)))) 62)) (-1645 (((-622 (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (-669 (-402 (-922 |#1|)))) 61)) (-2698 (((-922 |#1|) (-669 (-402 (-922 |#1|)))) 50) (((-922 |#1|) (-669 (-402 (-922 |#1|))) (-1149)) 51))) +(((-287 |#1|) (-10 -7 (-15 -2698 ((-922 |#1|) (-669 (-402 (-922 |#1|))) (-1149))) (-15 -2698 ((-922 |#1|) (-669 (-402 (-922 |#1|))))) (-15 -1645 ((-622 (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (-669 (-402 (-922 |#1|))))) (-15 -1646 ((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|))))) (-15 -1647 ((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|))) (-751) (-751))) (-15 -1647 ((-622 (-669 (-402 (-922 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|)))))) (-669 (-402 (-922 |#1|))))) (-15 -1648 ((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |geneigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|))))) (-15 -1649 ((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|)))))) (-446)) (T -287)) +((-1649 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-622 (-2 (|:| |eigval| (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-922 *4)))))) (-1648 (*1 *2 *3) (-12 (-4 *4 (-446)) (-5 *2 (-622 (-2 (|:| |eigval| (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4)))) (|:| |geneigvec| (-622 (-669 (-402 (-922 *4)))))))) (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-922 *4)))))) (-1647 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-402 (-922 *5)) (-1138 (-1149) (-922 *5)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 *4)))) (-4 *5 (-446)) (-5 *2 (-622 (-669 (-402 (-922 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-922 *5)))))) (-1647 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-402 (-922 *6)) (-1138 (-1149) (-922 *6)))) (-5 *5 (-751)) (-4 *6 (-446)) (-5 *2 (-622 (-669 (-402 (-922 *6))))) (-5 *1 (-287 *6)) (-5 *4 (-669 (-402 (-922 *6)))))) (-1646 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-402 (-922 *5)) (-1138 (-1149) (-922 *5)))) (-4 *5 (-446)) (-5 *2 (-622 (-669 (-402 (-922 *5))))) (-5 *1 (-287 *5)) (-5 *4 (-669 (-402 (-922 *5)))))) (-1645 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-922 *4)))) (-4 *4 (-446)) (-5 *2 (-622 (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4))))) (-5 *1 (-287 *4)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-922 *4)))) (-5 *2 (-922 *4)) (-5 *1 (-287 *4)) (-4 *4 (-446)))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-922 *5)))) (-5 *4 (-1149)) (-5 *2 (-922 *5)) (-5 *1 (-287 *5)) (-4 *5 (-446))))) +(-10 -7 (-15 -2698 ((-922 |#1|) (-669 (-402 (-922 |#1|))) (-1149))) (-15 -2698 ((-922 |#1|) (-669 (-402 (-922 |#1|))))) (-15 -1645 ((-622 (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (-669 (-402 (-922 |#1|))))) (-15 -1646 ((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|))))) (-15 -1647 ((-622 (-669 (-402 (-922 |#1|)))) (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|))) (-669 (-402 (-922 |#1|))) (-751) (-751))) (-15 -1647 ((-622 (-669 (-402 (-922 |#1|)))) (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|)))))) (-669 (-402 (-922 |#1|))))) (-15 -1648 ((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |geneigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|))))) (-15 -1649 ((-622 (-2 (|:| |eigval| (-3 (-402 (-922 |#1|)) (-1138 (-1149) (-922 |#1|)))) (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 |#1|))))))) (-669 (-402 (-922 |#1|)))))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3539 (((-112) $) NIL (|has| |#1| (-21)))) (-1655 (($ $) 12)) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1664 (($ $ $) 94 (|has| |#1| (-293)))) (-3896 (($) NIL (-3891 (|has| |#1| (-21)) (|has| |#1| (-707))) CONST)) (-1653 (($ $) 50 (|has| |#1| (-21)))) (-1651 (((-3 $ "failed") $) 61 (|has| |#1| (-707)))) (-3882 ((|#1| $) 11)) (-3821 (((-3 $ "failed") $) 59 (|has| |#1| (-707)))) (-2502 (((-112) $) NIL (|has| |#1| (-707)))) (-4318 (($ (-1 |#1| |#1|) $) 14)) (-3883 ((|#1| $) 10)) (-1654 (($ $) 49 (|has| |#1| (-21)))) (-1652 (((-3 $ "failed") $) 60 (|has| |#1| (-707)))) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2734 (($ $) 63 (-3891 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-1650 (((-622 $) $) 84 (|has| |#1| (-545)))) (-4127 (($ $ $) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 $)) 28 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-1149) |#1|) 17 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 21 (|has| |#1| (-507 (-1149) |#1|)))) (-3577 (($ |#1| |#1|) 9)) (-4271 (((-133)) 89 (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) 86 (|has| |#1| (-876 (-1149))))) (-3342 (($ $ $) NIL (|has| |#1| (-467)))) (-2686 (($ $ $) NIL (|has| |#1| (-467)))) (-4317 (($ (-538)) NIL (|has| |#1| (-1025))) (((-112) $) 36 (|has| |#1| (-1074))) (((-840) $) 35 (|has| |#1| (-1074)))) (-3461 (((-751)) 66 (|has| |#1| (-1025)))) (-2991 (($) 46 (|has| |#1| (-21)) CONST)) (-2997 (($) 56 (|has| |#1| (-707)) CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149))))) (-3387 (($ |#1| |#1|) 8) (((-112) $ $) 31 (|has| |#1| (-1074)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 91 (-3891 (|has| |#1| (-358)) (|has| |#1| (-467))))) (-4197 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-4199 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-538)) NIL (|has| |#1| (-467))) (($ $ (-751)) NIL (|has| |#1| (-707))) (($ $ (-895)) NIL (|has| |#1| (-1085)))) (* (($ $ |#1|) 54 (|has| |#1| (-1085))) (($ |#1| $) 53 (|has| |#1| (-1085))) (($ $ $) 52 (|has| |#1| (-1085))) (($ (-538) $) 69 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-895) $) NIL (|has| |#1| (-25))))) +(((-288 |#1|) (-13 (-1185) (-10 -8 (-15 -3387 ($ |#1| |#1|)) (-15 -3577 ($ |#1| |#1|)) (-15 -1655 ($ $)) (-15 -3883 (|#1| $)) (-15 -3882 (|#1| $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-507 (-1149) |#1|)) (-6 (-507 (-1149) |#1|)) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-6 (-1074)) (-6 (-597 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -4127 ($ $ $)) (-15 -4127 ($ $ (-622 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4199 ($ |#1| $)) (-15 -4199 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1654 ($ $)) (-15 -1653 ($ $)) (-15 -4197 ($ |#1| $)) (-15 -4197 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1085)) (PROGN (-6 (-1085)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-707)) (PROGN (-6 (-707)) (-15 -1652 ((-3 $ "failed") $)) (-15 -1651 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -1652 ((-3 $ "failed") $)) (-15 -1651 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -1650 ((-622 $) $)) |%noBranch|) (IF (|has| |#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1239 |#1|)) (-15 -4308 ($ $ $)) (-15 -2734 ($ $))) |%noBranch|) (IF (|has| |#1| (-293)) (-15 -1664 ($ $ $)) |%noBranch|))) (-1185)) (T -288)) +((-3387 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) (-3577 (*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) (-1655 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) (-3883 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) (-3882 (*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-288 *3)))) (-4127 (*1 *1 *1 *1) (-12 (-4 *2 (-304 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)) (-5 *1 (-288 *2)))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-288 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1074)) (-4 *3 (-1185)) (-5 *1 (-288 *3)))) (-4199 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1185)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1185)))) (-1654 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))) (-1653 (*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))) (-4197 (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))) (-1652 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-707)) (-4 *2 (-1185)))) (-1651 (*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-707)) (-4 *2 (-1185)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-622 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-545)) (-4 *3 (-1185)))) (-1664 (*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-293)) (-4 *2 (-1185)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1085)) (-4 *2 (-1185)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1085)) (-4 *2 (-1185)))) (-4308 (*1 *1 *1 *1) (-3891 (-12 (-5 *1 (-288 *2)) (-4 *2 (-358)) (-4 *2 (-1185))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-467)) (-4 *2 (-1185))))) (-2734 (*1 *1 *1) (-3891 (-12 (-5 *1 (-288 *2)) (-4 *2 (-358)) (-4 *2 (-1185))) (-12 (-5 *1 (-288 *2)) (-4 *2 (-467)) (-4 *2 (-1185)))))) +(-13 (-1185) (-10 -8 (-15 -3387 ($ |#1| |#1|)) (-15 -3577 ($ |#1| |#1|)) (-15 -1655 ($ $)) (-15 -3883 (|#1| $)) (-15 -3882 (|#1| $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-507 (-1149) |#1|)) (-6 (-507 (-1149) |#1|)) |%noBranch|) (IF (|has| |#1| (-1074)) (PROGN (-6 (-1074)) (-6 (-597 (-112))) (IF (|has| |#1| (-304 |#1|)) (PROGN (-15 -4127 ($ $ $)) (-15 -4127 ($ $ (-622 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4199 ($ |#1| $)) (-15 -4199 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1654 ($ $)) (-15 -1653 ($ $)) (-15 -4197 ($ |#1| $)) (-15 -4197 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1085)) (PROGN (-6 (-1085)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-707)) (PROGN (-6 (-707)) (-15 -1652 ((-3 $ "failed") $)) (-15 -1651 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-467)) (PROGN (-6 (-467)) (-15 -1652 ((-3 $ "failed") $)) (-15 -1651 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -1650 ((-622 $) $)) |%noBranch|) (IF (|has| |#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-1239 |#1|)) (-15 -4308 ($ $ $)) (-15 -2734 ($ $))) |%noBranch|) (IF (|has| |#1| (-293)) (-15 -1664 ($ $ $)) |%noBranch|))) +((-4318 (((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)) 14))) +(((-289 |#1| |#2|) (-10 -7 (-15 -4318 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) (-1185) (-1185)) (T -289)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-288 *6)) (-5 *1 (-289 *5 *6))))) +(-10 -7 (-15 -4318 ((-288 |#2|) (-1 |#2| |#1|) (-288 |#1|)))) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) NIL)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) NIL)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-290 |#1| |#2|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1074) (-1074)) (T -290)) +NIL +(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) +((-1656 (((-306) (-1131) (-622 (-1131))) 16) (((-306) (-1131) (-1131)) 15) (((-306) (-622 (-1131))) 14) (((-306) (-1131)) 12))) +(((-291) (-10 -7 (-15 -1656 ((-306) (-1131))) (-15 -1656 ((-306) (-622 (-1131)))) (-15 -1656 ((-306) (-1131) (-1131))) (-15 -1656 ((-306) (-1131) (-622 (-1131)))))) (T -291)) +((-1656 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-1131))) (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291)))) (-1656 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-306)) (-5 *1 (-291)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291))))) +(-10 -7 (-15 -1656 ((-306) (-1131))) (-15 -1656 ((-306) (-622 (-1131)))) (-15 -1656 ((-306) (-1131) (-1131))) (-15 -1656 ((-306) (-1131) (-622 (-1131))))) +((-1660 (((-622 (-595 $)) $) 30)) (-1664 (($ $ (-288 $)) 81) (($ $ (-622 (-288 $))) 123) (($ $ (-622 (-595 $)) (-622 $)) NIL)) (-3508 (((-3 (-595 $) "failed") $) 113)) (-3507 (((-595 $) $) 112)) (-2903 (($ $) 19) (($ (-622 $)) 56)) (-1659 (((-622 (-113)) $) 38)) (-3380 (((-113) (-113)) 91)) (-3006 (((-112) $) 131)) (-4318 (($ (-1 $ $) (-595 $)) 89)) (-1662 (((-3 (-595 $) "failed") $) 93)) (-2317 (($ (-113) $) 61) (($ (-113) (-622 $)) 100)) (-2964 (((-112) $ (-113)) 117) (((-112) $ (-1149)) 116)) (-2933 (((-751) $) 46)) (-1658 (((-112) $ $) 59) (((-112) $ (-1149)) 51)) (-3007 (((-112) $) 129)) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL) (($ $ (-622 (-288 $))) 121) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) 84) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-1149) (-1 $ (-622 $))) 69) (($ $ (-1149) (-1 $ $)) 75) (($ $ (-622 (-113)) (-622 (-1 $ $))) 83) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) 85) (($ $ (-113) (-1 $ (-622 $))) 71) (($ $ (-113) (-1 $ $)) 77)) (-4159 (($ (-113) $) 62) (($ (-113) $ $) 63) (($ (-113) $ $ $) 64) (($ (-113) $ $ $ $) 65) (($ (-113) (-622 $)) 109)) (-1663 (($ $) 53) (($ $ $) 119)) (-2920 (($ $) 17) (($ (-622 $)) 55)) (-2338 (((-112) (-113)) 22))) +(((-292 |#1|) (-10 -8 (-15 -3006 ((-112) |#1|)) (-15 -3007 ((-112) |#1|)) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| |#1|)))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| |#1|)))) (-15 -1658 ((-112) |#1| (-1149))) (-15 -1658 ((-112) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#1| |#1|) (-595 |#1|))) (-15 -2317 (|#1| (-113) (-622 |#1|))) (-15 -2317 (|#1| (-113) |#1|)) (-15 -2964 ((-112) |#1| (-1149))) (-15 -2964 ((-112) |#1| (-113))) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1659 ((-622 (-113)) |#1|)) (-15 -1660 ((-622 (-595 |#1|)) |#1|)) (-15 -1662 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -2933 ((-751) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -2903 (|#1| (-622 |#1|))) (-15 -2903 (|#1| |#1|)) (-15 -2920 (|#1| (-622 |#1|))) (-15 -2920 (|#1| |#1|)) (-15 -1664 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -1664 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -1664 (|#1| |#1| (-288 |#1|))) (-15 -4159 (|#1| (-113) (-622 |#1|))) (-15 -4159 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-595 |#1|) |#1|)) (-15 -3507 ((-595 |#1|) |#1|)) (-15 -3508 ((-3 (-595 |#1|) "failed") |#1|))) (-293)) (T -292)) +((-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-292 *3)) (-4 *3 (-293)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-292 *4)) (-4 *4 (-293))))) +(-10 -8 (-15 -3006 ((-112) |#1|)) (-15 -3007 ((-112) |#1|)) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| |#1|)))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| |#1|)))) (-15 -1658 ((-112) |#1| (-1149))) (-15 -1658 ((-112) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#1| |#1|) (-595 |#1|))) (-15 -2317 (|#1| (-113) (-622 |#1|))) (-15 -2317 (|#1| (-113) |#1|)) (-15 -2964 ((-112) |#1| (-1149))) (-15 -2964 ((-112) |#1| (-113))) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1659 ((-622 (-113)) |#1|)) (-15 -1660 ((-622 (-595 |#1|)) |#1|)) (-15 -1662 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -2933 ((-751) |#1|)) (-15 -1663 (|#1| |#1| |#1|)) (-15 -1663 (|#1| |#1|)) (-15 -2903 (|#1| (-622 |#1|))) (-15 -2903 (|#1| |#1|)) (-15 -2920 (|#1| (-622 |#1|))) (-15 -2920 (|#1| |#1|)) (-15 -1664 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -1664 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -1664 (|#1| |#1| (-288 |#1|))) (-15 -4159 (|#1| (-113) (-622 |#1|))) (-15 -4159 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-595 |#1|) |#1|)) (-15 -3507 ((-595 |#1|) |#1|)) (-15 -3508 ((-3 (-595 |#1|) "failed") |#1|))) +((-2898 (((-112) $ $) 7)) (-1660 (((-622 (-595 $)) $) 44)) (-1664 (($ $ (-288 $)) 56) (($ $ (-622 (-288 $))) 55) (($ $ (-622 (-595 $)) (-622 $)) 54)) (-3508 (((-3 (-595 $) "failed") $) 69)) (-3507 (((-595 $) $) 68)) (-2903 (($ $) 51) (($ (-622 $)) 50)) (-1659 (((-622 (-113)) $) 43)) (-3380 (((-113) (-113)) 42)) (-3006 (((-112) $) 22 (|has| $ (-1014 (-538))))) (-1657 (((-1143 $) (-595 $)) 25 (|has| $ (-1025)))) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-4318 (($ (-1 $ $) (-595 $)) 36)) (-1662 (((-3 (-595 $) "failed") $) 46)) (-3593 (((-1131) $) 9)) (-1661 (((-622 (-595 $)) $) 45)) (-2317 (($ (-113) $) 38) (($ (-113) (-622 $)) 37)) (-2964 (((-112) $ (-113)) 40) (((-112) $ (-1149)) 39)) (-2933 (((-751) $) 47)) (-3594 (((-1093) $) 10)) (-1658 (((-112) $ $) 35) (((-112) $ (-1149)) 34)) (-3007 (((-112) $) 23 (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) 67) (($ $ (-622 (-595 $)) (-622 $)) 66) (($ $ (-622 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-622 $) (-622 $)) 62) (($ $ (-622 (-1149)) (-622 (-1 $ $))) 33) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) 32) (($ $ (-1149) (-1 $ (-622 $))) 31) (($ $ (-1149) (-1 $ $)) 30) (($ $ (-622 (-113)) (-622 (-1 $ $))) 29) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) 28) (($ $ (-113) (-1 $ (-622 $))) 27) (($ $ (-113) (-1 $ $)) 26)) (-4159 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-622 $)) 57)) (-1663 (($ $) 49) (($ $ $) 48)) (-3536 (($ $) 24 (|has| $ (-1025)))) (-4317 (((-840) $) 11) (($ (-595 $)) 70)) (-2920 (($ $) 53) (($ (-622 $)) 52)) (-2338 (((-112) (-113)) 41)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18))) +(((-293) (-138)) (T -293)) +((-4159 (*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-4159 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-4159 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-4159 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-4159 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 *1)) (-4 *1 (-293)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-293)))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-288 *1))) (-4 *1 (-293)))) (-1664 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-595 *1))) (-5 *3 (-622 *1)) (-4 *1 (-293)))) (-2920 (*1 *1 *1) (-4 *1 (-293))) (-2920 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-293)))) (-2903 (*1 *1 *1) (-4 *1 (-293))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-293)))) (-1663 (*1 *1 *1) (-4 *1 (-293))) (-1663 (*1 *1 *1 *1) (-4 *1 (-293))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-751)))) (-1662 (*1 *2 *1) (|partial| -12 (-5 *2 (-595 *1)) (-4 *1 (-293)))) (-1661 (*1 *2 *1) (-12 (-5 *2 (-622 (-595 *1))) (-4 *1 (-293)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-622 (-595 *1))) (-4 *1 (-293)))) (-1659 (*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-622 (-113))))) (-3380 (*1 *2 *2) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-2338 (*1 *2 *3) (-12 (-4 *1 (-293)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2964 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-113)) (-5 *2 (-112)))) (-2964 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1149)) (-5 *2 (-112)))) (-2317 (*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) (-2317 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 *1)) (-4 *1 (-293)))) (-4318 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-595 *1)) (-4 *1 (-293)))) (-1658 (*1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-112)))) (-1658 (*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1149)) (-5 *2 (-112)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-1 *1 *1))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 (-622 *1))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 (-1 *1 *1))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-622 *1))) (-4 *1 (-293)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-595 *1)) (-4 *1 (-1025)) (-4 *1 (-293)) (-5 *2 (-1143 *1)))) (-3536 (*1 *1 *1) (-12 (-4 *1 (-1025)) (-4 *1 (-293)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1014 (-538))) (-4 *1 (-293)) (-5 *2 (-112)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-1014 (-538))) (-4 *1 (-293)) (-5 *2 (-112))))) +(-13 (-827) (-1014 (-595 $)) (-507 (-595 $) $) (-304 $) (-10 -8 (-15 -4159 ($ (-113) $)) (-15 -4159 ($ (-113) $ $)) (-15 -4159 ($ (-113) $ $ $)) (-15 -4159 ($ (-113) $ $ $ $)) (-15 -4159 ($ (-113) (-622 $))) (-15 -1664 ($ $ (-288 $))) (-15 -1664 ($ $ (-622 (-288 $)))) (-15 -1664 ($ $ (-622 (-595 $)) (-622 $))) (-15 -2920 ($ $)) (-15 -2920 ($ (-622 $))) (-15 -2903 ($ $)) (-15 -2903 ($ (-622 $))) (-15 -1663 ($ $)) (-15 -1663 ($ $ $)) (-15 -2933 ((-751) $)) (-15 -1662 ((-3 (-595 $) "failed") $)) (-15 -1661 ((-622 (-595 $)) $)) (-15 -1660 ((-622 (-595 $)) $)) (-15 -1659 ((-622 (-113)) $)) (-15 -3380 ((-113) (-113))) (-15 -2338 ((-112) (-113))) (-15 -2964 ((-112) $ (-113))) (-15 -2964 ((-112) $ (-1149))) (-15 -2317 ($ (-113) $)) (-15 -2317 ($ (-113) (-622 $))) (-15 -4318 ($ (-1 $ $) (-595 $))) (-15 -1658 ((-112) $ $)) (-15 -1658 ((-112) $ (-1149))) (-15 -4127 ($ $ (-622 (-1149)) (-622 (-1 $ $)))) (-15 -4127 ($ $ (-622 (-1149)) (-622 (-1 $ (-622 $))))) (-15 -4127 ($ $ (-1149) (-1 $ (-622 $)))) (-15 -4127 ($ $ (-1149) (-1 $ $))) (-15 -4127 ($ $ (-622 (-113)) (-622 (-1 $ $)))) (-15 -4127 ($ $ (-622 (-113)) (-622 (-1 $ (-622 $))))) (-15 -4127 ($ $ (-113) (-1 $ (-622 $)))) (-15 -4127 ($ $ (-113) (-1 $ $))) (IF (|has| $ (-1025)) (PROGN (-15 -1657 ((-1143 $) (-595 $))) (-15 -3536 ($ $))) |%noBranch|) (IF (|has| $ (-1014 (-538))) (PROGN (-15 -3007 ((-112) $)) (-15 -3006 ((-112) $))) |%noBranch|))) +(((-101) . T) ((-597 (-840)) . T) ((-304 $) . T) ((-507 (-595 $) $) . T) ((-507 $ $) . T) ((-827) . T) ((-1014 (-595 $)) . T) ((-1074) . T)) +((-4318 ((|#2| (-1 |#2| |#1|) (-1131) (-595 |#1|)) 18))) +(((-294 |#1| |#2|) (-10 -7 (-15 -4318 (|#2| (-1 |#2| |#1|) (-1131) (-595 |#1|)))) (-293) (-1185)) (T -294)) +((-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1131)) (-5 *5 (-595 *6)) (-4 *6 (-293)) (-4 *2 (-1185)) (-5 *1 (-294 *6 *2))))) +(-10 -7 (-15 -4318 (|#2| (-1 |#2| |#1|) (-1131) (-595 |#1|)))) +((-4318 ((|#2| (-1 |#2| |#1|) (-595 |#1|)) 17))) +(((-295 |#1| |#2|) (-10 -7 (-15 -4318 (|#2| (-1 |#2| |#1|) (-595 |#1|)))) (-293) (-293)) (T -295)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-595 *5)) (-4 *5 (-293)) (-4 *2 (-293)) (-5 *1 (-295 *5 *2))))) +(-10 -7 (-15 -4318 (|#2| (-1 |#2| |#1|) (-595 |#1|)))) +((-1667 (((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221)))) 93)) (-1668 (((-1126 (-221)) (-1231 (-309 (-221))) (-622 (-1149)) (-1062 (-819 (-221)))) 107) (((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221)))) 61)) (-1689 (((-622 (-1131)) (-1126 (-221))) NIL)) (-1666 (((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221)))) 58)) (-1669 (((-622 (-221)) (-922 (-402 (-538))) (-1149) (-1062 (-819 (-221)))) 49)) (-1688 (((-622 (-1131)) (-622 (-221))) NIL)) (-1690 (((-221) (-1062 (-819 (-221)))) 25)) (-1691 (((-221) (-1062 (-819 (-221)))) 26)) (-1665 (((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 54)) (-1686 (((-1131) (-221)) NIL))) +(((-296) (-10 -7 (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -1665 ((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1666 ((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221))))) (-15 -1667 ((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-1231 (-309 (-221))) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1669 ((-622 (-221)) (-922 (-402 (-538))) (-1149) (-1062 (-819 (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))))) (T -296)) +((-1689 (*1 *2 *3) (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-296)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-296)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-296)))) (-1669 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *4 (-1149)) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-622 (-221))) (-5 *1 (-296)))) (-1668 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *4 (-622 (-1149))) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296)))) (-1668 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-221))) (-5 *4 (-622 (-1149))) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296)))) (-1667 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-221))) (-5 *4 (-622 (-1149))) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296)))) (-1666 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-221))) (-5 *4 (-1149)) (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-622 (-221))) (-5 *1 (-296)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-112)) (-5 *1 (-296)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-296)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-296))))) +(-10 -7 (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -1665 ((-112) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -1666 ((-622 (-221)) (-309 (-221)) (-1149) (-1062 (-819 (-221))))) (-15 -1667 ((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-309 (-221)) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1668 ((-1126 (-221)) (-1231 (-309 (-221))) (-622 (-1149)) (-1062 (-819 (-221))))) (-15 -1669 ((-622 (-221)) (-922 (-402 (-538))) (-1149) (-1062 (-819 (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221))))) +((-2099 (((-112) (-221)) 10))) +(((-297 |#1| |#2|) (-10 -7 (-15 -2099 ((-112) (-221)))) (-221) (-221)) (T -297)) +((-2099 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-297 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -2099 ((-112) (-221)))) +((-1685 (((-1231 (-309 (-373))) (-1231 (-309 (-221)))) 105)) (-1673 (((-1062 (-819 (-221))) (-1062 (-819 (-373)))) 40)) (-1689 (((-622 (-1131)) (-1126 (-221))) 87)) (-1696 (((-309 (-373)) (-922 (-221))) 50)) (-1697 (((-221) (-922 (-221))) 46)) (-1692 (((-1131) (-373)) 169)) (-1672 (((-819 (-221)) (-819 (-373))) 34)) (-1678 (((-2 (|:| |additions| (-538)) (|:| |multiplications| (-538)) (|:| |exponentiations| (-538)) (|:| |functionCalls| (-538))) (-1231 (-309 (-221)))) 143)) (-1693 (((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) 181) (((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) 179)) (-1700 (((-669 (-221)) (-622 (-221)) (-751)) 14)) (-1683 (((-1231 (-679)) (-622 (-221))) 94)) (-1688 (((-622 (-1131)) (-622 (-221))) 75)) (-2989 (((-3 (-309 (-221)) "failed") (-309 (-221))) 120)) (-2099 (((-112) (-221) (-1062 (-819 (-221)))) 109)) (-1695 (((-1011) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) 198)) (-1690 (((-221) (-1062 (-819 (-221)))) 107)) (-1691 (((-221) (-1062 (-819 (-221)))) 108)) (-1699 (((-221) (-402 (-538))) 27)) (-1687 (((-1131) (-373)) 73)) (-1670 (((-221) (-373)) 17)) (-1677 (((-373) (-1231 (-309 (-221)))) 154)) (-1671 (((-309 (-221)) (-309 (-373))) 23)) (-1675 (((-402 (-538)) (-309 (-221))) 53)) (-1679 (((-309 (-402 (-538))) (-309 (-221))) 69)) (-1684 (((-309 (-373)) (-309 (-221))) 98)) (-1676 (((-221) (-309 (-221))) 54)) (-1681 (((-622 (-221)) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) 64)) (-1680 (((-1062 (-819 (-221))) (-1062 (-819 (-221)))) 61)) (-1686 (((-1131) (-221)) 72)) (-1682 (((-679) (-221)) 90)) (-1674 (((-402 (-538)) (-221)) 55)) (-1698 (((-309 (-373)) (-221)) 49)) (-4330 (((-622 (-1062 (-819 (-221)))) (-622 (-1062 (-819 (-373))))) 43)) (-4161 (((-1011) (-622 (-1011))) 165) (((-1011) (-1011) (-1011)) 162)) (-1694 (((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195))) +(((-298) (-10 -7 (-15 -1670 ((-221) (-373))) (-15 -1671 ((-309 (-221)) (-309 (-373)))) (-15 -1672 ((-819 (-221)) (-819 (-373)))) (-15 -1673 ((-1062 (-819 (-221))) (-1062 (-819 (-373))))) (-15 -4330 ((-622 (-1062 (-819 (-221)))) (-622 (-1062 (-819 (-373)))))) (-15 -1674 ((-402 (-538)) (-221))) (-15 -1675 ((-402 (-538)) (-309 (-221)))) (-15 -1676 ((-221) (-309 (-221)))) (-15 -2989 ((-3 (-309 (-221)) "failed") (-309 (-221)))) (-15 -1677 ((-373) (-1231 (-309 (-221))))) (-15 -1678 ((-2 (|:| |additions| (-538)) (|:| |multiplications| (-538)) (|:| |exponentiations| (-538)) (|:| |functionCalls| (-538))) (-1231 (-309 (-221))))) (-15 -1679 ((-309 (-402 (-538))) (-309 (-221)))) (-15 -1680 ((-1062 (-819 (-221))) (-1062 (-819 (-221))))) (-15 -1681 ((-622 (-221)) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) (-15 -1682 ((-679) (-221))) (-15 -1683 ((-1231 (-679)) (-622 (-221)))) (-15 -1684 ((-309 (-373)) (-309 (-221)))) (-15 -1685 ((-1231 (-309 (-373))) (-1231 (-309 (-221))))) (-15 -2099 ((-112) (-221) (-1062 (-819 (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1687 ((-1131) (-373))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))) (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -4161 ((-1011) (-1011) (-1011))) (-15 -4161 ((-1011) (-622 (-1011)))) (-15 -1692 ((-1131) (-373))) (-15 -1693 ((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))))) (-15 -1693 ((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))))) (-15 -1694 ((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1695 ((-1011) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -1696 ((-309 (-373)) (-922 (-221)))) (-15 -1697 ((-221) (-922 (-221)))) (-15 -1698 ((-309 (-373)) (-221))) (-15 -1699 ((-221) (-402 (-538)))) (-15 -1700 ((-669 (-221)) (-622 (-221)) (-751))))) (T -298)) +((-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-221))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) (-5 *1 (-298)))) (-1699 (*1 *2 *3) (-12 (-5 *3 (-402 (-538))) (-5 *2 (-221)) (-5 *1 (-298)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-309 (-373))) (-5 *1 (-298)))) (-1697 (*1 *2 *3) (-12 (-5 *3 (-922 (-221))) (-5 *2 (-221)) (-5 *1 (-298)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-922 (-221))) (-5 *2 (-309 (-373))) (-5 *1 (-298)))) (-1695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *2 (-1011)) (-5 *1 (-298)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1011)) (-5 *1 (-298)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) (-5 *2 (-1011)) (-5 *1 (-298)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *2 (-1011)) (-5 *1 (-298)))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1131)) (-5 *1 (-298)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-622 (-1011))) (-5 *2 (-1011)) (-5 *1 (-298)))) (-4161 (*1 *2 *2 *2) (-12 (-5 *2 (-1011)) (-5 *1 (-298)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-298)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-298)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-298)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-298)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1131)) (-5 *1 (-298)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-298)))) (-2099 (*1 *2 *3 *4) (-12 (-5 *4 (-1062 (-819 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-298)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 (-1231 (-309 (-373)))) (-5 *1 (-298)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-309 (-373))) (-5 *1 (-298)))) (-1683 (*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1231 (-679))) (-5 *1 (-298)))) (-1682 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-679)) (-5 *1 (-298)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *2 (-622 (-221))) (-5 *1 (-298)))) (-1680 (*1 *2 *2) (-12 (-5 *2 (-1062 (-819 (-221)))) (-5 *1 (-298)))) (-1679 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-309 (-402 (-538)))) (-5 *1 (-298)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 (-2 (|:| |additions| (-538)) (|:| |multiplications| (-538)) (|:| |exponentiations| (-538)) (|:| |functionCalls| (-538)))) (-5 *1 (-298)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 (-373)) (-5 *1 (-298)))) (-2989 (*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-221))) (-5 *1 (-298)))) (-1676 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-221)) (-5 *1 (-298)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-402 (-538))) (-5 *1 (-298)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-538))) (-5 *1 (-298)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-622 (-1062 (-819 (-373))))) (-5 *2 (-622 (-1062 (-819 (-221))))) (-5 *1 (-298)))) (-1673 (*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-373)))) (-5 *2 (-1062 (-819 (-221)))) (-5 *1 (-298)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-819 (-373))) (-5 *2 (-819 (-221))) (-5 *1 (-298)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-309 (-373))) (-5 *2 (-309 (-221))) (-5 *1 (-298)))) (-1670 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-221)) (-5 *1 (-298))))) +(-10 -7 (-15 -1670 ((-221) (-373))) (-15 -1671 ((-309 (-221)) (-309 (-373)))) (-15 -1672 ((-819 (-221)) (-819 (-373)))) (-15 -1673 ((-1062 (-819 (-221))) (-1062 (-819 (-373))))) (-15 -4330 ((-622 (-1062 (-819 (-221)))) (-622 (-1062 (-819 (-373)))))) (-15 -1674 ((-402 (-538)) (-221))) (-15 -1675 ((-402 (-538)) (-309 (-221)))) (-15 -1676 ((-221) (-309 (-221)))) (-15 -2989 ((-3 (-309 (-221)) "failed") (-309 (-221)))) (-15 -1677 ((-373) (-1231 (-309 (-221))))) (-15 -1678 ((-2 (|:| |additions| (-538)) (|:| |multiplications| (-538)) (|:| |exponentiations| (-538)) (|:| |functionCalls| (-538))) (-1231 (-309 (-221))))) (-15 -1679 ((-309 (-402 (-538))) (-309 (-221)))) (-15 -1680 ((-1062 (-819 (-221))) (-1062 (-819 (-221))))) (-15 -1681 ((-622 (-221)) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) (-15 -1682 ((-679) (-221))) (-15 -1683 ((-1231 (-679)) (-622 (-221)))) (-15 -1684 ((-309 (-373)) (-309 (-221)))) (-15 -1685 ((-1231 (-309 (-373))) (-1231 (-309 (-221))))) (-15 -2099 ((-112) (-221) (-1062 (-819 (-221))))) (-15 -1686 ((-1131) (-221))) (-15 -1687 ((-1131) (-373))) (-15 -1688 ((-622 (-1131)) (-622 (-221)))) (-15 -1689 ((-622 (-1131)) (-1126 (-221)))) (-15 -1690 ((-221) (-1062 (-819 (-221))))) (-15 -1691 ((-221) (-1062 (-819 (-221))))) (-15 -4161 ((-1011) (-1011) (-1011))) (-15 -4161 ((-1011) (-622 (-1011)))) (-15 -1692 ((-1131) (-373))) (-15 -1693 ((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))))) (-15 -1693 ((-1011) (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))))) (-15 -1694 ((-1011) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1695 ((-1011) (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))) (-15 -1696 ((-309 (-373)) (-922 (-221)))) (-15 -1697 ((-221) (-922 (-221)))) (-15 -1698 ((-309 (-373)) (-221))) (-15 -1699 ((-221) (-402 (-538)))) (-15 -1700 ((-669 (-221)) (-622 (-221)) (-751)))) +((-1701 (((-622 |#1|) (-622 |#1|)) 10))) +(((-299 |#1|) (-10 -7 (-15 -1701 ((-622 |#1|) (-622 |#1|)))) (-825)) (T -299)) +((-1701 (*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-825)) (-5 *1 (-299 *3))))) +(-10 -7 (-15 -1701 ((-622 |#1|) (-622 |#1|)))) +((-4318 (((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|)) 17))) +(((-300 |#1| |#2|) (-10 -7 (-15 -4318 ((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|)))) (-1025) (-1025)) (T -300)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-669 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-669 *6)) (-5 *1 (-300 *5 *6))))) +(-10 -7 (-15 -4318 ((-669 |#2|) (-1 |#2| |#1|) (-669 |#1|)))) +((-1705 (((-112) $ $) 11)) (-2894 (($ $ $) 15)) (-2893 (($ $ $) 14)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 44)) (-1702 (((-3 (-622 $) "failed") (-622 $) $) 53)) (-3495 (($ $ $) 21) (($ (-622 $)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3820 (((-3 $ "failed") $ $) 17)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 46))) +(((-301 |#1|) (-10 -8 (-15 -1702 ((-3 (-622 |#1|) "failed") (-622 |#1|) |#1|)) (-15 -1703 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1703 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2894 (|#1| |#1| |#1|)) (-15 -2893 (|#1| |#1| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3073 ((-3 (-622 |#1|) "failed") (-622 |#1|) |#1|)) (-15 -3074 ((-2 (|:| -4313 (-622 |#1|)) (|:| -2501 |#1|)) (-622 |#1|))) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|))) (-302)) (T -301)) +NIL +(-10 -8 (-15 -1702 ((-3 (-622 |#1|) "failed") (-622 |#1|) |#1|)) (-15 -1703 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1703 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2894 (|#1| |#1| |#1|)) (-15 -2893 (|#1| |#1| |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3073 ((-3 (-622 |#1|) "failed") (-622 |#1|) |#1|)) (-15 -3074 ((-2 (|:| -4313 (-622 |#1|)) (|:| -2501 |#1|)) (-622 |#1|))) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-2502 (((-112) $) 30)) (-1702 (((-3 (-622 $) "failed") (-622 $) $) 50)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-302) (-138)) (T -302)) +((-1705 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-751)))) (-3214 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-302)))) (-2893 (*1 *1 *1 *1) (-4 *1 (-302))) (-2894 (*1 *1 *1 *1) (-4 *1 (-302))) (-1703 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1))) (-4 *1 (-302)))) (-1703 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-302)))) (-1702 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-302))))) +(-13 (-897) (-10 -8 (-15 -1705 ((-112) $ $)) (-15 -1704 ((-751) $)) (-15 -3214 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2893 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -1703 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $)) (-15 -1703 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1702 ((-3 (-622 $) "failed") (-622 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-4127 (($ $ (-622 |#2|) (-622 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-288 |#2|)) 11) (($ $ (-622 (-288 |#2|))) NIL))) +(((-303 |#1| |#2|) (-10 -8 (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|)))) (-304 |#2|) (-1074)) (T -303)) +NIL +(-10 -8 (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|)))) +((-4127 (($ $ (-622 |#1|) (-622 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-288 |#1|)) 11) (($ $ (-622 (-288 |#1|))) 10))) +(((-304 |#1|) (-138) (-1074)) (T -304)) +((-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1074)))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-288 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1074))))) +(-13 (-507 |t#1| |t#1|) (-10 -8 (-15 -4127 ($ $ (-288 |t#1|))) (-15 -4127 ($ $ (-622 (-288 |t#1|)))))) +(((-507 |#1| |#1|) . T)) +((-4127 ((|#1| (-1 |#1| (-538)) (-1151 (-402 (-538)))) 25))) +(((-305 |#1|) (-10 -7 (-15 -4127 (|#1| (-1 |#1| (-538)) (-1151 (-402 (-538)))))) (-38 (-402 (-538)))) (T -305)) +((-4127 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-538))) (-5 *4 (-1151 (-402 (-538)))) (-5 *1 (-305 *2)) (-4 *2 (-38 (-402 (-538))))))) +(-10 -7 (-15 -4127 (|#1| (-1 |#1| (-538)) (-1151 (-402 (-538)))))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 7)) (-3387 (((-112) $ $) 9))) +(((-306) (-1074)) (T -306)) +NIL +(-1074) +((-2898 (((-112) $ $) NIL)) (-3860 (((-538) $) 12)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 9)) (-4317 (((-840) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-307) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3860 ((-538) $))))) (T -307)) +((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-307)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-307))))) +(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3860 ((-538) $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 62)) (-3464 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-1218 |#1| |#2| |#3| |#4|) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-538)))) (((-3 (-1212 |#2| |#3| |#4|) #2#) $) 25)) (-3507 (((-1218 |#1| |#2| |#3| |#4|) $) NIL) (((-1149) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-538)))) (((-538) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-538)))) (((-1212 |#2| |#3| |#4|) $) NIL)) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-1218 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1231 (-1218 |#1| |#2| |#3| |#4|)))) (-669 $) (-1231 $)) NIL) (((-669 (-1218 |#1| |#2| |#3| |#4|)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-1218 |#1| |#2| |#3| |#4|) $) 21)) (-3803 (((-3 $ "failed") $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1124)))) (-3538 (((-112) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-3678 (($ $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-4318 (($ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) $) NIL)) (-4143 (((-3 (-819 |#2|) "failed") $) 78)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-302)))) (-3465 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-1218 |#1| |#2| |#3| |#4|)) (-622 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-288 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-622 (-288 (-1218 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-304 (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-622 (-1149)) (-622 (-1218 |#1| |#2| |#3| |#4|))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-507 (-1149) (-1218 |#1| |#2| |#3| |#4|)))) (($ $ (-1149) (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-507 (-1149) (-1218 |#1| |#2| |#3| |#4|))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-1218 |#1| |#2| |#3| |#4|)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-281 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) (-751)) NIL) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-1218 |#1| |#2| |#3| |#4|) $) 17)) (-4330 (((-866 (-538)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-598 (-527)))) (((-373) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-996))) (((-221) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1218 |#1| |#2| |#3| |#4|) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-1218 |#1| |#2| |#3| |#4|)) 29) (($ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-1014 (-1149)))) (($ (-1212 |#2| |#3| |#4|)) 36)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-1218 |#1| |#2| |#3| |#4|) (-886))) (|has| (-1218 |#1| |#2| |#3| |#4|) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-1218 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-537)))) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-800)))) (-2991 (($) 41 T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-229))) (($ $ (-1149)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-876 (-1149)))) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) (-751)) NIL) (($ $ (-1 (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-1218 |#1| |#2| |#3| |#4|) (-827)))) (-4308 (($ $ $) 34) (($ (-1218 |#1| |#2| |#3| |#4|) (-1218 |#1| |#2| |#3| |#4|)) 31)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-1218 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1218 |#1| |#2| |#3| |#4|)) NIL))) +(((-308 |#1| |#2| |#3| |#4|) (-13 (-967 (-1218 |#1| |#2| |#3| |#4|)) (-1014 (-1212 |#2| |#3| |#4|)) (-10 -8 (-15 -4143 ((-3 (-819 |#2|) "failed") $)) (-15 -4317 ($ (-1212 |#2| |#3| |#4|))))) (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446)) (-13 (-27) (-1171) (-416 |#1|)) (-1149) |#2|) (T -308)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1212 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4) (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) (-5 *1 (-308 *3 *4 *5 *6)))) (-4143 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) (-5 *2 (-819 *4)) (-5 *1 (-308 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4)))) +(-13 (-967 (-1218 |#1| |#2| |#3| |#4|)) (-1014 (-1212 |#2| |#3| |#4|)) (-10 -8 (-15 -4143 ((-3 (-819 |#2|) "failed") $)) (-15 -4317 ($ (-1212 |#2| |#3| |#4|))))) +((-2898 (((-112) $ $) NIL)) (-1667 (((-622 $) $ (-1149)) NIL (|has| |#1| (-545))) (((-622 $) $) NIL (|has| |#1| (-545))) (((-622 $) (-1143 $) (-1149)) NIL (|has| |#1| (-545))) (((-622 $) (-1143 $)) NIL (|has| |#1| (-545))) (((-622 $) (-922 $)) NIL (|has| |#1| (-545)))) (-1265 (($ $ (-1149)) NIL (|has| |#1| (-545))) (($ $) NIL (|has| |#1| (-545))) (($ (-1143 $) (-1149)) NIL (|has| |#1| (-545))) (($ (-1143 $)) NIL (|has| |#1| (-545))) (($ (-922 $)) NIL (|has| |#1| (-545)))) (-3539 (((-112) $) 27 (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))) (-3417 (((-622 (-1149)) $) 351)) (-3419 (((-402 (-1143 $)) $ (-595 $)) NIL (|has| |#1| (-545)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-1660 (((-622 (-595 $)) $) NIL)) (-3846 (($ $) 161 (|has| |#1| (-545)))) (-4002 (($ $) 137 (|has| |#1| (-545)))) (-1417 (($ $ (-1065 $)) 222 (|has| |#1| (-545))) (($ $ (-1149)) 218 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) NIL (-3891 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))) (-1664 (($ $ (-288 $)) NIL) (($ $ (-622 (-288 $))) 368) (($ $ (-622 (-595 $)) (-622 $)) 412)) (-3040 (((-400 (-1143 $)) (-1143 $)) 295 (-12 (|has| |#1| (-446)) (|has| |#1| (-545))))) (-4134 (($ $) NIL (|has| |#1| (-545)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-545)))) (-3370 (($ $) NIL (|has| |#1| (-545)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3844 (($ $) 157 (|has| |#1| (-545)))) (-4001 (($ $) 133 (|has| |#1| (-545)))) (-1706 (($ $ (-538)) 72 (|has| |#1| (-545)))) (-3848 (($ $) 165 (|has| |#1| (-545)))) (-4000 (($ $) 141 (|has| |#1| (-545)))) (-3896 (($) NIL (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085))) CONST)) (-1266 (((-622 $) $ (-1149)) NIL (|has| |#1| (-545))) (((-622 $) $) NIL (|has| |#1| (-545))) (((-622 $) (-1143 $) (-1149)) NIL (|has| |#1| (-545))) (((-622 $) (-1143 $)) NIL (|has| |#1| (-545))) (((-622 $) (-922 $)) NIL (|has| |#1| (-545)))) (-3534 (($ $ (-1149)) NIL (|has| |#1| (-545))) (($ $) NIL (|has| |#1| (-545))) (($ (-1143 $) (-1149)) 124 (|has| |#1| (-545))) (($ (-1143 $)) NIL (|has| |#1| (-545))) (($ (-922 $)) NIL (|has| |#1| (-545)))) (-3508 (((-3 (-595 $) #1="failed") $) 17) (((-3 (-1149) #1#) $) NIL) (((-3 |#1| #1#) $) 421) (((-3 (-48) #1#) $) 323 (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538))))) (((-3 (-538) #1#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-922 |#1|)) #1#) $) NIL (|has| |#1| (-545))) (((-3 (-922 |#1|) #1#) $) NIL (|has| |#1| (-1025))) (((-3 (-402 (-538)) #1#) $) 46 (-3891 (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-3507 (((-595 $) $) 11) (((-1149) $) NIL) ((|#1| $) 403) (((-48) $) NIL (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-922 |#1|)) $) NIL (|has| |#1| (-545))) (((-922 |#1|) $) NIL (|has| |#1| (-1025))) (((-402 (-538)) $) 306 (-3891 (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-2894 (($ $ $) NIL (|has| |#1| (-545)))) (-2362 (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 117 (|has| |#1| (-1025))) (((-669 |#1|) (-669 $)) 107 (|has| |#1| (-1025))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))) (-4202 (($ $) 89 (|has| |#1| (-545)))) (-3821 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (-2893 (($ $ $) NIL (|has| |#1| (-545)))) (-4304 (($ $ (-1065 $)) 226 (|has| |#1| (-545))) (($ $ (-1149)) 224 (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-545)))) (-4086 (((-112) $) NIL (|has| |#1| (-545)))) (-3745 (($ $ $) 192 (|has| |#1| (-545)))) (-3990 (($) 127 (|has| |#1| (-545)))) (-1414 (($ $ $) 212 (|has| |#1| (-545)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 374 (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 381 (|has| |#1| (-862 (-373))))) (-2903 (($ $) NIL) (($ (-622 $)) NIL)) (-1659 (((-622 (-113)) $) NIL)) (-3380 (((-113) (-113)) 267)) (-2502 (((-112) $) 25 (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (-3006 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-3329 (($ $) 71 (|has| |#1| (-1025)))) (-3331 (((-1098 |#1| (-595 $)) $) 84 (|has| |#1| (-1025)))) (-1707 (((-112) $) 64 (|has| |#1| (-545)))) (-3344 (($ $ (-538)) NIL (|has| |#1| (-545)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| |#1| (-545)))) (-1657 (((-1143 $) (-595 $)) 268 (|has| $ (-1025)))) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 $ $) (-595 $)) 408)) (-1662 (((-3 (-595 $) "failed") $) NIL)) (-4302 (($ $) 131 (|has| |#1| (-545)))) (-2341 (($ $) 237 (|has| |#1| (-545)))) (-2013 (($ (-622 $)) NIL (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-3593 (((-1131) $) NIL)) (-1661 (((-622 (-595 $)) $) 49)) (-2317 (($ (-113) $) NIL) (($ (-113) (-622 $)) 413)) (-3156 (((-3 (-622 $) #3="failed") $) NIL (|has| |#1| (-1085)))) (-3158 (((-3 (-2 (|:| |val| $) (|:| -2493 (-538))) #3#) $) NIL (|has| |#1| (-1025)))) (-3155 (((-3 (-622 $) #3#) $) 416 (|has| |#1| (-25)))) (-1913 (((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 $))) #3#) $) 420 (|has| |#1| (-25)))) (-3157 (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $) NIL (|has| |#1| (-1085))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $ (-113)) NIL (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) #3#) $ (-1149)) NIL (|has| |#1| (-1025)))) (-2964 (((-112) $ (-113)) NIL) (((-112) $ (-1149)) 53)) (-2734 (($ $) NIL (-3891 (|has| |#1| (-467)) (|has| |#1| (-545))))) (-3165 (($ $ (-1149)) 241 (|has| |#1| (-545))) (($ $ (-1065 $)) 243 (|has| |#1| (-545)))) (-2933 (((-751) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) 43)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 288 (|has| |#1| (-545)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-1658 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-1418 (($ $ (-1149)) 216 (|has| |#1| (-545))) (($ $) 214 (|has| |#1| (-545)))) (-1412 (($ $) 208 (|has| |#1| (-545)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 293 (-12 (|has| |#1| (-446)) (|has| |#1| (-545))))) (-4092 (((-400 $) $) NIL (|has| |#1| (-545)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-545))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-545)))) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-545)))) (-4303 (($ $) 129 (|has| |#1| (-545)))) (-3007 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) 407) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-1149) (-1 $ (-622 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-622 (-113)) (-622 (-1 $ $))) 361) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-113) (-1 $ (-622 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1149)) NIL (|has| |#1| (-598 (-527)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-598 (-527)))) (($ $) NIL (|has| |#1| (-598 (-527)))) (($ $ (-113) $ (-1149)) 349 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-113)) (-622 $) (-1149)) 348 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ $))) NIL (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ (-622 $)))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-622 $))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ $)) NIL (|has| |#1| (-1025)))) (-1704 (((-751) $) NIL (|has| |#1| (-545)))) (-2339 (($ $) 229 (|has| |#1| (-545)))) (-4159 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-622 $)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-1663 (($ $) NIL) (($ $ $) NIL)) (-2340 (($ $) 239 (|has| |#1| (-545)))) (-3744 (($ $) 190 (|has| |#1| (-545)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-1025))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-1025))) (($ $ (-1149)) NIL (|has| |#1| (-1025)))) (-3328 (($ $) 73 (|has| |#1| (-545)))) (-3330 (((-1098 |#1| (-595 $)) $) 86 (|has| |#1| (-545)))) (-3536 (($ $) 304 (|has| $ (-1025)))) (-3849 (($ $) 167 (|has| |#1| (-545)))) (-3999 (($ $) 143 (|has| |#1| (-545)))) (-3847 (($ $) 163 (|has| |#1| (-545)))) (-3998 (($ $) 139 (|has| |#1| (-545)))) (-3845 (($ $) 159 (|has| |#1| (-545)))) (-3997 (($ $) 135 (|has| |#1| (-545)))) (-4330 (((-866 (-538)) $) NIL (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| |#1| (-598 (-866 (-373))))) (($ (-400 $)) NIL (|has| |#1| (-545))) (((-527) $) 346 (|has| |#1| (-598 (-527))))) (-3342 (($ $ $) NIL (|has| |#1| (-467)))) (-2686 (($ $ $) NIL (|has| |#1| (-467)))) (-4317 (((-840) $) 406) (($ (-595 $)) 397) (($ (-1149)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-545))) (($ (-48)) 299 (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538))))) (($ (-1098 |#1| (-595 $))) 88 (|has| |#1| (-1025))) (($ (-402 |#1|)) NIL (|has| |#1| (-545))) (($ (-922 (-402 |#1|))) NIL (|has| |#1| (-545))) (($ (-402 (-922 (-402 |#1|)))) NIL (|has| |#1| (-545))) (($ (-402 (-922 |#1|))) NIL (|has| |#1| (-545))) (($ (-922 |#1|)) NIL (|has| |#1| (-1025))) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-545)) (|has| |#1| (-1014 (-402 (-538)))))) (($ (-538)) 34 (-3891 (|has| |#1| (-1014 (-538))) (|has| |#1| (-1025))))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL (|has| |#1| (-1025)))) (-2920 (($ $) NIL) (($ (-622 $)) NIL)) (-3437 (($ $ $) 210 (|has| |#1| (-545)))) (-3748 (($ $ $) 196 (|has| |#1| (-545)))) (-3750 (($ $ $) 200 (|has| |#1| (-545)))) (-3747 (($ $ $) 194 (|has| |#1| (-545)))) (-3749 (($ $ $) 198 (|has| |#1| (-545)))) (-2338 (((-112) (-113)) 9)) (-3852 (($ $) 173 (|has| |#1| (-545)))) (-3840 (($ $) 149 (|has| |#1| (-545)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) 169 (|has| |#1| (-545)))) (-3838 (($ $) 145 (|has| |#1| (-545)))) (-3854 (($ $) 177 (|has| |#1| (-545)))) (-3842 (($ $) 153 (|has| |#1| (-545)))) (-1914 (($ (-1149) $) NIL) (($ (-1149) $ $) NIL) (($ (-1149) $ $ $) NIL) (($ (-1149) $ $ $ $) NIL) (($ (-1149) (-622 $)) NIL)) (-3752 (($ $) 204 (|has| |#1| (-545)))) (-3751 (($ $) 202 (|has| |#1| (-545)))) (-3855 (($ $) 179 (|has| |#1| (-545)))) (-3843 (($ $) 155 (|has| |#1| (-545)))) (-3853 (($ $) 175 (|has| |#1| (-545)))) (-3841 (($ $) 151 (|has| |#1| (-545)))) (-3851 (($ $) 171 (|has| |#1| (-545)))) (-3839 (($ $) 147 (|has| |#1| (-545)))) (-3742 (($ $) 182 (|has| |#1| (-545)))) (-2991 (($) 20 (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))) CONST)) (-2343 (($ $) 233 (|has| |#1| (-545)))) (-2997 (($) 22 (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085))) CONST)) (-3746 (($ $) 184 (|has| |#1| (-545))) (($ $ $) 186 (|has| |#1| (-545)))) (-2344 (($ $) 231 (|has| |#1| (-545)))) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-1025))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-1025))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-1025))) (($ $ (-1149)) NIL (|has| |#1| (-1025)))) (-2342 (($ $) 235 (|has| |#1| (-545)))) (-3743 (($ $ $) 188 (|has| |#1| (-545)))) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 81)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 80)) (-4308 (($ (-1098 |#1| (-595 $)) (-1098 |#1| (-595 $))) 98 (|has| |#1| (-545))) (($ $ $) 42 (-3891 (|has| |#1| (-467)) (|has| |#1| (-545))))) (-4197 (($ $ $) 40 (-3891 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))) (($ $) 29 (-3891 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))) (-4199 (($ $ $) 38 (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))))) (** (($ $ $) 66 (|has| |#1| (-545))) (($ $ (-402 (-538))) 301 (|has| |#1| (-545))) (($ $ (-538)) 76 (-3891 (|has| |#1| (-467)) (|has| |#1| (-545)))) (($ $ (-751)) 74 (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085)))) (($ $ (-895)) 78 (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085))))) (* (($ (-402 (-538)) $) NIL (|has| |#1| (-545))) (($ $ (-402 (-538))) NIL (|has| |#1| (-545))) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))) (($ $ $) 36 (-3891 (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) (|has| |#1| (-1085)))) (($ (-538) $) 32 (-3891 (|has| |#1| (-21)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))) (($ (-751) $) NIL (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))) (($ (-895) $) NIL (-3891 (|has| |#1| (-25)) (-12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))))))) +(((-309 |#1|) (-13 (-416 |#1|) (-10 -8 (IF (|has| |#1| (-545)) (PROGN (-6 (-29 |#1|)) (-6 (-1171)) (-6 (-158)) (-6 (-612)) (-6 (-1112)) (-15 -4202 ($ $)) (-15 -1707 ((-112) $)) (-15 -1706 ($ $ (-538))) (IF (|has| |#1| (-446)) (PROGN (-15 -3039 ((-400 (-1143 $)) (-1143 $))) (-15 -3040 ((-400 (-1143 $)) (-1143 $)))) |%noBranch|) (IF (|has| |#1| (-1014 (-538))) (-6 (-1014 (-48))) |%noBranch|)) |%noBranch|))) (-827)) (T -309)) +((-4202 (*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-545)) (-4 *2 (-827)))) (-1707 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-545)) (-4 *3 (-827)))) (-1706 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-309 *3)) (-4 *3 (-545)) (-4 *3 (-827)))) (-3039 (*1 *2 *3) (-12 (-5 *2 (-400 (-1143 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1143 *1)) (-4 *4 (-446)) (-4 *4 (-545)) (-4 *4 (-827)))) (-3040 (*1 *2 *3) (-12 (-5 *2 (-400 (-1143 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1143 *1)) (-4 *4 (-446)) (-4 *4 (-545)) (-4 *4 (-827))))) +(-13 (-416 |#1|) (-10 -8 (IF (|has| |#1| (-545)) (PROGN (-6 (-29 |#1|)) (-6 (-1171)) (-6 (-158)) (-6 (-612)) (-6 (-1112)) (-15 -4202 ($ $)) (-15 -1707 ((-112) $)) (-15 -1706 ($ $ (-538))) (IF (|has| |#1| (-446)) (PROGN (-15 -3039 ((-400 (-1143 $)) (-1143 $))) (-15 -3040 ((-400 (-1143 $)) (-1143 $)))) |%noBranch|) (IF (|has| |#1| (-1014 (-538))) (-6 (-1014 (-48))) |%noBranch|)) |%noBranch|))) +((-4318 (((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)) 13))) +(((-310 |#1| |#2|) (-10 -7 (-15 -4318 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)))) (-827) (-827)) (T -310)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-5 *2 (-309 *6)) (-5 *1 (-310 *5 *6))))) +(-10 -7 (-15 -4318 ((-309 |#2|) (-1 |#2| |#1|) (-309 |#1|)))) +((-4089 (((-51) |#2| (-288 |#2|) (-751)) 33) (((-51) |#2| (-288 |#2|)) 24) (((-51) |#2| (-751)) 28) (((-51) |#2|) 25) (((-51) (-1149)) 21)) (-4178 (((-51) |#2| (-288 |#2|) (-402 (-538))) 51) (((-51) |#2| (-288 |#2|)) 48) (((-51) |#2| (-402 (-538))) 50) (((-51) |#2|) 49) (((-51) (-1149)) 47)) (-4141 (((-51) |#2| (-288 |#2|) (-402 (-538))) 46) (((-51) |#2| (-288 |#2|)) 43) (((-51) |#2| (-402 (-538))) 45) (((-51) |#2|) 44) (((-51) (-1149)) 42)) (-4138 (((-51) |#2| (-288 |#2|) (-538)) 39) (((-51) |#2| (-288 |#2|)) 35) (((-51) |#2| (-538)) 38) (((-51) |#2|) 36) (((-51) (-1149)) 34))) +(((-311 |#1| |#2|) (-10 -7 (-15 -4089 ((-51) (-1149))) (-15 -4089 ((-51) |#2|)) (-15 -4089 ((-51) |#2| (-751))) (-15 -4089 ((-51) |#2| (-288 |#2|))) (-15 -4089 ((-51) |#2| (-288 |#2|) (-751))) (-15 -4138 ((-51) (-1149))) (-15 -4138 ((-51) |#2|)) (-15 -4138 ((-51) |#2| (-538))) (-15 -4138 ((-51) |#2| (-288 |#2|))) (-15 -4138 ((-51) |#2| (-288 |#2|) (-538))) (-15 -4141 ((-51) (-1149))) (-15 -4141 ((-51) |#2|)) (-15 -4141 ((-51) |#2| (-402 (-538)))) (-15 -4141 ((-51) |#2| (-288 |#2|))) (-15 -4141 ((-51) |#2| (-288 |#2|) (-402 (-538)))) (-15 -4178 ((-51) (-1149))) (-15 -4178 ((-51) |#2|)) (-15 -4178 ((-51) |#2| (-402 (-538)))) (-15 -4178 ((-51) |#2| (-288 |#2|))) (-15 -4178 ((-51) |#2| (-288 |#2|) (-402 (-538))))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -311)) +((-4178 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *6 *3)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-538))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-4178 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))) (-4141 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *6 *3)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-538))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-4141 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))) (-4138 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-1014 *5) (-621 *5))) (-5 *5 (-538)) (-5 *2 (-51)) (-5 *1 (-311 *6 *3)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)))) (-4138 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-4 *5 (-13 (-446) (-827) (-1014 *4) (-621 *4))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-4138 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))) (-4089 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-288 *3)) (-5 *5 (-751)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *6 *3)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-4089 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4089 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4)))))) +(-10 -7 (-15 -4089 ((-51) (-1149))) (-15 -4089 ((-51) |#2|)) (-15 -4089 ((-51) |#2| (-751))) (-15 -4089 ((-51) |#2| (-288 |#2|))) (-15 -4089 ((-51) |#2| (-288 |#2|) (-751))) (-15 -4138 ((-51) (-1149))) (-15 -4138 ((-51) |#2|)) (-15 -4138 ((-51) |#2| (-538))) (-15 -4138 ((-51) |#2| (-288 |#2|))) (-15 -4138 ((-51) |#2| (-288 |#2|) (-538))) (-15 -4141 ((-51) (-1149))) (-15 -4141 ((-51) |#2|)) (-15 -4141 ((-51) |#2| (-402 (-538)))) (-15 -4141 ((-51) |#2| (-288 |#2|))) (-15 -4141 ((-51) |#2| (-288 |#2|) (-402 (-538)))) (-15 -4178 ((-51) (-1149))) (-15 -4178 ((-51) |#2|)) (-15 -4178 ((-51) |#2| (-402 (-538)))) (-15 -4178 ((-51) |#2| (-288 |#2|))) (-15 -4178 ((-51) |#2| (-288 |#2|) (-402 (-538))))) +((-1708 (((-51) |#2| (-113) (-288 |#2|) (-622 |#2|)) 88) (((-51) |#2| (-113) (-288 |#2|) (-288 |#2|)) 84) (((-51) |#2| (-113) (-288 |#2|) |#2|) 86) (((-51) (-288 |#2|) (-113) (-288 |#2|) |#2|) 87) (((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|))) 80) (((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 |#2|)) 82) (((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 |#2|)) 83) (((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|))) 81) (((-51) (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|)) 89) (((-51) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|)) 85))) +(((-312 |#1| |#2|) (-10 -7 (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|)))) (-15 -1708 ((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|)))) (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) |#2|)) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) (-622 |#2|)))) (-13 (-827) (-545) (-598 (-527))) (-416 |#1|)) (T -312)) +((-1708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-622 *3)) (-4 *3 (-416 *7)) (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *7 *3)))) (-1708 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *3)))) (-1708 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *3)))) (-1708 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *5)))) (-1708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 (-113))) (-5 *6 (-622 (-288 *8))) (-4 *8 (-416 *7)) (-5 *5 (-288 *8)) (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *7 *8)))) (-1708 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-622 *7)) (-5 *4 (-622 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *7)))) (-1708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-622 (-288 *8))) (-5 *4 (-622 (-113))) (-5 *5 (-288 *8)) (-5 *6 (-622 *8)) (-4 *8 (-416 *7)) (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *7 *8)))) (-1708 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-622 (-288 *7))) (-5 *4 (-622 (-113))) (-5 *5 (-288 *7)) (-4 *7 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *7)))) (-1708 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-622 *7)) (-4 *7 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *6 *7)))) (-1708 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-416 *5)) (-4 *5 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) (-5 *1 (-312 *5 *6))))) +(-10 -7 (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) (-288 |#2|))) (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|)))) (-15 -1708 ((-51) (-622 (-288 |#2|)) (-622 (-113)) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 |#2|))) (-15 -1708 ((-51) (-622 |#2|) (-622 (-113)) (-288 |#2|) (-622 (-288 |#2|)))) (-15 -1708 ((-51) (-288 |#2|) (-113) (-288 |#2|) |#2|)) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) |#2|)) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) (-288 |#2|))) (-15 -1708 ((-51) |#2| (-113) (-288 |#2|) (-622 |#2|)))) +((-1710 (((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538) (-1131)) 46) (((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538)) 47) (((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538) (-1131)) 43) (((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538)) 44)) (-1709 (((-1 (-221) (-221)) (-221)) 45))) +(((-313) (-10 -7 (-15 -1709 ((-1 (-221) (-221)) (-221))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538) (-1131))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538) (-1131))))) (T -313)) +((-1710 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) (-5 *6 (-221)) (-5 *7 (-538)) (-5 *8 (-1131)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) (-1710 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) (-5 *6 (-221)) (-5 *7 (-538)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) (-1710 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) (-5 *6 (-538)) (-5 *7 (-1131)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) (-1710 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) (-5 *6 (-538)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) (-1709 (*1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221))))) +(-10 -7 (-15 -1709 ((-1 (-221) (-221)) (-221))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-1 (-221) (-221)) (-538) (-1131))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538))) (-15 -1710 ((-1181 (-903)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-221) (-538) (-1131)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 25)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) NIL) (($ $ (-402 (-538)) (-402 (-538))) NIL)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) 20)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) 32)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) NIL) (((-402 (-538)) $ (-402 (-538))) 16)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) NIL) (($ $ (-402 (-538))) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-402 (-538))) NIL) (($ $ (-1055) (-402 (-538))) NIL) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))))))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-1711 (((-402 (-538)) $) 17)) (-3426 (($ (-1212 |#1| |#2| |#3|)) 11)) (-2493 (((-1212 |#1| |#2| |#3|) $) 12)) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) NIL) (($ $ $) NIL (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-4307 (((-402 (-538)) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 10)) (-4317 (((-840) $) 38) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) 30)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 27)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 33)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-314 |#1| |#2| |#3|) (-13 (-1214 |#1|) (-772) (-10 -8 (-15 -3426 ($ (-1212 |#1| |#2| |#3|))) (-15 -2493 ((-1212 |#1| |#2| |#3|) $)) (-15 -1711 ((-402 (-538)) $)))) (-13 (-358) (-827)) (-1149) |#1|) (T -314)) +((-3426 (*1 *1 *2) (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-1212 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-314 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3)))) +(-13 (-1214 |#1|) (-772) (-10 -8 (-15 -3426 ($ (-1212 |#1| |#2| |#3|))) (-15 -2493 ((-1212 |#1| |#2| |#3|) $)) (-15 -1711 ((-402 (-538)) $)))) +((-3344 (((-2 (|:| -2493 (-751)) (|:| -4313 |#1|) (|:| |radicand| (-622 |#1|))) (-400 |#1|) (-751)) 24)) (-4302 (((-622 (-2 (|:| -4313 (-751)) (|:| |logand| |#1|))) (-400 |#1|)) 28))) +(((-315 |#1|) (-10 -7 (-15 -3344 ((-2 (|:| -2493 (-751)) (|:| -4313 |#1|) (|:| |radicand| (-622 |#1|))) (-400 |#1|) (-751))) (-15 -4302 ((-622 (-2 (|:| -4313 (-751)) (|:| |logand| |#1|))) (-400 |#1|)))) (-545)) (T -315)) +((-4302 (*1 *2 *3) (-12 (-5 *3 (-400 *4)) (-4 *4 (-545)) (-5 *2 (-622 (-2 (|:| -4313 (-751)) (|:| |logand| *4)))) (-5 *1 (-315 *4)))) (-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *5)) (-4 *5 (-545)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *5) (|:| |radicand| (-622 *5)))) (-5 *1 (-315 *5)) (-5 *4 (-751))))) +(-10 -7 (-15 -3344 ((-2 (|:| -2493 (-751)) (|:| -4313 |#1|) (|:| |radicand| (-622 |#1|))) (-400 |#1|) (-751))) (-15 -4302 ((-622 (-2 (|:| -4313 (-751)) (|:| |logand| |#1|))) (-400 |#1|)))) +((-3417 (((-622 |#2|) (-1143 |#4|)) 43)) (-1716 ((|#3| (-538)) 46)) (-1714 (((-1143 |#4|) (-1143 |#3|)) 30)) (-1715 (((-1143 |#4|) (-1143 |#4|) (-538)) 56)) (-1713 (((-1143 |#3|) (-1143 |#4|)) 21)) (-4307 (((-622 (-751)) (-1143 |#4|) (-622 |#2|)) 40)) (-1712 (((-1143 |#3|) (-1143 |#4|) (-622 |#2|) (-622 |#3|)) 35))) +(((-316 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1712 ((-1143 |#3|) (-1143 |#4|) (-622 |#2|) (-622 |#3|))) (-15 -4307 ((-622 (-751)) (-1143 |#4|) (-622 |#2|))) (-15 -3417 ((-622 |#2|) (-1143 |#4|))) (-15 -1713 ((-1143 |#3|) (-1143 |#4|))) (-15 -1714 ((-1143 |#4|) (-1143 |#3|))) (-15 -1715 ((-1143 |#4|) (-1143 |#4|) (-538))) (-15 -1716 (|#3| (-538)))) (-773) (-827) (-1025) (-926 |#3| |#1| |#2|)) (T -316)) +((-1716 (*1 *2 *3) (-12 (-5 *3 (-538)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1025)) (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-926 *2 *4 *5)))) (-1715 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *7)) (-5 *3 (-538)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *1 (-316 *4 *5 *6 *7)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-1143 *6)) (-4 *6 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-1143 *7)) (-5 *1 (-316 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1143 *7)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-1143 *6)) (-5 *1 (-316 *4 *5 *6 *7)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-1143 *7)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *2 (-622 *5)) (-5 *1 (-316 *4 *5 *6 *7)))) (-4307 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *8)) (-5 *4 (-622 *6)) (-4 *6 (-827)) (-4 *8 (-926 *7 *5 *6)) (-4 *5 (-773)) (-4 *7 (-1025)) (-5 *2 (-622 (-751))) (-5 *1 (-316 *5 *6 *7 *8)))) (-1712 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-5 *5 (-622 *8)) (-4 *7 (-827)) (-4 *8 (-1025)) (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 (-1143 *8)) (-5 *1 (-316 *6 *7 *8 *9))))) +(-10 -7 (-15 -1712 ((-1143 |#3|) (-1143 |#4|) (-622 |#2|) (-622 |#3|))) (-15 -4307 ((-622 (-751)) (-1143 |#4|) (-622 |#2|))) (-15 -3417 ((-622 |#2|) (-1143 |#4|))) (-15 -1713 ((-1143 |#3|) (-1143 |#4|))) (-15 -1714 ((-1143 |#4|) (-1143 |#3|))) (-15 -1715 ((-1143 |#4|) (-1143 |#4|) (-538))) (-15 -1716 (|#3| (-538)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 14)) (-4133 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-538)))) $) 18)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751) $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-2768 ((|#1| $ (-538)) NIL)) (-1719 (((-538) $ (-538)) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2371 (($ (-1 |#1| |#1|) $) NIL)) (-1718 (($ (-1 (-538) (-538)) $) 10)) (-3593 (((-1131) $) NIL)) (-1717 (($ $ $) NIL (|has| (-538) (-772)))) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (($ |#1|) NIL)) (-4040 (((-538) |#1| $) NIL)) (-2991 (($) 15 T CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) 21 (|has| |#1| (-827)))) (-4197 (($ $) 11) (($ $ $) 20)) (-4199 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ (-538)) NIL) (($ (-538) |#1|) 19))) +(((-317 |#1|) (-13 (-21) (-698 (-538)) (-318 |#1| (-538)) (-10 -7 (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) (-1074)) (T -317)) +NIL +(-13 (-21) (-698 (-538)) (-318 |#1| (-538)) (-10 -7 (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-4133 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))) $) 27)) (-1368 (((-3 $ "failed") $ $) 19)) (-3471 (((-751) $) 28)) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| "failed") $) 32)) (-3507 ((|#1| $) 31)) (-2768 ((|#1| $ (-538)) 25)) (-1719 ((|#2| $ (-538)) 26)) (-2371 (($ (-1 |#1| |#1|) $) 22)) (-1718 (($ (-1 |#2| |#2|) $) 23)) (-3593 (((-1131) $) 9)) (-1717 (($ $ $) 21 (|has| |#2| (-772)))) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ |#1|) 33)) (-4040 ((|#2| |#1| $) 24)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ |#2| |#1|) 29))) +(((-318 |#1| |#2|) (-138) (-1074) (-130)) (T -318)) +((-4199 (*1 *1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-130)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-130)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)) (-5 *2 (-751)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)) (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4)))))) (-1719 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1074)) (-4 *2 (-130)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1074)))) (-4040 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-130)))) (-1718 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)))) (-2371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)))) (-1717 (*1 *1 *1 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-130)) (-4 *3 (-772))))) +(-13 (-130) (-1014 |t#1|) (-10 -8 (-15 -4199 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3471 ((-751) $)) (-15 -4133 ((-622 (-2 (|:| |gen| |t#1|) (|:| -4303 |t#2|))) $)) (-15 -1719 (|t#2| $ (-538))) (-15 -2768 (|t#1| $ (-538))) (-15 -4040 (|t#2| |t#1| $)) (-15 -1718 ($ (-1 |t#2| |t#2|) $)) (-15 -2371 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-772)) (-15 -1717 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1014 |#1|) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4133 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751) $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-2768 ((|#1| $ (-538)) NIL)) (-1719 (((-751) $ (-538)) NIL)) (-2371 (($ (-1 |#1| |#1|) $) NIL)) (-1718 (($ (-1 (-751) (-751)) $) NIL)) (-3593 (((-1131) $) NIL)) (-1717 (($ $ $) NIL (|has| (-751) (-772)))) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (($ |#1|) NIL)) (-4040 (((-751) |#1| $) NIL)) (-2991 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4199 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-751) |#1|) NIL))) +(((-319 |#1|) (-318 |#1| (-751)) (-1074)) (T -319)) +NIL +(-318 |#1| (-751)) +((-3857 (($ $) 53)) (-1721 (($ $ |#2| |#3| $) 14)) (-1722 (($ (-1 |#3| |#3|) $) 33)) (-1916 (((-112) $) 24)) (-1915 ((|#2| $) 26)) (-3820 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 44)) (-3150 ((|#2| $) 49)) (-4177 (((-622 |#2|) $) 36)) (-1720 (($ $ $ (-751)) 20)) (-4308 (($ $ |#2|) 40))) +(((-320 |#1| |#2| |#3|) (-10 -8 (-15 -3857 (|#1| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1720 (|#1| |#1| |#1| (-751))) (-15 -1721 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1722 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4177 ((-622 |#2|) |#1|)) (-15 -1915 (|#2| |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4308 (|#1| |#1| |#2|))) (-321 |#2| |#3|) (-1025) (-772)) (T -320)) +NIL +(-10 -8 (-15 -3857 (|#1| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1720 (|#1| |#1| |#1| (-751))) (-15 -1721 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1722 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4177 ((-622 |#2|) |#1|)) (-15 -1915 (|#2| |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4308 (|#1| |#1| |#2|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 88 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 86 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 85)) (-3507 (((-538) $) 89 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 87 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 84)) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-3857 (($ $) 73 (|has| |#1| (-446)))) (-1721 (($ $ |#1| |#2| $) 77)) (-2502 (((-112) $) 30)) (-2510 (((-751) $) 80)) (-4297 (((-112) $) 60)) (-3226 (($ |#1| |#2|) 59)) (-3153 ((|#2| $) 79)) (-1722 (($ (-1 |#2| |#2|) $) 78)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 83)) (-1915 ((|#1| $) 82)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-545)))) (-4307 ((|#2| $) 62)) (-3150 ((|#1| $) 74 (|has| |#1| (-446)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 47 (|has| |#1| (-545))) (($ |#1|) 45) (($ (-402 (-538))) 55 (-3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| |#1| (-38 (-402 (-538))))))) (-4177 (((-622 |#1|) $) 81)) (-4040 ((|#1| $ |#2|) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-1720 (($ $ $ (-751)) 76 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538))))))) +(((-321 |#1| |#2|) (-138) (-1025) (-772)) (T -321)) +((-1916 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-622 *3)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-751)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-1722 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-1721 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) (-1720 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *3 (-170)))) (-3820 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-545)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-3857 (*1 *1 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-446))))) +(-13 (-47 |t#1| |t#2|) (-407 |t#1|) (-10 -8 (-15 -1916 ((-112) $)) (-15 -1915 (|t#1| $)) (-15 -4177 ((-622 |t#1|) $)) (-15 -2510 ((-751) $)) (-15 -3153 (|t#2| $)) (-15 -1722 ($ (-1 |t#2| |t#2|) $)) (-15 -1721 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-170)) (-15 -1720 ($ $ $ (-751))) |%noBranch|) (IF (|has| |t#1| (-545)) (-15 -3820 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -3150 (|t#1| $)) (-15 -3857 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-285) |has| |#1| (-545)) ((-407 |#1|) . T) ((-545) |has| |#1| (-545)) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-2107 (((-112) (-112)) NIL)) (-4147 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) NIL)) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-2455 (($ $) NIL (|has| |#1| (-1074)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) NIL (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) NIL)) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2108 (($ $ (-538)) NIL)) (-2109 (((-751) $) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3192 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3970 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2110 (($ (-622 |#1|)) NIL)) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-1632 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4150 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-322 |#1|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2110 ($ (-622 |#1|))) (-15 -2109 ((-751) $)) (-15 -2108 ($ $ (-538))) (-15 -2107 ((-112) (-112))))) (-1185)) (T -322)) +((-2110 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-322 *3)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-322 *3)) (-4 *3 (-1185)))) (-2108 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-322 *3)) (-4 *3 (-1185)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1185))))) +(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2110 ($ (-622 |#1|))) (-15 -2109 ((-751) $)) (-15 -2108 ($ $ (-538))) (-15 -2107 ((-112) (-112))))) +((-4292 (((-112) $) 42)) (-4289 (((-751)) 22)) (-3689 ((|#2| $) 46) (($ $ (-895)) 101)) (-3471 (((-751)) 102)) (-1911 (($ (-1231 |#2|)) 20)) (-2127 (((-112) $) 115)) (-3467 ((|#2| $) 48) (($ $ (-895)) 99)) (-2130 (((-1143 |#2|) $) NIL) (((-1143 $) $ (-895)) 95)) (-1724 (((-1143 |#2|) $) 82)) (-1723 (((-1143 |#2|) $) 79) (((-3 (-1143 |#2|) "failed") $ $) 76)) (-1725 (($ $ (-1143 |#2|)) 53)) (-4290 (((-812 (-895))) 28) (((-895)) 43)) (-4271 (((-133)) 25)) (-4307 (((-812 (-895)) $) 30) (((-895) $) 117)) (-1726 (($) 108)) (-3575 (((-1231 |#2|) $) NIL) (((-669 |#2|) (-1231 $)) 39)) (-3035 (($ $) NIL) (((-3 $ "failed") $) 85)) (-4293 (((-112) $) 41))) +(((-323 |#1| |#2|) (-10 -8 (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3471 ((-751))) (-15 -3035 (|#1| |#1|)) (-15 -1723 ((-3 (-1143 |#2|) "failed") |#1| |#1|)) (-15 -1723 ((-1143 |#2|) |#1|)) (-15 -1724 ((-1143 |#2|) |#1|)) (-15 -1725 (|#1| |#1| (-1143 |#2|))) (-15 -2127 ((-112) |#1|)) (-15 -1726 (|#1|)) (-15 -3689 (|#1| |#1| (-895))) (-15 -3467 (|#1| |#1| (-895))) (-15 -2130 ((-1143 |#1|) |#1| (-895))) (-15 -3689 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -4307 ((-895) |#1|)) (-15 -4290 ((-895))) (-15 -2130 ((-1143 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -4289 ((-751))) (-15 -4290 ((-812 (-895)))) (-15 -4307 ((-812 (-895)) |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4293 ((-112) |#1|)) (-15 -4271 ((-133)))) (-324 |#2|) (-358)) (T -323)) +((-4271 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4290 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-812 (-895))) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4289 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-4290 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-895)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) (-3471 (*1 *2) (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4))))) +(-10 -8 (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3471 ((-751))) (-15 -3035 (|#1| |#1|)) (-15 -1723 ((-3 (-1143 |#2|) "failed") |#1| |#1|)) (-15 -1723 ((-1143 |#2|) |#1|)) (-15 -1724 ((-1143 |#2|) |#1|)) (-15 -1725 (|#1| |#1| (-1143 |#2|))) (-15 -2127 ((-112) |#1|)) (-15 -1726 (|#1|)) (-15 -3689 (|#1| |#1| (-895))) (-15 -3467 (|#1| |#1| (-895))) (-15 -2130 ((-1143 |#1|) |#1| (-895))) (-15 -3689 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -4307 ((-895) |#1|)) (-15 -4290 ((-895))) (-15 -2130 ((-1143 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -4289 ((-751))) (-15 -4290 ((-812 (-895)))) (-15 -4307 ((-812 (-895)) |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4293 ((-112) |#1|)) (-15 -4271 ((-133)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-4292 (((-112) $) 91)) (-4289 (((-751)) 87)) (-3689 ((|#1| $) 137) (($ $ (-895)) 134 (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) 119 (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-1705 (((-112) $ $) 57)) (-3471 (((-751)) 109 (|has| |#1| (-363)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| "failed") $) 98)) (-3507 ((|#1| $) 97)) (-1911 (($ (-1231 |#1|)) 143)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-363)))) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-3327 (($) 106 (|has| |#1| (-363)))) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-3166 (($) 121 (|has| |#1| (-363)))) (-1796 (((-112) $) 122 (|has| |#1| (-363)))) (-1886 (($ $ (-751)) 84 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 83 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) 68)) (-4131 (((-895) $) 124 (|has| |#1| (-363))) (((-812 (-895)) $) 81 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) 30)) (-2129 (($) 132 (|has| |#1| (-363)))) (-2127 (((-112) $) 131 (|has| |#1| (-363)))) (-3467 ((|#1| $) 138) (($ $ (-895)) 135 (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) 110 (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2130 (((-1143 |#1|) $) 142) (((-1143 $) $ (-895)) 136 (|has| |#1| (-363)))) (-2126 (((-895) $) 107 (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) 128 (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) 127 (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) 126 (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) 129 (|has| |#1| (-363)))) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3804 (($) 111 (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) 108 (|has| |#1| (-363)))) (-4291 (((-112) $) 90)) (-3594 (((-1093) $) 10)) (-2501 (($) 130 (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 118 (|has| |#1| (-363)))) (-4092 (((-400 $) $) 71)) (-4290 (((-812 (-895))) 88) (((-895)) 140)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-1887 (((-751) $) 123 (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) 82 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) 96)) (-4170 (($ $) 115 (|has| |#1| (-363))) (($ $ (-751)) 113 (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) 89) (((-895) $) 139)) (-3536 (((-1143 |#1|)) 141)) (-1790 (($) 120 (|has| |#1| (-363)))) (-1726 (($) 133 (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) 145) (((-669 |#1|) (-1231 $)) 144)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 117 (|has| |#1| (-363)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ |#1|) 99)) (-3035 (($ $) 116 (|has| |#1| (-363))) (((-3 $ "failed") $) 80 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) 28)) (-2128 (((-1231 $)) 147) (((-1231 $) (-895)) 146)) (-2177 (((-112) $ $) 37)) (-4293 (((-112) $) 92)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-4288 (($ $) 86 (|has| |#1| (-363))) (($ $ (-751)) 85 (|has| |#1| (-363)))) (-3002 (($ $) 114 (|has| |#1| (-363))) (($ $ (-751)) 112 (|has| |#1| (-363)))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62) (($ $ |#1|) 95)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-324 |#1|) (-138) (-358)) (T -324)) +((-2128 (*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1231 *1)) (-4 *1 (-324 *3)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-895)) (-4 *4 (-358)) (-5 *2 (-1231 *1)) (-4 *1 (-324 *4)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1231 *3)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3)))) (-2130 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1143 *3)))) (-3536 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1143 *3)))) (-4290 (*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-895)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-895)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (-895)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1143 *1)) (-4 *1 (-324 *4)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-3689 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) (-1726 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-2129 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2501 (*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) (-1725 (*1 *1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3)) (-4 *3 (-358)))) (-1724 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1143 *3)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1143 *3)))) (-1723 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1143 *3))))) +(-13 (-1250 |t#1|) (-1014 |t#1|) (-10 -8 (-15 -2128 ((-1231 $))) (-15 -2128 ((-1231 $) (-895))) (-15 -3575 ((-1231 |t#1|) $)) (-15 -3575 ((-669 |t#1|) (-1231 $))) (-15 -1911 ($ (-1231 |t#1|))) (-15 -2130 ((-1143 |t#1|) $)) (-15 -3536 ((-1143 |t#1|))) (-15 -4290 ((-895))) (-15 -4307 ((-895) $)) (-15 -3467 (|t#1| $)) (-15 -3689 (|t#1| $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-345)) (-15 -2130 ((-1143 $) $ (-895))) (-15 -3467 ($ $ (-895))) (-15 -3689 ($ $ (-895))) (-15 -1726 ($)) (-15 -2129 ($)) (-15 -2127 ((-112) $)) (-15 -2501 ($)) (-15 -1725 ($ $ (-1143 |t#1|))) (-15 -1724 ((-1143 |t#1|) $)) (-15 -1723 ((-1143 |t#1|) $)) (-15 -1723 ((-3 (-1143 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3891 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-229) |has| |#1| (-363)) ((-239) . T) ((-285) . T) ((-302) . T) ((-1250 |#1|) . T) ((-358) . T) ((-397) -3891 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-363) |has| |#1| (-363)) ((-345) |has| |#1| (-363)) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1014 |#1|) . T) ((-1031 #1#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| |#1| (-363)) ((-1190) . T) ((-1239 |#1|) . T)) +((-2898 (((-112) $ $) NIL)) (-1744 (($ (-1148) $) 88)) (-1735 (($) 77)) (-1727 (((-1093) (-1093)) 11)) (-1734 (($) 78)) (-1738 (($) 90) (($ (-309 (-679))) 98) (($ (-309 (-681))) 94) (($ (-309 (-674))) 102) (($ (-309 (-373))) 109) (($ (-309 (-538))) 105) (($ (-309 (-166 (-373)))) 113)) (-1743 (($ (-1148) $) 89)) (-1733 (($ (-622 (-840))) 79)) (-1729 (((-1237) $) 75)) (-1731 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1742 (($ (-1093)) 51)) (-1728 (((-1076) $) 25)) (-1745 (($ (-1065 (-922 (-538))) $) 85) (($ (-1065 (-922 (-538))) (-922 (-538)) $) 86)) (-1741 (($ (-1093)) 87)) (-1737 (($ (-1148) $) 115) (($ (-1148) $ $) 116)) (-1732 (($ (-1149) (-622 (-1149))) 76)) (-1740 (($ (-1131)) 82) (($ (-622 (-1131))) 80)) (-4317 (((-840) $) 118)) (-1730 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-622 (-922 (-538)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-840)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3762 (-112)) (|:| -3761 (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |blockBranch| (-622 $)) (|:| |commentBranch| (-622 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -1561 (-1065 (-922 (-538)))) (|:| |span| (-922 (-538))) (|:| -3584 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -3584 $))) (|:| |commonBranch| (-2 (|:| -3905 (-1149)) (|:| |contents| (-622 (-1149))))) (|:| |printBranch| (-622 (-840)))) $) 44)) (-1739 (($ (-1131)) 187)) (-1736 (($ (-622 $)) 114)) (-2916 (($ (-1149) (-1131)) 120) (($ (-1149) (-309 (-681))) 160) (($ (-1149) (-309 (-679))) 161) (($ (-1149) (-309 (-674))) 162) (($ (-1149) (-669 (-681))) 123) (($ (-1149) (-669 (-679))) 126) (($ (-1149) (-669 (-674))) 129) (($ (-1149) (-1231 (-681))) 132) (($ (-1149) (-1231 (-679))) 135) (($ (-1149) (-1231 (-674))) 138) (($ (-1149) (-669 (-309 (-681)))) 141) (($ (-1149) (-669 (-309 (-679)))) 144) (($ (-1149) (-669 (-309 (-674)))) 147) (($ (-1149) (-1231 (-309 (-681)))) 150) (($ (-1149) (-1231 (-309 (-679)))) 153) (($ (-1149) (-1231 (-309 (-674)))) 156) (($ (-1149) (-622 (-922 (-538))) (-309 (-681))) 157) (($ (-1149) (-622 (-922 (-538))) (-309 (-679))) 158) (($ (-1149) (-622 (-922 (-538))) (-309 (-674))) 159) (($ (-1149) (-309 (-538))) 184) (($ (-1149) (-309 (-373))) 185) (($ (-1149) (-309 (-166 (-373)))) 186) (($ (-1149) (-669 (-309 (-538)))) 165) (($ (-1149) (-669 (-309 (-373)))) 168) (($ (-1149) (-669 (-309 (-166 (-373))))) 171) (($ (-1149) (-1231 (-309 (-538)))) 174) (($ (-1149) (-1231 (-309 (-373)))) 177) (($ (-1149) (-1231 (-309 (-166 (-373))))) 180) (($ (-1149) (-622 (-922 (-538))) (-309 (-538))) 181) (($ (-1149) (-622 (-922 (-538))) (-309 (-373))) 182) (($ (-1149) (-622 (-922 (-538))) (-309 (-166 (-373)))) 183)) (-3387 (((-112) $ $) NIL))) +(((-325) (-13 (-1074) (-10 -8 (-15 -4317 ((-840) $)) (-15 -1745 ($ (-1065 (-922 (-538))) $)) (-15 -1745 ($ (-1065 (-922 (-538))) (-922 (-538)) $)) (-15 -1744 ($ (-1148) $)) (-15 -1743 ($ (-1148) $)) (-15 -1742 ($ (-1093))) (-15 -1741 ($ (-1093))) (-15 -1740 ($ (-1131))) (-15 -1740 ($ (-622 (-1131)))) (-15 -1739 ($ (-1131))) (-15 -1738 ($)) (-15 -1738 ($ (-309 (-679)))) (-15 -1738 ($ (-309 (-681)))) (-15 -1738 ($ (-309 (-674)))) (-15 -1738 ($ (-309 (-373)))) (-15 -1738 ($ (-309 (-538)))) (-15 -1738 ($ (-309 (-166 (-373))))) (-15 -1737 ($ (-1148) $)) (-15 -1737 ($ (-1148) $ $)) (-15 -2916 ($ (-1149) (-1131))) (-15 -2916 ($ (-1149) (-309 (-681)))) (-15 -2916 ($ (-1149) (-309 (-679)))) (-15 -2916 ($ (-1149) (-309 (-674)))) (-15 -2916 ($ (-1149) (-669 (-681)))) (-15 -2916 ($ (-1149) (-669 (-679)))) (-15 -2916 ($ (-1149) (-669 (-674)))) (-15 -2916 ($ (-1149) (-1231 (-681)))) (-15 -2916 ($ (-1149) (-1231 (-679)))) (-15 -2916 ($ (-1149) (-1231 (-674)))) (-15 -2916 ($ (-1149) (-669 (-309 (-681))))) (-15 -2916 ($ (-1149) (-669 (-309 (-679))))) (-15 -2916 ($ (-1149) (-669 (-309 (-674))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-681))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-679))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-674))))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-681)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-679)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-674)))) (-15 -2916 ($ (-1149) (-309 (-538)))) (-15 -2916 ($ (-1149) (-309 (-373)))) (-15 -2916 ($ (-1149) (-309 (-166 (-373))))) (-15 -2916 ($ (-1149) (-669 (-309 (-538))))) (-15 -2916 ($ (-1149) (-669 (-309 (-373))))) (-15 -2916 ($ (-1149) (-669 (-309 (-166 (-373)))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-538))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-373))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-166 (-373)))))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-538)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-373)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-166 (-373))))) (-15 -1736 ($ (-622 $))) (-15 -1735 ($)) (-15 -1734 ($)) (-15 -1733 ($ (-622 (-840)))) (-15 -1732 ($ (-1149) (-622 (-1149)))) (-15 -1731 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1730 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-622 (-922 (-538)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-840)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3762 (-112)) (|:| -3761 (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |blockBranch| (-622 $)) (|:| |commentBranch| (-622 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -1561 (-1065 (-922 (-538)))) (|:| |span| (-922 (-538))) (|:| -3584 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -3584 $))) (|:| |commonBranch| (-2 (|:| -3905 (-1149)) (|:| |contents| (-622 (-1149))))) (|:| |printBranch| (-622 (-840)))) $)) (-15 -1729 ((-1237) $)) (-15 -1728 ((-1076) $)) (-15 -1727 ((-1093) (-1093)))))) (T -325)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-325)))) (-1745 (*1 *1 *2 *1) (-12 (-5 *2 (-1065 (-922 (-538)))) (-5 *1 (-325)))) (-1745 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1065 (-922 (-538)))) (-5 *3 (-922 (-538))) (-5 *1 (-325)))) (-1744 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-1743 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-1742 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))) (-1741 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325)))) (-1740 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))) (-1740 (*1 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-325)))) (-1739 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325)))) (-1738 (*1 *1) (-5 *1 (-325))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-325)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-681))) (-5 *1 (-325)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-674))) (-5 *1 (-325)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-5 *1 (-325)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-5 *1 (-325)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-309 (-166 (-373)))) (-5 *1 (-325)))) (-1737 (*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-1737 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-681))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-679))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-674))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-681))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-679))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-674))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-681))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-679))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-674))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-681)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-679)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-674)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-681)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-679)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-674)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-681))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-679))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-674))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-538))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-373))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-166 (-373)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-538)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-373)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-166 (-373))))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-538)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-373)))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-166 (-373))))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-538))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-373))) (-5 *1 (-325)))) (-2916 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-166 (-373)))) (-5 *1 (-325)))) (-1736 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-5 *1 (-325)))) (-1735 (*1 *1) (-5 *1 (-325))) (-1734 (*1 *1) (-5 *1 (-325))) (-1733 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-325)))) (-1732 (*1 *1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1149)) (-5 *1 (-325)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-325)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-622 (-922 (-538)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-840)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| (-325)) (|:| |elseClause| (-325)))) (|:| |returnBranch| (-2 (|:| -3762 (-112)) (|:| -3761 (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |blockBranch| (-622 (-325))) (|:| |commentBranch| (-622 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -1561 (-1065 (-922 (-538)))) (|:| |span| (-922 (-538))) (|:| -3584 (-325)))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -3584 (-325)))) (|:| |commonBranch| (-2 (|:| -3905 (-1149)) (|:| |contents| (-622 (-1149))))) (|:| |printBranch| (-622 (-840))))) (-5 *1 (-325)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-325)))) (-1728 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-325)))) (-1727 (*1 *2 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325))))) +(-13 (-1074) (-10 -8 (-15 -4317 ((-840) $)) (-15 -1745 ($ (-1065 (-922 (-538))) $)) (-15 -1745 ($ (-1065 (-922 (-538))) (-922 (-538)) $)) (-15 -1744 ($ (-1148) $)) (-15 -1743 ($ (-1148) $)) (-15 -1742 ($ (-1093))) (-15 -1741 ($ (-1093))) (-15 -1740 ($ (-1131))) (-15 -1740 ($ (-622 (-1131)))) (-15 -1739 ($ (-1131))) (-15 -1738 ($)) (-15 -1738 ($ (-309 (-679)))) (-15 -1738 ($ (-309 (-681)))) (-15 -1738 ($ (-309 (-674)))) (-15 -1738 ($ (-309 (-373)))) (-15 -1738 ($ (-309 (-538)))) (-15 -1738 ($ (-309 (-166 (-373))))) (-15 -1737 ($ (-1148) $)) (-15 -1737 ($ (-1148) $ $)) (-15 -2916 ($ (-1149) (-1131))) (-15 -2916 ($ (-1149) (-309 (-681)))) (-15 -2916 ($ (-1149) (-309 (-679)))) (-15 -2916 ($ (-1149) (-309 (-674)))) (-15 -2916 ($ (-1149) (-669 (-681)))) (-15 -2916 ($ (-1149) (-669 (-679)))) (-15 -2916 ($ (-1149) (-669 (-674)))) (-15 -2916 ($ (-1149) (-1231 (-681)))) (-15 -2916 ($ (-1149) (-1231 (-679)))) (-15 -2916 ($ (-1149) (-1231 (-674)))) (-15 -2916 ($ (-1149) (-669 (-309 (-681))))) (-15 -2916 ($ (-1149) (-669 (-309 (-679))))) (-15 -2916 ($ (-1149) (-669 (-309 (-674))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-681))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-679))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-674))))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-681)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-679)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-674)))) (-15 -2916 ($ (-1149) (-309 (-538)))) (-15 -2916 ($ (-1149) (-309 (-373)))) (-15 -2916 ($ (-1149) (-309 (-166 (-373))))) (-15 -2916 ($ (-1149) (-669 (-309 (-538))))) (-15 -2916 ($ (-1149) (-669 (-309 (-373))))) (-15 -2916 ($ (-1149) (-669 (-309 (-166 (-373)))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-538))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-373))))) (-15 -2916 ($ (-1149) (-1231 (-309 (-166 (-373)))))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-538)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-373)))) (-15 -2916 ($ (-1149) (-622 (-922 (-538))) (-309 (-166 (-373))))) (-15 -1736 ($ (-622 $))) (-15 -1735 ($)) (-15 -1734 ($)) (-15 -1733 ($ (-622 (-840)))) (-15 -1732 ($ (-1149) (-622 (-1149)))) (-15 -1731 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1730 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-622 (-922 (-538)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1149)) (|:| |rand| (-840)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1148)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3762 (-112)) (|:| -3761 (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |blockBranch| (-622 $)) (|:| |commentBranch| (-622 (-1131))) (|:| |callBranch| (-1131)) (|:| |forBranch| (-2 (|:| -1561 (-1065 (-922 (-538)))) (|:| |span| (-922 (-538))) (|:| -3584 $))) (|:| |labelBranch| (-1093)) (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -3584 $))) (|:| |commonBranch| (-2 (|:| -3905 (-1149)) (|:| |contents| (-622 (-1149))))) (|:| |printBranch| (-622 (-840)))) $)) (-15 -1729 ((-1237) $)) (-15 -1728 ((-1076) $)) (-15 -1727 ((-1093) (-1093))))) +((-2898 (((-112) $ $) NIL)) (-1746 (((-112) $) 11)) (-4001 (($ |#1|) 8)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3997 (($ |#1|) 9)) (-4317 (((-840) $) 17)) (-2318 ((|#1| $) 12)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 19))) +(((-326 |#1|) (-13 (-827) (-10 -8 (-15 -4001 ($ |#1|)) (-15 -3997 ($ |#1|)) (-15 -1746 ((-112) $)) (-15 -2318 (|#1| $)))) (-827)) (T -326)) +((-4001 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) (-3997 (*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) (-1746 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-827)))) (-2318 (*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827))))) +(-13 (-827) (-10 -8 (-15 -4001 ($ |#1|)) (-15 -3997 ($ |#1|)) (-15 -1746 ((-112) $)) (-15 -2318 (|#1| $)))) +((-1747 (((-325) (-1149) (-922 (-538))) 23)) (-1748 (((-325) (-1149) (-922 (-538))) 27)) (-2409 (((-325) (-1149) (-1065 (-922 (-538))) (-1065 (-922 (-538)))) 26) (((-325) (-1149) (-922 (-538)) (-922 (-538))) 24)) (-1749 (((-325) (-1149) (-922 (-538))) 31))) +(((-327) (-10 -7 (-15 -1747 ((-325) (-1149) (-922 (-538)))) (-15 -2409 ((-325) (-1149) (-922 (-538)) (-922 (-538)))) (-15 -2409 ((-325) (-1149) (-1065 (-922 (-538))) (-1065 (-922 (-538))))) (-15 -1748 ((-325) (-1149) (-922 (-538)))) (-15 -1749 ((-325) (-1149) (-922 (-538)))))) (T -327)) +((-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))) (-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))) (-2409 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1065 (-922 (-538)))) (-5 *2 (-325)) (-5 *1 (-327)))) (-2409 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))) (-1747 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327))))) +(-10 -7 (-15 -1747 ((-325) (-1149) (-922 (-538)))) (-15 -2409 ((-325) (-1149) (-922 (-538)) (-922 (-538)))) (-15 -2409 ((-325) (-1149) (-1065 (-922 (-538))) (-1065 (-922 (-538))))) (-15 -1748 ((-325) (-1149) (-922 (-538)))) (-15 -1749 ((-325) (-1149) (-922 (-538))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4202 (($ $) 33)) (-1752 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-1750 (((-1231 |#4|) $) 125)) (-2092 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 31)) (-3594 (((-1093) $) NIL)) (-2501 (((-3 |#4| "failed") $) 36)) (-1751 (((-1231 |#4|) $) 118)) (-1753 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-538)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3794 (((-2 (|:| -2417 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4317 (((-840) $) 17)) (-2991 (($) 14 T CONST)) (-3387 (((-112) $ $) 20)) (-4197 (($ $) 27) (($ $ $) NIL)) (-4199 (($ $ $) 25)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 23))) +(((-328 |#1| |#2| |#3| |#4|) (-13 (-331 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1751 ((-1231 |#4|) $)) (-15 -1750 ((-1231 |#4|) $)))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -328)) +((-1751 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-1231 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5)))) (-1750 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-1231 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5))))) +(-13 (-331 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1751 ((-1231 |#4|) $)) (-15 -1750 ((-1231 |#4|) $)))) +((-4318 (((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)) 33))) +(((-329 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4318 ((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-358) (-1207 |#5|) (-1207 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -329)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-328 *5 *6 *7 *8)) (-4 *5 (-358)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *9 (-358)) (-4 *10 (-1207 *9)) (-4 *11 (-1207 (-402 *10))) (-5 *2 (-328 *9 *10 *11 *12)) (-5 *1 (-329 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-337 *9 *10 *11))))) +(-10 -7 (-15 -4318 ((-328 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-328 |#1| |#2| |#3| |#4|)))) +((-1752 (((-112) $) 14))) +(((-330 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1752 ((-112) |#1|))) (-331 |#2| |#3| |#4| |#5|) (-358) (-1207 |#2|) (-1207 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -330)) +NIL +(-10 -8 (-15 -1752 ((-112) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4202 (($ $) 26)) (-1752 (((-112) $) 25)) (-3593 (((-1131) $) 9)) (-2092 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 32)) (-3594 (((-1093) $) 10)) (-2501 (((-3 |#4| "failed") $) 24)) (-1753 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-538)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3794 (((-2 (|:| -2417 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20))) +(((-331 |#1| |#2| |#3| |#4|) (-138) (-358) (-1207 |t#1|) (-1207 (-402 |t#2|)) (-337 |t#1| |t#2| |t#3|)) (T -331)) +((-2092 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-408 *4 (-402 *4) *5 *6)))) (-1753 (*1 *1 *2) (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358)) (-4 *1 (-331 *3 *4 *5 *6)))) (-1753 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *1 (-331 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5)))) (-1753 (*1 *1 *2 *2) (-12 (-4 *2 (-358)) (-4 *3 (-1207 *2)) (-4 *4 (-1207 (-402 *3))) (-4 *1 (-331 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4)))) (-1753 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-538)) (-4 *2 (-358)) (-4 *4 (-1207 *2)) (-4 *5 (-1207 (-402 *4))) (-4 *1 (-331 *2 *4 *5 *6)) (-4 *6 (-337 *2 *4 *5)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-2 (|:| -2417 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6))))) (-4202 (*1 *1 *1) (-12 (-4 *1 (-331 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1207 *2)) (-4 *4 (-1207 (-402 *3))) (-4 *5 (-337 *2 *3 *4)))) (-1752 (*1 *2 *1) (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112)))) (-2501 (*1 *2 *1) (|partial| -12 (-4 *1 (-331 *3 *4 *5 *2)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *2 (-337 *3 *4 *5)))) (-1753 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-358)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) (-4 *1 (-331 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2092 ((-408 |t#2| (-402 |t#2|) |t#3| |t#4|) $)) (-15 -1753 ($ (-408 |t#2| (-402 |t#2|) |t#3| |t#4|))) (-15 -1753 ($ |t#4|)) (-15 -1753 ($ |t#1| |t#1|)) (-15 -1753 ($ |t#1| |t#1| (-538))) (-15 -3794 ((-2 (|:| -2417 (-408 |t#2| (-402 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4202 ($ $)) (-15 -1752 ((-112) $)) (-15 -2501 ((-3 |t#4| "failed") $)) (-15 -1753 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-4127 (($ $ (-1149) |#2|) NIL) (($ $ (-622 (-1149)) (-622 |#2|)) 20) (($ $ (-622 (-288 |#2|))) 15) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-622 |#2|) (-622 |#2|)) NIL)) (-4159 (($ $ |#2|) 11))) +(((-332 |#1| |#2|) (-10 -8 (-15 -4159 (|#1| |#1| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 |#2|))) (-15 -4127 (|#1| |#1| (-1149) |#2|))) (-333 |#2|) (-1074)) (T -332)) +NIL +(-10 -8 (-15 -4159 (|#1| |#1| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 |#2|))) (-15 -4127 (|#1| |#1| (-1149) |#2|))) +((-4318 (($ (-1 |#1| |#1|) $) 6)) (-4127 (($ $ (-1149) |#1|) 17 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 16 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-622 (-288 |#1|))) 15 (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) 14 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-304 |#1|))) (($ $ (-622 |#1|) (-622 |#1|)) 12 (|has| |#1| (-304 |#1|)))) (-4159 (($ $ |#1|) 11 (|has| |#1| (-281 |#1| |#1|))))) +(((-333 |#1|) (-138) (-1074)) (T -333)) +((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1074))))) +(-13 (-10 -8 (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-281 |t#1| |t#1|)) (-6 (-281 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-507 (-1149) |t#1|)) (-6 (-507 (-1149) |t#1|)) |%noBranch|))) +(((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1149)) $) NIL)) (-1754 (((-112)) 91) (((-112) (-112)) 92)) (-1660 (((-622 (-595 $)) $) NIL)) (-3846 (($ $) NIL)) (-4002 (($ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1664 (($ $ (-288 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL)) (-3370 (($ $) NIL)) (-3844 (($ $) NIL)) (-4001 (($ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-595 $) #1="failed") $) NIL) (((-3 |#3| #1#) $) NIL) (((-3 $ "failed") (-309 |#3|)) 71) (((-3 $ "failed") (-1149)) 97) (((-3 $ "failed") (-309 (-538))) 59 (|has| |#3| (-1014 (-538)))) (((-3 $ "failed") (-402 (-922 (-538)))) 65 (|has| |#3| (-1014 (-538)))) (((-3 $ "failed") (-922 (-538))) 60 (|has| |#3| (-1014 (-538)))) (((-3 $ "failed") (-309 (-373))) 89 (|has| |#3| (-1014 (-373)))) (((-3 $ "failed") (-402 (-922 (-373)))) 83 (|has| |#3| (-1014 (-373)))) (((-3 $ "failed") (-922 (-373))) 78 (|has| |#3| (-1014 (-373))))) (-3507 (((-595 $) $) NIL) ((|#3| $) NIL) (($ (-309 |#3|)) 72) (($ (-1149)) 98) (($ (-309 (-538))) 61 (|has| |#3| (-1014 (-538)))) (($ (-402 (-922 (-538)))) 66 (|has| |#3| (-1014 (-538)))) (($ (-922 (-538))) 62 (|has| |#3| (-1014 (-538)))) (($ (-309 (-373))) 90 (|has| |#3| (-1014 (-373)))) (($ (-402 (-922 (-373)))) 84 (|has| |#3| (-1014 (-373)))) (($ (-922 (-373))) 80 (|has| |#3| (-1014 (-373))))) (-3821 (((-3 $ "failed") $) NIL)) (-3990 (($) 10)) (-2903 (($ $) NIL) (($ (-622 $)) NIL)) (-1659 (((-622 (-113)) $) NIL)) (-3380 (((-113) (-113)) NIL)) (-2502 (((-112) $) NIL)) (-3006 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-1657 (((-1143 $) (-595 $)) NIL (|has| $ (-1025)))) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 $ $) (-595 $)) NIL)) (-1662 (((-3 (-595 $) "failed") $) NIL)) (-1858 (($ $) 94)) (-4302 (($ $) NIL)) (-3593 (((-1131) $) NIL)) (-1661 (((-622 (-595 $)) $) NIL)) (-2317 (($ (-113) $) 93) (($ (-113) (-622 $)) NIL)) (-2964 (((-112) $ (-113)) NIL) (((-112) $ (-1149)) NIL)) (-2933 (((-751) $) NIL)) (-3594 (((-1093) $) NIL)) (-1658 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-4303 (($ $) NIL)) (-3007 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-1149) (-1 $ (-622 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-622 (-113)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-113) (-1 $ (-622 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-4159 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-622 $)) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL)) (-3536 (($ $) NIL (|has| $ (-1025)))) (-3845 (($ $) NIL)) (-3997 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-595 $)) NIL) (($ |#3|) NIL) (($ (-538)) NIL) (((-309 |#3|) $) 96)) (-3461 (((-751)) NIL)) (-2920 (($ $) NIL) (($ (-622 $)) NIL)) (-2338 (((-112) (-113)) NIL)) (-3840 (($ $) NIL)) (-3838 (($ $) NIL)) (-3839 (($ $) NIL)) (-3742 (($ $) NIL)) (-2991 (($) 95 T CONST)) (-2997 (($) 24 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL))) +(((-334 |#1| |#2| |#3|) (-13 (-293) (-38 |#3|) (-1014 |#3|) (-876 (-1149)) (-10 -8 (-15 -3507 ($ (-309 |#3|))) (-15 -3508 ((-3 $ "failed") (-309 |#3|))) (-15 -3507 ($ (-1149))) (-15 -3508 ((-3 $ "failed") (-1149))) (-15 -4317 ((-309 |#3|) $)) (IF (|has| |#3| (-1014 (-538))) (PROGN (-15 -3507 ($ (-309 (-538)))) (-15 -3508 ((-3 $ "failed") (-309 (-538)))) (-15 -3507 ($ (-402 (-922 (-538))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-538))))) (-15 -3507 ($ (-922 (-538)))) (-15 -3508 ((-3 $ "failed") (-922 (-538))))) |%noBranch|) (IF (|has| |#3| (-1014 (-373))) (PROGN (-15 -3507 ($ (-309 (-373)))) (-15 -3508 ((-3 $ "failed") (-309 (-373)))) (-15 -3507 ($ (-402 (-922 (-373))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-373))))) (-15 -3507 ($ (-922 (-373)))) (-15 -3508 ((-3 $ "failed") (-922 (-373))))) |%noBranch|) (-15 -3742 ($ $)) (-15 -3370 ($ $)) (-15 -4303 ($ $)) (-15 -4302 ($ $)) (-15 -1858 ($ $)) (-15 -4001 ($ $)) (-15 -3997 ($ $)) (-15 -4002 ($ $)) (-15 -3838 ($ $)) (-15 -3839 ($ $)) (-15 -3840 ($ $)) (-15 -3844 ($ $)) (-15 -3845 ($ $)) (-15 -3846 ($ $)) (-15 -3990 ($)) (-15 -3417 ((-622 (-1149)) $)) (-15 -1754 ((-112))) (-15 -1754 ((-112) (-112))))) (-622 (-1149)) (-622 (-1149)) (-382)) (T -334)) +((-3507 (*1 *1 *2) (-12 (-5 *2 (-309 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 *2)) (-14 *4 (-622 *2)) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 *2)) (-14 *4 (-622 *2)) (-4 *5 (-382)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-309 *5)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-538)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-538)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-922 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-373)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-373)))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-922 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-3742 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3370 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-4303 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-1858 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-4001 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3997 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-4002 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3839 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3840 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3844 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3845 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3846 (*1 *1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3990 (*1 *1) (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) (-4 *4 (-382)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-382)))) (-1754 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382))))) +(-13 (-293) (-38 |#3|) (-1014 |#3|) (-876 (-1149)) (-10 -8 (-15 -3507 ($ (-309 |#3|))) (-15 -3508 ((-3 $ "failed") (-309 |#3|))) (-15 -3507 ($ (-1149))) (-15 -3508 ((-3 $ "failed") (-1149))) (-15 -4317 ((-309 |#3|) $)) (IF (|has| |#3| (-1014 (-538))) (PROGN (-15 -3507 ($ (-309 (-538)))) (-15 -3508 ((-3 $ "failed") (-309 (-538)))) (-15 -3507 ($ (-402 (-922 (-538))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-538))))) (-15 -3507 ($ (-922 (-538)))) (-15 -3508 ((-3 $ "failed") (-922 (-538))))) |%noBranch|) (IF (|has| |#3| (-1014 (-373))) (PROGN (-15 -3507 ($ (-309 (-373)))) (-15 -3508 ((-3 $ "failed") (-309 (-373)))) (-15 -3507 ($ (-402 (-922 (-373))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-373))))) (-15 -3507 ($ (-922 (-373)))) (-15 -3508 ((-3 $ "failed") (-922 (-373))))) |%noBranch|) (-15 -3742 ($ $)) (-15 -3370 ($ $)) (-15 -4303 ($ $)) (-15 -4302 ($ $)) (-15 -1858 ($ $)) (-15 -4001 ($ $)) (-15 -3997 ($ $)) (-15 -4002 ($ $)) (-15 -3838 ($ $)) (-15 -3839 ($ $)) (-15 -3840 ($ $)) (-15 -3844 ($ $)) (-15 -3845 ($ $)) (-15 -3846 ($ $)) (-15 -3990 ($)) (-15 -3417 ((-622 (-1149)) $)) (-15 -1754 ((-112))) (-15 -1754 ((-112) (-112))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-882 |#1|) (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| (-882 |#1|) (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-882 |#1|) "failed") $) NIL)) (-3507 (((-882 |#1|) $) NIL)) (-1911 (($ (-1231 (-882 |#1|))) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-882 |#1|) (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-882 |#1|) (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| (-882 |#1|) (-363)))) (-1796 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363)))) (($ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| (-882 |#1|) (-363))) (((-812 (-895)) $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| (-882 |#1|) (-363)))) (-2127 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-3467 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 (-882 |#1|)) $) NIL) (((-1143 $) $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-2126 (((-895) $) NIL (|has| (-882 |#1|) (-363)))) (-1724 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363)))) (-1723 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-1143 (-882 |#1|)) "failed") $ $) NIL (|has| (-882 |#1|) (-363)))) (-1725 (($ $ (-1143 (-882 |#1|))) NIL (|has| (-882 |#1|) (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-882 |#1|) (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL (|has| (-882 |#1|) (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-882 |#1|) (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 (-882 |#1|))) NIL)) (-1790 (($) NIL (|has| (-882 |#1|) (-363)))) (-1726 (($) NIL (|has| (-882 |#1|) (-363)))) (-3575 (((-1231 (-882 |#1|)) $) NIL) (((-669 (-882 |#1|)) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-882 |#1|) (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-882 |#1|)) NIL)) (-3035 (($ $) NIL (|has| (-882 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3002 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ (-882 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-882 |#1|)) NIL) (($ (-882 |#1|) $) NIL))) +(((-335 |#1| |#2|) (-324 (-882 |#1|)) (-895) (-895)) (T -335)) +NIL +(-324 (-882 |#1|)) +((-1763 (((-2 (|:| |num| (-1231 |#3|)) (|:| |den| |#3|)) $) 38)) (-1911 (($ (-1231 (-402 |#3|)) (-1231 $)) NIL) (($ (-1231 (-402 |#3|))) NIL) (($ (-1231 |#3|) |#3|) 161)) (-1768 (((-1231 $) (-1231 $)) 145)) (-1755 (((-622 (-622 |#2|))) 119)) (-1780 (((-112) |#2| |#2|) 73)) (-3857 (($ $) 139)) (-3736 (((-751)) 31)) (-1769 (((-1231 $) (-1231 $)) 198)) (-1756 (((-622 (-922 |#2|)) (-1149)) 110)) (-1772 (((-112) $) 158)) (-1771 (((-112) $) 25) (((-112) $ |#2|) 29) (((-112) $ |#3|) 202)) (-1758 (((-3 |#3| "failed")) 50)) (-1782 (((-751)) 170)) (-4159 ((|#2| $ |#2| |#2|) 132)) (-1759 (((-3 |#3| "failed")) 68)) (-4170 (($ $ (-1 (-402 |#3|) (-402 |#3|)) (-751)) NIL) (($ $ (-1 (-402 |#3|) (-402 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-1770 (((-1231 $) (-1231 $)) 151)) (-1757 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1781 (((-112)) 33))) +(((-336 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -1755 ((-622 (-622 |#2|)))) (-15 -1756 ((-622 (-922 |#2|)) (-1149))) (-15 -1757 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1758 ((-3 |#3| "failed"))) (-15 -1759 ((-3 |#3| "failed"))) (-15 -4159 (|#2| |#1| |#2| |#2|)) (-15 -3857 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1771 ((-112) |#1| |#3|)) (-15 -1771 ((-112) |#1| |#2|)) (-15 -1911 (|#1| (-1231 |#3|) |#3|)) (-15 -1763 ((-2 (|:| |num| (-1231 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1768 ((-1231 |#1|) (-1231 |#1|))) (-15 -1769 ((-1231 |#1|) (-1231 |#1|))) (-15 -1770 ((-1231 |#1|) (-1231 |#1|))) (-15 -1771 ((-112) |#1|)) (-15 -1772 ((-112) |#1|)) (-15 -1780 ((-112) |#2| |#2|)) (-15 -1781 ((-112))) (-15 -1782 ((-751))) (-15 -3736 ((-751))) (-15 -4170 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -4170 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-751))) (-15 -1911 (|#1| (-1231 (-402 |#3|)))) (-15 -1911 (|#1| (-1231 (-402 |#3|)) (-1231 |#1|)))) (-337 |#2| |#3| |#4|) (-1190) (-1207 |#2|) (-1207 (-402 |#3|))) (T -336)) +((-3736 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-1782 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-1781 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) (-1780 (*1 *2 *3 *3) (-12 (-4 *3 (-1190)) (-4 *5 (-1207 *3)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6)))) (-1759 (*1 *2) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-1758 (*1 *2) (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *5 (-1190)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-5 *2 (-622 (-922 *5))) (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7)))) (-1755 (*1 *2) (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-622 (-622 *4))) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6))))) +(-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -1755 ((-622 (-622 |#2|)))) (-15 -1756 ((-622 (-922 |#2|)) (-1149))) (-15 -1757 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1758 ((-3 |#3| "failed"))) (-15 -1759 ((-3 |#3| "failed"))) (-15 -4159 (|#2| |#1| |#2| |#2|)) (-15 -3857 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1771 ((-112) |#1| |#3|)) (-15 -1771 ((-112) |#1| |#2|)) (-15 -1911 (|#1| (-1231 |#3|) |#3|)) (-15 -1763 ((-2 (|:| |num| (-1231 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1768 ((-1231 |#1|) (-1231 |#1|))) (-15 -1769 ((-1231 |#1|) (-1231 |#1|))) (-15 -1770 ((-1231 |#1|) (-1231 |#1|))) (-15 -1771 ((-112) |#1|)) (-15 -1772 ((-112) |#1|)) (-15 -1780 ((-112) |#2| |#2|)) (-15 -1781 ((-112))) (-15 -1782 ((-751))) (-15 -3736 ((-751))) (-15 -4170 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)))) (-15 -4170 (|#1| |#1| (-1 (-402 |#3|) (-402 |#3|)) (-751))) (-15 -1911 (|#1| (-1231 (-402 |#3|)))) (-15 -1911 (|#1| (-1231 (-402 |#3|)) (-1231 |#1|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1763 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) 193)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (|has| (-402 |#2|) (-358)))) (-2178 (($ $) 92 (|has| (-402 |#2|) (-358)))) (-2176 (((-112) $) 94 (|has| (-402 |#2|) (-358)))) (-1901 (((-669 (-402 |#2|)) (-1231 $)) 44) (((-669 (-402 |#2|))) 59)) (-3689 (((-402 |#2|) $) 50)) (-1791 (((-1158 (-895) (-751)) (-538)) 144 (|has| (-402 |#2|) (-345)))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 111 (|has| (-402 |#2|) (-358)))) (-4329 (((-400 $) $) 112 (|has| (-402 |#2|) (-358)))) (-1705 (((-112) $ $) 102 (|has| (-402 |#2|) (-358)))) (-3471 (((-751)) 85 (|has| (-402 |#2|) (-363)))) (-1777 (((-112)) 210)) (-1776 (((-112) |#1|) 209) (((-112) |#2|) 208)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 166 (|has| (-402 |#2|) (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 164 (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-3 (-402 |#2|) #1#) $) 163)) (-3507 (((-538) $) 167 (|has| (-402 |#2|) (-1014 (-538)))) (((-402 (-538)) $) 165 (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-402 |#2|) $) 162)) (-1911 (($ (-1231 (-402 |#2|)) (-1231 $)) 46) (($ (-1231 (-402 |#2|))) 62) (($ (-1231 |#2|) |#2|) 192)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-402 |#2|) (-345)))) (-2894 (($ $ $) 106 (|has| (-402 |#2|) (-358)))) (-1900 (((-669 (-402 |#2|)) $ (-1231 $)) 51) (((-669 (-402 |#2|)) $) 57)) (-2362 (((-669 (-538)) (-669 $)) 161 (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 160 (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-402 |#2|))) (|:| |vec| (-1231 (-402 |#2|)))) (-669 $) (-1231 $)) 159) (((-669 (-402 |#2|)) (-669 $)) 158)) (-1768 (((-1231 $) (-1231 $)) 198)) (-4202 (($ |#3|) 155) (((-3 $ "failed") (-402 |#3|)) 152 (|has| (-402 |#2|) (-358)))) (-3821 (((-3 $ "failed") $) 32)) (-1755 (((-622 (-622 |#1|))) 179 (|has| |#1| (-363)))) (-1780 (((-112) |#1| |#1|) 214)) (-3444 (((-895)) 52)) (-3327 (($) 88 (|has| (-402 |#2|) (-363)))) (-1775 (((-112)) 207)) (-1774 (((-112) |#1|) 206) (((-112) |#2|) 205)) (-2893 (($ $ $) 105 (|has| (-402 |#2|) (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 100 (|has| (-402 |#2|) (-358)))) (-3857 (($ $) 185)) (-3166 (($) 146 (|has| (-402 |#2|) (-345)))) (-1796 (((-112) $) 147 (|has| (-402 |#2|) (-345)))) (-1886 (($ $ (-751)) 138 (|has| (-402 |#2|) (-345))) (($ $) 137 (|has| (-402 |#2|) (-345)))) (-4086 (((-112) $) 113 (|has| (-402 |#2|) (-358)))) (-4131 (((-895) $) 149 (|has| (-402 |#2|) (-345))) (((-812 (-895)) $) 135 (|has| (-402 |#2|) (-345)))) (-2502 (((-112) $) 30)) (-3736 (((-751)) 217)) (-1769 (((-1231 $) (-1231 $)) 199)) (-3467 (((-402 |#2|) $) 49)) (-1756 (((-622 (-922 |#1|)) (-1149)) 180 (|has| |#1| (-358)))) (-3803 (((-3 $ "failed") $) 139 (|has| (-402 |#2|) (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 109 (|has| (-402 |#2|) (-358)))) (-2130 ((|#3| $) 42 (|has| (-402 |#2|) (-358)))) (-2126 (((-895) $) 87 (|has| (-402 |#2|) (-363)))) (-3413 ((|#3| $) 153)) (-2013 (($ (-622 $)) 98 (|has| (-402 |#2|) (-358))) (($ $ $) 97 (|has| (-402 |#2|) (-358)))) (-3593 (((-1131) $) 9)) (-1764 (((-669 (-402 |#2|))) 194)) (-1766 (((-669 (-402 |#2|))) 196)) (-2734 (($ $) 114 (|has| (-402 |#2|) (-358)))) (-1761 (($ (-1231 |#2|) |#2|) 190)) (-1765 (((-669 (-402 |#2|))) 195)) (-1767 (((-669 (-402 |#2|))) 197)) (-1760 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-1762 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) 191)) (-1773 (((-1231 $)) 203)) (-4278 (((-1231 $)) 204)) (-1772 (((-112) $) 202)) (-1771 (((-112) $) 201) (((-112) $ |#1|) 188) (((-112) $ |#2|) 187)) (-3804 (($) 140 (|has| (-402 |#2|) (-345)) CONST)) (-2492 (($ (-895)) 86 (|has| (-402 |#2|) (-363)))) (-1758 (((-3 |#2| "failed")) 182)) (-3594 (((-1093) $) 10)) (-1782 (((-751)) 216)) (-2501 (($) 157)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 99 (|has| (-402 |#2|) (-358)))) (-3495 (($ (-622 $)) 96 (|has| (-402 |#2|) (-358))) (($ $ $) 95 (|has| (-402 |#2|) (-358)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 143 (|has| (-402 |#2|) (-345)))) (-4092 (((-400 $) $) 110 (|has| (-402 |#2|) (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 107 (|has| (-402 |#2|) (-358)))) (-3820 (((-3 $ "failed") $ $) 90 (|has| (-402 |#2|) (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 101 (|has| (-402 |#2|) (-358)))) (-1704 (((-751) $) 103 (|has| (-402 |#2|) (-358)))) (-4159 ((|#1| $ |#1| |#1|) 184)) (-1759 (((-3 |#2| "failed")) 183)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 104 (|has| (-402 |#2|) (-358)))) (-4117 (((-402 |#2|) (-1231 $)) 45) (((-402 |#2|)) 58)) (-1887 (((-751) $) 148 (|has| (-402 |#2|) (-345))) (((-3 (-751) "failed") $ $) 136 (|has| (-402 |#2|) (-345)))) (-4170 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) 120 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 119 (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-622 (-1149)) (-622 (-751))) 127 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149) (-751)) 128 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-622 (-1149))) 129 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149)) 130 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-751)) 132 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3191 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) 134 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3191 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-2500 (((-669 (-402 |#2|)) (-1231 $) (-1 (-402 |#2|) (-402 |#2|))) 151 (|has| (-402 |#2|) (-358)))) (-3536 ((|#3|) 156)) (-1790 (($) 145 (|has| (-402 |#2|) (-345)))) (-3575 (((-1231 (-402 |#2|)) $ (-1231 $)) 48) (((-669 (-402 |#2|)) (-1231 $) (-1231 $)) 47) (((-1231 (-402 |#2|)) $) 64) (((-669 (-402 |#2|)) (-1231 $)) 63)) (-4330 (((-1231 (-402 |#2|)) $) 61) (($ (-1231 (-402 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 142 (|has| (-402 |#2|) (-345)))) (-1770 (((-1231 $) (-1231 $)) 200)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 |#2|)) 35) (($ (-402 (-538))) 84 (-3891 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-1014 (-402 (-538)))))) (($ $) 89 (|has| (-402 |#2|) (-358)))) (-3035 (($ $) 141 (|has| (-402 |#2|) (-345))) (((-3 $ "failed") $) 41 (|has| (-402 |#2|) (-143)))) (-2698 ((|#3| $) 43)) (-3461 (((-751)) 28)) (-1779 (((-112)) 213)) (-1778 (((-112) |#1|) 212) (((-112) |#2|) 211)) (-2128 (((-1231 $)) 65)) (-2177 (((-112) $ $) 93 (|has| (-402 |#2|) (-358)))) (-1757 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1781 (((-112)) 215)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) 122 (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) 121 (|has| (-402 |#2|) (-358))) (($ $ (-622 (-1149)) (-622 (-751))) 123 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149) (-751)) 124 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-622 (-1149))) 125 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-1149)) 126 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) (-3191 (|has| (-402 |#2|) (-876 (-1149))) (|has| (-402 |#2|) (-358))))) (($ $ (-751)) 131 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3191 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) 133 (-3891 (-3191 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-229))) (-3191 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 118 (|has| (-402 |#2|) (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 115 (|has| (-402 |#2|) (-358)))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 |#2|)) 37) (($ (-402 |#2|) $) 36) (($ (-402 (-538)) $) 117 (|has| (-402 |#2|) (-358))) (($ $ (-402 (-538))) 116 (|has| (-402 |#2|) (-358))))) +(((-337 |#1| |#2| |#3|) (-138) (-1190) (-1207 |t#1|) (-1207 (-402 |t#2|))) (T -337)) +((-3736 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-751)))) (-1782 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-751)))) (-1781 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1780 (*1 *2 *3 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1779 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1778 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1778 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) (-1777 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1776 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1776 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) (-1775 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1774 (*1 *2 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1774 (*1 *2 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) (-4278 (*1 *2) (-12 (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)))) (-1773 (*1 *2) (-12 (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))) (-1768 (*1 *2 *2) (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))) (-1767 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1766 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1765 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1764 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4))))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1231 *4)) (|:| |den| *4))))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1207 *4)) (-4 *4 (-1190)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1207 (-402 *3))))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-2 (|:| |num| (-1231 *4)) (|:| |den| *4))))) (-1761 (*1 *1 *2 *3) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1207 *4)) (-4 *4 (-1190)) (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1207 (-402 *3))))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-2 (|:| |num| (-669 *5)) (|:| |den| *5))))) (-1771 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) (-1771 (*1 *2 *1 *3) (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))) (-3857 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1207 *2)) (-4 *4 (-1207 (-402 *3))))) (-4159 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1207 *2)) (-4 *4 (-1207 (-402 *3))))) (-1759 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) (-4 *4 (-1207 (-402 *2))) (-4 *2 (-1207 *3)))) (-1758 (*1 *2) (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) (-4 *4 (-1207 (-402 *2))) (-4 *2 (-1207 *3)))) (-1757 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-1190)) (-4 *6 (-1207 (-402 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-337 *4 *5 *6)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-4 *4 (-358)) (-5 *2 (-622 (-922 *4))))) (-1755 (*1 *2) (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-622 (-622 *3)))))) +(-13 (-705 (-402 |t#2|) |t#3|) (-10 -8 (-15 -3736 ((-751))) (-15 -1782 ((-751))) (-15 -1781 ((-112))) (-15 -1780 ((-112) |t#1| |t#1|)) (-15 -1779 ((-112))) (-15 -1778 ((-112) |t#1|)) (-15 -1778 ((-112) |t#2|)) (-15 -1777 ((-112))) (-15 -1776 ((-112) |t#1|)) (-15 -1776 ((-112) |t#2|)) (-15 -1775 ((-112))) (-15 -1774 ((-112) |t#1|)) (-15 -1774 ((-112) |t#2|)) (-15 -4278 ((-1231 $))) (-15 -1773 ((-1231 $))) (-15 -1772 ((-112) $)) (-15 -1771 ((-112) $)) (-15 -1770 ((-1231 $) (-1231 $))) (-15 -1769 ((-1231 $) (-1231 $))) (-15 -1768 ((-1231 $) (-1231 $))) (-15 -1767 ((-669 (-402 |t#2|)))) (-15 -1766 ((-669 (-402 |t#2|)))) (-15 -1765 ((-669 (-402 |t#2|)))) (-15 -1764 ((-669 (-402 |t#2|)))) (-15 -1763 ((-2 (|:| |num| (-1231 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1911 ($ (-1231 |t#2|) |t#2|)) (-15 -1762 ((-2 (|:| |num| (-1231 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1761 ($ (-1231 |t#2|) |t#2|)) (-15 -1760 ((-2 (|:| |num| (-669 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1771 ((-112) $ |t#1|)) (-15 -1771 ((-112) $ |t#2|)) (-15 -4170 ($ $ (-1 |t#2| |t#2|))) (-15 -3857 ($ $)) (-15 -4159 (|t#1| $ |t#1| |t#1|)) (-15 -1759 ((-3 |t#2| "failed"))) (-15 -1758 ((-3 |t#2| "failed"))) (-15 -1757 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-358)) (-15 -1756 ((-622 (-922 |t#1|)) (-1149))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1755 ((-622 (-622 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-38 #2=(-402 |#2|)) . T) ((-38 $) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-101) . T) ((-111 #1# #1#) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-143))) ((-145) |has| (-402 |#2|) (-145)) ((-597 (-840)) . T) ((-170) . T) ((-598 |#3|) . T) ((-227 #2#) |has| (-402 |#2|) (-358)) ((-229) -3891 (|has| (-402 |#2|) (-345)) (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358)))) ((-239) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-285) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-302) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-358) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-397) |has| (-402 |#2|) (-345)) ((-363) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-363))) ((-345) |has| (-402 |#2|) (-345)) ((-365 #2# |#3|) . T) ((-405 #2# |#3|) . T) ((-372 #2#) . T) ((-407 #2#) . T) ((-446) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-545) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-628 #1#) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-628 #2#) . T) ((-628 $) . T) ((-621 #2#) . T) ((-621 (-538)) |has| (-402 |#2|) (-621 (-538))) ((-698 #1#) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-698 #2#) . T) ((-698 $) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-705 #2# |#3|) . T) ((-707) . T) ((-876 (-1149)) -12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149)))) ((-897) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-1014 (-402 (-538))) |has| (-402 |#2|) (-1014 (-402 (-538)))) ((-1014 #2#) . T) ((-1014 (-538)) |has| (-402 |#2|) (-1014 (-538))) ((-1031 #1#) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358))) ((-1031 #2#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| (-402 |#2|) (-345)) ((-1190) -3891 (|has| (-402 |#2|) (-345)) (|has| (-402 |#2|) (-358)))) +((-4318 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-338 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4318 (|#8| (-1 |#5| |#1|) |#4|))) (-1190) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-1190) (-1207 |#5|) (-1207 (-402 |#6|)) (-337 |#5| |#6| |#7|)) (T -338)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1190)) (-4 *8 (-1190)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *9 (-1207 *8)) (-4 *2 (-337 *8 *9 *10)) (-5 *1 (-338 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-337 *5 *6 *7)) (-4 *10 (-1207 (-402 *9)))))) +(-10 -7 (-15 -4318 (|#8| (-1 |#5| |#1|) |#4|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-882 |#1|) (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| (-882 |#1|) (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-882 |#1|) "failed") $) NIL)) (-3507 (((-882 |#1|) $) NIL)) (-1911 (($ (-1231 (-882 |#1|))) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-882 |#1|) (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-882 |#1|) (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| (-882 |#1|) (-363)))) (-1796 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363)))) (($ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| (-882 |#1|) (-363))) (((-812 (-895)) $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| (-882 |#1|) (-363)))) (-2127 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-3467 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 (-882 |#1|)) $) NIL) (((-1143 $) $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-2126 (((-895) $) NIL (|has| (-882 |#1|) (-363)))) (-1724 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363)))) (-1723 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-1143 (-882 |#1|)) "failed") $ $) NIL (|has| (-882 |#1|) (-363)))) (-1725 (($ $ (-1143 (-882 |#1|))) NIL (|has| (-882 |#1|) (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-882 |#1|) (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-1783 (((-934 (-1093))) NIL)) (-2501 (($) NIL (|has| (-882 |#1|) (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-882 |#1|) (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 (-882 |#1|))) NIL)) (-1790 (($) NIL (|has| (-882 |#1|) (-363)))) (-1726 (($) NIL (|has| (-882 |#1|) (-363)))) (-3575 (((-1231 (-882 |#1|)) $) NIL) (((-669 (-882 |#1|)) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-882 |#1|) (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-882 |#1|)) NIL)) (-3035 (($ $) NIL (|has| (-882 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3002 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ (-882 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-882 |#1|)) NIL) (($ (-882 |#1|) $) NIL))) +(((-339 |#1| |#2|) (-13 (-324 (-882 |#1|)) (-10 -7 (-15 -1783 ((-934 (-1093)))))) (-895) (-895)) (T -339)) +((-1783 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-339 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895))))) +(-13 (-324 (-882 |#1|)) (-10 -7 (-15 -1783 ((-934 (-1093)))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 44)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) 41 (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) 115)) (-3507 ((|#1| $) 86)) (-1911 (($ (-1231 |#1|)) 104)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) 98 (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) 129 (|has| |#1| (-363)))) (-1796 (((-112) $) 48 (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) 45 (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) 131 (|has| |#1| (-363)))) (-2127 (((-112) $) NIL (|has| |#1| (-363)))) (-3467 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) 90) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) 139 (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) NIL (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) NIL (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 146)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) 71 (|has| |#1| (-363)))) (-4291 (((-112) $) 118)) (-3594 (((-1093) $) NIL)) (-1783 (((-934 (-1093))) 42)) (-2501 (($) 127 (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 93 (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) 67) (((-895)) 68)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) 130 (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) 125 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 |#1|)) 96)) (-1790 (($) 128 (|has| |#1| (-363)))) (-1726 (($) 136 (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) 59) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) 142) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 75)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) 138)) (-2128 (((-1231 $)) 117) (((-1231 $) (-895)) 73)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) 49 T CONST)) (-2997 (($) 46 T CONST)) (-4288 (($ $) 81 (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) 47)) (-4308 (($ $ $) 144) (($ $ |#1|) 145)) (-4197 (($ $) 126) (($ $ $) NIL)) (-4199 (($ $ $) 61)) (** (($ $ (-895)) 148) (($ $ (-751)) 149) (($ $ (-538)) 147)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 77) (($ $ $) 76) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 143))) +(((-340 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1783 ((-934 (-1093)))))) (-345) (-1143 |#1|)) (T -340)) +((-1783 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-340 *3 *4)) (-4 *3 (-345)) (-14 *4 (-1143 *3))))) +(-13 (-324 |#1|) (-10 -7 (-15 -1783 ((-934 (-1093)))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-1911 (($ (-1231 |#1|)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| |#1| (-363)))) (-1796 (((-112) $) NIL (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| |#1| (-363)))) (-2127 (((-112) $) NIL (|has| |#1| (-363)))) (-3467 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) NIL) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) NIL (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) NIL (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-1783 (((-934 (-1093))) NIL)) (-2501 (($) NIL (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 |#1|)) NIL)) (-1790 (($) NIL (|has| |#1| (-363)))) (-1726 (($) NIL (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) NIL) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) NIL)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-341 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1783 ((-934 (-1093)))))) (-345) (-895)) (T -341)) +((-1783 (*1 *2) (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-341 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895))))) +(-13 (-324 |#1|) (-10 -7 (-15 -1783 ((-934 (-1093)))))) +((-1793 (((-751) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) 42)) (-1784 (((-934 (-1093)) (-1143 |#1|)) 85)) (-1785 (((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) (-1143 |#1|)) 78)) (-1786 (((-669 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) 86)) (-1787 (((-3 (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) "failed") (-895)) 13)) (-1788 (((-3 (-1143 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) (-895)) 18))) +(((-342 |#1|) (-10 -7 (-15 -1784 ((-934 (-1093)) (-1143 |#1|))) (-15 -1785 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) (-1143 |#1|))) (-15 -1786 ((-669 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1793 ((-751) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1787 ((-3 (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) "failed") (-895))) (-15 -1788 ((-3 (-1143 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) (-895)))) (-345)) (T -342)) +((-1788 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-3 (-1143 *4) (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093))))))) (-5 *1 (-342 *4)) (-4 *4 (-345)))) (-1787 (*1 *2 *3) (|partial| -12 (-5 *3 (-895)) (-5 *2 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) (-5 *1 (-342 *4)) (-4 *4 (-345)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) (-4 *4 (-345)) (-5 *2 (-751)) (-5 *1 (-342 *4)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) (-4 *4 (-345)) (-5 *2 (-669 *4)) (-5 *1 (-342 *4)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) (-5 *1 (-342 *4)))) (-1784 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-934 (-1093))) (-5 *1 (-342 *4))))) +(-10 -7 (-15 -1784 ((-934 (-1093)) (-1143 |#1|))) (-15 -1785 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) (-1143 |#1|))) (-15 -1786 ((-669 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1793 ((-751) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1787 ((-3 (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) "failed") (-895))) (-15 -1788 ((-3 (-1143 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) (-895)))) +((-4317 ((|#1| |#3|) 86) ((|#3| |#1|) 69))) +(((-343 |#1| |#2| |#3|) (-10 -7 (-15 -4317 (|#3| |#1|)) (-15 -4317 (|#1| |#3|))) (-324 |#2|) (-345) (-324 |#2|)) (T -343)) +((-4317 (*1 *2 *3) (-12 (-4 *4 (-345)) (-4 *2 (-324 *4)) (-5 *1 (-343 *2 *4 *3)) (-4 *3 (-324 *4)))) (-4317 (*1 *2 *3) (-12 (-4 *4 (-345)) (-4 *2 (-324 *4)) (-5 *1 (-343 *3 *4 *2)) (-4 *3 (-324 *4))))) +(-10 -7 (-15 -4317 (|#3| |#1|)) (-15 -4317 (|#1| |#3|))) +((-1796 (((-112) $) 51)) (-4131 (((-812 (-895)) $) 21) (((-895) $) 52)) (-3803 (((-3 $ "failed") $) 16)) (-3804 (($) 9)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 93)) (-1887 (((-3 (-751) "failed") $ $) 71) (((-751) $) 60)) (-4170 (($ $ (-751)) NIL) (($ $) 8)) (-1790 (($) 44)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 34)) (-3035 (((-3 $ "failed") $) 38) (($ $) 37))) +(((-344 |#1|) (-10 -8 (-15 -4131 ((-895) |#1|)) (-15 -1887 ((-751) |#1|)) (-15 -1796 ((-112) |#1|)) (-15 -1790 (|#1|)) (-15 -3036 ((-3 (-1231 |#1|) "failed") (-669 |#1|))) (-15 -3035 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -1887 ((-3 (-751) "failed") |#1| |#1|)) (-15 -4131 ((-812 (-895)) |#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)))) (-345)) (T -344)) +NIL +(-10 -8 (-15 -4131 ((-895) |#1|)) (-15 -1887 ((-751) |#1|)) (-15 -1796 ((-112) |#1|)) (-15 -1790 (|#1|)) (-15 -3036 ((-3 (-1231 |#1|) "failed") (-669 |#1|))) (-15 -3035 (|#1| |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -1887 ((-3 (-751) "failed") |#1| |#1|)) (-15 -4131 ((-812 (-895)) |#1|)) (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1791 (((-1158 (-895) (-751)) (-538)) 90)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-1705 (((-112) $ $) 57)) (-3471 (((-751)) 100)) (-3896 (($) 17 T CONST)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-3327 (($) 103)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-3166 (($) 88)) (-1796 (((-112) $) 87)) (-1886 (($ $) 76) (($ $ (-751)) 75)) (-4086 (((-112) $) 68)) (-4131 (((-812 (-895)) $) 78) (((-895) $) 85)) (-2502 (((-112) $) 30)) (-3803 (((-3 $ "failed") $) 99)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2126 (((-895) $) 102)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3804 (($) 98 T CONST)) (-2492 (($ (-895)) 101)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 91)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-1887 (((-3 (-751) "failed") $ $) 77) (((-751) $) 86)) (-4170 (($ $ (-751)) 96) (($ $) 94)) (-1790 (($) 89)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 92)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63)) (-3035 (((-3 $ "failed") $) 79) (($ $) 93)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-751)) 97) (($ $) 95)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64))) +(((-345) (-138)) (T -345)) +((-3035 (*1 *1 *1) (-4 *1 (-345))) (-3036 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-345)) (-5 *2 (-1231 *1)))) (-1792 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))))) (-1791 (*1 *2 *3) (-12 (-4 *1 (-345)) (-5 *3 (-538)) (-5 *2 (-1158 (-895) (-751))))) (-1790 (*1 *1) (-4 *1 (-345))) (-3166 (*1 *1) (-4 *1 (-345))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-112)))) (-1887 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-751)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-895)))) (-1789 (*1 *2) (-12 (-4 *1 (-345)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-397) (-363) (-1124) (-229) (-10 -8 (-15 -3035 ($ $)) (-15 -3036 ((-3 (-1231 $) "failed") (-669 $))) (-15 -1792 ((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538)))))) (-15 -1791 ((-1158 (-895) (-751)) (-538))) (-15 -1790 ($)) (-15 -3166 ($)) (-15 -1796 ((-112) $)) (-15 -1887 ((-751) $)) (-15 -4131 ((-895) $)) (-15 -1789 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-597 (-840)) . T) ((-170) . T) ((-229) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) . T) ((-363) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) . T) ((-1190) . T)) +((-4279 (((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|) 53)) (-4278 (((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))) 51))) +(((-346 |#1| |#2| |#3|) (-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|))) (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))) (-1207 |#1|) (-405 |#1| |#2|)) (T -346)) +((-4279 (*1 *2 *3) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-4278 (*1 *2) (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-405 *3 *4))))) +(-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) |#1|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-882 |#1|) (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1793 (((-751)) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| (-882 |#1|) (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-882 |#1|) "failed") $) NIL)) (-3507 (((-882 |#1|) $) NIL)) (-1911 (($ (-1231 (-882 |#1|))) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-882 |#1|) (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-882 |#1|) (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| (-882 |#1|) (-363)))) (-1796 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363)))) (($ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| (-882 |#1|) (-363))) (((-812 (-895)) $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| (-882 |#1|) (-363)))) (-2127 (((-112) $) NIL (|has| (-882 |#1|) (-363)))) (-3467 (((-882 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-882 |#1|) (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 (-882 |#1|)) $) NIL) (((-1143 $) $ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-2126 (((-895) $) NIL (|has| (-882 |#1|) (-363)))) (-1724 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363)))) (-1723 (((-1143 (-882 |#1|)) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-1143 (-882 |#1|)) "failed") $ $) NIL (|has| (-882 |#1|) (-363)))) (-1725 (($ $ (-1143 (-882 |#1|))) NIL (|has| (-882 |#1|) (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-882 |#1|) (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| (-882 |#1|) (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-1795 (((-1231 (-622 (-2 (|:| -3761 (-882 |#1|)) (|:| -2492 (-1093)))))) NIL)) (-1794 (((-669 (-882 |#1|))) NIL)) (-2501 (($) NIL (|has| (-882 |#1|) (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-882 |#1|) (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| (-882 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 (-882 |#1|))) NIL)) (-1790 (($) NIL (|has| (-882 |#1|) (-363)))) (-1726 (($) NIL (|has| (-882 |#1|) (-363)))) (-3575 (((-1231 (-882 |#1|)) $) NIL) (((-669 (-882 |#1|)) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-882 |#1|) (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-882 |#1|)) NIL)) (-3035 (($ $) NIL (|has| (-882 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| (-882 |#1|) (-143)) (|has| (-882 |#1|) (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3002 (($ $) NIL (|has| (-882 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-882 |#1|) (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ (-882 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-882 |#1|)) NIL) (($ (-882 |#1|) $) NIL))) +(((-347 |#1| |#2|) (-13 (-324 (-882 |#1|)) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 (-882 |#1|)) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 (-882 |#1|)))) (-15 -1793 ((-751))))) (-895) (-895)) (T -347)) +((-1795 (*1 *2) (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 (-882 *3)) (|:| -2492 (-1093)))))) (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-1794 (*1 *2) (-12 (-5 *2 (-669 (-882 *3))) (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-1793 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895))))) +(-13 (-324 (-882 |#1|)) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 (-882 |#1|)) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 (-882 |#1|)))) (-15 -1793 ((-751))))) +((-2898 (((-112) $ $) 61)) (-3539 (((-112) $) 74)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) 92) (($ $ (-895)) 90 (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) 148 (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1793 (((-751)) 89)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) 162 (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) 112)) (-3507 ((|#1| $) 91)) (-1911 (($ (-1231 |#1|)) 58)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 188 (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) 158 (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) 149 (|has| |#1| (-363)))) (-1796 (((-112) $) NIL (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) 98 (|has| |#1| (-363)))) (-2127 (((-112) $) 175 (|has| |#1| (-363)))) (-3467 ((|#1| $) 94) (($ $ (-895)) 93 (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) 189) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) 134 (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) 73 (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) 70 (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) 82 (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) 69 (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 192)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) 137 (|has| |#1| (-363)))) (-4291 (((-112) $) 108)) (-3594 (((-1093) $) NIL)) (-1795 (((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) 83)) (-1794 (((-669 |#1|)) 87)) (-2501 (($) 96 (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 150 (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) 151)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) 62)) (-3536 (((-1143 |#1|)) 152)) (-1790 (($) 133 (|has| |#1| (-363)))) (-1726 (($) NIL (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) 106) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) 124) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 57)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) 156)) (-2128 (((-1231 $)) 172) (((-1231 $) (-895)) 101)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) 117 T CONST)) (-2997 (($) 33 T CONST)) (-4288 (($ $) 107 (|has| |#1| (-363))) (($ $ (-751)) 99 (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) 183)) (-4308 (($ $ $) 104) (($ $ |#1|) 105)) (-4197 (($ $) 177) (($ $ $) 181)) (-4199 (($ $ $) 179)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 138)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 186) (($ $ $) 142) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 103))) +(((-348 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 |#1|))) (-15 -1793 ((-751))))) (-345) (-3 (-1143 |#1|) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (T -348)) +((-1795 (*1 *2) (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093)))))) (-5 *1 (-348 *3 *4)) (-4 *3 (-345)) (-14 *4 (-3 (-1143 *3) *2)))) (-1794 (*1 *2) (-12 (-5 *2 (-669 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-345)) (-14 *4 (-3 (-1143 *3) (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093))))))))) (-1793 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-348 *3 *4)) (-4 *3 (-345)) (-14 *4 (-3 (-1143 *3) (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093)))))))))) +(-13 (-324 |#1|) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 |#1|))) (-15 -1793 ((-751))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1793 (((-751)) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-1911 (($ (-1231 |#1|)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| |#1| (-363)))) (-1796 (((-112) $) NIL (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| |#1| (-363)))) (-2127 (((-112) $) NIL (|has| |#1| (-363)))) (-3467 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) NIL) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) NIL (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) NIL (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-1795 (((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093)))))) NIL)) (-1794 (((-669 |#1|)) NIL)) (-2501 (($) NIL (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 |#1|)) NIL)) (-1790 (($) NIL (|has| |#1| (-363)))) (-1726 (($) NIL (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) NIL) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) NIL)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-349 |#1| |#2|) (-13 (-324 |#1|) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 |#1|))) (-15 -1793 ((-751))))) (-345) (-895)) (T -349)) +((-1795 (*1 *2) (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093)))))) (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895)))) (-1794 (*1 *2) (-12 (-5 *2 (-669 *3)) (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895)))) (-1793 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895))))) +(-13 (-324 |#1|) (-10 -7 (-15 -1795 ((-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))))) (-15 -1794 ((-669 |#1|))) (-15 -1793 ((-751))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) 120 (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) 140 (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) 93)) (-3507 ((|#1| $) 90)) (-1911 (($ (-1231 |#1|)) 85)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) 82 (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) 42 (|has| |#1| (-363)))) (-1796 (((-112) $) NIL (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) 121 (|has| |#1| (-363)))) (-2127 (((-112) $) 74 (|has| |#1| (-363)))) (-3467 ((|#1| $) 39) (($ $ (-895)) 43 (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) 65) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) 97 (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) NIL (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) NIL (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) 95 (|has| |#1| (-363)))) (-4291 (((-112) $) 142)) (-3594 (((-1093) $) NIL)) (-2501 (($) 36 (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 115 (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) 139)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) 59)) (-3536 (((-1143 |#1|)) 88)) (-1790 (($) 126 (|has| |#1| (-363)))) (-1726 (($) NIL (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) 53) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) 138) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 87)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) 144)) (-2128 (((-1231 $)) 109) (((-1231 $) (-895)) 49)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) 111 T CONST)) (-2997 (($) 32 T CONST)) (-4288 (($ $) 68 (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) 107)) (-4308 (($ $ $) 99) (($ $ |#1|) 100)) (-4197 (($ $) 80) (($ $ $) 105)) (-4199 (($ $ $) 103)) (** (($ $ (-895)) NIL) (($ $ (-751)) 44) (($ $ (-538)) 130)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 78) (($ $ $) 56) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76))) +(((-350 |#1| |#2|) (-324 |#1|) (-345) (-1143 |#1|)) (T -350)) +NIL +(-324 |#1|) +((-1811 (((-934 (-1143 |#1|)) (-1143 |#1|)) 36)) (-3327 (((-1143 |#1|) (-895) (-895)) 113) (((-1143 |#1|) (-895)) 112)) (-1796 (((-112) (-1143 |#1|)) 84)) (-1798 (((-895) (-895)) 71)) (-1799 (((-895) (-895)) 74)) (-1797 (((-895) (-895)) 69)) (-2127 (((-112) (-1143 |#1|)) 88)) (-1806 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 101)) (-1809 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 104)) (-1808 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 103)) (-1807 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 102)) (-1805 (((-3 (-1143 |#1|) "failed") (-1143 |#1|)) 98)) (-1810 (((-1143 |#1|) (-1143 |#1|)) 62)) (-1801 (((-1143 |#1|) (-895)) 107)) (-1804 (((-1143 |#1|) (-895)) 110)) (-1803 (((-1143 |#1|) (-895)) 109)) (-1802 (((-1143 |#1|) (-895)) 108)) (-1800 (((-1143 |#1|) (-895)) 105))) +(((-351 |#1|) (-10 -7 (-15 -1796 ((-112) (-1143 |#1|))) (-15 -2127 ((-112) (-1143 |#1|))) (-15 -1797 ((-895) (-895))) (-15 -1798 ((-895) (-895))) (-15 -1799 ((-895) (-895))) (-15 -1800 ((-1143 |#1|) (-895))) (-15 -1801 ((-1143 |#1|) (-895))) (-15 -1802 ((-1143 |#1|) (-895))) (-15 -1803 ((-1143 |#1|) (-895))) (-15 -1804 ((-1143 |#1|) (-895))) (-15 -1805 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1806 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1807 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1808 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1809 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -3327 ((-1143 |#1|) (-895))) (-15 -3327 ((-1143 |#1|) (-895) (-895))) (-15 -1810 ((-1143 |#1|) (-1143 |#1|))) (-15 -1811 ((-934 (-1143 |#1|)) (-1143 |#1|)))) (-345)) (T -351)) +((-1811 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-934 (-1143 *4))) (-5 *1 (-351 *4)) (-5 *3 (-1143 *4)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-3327 (*1 *2 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1809 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-1808 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-1807 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-1806 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-1805 (*1 *2 *2) (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) (-1799 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345)))) (-1797 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-351 *4)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-351 *4))))) +(-10 -7 (-15 -1796 ((-112) (-1143 |#1|))) (-15 -2127 ((-112) (-1143 |#1|))) (-15 -1797 ((-895) (-895))) (-15 -1798 ((-895) (-895))) (-15 -1799 ((-895) (-895))) (-15 -1800 ((-1143 |#1|) (-895))) (-15 -1801 ((-1143 |#1|) (-895))) (-15 -1802 ((-1143 |#1|) (-895))) (-15 -1803 ((-1143 |#1|) (-895))) (-15 -1804 ((-1143 |#1|) (-895))) (-15 -1805 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1806 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1807 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1808 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -1809 ((-3 (-1143 |#1|) "failed") (-1143 |#1|))) (-15 -3327 ((-1143 |#1|) (-895))) (-15 -3327 ((-1143 |#1|) (-895) (-895))) (-15 -1810 ((-1143 |#1|) (-1143 |#1|))) (-15 -1811 ((-934 (-1143 |#1|)) (-1143 |#1|)))) +((-1812 ((|#1| (-1143 |#2|)) 52))) +(((-352 |#1| |#2|) (-10 -7 (-15 -1812 (|#1| (-1143 |#2|)))) (-13 (-397) (-10 -7 (-15 -4317 (|#1| |#2|)) (-15 -2126 ((-895) |#1|)) (-15 -2128 ((-1231 |#1|) (-895))) (-15 -4288 (|#1| |#1|)))) (-345)) (T -352)) +((-1812 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-4 *2 (-13 (-397) (-10 -7 (-15 -4317 (*2 *4)) (-15 -2126 ((-895) *2)) (-15 -2128 ((-1231 *2) (-895))) (-15 -4288 (*2 *2))))) (-5 *1 (-352 *2 *4))))) +(-10 -7 (-15 -1812 (|#1| (-1143 |#2|)))) +((-3037 (((-3 (-622 |#3|) "failed") (-622 |#3|) |#3|) 34))) +(((-353 |#1| |#2| |#3|) (-10 -7 (-15 -3037 ((-3 (-622 |#3|) "failed") (-622 |#3|) |#3|))) (-345) (-1207 |#1|) (-1207 |#2|)) (T -353)) +((-3037 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-345)) (-5 *1 (-353 *4 *5 *3))))) +(-10 -7 (-15 -3037 ((-3 (-622 |#3|) "failed") (-622 |#3|) |#3|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| |#1| (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-1911 (($ (-1231 |#1|)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| |#1| (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| |#1| (-363)))) (-1796 (((-112) $) NIL (|has| |#1| (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| |#1| (-363))) (((-812 (-895)) $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| |#1| (-363)))) (-2127 (((-112) $) NIL (|has| |#1| (-363)))) (-3467 ((|#1| $) NIL) (($ $ (-895)) NIL (|has| |#1| (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 |#1|) $) NIL) (((-1143 $) $ (-895)) NIL (|has| |#1| (-363)))) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-1724 (((-1143 |#1|) $) NIL (|has| |#1| (-363)))) (-1723 (((-1143 |#1|) $) NIL (|has| |#1| (-363))) (((-3 (-1143 |#1|) "failed") $ $) NIL (|has| |#1| (-363)))) (-1725 (($ $ (-1143 |#1|)) NIL (|has| |#1| (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| |#1| (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL (|has| |#1| (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| |#1| (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| |#1| (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 |#1|)) NIL)) (-1790 (($) NIL (|has| |#1| (-363)))) (-1726 (($) NIL (|has| |#1| (-363)))) (-3575 (((-1231 |#1|) $) NIL) (((-669 |#1|) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) NIL)) (-3035 (($ $) NIL (|has| |#1| (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3002 (($ $) NIL (|has| |#1| (-363))) (($ $ (-751)) NIL (|has| |#1| (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-354 |#1| |#2|) (-324 |#1|) (-345) (-895)) (T -354)) +NIL +(-324 |#1|) +((-2333 (((-112) (-622 (-922 |#1|))) 34)) (-2335 (((-622 (-922 |#1|)) (-622 (-922 |#1|))) 46)) (-2334 (((-3 (-622 (-922 |#1|)) "failed") (-622 (-922 |#1|))) 41))) +(((-355 |#1| |#2|) (-10 -7 (-15 -2333 ((-112) (-622 (-922 |#1|)))) (-15 -2334 ((-3 (-622 (-922 |#1|)) "failed") (-622 (-922 |#1|)))) (-15 -2335 ((-622 (-922 |#1|)) (-622 (-922 |#1|))))) (-446) (-622 (-1149))) (T -355)) +((-2335 (*1 *2 *2) (-12 (-5 *2 (-622 (-922 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-622 (-1149))))) (-2334 (*1 *2 *2) (|partial| -12 (-5 *2 (-622 (-922 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) (-14 *4 (-622 (-1149))))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-446)) (-5 *2 (-112)) (-5 *1 (-355 *4 *5)) (-14 *5 (-622 (-1149)))))) +(-10 -7 (-15 -2333 ((-112) (-622 (-922 |#1|)))) (-15 -2334 ((-3 (-622 (-922 |#1|)) "failed") (-622 (-922 |#1|)))) (-15 -2335 ((-622 (-922 |#1|)) (-622 (-922 |#1|))))) +((-2898 (((-112) $ $) NIL)) (-3471 (((-751) $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) 15)) (-2768 ((|#1| $ (-538)) NIL)) (-2769 (((-538) $ (-538)) NIL)) (-2371 (($ (-1 |#1| |#1|) $) 32)) (-2372 (($ (-1 (-538) (-538)) $) 24)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 26)) (-3594 (((-1093) $) NIL)) (-2767 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-538)))) $) 28)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) 38) (($ |#1|) NIL)) (-2997 (($) 9 T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL) (($ |#1| (-538)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19))) +(((-356 |#1|) (-13 (-467) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-538))) (-15 -3471 ((-751) $)) (-15 -2769 ((-538) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2372 ($ (-1 (-538) (-538)) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-538)))) $)))) (-1074)) (T -356)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1074)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1074)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-356 *2)) (-4 *2 (-1074)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-356 *3)) (-4 *3 (-1074)))) (-2769 (*1 *2 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-356 *3)) (-4 *3 (-1074)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-356 *2)) (-4 *2 (-1074)))) (-2372 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-538) (-538))) (-5 *1 (-356 *3)) (-4 *3 (-1074)))) (-2371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-356 *3)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-538))))) (-5 *1 (-356 *3)) (-4 *3 (-1074))))) +(-13 (-467) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-538))) (-15 -3471 ((-751) $)) (-15 -2769 ((-538) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2372 ($ (-1 (-538) (-538)) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-538)))) $)))) +((-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 13)) (-2178 (($ $) 14)) (-4329 (((-400 $) $) 30)) (-4086 (((-112) $) 26)) (-2734 (($ $) 19)) (-3495 (($ $ $) 23) (($ (-622 $)) NIL)) (-4092 (((-400 $) $) 31)) (-3820 (((-3 $ "failed") $ $) 22)) (-1704 (((-751) $) 25)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 35)) (-2177 (((-112) $ $) 16)) (-4308 (($ $ $) 33))) +(((-357 |#1|) (-10 -8 (-15 -4308 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -1704 ((-751) |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2177 ((-112) |#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|))) (-358)) (T -357)) +NIL +(-10 -8 (-15 -4308 (|#1| |#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -1704 ((-751) |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|)) (-15 -2177 ((-112) |#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-2502 (((-112) $) 30)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64))) +(((-358) (-138)) (T -358)) +((-4308 (*1 *1 *1 *1) (-4 *1 (-358)))) +(-13 (-302) (-1190) (-239) (-10 -8 (-15 -4308 ($ $ $)) (-6 -4351) (-6 -4345))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T)) +((-2898 (((-112) $ $) NIL)) (-1813 ((|#1| $ |#1|) 30)) (-1817 (($ $ (-1131)) 22)) (-3982 (((-3 |#1| "failed") $) 29)) (-1814 ((|#1| $) 27)) (-1818 (($ (-383)) 21) (($ (-383) (-1131)) 20)) (-3905 (((-383) $) 24)) (-3593 (((-1131) $) NIL)) (-1815 (((-1131) $) 25)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19)) (-1816 (($ $) 23)) (-3387 (((-112) $ $) 18))) +(((-359 |#1|) (-13 (-360 (-383) |#1|) (-10 -8 (-15 -3982 ((-3 |#1| "failed") $)))) (-1074)) (T -359)) +((-3982 (*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1074))))) +(-13 (-360 (-383) |#1|) (-10 -8 (-15 -3982 ((-3 |#1| "failed") $)))) +((-2898 (((-112) $ $) 7)) (-1813 ((|#2| $ |#2|) 13)) (-1817 (($ $ (-1131)) 18)) (-1814 ((|#2| $) 14)) (-1818 (($ |#1|) 20) (($ |#1| (-1131)) 19)) (-3905 ((|#1| $) 16)) (-3593 (((-1131) $) 9)) (-1815 (((-1131) $) 15)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-1816 (($ $) 17)) (-3387 (((-112) $ $) 6))) +(((-360 |#1| |#2|) (-138) (-1074) (-1074)) (T -360)) +((-1818 (*1 *1 *2) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-1818 (*1 *1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *1 (-360 *2 *4)) (-4 *2 (-1074)) (-4 *4 (-1074)))) (-1817 (*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-360 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-1816 (*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1074)))) (-1815 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-1131)))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))) (-1813 (*1 *2 *1 *2) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074))))) +(-13 (-1074) (-10 -8 (-15 -1818 ($ |t#1|)) (-15 -1818 ($ |t#1| (-1131))) (-15 -1817 ($ $ (-1131))) (-15 -1816 ($ $)) (-15 -3905 (|t#1| $)) (-15 -1815 ((-1131) $)) (-15 -1814 (|t#2| $)) (-15 -1813 (|t#2| $ |t#2|)))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-3574 (((-1231 (-669 |#2|)) (-1231 $)) 61)) (-1907 (((-669 |#2|) (-1231 $)) 120)) (-1843 ((|#2| $) 32)) (-1905 (((-669 |#2|) $ (-1231 $)) 123)) (-2496 (((-3 $ "failed") $) 75)) (-1841 ((|#2| $) 35)) (-1821 (((-1143 |#2|) $) 83)) (-1909 ((|#2| (-1231 $)) 106)) (-1839 (((-1143 |#2|) $) 28)) (-1833 (((-112)) 100)) (-1911 (($ (-1231 |#2|) (-1231 $)) 113)) (-3821 (((-3 $ "failed") $) 79)) (-1826 (((-112)) 95)) (-1824 (((-112)) 90)) (-1828 (((-112)) 53)) (-1908 (((-669 |#2|) (-1231 $)) 118)) (-1844 ((|#2| $) 31)) (-1906 (((-669 |#2|) $ (-1231 $)) 122)) (-2497 (((-3 $ "failed") $) 73)) (-1842 ((|#2| $) 34)) (-1822 (((-1143 |#2|) $) 82)) (-1910 ((|#2| (-1231 $)) 104)) (-1840 (((-1143 |#2|) $) 26)) (-1834 (((-112)) 99)) (-1825 (((-112)) 92)) (-1827 (((-112)) 51)) (-1829 (((-112)) 87)) (-1832 (((-112)) 101)) (-3575 (((-1231 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) (-1231 $) (-1231 $)) 111)) (-1838 (((-112)) 97)) (-1823 (((-622 (-1231 |#2|))) 86)) (-1836 (((-112)) 98)) (-1837 (((-112)) 96)) (-1835 (((-112)) 46)) (-1831 (((-112)) 102))) +(((-361 |#1| |#2|) (-10 -8 (-15 -1821 ((-1143 |#2|) |#1|)) (-15 -1822 ((-1143 |#2|) |#1|)) (-15 -1823 ((-622 (-1231 |#2|)))) (-15 -2496 ((-3 |#1| "failed") |#1|)) (-15 -2497 ((-3 |#1| "failed") |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 -1824 ((-112))) (-15 -1825 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-112))) (-15 -1835 ((-112))) (-15 -1836 ((-112))) (-15 -1837 ((-112))) (-15 -1838 ((-112))) (-15 -1839 ((-1143 |#2|) |#1|)) (-15 -1840 ((-1143 |#2|) |#1|)) (-15 -1907 ((-669 |#2|) (-1231 |#1|))) (-15 -1908 ((-669 |#2|) (-1231 |#1|))) (-15 -1909 (|#2| (-1231 |#1|))) (-15 -1910 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1841 (|#2| |#1|)) (-15 -1842 (|#2| |#1|)) (-15 -1843 (|#2| |#1|)) (-15 -1844 (|#2| |#1|)) (-15 -1905 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -1906 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -3574 ((-1231 (-669 |#2|)) (-1231 |#1|)))) (-362 |#2|) (-170)) (T -361)) +((-1838 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1837 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1836 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1835 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1834 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1833 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1832 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1831 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1829 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1828 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1827 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1826 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1825 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1824 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) (-1823 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-622 (-1231 *4))) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4))))) +(-10 -8 (-15 -1821 ((-1143 |#2|) |#1|)) (-15 -1822 ((-1143 |#2|) |#1|)) (-15 -1823 ((-622 (-1231 |#2|)))) (-15 -2496 ((-3 |#1| "failed") |#1|)) (-15 -2497 ((-3 |#1| "failed") |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 -1824 ((-112))) (-15 -1825 ((-112))) (-15 -1826 ((-112))) (-15 -1827 ((-112))) (-15 -1828 ((-112))) (-15 -1829 ((-112))) (-15 -1831 ((-112))) (-15 -1832 ((-112))) (-15 -1833 ((-112))) (-15 -1834 ((-112))) (-15 -1835 ((-112))) (-15 -1836 ((-112))) (-15 -1837 ((-112))) (-15 -1838 ((-112))) (-15 -1839 ((-1143 |#2|) |#1|)) (-15 -1840 ((-1143 |#2|) |#1|)) (-15 -1907 ((-669 |#2|) (-1231 |#1|))) (-15 -1908 ((-669 |#2|) (-1231 |#1|))) (-15 -1909 (|#2| (-1231 |#1|))) (-15 -1910 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1841 (|#2| |#1|)) (-15 -1842 (|#2| |#1|)) (-15 -1843 (|#2| |#1|)) (-15 -1844 (|#2| |#1|)) (-15 -1905 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -1906 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -3574 ((-1231 (-669 |#2|)) (-1231 |#1|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1892 (((-3 $ "failed")) 37 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3574 (((-1231 (-669 |#1|)) (-1231 $)) 78)) (-1845 (((-1231 $)) 81)) (-3896 (($) 17 T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed")) 40 (|has| |#1| (-545)))) (-1819 (((-3 $ "failed")) 38 (|has| |#1| (-545)))) (-1907 (((-669 |#1|) (-1231 $)) 65)) (-1843 ((|#1| $) 74)) (-1905 (((-669 |#1|) $ (-1231 $)) 76)) (-2496 (((-3 $ "failed") $) 45 (|has| |#1| (-545)))) (-2499 (($ $ (-895)) 28)) (-1841 ((|#1| $) 72)) (-1821 (((-1143 |#1|) $) 42 (|has| |#1| (-545)))) (-1909 ((|#1| (-1231 $)) 67)) (-1839 (((-1143 |#1|) $) 63)) (-1833 (((-112)) 57)) (-1911 (($ (-1231 |#1|) (-1231 $)) 69)) (-3821 (((-3 $ "failed") $) 47 (|has| |#1| (-545)))) (-3444 (((-895)) 80)) (-1830 (((-112)) 54)) (-2524 (($ $ (-895)) 33)) (-1826 (((-112)) 50)) (-1824 (((-112)) 48)) (-1828 (((-112)) 52)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed")) 41 (|has| |#1| (-545)))) (-1820 (((-3 $ "failed")) 39 (|has| |#1| (-545)))) (-1908 (((-669 |#1|) (-1231 $)) 66)) (-1844 ((|#1| $) 75)) (-1906 (((-669 |#1|) $ (-1231 $)) 77)) (-2497 (((-3 $ "failed") $) 46 (|has| |#1| (-545)))) (-2498 (($ $ (-895)) 29)) (-1842 ((|#1| $) 73)) (-1822 (((-1143 |#1|) $) 43 (|has| |#1| (-545)))) (-1910 ((|#1| (-1231 $)) 68)) (-1840 (((-1143 |#1|) $) 64)) (-1834 (((-112)) 58)) (-3593 (((-1131) $) 9)) (-1825 (((-112)) 49)) (-1827 (((-112)) 51)) (-1829 (((-112)) 53)) (-3594 (((-1093) $) 10)) (-1832 (((-112)) 56)) (-3575 (((-1231 |#1|) $ (-1231 $)) 71) (((-669 |#1|) (-1231 $) (-1231 $)) 70)) (-2014 (((-622 (-922 |#1|)) (-1231 $)) 79)) (-2686 (($ $ $) 25)) (-1838 (((-112)) 62)) (-4317 (((-840) $) 11)) (-1823 (((-622 (-1231 |#1|))) 44 (|has| |#1| (-545)))) (-2687 (($ $ $ $) 26)) (-1836 (((-112)) 60)) (-2685 (($ $ $) 24)) (-1837 (((-112)) 61)) (-1835 (((-112)) 59)) (-1831 (((-112)) 55)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-362 |#1|) (-138) (-170)) (T -362)) +((-1845 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1231 *1)) (-4 *1 (-362 *3)))) (-3444 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-895)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-622 (-922 *4))))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1231 (-669 *4))))) (-1906 (*1 *2 *1 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-1905 (*1 *2 *1 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-1844 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-3575 (*1 *2 *1 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1231 *4)))) (-3575 (*1 *2 *3 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1231 *1)) (-4 *4 (-170)) (-4 *1 (-362 *4)))) (-1910 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1143 *3)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1143 *3)))) (-1838 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1837 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1836 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1835 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1834 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1833 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1832 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1831 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1830 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1829 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1828 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1827 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1826 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1825 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-1824 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112)))) (-3821 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) (-2497 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) (-2496 (*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) (-1823 (*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) (-5 *2 (-622 (-1231 *3))))) (-1822 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) (-5 *2 (-1143 *3)))) (-1821 (*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) (-5 *2 (-1143 *3)))) (-2029 (*1 *2) (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2128 (-622 *1)))) (-4 *1 (-362 *3)))) (-2028 (*1 *2) (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2128 (-622 *1)))) (-4 *1 (-362 *3)))) (-1820 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170)))) (-1819 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170)))) (-1892 (*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170))))) +(-13 (-725 |t#1|) (-10 -8 (-15 -1845 ((-1231 $))) (-15 -3444 ((-895))) (-15 -2014 ((-622 (-922 |t#1|)) (-1231 $))) (-15 -3574 ((-1231 (-669 |t#1|)) (-1231 $))) (-15 -1906 ((-669 |t#1|) $ (-1231 $))) (-15 -1905 ((-669 |t#1|) $ (-1231 $))) (-15 -1844 (|t#1| $)) (-15 -1843 (|t#1| $)) (-15 -1842 (|t#1| $)) (-15 -1841 (|t#1| $)) (-15 -3575 ((-1231 |t#1|) $ (-1231 $))) (-15 -3575 ((-669 |t#1|) (-1231 $) (-1231 $))) (-15 -1911 ($ (-1231 |t#1|) (-1231 $))) (-15 -1910 (|t#1| (-1231 $))) (-15 -1909 (|t#1| (-1231 $))) (-15 -1908 ((-669 |t#1|) (-1231 $))) (-15 -1907 ((-669 |t#1|) (-1231 $))) (-15 -1840 ((-1143 |t#1|) $)) (-15 -1839 ((-1143 |t#1|) $)) (-15 -1838 ((-112))) (-15 -1837 ((-112))) (-15 -1836 ((-112))) (-15 -1835 ((-112))) (-15 -1834 ((-112))) (-15 -1833 ((-112))) (-15 -1832 ((-112))) (-15 -1831 ((-112))) (-15 -1830 ((-112))) (-15 -1829 ((-112))) (-15 -1828 ((-112))) (-15 -1827 ((-112))) (-15 -1826 ((-112))) (-15 -1825 ((-112))) (-15 -1824 ((-112))) (IF (|has| |t#1| (-545)) (PROGN (-15 -3821 ((-3 $ "failed") $)) (-15 -2497 ((-3 $ "failed") $)) (-15 -2496 ((-3 $ "failed") $)) (-15 -1823 ((-622 (-1231 |t#1|)))) (-15 -1822 ((-1143 |t#1|) $)) (-15 -1821 ((-1143 |t#1|) $)) (-15 -2029 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -2028 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -1820 ((-3 $ "failed"))) (-15 -1819 ((-3 $ "failed"))) (-15 -1892 ((-3 $ "failed"))) (-6 -4350)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-725 |#1|) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 7)) (-3471 (((-751)) 16)) (-3327 (($) 13)) (-2126 (((-895) $) 14)) (-3593 (((-1131) $) 9)) (-2492 (($ (-895)) 15)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6))) +(((-363) (-138)) (T -363)) +((-3471 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-751)))) (-2492 (*1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-363)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-895)))) (-3327 (*1 *1) (-4 *1 (-363)))) +(-13 (-1074) (-10 -8 (-15 -3471 ((-751))) (-15 -2492 ($ (-895))) (-15 -2126 ((-895) $)) (-15 -3327 ($)))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-1901 (((-669 |#2|) (-1231 $)) 40)) (-1911 (($ (-1231 |#2|) (-1231 $)) 34)) (-1900 (((-669 |#2|) $ (-1231 $)) 42)) (-4117 ((|#2| (-1231 $)) 13)) (-3575 (((-1231 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) (-1231 $) (-1231 $)) 25))) +(((-364 |#1| |#2| |#3|) (-10 -8 (-15 -1901 ((-669 |#2|) (-1231 |#1|))) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1900 ((-669 |#2|) |#1| (-1231 |#1|)))) (-365 |#2| |#3|) (-170) (-1207 |#2|)) (T -364)) +NIL +(-10 -8 (-15 -1901 ((-669 |#2|) (-1231 |#1|))) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1900 ((-669 |#2|) |#1| (-1231 |#1|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1901 (((-669 |#1|) (-1231 $)) 44)) (-3689 ((|#1| $) 50)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-1911 (($ (-1231 |#1|) (-1231 $)) 46)) (-1900 (((-669 |#1|) $ (-1231 $)) 51)) (-3821 (((-3 $ "failed") $) 32)) (-3444 (((-895)) 52)) (-2502 (((-112) $) 30)) (-3467 ((|#1| $) 49)) (-2130 ((|#2| $) 42 (|has| |#1| (-358)))) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4117 ((|#1| (-1231 $)) 45)) (-3575 (((-1231 |#1|) $ (-1231 $)) 48) (((-669 |#1|) (-1231 $) (-1231 $)) 47)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35)) (-3035 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2698 ((|#2| $) 43)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-365 |#1| |#2|) (-138) (-170) (-1207 |t#1|)) (T -365)) +((-3444 (*1 *2) (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-895)))) (-1900 (*1 *2 *1 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170)))) (-3575 (*1 *2 *1 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *4)))) (-3575 (*1 *2 *3 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) (-1911 (*1 *1 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1231 *1)) (-4 *4 (-170)) (-4 *1 (-365 *4 *5)) (-4 *5 (-1207 *4)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1207 *2)) (-4 *2 (-170)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3)))) (-2130 (*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358)) (-4 *2 (-1207 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3444 ((-895))) (-15 -1900 ((-669 |t#1|) $ (-1231 $))) (-15 -3689 (|t#1| $)) (-15 -3467 (|t#1| $)) (-15 -3575 ((-1231 |t#1|) $ (-1231 $))) (-15 -3575 ((-669 |t#1|) (-1231 $) (-1231 $))) (-15 -1911 ($ (-1231 |t#1|) (-1231 $))) (-15 -4117 (|t#1| (-1231 $))) (-15 -1901 ((-669 |t#1|) (-1231 $))) (-15 -2698 (|t#2| $)) (IF (|has| |t#1| (-358)) (-15 -2130 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-1848 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-1846 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3242 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-2378 (($ $) 25)) (-3778 (((-538) (-1 (-112) |#2|) $) NIL) (((-538) |#2| $) 11) (((-538) |#2| $ (-538)) NIL)) (-3872 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-366 |#1| |#2|) (-10 -8 (-15 -1846 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -3242 (|#1| |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3242 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-367 |#2|) (-1185)) (T -366)) +NIL +(-10 -8 (-15 -1846 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -3242 (|#1| |#1|)) (-15 -3872 (|#1| |#1| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3242 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2378 (|#1| |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-3778 (((-538) (-1 (-112) |#1|) $) 97) (((-538) |#1| $) 96 (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) 95 (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 70)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) 85 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 82 (|has| |#1| (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-367 |#1|) (-138) (-1185)) (T -367)) +((-3872 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))) (-2378 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)))) (-3242 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))) (-1848 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1185)) (-5 *2 (-112)))) (-3778 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1185)) (-5 *2 (-538)))) (-3778 (*1 *2 *3 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-538)))) (-3778 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)))) (-3872 (*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827)))) (-3242 (*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827)))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-827)) (-5 *2 (-112)))) (-1847 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-538)) (|has| *1 (-6 -4354)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))) (-2377 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-367 *2)) (-4 *2 (-1185)))) (-1846 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))) (-1846 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827))))) +(-13 (-631 |t#1|) (-10 -8 (-6 -4353) (-15 -3872 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2378 ($ $)) (-15 -3242 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1848 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3778 ((-538) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -3778 ((-538) |t#1| $)) (-15 -3778 ((-538) |t#1| $ (-538)))) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-6 (-827)) (-15 -3872 ($ $ $)) (-15 -3242 ($ $)) (-15 -1848 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -1847 ($ $ $ (-538))) (-15 -2377 ($ $)) (-15 -1846 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-827)) (-15 -1846 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1074) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-1185) . T)) +((-4201 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4202 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-4318 ((|#4| (-1 |#3| |#1|) |#2|) 21))) +(((-368 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4202 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4201 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1185) (-367 |#1|) (-1185) (-367 |#3|)) (T -368)) +((-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-4 *2 (-367 *5)) (-5 *1 (-368 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-368 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *2 (-367 *6)) (-5 *1 (-368 *5 *4 *6 *2)) (-4 *4 (-367 *5))))) +(-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4202 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4201 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-4294 (((-622 |#1|) $) 32)) (-4306 (($ $ (-751)) 33)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4299 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 36)) (-4296 (($ $) 34)) (-4300 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 37)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4127 (($ $ |#1| $) 31) (($ $ (-622 |#1|) (-622 $)) 30)) (-4307 (((-751) $) 38)) (-3884 (($ $ $) 29)) (-4317 (((-840) $) 11) (($ |#1|) 41) (((-1247 |#1| |#2|) $) 40) (((-1256 |#1| |#2|) $) 39)) (-4313 ((|#2| (-1256 |#1| |#2|) $) 42)) (-2991 (($) 18 T CONST)) (-1849 (($ (-652 |#1|)) 35)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#2|) 28 (|has| |#2| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-369 |#1| |#2|) (-138) (-827) (-170)) (T -369)) +((-4313 (*1 *2 *3 *1) (-12 (-5 *3 (-1256 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-827)) (-4 *2 (-170)))) (-4317 (*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-1247 *3 *4)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-1256 *3 *4)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-751)))) (-4300 (*1 *2 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4299 (*1 *2 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-1849 (*1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-4 *1 (-369 *3 *4)) (-4 *4 (-170)))) (-4296 (*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4306 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-622 *3)))) (-4127 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-827)) (-4 *5 (-170))))) +(-13 (-617 |t#2|) (-10 -8 (-15 -4313 (|t#2| (-1256 |t#1| |t#2|) $)) (-15 -4317 ($ |t#1|)) (-15 -4317 ((-1247 |t#1| |t#2|) $)) (-15 -4317 ((-1256 |t#1| |t#2|) $)) (-15 -4307 ((-751) $)) (-15 -4300 ((-1256 |t#1| |t#2|) (-1256 |t#1| |t#2|) $)) (-15 -4299 ((-1256 |t#1| |t#2|) (-1256 |t#1| |t#2|) $)) (-15 -1849 ($ (-652 |t#1|))) (-15 -4296 ($ $)) (-15 -4306 ($ $ (-751))) (-15 -4294 ((-622 |t#1|) $)) (-15 -4127 ($ $ |t#1| $)) (-15 -4127 ($ $ (-622 |t#1|) (-622 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#2|) . T) ((-617 |#2|) . T) ((-698 |#2|) . T) ((-1031 |#2|) . T) ((-1074) . T)) +((-1852 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 24)) (-1850 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1851 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 22))) +(((-370 |#1| |#2|) (-10 -7 (-15 -1850 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1851 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1852 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1185) (-13 (-367 |#1|) (-10 -7 (-6 -4354)))) (T -370)) +((-1852 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))))) (-1851 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))))) (-1850 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2)) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354))))))) +(-10 -7 (-15 -1850 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1851 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1852 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-2362 (((-669 |#2|) (-669 $)) NIL) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 22) (((-669 (-538)) (-669 $)) 14))) +(((-371 |#1| |#2|) (-10 -8 (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 |#2|) (-669 |#1|)))) (-372 |#2|) (-1025)) (T -371)) +NIL +(-10 -8 (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 |#2|) (-669 |#1|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2362 (((-669 |#1|) (-669 $)) 34) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 33) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 41 (|has| |#1| (-621 (-538)))) (((-669 (-538)) (-669 $)) 40 (|has| |#1| (-621 (-538))))) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-372 |#1|) (-138) (-1025)) (T -372)) +NIL +(-13 (-621 |t#1|) (-10 -7 (IF (|has| |t#1| (-621 (-538))) (-6 (-621 (-538))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 33)) (-3464 (((-538) $) 55)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4130 (($ $) 110)) (-3846 (($ $) 82)) (-4002 (($ $) 71)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) 44)) (-1705 (((-112) $ $) NIL)) (-3844 (($ $) 80)) (-4001 (($ $) 69)) (-3986 (((-538) $) 64)) (-2690 (($ $ (-538)) 62)) (-3848 (($ $) NIL)) (-4000 (($ $) NIL)) (-3896 (($) NIL T CONST)) (-3462 (($ $) 112)) (-3508 (((-3 (-538) #1="failed") $) 189) (((-3 (-402 (-538)) #1#) $) 185)) (-3507 (((-538) $) 187) (((-402 (-538)) $) 183)) (-2894 (($ $ $) NIL)) (-1861 (((-538) $ $) 102)) (-3821 (((-3 $ "failed") $) 114)) (-1860 (((-402 (-538)) $ (-751)) 190) (((-402 (-538)) $ (-751) (-751)) 182)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2466 (((-895)) 73) (((-895) (-895)) 98 (|has| $ (-6 -4344)))) (-3537 (((-112) $) 106)) (-3990 (($) 40)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL)) (-1853 (((-1237) (-751)) 152)) (-1854 (((-1237)) 157) (((-1237) (-751)) 158)) (-1856 (((-1237)) 159) (((-1237) (-751)) 160)) (-1855 (((-1237)) 155) (((-1237) (-751)) 156)) (-4131 (((-538) $) 58)) (-2502 (((-112) $) 104)) (-3344 (($ $ (-538)) NIL)) (-2692 (($ $) 48)) (-3467 (($ $) NIL)) (-3538 (((-112) $) 35)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-3678 (($ $ $) NIL) (($) 99 (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-2467 (((-538) $) 17)) (-1859 (($) 87) (($ $) 92)) (-1858 (($) 91) (($ $) 93)) (-4302 (($ $) 83)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 116)) (-1889 (((-895) (-538)) 43 (|has| $ (-6 -4344)))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) 53)) (-3465 (($ $) 109)) (-3605 (($ (-538) (-538)) 107) (($ (-538) (-538) (-895)) 108)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-2493 (((-538) $) 19)) (-1857 (($) 94)) (-4303 (($ $) 79)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-2944 (((-895)) 100) (((-895) (-895)) 101 (|has| $ (-6 -4344)))) (-4170 (($ $ (-751)) NIL) (($ $) 115)) (-1888 (((-895) (-538)) 47 (|has| $ (-6 -4344)))) (-3849 (($ $) NIL)) (-3999 (($ $) NIL)) (-3847 (($ $) NIL)) (-3998 (($ $) NIL)) (-3845 (($ $) 81)) (-3997 (($ $) 70)) (-4330 (((-373) $) 175) (((-221) $) 177) (((-866 (-373)) $) NIL) (((-1131) $) 162) (((-527) $) 173) (($ (-221)) 181)) (-4317 (((-840) $) 164) (($ (-538)) 186) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-538)) 186) (($ (-402 (-538))) NIL) (((-221) $) 178)) (-3461 (((-751)) NIL)) (-3466 (($ $) 111)) (-1890 (((-895)) 54) (((-895) (-895)) 66 (|has| $ (-6 -4344)))) (-3027 (((-895)) 103)) (-3852 (($ $) 86)) (-3840 (($ $) 46) (($ $ $) 52)) (-2177 (((-112) $ $) NIL)) (-3850 (($ $) 84)) (-3838 (($ $) 37)) (-3854 (($ $) NIL)) (-3842 (($ $) NIL)) (-3855 (($ $) NIL)) (-3843 (($ $) NIL)) (-3853 (($ $) NIL)) (-3841 (($ $) NIL)) (-3851 (($ $) 85)) (-3839 (($ $) 49)) (-3742 (($ $) 51)) (-2991 (($) 34 T CONST)) (-2997 (($) 38 T CONST)) (-2834 (((-1131) $) 27) (((-1131) $ (-112)) 29) (((-1237) (-803) $) 30) (((-1237) (-803) $ (-112)) 31)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 39)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 42)) (-4308 (($ $ $) 45) (($ $ (-538)) 41)) (-4197 (($ $) 36) (($ $ $) 50)) (-4199 (($ $ $) 61)) (** (($ $ (-895)) 67) (($ $ (-751)) NIL) (($ $ (-538)) 88) (($ $ (-402 (-538))) 125) (($ $ $) 117)) (* (($ (-895) $) 65) (($ (-751) $) NIL) (($ (-538) $) 68) (($ $ $) 60) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL))) +(((-373) (-13 (-399) (-229) (-598 (-1131)) (-801) (-597 (-221)) (-1171) (-598 (-527)) (-10 -8 (-15 -4308 ($ $ (-538))) (-15 ** ($ $ $)) (-15 -2692 ($ $)) (-15 -1861 ((-538) $ $)) (-15 -2690 ($ $ (-538))) (-15 -1860 ((-402 (-538)) $ (-751))) (-15 -1860 ((-402 (-538)) $ (-751) (-751))) (-15 -1859 ($)) (-15 -1858 ($)) (-15 -1857 ($)) (-15 -3840 ($ $ $)) (-15 -1859 ($ $)) (-15 -1858 ($ $)) (-15 -4330 ($ (-221))) (-15 -1856 ((-1237))) (-15 -1856 ((-1237) (-751))) (-15 -1855 ((-1237))) (-15 -1855 ((-1237) (-751))) (-15 -1854 ((-1237))) (-15 -1854 ((-1237) (-751))) (-15 -1853 ((-1237) (-751))) (-6 -4344) (-6 -4336)))) (T -373)) +((** (*1 *1 *1 *1) (-5 *1 (-373))) (-4308 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-373)))) (-2692 (*1 *1 *1) (-5 *1 (-373))) (-1861 (*1 *2 *1 *1) (-12 (-5 *2 (-538)) (-5 *1 (-373)))) (-2690 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-373)))) (-1860 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-373)))) (-1860 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-373)))) (-1859 (*1 *1) (-5 *1 (-373))) (-1858 (*1 *1) (-5 *1 (-373))) (-1857 (*1 *1) (-5 *1 (-373))) (-3840 (*1 *1 *1 *1) (-5 *1 (-373))) (-1859 (*1 *1 *1) (-5 *1 (-373))) (-1858 (*1 *1 *1) (-5 *1 (-373))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-373)))) (-1856 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373)))) (-1856 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))) (-1855 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373)))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))) (-1854 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373)))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373))))) +(-13 (-399) (-229) (-598 (-1131)) (-801) (-597 (-221)) (-1171) (-598 (-527)) (-10 -8 (-15 -4308 ($ $ (-538))) (-15 ** ($ $ $)) (-15 -2692 ($ $)) (-15 -1861 ((-538) $ $)) (-15 -2690 ($ $ (-538))) (-15 -1860 ((-402 (-538)) $ (-751))) (-15 -1860 ((-402 (-538)) $ (-751) (-751))) (-15 -1859 ($)) (-15 -1858 ($)) (-15 -1857 ($)) (-15 -3840 ($ $ $)) (-15 -1859 ($ $)) (-15 -1858 ($ $)) (-15 -4330 ($ (-221))) (-15 -1856 ((-1237))) (-15 -1856 ((-1237) (-751))) (-15 -1855 ((-1237))) (-15 -1855 ((-1237) (-751))) (-15 -1854 ((-1237))) (-15 -1854 ((-1237) (-751))) (-15 -1853 ((-1237) (-751))) (-6 -4344) (-6 -4336))) +((-1862 (((-622 (-288 (-922 (-166 |#1|)))) (-288 (-402 (-922 (-166 (-538))))) |#1|) 51) (((-622 (-288 (-922 (-166 |#1|)))) (-402 (-922 (-166 (-538)))) |#1|) 50) (((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-288 (-402 (-922 (-166 (-538)))))) |#1|) 47) (((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-402 (-922 (-166 (-538))))) |#1|) 41)) (-1863 (((-622 (-622 (-166 |#1|))) (-622 (-402 (-922 (-166 (-538))))) (-622 (-1149)) |#1|) 30) (((-622 (-166 |#1|)) (-402 (-922 (-166 (-538)))) |#1|) 18))) +(((-374 |#1|) (-10 -7 (-15 -1862 ((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-402 (-922 (-166 (-538))))) |#1|)) (-15 -1862 ((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-288 (-402 (-922 (-166 (-538)))))) |#1|)) (-15 -1862 ((-622 (-288 (-922 (-166 |#1|)))) (-402 (-922 (-166 (-538)))) |#1|)) (-15 -1862 ((-622 (-288 (-922 (-166 |#1|)))) (-288 (-402 (-922 (-166 (-538))))) |#1|)) (-15 -1863 ((-622 (-166 |#1|)) (-402 (-922 (-166 (-538)))) |#1|)) (-15 -1863 ((-622 (-622 (-166 |#1|))) (-622 (-402 (-922 (-166 (-538))))) (-622 (-1149)) |#1|))) (-13 (-358) (-825))) (T -374)) +((-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-402 (-922 (-166 (-538)))))) (-5 *4 (-622 (-1149))) (-5 *2 (-622 (-622 (-166 *5)))) (-5 *1 (-374 *5)) (-4 *5 (-13 (-358) (-825))))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 (-166 (-538))))) (-5 *2 (-622 (-166 *4))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825))))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-402 (-922 (-166 (-538)))))) (-5 *2 (-622 (-288 (-922 (-166 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825))))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 (-166 (-538))))) (-5 *2 (-622 (-288 (-922 (-166 *4))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825))))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-288 (-402 (-922 (-166 (-538))))))) (-5 *2 (-622 (-622 (-288 (-922 (-166 *4)))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825))))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 (-166 (-538)))))) (-5 *2 (-622 (-622 (-288 (-922 (-166 *4)))))) (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825)))))) +(-10 -7 (-15 -1862 ((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-402 (-922 (-166 (-538))))) |#1|)) (-15 -1862 ((-622 (-622 (-288 (-922 (-166 |#1|))))) (-622 (-288 (-402 (-922 (-166 (-538)))))) |#1|)) (-15 -1862 ((-622 (-288 (-922 (-166 |#1|)))) (-402 (-922 (-166 (-538)))) |#1|)) (-15 -1862 ((-622 (-288 (-922 (-166 |#1|)))) (-288 (-402 (-922 (-166 (-538))))) |#1|)) (-15 -1863 ((-622 (-166 |#1|)) (-402 (-922 (-166 (-538)))) |#1|)) (-15 -1863 ((-622 (-622 (-166 |#1|))) (-622 (-402 (-922 (-166 (-538))))) (-622 (-1149)) |#1|))) +((-3936 (((-622 (-288 (-922 |#1|))) (-288 (-402 (-922 (-538)))) |#1|) 46) (((-622 (-288 (-922 |#1|))) (-402 (-922 (-538))) |#1|) 45) (((-622 (-622 (-288 (-922 |#1|)))) (-622 (-288 (-402 (-922 (-538))))) |#1|) 42) (((-622 (-622 (-288 (-922 |#1|)))) (-622 (-402 (-922 (-538)))) |#1|) 36)) (-1864 (((-622 |#1|) (-402 (-922 (-538))) |#1|) 20) (((-622 (-622 |#1|)) (-622 (-402 (-922 (-538)))) (-622 (-1149)) |#1|) 30))) +(((-375 |#1|) (-10 -7 (-15 -3936 ((-622 (-622 (-288 (-922 |#1|)))) (-622 (-402 (-922 (-538)))) |#1|)) (-15 -3936 ((-622 (-622 (-288 (-922 |#1|)))) (-622 (-288 (-402 (-922 (-538))))) |#1|)) (-15 -3936 ((-622 (-288 (-922 |#1|))) (-402 (-922 (-538))) |#1|)) (-15 -3936 ((-622 (-288 (-922 |#1|))) (-288 (-402 (-922 (-538)))) |#1|)) (-15 -1864 ((-622 (-622 |#1|)) (-622 (-402 (-922 (-538)))) (-622 (-1149)) |#1|)) (-15 -1864 ((-622 |#1|) (-402 (-922 (-538))) |#1|))) (-13 (-825) (-358))) (T -375)) +((-1864 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 (-538)))) (-5 *2 (-622 *4)) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-1864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-402 (-922 (-538))))) (-5 *4 (-622 (-1149))) (-5 *2 (-622 (-622 *5))) (-5 *1 (-375 *5)) (-4 *5 (-13 (-825) (-358))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-402 (-922 (-538))))) (-5 *2 (-622 (-288 (-922 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 (-538)))) (-5 *2 (-622 (-288 (-922 *4)))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-288 (-402 (-922 (-538)))))) (-5 *2 (-622 (-622 (-288 (-922 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 (-538))))) (-5 *2 (-622 (-622 (-288 (-922 *4))))) (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358)))))) +(-10 -7 (-15 -3936 ((-622 (-622 (-288 (-922 |#1|)))) (-622 (-402 (-922 (-538)))) |#1|)) (-15 -3936 ((-622 (-622 (-288 (-922 |#1|)))) (-622 (-288 (-402 (-922 (-538))))) |#1|)) (-15 -3936 ((-622 (-288 (-922 |#1|))) (-402 (-922 (-538))) |#1|)) (-15 -3936 ((-622 (-288 (-922 |#1|))) (-288 (-402 (-922 (-538)))) |#1|)) (-15 -1864 ((-622 (-622 |#1|)) (-622 (-402 (-922 (-538)))) (-622 (-1149)) |#1|)) (-15 -1864 ((-622 |#1|) (-402 (-922 (-538))) |#1|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3226 (($ |#1| |#2|) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2106 ((|#2| $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 28)) (-2991 (($) 12 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19))) +(((-376 |#1| |#2|) (-13 (-111 |#1| |#1|) (-502 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|))) (-1025) (-827)) (T -376)) +NIL +(-13 (-111 |#1| |#1|) (-502 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-170)) (-6 (-698 |#1|)) |%noBranch|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| "failed") $) 26)) (-3507 ((|#2| $) 28)) (-4319 (($ $) NIL)) (-2510 (((-751) $) 10)) (-3154 (((-622 $) $) 20)) (-4297 (((-112) $) NIL)) (-4298 (($ |#2| |#1|) 18)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-1865 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3227 ((|#2| $) 15)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 45) (($ |#2|) 27)) (-4177 (((-622 |#1|) $) 17)) (-4040 ((|#1| $ |#2|) 47)) (-2991 (($) 29 T CONST)) (-2996 (((-622 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36))) +(((-377 |#1| |#2|) (-13 (-379 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1025) (-827)) (T -377)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827))))) +(-13 (-379 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) +((-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8) (($ (-669 (-679))) 14) (($ (-622 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 11))) (((-378) (-138)) (T -378)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-378)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-378)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-307 (-371)))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-307 (-371)))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-307 (-536)))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-307 (-536)))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-920 (-371)))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-920 (-371)))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-920 (-536)))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-920 (-536)))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-920 (-371))))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-400 (-920 (-371))))) (-4 *1 (-378)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-920 (-536))))) (-4 *1 (-378)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-400 (-920 (-536))))) (-4 *1 (-378))))) -(-13 (-389) (-10 -8 (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-323))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))) (-15 -3502 ($ (-667 (-307 (-371))))) (-15 -3503 ((-3 $ "failed") (-667 (-307 (-371))))) (-15 -3502 ($ (-667 (-307 (-536))))) (-15 -3503 ((-3 $ "failed") (-667 (-307 (-536))))) (-15 -3502 ($ (-667 (-920 (-371))))) (-15 -3503 ((-3 $ "failed") (-667 (-920 (-371))))) (-15 -3502 ($ (-667 (-920 (-536))))) (-15 -3503 ((-3 $ "failed") (-667 (-920 (-536))))) (-15 -3502 ($ (-667 (-400 (-920 (-371)))))) (-15 -3503 ((-3 $ "failed") (-667 (-400 (-920 (-371)))))) (-15 -3502 ($ (-667 (-400 (-920 (-536)))))) (-15 -3503 ((-3 $ "failed") (-667 (-400 (-920 (-536)))))))) -(((-595 (-838)) . T) ((-389) . T) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-3466 (((-749) $) 59)) (-3891 (($) NIL T CONST)) (-4294 (((-3 $ "failed") $ $) 61)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2765 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2497 (((-112) $) 15)) (-2763 ((|#1| $ (-536)) NIL)) (-2764 (((-749) $ (-536)) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2366 (($ (-1 |#1| |#1|) $) 38)) (-2367 (($ (-1 (-749) (-749)) $) 35)) (-4295 (((-3 $ "failed") $ $) 50)) (-3588 (((-1129) $) NIL)) (-2766 (($ $ $) 26)) (-2767 (($ $ $) 24)) (-3589 (((-1091) $) NIL)) (-2762 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $) 32)) (-3209 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4312 (((-838) $) 22) (($ |#1|) NIL)) (-2992 (($) 9 T CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 41)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) 63 (|has| |#1| (-825)))) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ |#1| (-749)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) -(((-379 |#1|) (-13 (-705) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -2767 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -4295 ((-3 $ "failed") $ $)) (-15 -4294 ((-3 $ "failed") $ $)) (-15 -3209 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2765 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3466 ((-749) $)) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $)) (-15 -2764 ((-749) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2367 ($ (-1 (-749) (-749)) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1072)) (T -379)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-2767 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-2766 (*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-4295 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-4294 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-3209 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) (-2765 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-749))))) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) (-2764 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-749)) (-5 *1 (-379 *4)) (-4 *4 (-1072)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-379 *2)) (-4 *2 (-1072)))) (-2367 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-749) (-749))) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) (-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-379 *3))))) -(-13 (-705) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -2767 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -4295 ((-3 $ "failed") $ $)) (-15 -4294 ((-3 $ "failed") $ $)) (-15 -3209 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2765 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3466 ((-749) $)) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $)) (-15 -2764 ((-749) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2367 ($ (-1 (-749) (-749)) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) "failed") $) 45)) (-3502 (((-536) $) 44)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3672 (($ $ $) 52)) (-3673 (($ $ $) 51)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ $) 40)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-536)) 46)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 49)) (-2892 (((-112) $ $) 48)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 50)) (-3013 (((-112) $ $) 47)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-669 (-679))) (-4 *1 (-378)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-378)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-378))))) +(-13 (-391) (-10 -8 (-15 -4317 ($ (-669 (-679)))) (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-325))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))))) +(((-597 (-840)) . T) ((-391) . T) ((-1185) . T)) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#2| "failed") $) 44)) (-3507 ((|#2| $) 43)) (-4319 (($ $) 30)) (-2510 (((-751) $) 34)) (-3154 (((-622 $) $) 35)) (-4297 (((-112) $) 38)) (-4298 (($ |#2| |#1|) 39)) (-4318 (($ (-1 |#1| |#1|) $) 40)) (-1865 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3227 ((|#2| $) 33)) (-3525 ((|#1| $) 32)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ |#2|) 45)) (-4177 (((-622 |#1|) $) 36)) (-4040 ((|#1| $ |#2|) 41)) (-2991 (($) 18 T CONST)) (-2996 (((-622 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-379 |#1| |#2|) (-138) (-1025) (-1074)) (T -379)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1074)))) (-4040 (*1 *2 *1 *3) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1025)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)))) (-4298 (*1 *1 *2 *3) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1074)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-112)))) (-2996 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-622 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-622 *3)))) (-3154 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-622 *1)) (-4 *1 (-379 *3 *4)))) (-2510 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-751)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1074)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1025)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4319 (*1 *1 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1074))))) +(-13 (-111 |t#1| |t#1|) (-1014 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4040 (|t#1| $ |t#2|)) (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (-15 -4298 ($ |t#2| |t#1|)) (-15 -4297 ((-112) $)) (-15 -2996 ((-622 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4177 ((-622 |t#1|) $)) (-15 -3154 ((-622 $) $)) (-15 -2510 ((-751) $)) (-15 -3227 (|t#2| $)) (-15 -3525 (|t#1| $)) (-15 -1865 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4319 ($ $)) (IF (|has| |t#1| (-170)) (-6 (-698 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-698 |#1|) |has| |#1| (-170)) ((-1014 |#2|) . T) ((-1031 |#1|) . T) ((-1074) . T)) +((-3508 (((-3 $ "failed") (-669 (-309 (-373)))) 21) (((-3 $ "failed") (-669 (-309 (-538)))) 19) (((-3 $ "failed") (-669 (-922 (-373)))) 17) (((-3 $ "failed") (-669 (-922 (-538)))) 15) (((-3 $ "failed") (-669 (-402 (-922 (-373))))) 13) (((-3 $ "failed") (-669 (-402 (-922 (-538))))) 11)) (-3507 (($ (-669 (-309 (-373)))) 22) (($ (-669 (-309 (-538)))) 20) (($ (-669 (-922 (-373)))) 18) (($ (-669 (-922 (-538)))) 16) (($ (-669 (-402 (-922 (-373))))) 14) (($ (-669 (-402 (-922 (-538))))) 12)) (-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8) (($ (-622 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 23))) (((-380) (-138)) (T -380)) -NIL -(-13 (-543) (-825) (-1012 (-536))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-1012 (-536)) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-1861 (((-112) $) 20)) (-1862 (((-112) $) 19)) (-3972 (($ (-1129) (-1129) (-1129)) 21)) (-3900 (((-1129) $) 16)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1866 (($ (-1129) (-1129) (-1129)) 14)) (-1864 (((-1129) $) 17)) (-1863 (((-112) $) 18)) (-1865 (((-1129) $) 15)) (-4312 (((-838) $) 12) (($ (-1129)) 13) (((-1129) $) 9)) (-3382 (((-112) $ $) 7))) -(((-381) (-382)) (T -381)) -NIL -(-382) -((-2893 (((-112) $ $) 7)) (-1861 (((-112) $) 14)) (-1862 (((-112) $) 15)) (-3972 (($ (-1129) (-1129) (-1129)) 13)) (-3900 (((-1129) $) 18)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-1866 (($ (-1129) (-1129) (-1129)) 20)) (-1864 (((-1129) $) 17)) (-1863 (((-112) $) 16)) (-1865 (((-1129) $) 19)) (-4312 (((-838) $) 11) (($ (-1129)) 22) (((-1129) $) 21)) (-3382 (((-112) $ $) 6))) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-380)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-380)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-309 (-373)))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-309 (-373)))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-309 (-538)))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-309 (-538)))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-922 (-373)))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-922 (-373)))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-922 (-538)))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-922 (-538)))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-922 (-373))))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-402 (-922 (-373))))) (-4 *1 (-380)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-922 (-538))))) (-4 *1 (-380)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-402 (-922 (-538))))) (-4 *1 (-380))))) +(-13 (-391) (-10 -8 (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-325))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))) (-15 -3507 ($ (-669 (-309 (-373))))) (-15 -3508 ((-3 $ "failed") (-669 (-309 (-373))))) (-15 -3507 ($ (-669 (-309 (-538))))) (-15 -3508 ((-3 $ "failed") (-669 (-309 (-538))))) (-15 -3507 ($ (-669 (-922 (-373))))) (-15 -3508 ((-3 $ "failed") (-669 (-922 (-373))))) (-15 -3507 ($ (-669 (-922 (-538))))) (-15 -3508 ((-3 $ "failed") (-669 (-922 (-538))))) (-15 -3507 ($ (-669 (-402 (-922 (-373)))))) (-15 -3508 ((-3 $ "failed") (-669 (-402 (-922 (-373)))))) (-15 -3507 ($ (-669 (-402 (-922 (-538)))))) (-15 -3508 ((-3 $ "failed") (-669 (-402 (-922 (-538)))))))) +(((-597 (-840)) . T) ((-391) . T) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-3471 (((-751) $) 59)) (-3896 (($) NIL T CONST)) (-4299 (((-3 $ "failed") $ $) 61)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2770 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2502 (((-112) $) 15)) (-2768 ((|#1| $ (-538)) NIL)) (-2769 (((-751) $ (-538)) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2371 (($ (-1 |#1| |#1|) $) 38)) (-2372 (($ (-1 (-751) (-751)) $) 35)) (-4300 (((-3 $ "failed") $ $) 50)) (-3593 (((-1131) $) NIL)) (-2771 (($ $ $) 26)) (-2772 (($ $ $) 24)) (-3594 (((-1093) $) NIL)) (-2767 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $) 32)) (-3214 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-4317 (((-840) $) 22) (($ |#1|) NIL)) (-2997 (($) 9 T CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 41)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) 63 (|has| |#1| (-827)))) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ |#1| (-751)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28))) +(((-381 |#1|) (-13 (-707) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -2772 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -4300 ((-3 $ "failed") $ $)) (-15 -4299 ((-3 $ "failed") $ $)) (-15 -3214 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2770 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3471 ((-751) $)) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $)) (-15 -2769 ((-751) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2372 ($ (-1 (-751) (-751)) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) (-1074)) (T -381)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-2772 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-2771 (*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-4300 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-4299 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-3214 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) (-2770 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3)))) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-751))))) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-751)) (-5 *1 (-381 *4)) (-4 *4 (-1074)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-381 *2)) (-4 *2 (-1074)))) (-2372 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-751) (-751))) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) (-2371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-381 *3))))) +(-13 (-707) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -2772 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -4300 ((-3 $ "failed") $ $)) (-15 -4299 ((-3 $ "failed") $ $)) (-15 -3214 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2770 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3471 ((-751) $)) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $)) (-15 -2769 ((-751) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2372 ($ (-1 (-751) (-751)) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-827)) (-6 (-827)) |%noBranch|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) "failed") $) 45)) (-3507 (((-538) $) 44)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3677 (($ $ $) 52)) (-3678 (($ $ $) 51)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ $) 40)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-538)) 46)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 49)) (-2897 (((-112) $ $) 48)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 50)) (-3018 (((-112) $ $) 47)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) (((-382) (-138)) (T -382)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) (-1866 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382)))) (-1865 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) (-1863 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-1861 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112)))) (-3972 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382))))) -(-13 (-1072) (-10 -8 (-15 -4312 ($ (-1129))) (-15 -4312 ((-1129) $)) (-15 -1866 ($ (-1129) (-1129) (-1129))) (-15 -1865 ((-1129) $)) (-15 -3900 ((-1129) $)) (-15 -1864 ((-1129) $)) (-15 -1863 ((-112) $)) (-15 -1862 ((-112) $)) (-15 -1861 ((-112) $)) (-15 -3972 ($ (-1129) (-1129) (-1129))))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1867 (((-838) $) 50)) (-3891 (($) NIL T CONST)) (-2494 (($ $ (-893)) NIL)) (-2519 (($ $ (-893)) NIL)) (-2493 (($ $ (-893)) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($ (-749)) 26)) (-4266 (((-749)) 17)) (-1868 (((-838) $) 52)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) NIL)) (-2682 (($ $ $ $) NIL)) (-2680 (($ $ $) NIL)) (-2986 (($) 20 T CONST)) (-3382 (((-112) $ $) 28)) (-4192 (($ $) 34) (($ $ $) 36)) (-4194 (($ $ $) 37)) (** (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) -(((-383 |#1| |#2| |#3|) (-13 (-723 |#3|) (-10 -8 (-15 -4266 ((-749))) (-15 -1868 ((-838) $)) (-15 -1867 ((-838) $)) (-15 -2496 ($ (-749))))) (-749) (-749) (-170)) (T -383)) -((-4266 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-170)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-170)))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170))))) -(-13 (-723 |#3|) (-10 -8 (-15 -4266 ((-749))) (-15 -1868 ((-838) $)) (-15 -1867 ((-838) $)) (-15 -2496 ($ (-749))))) -((-1873 (((-1129)) 10)) (-1870 (((-1118 (-1129))) 28)) (-1872 (((-1235) (-1129)) 25) (((-1235) (-381)) 24)) (-1871 (((-1235)) 26)) (-1869 (((-1118 (-1129))) 27))) -(((-384) (-10 -7 (-15 -1869 ((-1118 (-1129)))) (-15 -1870 ((-1118 (-1129)))) (-15 -1871 ((-1235))) (-15 -1872 ((-1235) (-381))) (-15 -1872 ((-1235) (-1129))) (-15 -1873 ((-1129))))) (T -384)) -((-1873 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-384)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-384)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1235)) (-5 *1 (-384)))) (-1871 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-384)))) (-1870 (*1 *2) (-12 (-5 *2 (-1118 (-1129))) (-5 *1 (-384)))) (-1869 (*1 *2) (-12 (-5 *2 (-1118 (-1129))) (-5 *1 (-384))))) -(-10 -7 (-15 -1869 ((-1118 (-1129)))) (-15 -1870 ((-1118 (-1129)))) (-15 -1871 ((-1235))) (-15 -1872 ((-1235) (-381))) (-15 -1872 ((-1235) (-1129))) (-15 -1873 ((-1129)))) -((-4126 (((-749) (-326 |#1| |#2| |#3| |#4|)) 16))) -(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4126 ((-749) (-326 |#1| |#2| |#3| |#4|)))) (-13 (-361) (-356)) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -385)) -((-4126 (*1 *2 *3) (-12 (-5 *3 (-326 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) (-5 *2 (-749)) (-5 *1 (-385 *4 *5 *6 *7))))) -(-10 -7 (-15 -4126 ((-749) (-326 |#1| |#2| |#3| |#4|)))) -((-2893 (((-112) $ $) NIL)) (-3968 (((-620 (-1129)) $ (-620 (-1129))) 38)) (-1874 (((-620 (-1129)) $ (-620 (-1129))) 39)) (-3970 (((-620 (-1129)) $ (-620 (-1129))) 40)) (-3971 (((-620 (-1129)) $) 35)) (-3972 (($) 23)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1875 (((-620 (-1129)) $) 36)) (-3974 (((-620 (-1129)) $) 37)) (-3975 (((-1235) $ (-536)) 33) (((-1235) $) 34)) (-4325 (($ (-838) (-536)) 30)) (-4312 (((-838) $) 42) (($ (-838)) 25)) (-3382 (((-112) $ $) NIL))) -(((-386) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-838))) (-15 -4325 ($ (-838) (-536))) (-15 -3975 ((-1235) $ (-536))) (-15 -3975 ((-1235) $)) (-15 -3974 ((-620 (-1129)) $)) (-15 -1875 ((-620 (-1129)) $)) (-15 -3972 ($)) (-15 -3971 ((-620 (-1129)) $)) (-15 -3970 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -1874 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3968 ((-620 (-1129)) $ (-620 (-1129))))))) (T -386)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-386)))) (-4325 (*1 *1 *2 *3) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-386)))) (-3975 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-386)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-386)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) (-3972 (*1 *1) (-5 *1 (-386))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) (-3970 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) (-1874 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) (-3968 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386))))) -(-13 (-1072) (-10 -8 (-15 -4312 ($ (-838))) (-15 -4325 ($ (-838) (-536))) (-15 -3975 ((-1235) $ (-536))) (-15 -3975 ((-1235) $)) (-15 -3974 ((-620 (-1129)) $)) (-15 -1875 ((-620 (-1129)) $)) (-15 -3972 ($)) (-15 -3971 ((-620 (-1129)) $)) (-15 -3970 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -1874 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3968 ((-620 (-1129)) $ (-620 (-1129)))))) -((-4312 (((-386) |#1|) 11))) -(((-387 |#1|) (-10 -7 (-15 -4312 ((-386) |#1|))) (-1072)) (T -387)) -((-4312 (*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-387 *3)) (-4 *3 (-1072))))) -(-10 -7 (-15 -4312 ((-386) |#1|))) -((-1877 (((-620 (-1129)) (-620 (-1129))) 9)) (-3734 (((-1235) (-381)) 27)) (-1876 (((-1074) (-1147) (-620 (-1147)) (-1150) (-620 (-1147))) 60) (((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147)) (-1147)) 35) (((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147))) 34))) -(((-388) (-10 -7 (-15 -1876 ((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147)))) (-15 -1876 ((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147)) (-1147))) (-15 -1876 ((-1074) (-1147) (-620 (-1147)) (-1150) (-620 (-1147)))) (-15 -3734 ((-1235) (-381))) (-15 -1877 ((-620 (-1129)) (-620 (-1129)))))) (T -388)) -((-1877 (*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-388)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1235)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-620 (-1147))) (-5 *5 (-1150)) (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-620 (-620 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-620 (-3 (|:| |array| (-620 *3)) (|:| |scalar| (-1147))))) (-5 *6 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-388)))) (-1876 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-620 (-620 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-620 (-3 (|:| |array| (-620 *3)) (|:| |scalar| (-1147))))) (-5 *6 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-388))))) -(-10 -7 (-15 -1876 ((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147)))) (-15 -1876 ((-1074) (-1147) (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147)))) (-620 (-620 (-3 (|:| |array| (-620 (-1147))) (|:| |scalar| (-1147))))) (-620 (-1147)) (-1147))) (-15 -1876 ((-1074) (-1147) (-620 (-1147)) (-1150) (-620 (-1147)))) (-15 -3734 ((-1235) (-381))) (-15 -1877 ((-620 (-1129)) (-620 (-1129))))) -((-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8))) -(((-389) (-138)) (T -389)) -((-3734 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1235))))) -(-13 (-1183) (-595 (-838)) (-10 -8 (-15 -3734 ((-1235) $)))) -(((-595 (-838)) . T) ((-1183) . T)) -((-3503 (((-3 $ "failed") (-307 (-371))) 21) (((-3 $ "failed") (-307 (-536))) 19) (((-3 $ "failed") (-920 (-371))) 17) (((-3 $ "failed") (-920 (-536))) 15) (((-3 $ "failed") (-400 (-920 (-371)))) 13) (((-3 $ "failed") (-400 (-920 (-536)))) 11)) (-3502 (($ (-307 (-371))) 22) (($ (-307 (-536))) 20) (($ (-920 (-371))) 18) (($ (-920 (-536))) 16) (($ (-400 (-920 (-371)))) 14) (($ (-400 (-920 (-536)))) 12)) (-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8) (($ (-620 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 23))) -(((-390) (-138)) (T -390)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-390)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-390)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-536))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-920 (-371))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-371))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-920 (-536))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-536))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-371)))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-371)))) (-4 *1 (-390)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-536)))) (-4 *1 (-390)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-536)))) (-4 *1 (-390))))) -(-13 (-389) (-10 -8 (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-323))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))) (-15 -3502 ($ (-307 (-371)))) (-15 -3503 ((-3 $ "failed") (-307 (-371)))) (-15 -3502 ($ (-307 (-536)))) (-15 -3503 ((-3 $ "failed") (-307 (-536)))) (-15 -3502 ($ (-920 (-371)))) (-15 -3503 ((-3 $ "failed") (-920 (-371)))) (-15 -3502 ($ (-920 (-536)))) (-15 -3503 ((-3 $ "failed") (-920 (-536)))) (-15 -3502 ($ (-400 (-920 (-371))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-371))))) (-15 -3502 ($ (-400 (-920 (-536))))) (-15 -3503 ((-3 $ "failed") (-400 (-920 (-536))))))) -(((-595 (-838)) . T) ((-389) . T) ((-1183) . T)) -((-3734 (((-1235) $) 38)) (-4312 (((-838) $) 98) (($ (-323)) 100) (($ (-620 (-323))) 99) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 97) (($ (-307 (-679))) 54) (($ (-307 (-677))) 73) (($ (-307 (-672))) 86) (($ (-286 (-307 (-679)))) 68) (($ (-286 (-307 (-677)))) 81) (($ (-286 (-307 (-672)))) 94) (($ (-307 (-536))) 104) (($ (-307 (-371))) 117) (($ (-307 (-166 (-371)))) 130) (($ (-286 (-307 (-536)))) 112) (($ (-286 (-307 (-371)))) 125) (($ (-286 (-307 (-166 (-371))))) 138))) -(((-391 |#1| |#2| |#3| |#4|) (-13 (-389) (-10 -8 (-15 -4312 ($ (-323))) (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))) (-15 -4312 ($ (-307 (-679)))) (-15 -4312 ($ (-307 (-677)))) (-15 -4312 ($ (-307 (-672)))) (-15 -4312 ($ (-286 (-307 (-679))))) (-15 -4312 ($ (-286 (-307 (-677))))) (-15 -4312 ($ (-286 (-307 (-672))))) (-15 -4312 ($ (-307 (-536)))) (-15 -4312 ($ (-307 (-371)))) (-15 -4312 ($ (-307 (-166 (-371))))) (-15 -4312 ($ (-286 (-307 (-536))))) (-15 -4312 ($ (-286 (-307 (-371))))) (-15 -4312 ($ (-286 (-307 (-166 (-371)))))))) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 "void")) (-620 (-1147)) (-1151)) (T -391)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-679))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-672))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-679)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-672)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-536)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-286 (-307 (-166 (-371))))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) (-14 *6 (-1151))))) -(-13 (-389) (-10 -8 (-15 -4312 ($ (-323))) (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))) (-15 -4312 ($ (-307 (-679)))) (-15 -4312 ($ (-307 (-677)))) (-15 -4312 ($ (-307 (-672)))) (-15 -4312 ($ (-286 (-307 (-679))))) (-15 -4312 ($ (-286 (-307 (-677))))) (-15 -4312 ($ (-286 (-307 (-672))))) (-15 -4312 ($ (-307 (-536)))) (-15 -4312 ($ (-307 (-371)))) (-15 -4312 ($ (-307 (-166 (-371))))) (-15 -4312 ($ (-286 (-307 (-536))))) (-15 -4312 ($ (-286 (-307 (-371))))) (-15 -4312 ($ (-286 (-307 (-166 (-371)))))))) -((-2893 (((-112) $ $) NIL)) (-1879 ((|#2| $) 36)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1880 (($ (-400 |#2|)) 85)) (-1878 (((-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|))) $) 37)) (-4165 (($ $) 32) (($ $ (-749)) 34)) (-4325 (((-400 |#2|) $) 46)) (-3879 (($ (-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|)))) 31)) (-4312 (((-838) $) 120)) (-2997 (($ $) 33) (($ $ (-749)) 35)) (-3382 (((-112) $ $) NIL)) (-4194 (($ |#2| $) 39))) -(((-392 |#1| |#2|) (-13 (-1072) (-596 (-400 |#2|)) (-10 -8 (-15 -4194 ($ |#2| $)) (-15 -1880 ($ (-400 |#2|))) (-15 -1879 (|#2| $)) (-15 -1878 ((-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|))) $)) (-15 -3879 ($ (-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|))))) (-15 -4165 ($ $)) (-15 -2997 ($ $)) (-15 -4165 ($ $ (-749))) (-15 -2997 ($ $ (-749))))) (-13 (-356) (-145)) (-1205 |#1|)) (T -392)) -((-4194 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1205 *3)))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-1879 (*1 *2 *1) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145))))) (-1878 (*1 *2 *1) (-12 (-4 *3 (-13 (-356) (-145))) (-5 *2 (-620 (-2 (|:| -2488 (-749)) (|:| -4127 *4) (|:| |num| *4)))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1205 *3)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -2488 (-749)) (|:| -4127 *4) (|:| |num| *4)))) (-4 *4 (-1205 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) (-4165 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1205 *2)))) (-2997 (*1 *1 *1) (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1205 *2)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1205 *3)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) (-4 *4 (-1205 *3))))) -(-13 (-1072) (-596 (-400 |#2|)) (-10 -8 (-15 -4194 ($ |#2| $)) (-15 -1880 ($ (-400 |#2|))) (-15 -1879 (|#2| $)) (-15 -1878 ((-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|))) $)) (-15 -3879 ($ (-620 (-2 (|:| -2488 (-749)) (|:| -4127 |#2|) (|:| |num| |#2|))))) (-15 -4165 ($ $)) (-15 -2997 ($ $)) (-15 -4165 ($ $ (-749))) (-15 -2997 ($ $ (-749))))) -((-2893 (((-112) $ $) 9 (-3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))))) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 15 (|has| |#1| (-860 (-371)))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 14 (|has| |#1| (-860 (-536))))) (-3588 (((-1129) $) 13 (-3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))))) (-3589 (((-1091) $) 12 (-3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))))) (-4312 (((-838) $) 11 (-3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))))) (-3382 (((-112) $ $) 10 (-3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371))))))) -(((-393 |#1|) (-138) (-1183)) (T -393)) -NIL -(-13 (-1183) (-10 -7 (IF (|has| |t#1| (-860 (-536))) (-6 (-860 (-536))) |%noBranch|) (IF (|has| |t#1| (-860 (-371))) (-6 (-860 (-371))) |%noBranch|))) -(((-101) -3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))) ((-595 (-838)) -3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))) ((-860 (-371)) |has| |#1| (-860 (-371))) ((-860 (-536)) |has| |#1| (-860 (-536))) ((-1072) -3886 (|has| |#1| (-860 (-536))) (|has| |#1| (-860 (-371)))) ((-1183) . T)) -((-1881 (($ $) 10) (($ $ (-749)) 11))) -(((-394 |#1|) (-10 -8 (-15 -1881 (|#1| |#1| (-749))) (-15 -1881 (|#1| |#1|))) (-395)) (T -394)) -NIL -(-10 -8 (-15 -1881 (|#1| |#1| (-749))) (-15 -1881 (|#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-1881 (($ $) 76) (($ $ (-749)) 75)) (-4081 (((-112) $) 68)) (-4126 (((-810 (-893)) $) 78)) (-2497 (((-112) $) 30)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-1882 (((-3 (-749) "failed") $ $) 77)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63)) (-3030 (((-3 $ "failed") $) 79)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) -(((-395) (-138)) (T -395)) -((-4126 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-810 (-893))))) (-1882 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-749)))) (-1881 (*1 *1 *1) (-4 *1 (-395))) (-1881 (*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-749))))) -(-13 (-356) (-143) (-10 -8 (-15 -4126 ((-810 (-893)) $)) (-15 -1882 ((-3 (-749) "failed") $ $)) (-15 -1881 ($ $)) (-15 -1881 ($ $ (-749))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-595 (-838)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) -((-3600 (($ (-536) (-536)) 11) (($ (-536) (-536) (-893)) NIL)) (-2939 (((-893)) 16) (((-893) (-893)) NIL))) -(((-396 |#1|) (-10 -8 (-15 -2939 ((-893) (-893))) (-15 -2939 ((-893))) (-15 -3600 (|#1| (-536) (-536) (-893))) (-15 -3600 (|#1| (-536) (-536)))) (-397)) (T -396)) -((-2939 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-396 *3)) (-4 *3 (-397))))) -(-10 -8 (-15 -2939 ((-893) (-893))) (-15 -2939 ((-893))) (-15 -3600 (|#1| (-536) (-536) (-893))) (-15 -3600 (|#1| (-536) (-536)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3459 (((-536) $) 86)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-4125 (($ $) 84)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-3365 (($ $) 94)) (-1700 (((-112) $ $) 57)) (-3981 (((-536) $) 111)) (-3891 (($) 17 T CONST)) (-3457 (($ $) 83)) (-3503 (((-3 (-536) #1="failed") $) 99) (((-3 (-400 (-536)) #1#) $) 96)) (-3502 (((-536) $) 98) (((-400 (-536)) $) 95)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-2461 (((-893)) 127) (((-893) (-893)) 124 (|has| $ (-6 -4339)))) (-3532 (((-112) $) 109)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 90)) (-4126 (((-536) $) 133)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 93)) (-3462 (($ $) 89)) (-3533 (((-112) $) 110)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 50)) (-3672 (($ $ $) 108) (($) 121 (-12 (-3671 (|has| $ (-6 -4339))) (-3671 (|has| $ (-6 -4331)))))) (-3673 (($ $ $) 107) (($) 120 (-12 (-3671 (|has| $ (-6 -4339))) (-3671 (|has| $ (-6 -4331)))))) (-2462 (((-536) $) 130)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-1884 (((-893) (-536)) 123 (|has| $ (-6 -4339)))) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3458 (($ $) 85)) (-3460 (($ $) 87)) (-3600 (($ (-536) (-536)) 135) (($ (-536) (-536) (-893)) 134)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-2488 (((-536) $) 131)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-2939 (((-893)) 128) (((-893) (-893)) 125 (|has| $ (-6 -4339)))) (-1883 (((-893) (-536)) 122 (|has| $ (-6 -4339)))) (-4325 (((-371) $) 102) (((-219) $) 101) (((-864 (-371)) $) 91)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ (-536)) 100) (($ (-400 (-536))) 97)) (-3456 (((-749)) 28)) (-3461 (($ $) 88)) (-1885 (((-893)) 129) (((-893) (-893)) 126 (|has| $ (-6 -4339)))) (-3022 (((-893)) 132)) (-2172 (((-112) $ $) 37)) (-3737 (($ $) 112)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 105)) (-2892 (((-112) $ $) 104)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 106)) (-3013 (((-112) $ $) 103)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66) (($ $ (-400 (-536))) 92)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) +NIL +(-13 (-545) (-827) (-1014 (-538))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-1014 (-538)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-1866 (((-112) $) 20)) (-1867 (((-112) $) 19)) (-3977 (($ (-1131) (-1131) (-1131)) 21)) (-3905 (((-1131) $) 16)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1871 (($ (-1131) (-1131) (-1131)) 14)) (-1869 (((-1131) $) 17)) (-1868 (((-112) $) 18)) (-1870 (((-1131) $) 15)) (-4317 (((-840) $) 12) (($ (-1131)) 13) (((-1131) $) 9)) (-3387 (((-112) $ $) 7))) +(((-383) (-384)) (T -383)) +NIL +(-384) +((-2898 (((-112) $ $) 7)) (-1866 (((-112) $) 14)) (-1867 (((-112) $) 15)) (-3977 (($ (-1131) (-1131) (-1131)) 13)) (-3905 (((-1131) $) 18)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-1871 (($ (-1131) (-1131) (-1131)) 20)) (-1869 (((-1131) $) 17)) (-1868 (((-112) $) 16)) (-1870 (((-1131) $) 19)) (-4317 (((-840) $) 11) (($ (-1131)) 22) (((-1131) $) 21)) (-3387 (((-112) $ $) 6))) +(((-384) (-138)) (T -384)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-1871 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) (-1868 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-1866 (*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112)))) (-3977 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384))))) +(-13 (-1074) (-10 -8 (-15 -4317 ($ (-1131))) (-15 -4317 ((-1131) $)) (-15 -1871 ($ (-1131) (-1131) (-1131))) (-15 -1870 ((-1131) $)) (-15 -3905 ((-1131) $)) (-15 -1869 ((-1131) $)) (-15 -1868 ((-112) $)) (-15 -1867 ((-112) $)) (-15 -1866 ((-112) $)) (-15 -3977 ($ (-1131) (-1131) (-1131))))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1872 (((-840) $) 50)) (-3896 (($) NIL T CONST)) (-2499 (($ $ (-895)) NIL)) (-2524 (($ $ (-895)) NIL)) (-2498 (($ $ (-895)) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($ (-751)) 26)) (-4271 (((-751)) 17)) (-1873 (((-840) $) 52)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) NIL)) (-2687 (($ $ $ $) NIL)) (-2685 (($ $ $) NIL)) (-2991 (($) 20 T CONST)) (-3387 (((-112) $ $) 28)) (-4197 (($ $) 34) (($ $ $) 36)) (-4199 (($ $ $) 37)) (** (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33))) +(((-385 |#1| |#2| |#3|) (-13 (-725 |#3|) (-10 -8 (-15 -4271 ((-751))) (-15 -1873 ((-840) $)) (-15 -1872 ((-840) $)) (-15 -2501 ($ (-751))))) (-751) (-751) (-170)) (T -385)) +((-4271 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-170)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-170)))) (-2501 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170))))) +(-13 (-725 |#3|) (-10 -8 (-15 -4271 ((-751))) (-15 -1873 ((-840) $)) (-15 -1872 ((-840) $)) (-15 -2501 ($ (-751))))) +((-1878 (((-1131)) 10)) (-1875 (((-1120 (-1131))) 28)) (-1877 (((-1237) (-1131)) 25) (((-1237) (-383)) 24)) (-1876 (((-1237)) 26)) (-1874 (((-1120 (-1131))) 27))) +(((-386) (-10 -7 (-15 -1874 ((-1120 (-1131)))) (-15 -1875 ((-1120 (-1131)))) (-15 -1876 ((-1237))) (-15 -1877 ((-1237) (-383))) (-15 -1877 ((-1237) (-1131))) (-15 -1878 ((-1131))))) (T -386)) +((-1878 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-386)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-386)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-386)))) (-1876 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-386)))) (-1875 (*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386)))) (-1874 (*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386))))) +(-10 -7 (-15 -1874 ((-1120 (-1131)))) (-15 -1875 ((-1120 (-1131)))) (-15 -1876 ((-1237))) (-15 -1877 ((-1237) (-383))) (-15 -1877 ((-1237) (-1131))) (-15 -1878 ((-1131)))) +((-4131 (((-751) (-328 |#1| |#2| |#3| |#4|)) 16))) +(((-387 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4131 ((-751) (-328 |#1| |#2| |#3| |#4|)))) (-13 (-363) (-358)) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -387)) +((-4131 (*1 *2 *3) (-12 (-5 *3 (-328 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358))) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-4 *7 (-337 *4 *5 *6)) (-5 *2 (-751)) (-5 *1 (-387 *4 *5 *6 *7))))) +(-10 -7 (-15 -4131 ((-751) (-328 |#1| |#2| |#3| |#4|)))) +((-2898 (((-112) $ $) NIL)) (-3973 (((-622 (-1131)) $ (-622 (-1131))) 38)) (-1879 (((-622 (-1131)) $ (-622 (-1131))) 39)) (-3975 (((-622 (-1131)) $ (-622 (-1131))) 40)) (-3976 (((-622 (-1131)) $) 35)) (-3977 (($) 23)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1880 (((-622 (-1131)) $) 36)) (-3979 (((-622 (-1131)) $) 37)) (-3980 (((-1237) $ (-538)) 33) (((-1237) $) 34)) (-4330 (($ (-840) (-538)) 30)) (-4317 (((-840) $) 42) (($ (-840)) 25)) (-3387 (((-112) $ $) NIL))) +(((-388) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-840))) (-15 -4330 ($ (-840) (-538))) (-15 -3980 ((-1237) $ (-538))) (-15 -3980 ((-1237) $)) (-15 -3979 ((-622 (-1131)) $)) (-15 -1880 ((-622 (-1131)) $)) (-15 -3977 ($)) (-15 -3976 ((-622 (-1131)) $)) (-15 -3975 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -1879 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3973 ((-622 (-1131)) $ (-622 (-1131))))))) (T -388)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-388)))) (-4330 (*1 *1 *2 *3) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-388)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-388)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-388)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) (-1880 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) (-3977 (*1 *1) (-5 *1 (-388))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) (-3975 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) (-1879 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) (-3973 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388))))) +(-13 (-1074) (-10 -8 (-15 -4317 ($ (-840))) (-15 -4330 ($ (-840) (-538))) (-15 -3980 ((-1237) $ (-538))) (-15 -3980 ((-1237) $)) (-15 -3979 ((-622 (-1131)) $)) (-15 -1880 ((-622 (-1131)) $)) (-15 -3977 ($)) (-15 -3976 ((-622 (-1131)) $)) (-15 -3975 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -1879 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3973 ((-622 (-1131)) $ (-622 (-1131)))))) +((-4317 (((-388) |#1|) 11))) +(((-389 |#1|) (-10 -7 (-15 -4317 ((-388) |#1|))) (-1074)) (T -389)) +((-4317 (*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-389 *3)) (-4 *3 (-1074))))) +(-10 -7 (-15 -4317 ((-388) |#1|))) +((-1882 (((-622 (-1131)) (-622 (-1131))) 9)) (-3739 (((-1237) (-383)) 27)) (-1881 (((-1076) (-1149) (-622 (-1149)) (-1152) (-622 (-1149))) 60) (((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149)) (-1149)) 35) (((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149))) 34))) +(((-390) (-10 -7 (-15 -1881 ((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149)))) (-15 -1881 ((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149)) (-1149))) (-15 -1881 ((-1076) (-1149) (-622 (-1149)) (-1152) (-622 (-1149)))) (-15 -3739 ((-1237) (-383))) (-15 -1882 ((-622 (-1131)) (-622 (-1131)))))) (T -390)) +((-1882 (*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-390)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-390)))) (-1881 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-622 (-1149))) (-5 *5 (-1152)) (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-390)))) (-1881 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-622 (-622 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-622 (-3 (|:| |array| (-622 *3)) (|:| |scalar| (-1149))))) (-5 *6 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-390)))) (-1881 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-622 (-622 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-622 (-3 (|:| |array| (-622 *3)) (|:| |scalar| (-1149))))) (-5 *6 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-390))))) +(-10 -7 (-15 -1881 ((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149)))) (-15 -1881 ((-1076) (-1149) (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149)))) (-622 (-622 (-3 (|:| |array| (-622 (-1149))) (|:| |scalar| (-1149))))) (-622 (-1149)) (-1149))) (-15 -1881 ((-1076) (-1149) (-622 (-1149)) (-1152) (-622 (-1149)))) (-15 -3739 ((-1237) (-383))) (-15 -1882 ((-622 (-1131)) (-622 (-1131))))) +((-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8))) +(((-391) (-138)) (T -391)) +((-3739 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1237))))) +(-13 (-1185) (-597 (-840)) (-10 -8 (-15 -3739 ((-1237) $)))) +(((-597 (-840)) . T) ((-1185) . T)) +((-3508 (((-3 $ "failed") (-309 (-373))) 21) (((-3 $ "failed") (-309 (-538))) 19) (((-3 $ "failed") (-922 (-373))) 17) (((-3 $ "failed") (-922 (-538))) 15) (((-3 $ "failed") (-402 (-922 (-373)))) 13) (((-3 $ "failed") (-402 (-922 (-538)))) 11)) (-3507 (($ (-309 (-373))) 22) (($ (-309 (-538))) 20) (($ (-922 (-373))) 18) (($ (-922 (-538))) 16) (($ (-402 (-922 (-373)))) 14) (($ (-402 (-922 (-538)))) 12)) (-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8) (($ (-622 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 23))) +(((-392) (-138)) (T -392)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-392)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-392)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-373))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-538))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-922 (-373))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-373))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-922 (-538))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-538))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-373)))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-373)))) (-4 *1 (-392)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-538)))) (-4 *1 (-392)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-538)))) (-4 *1 (-392))))) +(-13 (-391) (-10 -8 (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-325))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))) (-15 -3507 ($ (-309 (-373)))) (-15 -3508 ((-3 $ "failed") (-309 (-373)))) (-15 -3507 ($ (-309 (-538)))) (-15 -3508 ((-3 $ "failed") (-309 (-538)))) (-15 -3507 ($ (-922 (-373)))) (-15 -3508 ((-3 $ "failed") (-922 (-373)))) (-15 -3507 ($ (-922 (-538)))) (-15 -3508 ((-3 $ "failed") (-922 (-538)))) (-15 -3507 ($ (-402 (-922 (-373))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-373))))) (-15 -3507 ($ (-402 (-922 (-538))))) (-15 -3508 ((-3 $ "failed") (-402 (-922 (-538))))))) +(((-597 (-840)) . T) ((-391) . T) ((-1185) . T)) +((-3739 (((-1237) $) 38)) (-4317 (((-840) $) 98) (($ (-325)) 100) (($ (-622 (-325))) 99) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 97) (($ (-309 (-681))) 54) (($ (-309 (-679))) 73) (($ (-309 (-674))) 86) (($ (-288 (-309 (-681)))) 68) (($ (-288 (-309 (-679)))) 81) (($ (-288 (-309 (-674)))) 94) (($ (-309 (-538))) 104) (($ (-309 (-373))) 117) (($ (-309 (-166 (-373)))) 130) (($ (-288 (-309 (-538)))) 112) (($ (-288 (-309 (-373)))) 125) (($ (-288 (-309 (-166 (-373))))) 138))) +(((-393 |#1| |#2| |#3| |#4|) (-13 (-391) (-10 -8 (-15 -4317 ($ (-325))) (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))) (-15 -4317 ($ (-309 (-681)))) (-15 -4317 ($ (-309 (-679)))) (-15 -4317 ($ (-309 (-674)))) (-15 -4317 ($ (-288 (-309 (-681))))) (-15 -4317 ($ (-288 (-309 (-679))))) (-15 -4317 ($ (-288 (-309 (-674))))) (-15 -4317 ($ (-309 (-538)))) (-15 -4317 ($ (-309 (-373)))) (-15 -4317 ($ (-309 (-166 (-373))))) (-15 -4317 ($ (-288 (-309 (-538))))) (-15 -4317 ($ (-288 (-309 (-373))))) (-15 -4317 ($ (-288 (-309 (-166 (-373)))))))) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 "void")) (-622 (-1149)) (-1153)) (T -393)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void"))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-681))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-674))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-681)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-679)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-674)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-309 (-166 (-373)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-538)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-373)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-288 (-309 (-166 (-373))))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) (-14 *6 (-1153))))) +(-13 (-391) (-10 -8 (-15 -4317 ($ (-325))) (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))) (-15 -4317 ($ (-309 (-681)))) (-15 -4317 ($ (-309 (-679)))) (-15 -4317 ($ (-309 (-674)))) (-15 -4317 ($ (-288 (-309 (-681))))) (-15 -4317 ($ (-288 (-309 (-679))))) (-15 -4317 ($ (-288 (-309 (-674))))) (-15 -4317 ($ (-309 (-538)))) (-15 -4317 ($ (-309 (-373)))) (-15 -4317 ($ (-309 (-166 (-373))))) (-15 -4317 ($ (-288 (-309 (-538))))) (-15 -4317 ($ (-288 (-309 (-373))))) (-15 -4317 ($ (-288 (-309 (-166 (-373)))))))) +((-2898 (((-112) $ $) NIL)) (-1884 ((|#2| $) 36)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1885 (($ (-402 |#2|)) 85)) (-1883 (((-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|))) $) 37)) (-4170 (($ $) 32) (($ $ (-751)) 34)) (-4330 (((-402 |#2|) $) 46)) (-3884 (($ (-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|)))) 31)) (-4317 (((-840) $) 120)) (-3002 (($ $) 33) (($ $ (-751)) 35)) (-3387 (((-112) $ $) NIL)) (-4199 (($ |#2| $) 39))) +(((-394 |#1| |#2|) (-13 (-1074) (-598 (-402 |#2|)) (-10 -8 (-15 -4199 ($ |#2| $)) (-15 -1885 ($ (-402 |#2|))) (-15 -1884 (|#2| $)) (-15 -1883 ((-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|))) $)) (-15 -3884 ($ (-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|))))) (-15 -4170 ($ $)) (-15 -3002 ($ $)) (-15 -4170 ($ $ (-751))) (-15 -3002 ($ $ (-751))))) (-13 (-358) (-145)) (-1207 |#1|)) (T -394)) +((-4199 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2)) (-4 *2 (-1207 *3)))) (-1885 (*1 *1 *2) (-12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-1884 (*1 *2 *1) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-394 *3 *2)) (-4 *3 (-13 (-358) (-145))))) (-1883 (*1 *2 *1) (-12 (-4 *3 (-13 (-358) (-145))) (-5 *2 (-622 (-2 (|:| -2493 (-751)) (|:| -4132 *4) (|:| |num| *4)))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1207 *3)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -2493 (-751)) (|:| -4132 *4) (|:| |num| *4)))) (-4 *4 (-1207 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) (-4170 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1207 *2)))) (-3002 (*1 *1 *1) (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1207 *2)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1207 *3)))) (-3002 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) (-4 *4 (-1207 *3))))) +(-13 (-1074) (-598 (-402 |#2|)) (-10 -8 (-15 -4199 ($ |#2| $)) (-15 -1885 ($ (-402 |#2|))) (-15 -1884 (|#2| $)) (-15 -1883 ((-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|))) $)) (-15 -3884 ($ (-622 (-2 (|:| -2493 (-751)) (|:| -4132 |#2|) (|:| |num| |#2|))))) (-15 -4170 ($ $)) (-15 -3002 ($ $)) (-15 -4170 ($ $ (-751))) (-15 -3002 ($ $ (-751))))) +((-2898 (((-112) $ $) 9 (-3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))))) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 15 (|has| |#1| (-862 (-373)))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 14 (|has| |#1| (-862 (-538))))) (-3593 (((-1131) $) 13 (-3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))))) (-3594 (((-1093) $) 12 (-3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))))) (-4317 (((-840) $) 11 (-3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))))) (-3387 (((-112) $ $) 10 (-3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373))))))) +(((-395 |#1|) (-138) (-1185)) (T -395)) +NIL +(-13 (-1185) (-10 -7 (IF (|has| |t#1| (-862 (-538))) (-6 (-862 (-538))) |%noBranch|) (IF (|has| |t#1| (-862 (-373))) (-6 (-862 (-373))) |%noBranch|))) +(((-101) -3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))) ((-597 (-840)) -3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))) ((-862 (-373)) |has| |#1| (-862 (-373))) ((-862 (-538)) |has| |#1| (-862 (-538))) ((-1074) -3891 (|has| |#1| (-862 (-538))) (|has| |#1| (-862 (-373)))) ((-1185) . T)) +((-1886 (($ $) 10) (($ $ (-751)) 11))) +(((-396 |#1|) (-10 -8 (-15 -1886 (|#1| |#1| (-751))) (-15 -1886 (|#1| |#1|))) (-397)) (T -396)) +NIL +(-10 -8 (-15 -1886 (|#1| |#1| (-751))) (-15 -1886 (|#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-1886 (($ $) 76) (($ $ (-751)) 75)) (-4086 (((-112) $) 68)) (-4131 (((-812 (-895)) $) 78)) (-2502 (((-112) $) 30)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-1887 (((-3 (-751) "failed") $ $) 77)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63)) (-3035 (((-3 $ "failed") $) 79)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64))) (((-397) (-138)) (T -397)) -((-3600 (*1 *1 *2 *2) (-12 (-5 *2 (-536)) (-4 *1 (-397)))) (-3600 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-893)) (-4 *1 (-397)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) (-3022 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) (-2462 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) (-1885 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) (-2939 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) (-2461 (*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) (-2939 (*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) (-2461 (*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-536)) (|has| *1 (-6 -4339)) (-4 *1 (-397)) (-5 *2 (-893)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-536)) (|has| *1 (-6 -4339)) (-4 *1 (-397)) (-5 *2 (-893)))) (-3672 (*1 *1) (-12 (-4 *1 (-397)) (-3671 (|has| *1 (-6 -4339))) (-3671 (|has| *1 (-6 -4331))))) (-3673 (*1 *1) (-12 (-4 *1 (-397)) (-3671 (|has| *1 (-6 -4339))) (-3671 (|has| *1 (-6 -4331)))))) -(-13 (-1032) (-10 -8 (-6 -4124) (-15 -3600 ($ (-536) (-536))) (-15 -3600 ($ (-536) (-536) (-893))) (-15 -4126 ((-536) $)) (-15 -3022 ((-893))) (-15 -2488 ((-536) $)) (-15 -2462 ((-536) $)) (-15 -1885 ((-893))) (-15 -2939 ((-893))) (-15 -2461 ((-893))) (IF (|has| $ (-6 -4339)) (PROGN (-15 -1885 ((-893) (-893))) (-15 -2939 ((-893) (-893))) (-15 -2461 ((-893) (-893))) (-15 -1884 ((-893) (-536))) (-15 -1883 ((-893) (-536)))) |%noBranch|) (IF (|has| $ (-6 -4331)) |%noBranch| (IF (|has| $ (-6 -4339)) |%noBranch| (PROGN (-15 -3672 ($)) (-15 -3673 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-838)) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-371)) . T) ((-596 (-864 (-371))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-823) . T) ((-825) . T) ((-860 (-371)) . T) ((-895) . T) ((-976) . T) ((-994) . T) ((-1032) . T) ((-1012 (-400 (-536))) . T) ((-1012 (-536)) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 42)) (-1886 (($ $) 57)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 146)) (-2173 (($ $) NIL)) (-2171 (((-112) $) 36)) (-1887 ((|#1| $) 13)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-1188)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-1188)))) (-1889 (($ |#1| (-536)) 31)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 116)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 55)) (-3816 (((-3 $ "failed") $) 131)) (-3352 (((-3 (-400 (-536)) "failed") $) 63 (|has| |#1| (-535)))) (-3351 (((-112) $) 59 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 70 (|has| |#1| (-535)))) (-1890 (($ |#1| (-536)) 33)) (-4081 (((-112) $) 152 (|has| |#1| (-1188)))) (-2497 (((-112) $) 43)) (-1951 (((-749) $) 38)) (-1891 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-536)) 137)) (-2763 ((|#1| $ (-536)) 136)) (-1892 (((-536) $ (-536)) 135)) (-1894 (($ |#1| (-536)) 30)) (-4313 (($ (-1 |#1| |#1|) $) 143)) (-1948 (($ |#1| (-620 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-536))))) 58)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-1893 (($ |#1| (-536)) 32)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) 147 (|has| |#1| (-444)))) (-1888 (($ |#1| (-536) (-3 #2# #3# #4# #5#)) 29)) (-2762 (((-620 (-2 (|:| -4087 |#1|) (|:| -2488 (-536)))) $) 54)) (-2070 (((-620 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-536)))) $) 12)) (-4087 (((-398 $) $) NIL (|has| |#1| (-1188)))) (-3815 (((-3 $ "failed") $ $) 138)) (-2488 (((-536) $) 132)) (-4318 ((|#1| $) 56)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) 79 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 85 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) $) NIL (|has| |#1| (-505 (-1147) $))) (($ $ (-620 (-1147)) (-620 $)) 86 (|has| |#1| (-505 (-1147) $))) (($ $ (-620 (-286 $))) 82 (|has| |#1| (-302 $))) (($ $ (-286 $)) NIL (|has| |#1| (-302 $))) (($ $ $ $) NIL (|has| |#1| (-302 $))) (($ $ (-620 $) (-620 $)) NIL (|has| |#1| (-302 $)))) (-4154 (($ $ |#1|) 71 (|has| |#1| (-279 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-279 $ $)))) (-4165 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-4325 (((-525) $) 27 (|has| |#1| (-596 (-525)))) (((-371) $) 92 (|has| |#1| (-994))) (((-219) $) 95 (|has| |#1| (-994)))) (-4312 (((-838) $) 114) (($ (-536)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536)))))) (-3456 (((-749)) 48)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 40 T CONST)) (-2992 (($) 39 T CONST)) (-2997 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3382 (((-112) $ $) 96)) (-4192 (($ $) 128) (($ $ $) NIL)) (-4194 (($ $ $) 140)) (** (($ $ (-893)) NIL) (($ $ (-749)) 102)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) -(((-398 |#1|) (-13 (-543) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-405 |#1|) (-10 -8 (-15 -4318 (|#1| $)) (-15 -2488 ((-536) $)) (-15 -1948 ($ |#1| (-620 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-536)))))) (-15 -2070 ((-620 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-536)))) $)) (-15 -1894 ($ |#1| (-536))) (-15 -2762 ((-620 (-2 (|:| -4087 |#1|) (|:| -2488 (-536)))) $)) (-15 -1893 ($ |#1| (-536))) (-15 -1892 ((-536) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -1891 ((-3 #1# #2# #3# #4#) $ (-536))) (-15 -1951 ((-749) $)) (-15 -1890 ($ |#1| (-536))) (-15 -1889 ($ |#1| (-536))) (-15 -1888 ($ |#1| (-536) (-3 #1# #2# #3# #4#))) (-15 -1887 (|#1| $)) (-15 -1886 ($ $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-994)) (-6 (-994)) |%noBranch|) (IF (|has| |#1| (-1188)) (-6 (-1188)) |%noBranch|) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1147) $)) (-6 (-505 (-1147) $)) |%noBranch|))) (-543)) (T -398)) -((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-543)) (-5 *1 (-398 *3)))) (-4318 (*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-2488 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-398 *3)) (-4 *3 (-543)))) (-1948 (*1 *1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-536))))) (-4 *2 (-543)) (-5 *1 (-398 *2)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-536))))) (-5 *1 (-398 *3)) (-4 *3 (-543)))) (-1894 (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| -4087 *3) (|:| -2488 (-536))))) (-5 *1 (-398 *3)) (-4 *3 (-543)))) (-1893 (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1892 (*1 *2 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-398 *3)) (-4 *3 (-543)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1891 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-398 *4)) (-4 *4 (-543)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-398 *3)) (-4 *3 (-543)))) (-1890 (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1889 (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1888 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-536)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1887 (*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-1886 (*1 *1 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-398 *3)) (-4 *3 (-535)) (-4 *3 (-543)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-398 *3)) (-4 *3 (-535)) (-4 *3 (-543)))) (-3352 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-398 *3)) (-4 *3 (-535)) (-4 *3 (-543))))) -(-13 (-543) (-225 |#1|) (-38 |#1|) (-331 |#1|) (-405 |#1|) (-10 -8 (-15 -4318 (|#1| $)) (-15 -2488 ((-536) $)) (-15 -1948 ($ |#1| (-620 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-536)))))) (-15 -2070 ((-620 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-536)))) $)) (-15 -1894 ($ |#1| (-536))) (-15 -2762 ((-620 (-2 (|:| -4087 |#1|) (|:| -2488 (-536)))) $)) (-15 -1893 ($ |#1| (-536))) (-15 -1892 ((-536) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -1891 ((-3 #1# #2# #3# #4#) $ (-536))) (-15 -1951 ((-749) $)) (-15 -1890 ($ |#1| (-536))) (-15 -1889 ($ |#1| (-536))) (-15 -1888 ($ |#1| (-536) (-3 #1# #2# #3# #4#))) (-15 -1887 (|#1| $)) (-15 -1886 ($ $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-444)) (-6 (-444)) |%noBranch|) (IF (|has| |#1| (-994)) (-6 (-994)) |%noBranch|) (IF (|has| |#1| (-1188)) (-6 (-1188)) |%noBranch|) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-279 $ $)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |#1| (-302 $)) (-6 (-302 $)) |%noBranch|) (IF (|has| |#1| (-505 (-1147) $)) (-6 (-505 (-1147) $)) |%noBranch|))) -((-4313 (((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)) 20))) -(((-399 |#1| |#2|) (-10 -7 (-15 -4313 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) (-543) (-543)) (T -399)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-543)) (-4 *6 (-543)) (-5 *2 (-398 *6)) (-5 *1 (-399 *5 *6))))) -(-10 -7 (-15 -4313 ((-398 |#2|) (-1 |#2| |#1|) (-398 |#1|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 13)) (-3459 ((|#1| $) 21 (|has| |#1| (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| |#1| (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) 17) (((-3 (-1147) #2#) $) NIL (|has| |#1| (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) 70 (|has| |#1| (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536))))) (-3502 ((|#1| $) 15) (((-1147) $) NIL (|has| |#1| (-1012 (-1147)))) (((-400 (-536)) $) 67 (|has| |#1| (-1012 (-536)))) (((-536) $) NIL (|has| |#1| (-1012 (-536))))) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) 50)) (-3322 (($) NIL (|has| |#1| (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| |#1| (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| |#1| (-860 (-371))))) (-2497 (((-112) $) 64)) (-3324 (($ $) NIL)) (-3326 ((|#1| $) 71)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-1122)))) (-3533 (((-112) $) NIL (|has| |#1| (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| |#1| (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 97)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| |#1| (-300)))) (-3460 ((|#1| $) 28 (|has| |#1| (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 135 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 131 (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-505 (-1147) |#1|)))) (-1699 (((-749) $) NIL)) (-4154 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3323 (($ $) NIL)) (-3325 ((|#1| $) 73)) (-4325 (((-864 (-536)) $) NIL (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| |#1| (-596 (-864 (-371))))) (((-525) $) NIL (|has| |#1| (-596 (-525)))) (((-371) $) NIL (|has| |#1| (-994))) (((-219) $) NIL (|has| |#1| (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 10) (($ (-1147)) NIL (|has| |#1| (-1012 (-1147))))) (-3030 (((-3 $ #1#) $) 99 (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 100)) (-3461 ((|#1| $) 26 (|has| |#1| (-535)))) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| |#1| (-798)))) (-2986 (($) 22 T CONST)) (-2992 (($) 8 T CONST)) (-2829 (((-1129) $) 43 (-12 (|has| |#1| (-535)) (|has| |#1| (-799)))) (((-1129) $ (-112)) 44 (-12 (|has| |#1| (-535)) (|has| |#1| (-799)))) (((-1235) (-801) $) 45 (-12 (|has| |#1| (-535)) (|has| |#1| (-799)))) (((-1235) (-801) $ (-112)) 46 (-12 (|has| |#1| (-535)) (|has| |#1| (-799))))) (-2997 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 56)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) 24 (|has| |#1| (-825)))) (-4303 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4192 (($ $) 25) (($ $ $) 55)) (-4194 (($ $ $) 53)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 125)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 60) (($ $ $) 57) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) -(((-400 |#1|) (-13 (-965 |#1|) (-10 -7 (IF (|has| |#1| (-535)) (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4346)) (-6 -4335) |%noBranch|) |%noBranch|) |%noBranch|))) (-543)) (T -400)) -NIL -(-13 (-965 |#1|) (-10 -7 (IF (|has| |#1| (-535)) (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4335)) (IF (|has| |#1| (-444)) (IF (|has| |#1| (-6 -4346)) (-6 -4335) |%noBranch|) |%noBranch|) |%noBranch|))) -((-4313 (((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)) 13))) -(((-401 |#1| |#2|) (-10 -7 (-15 -4313 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) (-543) (-543)) (T -401)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-543)) (-4 *6 (-543)) (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6))))) -(-10 -7 (-15 -4313 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) -((-1896 (((-667 |#2|) (-1229 $)) NIL) (((-667 |#2|)) 18)) (-1906 (($ (-1229 |#2|) (-1229 $)) NIL) (($ (-1229 |#2|)) 24)) (-1895 (((-667 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) $) 38)) (-2125 ((|#3| $) 60)) (-4112 ((|#2| (-1229 $)) NIL) ((|#2|) 20)) (-3570 (((-1229 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) (-1229 $) (-1229 $)) NIL) (((-1229 |#2|) $) 22) (((-667 |#2|) (-1229 $)) 36)) (-4325 (((-1229 |#2|) $) 11) (($ (-1229 |#2|)) 13)) (-2693 ((|#3| $) 52))) -(((-402 |#1| |#2| |#3|) (-10 -8 (-15 -1895 ((-667 |#2|) |#1|)) (-15 -4112 (|#2|)) (-15 -1896 ((-667 |#2|))) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -2125 (|#3| |#1|)) (-15 -2693 (|#3| |#1|)) (-15 -1896 ((-667 |#2|) (-1229 |#1|))) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1895 ((-667 |#2|) |#1| (-1229 |#1|)))) (-403 |#2| |#3|) (-170) (-1205 |#2|)) (T -402)) -((-1896 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)) (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) (-4112 (*1 *2) (-12 (-4 *4 (-1205 *2)) (-4 *2 (-170)) (-5 *1 (-402 *3 *2 *4)) (-4 *3 (-403 *2 *4))))) -(-10 -8 (-15 -1895 ((-667 |#2|) |#1|)) (-15 -4112 (|#2|)) (-15 -1896 ((-667 |#2|))) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -2125 (|#3| |#1|)) (-15 -2693 (|#3| |#1|)) (-15 -1896 ((-667 |#2|) (-1229 |#1|))) (-15 -4112 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1895 ((-667 |#2|) |#1| (-1229 |#1|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1896 (((-667 |#1|) (-1229 $)) 44) (((-667 |#1|)) 59)) (-3684 ((|#1| $) 50)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-1906 (($ (-1229 |#1|) (-1229 $)) 46) (($ (-1229 |#1|)) 62)) (-1895 (((-667 |#1|) $ (-1229 $)) 51) (((-667 |#1|) $) 57)) (-3816 (((-3 $ "failed") $) 32)) (-3439 (((-893)) 52)) (-2497 (((-112) $) 30)) (-3462 ((|#1| $) 49)) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4112 ((|#1| (-1229 $)) 45) ((|#1|) 58)) (-3570 (((-1229 |#1|) $ (-1229 $)) 48) (((-667 |#1|) (-1229 $) (-1229 $)) 47) (((-1229 |#1|) $) 64) (((-667 |#1|) (-1229 $)) 63)) (-4325 (((-1229 |#1|) $) 61) (($ (-1229 |#1|)) 60)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35)) (-3030 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2693 ((|#2| $) 43)) (-3456 (((-749)) 28)) (-2123 (((-1229 $)) 65)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-403 |#1| |#2|) (-138) (-170) (-1205 |t#1|)) (T -403)) -((-2123 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-1229 *1)) (-4 *1 (-403 *3 *4)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-1229 *3)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1205 *3)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-1229 *3)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) (-4 *4 (-1205 *3)))) (-1896 (*1 *2) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-667 *3)))) (-4112 (*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) (-1895 (*1 *2 *1) (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-667 *3))))) -(-13 (-363 |t#1| |t#2|) (-10 -8 (-15 -2123 ((-1229 $))) (-15 -3570 ((-1229 |t#1|) $)) (-15 -3570 ((-667 |t#1|) (-1229 $))) (-15 -1906 ($ (-1229 |t#1|))) (-15 -4325 ((-1229 |t#1|) $)) (-15 -4325 ($ (-1229 |t#1|))) (-15 -1896 ((-667 |t#1|))) (-15 -4112 (|t#1|)) (-15 -1895 ((-667 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-363 |#1| |#2|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-3503 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) 27) (((-3 (-536) #1#) $) 19)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) 24) (((-536) $) 14)) (-4312 (($ |#2|) NIL) (($ (-400 (-536))) 22) (($ (-536)) 11))) -(((-404 |#1| |#2|) (-10 -8 (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|))) (-405 |#2|) (-1183)) (T -404)) -NIL -(-10 -8 (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|))) -((-3503 (((-3 |#1| #1="failed") $) 7) (((-3 (-400 (-536)) #1#) $) 16 (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #1#) $) 13 (|has| |#1| (-1012 (-536))))) (-3502 ((|#1| $) 8) (((-400 (-536)) $) 15 (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) 12 (|has| |#1| (-1012 (-536))))) (-4312 (($ |#1|) 6) (($ (-400 (-536))) 17 (|has| |#1| (-1012 (-400 (-536))))) (($ (-536)) 14 (|has| |#1| (-1012 (-536)))))) -(((-405 |#1|) (-138) (-1183)) (T -405)) -NIL -(-13 (-1012 |t#1|) (-10 -7 (IF (|has| |t#1| (-1012 (-536))) (-6 (-1012 (-536))) |%noBranch|) (IF (|has| |t#1| (-1012 (-400 (-536)))) (-6 (-1012 (-400 (-536)))) |%noBranch|))) -(((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T)) -((-2893 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-1897 ((|#4| (-749) (-1229 |#4|)) 56)) (-2497 (((-112) $) NIL)) (-3326 (((-1229 |#4|) $) 17)) (-3462 ((|#2| $) 54)) (-1898 (($ $) 139)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 100)) (-2087 (($ (-1229 |#4|)) 99)) (-3589 (((-1091) $) NIL)) (-3325 ((|#1| $) 18)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) 134)) (-2123 (((-1229 |#4|) $) 129)) (-2992 (($) 11 T CONST)) (-3382 (((-112) $ $) 40)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 122)) (* (($ $ $) 121))) -(((-406 |#1| |#2| |#3| |#4|) (-13 (-465) (-10 -8 (-15 -2087 ($ (-1229 |#4|))) (-15 -2123 ((-1229 |#4|) $)) (-15 -3462 (|#2| $)) (-15 -3326 ((-1229 |#4|) $)) (-15 -3325 (|#1| $)) (-15 -1898 ($ $)) (-15 -1897 (|#4| (-749) (-1229 |#4|))))) (-300) (-965 |#1|) (-1205 |#2|) (-13 (-403 |#2| |#3|) (-1012 |#2|))) (T -406)) -((-2087 (*1 *1 *2) (-12 (-5 *2 (-1229 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-4 *3 (-300)) (-5 *1 (-406 *3 *4 *5 *6)))) (-2123 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))))) (-3462 (*1 *2 *1) (-12 (-4 *4 (-1205 *2)) (-4 *2 (-965 *3)) (-5 *1 (-406 *3 *2 *4 *5)) (-4 *3 (-300)) (-4 *5 (-13 (-403 *2 *4) (-1012 *2))))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))))) (-3325 (*1 *2 *1) (-12 (-4 *3 (-965 *2)) (-4 *4 (-1205 *3)) (-4 *2 (-300)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1012 *3))))) (-1898 (*1 *1 *1) (-12 (-4 *2 (-300)) (-4 *3 (-965 *2)) (-4 *4 (-1205 *3)) (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1012 *3))))) (-1897 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1229 *2)) (-4 *5 (-300)) (-4 *6 (-965 *5)) (-4 *2 (-13 (-403 *6 *7) (-1012 *6))) (-5 *1 (-406 *5 *6 *7 *2)) (-4 *7 (-1205 *6))))) -(-13 (-465) (-10 -8 (-15 -2087 ($ (-1229 |#4|))) (-15 -2123 ((-1229 |#4|) $)) (-15 -3462 (|#2| $)) (-15 -3326 ((-1229 |#4|) $)) (-15 -3325 (|#1| $)) (-15 -1898 ($ $)) (-15 -1897 (|#4| (-749) (-1229 |#4|))))) -((-4313 (((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)) 33))) -(((-407 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4313 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) (-300) (-965 |#1|) (-1205 |#2|) (-13 (-403 |#2| |#3|) (-1012 |#2|)) (-300) (-965 |#5|) (-1205 |#6|) (-13 (-403 |#6| |#7|) (-1012 |#6|))) (T -407)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) (-4 *6 (-965 *5)) (-4 *7 (-1205 *6)) (-4 *8 (-13 (-403 *6 *7) (-1012 *6))) (-4 *9 (-300)) (-4 *10 (-965 *9)) (-4 *11 (-1205 *10)) (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-403 *10 *11) (-1012 *10)))))) -(-10 -7 (-15 -4313 ((-406 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-406 |#1| |#2| |#3| |#4|)))) -((-2893 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3462 ((|#2| $) 61)) (-1899 (($ (-1229 |#4|)) 25) (($ (-406 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1012 |#2|)))) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 34)) (-2123 (((-1229 |#4|) $) 26)) (-2992 (($) 23 T CONST)) (-3382 (((-112) $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ $ $) 72))) -(((-408 |#1| |#2| |#3| |#4| |#5|) (-13 (-705) (-10 -8 (-15 -2123 ((-1229 |#4|) $)) (-15 -3462 (|#2| $)) (-15 -1899 ($ (-1229 |#4|))) (IF (|has| |#4| (-1012 |#2|)) (-15 -1899 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-300) (-965 |#1|) (-1205 |#2|) (-403 |#2| |#3|) (-1229 |#4|)) (T -408)) -((-2123 (*1 *2 *1) (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) (-3462 (*1 *2 *1) (-12 (-4 *4 (-1205 *2)) (-4 *2 (-965 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) (-4 *3 (-300)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1229 *5)))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-1229 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-4 *3 (-300)) (-5 *1 (-408 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1899 (*1 *1 *2) (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1012 *4)) (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-4 *6 (-403 *4 *5)) (-14 *7 (-1229 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7))))) -(-13 (-705) (-10 -8 (-15 -2123 ((-1229 |#4|) $)) (-15 -3462 (|#2| $)) (-15 -1899 ($ (-1229 |#4|))) (IF (|has| |#4| (-1012 |#2|)) (-15 -1899 ($ (-406 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-4313 ((|#3| (-1 |#4| |#2|) |#1|) 26))) -(((-409 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) (-411 |#2|) (-170) (-411 |#4|) (-170)) (T -409)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-411 *6)) (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5))))) -(-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) -((-1887 (((-3 $ #1="failed")) 86)) (-3569 (((-1229 (-667 |#2|)) (-1229 $)) NIL) (((-1229 (-667 |#2|))) 91)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) 85)) (-1814 (((-3 $ #1#)) 84)) (-1902 (((-667 |#2|) (-1229 $)) NIL) (((-667 |#2|)) 102)) (-1900 (((-667 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) $) 110)) (-2017 (((-1141 (-920 |#2|))) 55)) (-1904 ((|#2| (-1229 $)) NIL) ((|#2|) 106)) (-1906 (($ (-1229 |#2|) (-1229 $)) NIL) (($ (-1229 |#2|)) 112)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) 83)) (-1815 (((-3 $ #1#)) 75)) (-1903 (((-667 |#2|) (-1229 $)) NIL) (((-667 |#2|)) 100)) (-1901 (((-667 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) $) 108)) (-2021 (((-1141 (-920 |#2|))) 54)) (-1905 ((|#2| (-1229 $)) NIL) ((|#2|) 104)) (-3570 (((-1229 |#2|) $ (-1229 $)) NIL) (((-667 |#2|) (-1229 $) (-1229 $)) NIL) (((-1229 |#2|) $) 111) (((-667 |#2|) (-1229 $)) 118)) (-4325 (((-1229 |#2|) $) 96) (($ (-1229 |#2|)) 98)) (-2009 (((-620 (-920 |#2|)) (-1229 $)) NIL) (((-620 (-920 |#2|))) 94)) (-2875 (($ (-667 |#2|) $) 90))) -(((-410 |#1| |#2|) (-10 -8 (-15 -2875 (|#1| (-667 |#2|) |#1|)) (-15 -2017 ((-1141 (-920 |#2|)))) (-15 -2021 ((-1141 (-920 |#2|)))) (-15 -1900 ((-667 |#2|) |#1|)) (-15 -1901 ((-667 |#2|) |#1|)) (-15 -1902 ((-667 |#2|))) (-15 -1903 ((-667 |#2|))) (-15 -1904 (|#2|)) (-15 -1905 (|#2|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -2009 ((-620 (-920 |#2|)))) (-15 -3569 ((-1229 (-667 |#2|)))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -1887 ((-3 |#1| #1="failed"))) (-15 -1814 ((-3 |#1| #1#))) (-15 -1815 ((-3 |#1| #1#))) (-15 -2023 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) #1#))) (-15 -2024 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) #1#))) (-15 -1902 ((-667 |#2|) (-1229 |#1|))) (-15 -1903 ((-667 |#2|) (-1229 |#1|))) (-15 -1904 (|#2| (-1229 |#1|))) (-15 -1905 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1900 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -1901 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -3569 ((-1229 (-667 |#2|)) (-1229 |#1|))) (-15 -2009 ((-620 (-920 |#2|)) (-1229 |#1|)))) (-411 |#2|) (-170)) (T -410)) -((-3569 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1229 (-667 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2009 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-620 (-920 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1905 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-1904 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) (-1903 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-1902 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2021 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-920 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-2017 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-920 *4))) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4))))) -(-10 -8 (-15 -2875 (|#1| (-667 |#2|) |#1|)) (-15 -2017 ((-1141 (-920 |#2|)))) (-15 -2021 ((-1141 (-920 |#2|)))) (-15 -1900 ((-667 |#2|) |#1|)) (-15 -1901 ((-667 |#2|) |#1|)) (-15 -1902 ((-667 |#2|))) (-15 -1903 ((-667 |#2|))) (-15 -1904 (|#2|)) (-15 -1905 (|#2|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -1906 (|#1| (-1229 |#2|))) (-15 -2009 ((-620 (-920 |#2|)))) (-15 -3569 ((-1229 (-667 |#2|)))) (-15 -3570 ((-667 |#2|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1|)) (-15 -1887 ((-3 |#1| #1="failed"))) (-15 -1814 ((-3 |#1| #1#))) (-15 -1815 ((-3 |#1| #1#))) (-15 -2023 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) #1#))) (-15 -2024 ((-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) #1#))) (-15 -1902 ((-667 |#2|) (-1229 |#1|))) (-15 -1903 ((-667 |#2|) (-1229 |#1|))) (-15 -1904 (|#2| (-1229 |#1|))) (-15 -1905 (|#2| (-1229 |#1|))) (-15 -1906 (|#1| (-1229 |#2|) (-1229 |#1|))) (-15 -3570 ((-667 |#2|) (-1229 |#1|) (-1229 |#1|))) (-15 -3570 ((-1229 |#2|) |#1| (-1229 |#1|))) (-15 -1900 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -1901 ((-667 |#2|) |#1| (-1229 |#1|))) (-15 -3569 ((-1229 (-667 |#2|)) (-1229 |#1|))) (-15 -2009 ((-620 (-920 |#2|)) (-1229 |#1|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1887 (((-3 $ #1="failed")) 37 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3569 (((-1229 (-667 |#1|)) (-1229 $)) 78) (((-1229 (-667 |#1|))) 100)) (-1840 (((-1229 $)) 81)) (-3891 (($) 17 T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) 40 (|has| |#1| (-543)))) (-1814 (((-3 $ #1#)) 38 (|has| |#1| (-543)))) (-1902 (((-667 |#1|) (-1229 $)) 65) (((-667 |#1|)) 92)) (-1838 ((|#1| $) 74)) (-1900 (((-667 |#1|) $ (-1229 $)) 76) (((-667 |#1|) $) 90)) (-2491 (((-3 $ #1#) $) 45 (|has| |#1| (-543)))) (-2017 (((-1141 (-920 |#1|))) 88 (|has| |#1| (-356)))) (-2494 (($ $ (-893)) 28)) (-1836 ((|#1| $) 72)) (-1816 (((-1141 |#1|) $) 42 (|has| |#1| (-543)))) (-1904 ((|#1| (-1229 $)) 67) ((|#1|) 94)) (-1834 (((-1141 |#1|) $) 63)) (-1828 (((-112)) 57)) (-1906 (($ (-1229 |#1|) (-1229 $)) 69) (($ (-1229 |#1|)) 98)) (-3816 (((-3 $ #1#) $) 47 (|has| |#1| (-543)))) (-3439 (((-893)) 80)) (-1825 (((-112)) 54)) (-2519 (($ $ (-893)) 33)) (-1821 (((-112)) 50)) (-1819 (((-112)) 48)) (-1823 (((-112)) 52)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) 41 (|has| |#1| (-543)))) (-1815 (((-3 $ #1#)) 39 (|has| |#1| (-543)))) (-1903 (((-667 |#1|) (-1229 $)) 66) (((-667 |#1|)) 93)) (-1839 ((|#1| $) 75)) (-1901 (((-667 |#1|) $ (-1229 $)) 77) (((-667 |#1|) $) 91)) (-2492 (((-3 $ #1#) $) 46 (|has| |#1| (-543)))) (-2021 (((-1141 (-920 |#1|))) 89 (|has| |#1| (-356)))) (-2493 (($ $ (-893)) 29)) (-1837 ((|#1| $) 73)) (-1817 (((-1141 |#1|) $) 43 (|has| |#1| (-543)))) (-1905 ((|#1| (-1229 $)) 68) ((|#1|) 95)) (-1835 (((-1141 |#1|) $) 64)) (-1829 (((-112)) 58)) (-3588 (((-1129) $) 9)) (-1820 (((-112)) 49)) (-1822 (((-112)) 51)) (-1824 (((-112)) 53)) (-3589 (((-1091) $) 10)) (-1827 (((-112)) 56)) (-4154 ((|#1| $ (-536)) 101)) (-3570 (((-1229 |#1|) $ (-1229 $)) 71) (((-667 |#1|) (-1229 $) (-1229 $)) 70) (((-1229 |#1|) $) 103) (((-667 |#1|) (-1229 $)) 102)) (-4325 (((-1229 |#1|) $) 97) (($ (-1229 |#1|)) 96)) (-2009 (((-620 (-920 |#1|)) (-1229 $)) 79) (((-620 (-920 |#1|))) 99)) (-2681 (($ $ $) 25)) (-1833 (((-112)) 62)) (-4312 (((-838) $) 11)) (-2123 (((-1229 $)) 104)) (-1818 (((-620 (-1229 |#1|))) 44 (|has| |#1| (-543)))) (-2682 (($ $ $ $) 26)) (-1831 (((-112)) 60)) (-2875 (($ (-667 |#1|) $) 87)) (-2680 (($ $ $) 24)) (-1832 (((-112)) 61)) (-1830 (((-112)) 59)) (-1826 (((-112)) 55)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 30)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-411 |#1|) (-138) (-170)) (T -411)) -((-2123 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1229 *1)) (-4 *1 (-411 *3)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 *3)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-411 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-3569 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 (-667 *3))))) (-2009 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-620 (-920 *3))))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 *3)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) (-1905 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-1904 (*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170)))) (-1903 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-1902 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3)))) (-2021 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1141 (-920 *3))))) (-2017 (*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) (-5 *2 (-1141 (-920 *3))))) (-2875 (*1 *1 *2 *1) (-12 (-5 *2 (-667 *3)) (-4 *1 (-411 *3)) (-4 *3 (-170))))) -(-13 (-360 |t#1|) (-10 -8 (-15 -2123 ((-1229 $))) (-15 -3570 ((-1229 |t#1|) $)) (-15 -3570 ((-667 |t#1|) (-1229 $))) (-15 -4154 (|t#1| $ (-536))) (-15 -3569 ((-1229 (-667 |t#1|)))) (-15 -2009 ((-620 (-920 |t#1|)))) (-15 -1906 ($ (-1229 |t#1|))) (-15 -4325 ((-1229 |t#1|) $)) (-15 -4325 ($ (-1229 |t#1|))) (-15 -1905 (|t#1|)) (-15 -1904 (|t#1|)) (-15 -1903 ((-667 |t#1|))) (-15 -1902 ((-667 |t#1|))) (-15 -1901 ((-667 |t#1|) $)) (-15 -1900 ((-667 |t#1|) $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -2021 ((-1141 (-920 |t#1|)))) (-15 -2017 ((-1141 (-920 |t#1|))))) |%noBranch|) (-15 -2875 ($ (-667 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-360 |#1|) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-723 |#1|) . T) ((-740) . T) ((-1029 |#1|) . T) ((-1072) . T)) -((-3464 (((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|)) 21)) (-1907 (((-398 |#1|) (-398 |#1|) (-398 |#1|)) 16))) -(((-412 |#1|) (-10 -7 (-15 -3464 ((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|))) (-15 -1907 ((-398 |#1|) (-398 |#1|) (-398 |#1|)))) (-543)) (T -412)) -((-1907 (*1 *2 *2 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-543)) (-5 *1 (-412 *3)))) (-3464 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-398 *4) *4)) (-4 *4 (-543)) (-5 *2 (-398 *4)) (-5 *1 (-412 *4))))) -(-10 -7 (-15 -3464 ((-398 |#1|) (-398 |#1|) (-1 (-398 |#1|) |#1|))) (-15 -1907 ((-398 |#1|) (-398 |#1|) (-398 |#1|)))) -((-3412 (((-620 (-1147)) $) 72)) (-3414 (((-400 (-1141 $)) $ (-593 $)) 273)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-620 (-593 $)) (-620 $)) 237)) (-3503 (((-3 (-593 $) #1="failed") $) NIL) (((-3 (-1147) #1#) $) 75) (((-3 (-536) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-400 (-920 |#2|)) #1#) $) 324) (((-3 (-920 |#2|) #1#) $) 235) (((-3 (-400 (-536)) #1#) $) NIL)) (-3502 (((-593 $) $) NIL) (((-1147) $) 30) (((-536) $) NIL) ((|#2| $) 231) (((-400 (-920 |#2|)) $) 305) (((-920 |#2|) $) 232) (((-400 (-536)) $) NIL)) (-3375 (((-113) (-113)) 47)) (-3324 (($ $) 87)) (-1657 (((-3 (-593 $) "failed") $) 228)) (-1656 (((-620 (-593 $)) $) 229)) (-3151 (((-3 (-620 $) "failed") $) 247)) (-3153 (((-3 (-2 (|:| |val| $) (|:| -2488 (-536))) "failed") $) 254)) (-3150 (((-3 (-620 $) "failed") $) 245)) (-1908 (((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 $))) "failed") $) 264)) (-3152 (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $) 251) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-1147)) 219)) (-1911 (((-112) $) 19)) (-1910 ((|#2| $) 21)) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) 236) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) 96) (($ $ (-1147) (-1 $ (-620 $))) NIL) (($ $ (-1147) (-1 $ $)) NIL) (($ $ (-620 (-113)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-113) (-1 $ (-620 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1147)) 57) (($ $ (-620 (-1147))) 240) (($ $) 241) (($ $ (-113) $ (-1147)) 60) (($ $ (-620 (-113)) (-620 $) (-1147)) 67) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ $))) 107) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ (-620 $)))) 242) (($ $ (-1147) (-749) (-1 $ (-620 $))) 94) (($ $ (-1147) (-749) (-1 $ $)) 93)) (-4154 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-620 $)) 106)) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) 238)) (-3323 (($ $) 284)) (-4325 (((-864 (-536)) $) 257) (((-864 (-371)) $) 261) (($ (-398 $)) 320) (((-525) $) NIL)) (-4312 (((-838) $) 239) (($ (-593 $)) 84) (($ (-1147)) 26) (($ |#2|) NIL) (($ (-1096 |#2| (-593 $))) NIL) (($ (-400 |#2|)) 289) (($ (-920 (-400 |#2|))) 329) (($ (-400 (-920 (-400 |#2|)))) 301) (($ (-400 (-920 |#2|))) 295) (($ $) NIL) (($ (-920 |#2|)) 185) (($ (-400 (-536))) 334) (($ (-536)) NIL)) (-3456 (((-749)) 79)) (-2333 (((-112) (-113)) 41)) (-1909 (($ (-1147) $) 33) (($ (-1147) $ $) 34) (($ (-1147) $ $ $) 35) (($ (-1147) $ $ $ $) 36) (($ (-1147) (-620 $)) 39)) (* (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL))) -(((-413 |#1| |#2|) (-10 -8 (-15 * (|#1| (-893) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3456 ((-749))) (-15 -4312 (|#1| (-536))) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1="failed") |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-920 |#2|) |#1|)) (-15 -3503 ((-3 (-920 |#2|) #1#) |#1|)) (-15 -4312 (|#1| (-920 |#2|))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4312 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -3502 ((-400 (-920 |#2|)) |#1|)) (-15 -3503 ((-3 (-400 (-920 |#2|)) #1#) |#1|)) (-15 -4312 (|#1| (-400 (-920 |#2|)))) (-15 -3414 ((-400 (-1141 |#1|)) |#1| (-593 |#1|))) (-15 -4312 (|#1| (-400 (-920 (-400 |#2|))))) (-15 -4312 (|#1| (-920 (-400 |#2|)))) (-15 -4312 (|#1| (-400 |#2|))) (-15 -3323 (|#1| |#1|)) (-15 -4325 (|#1| (-398 |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-749) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-749) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-749)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-749)) (-620 (-1 |#1| |#1|)))) (-15 -3153 ((-3 (-2 (|:| |val| |#1|) (|:| -2488 (-536))) "failed") |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1| (-1147))) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1| (-113))) (-15 -3324 (|#1| |#1|)) (-15 -4312 (|#1| (-1096 |#2| (-593 |#1|)))) (-15 -1908 ((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 |#1|))) "failed") |#1|)) (-15 -3150 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1|)) (-15 -3151 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 |#1|) (-1147))) (-15 -4122 (|#1| |#1| (-113) |#1| (-1147))) (-15 -4122 (|#1| |#1|)) (-15 -4122 (|#1| |#1| (-620 (-1147)))) (-15 -4122 (|#1| |#1| (-1147))) (-15 -1909 (|#1| (-1147) (-620 |#1|))) (-15 -1909 (|#1| (-1147) |#1| |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1|)) (-15 -3412 ((-620 (-1147)) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -4312 (|#1| (-1147))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| |#1|)))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| |#1|)))) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1656 ((-620 (-593 |#1|)) |#1|)) (-15 -1657 ((-3 (-593 |#1|) "failed") |#1|)) (-15 -1659 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -1659 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4154 (|#1| (-113) (-620 |#1|))) (-15 -4154 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-593 |#1|) |#1|)) (-15 -3502 ((-593 |#1|) |#1|)) (-15 -3503 ((-3 (-593 |#1|) #1#) |#1|)) (-15 -4312 (|#1| (-593 |#1|))) (-15 -4312 ((-838) |#1|))) (-414 |#2|) (-825)) (T -413)) -((-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-825)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-413 *4 *5)) (-4 *4 (-414 *5)))) (-3456 (*1 *2) (-12 (-4 *4 (-825)) (-5 *2 (-749)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4))))) -(-10 -8 (-15 * (|#1| (-893) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3456 ((-749))) (-15 -4312 (|#1| (-536))) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1="failed") |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-920 |#2|) |#1|)) (-15 -3503 ((-3 (-920 |#2|) #1#) |#1|)) (-15 -4312 (|#1| (-920 |#2|))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4312 (|#1| |#1|)) (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -3502 ((-400 (-920 |#2|)) |#1|)) (-15 -3503 ((-3 (-400 (-920 |#2|)) #1#) |#1|)) (-15 -4312 (|#1| (-400 (-920 |#2|)))) (-15 -3414 ((-400 (-1141 |#1|)) |#1| (-593 |#1|))) (-15 -4312 (|#1| (-400 (-920 (-400 |#2|))))) (-15 -4312 (|#1| (-920 (-400 |#2|)))) (-15 -4312 (|#1| (-400 |#2|))) (-15 -3323 (|#1| |#1|)) (-15 -4325 (|#1| (-398 |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-749) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-749) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-749)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-749)) (-620 (-1 |#1| |#1|)))) (-15 -3153 ((-3 (-2 (|:| |val| |#1|) (|:| -2488 (-536))) "failed") |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1| (-1147))) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1| (-113))) (-15 -3324 (|#1| |#1|)) (-15 -4312 (|#1| (-1096 |#2| (-593 |#1|)))) (-15 -1908 ((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 |#1|))) "failed") |#1|)) (-15 -3150 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 |#1|)) (|:| -2488 (-536))) "failed") |#1|)) (-15 -3151 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 |#1|) (-1147))) (-15 -4122 (|#1| |#1| (-113) |#1| (-1147))) (-15 -4122 (|#1| |#1|)) (-15 -4122 (|#1| |#1| (-620 (-1147)))) (-15 -4122 (|#1| |#1| (-1147))) (-15 -1909 (|#1| (-1147) (-620 |#1|))) (-15 -1909 (|#1| (-1147) |#1| |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1| |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1| |#1|)) (-15 -1909 (|#1| (-1147) |#1|)) (-15 -3412 ((-620 (-1147)) |#1|)) (-15 -1910 (|#2| |#1|)) (-15 -1911 ((-112) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -4312 (|#1| (-1147))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-113) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-113)) (-620 (-1 |#1| |#1|)))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| |#1|))) (-15 -4122 (|#1| |#1| (-1147) (-1 |#1| (-620 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| (-620 |#1|))))) (-15 -4122 (|#1| |#1| (-620 (-1147)) (-620 (-1 |#1| |#1|)))) (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -1656 ((-620 (-593 |#1|)) |#1|)) (-15 -1657 ((-3 (-593 |#1|) "failed") |#1|)) (-15 -1659 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -1659 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -1659 (|#1| |#1| (-286 |#1|))) (-15 -4154 (|#1| (-113) (-620 |#1|))) (-15 -4154 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1| |#1|)) (-15 -4154 (|#1| (-113) |#1|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4122 (|#1| |#1| (-620 (-593 |#1|)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-593 |#1|) |#1|)) (-15 -3502 ((-593 |#1|) |#1|)) (-15 -3503 ((-3 (-593 |#1|) #1#) |#1|)) (-15 -4312 (|#1| (-593 |#1|))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 113 (|has| |#1| (-25)))) (-3412 (((-620 (-1147)) $) 200)) (-3414 (((-400 (-1141 $)) $ (-593 $)) 168 (|has| |#1| (-543)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 140 (|has| |#1| (-543)))) (-2173 (($ $) 141 (|has| |#1| (-543)))) (-2171 (((-112) $) 143 (|has| |#1| (-543)))) (-1655 (((-620 (-593 $)) $) 44)) (-1367 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1659 (($ $ (-286 $)) 56) (($ $ (-620 (-286 $))) 55) (($ $ (-620 (-593 $)) (-620 $)) 54)) (-4129 (($ $) 160 (|has| |#1| (-543)))) (-4324 (((-398 $) $) 161 (|has| |#1| (-543)))) (-1700 (((-112) $ $) 151 (|has| |#1| (-543)))) (-3891 (($) 101 (-3886 (|has| |#1| (-1083)) (|has| |#1| (-25))) CONST)) (-3503 (((-3 (-593 $) #1="failed") $) 69) (((-3 (-1147) #1#) $) 213) (((-3 (-536) #1#) $) 206 (|has| |#1| (-1012 (-536)))) (((-3 |#1| #1#) $) 204) (((-3 (-400 (-920 |#1|)) #1#) $) 166 (|has| |#1| (-543))) (((-3 (-920 |#1|) #1#) $) 120 (|has| |#1| (-1023))) (((-3 (-400 (-536)) #1#) $) 95 (-3886 (-12 (|has| |#1| (-1012 (-536))) (|has| |#1| (-543))) (|has| |#1| (-1012 (-400 (-536))))))) (-3502 (((-593 $) $) 68) (((-1147) $) 212) (((-536) $) 207 (|has| |#1| (-1012 (-536)))) ((|#1| $) 203) (((-400 (-920 |#1|)) $) 165 (|has| |#1| (-543))) (((-920 |#1|) $) 119 (|has| |#1| (-1023))) (((-400 (-536)) $) 94 (-3886 (-12 (|has| |#1| (-1012 (-536))) (|has| |#1| (-543))) (|has| |#1| (-1012 (-400 (-536))))))) (-2889 (($ $ $) 155 (|has| |#1| (-543)))) (-2357 (((-667 (-536)) (-667 $)) 134 (-3186 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 133 (-3186 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 132 (|has| |#1| (-1023))) (((-667 |#1|) (-667 $)) 131 (|has| |#1| (-1023)))) (-3816 (((-3 $ "failed") $) 103 (|has| |#1| (-1083)))) (-2888 (($ $ $) 154 (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 149 (|has| |#1| (-543)))) (-4081 (((-112) $) 162 (|has| |#1| (-543)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 209 (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 208 (|has| |#1| (-860 (-371))))) (-2898 (($ $) 51) (($ (-620 $)) 50)) (-1654 (((-620 (-113)) $) 43)) (-3375 (((-113) (-113)) 42)) (-2497 (((-112) $) 102 (|has| |#1| (-1083)))) (-3001 (((-112) $) 22 (|has| $ (-1012 (-536))))) (-3324 (($ $) 183 (|has| |#1| (-1023)))) (-3326 (((-1096 |#1| (-593 $)) $) 184 (|has| |#1| (-1023)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 158 (|has| |#1| (-543)))) (-1652 (((-1141 $) (-593 $)) 25 (|has| $ (-1023)))) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-4313 (($ (-1 $ $) (-593 $)) 36)) (-1657 (((-3 (-593 $) "failed") $) 46)) (-2008 (($ (-620 $)) 147 (|has| |#1| (-543))) (($ $ $) 146 (|has| |#1| (-543)))) (-3588 (((-1129) $) 9)) (-1656 (((-620 (-593 $)) $) 45)) (-2312 (($ (-113) $) 38) (($ (-113) (-620 $)) 37)) (-3151 (((-3 (-620 $) "failed") $) 189 (|has| |#1| (-1083)))) (-3153 (((-3 (-2 (|:| |val| $) (|:| -2488 (-536))) "failed") $) 180 (|has| |#1| (-1023)))) (-3150 (((-3 (-620 $) "failed") $) 187 (|has| |#1| (-25)))) (-1908 (((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3152 (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $) 188 (|has| |#1| (-1083))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-113)) 182 (|has| |#1| (-1023))) (((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-1147)) 181 (|has| |#1| (-1023)))) (-2959 (((-112) $ (-113)) 40) (((-112) $ (-1147)) 39)) (-2729 (($ $) 105 (-3886 (|has| |#1| (-465)) (|has| |#1| (-543))))) (-2928 (((-749) $) 47)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 202)) (-1910 ((|#1| $) 201)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-543)))) (-3490 (($ (-620 $)) 145 (|has| |#1| (-543))) (($ $ $) 144 (|has| |#1| (-543)))) (-1653 (((-112) $ $) 35) (((-112) $ (-1147)) 34)) (-4087 (((-398 $) $) 159 (|has| |#1| (-543)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 157 (|has| |#1| (-543))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 156 (|has| |#1| (-543)))) (-3815 (((-3 $ "failed") $ $) 139 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 150 (|has| |#1| (-543)))) (-3002 (((-112) $) 23 (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) 67) (($ $ (-620 (-593 $)) (-620 $)) 66) (($ $ (-620 (-286 $))) 65) (($ $ (-286 $)) 64) (($ $ $ $) 63) (($ $ (-620 $) (-620 $)) 62) (($ $ (-620 (-1147)) (-620 (-1 $ $))) 33) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) 32) (($ $ (-1147) (-1 $ (-620 $))) 31) (($ $ (-1147) (-1 $ $)) 30) (($ $ (-620 (-113)) (-620 (-1 $ $))) 29) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) 28) (($ $ (-113) (-1 $ (-620 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1147)) 194 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-1147))) 193 (|has| |#1| (-596 (-525)))) (($ $) 192 (|has| |#1| (-596 (-525)))) (($ $ (-113) $ (-1147)) 191 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-113)) (-620 $) (-1147)) 190 (|has| |#1| (-596 (-525)))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ $))) 179 (|has| |#1| (-1023))) (($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ (-620 $)))) 178 (|has| |#1| (-1023))) (($ $ (-1147) (-749) (-1 $ (-620 $))) 177 (|has| |#1| (-1023))) (($ $ (-1147) (-749) (-1 $ $)) 176 (|has| |#1| (-1023)))) (-1699 (((-749) $) 152 (|has| |#1| (-543)))) (-4154 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-620 $)) 57)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 153 (|has| |#1| (-543)))) (-1658 (($ $) 49) (($ $ $) 48)) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 125 (|has| |#1| (-1023))) (($ $ (-1147) (-749)) 124 (|has| |#1| (-1023))) (($ $ (-620 (-1147))) 123 (|has| |#1| (-1023))) (($ $ (-1147)) 122 (|has| |#1| (-1023)))) (-3323 (($ $) 173 (|has| |#1| (-543)))) (-3325 (((-1096 |#1| (-593 $)) $) 174 (|has| |#1| (-543)))) (-3531 (($ $) 24 (|has| $ (-1023)))) (-4325 (((-864 (-536)) $) 211 (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) 210 (|has| |#1| (-596 (-864 (-371))))) (($ (-398 $)) 175 (|has| |#1| (-543))) (((-525) $) 97 (|has| |#1| (-596 (-525))))) (-3337 (($ $ $) 108 (|has| |#1| (-465)))) (-2681 (($ $ $) 109 (|has| |#1| (-465)))) (-4312 (((-838) $) 11) (($ (-593 $)) 70) (($ (-1147)) 214) (($ |#1|) 205) (($ (-1096 |#1| (-593 $))) 185 (|has| |#1| (-1023))) (($ (-400 |#1|)) 171 (|has| |#1| (-543))) (($ (-920 (-400 |#1|))) 170 (|has| |#1| (-543))) (($ (-400 (-920 (-400 |#1|)))) 169 (|has| |#1| (-543))) (($ (-400 (-920 |#1|))) 167 (|has| |#1| (-543))) (($ $) 138 (|has| |#1| (-543))) (($ (-920 |#1|)) 121 (|has| |#1| (-1023))) (($ (-400 (-536))) 96 (-3886 (|has| |#1| (-543)) (-12 (|has| |#1| (-1012 (-536))) (|has| |#1| (-543))) (|has| |#1| (-1012 (-400 (-536)))))) (($ (-536)) 93 (-3886 (|has| |#1| (-1023)) (|has| |#1| (-1012 (-536)))))) (-3030 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-3456 (((-749)) 130 (|has| |#1| (-1023)))) (-2915 (($ $) 53) (($ (-620 $)) 52)) (-2333 (((-112) (-113)) 41)) (-2172 (((-112) $ $) 142 (|has| |#1| (-543)))) (-1909 (($ (-1147) $) 199) (($ (-1147) $ $) 198) (($ (-1147) $ $ $) 197) (($ (-1147) $ $ $ $) 196) (($ (-1147) (-620 $)) 195)) (-2986 (($) 112 (|has| |#1| (-25)) CONST)) (-2992 (($) 100 (|has| |#1| (-1083)) CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 129 (|has| |#1| (-1023))) (($ $ (-1147) (-749)) 128 (|has| |#1| (-1023))) (($ $ (-620 (-1147))) 127 (|has| |#1| (-1023))) (($ $ (-1147)) 126 (|has| |#1| (-1023)))) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4303 (($ (-1096 |#1| (-593 $)) (-1096 |#1| (-593 $))) 172 (|has| |#1| (-543))) (($ $ $) 106 (-3886 (|has| |#1| (-465)) (|has| |#1| (-543))))) (-4192 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-4194 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-536)) 107 (-3886 (|has| |#1| (-465)) (|has| |#1| (-543)))) (($ $ (-749)) 104 (|has| |#1| (-1083))) (($ $ (-893)) 99 (|has| |#1| (-1083)))) (* (($ (-400 (-536)) $) 164 (|has| |#1| (-543))) (($ $ (-400 (-536))) 163 (|has| |#1| (-543))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-536) $) 118 (|has| |#1| (-21))) (($ (-749) $) 114 (|has| |#1| (-25))) (($ (-893) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1083))))) -(((-414 |#1|) (-138) (-825)) (T -414)) -((-1911 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-825)) (-5 *2 (-112)))) (-1910 (*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-825)) (-5 *2 (-620 (-1147))))) (-1909 (*1 *1 *2 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) (-1909 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) (-1909 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) (-1909 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) (-1909 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 *1)) (-4 *1 (-414 *4)) (-4 *4 (-825)))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)) (-4 *3 (-596 (-525))))) (-4122 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-1147))) (-4 *1 (-414 *3)) (-4 *3 (-825)) (-4 *3 (-596 (-525))))) (-4122 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-596 (-525))))) (-4122 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1147)) (-4 *1 (-414 *4)) (-4 *4 (-825)) (-4 *4 (-596 (-525))))) (-4122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 *1)) (-5 *4 (-1147)) (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-596 (-525))))) (-3151 (*1 *2 *1) (|partial| -12 (-4 *3 (-1083)) (-4 *3 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-414 *3)))) (-3152 (*1 *2 *1) (|partial| -12 (-4 *3 (-1083)) (-4 *3 (-825)) (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *3)))) (-3150 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-414 *3)))) (-1908 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -4308 (-536)) (|:| |var| (-593 *1)))) (-4 *1 (-414 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1096 *3 (-593 *1))) (-4 *3 (-1023)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *3 (-825)) (-5 *2 (-1096 *3 (-593 *1))) (-4 *1 (-414 *3)))) (-3324 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-1023)))) (-3152 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1023)) (-4 *4 (-825)) (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *4)))) (-3152 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1147)) (-4 *4 (-1023)) (-4 *4 (-825)) (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *4)))) (-3153 (*1 *2 *1) (|partial| -12 (-4 *3 (-1023)) (-4 *3 (-825)) (-5 *2 (-2 (|:| |val| *1) (|:| -2488 (-536)))) (-4 *1 (-414 *3)))) (-4122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-749))) (-5 *4 (-620 (-1 *1 *1))) (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) (-4122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-749))) (-5 *4 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) (-4122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *4 (-1 *1 (-620 *1))) (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) (-4122 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *4 (-1 *1 *1)) (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-398 *1)) (-4 *1 (-414 *3)) (-4 *3 (-543)) (-4 *3 (-825)))) (-3325 (*1 *2 *1) (-12 (-4 *3 (-543)) (-4 *3 (-825)) (-5 *2 (-1096 *3 (-593 *1))) (-4 *1 (-414 *3)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-543)))) (-4303 (*1 *1 *2 *2) (-12 (-5 *2 (-1096 *3 (-593 *1))) (-4 *3 (-543)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-543)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-920 (-400 *3))) (-4 *3 (-543)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-400 *3)))) (-4 *3 (-543)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) (-3414 (*1 *2 *1 *3) (-12 (-5 *3 (-593 *1)) (-4 *1 (-414 *4)) (-4 *4 (-825)) (-4 *4 (-543)) (-5 *2 (-400 (-1141 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-414 *3)) (-4 *3 (-825)) (-4 *3 (-1083))))) -(-13 (-291) (-1012 (-1147)) (-858 |t#1|) (-393 |t#1|) (-405 |t#1|) (-10 -8 (-15 -1911 ((-112) $)) (-15 -1910 (|t#1| $)) (-15 -3412 ((-620 (-1147)) $)) (-15 -1909 ($ (-1147) $)) (-15 -1909 ($ (-1147) $ $)) (-15 -1909 ($ (-1147) $ $ $)) (-15 -1909 ($ (-1147) $ $ $ $)) (-15 -1909 ($ (-1147) (-620 $))) (IF (|has| |t#1| (-596 (-525))) (PROGN (-6 (-596 (-525))) (-15 -4122 ($ $ (-1147))) (-15 -4122 ($ $ (-620 (-1147)))) (-15 -4122 ($ $)) (-15 -4122 ($ $ (-113) $ (-1147))) (-15 -4122 ($ $ (-620 (-113)) (-620 $) (-1147)))) |%noBranch|) (IF (|has| |t#1| (-1083)) (PROGN (-6 (-705)) (-15 ** ($ $ (-749))) (-15 -3151 ((-3 (-620 $) "failed") $)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-465)) (-6 (-465)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3150 ((-3 (-620 $) "failed") $)) (-15 -1908 ((-3 (-2 (|:| -4308 (-536)) (|:| |var| (-593 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1023)) (PROGN (-6 (-1023)) (-6 (-1012 (-920 |t#1|))) (-6 (-874 (-1147))) (-6 (-370 |t#1|)) (-15 -4312 ($ (-1096 |t#1| (-593 $)))) (-15 -3326 ((-1096 |t#1| (-593 $)) $)) (-15 -3324 ($ $)) (-15 -3152 ((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-113))) (-15 -3152 ((-3 (-2 (|:| |var| (-593 $)) (|:| -2488 (-536))) "failed") $ (-1147))) (-15 -3153 ((-3 (-2 (|:| |val| $) (|:| -2488 (-536))) "failed") $)) (-15 -4122 ($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ $)))) (-15 -4122 ($ $ (-620 (-1147)) (-620 (-749)) (-620 (-1 $ (-620 $))))) (-15 -4122 ($ $ (-1147) (-749) (-1 $ (-620 $)))) (-15 -4122 ($ $ (-1147) (-749) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-6 (-356)) (-6 (-1012 (-400 (-920 |t#1|)))) (-15 -4325 ($ (-398 $))) (-15 -3325 ((-1096 |t#1| (-593 $)) $)) (-15 -3323 ($ $)) (-15 -4303 ($ (-1096 |t#1| (-593 $)) (-1096 |t#1| (-593 $)))) (-15 -4312 ($ (-400 |t#1|))) (-15 -4312 ($ (-920 (-400 |t#1|)))) (-15 -4312 ($ (-400 (-920 (-400 |t#1|))))) (-15 -3414 ((-400 (-1141 $)) $ (-593 $))) (IF (|has| |t#1| (-1012 (-536))) (-6 (-1012 (-400 (-536)))) |%noBranch|)) |%noBranch|))) -(((-21) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-400 (-536))) |has| |#1| (-543)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-543)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-543)) ((-130) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) |has| |#1| (-543)) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-596 (-864 (-371))) |has| |#1| (-596 (-864 (-371)))) ((-596 (-864 (-536))) |has| |#1| (-596 (-864 (-536)))) ((-237) |has| |#1| (-543)) ((-283) |has| |#1| (-543)) ((-300) |has| |#1| (-543)) ((-302 $) . T) ((-291) . T) ((-356) |has| |#1| (-543)) ((-370 |#1|) |has| |#1| (-1023)) ((-393 |#1|) . T) ((-405 |#1|) . T) ((-444) |has| |#1| (-543)) ((-465) |has| |#1| (-465)) ((-505 (-593 $) $) . T) ((-505 $ $) . T) ((-543) |has| |#1| (-543)) ((-626 #1#) |has| |#1| (-543)) ((-626 |#1|) |has| |#1| (-170)) ((-626 $) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-619 (-536)) -12 (|has| |#1| (-619 (-536))) (|has| |#1| (-1023))) ((-619 |#1|) |has| |#1| (-1023)) ((-696 #1#) |has| |#1| (-543)) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) -3886 (|has| |#1| (-1083)) (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-825) . T) ((-874 (-1147)) |has| |#1| (-1023)) ((-860 (-371)) |has| |#1| (-860 (-371))) ((-860 (-536)) |has| |#1| (-860 (-536))) ((-858 |#1|) . T) ((-895) |has| |#1| (-543)) ((-1012 (-400 (-536))) -3886 (|has| |#1| (-1012 (-400 (-536)))) (-12 (|has| |#1| (-543)) (|has| |#1| (-1012 (-536))))) ((-1012 (-400 (-920 |#1|))) |has| |#1| (-543)) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 (-593 $)) . T) ((-1012 (-920 |#1|)) |has| |#1| (-1023)) ((-1012 (-1147)) . T) ((-1012 |#1|) . T) ((-1029 #1#) |has| |#1| (-543)) ((-1029 |#1|) |has| |#1| (-170)) ((-1029 $) |has| |#1| (-543)) ((-1023) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1030) -3886 (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1083) -3886 (|has| |#1| (-1083)) (|has| |#1| (-1023)) (|has| |#1| (-543)) (|has| |#1| (-465)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1072) . T) ((-1183) . T) ((-1188) |has| |#1| (-543))) -((-4313 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1023) (-825)) (-414 |#1|) (-13 (-1023) (-825)) (-414 |#3|)) (T -415)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1023) (-825))) (-4 *6 (-13 (-1023) (-825))) (-4 *2 (-414 *6)) (-5 *1 (-415 *5 *4 *6 *2)) (-4 *4 (-414 *5))))) -(-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|))) -((-1915 ((|#2| |#2|) 166)) (-1912 (((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112)) 57))) -(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1912 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112))) (-15 -1915 (|#2| |#2|))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|)) (-1147) |#2|) (T -416)) -((-1915 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1169) (-414 *3))) (-14 *4 (-1147)) (-14 *5 *2))) (-1912 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) (-5 *1 (-416 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-14 *6 (-1147)) (-14 *7 *3)))) -(-10 -7 (-15 -1912 ((-3 (|:| |%expansion| (-306 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112))) (-15 -1915 (|#2| |#2|))) -((-1915 ((|#2| |#2|) 90)) (-1913 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129)) 48)) (-1914 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129)) 154))) -(((-417 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1913 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129))) (-15 -1914 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129))) (-15 -1915 (|#2| |#2|))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|) (-10 -8 (-15 -4312 ($ |#3|)))) (-823) (-13 (-1208 |#2| |#3|) (-356) (-1169) (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $)))) (-957 |#4|) (-1147)) (T -417)) -((-1915 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-4 *2 (-13 (-27) (-1169) (-414 *3) (-10 -8 (-15 -4312 ($ *4))))) (-4 *4 (-823)) (-4 *5 (-13 (-1208 *2 *4) (-356) (-1169) (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-957 *5)) (-14 *7 (-1147)))) (-1914 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-4 *3 (-13 (-27) (-1169) (-414 *6) (-10 -8 (-15 -4312 ($ *7))))) (-4 *7 (-823)) (-4 *8 (-13 (-1208 *3 *7) (-356) (-1169) (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1129)) (-4 *9 (-957 *8)) (-14 *10 (-1147)))) (-1913 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-4 *3 (-13 (-27) (-1169) (-414 *6) (-10 -8 (-15 -4312 ($ *7))))) (-4 *7 (-823)) (-4 *8 (-13 (-1208 *3 *7) (-356) (-1169) (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1129)) (-4 *9 (-957 *8)) (-14 *10 (-1147))))) -(-10 -7 (-15 -1913 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129))) (-15 -1914 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129))))) |#2| (-112) (-1129))) (-15 -1915 (|#2| |#2|))) -((-1916 (($) 44)) (-3580 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3582 (($ $ $) 39)) (-3581 (((-112) $ $) 28)) (-3466 (((-749)) 47)) (-3585 (($ (-620 |#2|)) 20) (($) NIL)) (-3322 (($) 53)) (-3587 (((-112) $ $) 13)) (-3672 ((|#2| $) 61)) (-3673 ((|#2| $) 59)) (-2121 (((-893) $) 55)) (-3584 (($ $ $) 35)) (-2487 (($ (-893)) 50)) (-3583 (($ $ |#2|) NIL) (($ $ $) 38)) (-2064 (((-749) (-1 (-112) |#2|) $) NIL) (((-749) |#2| $) 26)) (-3879 (($ (-620 |#2|)) 24)) (-1917 (($ $) 46)) (-4312 (((-838) $) 33)) (-1918 (((-749) $) 21)) (-3586 (($ (-620 |#2|)) 19) (($) NIL)) (-3382 (((-112) $ $) 16))) -(((-418 |#1| |#2|) (-10 -8 (-15 -3466 ((-749))) (-15 -2487 (|#1| (-893))) (-15 -2121 ((-893) |#1|)) (-15 -3322 (|#1|)) (-15 -3672 (|#2| |#1|)) (-15 -3673 (|#2| |#1|)) (-15 -1916 (|#1|)) (-15 -1917 (|#1| |#1|)) (-15 -1918 ((-749) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3587 ((-112) |#1| |#1|)) (-15 -3586 (|#1|)) (-15 -3586 (|#1| (-620 |#2|))) (-15 -3585 (|#1|)) (-15 -3585 (|#1| (-620 |#2|))) (-15 -3584 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3581 ((-112) |#1| |#1|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3580 (|#1| |#1| |#2|)) (-15 -3580 (|#1| |#2| |#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|))) (-419 |#2|) (-1072)) (T -418)) -((-3466 (*1 *2) (-12 (-4 *4 (-1072)) (-5 *2 (-749)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4))))) -(-10 -8 (-15 -3466 ((-749))) (-15 -2487 (|#1| (-893))) (-15 -2121 ((-893) |#1|)) (-15 -3322 (|#1|)) (-15 -3672 (|#2| |#1|)) (-15 -3673 (|#2| |#1|)) (-15 -1916 (|#1|)) (-15 -1917 (|#1| |#1|)) (-15 -1918 ((-749) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3587 ((-112) |#1| |#1|)) (-15 -3586 (|#1|)) (-15 -3586 (|#1| (-620 |#2|))) (-15 -3585 (|#1|)) (-15 -3585 (|#1| (-620 |#2|))) (-15 -3584 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3581 ((-112) |#1| |#1|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3580 (|#1| |#1| |#2|)) (-15 -3580 (|#1| |#2| |#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|))) -((-2893 (((-112) $ $) 19)) (-1916 (($) 67 (|has| |#1| (-361)))) (-3580 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3582 (($ $ $) 78)) (-3581 (((-112) $ $) 79)) (-1269 (((-112) $ (-749)) 8)) (-3466 (((-749)) 61 (|has| |#1| (-361)))) (-3585 (($ (-620 |#1|)) 74) (($) 73)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-3322 (($) 64 (|has| |#1| (-361)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) 70)) (-4077 (((-112) $ (-749)) 9)) (-3672 ((|#1| $) 65 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3673 ((|#1| $) 66 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-2121 (((-893) $) 63 (|has| |#1| (-361)))) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22)) (-3584 (($ $ $) 75)) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-2487 (($ (-893)) 62 (|has| |#1| (-361)))) (-3589 (((-1091) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-3583 (($ $ |#1|) 77) (($ $ $) 76)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-1917 (($ $) 68 (|has| |#1| (-361)))) (-4312 (((-838) $) 18)) (-1918 (((-749) $) 69)) (-3586 (($ (-620 |#1|)) 72) (($) 71)) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20)) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-419 |#1|) (-138) (-1072)) (T -419)) -((-1918 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1072)) (-5 *2 (-749)))) (-1917 (*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-361)))) (-1916 (*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-361)) (-4 *2 (-1072)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-825)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-825))))) -(-13 (-223 |t#1|) (-1070 |t#1|) (-10 -8 (-6 -4348) (-15 -1918 ((-749) $)) (IF (|has| |t#1| (-361)) (PROGN (-6 (-361)) (-15 -1917 ($ $)) (-15 -1916 ($))) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-15 -3673 (|t#1| $)) (-15 -3672 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-223 |#1|) . T) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-361) |has| |#1| (-361)) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1070 |#1|) . T) ((-1072) . T) ((-1183) . T)) -((-4196 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4197 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4313 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4197 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4196 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1072) (-419 |#1|) (-1072) (-419 |#3|)) (T -420)) -((-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1072)) (-4 *5 (-1072)) (-4 *2 (-419 *5)) (-5 *1 (-420 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1072)) (-4 *2 (-1072)) (-5 *1 (-420 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-419 *6)) (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-419 *5))))) -(-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4197 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4196 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1919 (((-567 |#2|) |#2| (-1147)) 36)) (-2215 (((-567 |#2|) |#2| (-1147)) 20)) (-2256 ((|#2| |#2| (-1147)) 25))) -(((-421 |#1| |#2|) (-10 -7 (-15 -2215 ((-567 |#2|) |#2| (-1147))) (-15 -1919 ((-567 |#2|) |#2| (-1147))) (-15 -2256 (|#2| |#2| (-1147)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-29 |#1|))) (T -421)) -((-2256 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1169) (-29 *4))))) (-1919 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1169) (-29 *5))))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1169) (-29 *5)))))) -(-10 -7 (-15 -2215 ((-567 |#2|) |#2| (-1147))) (-15 -1919 ((-567 |#2|) |#2| (-1147))) (-15 -2256 (|#2| |#2| (-1147)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-1921 (($ |#2| |#1|) 35)) (-1920 (($ |#2| |#1|) 33)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-324 |#2|)) 25)) (-3456 (((-749)) NIL)) (-2986 (($) 10 T CONST)) (-2992 (($) 16 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 34)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-422 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4335)) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|) |%noBranch|) (-15 -4312 ($ |#1|)) (-15 -4312 ($ (-324 |#2|))) (-15 -1921 ($ |#2| |#1|)) (-15 -1920 ($ |#2| |#1|)))) (-13 (-170) (-38 (-400 (-536)))) (-13 (-825) (-21))) (T -422)) -((-4312 (*1 *1 *2) (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-536))))) (-4 *3 (-13 (-825) (-21))))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-825) (-21))) (-5 *1 (-422 *3 *4)) (-4 *3 (-13 (-170) (-38 (-400 (-536))))))) (-1921 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-536))))) (-4 *2 (-13 (-825) (-21))))) (-1920 (*1 *1 *2 *3) (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-536))))) (-4 *2 (-13 (-825) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4335)) (IF (|has| |#1| (-6 -4335)) (-6 -4335) |%noBranch|) |%noBranch|) (-15 -4312 ($ |#1|)) (-15 -4312 ($ (-324 |#2|))) (-15 -1921 ($ |#2| |#1|)) (-15 -1920 ($ |#2| |#1|)))) -((-4167 (((-3 |#2| (-620 |#2|)) |#2| (-1147)) 109))) -(((-423 |#1| |#2|) (-10 -7 (-15 -4167 ((-3 |#2| (-620 |#2|)) |#2| (-1147)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-934) (-29 |#1|))) (T -423)) -((-4167 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 *3 (-620 *3))) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1169) (-934) (-29 *5)))))) -(-10 -7 (-15 -4167 ((-3 |#2| (-620 |#2|)) |#2| (-1147)))) -((-3740 ((|#2| |#2| |#2|) 33)) (-3375 (((-113) (-113)) 44)) (-1923 ((|#2| |#2|) 66)) (-1922 ((|#2| |#2|) 69)) (-3739 ((|#2| |#2|) 32)) (-3743 ((|#2| |#2| |#2|) 35)) (-3745 ((|#2| |#2| |#2|) 37)) (-3742 ((|#2| |#2| |#2|) 34)) (-3744 ((|#2| |#2| |#2|) 36)) (-2333 (((-112) (-113)) 42)) (-3747 ((|#2| |#2|) 39)) (-3746 ((|#2| |#2|) 38)) (-3737 ((|#2| |#2|) 27)) (-3741 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3738 ((|#2| |#2| |#2|) 31))) -(((-424 |#1| |#2|) (-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -3737 (|#2| |#2|)) (-15 -3741 (|#2| |#2|)) (-15 -3741 (|#2| |#2| |#2|)) (-15 -3738 (|#2| |#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3740 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -3743 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2| |#2|)) (-15 -3745 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -3747 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -1923 (|#2| |#2|))) (-13 (-825) (-543)) (-414 |#1|)) (T -424)) -((-1923 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-1922 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3747 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3746 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3745 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3744 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3743 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3742 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3740 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3738 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3741 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3741 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3737 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *4)) (-4 *4 (-414 *3)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-424 *4 *5)) (-4 *5 (-414 *4))))) -(-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -3737 (|#2| |#2|)) (-15 -3741 (|#2| |#2|)) (-15 -3741 (|#2| |#2| |#2|)) (-15 -3738 (|#2| |#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3740 (|#2| |#2| |#2|)) (-15 -3742 (|#2| |#2| |#2|)) (-15 -3743 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2| |#2|)) (-15 -3745 (|#2| |#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -3747 (|#2| |#2|)) (-15 -1922 (|#2| |#2|)) (-15 -1923 (|#2| |#2|))) -((-3161 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1141 |#2|)) (|:| |pol2| (-1141 |#2|)) (|:| |prim| (-1141 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-620 (-1141 |#2|))) (|:| |prim| (-1141 |#2|))) (-620 |#2|)) 61))) -(((-425 |#1| |#2|) (-10 -7 (-15 -3161 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-620 (-1141 |#2|))) (|:| |prim| (-1141 |#2|))) (-620 |#2|))) (IF (|has| |#2| (-27)) (-15 -3161 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1141 |#2|)) (|:| |pol2| (-1141 |#2|)) (|:| |prim| (-1141 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-543) (-825) (-145)) (-414 |#1|)) (T -425)) -((-3161 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-543) (-825) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1141 *3)) (|:| |pol2| (-1141 *3)) (|:| |prim| (-1141 *3)))) (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-620 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-543) (-825) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-620 (-1141 *5))) (|:| |prim| (-1141 *5)))) (-5 *1 (-425 *4 *5))))) -(-10 -7 (-15 -3161 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-620 (-1141 |#2|))) (|:| |prim| (-1141 |#2|))) (-620 |#2|))) (IF (|has| |#2| (-27)) (-15 -3161 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1141 |#2|)) (|:| |pol2| (-1141 |#2|)) (|:| |prim| (-1141 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1925 (((-1235)) 19)) (-1924 (((-1141 (-400 (-536))) |#2| (-593 |#2|)) 41) (((-400 (-536)) |#2|) 25))) -(((-426 |#1| |#2|) (-10 -7 (-15 -1924 ((-400 (-536)) |#2|)) (-15 -1924 ((-1141 (-400 (-536))) |#2| (-593 |#2|))) (-15 -1925 ((-1235)))) (-13 (-825) (-543) (-1012 (-536))) (-414 |#1|)) (T -426)) -((-1925 (*1 *2) (-12 (-4 *3 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-1235)) (-5 *1 (-426 *3 *4)) (-4 *4 (-414 *3)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *4 (-593 *3)) (-4 *3 (-414 *5)) (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-426 *5 *3)))) (-1924 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-400 (-536))) (-5 *1 (-426 *4 *3)) (-4 *3 (-414 *4))))) -(-10 -7 (-15 -1924 ((-400 (-536)) |#2|)) (-15 -1924 ((-1141 (-400 (-536))) |#2| (-593 |#2|))) (-15 -1925 ((-1235)))) -((-4003 (((-112) $) 28)) (-1926 (((-112) $) 30)) (-3605 (((-112) $) 31)) (-1928 (((-112) $) 34)) (-1930 (((-112) $) 29)) (-1929 (((-112) $) 33)) (-4312 (((-838) $) 18) (($ (-1129)) 27) (($ (-1147)) 23) (((-1147) $) 22) (((-1074) $) 21)) (-1927 (((-112) $) 32)) (-3382 (((-112) $ $) 15))) -(((-427) (-13 (-595 (-838)) (-10 -8 (-15 -4312 ($ (-1129))) (-15 -4312 ($ (-1147))) (-15 -4312 ((-1147) $)) (-15 -4312 ((-1074) $)) (-15 -4003 ((-112) $)) (-15 -1930 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -1927 ((-112) $)) (-15 -1926 ((-112) $)) (-15 -3382 ((-112) $ $))))) (T -427)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-427)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-427)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-427)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-427)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) (-3382 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(-13 (-595 (-838)) (-10 -8 (-15 -4312 ($ (-1129))) (-15 -4312 ($ (-1147))) (-15 -4312 ((-1147) $)) (-15 -4312 ((-1074) $)) (-15 -4003 ((-112) $)) (-15 -1930 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -1927 ((-112) $)) (-15 -1926 ((-112) $)) (-15 -3382 ((-112) $ $)))) -((-1932 (((-3 (-398 (-1141 (-400 (-536)))) "failed") |#3|) 70)) (-1931 (((-398 |#3|) |#3|) 34)) (-1934 (((-3 (-398 (-1141 (-48))) "failed") |#3|) 46 (|has| |#2| (-1012 (-48))))) (-1933 (((-3 (|:| |overq| (-1141 (-400 (-536)))) (|:| |overan| (-1141 (-48))) (|:| -2965 (-112))) |#3|) 37))) -(((-428 |#1| |#2| |#3|) (-10 -7 (-15 -1931 ((-398 |#3|) |#3|)) (-15 -1932 ((-3 (-398 (-1141 (-400 (-536)))) "failed") |#3|)) (-15 -1933 ((-3 (|:| |overq| (-1141 (-400 (-536)))) (|:| |overan| (-1141 (-48))) (|:| -2965 (-112))) |#3|)) (IF (|has| |#2| (-1012 (-48))) (-15 -1934 ((-3 (-398 (-1141 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-543) (-825) (-1012 (-536))) (-414 |#1|) (-1205 |#2|)) (T -428)) -((-1934 (*1 *2 *3) (|partial| -12 (-4 *5 (-1012 (-48))) (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) (-5 *2 (-398 (-1141 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) (-5 *2 (-3 (|:| |overq| (-1141 (-400 (-536)))) (|:| |overan| (-1141 (-48))) (|:| -2965 (-112)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5)))) (-1932 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) (-5 *2 (-398 (-1141 (-400 (-536))))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5)))) (-1931 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) (-5 *2 (-398 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5))))) -(-10 -7 (-15 -1931 ((-398 |#3|) |#3|)) (-15 -1932 ((-3 (-398 (-1141 (-400 (-536)))) "failed") |#3|)) (-15 -1933 ((-3 (|:| |overq| (-1141 (-400 (-536)))) (|:| |overan| (-1141 (-48))) (|:| -2965 (-112))) |#3|)) (IF (|has| |#2| (-1012 (-48))) (-15 -1934 ((-3 (-398 (-1141 (-48))) "failed") |#3|)) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-1943 (((-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) $) 11)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1941 (($) 32)) (-1938 (($) 38)) (-1939 (($) 34)) (-1936 (($) 36)) (-1940 (($) 33)) (-1937 (($) 35)) (-1935 (($) 37)) (-1942 (((-112) $) 8)) (-2677 (((-620 (-920 (-536))) $) 19)) (-3879 (($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-1147)) (-112)) 27) (($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-920 (-536))) (-112)) 28)) (-4312 (((-838) $) 23) (($ (-427)) 29)) (-3382 (((-112) $ $) NIL))) -(((-429) (-13 (-1072) (-10 -8 (-15 -4312 ((-838) $)) (-15 -4312 ($ (-427))) (-15 -1943 ((-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) $)) (-15 -2677 ((-620 (-920 (-536))) $)) (-15 -1942 ((-112) $)) (-15 -3879 ($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-1147)) (-112))) (-15 -3879 ($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-920 (-536))) (-112))) (-15 -1941 ($)) (-15 -1940 ($)) (-15 -1939 ($)) (-15 -1938 ($)) (-15 -1937 ($)) (-15 -1936 ($)) (-15 -1935 ($))))) (T -429)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-429)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-429)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) (-5 *1 (-429)))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-620 (-920 (-536)))) (-5 *1 (-429)))) (-1942 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3879 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *3 (-620 (-1147))) (-5 *4 (-112)) (-5 *1 (-429)))) (-3879 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-112)) (-5 *1 (-429)))) (-1941 (*1 *1) (-5 *1 (-429))) (-1940 (*1 *1) (-5 *1 (-429))) (-1939 (*1 *1) (-5 *1 (-429))) (-1938 (*1 *1) (-5 *1 (-429))) (-1937 (*1 *1) (-5 *1 (-429))) (-1936 (*1 *1) (-5 *1 (-429))) (-1935 (*1 *1) (-5 *1 (-429)))) -(-13 (-1072) (-10 -8 (-15 -4312 ((-838) $)) (-15 -4312 ($ (-427))) (-15 -1943 ((-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) $)) (-15 -2677 ((-620 (-920 (-536))) $)) (-15 -1942 ((-112) $)) (-15 -3879 ($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-1147)) (-112))) (-15 -3879 ($ (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-620 (-920 (-536))) (-112))) (-15 -1941 ($)) (-15 -1940 ($)) (-15 -1939 ($)) (-15 -1938 ($)) (-15 -1937 ($)) (-15 -1936 ($)) (-15 -1935 ($)))) -((-2893 (((-112) $ $) NIL)) (-1808 (((-1129) $ (-1129)) NIL)) (-1812 (($ $ (-1129)) NIL)) (-1809 (((-1129) $) NIL)) (-1947 (((-381) (-381) (-381)) 17) (((-381) (-381)) 15)) (-1813 (($ (-381)) NIL) (($ (-381) (-1129)) NIL)) (-3900 (((-381) $) NIL)) (-3588 (((-1129) $) NIL)) (-1810 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1946 (((-1235) (-1129)) 9)) (-1945 (((-1235) (-1129)) 10)) (-1944 (((-1235)) 11)) (-4312 (((-838) $) NIL)) (-1811 (($ $) 35)) (-3382 (((-112) $ $) NIL))) -(((-430) (-13 (-358 (-381) (-1129)) (-10 -7 (-15 -1947 ((-381) (-381) (-381))) (-15 -1947 ((-381) (-381))) (-15 -1946 ((-1235) (-1129))) (-15 -1945 ((-1235) (-1129))) (-15 -1944 ((-1235)))))) (T -430)) -((-1947 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) (-1947 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-430)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-430)))) (-1944 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-430))))) -(-13 (-358 (-381) (-1129)) (-10 -7 (-15 -1947 ((-381) (-381) (-381))) (-15 -1947 ((-381) (-381))) (-15 -1946 ((-1235) (-1129))) (-15 -1945 ((-1235) (-1129))) (-15 -1944 ((-1235))))) -((-2893 (((-112) $ $) NIL)) (-3900 (((-1147) $) 8)) (-3588 (((-1129) $) 16)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 13))) -(((-431 |#1|) (-13 (-1072) (-10 -8 (-15 -3900 ((-1147) $)))) (-1147)) (T -431)) -((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-431 *3)) (-14 *3 *2)))) -(-13 (-1072) (-10 -8 (-15 -3900 ((-1147) $)))) -((-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8) (($ (-1229 (-677))) 14) (($ (-620 (-323))) 13) (($ (-323)) 12) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 11))) -(((-432) (-138)) (T -432)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-677))) (-4 *1 (-432)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-432)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-4 *1 (-432))))) -(-13 (-389) (-10 -8 (-15 -4312 ($ (-1229 (-677)))) (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-323))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))))) -(((-595 (-838)) . T) ((-389) . T) ((-1183) . T)) -((-3503 (((-3 $ "failed") (-1229 (-307 (-371)))) 21) (((-3 $ "failed") (-1229 (-307 (-536)))) 19) (((-3 $ "failed") (-1229 (-920 (-371)))) 17) (((-3 $ "failed") (-1229 (-920 (-536)))) 15) (((-3 $ "failed") (-1229 (-400 (-920 (-371))))) 13) (((-3 $ "failed") (-1229 (-400 (-920 (-536))))) 11)) (-3502 (($ (-1229 (-307 (-371)))) 22) (($ (-1229 (-307 (-536)))) 20) (($ (-1229 (-920 (-371)))) 18) (($ (-1229 (-920 (-536)))) 16) (($ (-1229 (-400 (-920 (-371))))) 14) (($ (-1229 (-400 (-920 (-536))))) 12)) (-3734 (((-1235) $) 7)) (-4312 (((-838) $) 8) (($ (-620 (-323))) 25) (($ (-323)) 24) (($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) 23))) -(((-433) (-138)) (T -433)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-433)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-307 (-371)))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-307 (-371)))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-307 (-536)))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-307 (-536)))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-920 (-371)))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-920 (-371)))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-920 (-536)))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-920 (-536)))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-400 (-920 (-371))))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-400 (-920 (-371))))) (-4 *1 (-433)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-1229 (-400 (-920 (-536))))) (-4 *1 (-433)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-400 (-920 (-536))))) (-4 *1 (-433))))) -(-13 (-389) (-10 -8 (-15 -4312 ($ (-620 (-323)))) (-15 -4312 ($ (-323))) (-15 -4312 ($ (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323)))))) (-15 -3502 ($ (-1229 (-307 (-371))))) (-15 -3503 ((-3 $ "failed") (-1229 (-307 (-371))))) (-15 -3502 ($ (-1229 (-307 (-536))))) (-15 -3503 ((-3 $ "failed") (-1229 (-307 (-536))))) (-15 -3502 ($ (-1229 (-920 (-371))))) (-15 -3503 ((-3 $ "failed") (-1229 (-920 (-371))))) (-15 -3502 ($ (-1229 (-920 (-536))))) (-15 -3503 ((-3 $ "failed") (-1229 (-920 (-536))))) (-15 -3502 ($ (-1229 (-400 (-920 (-371)))))) (-15 -3503 ((-3 $ "failed") (-1229 (-400 (-920 (-371)))))) (-15 -3502 ($ (-1229 (-400 (-920 (-536)))))) (-15 -3503 ((-3 $ "failed") (-1229 (-400 (-920 (-536)))))))) -(((-595 (-838)) . T) ((-389) . T) ((-1183) . T)) -((-1953 (((-112)) 17)) (-1954 (((-112) (-112)) 18)) (-1955 (((-112)) 13)) (-1956 (((-112) (-112)) 14)) (-1958 (((-112)) 15)) (-1959 (((-112) (-112)) 16)) (-1950 (((-893) (-893)) 21) (((-893)) 20)) (-1951 (((-749) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536))))) 42)) (-1949 (((-893) (-893)) 23) (((-893)) 22)) (-1952 (((-2 (|:| -2903 (-536)) (|:| -2762 (-620 |#1|))) |#1|) 62)) (-1948 (((-398 |#1|) (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536))))))) 126)) (-4089 (((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112)) 152)) (-4088 (((-398 |#1|) |#1| (-749) (-749)) 165) (((-398 |#1|) |#1| (-620 (-749)) (-749)) 162) (((-398 |#1|) |#1| (-620 (-749))) 164) (((-398 |#1|) |#1| (-749)) 163) (((-398 |#1|) |#1|) 161)) (-1970 (((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749) (-112)) 167) (((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749)) 168) (((-3 |#1| "failed") (-893) |#1| (-620 (-749))) 170) (((-3 |#1| "failed") (-893) |#1| (-749)) 169) (((-3 |#1| "failed") (-893) |#1|) 171)) (-4087 (((-398 |#1|) |#1| (-749) (-749)) 160) (((-398 |#1|) |#1| (-620 (-749)) (-749)) 156) (((-398 |#1|) |#1| (-620 (-749))) 158) (((-398 |#1|) |#1| (-749)) 157) (((-398 |#1|) |#1|) 155)) (-1957 (((-112) |#1|) 37)) (-1969 (((-715 (-749)) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536))))) 67)) (-1960 (((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112) (-1068 (-749)) (-749)) 154))) -(((-434 |#1|) (-10 -7 (-15 -1948 ((-398 |#1|) (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))))) (-15 -1969 ((-715 (-749)) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))))) (-15 -1949 ((-893))) (-15 -1949 ((-893) (-893))) (-15 -1950 ((-893))) (-15 -1950 ((-893) (-893))) (-15 -1951 ((-749) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))))) (-15 -1952 ((-2 (|:| -2903 (-536)) (|:| -2762 (-620 |#1|))) |#1|)) (-15 -1953 ((-112))) (-15 -1954 ((-112) (-112))) (-15 -1955 ((-112))) (-15 -1956 ((-112) (-112))) (-15 -1957 ((-112) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4087 ((-398 |#1|) |#1| (-749))) (-15 -4087 ((-398 |#1|) |#1| (-620 (-749)))) (-15 -4087 ((-398 |#1|) |#1| (-620 (-749)) (-749))) (-15 -4087 ((-398 |#1|) |#1| (-749) (-749))) (-15 -4088 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1| (-749))) (-15 -4088 ((-398 |#1|) |#1| (-620 (-749)))) (-15 -4088 ((-398 |#1|) |#1| (-620 (-749)) (-749))) (-15 -4088 ((-398 |#1|) |#1| (-749) (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1|)) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749) (-112))) (-15 -4089 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112))) (-15 -1960 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112) (-1068 (-749)) (-749)))) (-1205 (-536))) (T -434)) -((-1960 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1068 (-749))) (-5 *6 (-749)) (-5 *2 (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1970 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) (-1970 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) (-1970 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) (-1970 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-893)) (-5 *4 (-749)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) (-1970 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-893)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) (-4088 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4088 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4088 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-749))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4088 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4088 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-749))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1958 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1956 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1955 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1953 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1952 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2903 (-536)) (|:| -2762 (-620 *3)))) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -4087 *4) (|:| -4302 (-536))))) (-4 *4 (-1205 (-536))) (-5 *2 (-749)) (-5 *1 (-434 *4)))) (-1950 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1950 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1949 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -4087 *4) (|:| -4302 (-536))))) (-4 *4 (-1205 (-536))) (-5 *2 (-715 (-749))) (-5 *1 (-434 *4)))) (-1948 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| *4) (|:| -2482 (-536))))))) (-4 *4 (-1205 (-536))) (-5 *2 (-398 *4)) (-5 *1 (-434 *4))))) -(-10 -7 (-15 -1948 ((-398 |#1|) (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))))) (-15 -1969 ((-715 (-749)) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))))) (-15 -1949 ((-893))) (-15 -1949 ((-893) (-893))) (-15 -1950 ((-893))) (-15 -1950 ((-893) (-893))) (-15 -1951 ((-749) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))))) (-15 -1952 ((-2 (|:| -2903 (-536)) (|:| -2762 (-620 |#1|))) |#1|)) (-15 -1953 ((-112))) (-15 -1954 ((-112) (-112))) (-15 -1955 ((-112))) (-15 -1956 ((-112) (-112))) (-15 -1957 ((-112) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4087 ((-398 |#1|) |#1| (-749))) (-15 -4087 ((-398 |#1|) |#1| (-620 (-749)))) (-15 -4087 ((-398 |#1|) |#1| (-620 (-749)) (-749))) (-15 -4087 ((-398 |#1|) |#1| (-749) (-749))) (-15 -4088 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1| (-749))) (-15 -4088 ((-398 |#1|) |#1| (-620 (-749)))) (-15 -4088 ((-398 |#1|) |#1| (-620 (-749)) (-749))) (-15 -4088 ((-398 |#1|) |#1| (-749) (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1|)) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749))) (-15 -1970 ((-3 |#1| "failed") (-893) |#1| (-620 (-749)) (-749) (-112))) (-15 -4089 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112))) (-15 -1960 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112) (-1068 (-749)) (-749)))) -((-1964 (((-536) |#2|) 48) (((-536) |#2| (-749)) 47)) (-1963 (((-536) |#2|) 55)) (-1965 ((|#3| |#2|) 25)) (-3462 ((|#3| |#2| (-893)) 14)) (-4188 ((|#3| |#2|) 15)) (-1966 ((|#3| |#2|) 9)) (-2928 ((|#3| |#2|) 10)) (-1962 ((|#3| |#2| (-893)) 62) ((|#3| |#2|) 30)) (-1961 (((-536) |#2|) 57))) -(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1961 ((-536) |#2|)) (-15 -1962 (|#3| |#2|)) (-15 -1962 (|#3| |#2| (-893))) (-15 -1963 ((-536) |#2|)) (-15 -1964 ((-536) |#2| (-749))) (-15 -1964 ((-536) |#2|)) (-15 -3462 (|#3| |#2| (-893))) (-15 -1965 (|#3| |#2|)) (-15 -1966 (|#3| |#2|)) (-15 -2928 (|#3| |#2|)) (-15 -4188 (|#3| |#2|))) (-1023) (-1205 |#1|) (-13 (-397) (-1012 |#1|) (-356) (-1169) (-277))) (T -435)) -((-4188 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) (-2928 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) (-1965 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) (-3462 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1205 *5)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))))) (-1964 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *5 *3 *6)) (-4 *3 (-1205 *5)) (-4 *6 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))))) (-1963 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))))) (-1962 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))) (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1205 *5)))) (-1962 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) (-1961 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277)))))) -(-10 -7 (-15 -1961 ((-536) |#2|)) (-15 -1962 (|#3| |#2|)) (-15 -1962 (|#3| |#2| (-893))) (-15 -1963 ((-536) |#2|)) (-15 -1964 ((-536) |#2| (-749))) (-15 -1964 ((-536) |#2|)) (-15 -3462 (|#3| |#2| (-893))) (-15 -1965 (|#3| |#2|)) (-15 -1966 (|#3| |#2|)) (-15 -2928 (|#3| |#2|)) (-15 -4188 (|#3| |#2|))) -((-3708 ((|#2| (-1229 |#1|)) 36)) (-1968 ((|#2| |#2| |#1|) 49)) (-1967 ((|#2| |#2| |#1|) 41)) (-2373 ((|#2| |#2|) 38)) (-3519 (((-112) |#2|) 30)) (-1971 (((-620 |#2|) (-893) (-398 |#2|)) 17)) (-1970 ((|#2| (-893) (-398 |#2|)) 21)) (-1969 (((-715 (-749)) (-398 |#2|)) 25))) -(((-436 |#1| |#2|) (-10 -7 (-15 -3519 ((-112) |#2|)) (-15 -3708 (|#2| (-1229 |#1|))) (-15 -2373 (|#2| |#2|)) (-15 -1967 (|#2| |#2| |#1|)) (-15 -1968 (|#2| |#2| |#1|)) (-15 -1969 ((-715 (-749)) (-398 |#2|))) (-15 -1970 (|#2| (-893) (-398 |#2|))) (-15 -1971 ((-620 |#2|) (-893) (-398 |#2|)))) (-1023) (-1205 |#1|)) (T -436)) -((-1971 (*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-398 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-1023)) (-5 *2 (-620 *6)) (-5 *1 (-436 *5 *6)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-398 *2)) (-4 *2 (-1205 *5)) (-5 *1 (-436 *5 *2)) (-4 *5 (-1023)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-398 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-1023)) (-5 *2 (-715 (-749))) (-5 *1 (-436 *4 *5)))) (-1968 (*1 *2 *2 *3) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3)))) (-1967 (*1 *2 *2 *3) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3)))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3)))) (-3708 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-1023)) (-4 *2 (-1205 *4)) (-5 *1 (-436 *4 *2)))) (-3519 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1205 *4))))) -(-10 -7 (-15 -3519 ((-112) |#2|)) (-15 -3708 (|#2| (-1229 |#1|))) (-15 -2373 (|#2| |#2|)) (-15 -1967 (|#2| |#2| |#1|)) (-15 -1968 (|#2| |#2| |#1|)) (-15 -1969 ((-715 (-749)) (-398 |#2|))) (-15 -1970 (|#2| (-893) (-398 |#2|))) (-15 -1971 ((-620 |#2|) (-893) (-398 |#2|)))) -((-1974 (((-749)) 41)) (-1978 (((-749)) 23 (|has| |#1| (-397))) (((-749) (-749)) 22 (|has| |#1| (-397)))) (-1977 (((-536) |#1|) 18 (|has| |#1| (-397)))) (-1976 (((-536) |#1|) 20 (|has| |#1| (-397)))) (-1973 (((-749)) 40) (((-749) (-749)) 39)) (-1972 ((|#1| (-749) (-536)) 29)) (-1975 (((-1235)) 43))) -(((-437 |#1|) (-10 -7 (-15 -1972 (|#1| (-749) (-536))) (-15 -1973 ((-749) (-749))) (-15 -1973 ((-749))) (-15 -1974 ((-749))) (-15 -1975 ((-1235))) (IF (|has| |#1| (-397)) (PROGN (-15 -1976 ((-536) |#1|)) (-15 -1977 ((-536) |#1|)) (-15 -1978 ((-749) (-749))) (-15 -1978 ((-749)))) |%noBranch|)) (-1023)) (T -437)) -((-1978 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023)))) (-1977 (*1 *2 *3) (-12 (-5 *2 (-536)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023)))) (-1976 (*1 *2 *3) (-12 (-5 *2 (-536)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023)))) (-1975 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-437 *3)) (-4 *3 (-1023)))) (-1974 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023)))) (-1973 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023)))) (-1973 (*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023)))) (-1972 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-536)) (-5 *1 (-437 *2)) (-4 *2 (-1023))))) -(-10 -7 (-15 -1972 (|#1| (-749) (-536))) (-15 -1973 ((-749) (-749))) (-15 -1973 ((-749))) (-15 -1974 ((-749))) (-15 -1975 ((-1235))) (IF (|has| |#1| (-397)) (PROGN (-15 -1976 ((-536) |#1|)) (-15 -1977 ((-536) |#1|)) (-15 -1978 ((-749) (-749))) (-15 -1978 ((-749)))) |%noBranch|)) -((-1979 (((-620 (-536)) (-536)) 61)) (-4081 (((-112) (-166 (-536))) 65)) (-4087 (((-398 (-166 (-536))) (-166 (-536))) 60))) -(((-438) (-10 -7 (-15 -4087 ((-398 (-166 (-536))) (-166 (-536)))) (-15 -1979 ((-620 (-536)) (-536))) (-15 -4081 ((-112) (-166 (-536)))))) (T -438)) -((-4081 (*1 *2 *3) (-12 (-5 *3 (-166 (-536))) (-5 *2 (-112)) (-5 *1 (-438)))) (-1979 (*1 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-438)) (-5 *3 (-536)))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 (-166 (-536)))) (-5 *1 (-438)) (-5 *3 (-166 (-536)))))) -(-10 -7 (-15 -4087 ((-398 (-166 (-536))) (-166 (-536)))) (-15 -1979 ((-620 (-536)) (-536))) (-15 -4081 ((-112) (-166 (-536))))) -((-3274 ((|#4| |#4| (-620 |#4|)) 22 (|has| |#1| (-356)))) (-2330 (((-620 |#4|) (-620 |#4|) (-1129) (-1129)) 41) (((-620 |#4|) (-620 |#4|) (-1129)) 40) (((-620 |#4|) (-620 |#4|)) 35))) -(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2330 ((-620 |#4|) (-620 |#4|))) (-15 -2330 ((-620 |#4|) (-620 |#4|) (-1129))) (-15 -2330 ((-620 |#4|) (-620 |#4|) (-1129) (-1129))) (IF (|has| |#1| (-356)) (-15 -3274 (|#4| |#4| (-620 |#4|))) |%noBranch|)) (-444) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -439)) -((-3274 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *2)))) (-2330 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2330 (*1 *2 *2 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-439 *3 *4 *5 *6))))) -(-10 -7 (-15 -2330 ((-620 |#4|) (-620 |#4|))) (-15 -2330 ((-620 |#4|) (-620 |#4|) (-1129))) (-15 -2330 ((-620 |#4|) (-620 |#4|) (-1129) (-1129))) (IF (|has| |#1| (-356)) (-15 -3274 (|#4| |#4| (-620 |#4|))) |%noBranch|)) -((-1980 ((|#4| |#4| (-620 |#4|)) 61)) (-1981 (((-620 |#4|) (-620 |#4|) (-1129) (-1129)) 17) (((-620 |#4|) (-620 |#4|) (-1129)) 16) (((-620 |#4|) (-620 |#4|)) 11))) -(((-440 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1980 (|#4| |#4| (-620 |#4|))) (-15 -1981 ((-620 |#4|) (-620 |#4|))) (-15 -1981 ((-620 |#4|) (-620 |#4|) (-1129))) (-15 -1981 ((-620 |#4|) (-620 |#4|) (-1129) (-1129)))) (-300) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -440)) -((-1981 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *7)))) (-1981 (*1 *2 *2 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *7)))) (-1981 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-440 *3 *4 *5 *6)))) (-1980 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *2))))) -(-10 -7 (-15 -1980 (|#4| |#4| (-620 |#4|))) (-15 -1981 ((-620 |#4|) (-620 |#4|))) (-15 -1981 ((-620 |#4|) (-620 |#4|) (-1129))) (-15 -1981 ((-620 |#4|) (-620 |#4|) (-1129) (-1129)))) -((-1983 (((-620 (-620 |#4|)) (-620 |#4|) (-112)) 73) (((-620 (-620 |#4|)) (-620 |#4|)) 72) (((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|) (-112)) 66) (((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|)) 67)) (-1982 (((-620 (-620 |#4|)) (-620 |#4|) (-112)) 42) (((-620 (-620 |#4|)) (-620 |#4|)) 63))) -(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1982 ((-620 (-620 |#4|)) (-620 |#4|))) (-15 -1982 ((-620 (-620 |#4|)) (-620 |#4|) (-112))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|) (-112))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-112)))) (-13 (-300) (-145)) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -441)) -((-1983 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-620 *8)))) (-1983 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-1983 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-620 *8)))) (-1983 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-1982 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) (-5 *3 (-620 *8)))) (-1982 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) -(-10 -7 (-15 -1982 ((-620 (-620 |#4|)) (-620 |#4|))) (-15 -1982 ((-620 (-620 |#4|)) (-620 |#4|) (-112))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-620 |#4|) (-112))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|))) (-15 -1983 ((-620 (-620 |#4|)) (-620 |#4|) (-112)))) -((-2007 (((-749) |#4|) 12)) (-1995 (((-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|))) |#4| (-749) (-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|)))) 31)) (-1997 (((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1996 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1985 ((|#4| |#4| (-620 |#4|)) 40)) (-1993 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-620 |#4|)) 70)) (-2000 (((-1235) |#4|) 42)) (-2003 (((-1235) (-620 |#4|)) 51)) (-2001 (((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536)) 48)) (-2004 (((-1235) (-536)) 79)) (-1998 (((-620 |#4|) (-620 |#4|)) 77)) (-2006 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|)) |#4| (-749)) 25)) (-1999 (((-536) |#4|) 78)) (-1994 ((|#4| |#4|) 29)) (-1986 (((-620 |#4|) (-620 |#4|) (-536) (-536)) 56)) (-2002 (((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536) (-536)) 89)) (-2005 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1987 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1992 (((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1991 (((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1988 (((-112) |#2| |#2|) 57)) (-1990 (((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1989 (((-112) |#2| |#2| |#2| |#2|) 60)) (-1984 ((|#4| |#4| (-620 |#4|)) 71))) -(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1984 (|#4| |#4| (-620 |#4|))) (-15 -1985 (|#4| |#4| (-620 |#4|))) (-15 -1986 ((-620 |#4|) (-620 |#4|) (-536) (-536))) (-15 -1987 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1988 ((-112) |#2| |#2|)) (-15 -1989 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1990 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1991 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1992 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1993 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-620 |#4|))) (-15 -1994 (|#4| |#4|)) (-15 -1995 ((-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|))) |#4| (-749) (-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|))))) (-15 -1996 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1997 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-620 |#4|) (-620 |#4|))) (-15 -1999 ((-536) |#4|)) (-15 -2000 ((-1235) |#4|)) (-15 -2001 ((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536))) (-15 -2002 ((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536) (-536))) (-15 -2003 ((-1235) (-620 |#4|))) (-15 -2004 ((-1235) (-536))) (-15 -2005 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2006 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|)) |#4| (-749))) (-15 -2007 ((-749) |#4|))) (-444) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -442)) -((-2007 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6)))) (-2006 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-749)) (|:| -2115 *4))) (-5 *5 (-749)) (-4 *4 (-924 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-442 *6 *7 *8 *4)))) (-2005 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-771)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-536)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1235)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6)))) (-2003 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1235)) (-5 *1 (-442 *4 *5 *6 *7)))) (-2002 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-771)) (-4 *4 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) (-5 *1 (-442 *5 *6 *7 *4)))) (-2001 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-771)) (-4 *4 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) (-5 *1 (-442 *5 *6 *7 *4)))) (-2000 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1235)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6)))) (-1999 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-536)) (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1997 (*1 *2 *2 *2) (-12 (-5 *2 (-620 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-771)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-771)) (-4 *2 (-924 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) (-4 *4 (-444)) (-4 *6 (-825)))) (-1995 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 *3)))) (-5 *4 (-749)) (-4 *3 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-442 *5 *6 *7 *3)))) (-1994 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *2)) (-4 *2 (-924 *3 *4 *5)))) (-1993 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-442 *5 *6 *7 *3)))) (-1992 (*1 *2 *3 *2) (-12 (-5 *2 (-620 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-771)) (-4 *6 (-924 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-825)) (-5 *1 (-442 *4 *3 *5 *6)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-620 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-771)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1990 (*1 *2 *3 *2) (-12 (-5 *2 (-620 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-771)) (-4 *3 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *3)))) (-1989 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-924 *4 *3 *5)))) (-1988 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-924 *4 *3 *5)))) (-1987 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-771)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1986 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-536)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1985 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *2)))) (-1984 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *2))))) -(-10 -7 (-15 -1984 (|#4| |#4| (-620 |#4|))) (-15 -1985 (|#4| |#4| (-620 |#4|))) (-15 -1986 ((-620 |#4|) (-620 |#4|) (-536) (-536))) (-15 -1987 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1988 ((-112) |#2| |#2|)) (-15 -1989 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1990 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1991 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1992 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1993 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-620 |#4|))) (-15 -1994 (|#4| |#4|)) (-15 -1995 ((-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|))) |#4| (-749) (-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|))))) (-15 -1996 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1997 ((-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-620 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-620 |#4|) (-620 |#4|))) (-15 -1999 ((-536) |#4|)) (-15 -2000 ((-1235) |#4|)) (-15 -2001 ((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536))) (-15 -2002 ((-536) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-536) (-536) (-536) (-536))) (-15 -2003 ((-1235) (-620 |#4|))) (-15 -2004 ((-1235) (-536))) (-15 -2005 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2006 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-749)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-749)) (|:| -2115 |#4|)) |#4| (-749))) (-15 -2007 ((-749) |#4|))) -((-2008 (($ $ $) 14) (($ (-620 $)) 21)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 41)) (-3490 (($ $ $) NIL) (($ (-620 $)) 22))) -(((-443 |#1|) (-10 -8 (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2008 (|#1| (-620 |#1|))) (-15 -2008 (|#1| |#1| |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|))) (-444)) (T -443)) -NIL -(-10 -8 (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -2008 (|#1| (-620 |#1|))) (-15 -2008 (|#1| |#1| |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -3490 (|#1| |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3815 (((-3 $ "failed") $ $) 40)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-444) (-138)) (T -444)) -((-3490 (*1 *1 *1 *1) (-4 *1 (-444))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-444)))) (-2008 (*1 *1 *1 *1) (-4 *1 (-444))) (-2008 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-444)))) (-3036 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-444))))) -(-13 (-543) (-10 -8 (-15 -3490 ($ $ $)) (-15 -3490 ($ (-620 $))) (-15 -2008 ($ $ $)) (-15 -2008 ($ (-620 $))) (-15 -3036 ((-1141 $) (-1141 $) (-1141 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3569 (((-1229 (-667 (-400 (-920 |#1|)))) (-1229 $)) NIL) (((-1229 (-667 (-400 (-920 |#1|))))) NIL)) (-1840 (((-1229 $)) NIL)) (-3891 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed")) NIL)) (-1814 (((-3 $ #1#)) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-1902 (((-667 (-400 (-920 |#1|))) (-1229 $)) NIL) (((-667 (-400 (-920 |#1|)))) NIL)) (-1838 (((-400 (-920 |#1|)) $) NIL)) (-1900 (((-667 (-400 (-920 |#1|))) $ (-1229 $)) NIL) (((-667 (-400 (-920 |#1|))) $) NIL)) (-2491 (((-3 $ #1#) $) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-2017 (((-1141 (-920 (-400 (-920 |#1|))))) NIL (|has| (-400 (-920 |#1|)) (-356))) (((-1141 (-400 (-920 |#1|)))) 84 (|has| |#1| (-543)))) (-2494 (($ $ (-893)) NIL)) (-1836 (((-400 (-920 |#1|)) $) NIL)) (-1816 (((-1141 (-400 (-920 |#1|))) $) 82 (|has| (-400 (-920 |#1|)) (-543)))) (-1904 (((-400 (-920 |#1|)) (-1229 $)) NIL) (((-400 (-920 |#1|))) NIL)) (-1834 (((-1141 (-400 (-920 |#1|))) $) NIL)) (-1828 (((-112)) NIL)) (-1906 (($ (-1229 (-400 (-920 |#1|))) (-1229 $)) 103) (($ (-1229 (-400 (-920 |#1|)))) NIL)) (-3816 (((-3 $ #1#) $) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-3439 (((-893)) NIL)) (-1825 (((-112)) NIL)) (-2519 (($ $ (-893)) NIL)) (-1821 (((-112)) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) NIL)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed")) NIL)) (-1815 (((-3 $ #1#)) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-1903 (((-667 (-400 (-920 |#1|))) (-1229 $)) NIL) (((-667 (-400 (-920 |#1|)))) NIL)) (-1839 (((-400 (-920 |#1|)) $) NIL)) (-1901 (((-667 (-400 (-920 |#1|))) $ (-1229 $)) NIL) (((-667 (-400 (-920 |#1|))) $) NIL)) (-2492 (((-3 $ #1#) $) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-2021 (((-1141 (-920 (-400 (-920 |#1|))))) NIL (|has| (-400 (-920 |#1|)) (-356))) (((-1141 (-400 (-920 |#1|)))) 83 (|has| |#1| (-543)))) (-2493 (($ $ (-893)) NIL)) (-1837 (((-400 (-920 |#1|)) $) NIL)) (-1817 (((-1141 (-400 (-920 |#1|))) $) 77 (|has| (-400 (-920 |#1|)) (-543)))) (-1905 (((-400 (-920 |#1|)) (-1229 $)) NIL) (((-400 (-920 |#1|))) NIL)) (-1835 (((-1141 (-400 (-920 |#1|))) $) NIL)) (-1829 (((-112)) NIL)) (-3588 (((-1129) $) NIL)) (-1820 (((-112)) NIL)) (-1822 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-3589 (((-1091) $) NIL)) (-2011 (((-400 (-920 |#1|)) $ $) 71 (|has| |#1| (-543)))) (-2015 (((-400 (-920 |#1|)) $) 93 (|has| |#1| (-543)))) (-2014 (((-400 (-920 |#1|)) $) 95 (|has| |#1| (-543)))) (-2016 (((-1141 (-400 (-920 |#1|))) $) 88 (|has| |#1| (-543)))) (-2010 (((-400 (-920 |#1|))) 72 (|has| |#1| (-543)))) (-2013 (((-400 (-920 |#1|)) $ $) 64 (|has| |#1| (-543)))) (-2019 (((-400 (-920 |#1|)) $) 92 (|has| |#1| (-543)))) (-2018 (((-400 (-920 |#1|)) $) 94 (|has| |#1| (-543)))) (-2020 (((-1141 (-400 (-920 |#1|))) $) 87 (|has| |#1| (-543)))) (-2012 (((-400 (-920 |#1|))) 68 (|has| |#1| (-543)))) (-2022 (($) 101) (($ (-1147)) 107) (($ (-1229 (-1147))) 106) (($ (-1229 $)) 96) (($ (-1147) (-1229 $)) 105) (($ (-1229 (-1147)) (-1229 $)) 104)) (-1827 (((-112)) NIL)) (-4154 (((-400 (-920 |#1|)) $ (-536)) NIL)) (-3570 (((-1229 (-400 (-920 |#1|))) $ (-1229 $)) 98) (((-667 (-400 (-920 |#1|))) (-1229 $) (-1229 $)) NIL) (((-1229 (-400 (-920 |#1|))) $) 40) (((-667 (-400 (-920 |#1|))) (-1229 $)) NIL)) (-4325 (((-1229 (-400 (-920 |#1|))) $) NIL) (($ (-1229 (-400 (-920 |#1|)))) 37)) (-2009 (((-620 (-920 (-400 (-920 |#1|)))) (-1229 $)) NIL) (((-620 (-920 (-400 (-920 |#1|))))) NIL) (((-620 (-920 |#1|)) (-1229 $)) 99 (|has| |#1| (-543))) (((-620 (-920 |#1|))) 100 (|has| |#1| (-543)))) (-2681 (($ $ $) NIL)) (-1833 (((-112)) NIL)) (-4312 (((-838) $) NIL) (($ (-1229 (-400 (-920 |#1|)))) NIL)) (-2123 (((-1229 $)) 60)) (-1818 (((-620 (-1229 (-400 (-920 |#1|))))) NIL (|has| (-400 (-920 |#1|)) (-543)))) (-2682 (($ $ $ $) NIL)) (-1831 (((-112)) NIL)) (-2875 (($ (-667 (-400 (-920 |#1|))) $) NIL)) (-2680 (($ $ $) NIL)) (-1832 (((-112)) NIL)) (-1830 (((-112)) NIL)) (-1826 (((-112)) NIL)) (-2986 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) 97)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 56) (($ $ (-400 (-920 |#1|))) NIL) (($ (-400 (-920 |#1|)) $) NIL) (($ (-1113 |#2| (-400 (-920 |#1|))) $) NIL))) -(((-445 |#1| |#2| |#3| |#4|) (-13 (-411 (-400 (-920 |#1|))) (-626 (-1113 |#2| (-400 (-920 |#1|)))) (-10 -8 (-15 -4312 ($ (-1229 (-400 (-920 |#1|))))) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -2022 ($)) (-15 -2022 ($ (-1147))) (-15 -2022 ($ (-1229 (-1147)))) (-15 -2022 ($ (-1229 $))) (-15 -2022 ($ (-1147) (-1229 $))) (-15 -2022 ($ (-1229 (-1147)) (-1229 $))) (IF (|has| |#1| (-543)) (PROGN (-15 -2021 ((-1141 (-400 (-920 |#1|))))) (-15 -2020 ((-1141 (-400 (-920 |#1|))) $)) (-15 -2019 ((-400 (-920 |#1|)) $)) (-15 -2018 ((-400 (-920 |#1|)) $)) (-15 -2017 ((-1141 (-400 (-920 |#1|))))) (-15 -2016 ((-1141 (-400 (-920 |#1|))) $)) (-15 -2015 ((-400 (-920 |#1|)) $)) (-15 -2014 ((-400 (-920 |#1|)) $)) (-15 -2013 ((-400 (-920 |#1|)) $ $)) (-15 -2012 ((-400 (-920 |#1|)))) (-15 -2011 ((-400 (-920 |#1|)) $ $)) (-15 -2010 ((-400 (-920 |#1|)))) (-15 -2009 ((-620 (-920 |#1|)) (-1229 $))) (-15 -2009 ((-620 (-920 |#1|))))) |%noBranch|))) (-170) (-893) (-620 (-1147)) (-1229 (-667 |#1|))) (T -445)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1229 (-400 (-920 *3)))) (-4 *3 (-170)) (-14 *6 (-1229 (-667 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))))) (-2024 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2123 (-620 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2023 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-445 *3 *4 *5 *6)) (|:| -2123 (-620 (-445 *3 *4 *5 *6))))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2022 (*1 *1) (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-893)) (-14 *4 (-620 (-1147))) (-14 *5 (-1229 (-667 *2))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 *2)) (-14 *6 (-1229 (-667 *3))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1229 (-1147))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2022 (*1 *1 *2) (-12 (-5 *2 (-1229 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-893)) (-14 *6 (-620 *2)) (-14 *7 (-1229 (-667 *4))))) (-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1229 (-1147))) (-5 *3 (-1229 (-445 *4 *5 *6 *7))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-893)) (-14 *6 (-620 (-1147))) (-14 *7 (-1229 (-667 *4))))) (-2021 (*1 *2) (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2017 (*1 *2) (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2016 (*1 *2 *1) (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2015 (*1 *2 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2013 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2012 (*1 *2) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2011 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2010 (*1 *2) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1229 (-445 *4 *5 *6 *7))) (-5 *2 (-620 (-920 *4))) (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-543)) (-4 *4 (-170)) (-14 *5 (-893)) (-14 *6 (-620 (-1147))) (-14 *7 (-1229 (-667 *4))))) (-2009 (*1 *2) (-12 (-5 *2 (-620 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3)))))) -(-13 (-411 (-400 (-920 |#1|))) (-626 (-1113 |#2| (-400 (-920 |#1|)))) (-10 -8 (-15 -4312 ($ (-1229 (-400 (-920 |#1|))))) (-15 -2024 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -2023 ((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) "failed"))) (-15 -2022 ($)) (-15 -2022 ($ (-1147))) (-15 -2022 ($ (-1229 (-1147)))) (-15 -2022 ($ (-1229 $))) (-15 -2022 ($ (-1147) (-1229 $))) (-15 -2022 ($ (-1229 (-1147)) (-1229 $))) (IF (|has| |#1| (-543)) (PROGN (-15 -2021 ((-1141 (-400 (-920 |#1|))))) (-15 -2020 ((-1141 (-400 (-920 |#1|))) $)) (-15 -2019 ((-400 (-920 |#1|)) $)) (-15 -2018 ((-400 (-920 |#1|)) $)) (-15 -2017 ((-1141 (-400 (-920 |#1|))))) (-15 -2016 ((-1141 (-400 (-920 |#1|))) $)) (-15 -2015 ((-400 (-920 |#1|)) $)) (-15 -2014 ((-400 (-920 |#1|)) $)) (-15 -2013 ((-400 (-920 |#1|)) $ $)) (-15 -2012 ((-400 (-920 |#1|)))) (-15 -2011 ((-400 (-920 |#1|)) $ $)) (-15 -2010 ((-400 (-920 |#1|)))) (-15 -2009 ((-620 (-920 |#1|)) (-1229 $))) (-15 -2009 ((-620 (-920 |#1|))))) |%noBranch|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 13)) (-3412 (((-620 (-839 |#1|)) $) 75)) (-3414 (((-1141 $) $ (-839 |#1|)) 46) (((-1141 |#2|) $) 118)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-543)))) (-2173 (($ $) NIL (|has| |#2| (-543)))) (-2171 (((-112) $) NIL (|has| |#2| (-543)))) (-3147 (((-749) $) 21) (((-749) $ (-620 (-839 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL (|has| |#2| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) 44) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-839 |#1|) #2#) $) NIL)) (-3502 ((|#2| $) 42) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-839 |#1|) $) NIL)) (-4111 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-620 (-536))) 80)) (-4314 (($ $) 68)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#2| (-884)))) (-1716 (($ $ |#2| |#3| $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) 58)) (-3415 (($ (-1141 |#2|) (-839 |#1|)) 123) (($ (-1141 $) (-839 |#1|)) 52)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) 59)) (-3221 (($ |#2| |#3|) 28) (($ $ (-839 |#1|) (-749)) 30) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-839 |#1|)) NIL)) (-3148 ((|#3| $) NIL) (((-749) $ (-839 |#1|)) 50) (((-620 (-749)) $ (-620 (-839 |#1|))) 57)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-1717 (($ (-1 |#3| |#3|) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-3413 (((-3 (-839 |#1|) #3="failed") $) 39)) (-3222 (($ $) NIL)) (-3520 ((|#2| $) 41)) (-2008 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -2488 (-749))) #3#) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) 40)) (-1910 ((|#2| $) 116)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) 128 (|has| |#2| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-884)))) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-839 |#1|) |#2|) 87) (($ $ (-620 (-839 |#1|)) (-620 |#2|)) 90) (($ $ (-839 |#1|) $) 85) (($ $ (-620 (-839 |#1|)) (-620 $)) 106)) (-4112 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-4165 (($ $ (-839 |#1|)) 53) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4302 ((|#3| $) 67) (((-749) $ (-839 |#1|)) 37) (((-620 (-749)) $ (-620 (-839 |#1|))) 56)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-839 |#1|) (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#2| $) 125 (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4312 (((-838) $) 145) (($ (-536)) NIL) (($ |#2|) 86) (($ (-839 |#1|)) 31) (($ (-400 (-536))) NIL (-3886 (|has| |#2| (-38 (-400 (-536)))) (|has| |#2| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#2| (-543)))) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ |#3|) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#2| (-543)))) (-2986 (($) 17 T CONST)) (-2992 (($) 25 T CONST)) (-2997 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ |#2|) 64 (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 111)) (** (($ $ (-893)) NIL) (($ $ (-749)) 109)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 29) (($ $ (-400 (-536))) NIL (|has| |#2| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#2| (-38 (-400 (-536))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) -(((-446 |#1| |#2| |#3|) (-13 (-924 |#2| |#3| (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) (-620 (-1147)) (-1023) (-232 (-4311 |#1|) (-749))) (T -446)) -((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-14 *3 (-620 (-1147))) (-5 *1 (-446 *3 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-232 (-4311 *3) (-749)))))) -(-13 (-924 |#2| |#3| (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) -((-2028 (((-112) |#1| (-620 |#2|)) 69)) (-2026 (((-3 (-1229 (-620 |#2|)) "failed") (-749) |#1| (-620 |#2|)) 78)) (-2027 (((-3 (-620 |#2|) "failed") |#2| |#1| (-1229 (-620 |#2|))) 80)) (-2147 ((|#2| |#2| |#1|) 28)) (-2025 (((-749) |#2| (-620 |#2|)) 20))) -(((-447 |#1| |#2|) (-10 -7 (-15 -2147 (|#2| |#2| |#1|)) (-15 -2025 ((-749) |#2| (-620 |#2|))) (-15 -2026 ((-3 (-1229 (-620 |#2|)) "failed") (-749) |#1| (-620 |#2|))) (-15 -2027 ((-3 (-620 |#2|) "failed") |#2| |#1| (-1229 (-620 |#2|)))) (-15 -2028 ((-112) |#1| (-620 |#2|)))) (-300) (-1205 |#1|)) (T -447)) -((-2028 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *5)) (-4 *5 (-1205 *3)) (-4 *3 (-300)) (-5 *2 (-112)) (-5 *1 (-447 *3 *5)))) (-2027 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1229 (-620 *3))) (-4 *4 (-300)) (-5 *2 (-620 *3)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1205 *4)))) (-2026 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-300)) (-4 *6 (-1205 *4)) (-5 *2 (-1229 (-620 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-620 *6)))) (-2025 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-300)) (-5 *2 (-749)) (-5 *1 (-447 *5 *3)))) (-2147 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1205 *3))))) -(-10 -7 (-15 -2147 (|#2| |#2| |#1|)) (-15 -2025 ((-749) |#2| (-620 |#2|))) (-15 -2026 ((-3 (-1229 (-620 |#2|)) "failed") (-749) |#1| (-620 |#2|))) (-15 -2027 ((-3 (-620 |#2|) "failed") |#2| |#1| (-1229 (-620 |#2|)))) (-15 -2028 ((-112) |#1| (-620 |#2|)))) -((-4087 (((-398 |#5|) |#5|) 24))) -(((-448 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4087 ((-398 |#5|) |#5|))) (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147))))) (-771) (-543) (-543) (-924 |#4| |#2| |#1|)) (T -448)) -((-4087 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147)))))) (-4 *5 (-771)) (-4 *7 (-543)) (-5 *2 (-398 *3)) (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-543)) (-4 *3 (-924 *7 *5 *4))))) -(-10 -7 (-15 -4087 ((-398 |#5|) |#5|))) -((-3028 ((|#3|) 37)) (-3036 (((-1141 |#4|) (-1141 |#4|) (-1141 |#4|)) 33))) -(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3036 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3028 (|#3|))) (-771) (-825) (-884) (-924 |#3| |#1| |#2|)) (T -449)) -((-3028 (*1 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-884)) (-5 *1 (-449 *3 *4 *2 *5)) (-4 *5 (-924 *2 *3 *4)))) (-3036 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-884)) (-5 *1 (-449 *3 *4 *5 *6))))) -(-10 -7 (-15 -3036 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3028 (|#3|))) -((-4087 (((-398 (-1141 |#1|)) (-1141 |#1|)) 43))) -(((-450 |#1|) (-10 -7 (-15 -4087 ((-398 (-1141 |#1|)) (-1141 |#1|)))) (-300)) (T -450)) -((-4087 (*1 *2 *3) (-12 (-4 *4 (-300)) (-5 *2 (-398 (-1141 *4))) (-5 *1 (-450 *4)) (-5 *3 (-1141 *4))))) -(-10 -7 (-15 -4087 ((-398 (-1141 |#1|)) (-1141 |#1|)))) -((-4084 (((-51) |#2| (-1147) (-286 |#2|) (-1196 (-749))) 42) (((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-749))) 41) (((-51) |#2| (-1147) (-286 |#2|)) 35) (((-51) (-1 |#2| (-536)) (-286 |#2|)) 28)) (-4173 (((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))) 80) (((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))) 79) (((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536))) 78) (((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536))) 77) (((-51) |#2| (-1147) (-286 |#2|)) 72) (((-51) (-1 |#2| (-536)) (-286 |#2|)) 71)) (-4136 (((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))) 66) (((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))) 64)) (-4133 (((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536))) 48) (((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536))) 47))) -(((-451 |#1| |#2|) (-10 -7 (-15 -4084 ((-51) (-1 |#2| (-536)) (-286 |#2|))) (-15 -4084 ((-51) |#2| (-1147) (-286 |#2|))) (-15 -4084 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-749)))) (-15 -4084 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-749)))) (-15 -4133 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536)))) (-15 -4133 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536)))) (-15 -4136 ((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4136 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4173 ((-51) (-1 |#2| (-536)) (-286 |#2|))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|))) (-15 -4173 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536)))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536)))) (-15 -4173 ((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))))) (-13 (-543) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -451)) -((-4173 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-400 (-536)))) (-5 *7 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *8))) (-4 *8 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *8 *3)))) (-4173 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-536)))) (-5 *4 (-286 *8)) (-5 *5 (-1196 (-400 (-536)))) (-5 *6 (-400 (-536))) (-4 *8 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *8)))) (-4173 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4173 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-536))) (-4 *7 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4173 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *3)))) (-4173 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-536))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *5 *6)))) (-4136 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-400 (-536)))) (-5 *7 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *8))) (-4 *8 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *8 *3)))) (-4136 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-400 (-536)))) (-5 *4 (-286 *8)) (-5 *5 (-1196 (-400 (-536)))) (-5 *6 (-400 (-536))) (-4 *8 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *8)))) (-4133 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4133 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-536))) (-4 *7 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4084 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-749))) (-4 *3 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *7 *3)))) (-4084 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-749))) (-4 *7 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *7)))) (-4084 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *6 *3)))) (-4084 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-536))) (-5 *4 (-286 *6)) (-4 *6 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) (-5 *1 (-451 *5 *6))))) -(-10 -7 (-15 -4084 ((-51) (-1 |#2| (-536)) (-286 |#2|))) (-15 -4084 ((-51) |#2| (-1147) (-286 |#2|))) (-15 -4084 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-749)))) (-15 -4084 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-749)))) (-15 -4133 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536)))) (-15 -4133 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536)))) (-15 -4136 ((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4136 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4173 ((-51) (-1 |#2| (-536)) (-286 |#2|))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|))) (-15 -4173 ((-51) (-1 |#2| (-536)) (-286 |#2|) (-1196 (-536)))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-536)))) (-15 -4173 ((-51) (-1 |#2| (-400 (-536))) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536)))) (-15 -4173 ((-51) |#2| (-1147) (-286 |#2|) (-1196 (-400 (-536))) (-400 (-536))))) -((-2147 ((|#2| |#2| |#1|) 15)) (-2030 (((-620 |#2|) |#2| (-620 |#2|) |#1| (-893)) 69)) (-2029 (((-2 (|:| |plist| (-620 |#2|)) (|:| |modulo| |#1|)) |#2| (-620 |#2|) |#1| (-893)) 60))) -(((-452 |#1| |#2|) (-10 -7 (-15 -2029 ((-2 (|:| |plist| (-620 |#2|)) (|:| |modulo| |#1|)) |#2| (-620 |#2|) |#1| (-893))) (-15 -2030 ((-620 |#2|) |#2| (-620 |#2|) |#1| (-893))) (-15 -2147 (|#2| |#2| |#1|))) (-300) (-1205 |#1|)) (T -452)) -((-2147 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1205 *3)))) (-2030 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-620 *3)) (-5 *5 (-893)) (-4 *3 (-1205 *4)) (-4 *4 (-300)) (-5 *1 (-452 *4 *3)))) (-2029 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-893)) (-4 *5 (-300)) (-4 *3 (-1205 *5)) (-5 *2 (-2 (|:| |plist| (-620 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) (-5 *4 (-620 *3))))) -(-10 -7 (-15 -2029 ((-2 (|:| |plist| (-620 |#2|)) (|:| |modulo| |#1|)) |#2| (-620 |#2|) |#1| (-893))) (-15 -2030 ((-620 |#2|) |#2| (-620 |#2|) |#1| (-893))) (-15 -2147 (|#2| |#2| |#1|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 28)) (-4065 (($ |#3|) 25)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) 32)) (-2031 (($ |#2| |#4| $) 33)) (-3221 (($ |#2| (-692 |#3| |#4| |#5|)) 24)) (-3222 (((-692 |#3| |#4| |#5|) $) 15)) (-2033 ((|#3| $) 19)) (-2034 ((|#4| $) 17)) (-3520 ((|#2| $) 29)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2032 (($ |#2| |#3| |#4|) 26)) (-2986 (($) 36 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 34)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-453 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-696 |#6|) (-696 |#2|) (-10 -8 (-15 -3520 (|#2| $)) (-15 -3222 ((-692 |#3| |#4| |#5|) $)) (-15 -2034 (|#4| $)) (-15 -2033 (|#3| $)) (-15 -4314 ($ $)) (-15 -3221 ($ |#2| (-692 |#3| |#4| |#5|))) (-15 -4065 ($ |#3|)) (-15 -2032 ($ |#2| |#3| |#4|)) (-15 -2031 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-620 (-1147)) (-170) (-825) (-232 (-4311 |#1|) (-749)) (-1 (-112) (-2 (|:| -2487 |#3|) (|:| -2488 |#4|)) (-2 (|:| -2487 |#3|) (|:| -2488 |#4|))) (-924 |#2| |#4| (-839 |#1|))) (T -453)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *6 (-232 (-4311 *3) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) (-2 (|:| -2487 *5) (|:| -2488 *6)))) (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-825)) (-4 *2 (-924 *4 *6 (-839 *3))))) (-3520 (*1 *2 *1) (-12 (-14 *3 (-620 (-1147))) (-4 *5 (-232 (-4311 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *4) (|:| -2488 *5)) (-2 (|:| -2487 *4) (|:| -2488 *5)))) (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-825)) (-4 *7 (-924 *2 *5 (-839 *3))))) (-3222 (*1 *2 *1) (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *6 (-232 (-4311 *3) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) (-2 (|:| -2487 *5) (|:| -2488 *6)))) (-5 *2 (-692 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-825)) (-4 *8 (-924 *4 *6 (-839 *3))))) (-2034 (*1 *2 *1) (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *2)) (-2 (|:| -2487 *5) (|:| -2488 *2)))) (-4 *2 (-232 (-4311 *3) (-749))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) (-4 *5 (-825)) (-4 *7 (-924 *4 *2 (-839 *3))))) (-2033 (*1 *2 *1) (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *5 (-232 (-4311 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *5)) (-2 (|:| -2487 *2) (|:| -2488 *5)))) (-4 *2 (-825)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *7 (-924 *4 *5 (-839 *3))))) (-4314 (*1 *1 *1) (-12 (-14 *2 (-620 (-1147))) (-4 *3 (-170)) (-4 *5 (-232 (-4311 *2) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *4) (|:| -2488 *5)) (-2 (|:| -2487 *4) (|:| -2488 *5)))) (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-825)) (-4 *7 (-924 *3 *5 (-839 *2))))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-692 *5 *6 *7)) (-4 *5 (-825)) (-4 *6 (-232 (-4311 *4) (-749))) (-14 *7 (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) (-2 (|:| -2487 *5) (|:| -2488 *6)))) (-14 *4 (-620 (-1147))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) (-4 *8 (-924 *2 *6 (-839 *4))))) (-4065 (*1 *1 *2) (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *5 (-232 (-4311 *3) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *5)) (-2 (|:| -2487 *2) (|:| -2488 *5)))) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-825)) (-4 *7 (-924 *4 *5 (-839 *3))))) (-2032 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-620 (-1147))) (-4 *2 (-170)) (-4 *4 (-232 (-4311 *5) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *3) (|:| -2488 *4)) (-2 (|:| -2487 *3) (|:| -2488 *4)))) (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-825)) (-4 *7 (-924 *2 *4 (-839 *5))))) (-2031 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-620 (-1147))) (-4 *2 (-170)) (-4 *3 (-232 (-4311 *4) (-749))) (-14 *6 (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *3)) (-2 (|:| -2487 *5) (|:| -2488 *3)))) (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-825)) (-4 *7 (-924 *2 *3 (-839 *4)))))) -(-13 (-696 |#6|) (-696 |#2|) (-10 -8 (-15 -3520 (|#2| $)) (-15 -3222 ((-692 |#3| |#4| |#5|) $)) (-15 -2034 (|#4| $)) (-15 -2033 (|#3| $)) (-15 -4314 ($ $)) (-15 -3221 ($ |#2| (-692 |#3| |#4| |#5|))) (-15 -4065 ($ |#3|)) (-15 -2032 ($ |#2| |#3| |#4|)) (-15 -2031 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-2035 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) -(((-454 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2035 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-771) (-825) (-543) (-924 |#3| |#1| |#2|) (-13 (-1012 (-400 (-536))) (-356) (-10 -8 (-15 -4312 ($ |#4|)) (-15 -3326 (|#4| $)) (-15 -3325 (|#4| $))))) (T -454)) -((-2035 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-825)) (-4 *5 (-771)) (-4 *6 (-543)) (-4 *7 (-924 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1012 (-400 (-536))) (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) -(-10 -7 (-15 -2035 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2893 (((-112) $ $) NIL)) (-3412 (((-620 |#3|) $) 41)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) NIL (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-3228 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 47)) (-3502 (($ (-620 |#4|)) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3760 (($ |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4348)))) (-2063 (((-620 |#4|) $) 18 (|has| $ (-6 -4348)))) (-3526 ((|#3| $) 45)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#4|) $) 14 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 21)) (-3242 (((-620 |#3|) $) NIL)) (-3241 (((-112) |#3| $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-3589 (((-1091) $) NIL)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 39)) (-3923 (($) 17)) (-2064 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) 16)) (-4325 (((-525) $) NIL (|has| |#4| (-596 (-525)))) (($ (-620 |#4|)) 49)) (-3879 (($ (-620 |#4|)) 13)) (-3238 (($ $ |#3|) NIL)) (-3240 (($ $ |#3|) NIL)) (-3239 (($ $ |#3|) NIL)) (-4312 (((-838) $) 38) (((-620 |#4|) $) 48)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 30)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-455 |#1| |#2| |#3| |#4|) (-13 (-950 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4325 ($ (-620 |#4|))) (-6 -4348) (-6 -4349))) (-1023) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -455)) -((-4325 (*1 *1 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-455 *3 *4 *5 *6))))) -(-13 (-950 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4325 ($ (-620 |#4|))) (-6 -4348) (-6 -4349))) -((-2986 (($) 11)) (-2992 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-456 |#1| |#2| |#3|) (-10 -8 (-15 -2992 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2986 (|#1|))) (-457 |#2| |#3|) (-170) (-23)) (T -456)) -NIL -(-10 -8 (-15 -2992 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2986 (|#1|))) -((-2893 (((-112) $ $) 7)) (-3503 (((-3 |#1| "failed") $) 26)) (-3502 ((|#1| $) 25)) (-4299 (($ $ $) 23)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4302 ((|#2| $) 19)) (-4312 (((-838) $) 11) (($ |#1|) 27)) (-2986 (($) 18 T CONST)) (-2992 (($) 24 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 15) (($ $ $) 13)) (-4194 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-457 |#1| |#2|) (-138) (-170) (-23)) (T -457)) -((-2992 (*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4299 (*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) -(-13 (-462 |t#1| |t#2|) (-1012 |t#1|) (-10 -8 (-15 (-2992) ($) -4306) (-15 -4299 ($ $ $)))) -(((-101) . T) ((-595 (-838)) . T) ((-462 |#1| |#2|) . T) ((-1012 |#1|) . T) ((-1072) . T)) -((-2036 (((-1229 (-1229 (-536))) (-1229 (-1229 (-536))) (-893)) 18)) (-2037 (((-1229 (-1229 (-536))) (-893)) 16))) -(((-458) (-10 -7 (-15 -2036 ((-1229 (-1229 (-536))) (-1229 (-1229 (-536))) (-893))) (-15 -2037 ((-1229 (-1229 (-536))) (-893))))) (T -458)) -((-2037 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1229 (-1229 (-536)))) (-5 *1 (-458)))) (-2036 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 (-1229 (-536)))) (-5 *3 (-893)) (-5 *1 (-458))))) -(-10 -7 (-15 -2036 ((-1229 (-1229 (-536))) (-1229 (-1229 (-536))) (-893))) (-15 -2037 ((-1229 (-1229 (-536))) (-893)))) -((-3098 (((-536) (-536)) 30) (((-536)) 22)) (-3102 (((-536) (-536)) 26) (((-536)) 18)) (-3100 (((-536) (-536)) 28) (((-536)) 20)) (-2039 (((-112) (-112)) 12) (((-112)) 10)) (-2038 (((-112) (-112)) 11) (((-112)) 9)) (-2040 (((-112) (-112)) 24) (((-112)) 15))) -(((-459) (-10 -7 (-15 -2038 ((-112))) (-15 -2039 ((-112))) (-15 -2038 ((-112) (-112))) (-15 -2039 ((-112) (-112))) (-15 -2040 ((-112))) (-15 -3100 ((-536))) (-15 -3102 ((-536))) (-15 -3098 ((-536))) (-15 -2040 ((-112) (-112))) (-15 -3100 ((-536) (-536))) (-15 -3102 ((-536) (-536))) (-15 -3098 ((-536) (-536))))) (T -459)) -((-3098 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-3098 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-3102 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-3100 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) (-2040 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2039 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2038 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2039 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) (-2038 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) -(-10 -7 (-15 -2038 ((-112))) (-15 -2039 ((-112))) (-15 -2038 ((-112) (-112))) (-15 -2039 ((-112) (-112))) (-15 -2040 ((-112))) (-15 -3100 ((-536))) (-15 -3102 ((-536))) (-15 -3098 ((-536))) (-15 -2040 ((-112) (-112))) (-15 -3100 ((-536) (-536))) (-15 -3102 ((-536) (-536))) (-15 -3098 ((-536) (-536)))) -((-2893 (((-112) $ $) NIL)) (-4206 (((-620 (-371)) $) 28) (((-620 (-371)) $ (-620 (-371))) 96)) (-2045 (((-620 (-1060 (-371))) $) 16) (((-620 (-1060 (-371))) $ (-620 (-1060 (-371)))) 94)) (-2042 (((-620 (-620 (-917 (-219)))) (-620 (-620 (-917 (-219)))) (-620 (-848))) 45)) (-2046 (((-620 (-620 (-917 (-219)))) $) 90)) (-4064 (((-1235) $ (-917 (-219)) (-848)) 108)) (-2047 (($ $) 89) (($ (-620 (-620 (-917 (-219))))) 99) (($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893))) 98) (($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893)) (-620 (-254))) 100)) (-3588 (((-1129) $) NIL)) (-4215 (((-536) $) 71)) (-3589 (((-1091) $) NIL)) (-2048 (($) 97)) (-2041 (((-620 (-219)) (-620 (-620 (-917 (-219))))) 56)) (-2044 (((-1235) $ (-620 (-917 (-219))) (-848) (-848) (-893)) 102) (((-1235) $ (-917 (-219))) 104) (((-1235) $ (-917 (-219)) (-848) (-848) (-893)) 103)) (-4312 (((-838) $) 114) (($ (-620 (-620 (-917 (-219))))) 109)) (-2043 (((-1235) $ (-917 (-219))) 107)) (-3382 (((-112) $ $) NIL))) -(((-460) (-13 (-1072) (-10 -8 (-15 -2048 ($)) (-15 -2047 ($ $)) (-15 -2047 ($ (-620 (-620 (-917 (-219)))))) (-15 -2047 ($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893)))) (-15 -2047 ($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893)) (-620 (-254)))) (-15 -2046 ((-620 (-620 (-917 (-219)))) $)) (-15 -4215 ((-536) $)) (-15 -2045 ((-620 (-1060 (-371))) $)) (-15 -2045 ((-620 (-1060 (-371))) $ (-620 (-1060 (-371))))) (-15 -4206 ((-620 (-371)) $)) (-15 -4206 ((-620 (-371)) $ (-620 (-371)))) (-15 -2044 ((-1235) $ (-620 (-917 (-219))) (-848) (-848) (-893))) (-15 -2044 ((-1235) $ (-917 (-219)))) (-15 -2044 ((-1235) $ (-917 (-219)) (-848) (-848) (-893))) (-15 -2043 ((-1235) $ (-917 (-219)))) (-15 -4064 ((-1235) $ (-917 (-219)) (-848))) (-15 -4312 ($ (-620 (-620 (-917 (-219)))))) (-15 -4312 ((-838) $)) (-15 -2042 ((-620 (-620 (-917 (-219)))) (-620 (-620 (-917 (-219)))) (-620 (-848)))) (-15 -2041 ((-620 (-219)) (-620 (-620 (-917 (-219))))))))) (T -460)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-460)))) (-2048 (*1 *1) (-5 *1 (-460))) (-2047 (*1 *1 *1) (-5 *1 (-460))) (-2047 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460)))) (-2047 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) (-5 *4 (-620 (-893))) (-5 *1 (-460)))) (-2047 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) (-5 *4 (-620 (-893))) (-5 *5 (-620 (-254))) (-5 *1 (-460)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-460)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-460)))) (-2045 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-460)))) (-4206 (*1 *2 *1) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-460)))) (-4206 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *4 (-848)) (-5 *5 (-893)) (-5 *2 (-1235)) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-460)))) (-2044 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *5 (-893)) (-5 *2 (-1235)) (-5 *1 (-460)))) (-2043 (*1 *2 *1 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-460)))) (-4064 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-460)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460)))) (-2042 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) (-5 *1 (-460)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-620 (-219))) (-5 *1 (-460))))) -(-13 (-1072) (-10 -8 (-15 -2048 ($)) (-15 -2047 ($ $)) (-15 -2047 ($ (-620 (-620 (-917 (-219)))))) (-15 -2047 ($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893)))) (-15 -2047 ($ (-620 (-620 (-917 (-219)))) (-620 (-848)) (-620 (-848)) (-620 (-893)) (-620 (-254)))) (-15 -2046 ((-620 (-620 (-917 (-219)))) $)) (-15 -4215 ((-536) $)) (-15 -2045 ((-620 (-1060 (-371))) $)) (-15 -2045 ((-620 (-1060 (-371))) $ (-620 (-1060 (-371))))) (-15 -4206 ((-620 (-371)) $)) (-15 -4206 ((-620 (-371)) $ (-620 (-371)))) (-15 -2044 ((-1235) $ (-620 (-917 (-219))) (-848) (-848) (-893))) (-15 -2044 ((-1235) $ (-917 (-219)))) (-15 -2044 ((-1235) $ (-917 (-219)) (-848) (-848) (-893))) (-15 -2043 ((-1235) $ (-917 (-219)))) (-15 -4064 ((-1235) $ (-917 (-219)) (-848))) (-15 -4312 ($ (-620 (-620 (-917 (-219)))))) (-15 -4312 ((-838) $)) (-15 -2042 ((-620 (-620 (-917 (-219)))) (-620 (-620 (-917 (-219)))) (-620 (-848)))) (-15 -2041 ((-620 (-219)) (-620 (-620 (-917 (-219)))))))) -((-4192 (($ $) NIL) (($ $ $) 11))) -(((-461 |#1| |#2| |#3|) (-10 -8 (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|))) (-462 |#2| |#3|) (-170) (-23)) (T -461)) -NIL -(-10 -8 (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4302 ((|#2| $) 19)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 15) (($ $ $) 13)) (-4194 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) -(((-462 |#1| |#2|) (-138) (-170) (-23)) (T -462)) -((-4302 (*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2986 (*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4192 (*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4194 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4192 (*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) -(-13 (-1072) (-10 -8 (-15 -4302 (|t#2| $)) (-15 (-2986) ($) -4306) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4192 ($ $)) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2050 (((-3 (-620 (-473 |#1| |#2|)) "failed") (-620 (-473 |#1| |#2|)) (-620 (-839 |#1|))) 92)) (-2049 (((-620 (-620 (-241 |#1| |#2|))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|))) 90)) (-2051 (((-2 (|:| |dpolys| (-620 (-241 |#1| |#2|))) (|:| |coords| (-620 (-536)))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|))) 61))) -(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -2049 ((-620 (-620 (-241 |#1| |#2|))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|)))) (-15 -2050 ((-3 (-620 (-473 |#1| |#2|)) "failed") (-620 (-473 |#1| |#2|)) (-620 (-839 |#1|)))) (-15 -2051 ((-2 (|:| |dpolys| (-620 (-241 |#1| |#2|))) (|:| |coords| (-620 (-536)))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|))))) (-620 (-1147)) (-444) (-444)) (T -463)) -((-2051 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-839 *5))) (-14 *5 (-620 (-1147))) (-4 *6 (-444)) (-5 *2 (-2 (|:| |dpolys| (-620 (-241 *5 *6))) (|:| |coords| (-620 (-536))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-620 (-241 *5 *6))) (-4 *7 (-444)))) (-2050 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-473 *4 *5))) (-5 *3 (-620 (-839 *4))) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) (-4 *6 (-444)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-839 *5))) (-14 *5 (-620 (-1147))) (-4 *6 (-444)) (-5 *2 (-620 (-620 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-620 (-241 *5 *6))) (-4 *7 (-444))))) -(-10 -7 (-15 -2049 ((-620 (-620 (-241 |#1| |#2|))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|)))) (-15 -2050 ((-3 (-620 (-473 |#1| |#2|)) "failed") (-620 (-473 |#1| |#2|)) (-620 (-839 |#1|)))) (-15 -2051 ((-2 (|:| |dpolys| (-620 (-241 |#1| |#2|))) (|:| |coords| (-620 (-536)))) (-620 (-241 |#1| |#2|)) (-620 (-839 |#1|))))) -((-3816 (((-3 $ "failed") $) 11)) (-3337 (($ $ $) 18)) (-2681 (($ $ $) 19)) (-4303 (($ $ $) 9)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 17))) -(((-464 |#1|) (-10 -8 (-15 -2681 (|#1| |#1| |#1|)) (-15 -3337 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -4303 (|#1| |#1| |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893)))) (-465)) (T -464)) -NIL -(-10 -8 (-15 -2681 (|#1| |#1| |#1|)) (-15 -3337 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -4303 (|#1| |#1| |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893)))) -((-2893 (((-112) $ $) 7)) (-3891 (($) 18 T CONST)) (-3816 (((-3 $ "failed") $) 15)) (-2497 (((-112) $) 17)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 24)) (-3589 (((-1091) $) 10)) (-3337 (($ $ $) 21)) (-2681 (($ $ $) 20)) (-4312 (((-838) $) 11)) (-2992 (($) 19 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 23)) (** (($ $ (-893)) 13) (($ $ (-749)) 16) (($ $ (-536)) 22)) (* (($ $ $) 14))) -(((-465) (-138)) (T -465)) -((-2729 (*1 *1 *1) (-4 *1 (-465))) (-4303 (*1 *1 *1 *1) (-4 *1 (-465))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-536)))) (-3337 (*1 *1 *1 *1) (-4 *1 (-465))) (-2681 (*1 *1 *1 *1) (-4 *1 (-465)))) -(-13 (-705) (-10 -8 (-15 -2729 ($ $)) (-15 -4303 ($ $ $)) (-15 ** ($ $ (-536))) (-6 -4345) (-15 -3337 ($ $ $)) (-15 -2681 ($ $ $)))) -(((-101) . T) ((-595 (-838)) . T) ((-705) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 17)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) NIL) (($ $ (-400 (-536)) (-400 (-536))) NIL)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) NIL) (((-400 (-536)) $ (-400 (-536))) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) NIL) (($ $ (-400 (-536))) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-400 (-536))) NIL) (($ $ (-1053) (-400 (-536))) NIL) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) 22)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) 26 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 33 (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 27 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) NIL) (($ $ $) NIL (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 25 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $ (-1226 |#2|)) 15)) (-4302 (((-400 (-536)) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1226 |#2|)) NIL) (($ (-1210 |#1| |#2| |#3|)) 9) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 18)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) 24)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-466 |#1| |#2| |#3|) (-13 (-1212 |#1|) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4312 ($ (-1210 |#1| |#2| |#3|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -466)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) (-5 *1 (-466 *3 *4 *5)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) -(-13 (-1212 |#1|) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4312 ($ (-1210 |#1| |#2| |#3|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) 18)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) 19)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) 16)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) NIL)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-467 |#1| |#2| |#3| |#4|) (-1160 |#1| |#2|) (-1072) (-1072) (-1160 |#1| |#2|) |#2|) (T -467)) -NIL -(-1160 |#1| |#2|) -((-2893 (((-112) $ $) NIL)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) NIL)) (-4040 (((-620 $) (-620 |#4|)) NIL)) (-3412 (((-620 |#3|) $) NIL)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) 26 (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3228 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) NIL)) (-3502 (($ (-620 |#4|)) NIL)) (-4153 (((-3 $ #1#) $) 39)) (-4043 ((|#4| |#4| $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3760 (($ |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4041 ((|#4| |#4| $) NIL)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) NIL)) (-2063 (((-620 |#4|) $) 16 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3526 ((|#3| $) 33)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#4|) $) 17 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 21)) (-3242 (((-620 |#3|) $) NIL)) (-3241 (((-112) |#3| $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-4152 (((-3 |#4| #1#) $) 37)) (-4055 (((-620 |#4|) $) NIL)) (-4049 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4044 ((|#4| |#4| $) NIL)) (-4057 (((-112) $ $) NIL)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4045 ((|#4| |#4| $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4037 (((-3 $ #1#) $ |#4|) 47)) (-4123 (($ $ |#4|) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 15)) (-3923 (($) 13)) (-4302 (((-749) $) NIL)) (-2064 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) 12)) (-4325 (((-525) $) NIL (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 20)) (-3238 (($ $ |#3|) 42)) (-3240 (($ $ |#3|) 44)) (-4042 (($ $) NIL)) (-3239 (($ $ |#3|) NIL)) (-4312 (((-838) $) 31) (((-620 |#4|) $) 40)) (-4036 (((-749) $) NIL (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) NIL)) (-4288 (((-112) |#3| $) NIL)) (-3382 (((-112) $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-468 |#1| |#2| |#3| |#4|) (-1178 |#1| |#2| |#3| |#4|) (-543) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -468)) -NIL -(-1178 |#1| |#2| |#3| |#4|) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3985 (($) 18)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4325 (((-371) $) 22) (((-219) $) 25) (((-400 (-1141 (-536))) $) 19) (((-525) $) 52)) (-4312 (((-838) $) 50) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (((-219) $) 24) (((-371) $) 21)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 36 T CONST)) (-2992 (($) 11 T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) -(((-469) (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))) (-994) (-595 (-219)) (-595 (-371)) (-596 (-400 (-1141 (-536)))) (-596 (-525)) (-10 -8 (-15 -3985 ($))))) (T -469)) -((-3985 (*1 *1) (-5 *1 (-469)))) -(-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))) (-994) (-595 (-219)) (-595 (-371)) (-596 (-400 (-1141 (-536)))) (-596 (-525)) (-10 -8 (-15 -3985 ($)))) -((-2893 (((-112) $ $) NIL)) (-3877 (((-1106) $) 11)) (-3878 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-470) (-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $))))) (T -470)) -((-3878 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-470)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-470))))) -(-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $)))) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) 16)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) 20)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) 18)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) 13)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 19)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 11 (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) 15 (|has| $ (-6 -4348))))) -(((-471 |#1| |#2| |#3|) (-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) (-1072) (-1072) (-1129)) (T -471)) -NIL -(-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) -((-2052 (((-536) (-536) (-536)) 7)) (-2053 (((-112) (-536) (-536) (-536) (-536)) 11)) (-3806 (((-1229 (-620 (-536))) (-749) (-749)) 23))) -(((-472) (-10 -7 (-15 -2052 ((-536) (-536) (-536))) (-15 -2053 ((-112) (-536) (-536) (-536) (-536))) (-15 -3806 ((-1229 (-620 (-536))) (-749) (-749))))) (T -472)) -((-3806 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1229 (-620 (-536)))) (-5 *1 (-472)))) (-2053 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-112)) (-5 *1 (-472)))) (-2052 (*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-472))))) -(-10 -7 (-15 -2052 ((-536) (-536) (-536))) (-15 -2053 ((-112) (-536) (-536) (-536) (-536))) (-15 -3806 ((-1229 (-620 (-536))) (-749) (-749)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-839 |#1|)) $) NIL)) (-3414 (((-1141 $) $ (-839 |#1|)) NIL) (((-1141 |#2|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-543)))) (-2173 (($ $) NIL (|has| |#2| (-543)))) (-2171 (((-112) $) NIL (|has| |#2| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-839 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL (|has| |#2| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-839 |#1|) #2#) $) NIL)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-839 |#1|) $) NIL)) (-4111 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-2054 (($ $ (-620 (-536))) NIL)) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#2| (-884)))) (-1716 (($ $ |#2| (-474 (-4311 |#1|) (-749)) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#2|) (-839 |#1|)) NIL) (($ (-1141 $) (-839 |#1|)) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#2| (-474 (-4311 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-839 |#1|)) NIL)) (-3148 (((-474 (-4311 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-1717 (($ (-1 (-474 (-4311 |#1|) (-749)) (-474 (-4311 |#1|) (-749))) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-3413 (((-3 (-839 |#1|) #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#2| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -2488 (-749))) #3#) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-884)))) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-839 |#1|) |#2|) NIL) (($ $ (-620 (-839 |#1|)) (-620 |#2|)) NIL) (($ $ (-839 |#1|) $) NIL) (($ $ (-620 (-839 |#1|)) (-620 $)) NIL)) (-4112 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-4165 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4302 (((-474 (-4311 |#1|) (-749)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-839 |#1|) (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-839 |#1|)) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#2| (-38 (-400 (-536)))) (|has| |#2| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#2| (-543)))) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-474 (-4311 |#1|) (-749))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#2| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#2| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#2| (-38 (-400 (-536))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-473 |#1| |#2|) (-13 (-924 |#2| (-474 (-4311 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) (-620 (-1147)) (-1023)) (T -473)) -((-2054 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-473 *3 *4)) (-14 *3 (-620 (-1147))) (-4 *4 (-1023))))) -(-13 (-924 |#2| (-474 (-4311 |#1|) (-749)) (-839 |#1|)) (-10 -8 (-15 -2054 ($ $ (-620 (-536)))))) -((-2893 (((-112) $ $) NIL (|has| |#2| (-1072)))) (-3534 (((-112) $) NIL (|has| |#2| (-130)))) (-4065 (($ (-893)) NIL (|has| |#2| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) NIL (|has| |#2| (-771)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#2| (-361)))) (-3981 (((-536) $) NIL (|has| |#2| (-823)))) (-4142 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1072)))) (-3502 (((-536) $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) ((|#2| $) NIL (|has| |#2| (-1072)))) (-2357 (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL (|has| |#2| (-1023))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1023)))) (-3816 (((-3 $ "failed") $) NIL (|has| |#2| (-705)))) (-3322 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ (-536)) 11)) (-3532 (((-112) $) NIL (|has| |#2| (-823)))) (-2063 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (|has| |#2| (-705)))) (-3533 (((-112) $) NIL (|has| |#2| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2506 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#2| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#2| (-1072)))) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#2| (-361)))) (-3589 (((-1091) $) NIL (|has| |#2| (-1072)))) (-4155 ((|#2| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ (-536) |#2|) NIL) ((|#2| $ (-536)) NIL)) (-4191 ((|#2| $ $) NIL (|has| |#2| (-1023)))) (-1520 (($ (-1229 |#2|)) NIL)) (-4266 (((-133)) NIL (|has| |#2| (-356)))) (-4165 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2064 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#2|) $) NIL) (($ (-536)) NIL (-3886 (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (|has| |#2| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (($ |#2|) NIL (|has| |#2| (-1072))) (((-838) $) NIL (|has| |#2| (-595 (-838))))) (-3456 (((-749)) NIL (|has| |#2| (-1023)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#2| (-823)))) (-2986 (($) NIL (|has| |#2| (-130)) CONST)) (-2992 (($) NIL (|has| |#2| (-705)) CONST)) (-2997 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3382 (((-112) $ $) NIL (|has| |#2| (-1072)))) (-3012 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3013 (((-112) $ $) 15 (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $ $) NIL (|has| |#2| (-1023))) (($ $) NIL (|has| |#2| (-1023)))) (-4194 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-893)) NIL (|has| |#2| (-705)))) (* (($ (-536) $) NIL (|has| |#2| (-1023))) (($ $ $) NIL (|has| |#2| (-705))) (($ $ |#2|) NIL (|has| |#2| (-705))) (($ |#2| $) NIL (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-893) $) NIL (|has| |#2| (-25)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-474 |#1| |#2|) (-232 |#1| |#2|) (-749) (-771)) (T -474)) -NIL -(-232 |#1| |#2|) -((-2893 (((-112) $ $) NIL)) (-2055 (((-620 (-497)) $) 11)) (-3900 (((-497) $) 10)) (-3588 (((-1129) $) NIL)) (-2056 (($ (-497) (-620 (-497))) 9)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-475) (-13 (-1054) (-10 -8 (-15 -2056 ($ (-497) (-620 (-497)))) (-15 -3900 ((-497) $)) (-15 -2055 ((-620 (-497)) $))))) (T -475)) -((-2056 (*1 *1 *2 *3) (-12 (-5 *3 (-620 (-497))) (-5 *2 (-497)) (-5 *1 (-475)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-620 (-497))) (-5 *1 (-475))))) -(-13 (-1054) (-10 -8 (-15 -2056 ($ (-497) (-620 (-497)))) (-15 -3900 ((-497) $)) (-15 -2055 ((-620 (-497)) $)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-3187 (($ $ $) 32)) (-3867 (($ $ $) 31)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3673 ((|#1| $) 26)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) 27)) (-3965 (($ |#1| $) 10)) (-2057 (($ (-620 |#1|)) 12)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-1332 ((|#1| $) 23)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 9)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 29)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) 21 (|has| $ (-6 -4348))))) -(((-476 |#1|) (-13 (-942 |#1|) (-10 -8 (-15 -2057 ($ (-620 |#1|))))) (-825)) (T -476)) -((-2057 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-476 *3))))) -(-13 (-942 |#1|) (-10 -8 (-15 -2057 ($ (-620 |#1|))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4197 (($ $) 69)) (-1747 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-2087 (((-406 |#2| (-400 |#2|) |#3| |#4|) $) 44)) (-3589 (((-1091) $) NIL)) (-2496 (((-3 |#4| "failed") $) 107)) (-1748 (($ (-406 |#2| (-400 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-536)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3789 (((-2 (|:| -2412 (-406 |#2| (-400 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4312 (((-838) $) 102)) (-2986 (($) 33 T CONST)) (-3382 (((-112) $ $) 109)) (-4192 (($ $) 72) (($ $ $) NIL)) (-4194 (($ $ $) 70)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 73))) -(((-477 |#1| |#2| |#3| |#4|) (-329 |#1| |#2| |#3| |#4|) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -477)) -NIL -(-329 |#1| |#2| |#3| |#4|) -((-2061 (((-536) (-620 (-536))) 30)) (-2058 ((|#1| (-620 |#1|)) 56)) (-2060 (((-620 |#1|) (-620 |#1|)) 57)) (-2059 (((-620 |#1|) (-620 |#1|)) 59)) (-3490 ((|#1| (-620 |#1|)) 58)) (-3145 (((-620 (-536)) (-620 |#1|)) 33))) -(((-478 |#1|) (-10 -7 (-15 -3490 (|#1| (-620 |#1|))) (-15 -2058 (|#1| (-620 |#1|))) (-15 -2059 ((-620 |#1|) (-620 |#1|))) (-15 -2060 ((-620 |#1|) (-620 |#1|))) (-15 -3145 ((-620 (-536)) (-620 |#1|))) (-15 -2061 ((-536) (-620 (-536))))) (-1205 (-536))) (T -478)) -((-2061 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-536)) (-5 *1 (-478 *4)) (-4 *4 (-1205 *2)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-1205 (-536))) (-5 *2 (-620 (-536))) (-5 *1 (-478 *4)))) (-2060 (*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1205 (-536))) (-5 *1 (-478 *3)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1205 (-536))) (-5 *1 (-478 *3)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1205 (-536))))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1205 (-536)))))) -(-10 -7 (-15 -3490 (|#1| (-620 |#1|))) (-15 -2058 (|#1| (-620 |#1|))) (-15 -2059 ((-620 |#1|) (-620 |#1|))) (-15 -2060 ((-620 |#1|) (-620 |#1|))) (-15 -3145 ((-620 (-536)) (-620 |#1|))) (-15 -2061 ((-536) (-620 (-536))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-536) $) NIL (|has| (-536) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-536) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-536) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-536) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-536) (-1012 (-536))))) (-3502 (((-536) $) NIL) (((-1147) $) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-536) (-1012 (-536)))) (((-536) $) NIL (|has| (-536) (-1012 (-536))))) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-536) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-536) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-536) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-536) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-536) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-536) (-1122)))) (-3533 (((-112) $) NIL (|has| (-536) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-536) (-825)))) (-4313 (($ (-1 (-536) (-536)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-536) (-1122)) CONST)) (-2062 (($ (-400 (-536))) 9)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-536) (-300))) (((-400 (-536)) $) NIL)) (-3460 (((-536) $) NIL (|has| (-536) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-536)) (-620 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-536) (-536)) NIL (|has| (-536) (-302 (-536)))) (($ $ (-286 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-286 (-536)))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-1147)) (-620 (-536))) NIL (|has| (-536) (-505 (-1147) (-536)))) (($ $ (-1147) (-536)) NIL (|has| (-536) (-505 (-1147) (-536))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-536)) NIL (|has| (-536) (-279 (-536) (-536))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-536) $) NIL)) (-4325 (((-864 (-536)) $) NIL (|has| (-536) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-536) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-536) (-596 (-525)))) (((-371) $) NIL (|has| (-536) (-994))) (((-219) $) NIL (|has| (-536) (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-536) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) 8) (($ (-536)) NIL) (($ (-1147)) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL) (((-978 16) $) 10)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-536) (-884))) (|has| (-536) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-536) $) NIL (|has| (-536) (-535)))) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| (-536) (-798)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-536) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-536) (-825)))) (-4303 (($ $ $) NIL) (($ (-536) (-536)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-536) $) NIL) (($ $ (-536)) NIL))) -(((-479) (-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 16) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -2062 ($ (-400 (-536))))))) (T -479)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-978 16)) (-5 *1 (-479)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479))))) -(-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -4312 ((-978 16) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -2062 ($ (-400 (-536)))))) -((-2506 (((-620 |#2|) $) 23)) (-3591 (((-112) |#2| $) 28)) (-2065 (((-112) (-1 (-112) |#2|) $) 21)) (-4122 (($ $ (-620 (-286 |#2|))) 13) (($ $ (-286 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-620 |#2|) (-620 |#2|)) NIL)) (-2064 (((-749) (-1 (-112) |#2|) $) 22) (((-749) |#2| $) 26)) (-4312 (((-838) $) 37)) (-2066 (((-112) (-1 (-112) |#2|) $) 20)) (-3382 (((-112) $ $) 31)) (-4311 (((-749) $) 17))) -(((-480 |#1| |#2|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -3591 ((-112) |#2| |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2506 ((-620 |#2|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|))) (-481 |#2|) (-1183)) (T -480)) -NIL -(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#2| |#2|)) (-15 -4122 (|#1| |#1| (-286 |#2|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#2|)))) (-15 -3591 ((-112) |#2| |#1|)) (-15 -2064 ((-749) |#2| |#1|)) (-15 -2506 ((-620 |#2|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#2|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-481 |#1|) (-138) (-1183)) (T -481)) -((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1183)))) (-2067 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4349)) (-4 *1 (-481 *3)) (-4 *3 (-1183)))) (-2066 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) (-4 *4 (-1183)) (-5 *2 (-112)))) (-2065 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) (-4 *4 (-1183)) (-5 *2 (-112)))) (-2064 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) (-4 *4 (-1183)) (-5 *2 (-749)))) (-2063 (*1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-5 *2 (-620 *3)))) (-2506 (*1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-5 *2 (-620 *3)))) (-2064 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-749)))) (-3591 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-595 (-838))) (-6 (-595 (-838))) |%noBranch|) (IF (|has| |t#1| (-1072)) (-6 (-1072)) |%noBranch|) (IF (|has| |t#1| (-1072)) (IF (|has| |t#1| (-302 |t#1|)) (-6 (-302 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4349)) (-15 -2067 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4348)) (PROGN (-15 -2066 ((-112) (-1 (-112) |t#1|) $)) (-15 -2065 ((-112) (-1 (-112) |t#1|) $)) (-15 -2064 ((-749) (-1 (-112) |t#1|) $)) (-15 -2063 ((-620 |t#1|) $)) (-15 -2506 ((-620 |t#1|) $)) (IF (|has| |t#1| (-1072)) (PROGN (-15 -2064 ((-749) |t#1| $)) (-15 -3591 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2068 (($ (-1129)) 8)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 14) (((-1129) $) 11)) (-3382 (((-112) $ $) 10))) -(((-482) (-13 (-1072) (-595 (-1129)) (-10 -8 (-15 -2068 ($ (-1129)))))) (T -482)) -((-2068 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-482))))) -(-13 (-1072) (-595 (-1129)) (-10 -8 (-15 -2068 ($ (-1129))))) -((-3841 (($ $) 15)) (-3839 (($ $) 24)) (-3843 (($ $) 12)) (-3844 (($ $) 10)) (-3842 (($ $) 17)) (-3840 (($ $) 22))) -(((-483 |#1|) (-10 -8 (-15 -3840 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|))) (-484)) (T -483)) -NIL -(-10 -8 (-15 -3840 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|))) -((-3841 (($ $) 11)) (-3839 (($ $) 10)) (-3843 (($ $) 9)) (-3844 (($ $) 8)) (-3842 (($ $) 7)) (-3840 (($ $) 6))) -(((-484) (-138)) (T -484)) -((-3841 (*1 *1 *1) (-4 *1 (-484))) (-3839 (*1 *1 *1) (-4 *1 (-484))) (-3843 (*1 *1 *1) (-4 *1 (-484))) (-3844 (*1 *1 *1) (-4 *1 (-484))) (-3842 (*1 *1 *1) (-4 *1 (-484))) (-3840 (*1 *1 *1) (-4 *1 (-484)))) -(-13 (-10 -8 (-15 -3840 ($ $)) (-15 -3842 ($ $)) (-15 -3844 ($ $)) (-15 -3843 ($ $)) (-15 -3839 ($ $)) (-15 -3841 ($ $)))) -((-4087 (((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)) 42))) -(((-485 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)))) (-356) (-1205 |#1|) (-13 (-356) (-145) (-703 |#1| |#2|)) (-1205 |#3|)) (T -485)) -((-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-4 *7 (-13 (-356) (-145) (-703 *5 *6))) (-5 *2 (-398 *3)) (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1205 *7))))) -(-10 -7 (-15 -4087 ((-398 |#4|) |#4| (-1 (-398 |#2|) |#2|)))) -((-2893 (((-112) $ $) NIL)) (-1662 (((-620 $) (-1141 $) (-1147)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-920 $)) NIL)) (-1263 (($ (-1141 $) (-1147)) NIL) (($ (-1141 $)) NIL) (($ (-920 $)) NIL)) (-3534 (((-112) $) 39)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-2069 (((-112) $ $) 64)) (-1655 (((-620 (-593 $)) $) 48)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1659 (($ $ (-286 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-1264 (((-620 $) (-1141 $) (-1147)) NIL) (((-620 $) (-1141 $)) NIL) (((-620 $) (-920 $)) NIL)) (-3529 (($ (-1141 $) (-1147)) NIL) (($ (-1141 $)) NIL) (($ (-920 $)) NIL)) (-3503 (((-3 (-593 $) #1="failed") $) NIL) (((-3 (-536) #1#) $) NIL) (((-3 (-400 (-536)) #1#) $) NIL)) (-3502 (((-593 $) $) NIL) (((-536) $) NIL) (((-400 (-536)) $) 50)) (-2889 (($ $ $) NIL)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-400 (-536)))) (|:| |vec| (-1229 (-400 (-536))))) (-667 $) (-1229 $)) NIL) (((-667 (-400 (-536))) (-667 $)) NIL)) (-4197 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2898 (($ $) NIL) (($ (-620 $)) NIL)) (-1654 (((-620 (-113)) $) NIL)) (-3375 (((-113) (-113)) NIL)) (-2497 (((-112) $) 42)) (-3001 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-3326 (((-1096 (-536) (-593 $)) $) 37)) (-3339 (($ $ (-536)) NIL)) (-3462 (((-1141 $) (-1141 $) (-593 $)) 78) (((-1141 $) (-1141 $) (-620 (-593 $))) 55) (($ $ (-593 $)) 67) (($ $ (-620 (-593 $))) 68)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-1652 (((-1141 $) (-593 $)) 65 (|has| $ (-1023)))) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 $ $) (-593 $)) NIL)) (-1657 (((-3 (-593 $) "failed") $) NIL)) (-2008 (($ (-620 $)) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-1656 (((-620 (-593 $)) $) NIL)) (-2312 (($ (-113) $) NIL) (($ (-113) (-620 $)) NIL)) (-2959 (((-112) $ (-113)) NIL) (((-112) $ (-1147)) NIL)) (-2729 (($ $) NIL)) (-2928 (((-749) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ (-620 $)) NIL) (($ $ $) NIL)) (-1653 (((-112) $ $) NIL) (((-112) $ (-1147)) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL (|has| $ (-1012 (-536))))) (-4122 (($ $ (-593 $) $) NIL) (($ $ (-620 (-593 $)) (-620 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-1147)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-1147) (-1 $ (-620 $))) NIL) (($ $ (-1147) (-1 $ $)) NIL) (($ $ (-620 (-113)) (-620 (-1 $ $))) NIL) (($ $ (-620 (-113)) (-620 (-1 $ (-620 $)))) NIL) (($ $ (-113) (-1 $ (-620 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1699 (((-749) $) NIL)) (-4154 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-620 $)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1658 (($ $) NIL) (($ $ $) NIL)) (-4165 (($ $ (-749)) NIL) (($ $) 36)) (-3325 (((-1096 (-536) (-593 $)) $) 20)) (-3531 (($ $) NIL (|has| $ (-1023)))) (-4325 (((-371) $) 92) (((-219) $) 100) (((-166 (-371)) $) 108)) (-4312 (((-838) $) NIL) (($ (-593 $)) NIL) (($ (-400 (-536))) NIL) (($ $) NIL) (($ (-536)) NIL) (($ (-1096 (-536) (-593 $))) 21)) (-3456 (((-749)) NIL)) (-2915 (($ $) NIL) (($ (-620 $)) NIL)) (-2333 (((-112) (-113)) 84)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 10 T CONST)) (-2992 (($) 22 T CONST)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 24)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4303 (($ $ $) 44)) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-400 (-536))) NIL) (($ $ (-536)) 46) (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL) (($ $ $) 27) (($ (-536) $) NIL) (($ (-749) $) NIL) (($ (-893) $) NIL))) -(((-486) (-13 (-291) (-27) (-1012 (-536)) (-1012 (-400 (-536))) (-619 (-536)) (-994) (-619 (-400 (-536))) (-145) (-596 (-166 (-371))) (-227) (-10 -8 (-15 -4312 ($ (-1096 (-536) (-593 $)))) (-15 -3326 ((-1096 (-536) (-593 $)) $)) (-15 -3325 ((-1096 (-536) (-593 $)) $)) (-15 -4197 ($ $)) (-15 -2069 ((-112) $ $)) (-15 -3462 ((-1141 $) (-1141 $) (-593 $))) (-15 -3462 ((-1141 $) (-1141 $) (-620 (-593 $)))) (-15 -3462 ($ $ (-593 $))) (-15 -3462 ($ $ (-620 (-593 $))))))) (T -486)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) (-3326 (*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) (-4197 (*1 *1 *1) (-5 *1 (-486))) (-2069 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-593 (-486))) (-5 *1 (-486)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-620 (-593 (-486)))) (-5 *1 (-486)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-593 (-486))) (-5 *1 (-486)))) (-3462 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-593 (-486)))) (-5 *1 (-486))))) -(-13 (-291) (-27) (-1012 (-536)) (-1012 (-400 (-536))) (-619 (-536)) (-994) (-619 (-400 (-536))) (-145) (-596 (-166 (-371))) (-227) (-10 -8 (-15 -4312 ($ (-1096 (-536) (-593 $)))) (-15 -3326 ((-1096 (-536) (-593 $)) $)) (-15 -3325 ((-1096 (-536) (-593 $)) $)) (-15 -4197 ($ $)) (-15 -2069 ((-112) $ $)) (-15 -3462 ((-1141 $) (-1141 $) (-593 $))) (-15 -3462 ((-1141 $) (-1141 $) (-620 (-593 $)))) (-15 -3462 ($ $ (-593 $))) (-15 -3462 ($ $ (-620 (-593 $)))))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) 25 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 22 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 21)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 14)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 12 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) 23 (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) 10 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 13)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) 24) (($ $ (-1196 (-536))) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) 9 (|has| $ (-6 -4348))))) -(((-487 |#1| |#2|) (-19 |#1|) (-1183) (-536)) (T -487)) +((-4131 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-812 (-895))))) (-1887 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-751)))) (-1886 (*1 *1 *1) (-4 *1 (-397))) (-1886 (*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-751))))) +(-13 (-358) (-143) (-10 -8 (-15 -4131 ((-812 (-895)) $)) (-15 -1887 ((-3 (-751) "failed") $ $)) (-15 -1886 ($ $)) (-15 -1886 ($ $ (-751))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-143) . T) ((-597 (-840)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T)) +((-3605 (($ (-538) (-538)) 11) (($ (-538) (-538) (-895)) NIL)) (-2944 (((-895)) 16) (((-895) (-895)) NIL))) +(((-398 |#1|) (-10 -8 (-15 -2944 ((-895) (-895))) (-15 -2944 ((-895))) (-15 -3605 (|#1| (-538) (-538) (-895))) (-15 -3605 (|#1| (-538) (-538)))) (-399)) (T -398)) +((-2944 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-398 *3)) (-4 *3 (-399))))) +(-10 -8 (-15 -2944 ((-895) (-895))) (-15 -2944 ((-895))) (-15 -3605 (|#1| (-538) (-538) (-895))) (-15 -3605 (|#1| (-538) (-538)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3464 (((-538) $) 86)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-4130 (($ $) 84)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-3370 (($ $) 94)) (-1705 (((-112) $ $) 57)) (-3986 (((-538) $) 111)) (-3896 (($) 17 T CONST)) (-3462 (($ $) 83)) (-3508 (((-3 (-538) #1="failed") $) 99) (((-3 (-402 (-538)) #1#) $) 96)) (-3507 (((-538) $) 98) (((-402 (-538)) $) 95)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-2466 (((-895)) 127) (((-895) (-895)) 124 (|has| $ (-6 -4344)))) (-3537 (((-112) $) 109)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 90)) (-4131 (((-538) $) 133)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 93)) (-3467 (($ $) 89)) (-3538 (((-112) $) 110)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 50)) (-3677 (($ $ $) 108) (($) 121 (-12 (-3676 (|has| $ (-6 -4344))) (-3676 (|has| $ (-6 -4336)))))) (-3678 (($ $ $) 107) (($) 120 (-12 (-3676 (|has| $ (-6 -4344))) (-3676 (|has| $ (-6 -4336)))))) (-2467 (((-538) $) 130)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-1889 (((-895) (-538)) 123 (|has| $ (-6 -4344)))) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3463 (($ $) 85)) (-3465 (($ $) 87)) (-3605 (($ (-538) (-538)) 135) (($ (-538) (-538) (-895)) 134)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-2493 (((-538) $) 131)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-2944 (((-895)) 128) (((-895) (-895)) 125 (|has| $ (-6 -4344)))) (-1888 (((-895) (-538)) 122 (|has| $ (-6 -4344)))) (-4330 (((-373) $) 102) (((-221) $) 101) (((-866 (-373)) $) 91)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ (-538)) 100) (($ (-402 (-538))) 97)) (-3461 (((-751)) 28)) (-3466 (($ $) 88)) (-1890 (((-895)) 129) (((-895) (-895)) 126 (|has| $ (-6 -4344)))) (-3027 (((-895)) 132)) (-2177 (((-112) $ $) 37)) (-3742 (($ $) 112)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 105)) (-2897 (((-112) $ $) 104)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 106)) (-3018 (((-112) $ $) 103)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66) (($ $ (-402 (-538))) 92)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64))) +(((-399) (-138)) (T -399)) +((-3605 (*1 *1 *2 *2) (-12 (-5 *2 (-538)) (-4 *1 (-399)))) (-3605 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-895)) (-4 *1 (-399)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538)))) (-3027 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) (-2493 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538)))) (-1890 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) (-2944 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) (-2466 (*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) (-1890 (*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-2944 (*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-538)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-895)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-538)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-895)))) (-3677 (*1 *1) (-12 (-4 *1 (-399)) (-3676 (|has| *1 (-6 -4344))) (-3676 (|has| *1 (-6 -4336))))) (-3678 (*1 *1) (-12 (-4 *1 (-399)) (-3676 (|has| *1 (-6 -4344))) (-3676 (|has| *1 (-6 -4336)))))) +(-13 (-1034) (-10 -8 (-6 -4129) (-15 -3605 ($ (-538) (-538))) (-15 -3605 ($ (-538) (-538) (-895))) (-15 -4131 ((-538) $)) (-15 -3027 ((-895))) (-15 -2493 ((-538) $)) (-15 -2467 ((-538) $)) (-15 -1890 ((-895))) (-15 -2944 ((-895))) (-15 -2466 ((-895))) (IF (|has| $ (-6 -4344)) (PROGN (-15 -1890 ((-895) (-895))) (-15 -2944 ((-895) (-895))) (-15 -2466 ((-895) (-895))) (-15 -1889 ((-895) (-538))) (-15 -1888 ((-895) (-538)))) |%noBranch|) (IF (|has| $ (-6 -4336)) |%noBranch| (IF (|has| $ (-6 -4344)) |%noBranch| (PROGN (-15 -3677 ($)) (-15 -3678 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-840)) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-373)) . T) ((-598 (-866 (-373))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-825) . T) ((-827) . T) ((-862 (-373)) . T) ((-897) . T) ((-978) . T) ((-996) . T) ((-1034) . T) ((-1014 (-402 (-538))) . T) ((-1014 (-538)) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 42)) (-1891 (($ $) 57)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 146)) (-2178 (($ $) NIL)) (-2176 (((-112) $) 36)) (-1892 ((|#1| $) 13)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-1190)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-1190)))) (-1894 (($ |#1| (-538)) 31)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 116)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 55)) (-3821 (((-3 $ "failed") $) 131)) (-3357 (((-3 (-402 (-538)) "failed") $) 63 (|has| |#1| (-537)))) (-3356 (((-112) $) 59 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 70 (|has| |#1| (-537)))) (-1895 (($ |#1| (-538)) 33)) (-4086 (((-112) $) 152 (|has| |#1| (-1190)))) (-2502 (((-112) $) 43)) (-1956 (((-751) $) 38)) (-1896 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-538)) 137)) (-2768 ((|#1| $ (-538)) 136)) (-1897 (((-538) $ (-538)) 135)) (-1899 (($ |#1| (-538)) 30)) (-4318 (($ (-1 |#1| |#1|) $) 143)) (-1953 (($ |#1| (-622 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-538))))) 58)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-1898 (($ |#1| (-538)) 32)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) 147 (|has| |#1| (-446)))) (-1893 (($ |#1| (-538) (-3 #2# #3# #4# #5#)) 29)) (-2767 (((-622 (-2 (|:| -4092 |#1|) (|:| -2493 (-538)))) $) 54)) (-2075 (((-622 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-538)))) $) 12)) (-4092 (((-400 $) $) NIL (|has| |#1| (-1190)))) (-3820 (((-3 $ "failed") $ $) 138)) (-2493 (((-538) $) 132)) (-4323 ((|#1| $) 56)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) 79 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 85 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) $) NIL (|has| |#1| (-507 (-1149) $))) (($ $ (-622 (-1149)) (-622 $)) 86 (|has| |#1| (-507 (-1149) $))) (($ $ (-622 (-288 $))) 82 (|has| |#1| (-304 $))) (($ $ (-288 $)) NIL (|has| |#1| (-304 $))) (($ $ $ $) NIL (|has| |#1| (-304 $))) (($ $ (-622 $) (-622 $)) NIL (|has| |#1| (-304 $)))) (-4159 (($ $ |#1|) 71 (|has| |#1| (-281 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-281 $ $)))) (-4170 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-4330 (((-527) $) 27 (|has| |#1| (-598 (-527)))) (((-373) $) 92 (|has| |#1| (-996))) (((-221) $) 95 (|has| |#1| (-996)))) (-4317 (((-840) $) 114) (($ (-538)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538)))))) (-3461 (((-751)) 48)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 40 T CONST)) (-2997 (($) 39 T CONST)) (-3002 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3387 (((-112) $ $) 96)) (-4197 (($ $) 128) (($ $ $) NIL)) (-4199 (($ $ $) 140)) (** (($ $ (-895)) NIL) (($ $ (-751)) 102)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL))) +(((-400 |#1|) (-13 (-545) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-407 |#1|) (-10 -8 (-15 -4323 (|#1| $)) (-15 -2493 ((-538) $)) (-15 -1953 ($ |#1| (-622 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-538)))))) (-15 -2075 ((-622 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-538)))) $)) (-15 -1899 ($ |#1| (-538))) (-15 -2767 ((-622 (-2 (|:| -4092 |#1|) (|:| -2493 (-538)))) $)) (-15 -1898 ($ |#1| (-538))) (-15 -1897 ((-538) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -1896 ((-3 #1# #2# #3# #4#) $ (-538))) (-15 -1956 ((-751) $)) (-15 -1895 ($ |#1| (-538))) (-15 -1894 ($ |#1| (-538))) (-15 -1893 ($ |#1| (-538) (-3 #1# #2# #3# #4#))) (-15 -1892 (|#1| $)) (-15 -1891 ($ $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-996)) (-6 (-996)) |%noBranch|) (IF (|has| |#1| (-1190)) (-6 (-1190)) |%noBranch|) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-507 (-1149) $)) (-6 (-507 (-1149) $)) |%noBranch|))) (-545)) (T -400)) +((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-545)) (-5 *1 (-400 *3)))) (-4323 (*1 *2 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-2493 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-400 *3)) (-4 *3 (-545)))) (-1953 (*1 *1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-538))))) (-4 *2 (-545)) (-5 *1 (-400 *2)))) (-2075 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-538))))) (-5 *1 (-400 *3)) (-4 *3 (-545)))) (-1899 (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| -4092 *3) (|:| -2493 (-538))))) (-5 *1 (-400 *3)) (-4 *3 (-545)))) (-1898 (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1897 (*1 *2 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-400 *3)) (-4 *3 (-545)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1896 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-400 *4)) (-4 *4 (-545)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-400 *3)) (-4 *3 (-545)))) (-1895 (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1894 (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1893 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-538)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1892 (*1 *2 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-1891 (*1 *1 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-400 *3)) (-4 *3 (-537)) (-4 *3 (-545)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-400 *3)) (-4 *3 (-537)) (-4 *3 (-545)))) (-3357 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-400 *3)) (-4 *3 (-537)) (-4 *3 (-545))))) +(-13 (-545) (-227 |#1|) (-38 |#1|) (-333 |#1|) (-407 |#1|) (-10 -8 (-15 -4323 (|#1| $)) (-15 -2493 ((-538) $)) (-15 -1953 ($ |#1| (-622 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-538)))))) (-15 -2075 ((-622 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-538)))) $)) (-15 -1899 ($ |#1| (-538))) (-15 -2767 ((-622 (-2 (|:| -4092 |#1|) (|:| -2493 (-538)))) $)) (-15 -1898 ($ |#1| (-538))) (-15 -1897 ((-538) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -1896 ((-3 #1# #2# #3# #4#) $ (-538))) (-15 -1956 ((-751) $)) (-15 -1895 ($ |#1| (-538))) (-15 -1894 ($ |#1| (-538))) (-15 -1893 ($ |#1| (-538) (-3 #1# #2# #3# #4#))) (-15 -1892 (|#1| $)) (-15 -1891 ($ $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-446)) (-6 (-446)) |%noBranch|) (IF (|has| |#1| (-996)) (-6 (-996)) |%noBranch|) (IF (|has| |#1| (-1190)) (-6 (-1190)) |%noBranch|) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-281 $ $)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |#1| (-304 $)) (-6 (-304 $)) |%noBranch|) (IF (|has| |#1| (-507 (-1149) $)) (-6 (-507 (-1149) $)) |%noBranch|))) +((-4318 (((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)) 20))) +(((-401 |#1| |#2|) (-10 -7 (-15 -4318 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) (-545) (-545)) (T -401)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6))))) +(-10 -7 (-15 -4318 ((-400 |#2|) (-1 |#2| |#1|) (-400 |#1|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 13)) (-3464 ((|#1| $) 21 (|has| |#1| (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| |#1| (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) 17) (((-3 (-1149) #2#) $) NIL (|has| |#1| (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) 70 (|has| |#1| (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538))))) (-3507 ((|#1| $) 15) (((-1149) $) NIL (|has| |#1| (-1014 (-1149)))) (((-402 (-538)) $) 67 (|has| |#1| (-1014 (-538)))) (((-538) $) NIL (|has| |#1| (-1014 (-538))))) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) 50)) (-3327 (($) NIL (|has| |#1| (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| |#1| (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| |#1| (-862 (-373))))) (-2502 (((-112) $) 64)) (-3329 (($ $) NIL)) (-3331 ((|#1| $) 71)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3538 (((-112) $) NIL (|has| |#1| (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| |#1| (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 97)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| |#1| (-302)))) (-3465 ((|#1| $) 28 (|has| |#1| (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 135 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 131 (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-1704 (((-751) $) NIL)) (-4159 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3328 (($ $) NIL)) (-3330 ((|#1| $) 73)) (-4330 (((-866 (-538)) $) NIL (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| |#1| (-598 (-866 (-373))))) (((-527) $) NIL (|has| |#1| (-598 (-527)))) (((-373) $) NIL (|has| |#1| (-996))) (((-221) $) NIL (|has| |#1| (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 115 (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 10) (($ (-1149)) NIL (|has| |#1| (-1014 (-1149))))) (-3035 (((-3 $ #1#) $) 99 (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 100)) (-3466 ((|#1| $) 26 (|has| |#1| (-537)))) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| |#1| (-800)))) (-2991 (($) 22 T CONST)) (-2997 (($) 8 T CONST)) (-2834 (((-1131) $) 43 (-12 (|has| |#1| (-537)) (|has| |#1| (-801)))) (((-1131) $ (-112)) 44 (-12 (|has| |#1| (-537)) (|has| |#1| (-801)))) (((-1237) (-803) $) 45 (-12 (|has| |#1| (-537)) (|has| |#1| (-801)))) (((-1237) (-803) $ (-112)) 46 (-12 (|has| |#1| (-537)) (|has| |#1| (-801))))) (-3002 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 56)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) 24 (|has| |#1| (-827)))) (-4308 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4197 (($ $) 25) (($ $ $) 55)) (-4199 (($ $ $) 53)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 125)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 60) (($ $ $) 57) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85))) +(((-402 |#1|) (-13 (-967 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4351)) (-6 -4340) |%noBranch|) |%noBranch|) |%noBranch|))) (-545)) (T -402)) +NIL +(-13 (-967 |#1|) (-10 -7 (IF (|has| |#1| (-537)) (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4340)) (IF (|has| |#1| (-446)) (IF (|has| |#1| (-6 -4351)) (-6 -4340) |%noBranch|) |%noBranch|) |%noBranch|))) +((-4318 (((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)) 13))) +(((-403 |#1| |#2|) (-10 -7 (-15 -4318 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) (-545) (-545)) (T -403)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-5 *2 (-402 *6)) (-5 *1 (-403 *5 *6))))) +(-10 -7 (-15 -4318 ((-402 |#2|) (-1 |#2| |#1|) (-402 |#1|)))) +((-1901 (((-669 |#2|) (-1231 $)) NIL) (((-669 |#2|)) 18)) (-1911 (($ (-1231 |#2|) (-1231 $)) NIL) (($ (-1231 |#2|)) 24)) (-1900 (((-669 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) $) 38)) (-2130 ((|#3| $) 60)) (-4117 ((|#2| (-1231 $)) NIL) ((|#2|) 20)) (-3575 (((-1231 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) (-1231 $) (-1231 $)) NIL) (((-1231 |#2|) $) 22) (((-669 |#2|) (-1231 $)) 36)) (-4330 (((-1231 |#2|) $) 11) (($ (-1231 |#2|)) 13)) (-2698 ((|#3| $) 52))) +(((-404 |#1| |#2| |#3|) (-10 -8 (-15 -1900 ((-669 |#2|) |#1|)) (-15 -4117 (|#2|)) (-15 -1901 ((-669 |#2|))) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -2130 (|#3| |#1|)) (-15 -2698 (|#3| |#1|)) (-15 -1901 ((-669 |#2|) (-1231 |#1|))) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1900 ((-669 |#2|) |#1| (-1231 |#1|)))) (-405 |#2| |#3|) (-170) (-1207 |#2|)) (T -404)) +((-1901 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)) (-5 *1 (-404 *3 *4 *5)) (-4 *3 (-405 *4 *5)))) (-4117 (*1 *2) (-12 (-4 *4 (-1207 *2)) (-4 *2 (-170)) (-5 *1 (-404 *3 *2 *4)) (-4 *3 (-405 *2 *4))))) +(-10 -8 (-15 -1900 ((-669 |#2|) |#1|)) (-15 -4117 (|#2|)) (-15 -1901 ((-669 |#2|))) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -2130 (|#3| |#1|)) (-15 -2698 (|#3| |#1|)) (-15 -1901 ((-669 |#2|) (-1231 |#1|))) (-15 -4117 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1900 ((-669 |#2|) |#1| (-1231 |#1|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1901 (((-669 |#1|) (-1231 $)) 44) (((-669 |#1|)) 59)) (-3689 ((|#1| $) 50)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-1911 (($ (-1231 |#1|) (-1231 $)) 46) (($ (-1231 |#1|)) 62)) (-1900 (((-669 |#1|) $ (-1231 $)) 51) (((-669 |#1|) $) 57)) (-3821 (((-3 $ "failed") $) 32)) (-3444 (((-895)) 52)) (-2502 (((-112) $) 30)) (-3467 ((|#1| $) 49)) (-2130 ((|#2| $) 42 (|has| |#1| (-358)))) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4117 ((|#1| (-1231 $)) 45) ((|#1|) 58)) (-3575 (((-1231 |#1|) $ (-1231 $)) 48) (((-669 |#1|) (-1231 $) (-1231 $)) 47) (((-1231 |#1|) $) 64) (((-669 |#1|) (-1231 $)) 63)) (-4330 (((-1231 |#1|) $) 61) (($ (-1231 |#1|)) 60)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35)) (-3035 (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2698 ((|#2| $) 43)) (-3461 (((-751)) 28)) (-2128 (((-1231 $)) 65)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-405 |#1| |#2|) (-138) (-170) (-1207 |t#1|)) (T -405)) +((-2128 (*1 *2) (-12 (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-1231 *1)) (-4 *1 (-405 *3 *4)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-1231 *3)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-405 *4 *5)) (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4)) (-4 *4 (-1207 *3)))) (-4330 (*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-1231 *3)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4)) (-4 *4 (-1207 *3)))) (-1901 (*1 *2) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-669 *3)))) (-4117 (*1 *2) (-12 (-4 *1 (-405 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-669 *3))))) +(-13 (-365 |t#1| |t#2|) (-10 -8 (-15 -2128 ((-1231 $))) (-15 -3575 ((-1231 |t#1|) $)) (-15 -3575 ((-669 |t#1|) (-1231 $))) (-15 -1911 ($ (-1231 |t#1|))) (-15 -4330 ((-1231 |t#1|) $)) (-15 -4330 ($ (-1231 |t#1|))) (-15 -1901 ((-669 |t#1|))) (-15 -4117 (|t#1|)) (-15 -1900 ((-669 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-365 |#1| |#2|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-3508 (((-3 |#2| #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) 27) (((-3 (-538) #1#) $) 19)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) 24) (((-538) $) 14)) (-4317 (($ |#2|) NIL) (($ (-402 (-538))) 22) (($ (-538)) 11))) +(((-406 |#1| |#2|) (-10 -8 (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|))) (-407 |#2|) (-1185)) (T -406)) +NIL +(-10 -8 (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|))) +((-3508 (((-3 |#1| #1="failed") $) 7) (((-3 (-402 (-538)) #1#) $) 16 (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #1#) $) 13 (|has| |#1| (-1014 (-538))))) (-3507 ((|#1| $) 8) (((-402 (-538)) $) 15 (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) 12 (|has| |#1| (-1014 (-538))))) (-4317 (($ |#1|) 6) (($ (-402 (-538))) 17 (|has| |#1| (-1014 (-402 (-538))))) (($ (-538)) 14 (|has| |#1| (-1014 (-538)))))) +(((-407 |#1|) (-138) (-1185)) (T -407)) +NIL +(-13 (-1014 |t#1|) (-10 -7 (IF (|has| |t#1| (-1014 (-538))) (-6 (-1014 (-538))) |%noBranch|) (IF (|has| |t#1| (-1014 (-402 (-538)))) (-6 (-1014 (-402 (-538)))) |%noBranch|))) +(((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T)) +((-2898 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-1902 ((|#4| (-751) (-1231 |#4|)) 56)) (-2502 (((-112) $) NIL)) (-3331 (((-1231 |#4|) $) 17)) (-3467 ((|#2| $) 54)) (-1903 (($ $) 139)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 100)) (-2092 (($ (-1231 |#4|)) 99)) (-3594 (((-1093) $) NIL)) (-3330 ((|#1| $) 18)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) 134)) (-2128 (((-1231 |#4|) $) 129)) (-2997 (($) 11 T CONST)) (-3387 (((-112) $ $) 40)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 122)) (* (($ $ $) 121))) +(((-408 |#1| |#2| |#3| |#4|) (-13 (-467) (-10 -8 (-15 -2092 ($ (-1231 |#4|))) (-15 -2128 ((-1231 |#4|) $)) (-15 -3467 (|#2| $)) (-15 -3331 ((-1231 |#4|) $)) (-15 -3330 (|#1| $)) (-15 -1903 ($ $)) (-15 -1902 (|#4| (-751) (-1231 |#4|))))) (-302) (-967 |#1|) (-1207 |#2|) (-13 (-405 |#2| |#3|) (-1014 |#2|))) (T -408)) +((-2092 (*1 *1 *2) (-12 (-5 *2 (-1231 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4))) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-4 *3 (-302)) (-5 *1 (-408 *3 *4 *5 *6)))) (-2128 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4))))) (-3467 (*1 *2 *1) (-12 (-4 *4 (-1207 *2)) (-4 *2 (-967 *3)) (-5 *1 (-408 *3 *2 *4 *5)) (-4 *3 (-302)) (-4 *5 (-13 (-405 *2 *4) (-1014 *2))))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6)) (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4))))) (-3330 (*1 *2 *1) (-12 (-4 *3 (-967 *2)) (-4 *4 (-1207 *3)) (-4 *2 (-302)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1014 *3))))) (-1903 (*1 *1 *1) (-12 (-4 *2 (-302)) (-4 *3 (-967 *2)) (-4 *4 (-1207 *3)) (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1014 *3))))) (-1902 (*1 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-1231 *2)) (-4 *5 (-302)) (-4 *6 (-967 *5)) (-4 *2 (-13 (-405 *6 *7) (-1014 *6))) (-5 *1 (-408 *5 *6 *7 *2)) (-4 *7 (-1207 *6))))) +(-13 (-467) (-10 -8 (-15 -2092 ($ (-1231 |#4|))) (-15 -2128 ((-1231 |#4|) $)) (-15 -3467 (|#2| $)) (-15 -3331 ((-1231 |#4|) $)) (-15 -3330 (|#1| $)) (-15 -1903 ($ $)) (-15 -1902 (|#4| (-751) (-1231 |#4|))))) +((-4318 (((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)) 33))) +(((-409 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4318 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)))) (-302) (-967 |#1|) (-1207 |#2|) (-13 (-405 |#2| |#3|) (-1014 |#2|)) (-302) (-967 |#5|) (-1207 |#6|) (-13 (-405 |#6| |#7|) (-1014 |#6|))) (T -409)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302)) (-4 *6 (-967 *5)) (-4 *7 (-1207 *6)) (-4 *8 (-13 (-405 *6 *7) (-1014 *6))) (-4 *9 (-302)) (-4 *10 (-967 *9)) (-4 *11 (-1207 *10)) (-5 *2 (-408 *9 *10 *11 *12)) (-5 *1 (-409 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-405 *10 *11) (-1014 *10)))))) +(-10 -7 (-15 -4318 ((-408 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-408 |#1| |#2| |#3| |#4|)))) +((-2898 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3467 ((|#2| $) 61)) (-1904 (($ (-1231 |#4|)) 25) (($ (-408 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-1014 |#2|)))) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 34)) (-2128 (((-1231 |#4|) $) 26)) (-2997 (($) 23 T CONST)) (-3387 (((-112) $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ $ $) 72))) +(((-410 |#1| |#2| |#3| |#4| |#5|) (-13 (-707) (-10 -8 (-15 -2128 ((-1231 |#4|) $)) (-15 -3467 (|#2| $)) (-15 -1904 ($ (-1231 |#4|))) (IF (|has| |#4| (-1014 |#2|)) (-15 -1904 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-302) (-967 |#1|) (-1207 |#2|) (-405 |#2| |#3|) (-1231 |#4|)) (T -410)) +((-2128 (*1 *2 *1) (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6)) (-5 *1 (-410 *3 *4 *5 *6 *7)) (-4 *6 (-405 *4 *5)) (-14 *7 *2))) (-3467 (*1 *2 *1) (-12 (-4 *4 (-1207 *2)) (-4 *2 (-967 *3)) (-5 *1 (-410 *3 *2 *4 *5 *6)) (-4 *3 (-302)) (-4 *5 (-405 *2 *4)) (-14 *6 (-1231 *5)))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-1231 *6)) (-4 *6 (-405 *4 *5)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-4 *3 (-302)) (-5 *1 (-410 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1014 *4)) (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-4 *6 (-405 *4 *5)) (-14 *7 (-1231 *6)) (-5 *1 (-410 *3 *4 *5 *6 *7))))) +(-13 (-707) (-10 -8 (-15 -2128 ((-1231 |#4|) $)) (-15 -3467 (|#2| $)) (-15 -1904 ($ (-1231 |#4|))) (IF (|has| |#4| (-1014 |#2|)) (-15 -1904 ($ (-408 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-4318 ((|#3| (-1 |#4| |#2|) |#1|) 26))) +(((-411 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|))) (-413 |#2|) (-170) (-413 |#4|) (-170)) (T -411)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-413 *6)) (-5 *1 (-411 *4 *5 *2 *6)) (-4 *4 (-413 *5))))) +(-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|))) +((-1892 (((-3 $ #1="failed")) 86)) (-3574 (((-1231 (-669 |#2|)) (-1231 $)) NIL) (((-1231 (-669 |#2|))) 91)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) 85)) (-1819 (((-3 $ #1#)) 84)) (-1907 (((-669 |#2|) (-1231 $)) NIL) (((-669 |#2|)) 102)) (-1905 (((-669 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) $) 110)) (-2022 (((-1143 (-922 |#2|))) 55)) (-1909 ((|#2| (-1231 $)) NIL) ((|#2|) 106)) (-1911 (($ (-1231 |#2|) (-1231 $)) NIL) (($ (-1231 |#2|)) 112)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) 83)) (-1820 (((-3 $ #1#)) 75)) (-1908 (((-669 |#2|) (-1231 $)) NIL) (((-669 |#2|)) 100)) (-1906 (((-669 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) $) 108)) (-2026 (((-1143 (-922 |#2|))) 54)) (-1910 ((|#2| (-1231 $)) NIL) ((|#2|) 104)) (-3575 (((-1231 |#2|) $ (-1231 $)) NIL) (((-669 |#2|) (-1231 $) (-1231 $)) NIL) (((-1231 |#2|) $) 111) (((-669 |#2|) (-1231 $)) 118)) (-4330 (((-1231 |#2|) $) 96) (($ (-1231 |#2|)) 98)) (-2014 (((-622 (-922 |#2|)) (-1231 $)) NIL) (((-622 (-922 |#2|))) 94)) (-2880 (($ (-669 |#2|) $) 90))) +(((-412 |#1| |#2|) (-10 -8 (-15 -2880 (|#1| (-669 |#2|) |#1|)) (-15 -2022 ((-1143 (-922 |#2|)))) (-15 -2026 ((-1143 (-922 |#2|)))) (-15 -1905 ((-669 |#2|) |#1|)) (-15 -1906 ((-669 |#2|) |#1|)) (-15 -1907 ((-669 |#2|))) (-15 -1908 ((-669 |#2|))) (-15 -1909 (|#2|)) (-15 -1910 (|#2|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -2014 ((-622 (-922 |#2|)))) (-15 -3574 ((-1231 (-669 |#2|)))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -1892 ((-3 |#1| #1="failed"))) (-15 -1819 ((-3 |#1| #1#))) (-15 -1820 ((-3 |#1| #1#))) (-15 -2028 ((-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) #1#))) (-15 -2029 ((-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) #1#))) (-15 -1907 ((-669 |#2|) (-1231 |#1|))) (-15 -1908 ((-669 |#2|) (-1231 |#1|))) (-15 -1909 (|#2| (-1231 |#1|))) (-15 -1910 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1905 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -1906 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -3574 ((-1231 (-669 |#2|)) (-1231 |#1|))) (-15 -2014 ((-622 (-922 |#2|)) (-1231 |#1|)))) (-413 |#2|) (-170)) (T -412)) +((-3574 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1231 (-669 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-2014 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-622 (-922 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-1910 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2)))) (-1909 (*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2)))) (-1908 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-1907 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-2026 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1143 (-922 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4)))) (-2022 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-1143 (-922 *4))) (-5 *1 (-412 *3 *4)) (-4 *3 (-413 *4))))) +(-10 -8 (-15 -2880 (|#1| (-669 |#2|) |#1|)) (-15 -2022 ((-1143 (-922 |#2|)))) (-15 -2026 ((-1143 (-922 |#2|)))) (-15 -1905 ((-669 |#2|) |#1|)) (-15 -1906 ((-669 |#2|) |#1|)) (-15 -1907 ((-669 |#2|))) (-15 -1908 ((-669 |#2|))) (-15 -1909 (|#2|)) (-15 -1910 (|#2|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -1911 (|#1| (-1231 |#2|))) (-15 -2014 ((-622 (-922 |#2|)))) (-15 -3574 ((-1231 (-669 |#2|)))) (-15 -3575 ((-669 |#2|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1|)) (-15 -1892 ((-3 |#1| #1="failed"))) (-15 -1819 ((-3 |#1| #1#))) (-15 -1820 ((-3 |#1| #1#))) (-15 -2028 ((-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) #1#))) (-15 -2029 ((-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) #1#))) (-15 -1907 ((-669 |#2|) (-1231 |#1|))) (-15 -1908 ((-669 |#2|) (-1231 |#1|))) (-15 -1909 (|#2| (-1231 |#1|))) (-15 -1910 (|#2| (-1231 |#1|))) (-15 -1911 (|#1| (-1231 |#2|) (-1231 |#1|))) (-15 -3575 ((-669 |#2|) (-1231 |#1|) (-1231 |#1|))) (-15 -3575 ((-1231 |#2|) |#1| (-1231 |#1|))) (-15 -1905 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -1906 ((-669 |#2|) |#1| (-1231 |#1|))) (-15 -3574 ((-1231 (-669 |#2|)) (-1231 |#1|))) (-15 -2014 ((-622 (-922 |#2|)) (-1231 |#1|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1892 (((-3 $ #1="failed")) 37 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3574 (((-1231 (-669 |#1|)) (-1231 $)) 78) (((-1231 (-669 |#1|))) 100)) (-1845 (((-1231 $)) 81)) (-3896 (($) 17 T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) 40 (|has| |#1| (-545)))) (-1819 (((-3 $ #1#)) 38 (|has| |#1| (-545)))) (-1907 (((-669 |#1|) (-1231 $)) 65) (((-669 |#1|)) 92)) (-1843 ((|#1| $) 74)) (-1905 (((-669 |#1|) $ (-1231 $)) 76) (((-669 |#1|) $) 90)) (-2496 (((-3 $ #1#) $) 45 (|has| |#1| (-545)))) (-2022 (((-1143 (-922 |#1|))) 88 (|has| |#1| (-358)))) (-2499 (($ $ (-895)) 28)) (-1841 ((|#1| $) 72)) (-1821 (((-1143 |#1|) $) 42 (|has| |#1| (-545)))) (-1909 ((|#1| (-1231 $)) 67) ((|#1|) 94)) (-1839 (((-1143 |#1|) $) 63)) (-1833 (((-112)) 57)) (-1911 (($ (-1231 |#1|) (-1231 $)) 69) (($ (-1231 |#1|)) 98)) (-3821 (((-3 $ #1#) $) 47 (|has| |#1| (-545)))) (-3444 (((-895)) 80)) (-1830 (((-112)) 54)) (-2524 (($ $ (-895)) 33)) (-1826 (((-112)) 50)) (-1824 (((-112)) 48)) (-1828 (((-112)) 52)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) 41 (|has| |#1| (-545)))) (-1820 (((-3 $ #1#)) 39 (|has| |#1| (-545)))) (-1908 (((-669 |#1|) (-1231 $)) 66) (((-669 |#1|)) 93)) (-1844 ((|#1| $) 75)) (-1906 (((-669 |#1|) $ (-1231 $)) 77) (((-669 |#1|) $) 91)) (-2497 (((-3 $ #1#) $) 46 (|has| |#1| (-545)))) (-2026 (((-1143 (-922 |#1|))) 89 (|has| |#1| (-358)))) (-2498 (($ $ (-895)) 29)) (-1842 ((|#1| $) 73)) (-1822 (((-1143 |#1|) $) 43 (|has| |#1| (-545)))) (-1910 ((|#1| (-1231 $)) 68) ((|#1|) 95)) (-1840 (((-1143 |#1|) $) 64)) (-1834 (((-112)) 58)) (-3593 (((-1131) $) 9)) (-1825 (((-112)) 49)) (-1827 (((-112)) 51)) (-1829 (((-112)) 53)) (-3594 (((-1093) $) 10)) (-1832 (((-112)) 56)) (-4159 ((|#1| $ (-538)) 101)) (-3575 (((-1231 |#1|) $ (-1231 $)) 71) (((-669 |#1|) (-1231 $) (-1231 $)) 70) (((-1231 |#1|) $) 103) (((-669 |#1|) (-1231 $)) 102)) (-4330 (((-1231 |#1|) $) 97) (($ (-1231 |#1|)) 96)) (-2014 (((-622 (-922 |#1|)) (-1231 $)) 79) (((-622 (-922 |#1|))) 99)) (-2686 (($ $ $) 25)) (-1838 (((-112)) 62)) (-4317 (((-840) $) 11)) (-2128 (((-1231 $)) 104)) (-1823 (((-622 (-1231 |#1|))) 44 (|has| |#1| (-545)))) (-2687 (($ $ $ $) 26)) (-1836 (((-112)) 60)) (-2880 (($ (-669 |#1|) $) 87)) (-2685 (($ $ $) 24)) (-1837 (((-112)) 61)) (-1835 (((-112)) 59)) (-1831 (((-112)) 55)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-413 |#1|) (-138) (-170)) (T -413)) +((-2128 (*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1231 *1)) (-4 *1 (-413 *3)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 *3)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-413 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-413 *2)) (-4 *2 (-170)))) (-3574 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 (-669 *3))))) (-2014 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-622 (-922 *3))))) (-1911 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3)))) (-4330 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 *3)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3)))) (-1910 (*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170)))) (-1909 (*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170)))) (-1908 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-1907 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3)))) (-2026 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1143 (-922 *3))))) (-2022 (*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-358)) (-5 *2 (-1143 (-922 *3))))) (-2880 (*1 *1 *2 *1) (-12 (-5 *2 (-669 *3)) (-4 *1 (-413 *3)) (-4 *3 (-170))))) +(-13 (-362 |t#1|) (-10 -8 (-15 -2128 ((-1231 $))) (-15 -3575 ((-1231 |t#1|) $)) (-15 -3575 ((-669 |t#1|) (-1231 $))) (-15 -4159 (|t#1| $ (-538))) (-15 -3574 ((-1231 (-669 |t#1|)))) (-15 -2014 ((-622 (-922 |t#1|)))) (-15 -1911 ($ (-1231 |t#1|))) (-15 -4330 ((-1231 |t#1|) $)) (-15 -4330 ($ (-1231 |t#1|))) (-15 -1910 (|t#1|)) (-15 -1909 (|t#1|)) (-15 -1908 ((-669 |t#1|))) (-15 -1907 ((-669 |t#1|))) (-15 -1906 ((-669 |t#1|) $)) (-15 -1905 ((-669 |t#1|) $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -2026 ((-1143 (-922 |t#1|)))) (-15 -2022 ((-1143 (-922 |t#1|))))) |%noBranch|) (-15 -2880 ($ (-669 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-362 |#1|) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-725 |#1|) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1074) . T)) +((-3469 (((-400 |#1|) (-400 |#1|) (-1 (-400 |#1|) |#1|)) 21)) (-1912 (((-400 |#1|) (-400 |#1|) (-400 |#1|)) 16))) +(((-414 |#1|) (-10 -7 (-15 -3469 ((-400 |#1|) (-400 |#1|) (-1 (-400 |#1|) |#1|))) (-15 -1912 ((-400 |#1|) (-400 |#1|) (-400 |#1|)))) (-545)) (T -414)) +((-1912 (*1 *2 *2 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-545)) (-5 *1 (-414 *3)))) (-3469 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-400 *4) *4)) (-4 *4 (-545)) (-5 *2 (-400 *4)) (-5 *1 (-414 *4))))) +(-10 -7 (-15 -3469 ((-400 |#1|) (-400 |#1|) (-1 (-400 |#1|) |#1|))) (-15 -1912 ((-400 |#1|) (-400 |#1|) (-400 |#1|)))) +((-3417 (((-622 (-1149)) $) 72)) (-3419 (((-402 (-1143 $)) $ (-595 $)) 273)) (-1664 (($ $ (-288 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-622 (-595 $)) (-622 $)) 237)) (-3508 (((-3 (-595 $) #1="failed") $) NIL) (((-3 (-1149) #1#) $) 75) (((-3 (-538) #1#) $) NIL) (((-3 |#2| #1#) $) 233) (((-3 (-402 (-922 |#2|)) #1#) $) 324) (((-3 (-922 |#2|) #1#) $) 235) (((-3 (-402 (-538)) #1#) $) NIL)) (-3507 (((-595 $) $) NIL) (((-1149) $) 30) (((-538) $) NIL) ((|#2| $) 231) (((-402 (-922 |#2|)) $) 305) (((-922 |#2|) $) 232) (((-402 (-538)) $) NIL)) (-3380 (((-113) (-113)) 47)) (-3329 (($ $) 87)) (-1662 (((-3 (-595 $) "failed") $) 228)) (-1661 (((-622 (-595 $)) $) 229)) (-3156 (((-3 (-622 $) "failed") $) 247)) (-3158 (((-3 (-2 (|:| |val| $) (|:| -2493 (-538))) "failed") $) 254)) (-3155 (((-3 (-622 $) "failed") $) 245)) (-1913 (((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 $))) "failed") $) 264)) (-3157 (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $) 251) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-113)) 217) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-1149)) 219)) (-1916 (((-112) $) 19)) (-1915 ((|#2| $) 21)) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) 236) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) 96) (($ $ (-1149) (-1 $ (-622 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-622 (-113)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-113) (-1 $ (-622 $))) NIL) (($ $ (-113) (-1 $ $)) NIL) (($ $ (-1149)) 57) (($ $ (-622 (-1149))) 240) (($ $) 241) (($ $ (-113) $ (-1149)) 60) (($ $ (-622 (-113)) (-622 $) (-1149)) 67) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ $))) 107) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ (-622 $)))) 242) (($ $ (-1149) (-751) (-1 $ (-622 $))) 94) (($ $ (-1149) (-751) (-1 $ $)) 93)) (-4159 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-622 $)) 106)) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) 238)) (-3328 (($ $) 284)) (-4330 (((-866 (-538)) $) 257) (((-866 (-373)) $) 261) (($ (-400 $)) 320) (((-527) $) NIL)) (-4317 (((-840) $) 239) (($ (-595 $)) 84) (($ (-1149)) 26) (($ |#2|) NIL) (($ (-1098 |#2| (-595 $))) NIL) (($ (-402 |#2|)) 289) (($ (-922 (-402 |#2|))) 329) (($ (-402 (-922 (-402 |#2|)))) 301) (($ (-402 (-922 |#2|))) 295) (($ $) NIL) (($ (-922 |#2|)) 185) (($ (-402 (-538))) 334) (($ (-538)) NIL)) (-3461 (((-751)) 79)) (-2338 (((-112) (-113)) 41)) (-1914 (($ (-1149) $) 33) (($ (-1149) $ $) 34) (($ (-1149) $ $ $) 35) (($ (-1149) $ $ $ $) 36) (($ (-1149) (-622 $)) 39)) (* (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL))) +(((-415 |#1| |#2|) (-10 -8 (-15 * (|#1| (-895) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3461 ((-751))) (-15 -4317 (|#1| (-538))) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1="failed") |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-922 |#2|) |#1|)) (-15 -3508 ((-3 (-922 |#2|) #1#) |#1|)) (-15 -4317 (|#1| (-922 |#2|))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4317 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -3507 ((-402 (-922 |#2|)) |#1|)) (-15 -3508 ((-3 (-402 (-922 |#2|)) #1#) |#1|)) (-15 -4317 (|#1| (-402 (-922 |#2|)))) (-15 -3419 ((-402 (-1143 |#1|)) |#1| (-595 |#1|))) (-15 -4317 (|#1| (-402 (-922 (-402 |#2|))))) (-15 -4317 (|#1| (-922 (-402 |#2|)))) (-15 -4317 (|#1| (-402 |#2|))) (-15 -3328 (|#1| |#1|)) (-15 -4330 (|#1| (-400 |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-751) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-751) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-751)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-751)) (-622 (-1 |#1| |#1|)))) (-15 -3158 ((-3 (-2 (|:| |val| |#1|) (|:| -2493 (-538))) "failed") |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1| (-1149))) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1| (-113))) (-15 -3329 (|#1| |#1|)) (-15 -4317 (|#1| (-1098 |#2| (-595 |#1|)))) (-15 -1913 ((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 |#1|))) "failed") |#1|)) (-15 -3155 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1|)) (-15 -3156 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 |#1|) (-1149))) (-15 -4127 (|#1| |#1| (-113) |#1| (-1149))) (-15 -4127 (|#1| |#1|)) (-15 -4127 (|#1| |#1| (-622 (-1149)))) (-15 -4127 (|#1| |#1| (-1149))) (-15 -1914 (|#1| (-1149) (-622 |#1|))) (-15 -1914 (|#1| (-1149) |#1| |#1| |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1| |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1|)) (-15 -3417 ((-622 (-1149)) |#1|)) (-15 -1915 (|#2| |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -4317 (|#1| (-1149))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| |#1|)))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| |#1|)))) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1661 ((-622 (-595 |#1|)) |#1|)) (-15 -1662 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -1664 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -1664 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -1664 (|#1| |#1| (-288 |#1|))) (-15 -4159 (|#1| (-113) (-622 |#1|))) (-15 -4159 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-595 |#1|) |#1|)) (-15 -3507 ((-595 |#1|) |#1|)) (-15 -3508 ((-3 (-595 |#1|) #1#) |#1|)) (-15 -4317 (|#1| (-595 |#1|))) (-15 -4317 ((-840) |#1|))) (-416 |#2|) (-827)) (T -415)) +((-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *4 (-827)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-415 *4 *5)) (-4 *4 (-416 *5)))) (-3461 (*1 *2) (-12 (-4 *4 (-827)) (-5 *2 (-751)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4))))) +(-10 -8 (-15 * (|#1| (-895) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3461 ((-751))) (-15 -4317 (|#1| (-538))) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1="failed") |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-922 |#2|) |#1|)) (-15 -3508 ((-3 (-922 |#2|) #1#) |#1|)) (-15 -4317 (|#1| (-922 |#2|))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4317 (|#1| |#1|)) (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -3507 ((-402 (-922 |#2|)) |#1|)) (-15 -3508 ((-3 (-402 (-922 |#2|)) #1#) |#1|)) (-15 -4317 (|#1| (-402 (-922 |#2|)))) (-15 -3419 ((-402 (-1143 |#1|)) |#1| (-595 |#1|))) (-15 -4317 (|#1| (-402 (-922 (-402 |#2|))))) (-15 -4317 (|#1| (-922 (-402 |#2|)))) (-15 -4317 (|#1| (-402 |#2|))) (-15 -3328 (|#1| |#1|)) (-15 -4330 (|#1| (-400 |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-751) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-751) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-751)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-751)) (-622 (-1 |#1| |#1|)))) (-15 -3158 ((-3 (-2 (|:| |val| |#1|) (|:| -2493 (-538))) "failed") |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1| (-1149))) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1| (-113))) (-15 -3329 (|#1| |#1|)) (-15 -4317 (|#1| (-1098 |#2| (-595 |#1|)))) (-15 -1913 ((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 |#1|))) "failed") |#1|)) (-15 -3155 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 |#1|)) (|:| -2493 (-538))) "failed") |#1|)) (-15 -3156 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 |#1|) (-1149))) (-15 -4127 (|#1| |#1| (-113) |#1| (-1149))) (-15 -4127 (|#1| |#1|)) (-15 -4127 (|#1| |#1| (-622 (-1149)))) (-15 -4127 (|#1| |#1| (-1149))) (-15 -1914 (|#1| (-1149) (-622 |#1|))) (-15 -1914 (|#1| (-1149) |#1| |#1| |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1| |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1| |#1|)) (-15 -1914 (|#1| (-1149) |#1|)) (-15 -3417 ((-622 (-1149)) |#1|)) (-15 -1915 (|#2| |#1|)) (-15 -1916 ((-112) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -4317 (|#1| (-1149))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-113) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-113)) (-622 (-1 |#1| |#1|)))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| |#1|))) (-15 -4127 (|#1| |#1| (-1149) (-1 |#1| (-622 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| (-622 |#1|))))) (-15 -4127 (|#1| |#1| (-622 (-1149)) (-622 (-1 |#1| |#1|)))) (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -1661 ((-622 (-595 |#1|)) |#1|)) (-15 -1662 ((-3 (-595 |#1|) "failed") |#1|)) (-15 -1664 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -1664 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -1664 (|#1| |#1| (-288 |#1|))) (-15 -4159 (|#1| (-113) (-622 |#1|))) (-15 -4159 (|#1| (-113) |#1| |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1| |#1|)) (-15 -4159 (|#1| (-113) |#1|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4127 (|#1| |#1| (-622 (-595 |#1|)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-595 |#1|) |#1|)) (-15 -3507 ((-595 |#1|) |#1|)) (-15 -3508 ((-3 (-595 |#1|) #1#) |#1|)) (-15 -4317 (|#1| (-595 |#1|))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 113 (|has| |#1| (-25)))) (-3417 (((-622 (-1149)) $) 200)) (-3419 (((-402 (-1143 $)) $ (-595 $)) 168 (|has| |#1| (-545)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 140 (|has| |#1| (-545)))) (-2178 (($ $) 141 (|has| |#1| (-545)))) (-2176 (((-112) $) 143 (|has| |#1| (-545)))) (-1660 (((-622 (-595 $)) $) 44)) (-1368 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1664 (($ $ (-288 $)) 56) (($ $ (-622 (-288 $))) 55) (($ $ (-622 (-595 $)) (-622 $)) 54)) (-4134 (($ $) 160 (|has| |#1| (-545)))) (-4329 (((-400 $) $) 161 (|has| |#1| (-545)))) (-1705 (((-112) $ $) 151 (|has| |#1| (-545)))) (-3896 (($) 101 (-3891 (|has| |#1| (-1085)) (|has| |#1| (-25))) CONST)) (-3508 (((-3 (-595 $) #1="failed") $) 69) (((-3 (-1149) #1#) $) 213) (((-3 (-538) #1#) $) 206 (|has| |#1| (-1014 (-538)))) (((-3 |#1| #1#) $) 204) (((-3 (-402 (-922 |#1|)) #1#) $) 166 (|has| |#1| (-545))) (((-3 (-922 |#1|) #1#) $) 120 (|has| |#1| (-1025))) (((-3 (-402 (-538)) #1#) $) 95 (-3891 (-12 (|has| |#1| (-1014 (-538))) (|has| |#1| (-545))) (|has| |#1| (-1014 (-402 (-538))))))) (-3507 (((-595 $) $) 68) (((-1149) $) 212) (((-538) $) 207 (|has| |#1| (-1014 (-538)))) ((|#1| $) 203) (((-402 (-922 |#1|)) $) 165 (|has| |#1| (-545))) (((-922 |#1|) $) 119 (|has| |#1| (-1025))) (((-402 (-538)) $) 94 (-3891 (-12 (|has| |#1| (-1014 (-538))) (|has| |#1| (-545))) (|has| |#1| (-1014 (-402 (-538))))))) (-2894 (($ $ $) 155 (|has| |#1| (-545)))) (-2362 (((-669 (-538)) (-669 $)) 134 (-3191 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 133 (-3191 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 132 (|has| |#1| (-1025))) (((-669 |#1|) (-669 $)) 131 (|has| |#1| (-1025)))) (-3821 (((-3 $ "failed") $) 103 (|has| |#1| (-1085)))) (-2893 (($ $ $) 154 (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 149 (|has| |#1| (-545)))) (-4086 (((-112) $) 162 (|has| |#1| (-545)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 209 (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 208 (|has| |#1| (-862 (-373))))) (-2903 (($ $) 51) (($ (-622 $)) 50)) (-1659 (((-622 (-113)) $) 43)) (-3380 (((-113) (-113)) 42)) (-2502 (((-112) $) 102 (|has| |#1| (-1085)))) (-3006 (((-112) $) 22 (|has| $ (-1014 (-538))))) (-3329 (($ $) 183 (|has| |#1| (-1025)))) (-3331 (((-1098 |#1| (-595 $)) $) 184 (|has| |#1| (-1025)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 158 (|has| |#1| (-545)))) (-1657 (((-1143 $) (-595 $)) 25 (|has| $ (-1025)))) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-4318 (($ (-1 $ $) (-595 $)) 36)) (-1662 (((-3 (-595 $) "failed") $) 46)) (-2013 (($ (-622 $)) 147 (|has| |#1| (-545))) (($ $ $) 146 (|has| |#1| (-545)))) (-3593 (((-1131) $) 9)) (-1661 (((-622 (-595 $)) $) 45)) (-2317 (($ (-113) $) 38) (($ (-113) (-622 $)) 37)) (-3156 (((-3 (-622 $) "failed") $) 189 (|has| |#1| (-1085)))) (-3158 (((-3 (-2 (|:| |val| $) (|:| -2493 (-538))) "failed") $) 180 (|has| |#1| (-1025)))) (-3155 (((-3 (-622 $) "failed") $) 187 (|has| |#1| (-25)))) (-1913 (((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3157 (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $) 188 (|has| |#1| (-1085))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-113)) 182 (|has| |#1| (-1025))) (((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-1149)) 181 (|has| |#1| (-1025)))) (-2964 (((-112) $ (-113)) 40) (((-112) $ (-1149)) 39)) (-2734 (($ $) 105 (-3891 (|has| |#1| (-467)) (|has| |#1| (-545))))) (-2933 (((-751) $) 47)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 202)) (-1915 ((|#1| $) 201)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 148 (|has| |#1| (-545)))) (-3495 (($ (-622 $)) 145 (|has| |#1| (-545))) (($ $ $) 144 (|has| |#1| (-545)))) (-1658 (((-112) $ $) 35) (((-112) $ (-1149)) 34)) (-4092 (((-400 $) $) 159 (|has| |#1| (-545)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 157 (|has| |#1| (-545))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 156 (|has| |#1| (-545)))) (-3820 (((-3 $ "failed") $ $) 139 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 150 (|has| |#1| (-545)))) (-3007 (((-112) $) 23 (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) 67) (($ $ (-622 (-595 $)) (-622 $)) 66) (($ $ (-622 (-288 $))) 65) (($ $ (-288 $)) 64) (($ $ $ $) 63) (($ $ (-622 $) (-622 $)) 62) (($ $ (-622 (-1149)) (-622 (-1 $ $))) 33) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) 32) (($ $ (-1149) (-1 $ (-622 $))) 31) (($ $ (-1149) (-1 $ $)) 30) (($ $ (-622 (-113)) (-622 (-1 $ $))) 29) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) 28) (($ $ (-113) (-1 $ (-622 $))) 27) (($ $ (-113) (-1 $ $)) 26) (($ $ (-1149)) 194 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-1149))) 193 (|has| |#1| (-598 (-527)))) (($ $) 192 (|has| |#1| (-598 (-527)))) (($ $ (-113) $ (-1149)) 191 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-113)) (-622 $) (-1149)) 190 (|has| |#1| (-598 (-527)))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ $))) 179 (|has| |#1| (-1025))) (($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ (-622 $)))) 178 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ (-622 $))) 177 (|has| |#1| (-1025))) (($ $ (-1149) (-751) (-1 $ $)) 176 (|has| |#1| (-1025)))) (-1704 (((-751) $) 152 (|has| |#1| (-545)))) (-4159 (($ (-113) $) 61) (($ (-113) $ $) 60) (($ (-113) $ $ $) 59) (($ (-113) $ $ $ $) 58) (($ (-113) (-622 $)) 57)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 153 (|has| |#1| (-545)))) (-1663 (($ $) 49) (($ $ $) 48)) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 125 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 124 (|has| |#1| (-1025))) (($ $ (-622 (-1149))) 123 (|has| |#1| (-1025))) (($ $ (-1149)) 122 (|has| |#1| (-1025)))) (-3328 (($ $) 173 (|has| |#1| (-545)))) (-3330 (((-1098 |#1| (-595 $)) $) 174 (|has| |#1| (-545)))) (-3536 (($ $) 24 (|has| $ (-1025)))) (-4330 (((-866 (-538)) $) 211 (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) 210 (|has| |#1| (-598 (-866 (-373))))) (($ (-400 $)) 175 (|has| |#1| (-545))) (((-527) $) 97 (|has| |#1| (-598 (-527))))) (-3342 (($ $ $) 108 (|has| |#1| (-467)))) (-2686 (($ $ $) 109 (|has| |#1| (-467)))) (-4317 (((-840) $) 11) (($ (-595 $)) 70) (($ (-1149)) 214) (($ |#1|) 205) (($ (-1098 |#1| (-595 $))) 185 (|has| |#1| (-1025))) (($ (-402 |#1|)) 171 (|has| |#1| (-545))) (($ (-922 (-402 |#1|))) 170 (|has| |#1| (-545))) (($ (-402 (-922 (-402 |#1|)))) 169 (|has| |#1| (-545))) (($ (-402 (-922 |#1|))) 167 (|has| |#1| (-545))) (($ $) 138 (|has| |#1| (-545))) (($ (-922 |#1|)) 121 (|has| |#1| (-1025))) (($ (-402 (-538))) 96 (-3891 (|has| |#1| (-545)) (-12 (|has| |#1| (-1014 (-538))) (|has| |#1| (-545))) (|has| |#1| (-1014 (-402 (-538)))))) (($ (-538)) 93 (-3891 (|has| |#1| (-1025)) (|has| |#1| (-1014 (-538)))))) (-3035 (((-3 $ "failed") $) 135 (|has| |#1| (-143)))) (-3461 (((-751)) 130 (|has| |#1| (-1025)))) (-2920 (($ $) 53) (($ (-622 $)) 52)) (-2338 (((-112) (-113)) 41)) (-2177 (((-112) $ $) 142 (|has| |#1| (-545)))) (-1914 (($ (-1149) $) 199) (($ (-1149) $ $) 198) (($ (-1149) $ $ $) 197) (($ (-1149) $ $ $ $) 196) (($ (-1149) (-622 $)) 195)) (-2991 (($) 112 (|has| |#1| (-25)) CONST)) (-2997 (($) 100 (|has| |#1| (-1085)) CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 129 (|has| |#1| (-1025))) (($ $ (-1149) (-751)) 128 (|has| |#1| (-1025))) (($ $ (-622 (-1149))) 127 (|has| |#1| (-1025))) (($ $ (-1149)) 126 (|has| |#1| (-1025)))) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4308 (($ (-1098 |#1| (-595 $)) (-1098 |#1| (-595 $))) 172 (|has| |#1| (-545))) (($ $ $) 106 (-3891 (|has| |#1| (-467)) (|has| |#1| (-545))))) (-4197 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-4199 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-538)) 107 (-3891 (|has| |#1| (-467)) (|has| |#1| (-545)))) (($ $ (-751)) 104 (|has| |#1| (-1085))) (($ $ (-895)) 99 (|has| |#1| (-1085)))) (* (($ (-402 (-538)) $) 164 (|has| |#1| (-545))) (($ $ (-402 (-538))) 163 (|has| |#1| (-545))) (($ |#1| $) 137 (|has| |#1| (-170))) (($ $ |#1|) 136 (|has| |#1| (-170))) (($ (-538) $) 118 (|has| |#1| (-21))) (($ (-751) $) 114 (|has| |#1| (-25))) (($ (-895) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1085))))) +(((-416 |#1|) (-138) (-827)) (T -416)) +((-1916 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-827)) (-5 *2 (-112)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-827)) (-5 *2 (-622 (-1149))))) (-1914 (*1 *1 *2 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) (-1914 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) (-1914 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) (-1914 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) (-1914 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 *1)) (-4 *1 (-416 *4)) (-4 *4 (-827)))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)) (-4 *3 (-598 (-527))))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-1149))) (-4 *1 (-416 *3)) (-4 *3 (-827)) (-4 *3 (-598 (-527))))) (-4127 (*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-598 (-527))))) (-4127 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1149)) (-4 *1 (-416 *4)) (-4 *4 (-827)) (-4 *4 (-598 (-527))))) (-4127 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 *1)) (-5 *4 (-1149)) (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-598 (-527))))) (-3156 (*1 *2 *1) (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-416 *3)))) (-3157 (*1 *2 *1) (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *3)))) (-3155 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-416 *3)))) (-1913 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -4313 (-538)) (|:| |var| (-595 *1)))) (-4 *1 (-416 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1098 *3 (-595 *1))) (-4 *3 (-1025)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-595 *1))) (-4 *1 (-416 *3)))) (-3329 (*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-1025)))) (-3157 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1025)) (-4 *4 (-827)) (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *4)))) (-3157 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-1025)) (-4 *4 (-827)) (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *4)))) (-3158 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-2 (|:| |val| *1) (|:| -2493 (-538)))) (-4 *1 (-416 *3)))) (-4127 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-751))) (-5 *4 (-622 (-1 *1 *1))) (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4127 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-751))) (-5 *4 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4127 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 (-622 *1))) (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4127 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 *1)) (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-400 *1)) (-4 *1 (-416 *3)) (-4 *3 (-545)) (-4 *3 (-827)))) (-3330 (*1 *2 *1) (-12 (-4 *3 (-545)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-595 *1))) (-4 *1 (-416 *3)))) (-3328 (*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-545)))) (-4308 (*1 *1 *2 *2) (-12 (-5 *2 (-1098 *3 (-595 *1))) (-4 *3 (-545)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-545)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-922 (-402 *3))) (-4 *3 (-545)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-402 *3)))) (-4 *3 (-545)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) (-3419 (*1 *2 *1 *3) (-12 (-5 *3 (-595 *1)) (-4 *1 (-416 *4)) (-4 *4 (-827)) (-4 *4 (-545)) (-5 *2 (-402 (-1143 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-416 *3)) (-4 *3 (-827)) (-4 *3 (-1085))))) +(-13 (-293) (-1014 (-1149)) (-860 |t#1|) (-395 |t#1|) (-407 |t#1|) (-10 -8 (-15 -1916 ((-112) $)) (-15 -1915 (|t#1| $)) (-15 -3417 ((-622 (-1149)) $)) (-15 -1914 ($ (-1149) $)) (-15 -1914 ($ (-1149) $ $)) (-15 -1914 ($ (-1149) $ $ $)) (-15 -1914 ($ (-1149) $ $ $ $)) (-15 -1914 ($ (-1149) (-622 $))) (IF (|has| |t#1| (-598 (-527))) (PROGN (-6 (-598 (-527))) (-15 -4127 ($ $ (-1149))) (-15 -4127 ($ $ (-622 (-1149)))) (-15 -4127 ($ $)) (-15 -4127 ($ $ (-113) $ (-1149))) (-15 -4127 ($ $ (-622 (-113)) (-622 $) (-1149)))) |%noBranch|) (IF (|has| |t#1| (-1085)) (PROGN (-6 (-707)) (-15 ** ($ $ (-751))) (-15 -3156 ((-3 (-622 $) "failed") $)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-467)) (-6 (-467)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3155 ((-3 (-622 $) "failed") $)) (-15 -1913 ((-3 (-2 (|:| -4313 (-538)) (|:| |var| (-595 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-6 (-1025)) (-6 (-1014 (-922 |t#1|))) (-6 (-876 (-1149))) (-6 (-372 |t#1|)) (-15 -4317 ($ (-1098 |t#1| (-595 $)))) (-15 -3331 ((-1098 |t#1| (-595 $)) $)) (-15 -3329 ($ $)) (-15 -3157 ((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-113))) (-15 -3157 ((-3 (-2 (|:| |var| (-595 $)) (|:| -2493 (-538))) "failed") $ (-1149))) (-15 -3158 ((-3 (-2 (|:| |val| $) (|:| -2493 (-538))) "failed") $)) (-15 -4127 ($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ $)))) (-15 -4127 ($ $ (-622 (-1149)) (-622 (-751)) (-622 (-1 $ (-622 $))))) (-15 -4127 ($ $ (-1149) (-751) (-1 $ (-622 $)))) (-15 -4127 ($ $ (-1149) (-751) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-6 (-358)) (-6 (-1014 (-402 (-922 |t#1|)))) (-15 -4330 ($ (-400 $))) (-15 -3330 ((-1098 |t#1| (-595 $)) $)) (-15 -3328 ($ $)) (-15 -4308 ($ (-1098 |t#1| (-595 $)) (-1098 |t#1| (-595 $)))) (-15 -4317 ($ (-402 |t#1|))) (-15 -4317 ($ (-922 (-402 |t#1|)))) (-15 -4317 ($ (-402 (-922 (-402 |t#1|))))) (-15 -3419 ((-402 (-1143 $)) $ (-595 $))) (IF (|has| |t#1| (-1014 (-538))) (-6 (-1014 (-402 (-538)))) |%noBranch|)) |%noBranch|))) +(((-21) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-23) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #1=(-402 (-538))) |has| |#1| (-545)) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-545)) ((-111 |#1| |#1|) |has| |#1| (-170)) ((-111 $ $) |has| |#1| (-545)) ((-130) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143)) (|has| |#1| (-21))) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) |has| |#1| (-545)) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-598 (-866 (-373))) |has| |#1| (-598 (-866 (-373)))) ((-598 (-866 (-538))) |has| |#1| (-598 (-866 (-538)))) ((-239) |has| |#1| (-545)) ((-285) |has| |#1| (-545)) ((-302) |has| |#1| (-545)) ((-304 $) . T) ((-293) . T) ((-358) |has| |#1| (-545)) ((-372 |#1|) |has| |#1| (-1025)) ((-395 |#1|) . T) ((-407 |#1|) . T) ((-446) |has| |#1| (-545)) ((-467) |has| |#1| (-467)) ((-507 (-595 $) $) . T) ((-507 $ $) . T) ((-545) |has| |#1| (-545)) ((-628 #1#) |has| |#1| (-545)) ((-628 |#1|) |has| |#1| (-170)) ((-628 $) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-621 (-538)) -12 (|has| |#1| (-621 (-538))) (|has| |#1| (-1025))) ((-621 |#1|) |has| |#1| (-1025)) ((-698 #1#) |has| |#1| (-545)) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) -3891 (|has| |#1| (-1085)) (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-827) . T) ((-876 (-1149)) |has| |#1| (-1025)) ((-862 (-373)) |has| |#1| (-862 (-373))) ((-862 (-538)) |has| |#1| (-862 (-538))) ((-860 |#1|) . T) ((-897) |has| |#1| (-545)) ((-1014 (-402 (-538))) -3891 (|has| |#1| (-1014 (-402 (-538)))) (-12 (|has| |#1| (-545)) (|has| |#1| (-1014 (-538))))) ((-1014 (-402 (-922 |#1|))) |has| |#1| (-545)) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 (-595 $)) . T) ((-1014 (-922 |#1|)) |has| |#1| (-1025)) ((-1014 (-1149)) . T) ((-1014 |#1|) . T) ((-1031 #1#) |has| |#1| (-545)) ((-1031 |#1|) |has| |#1| (-170)) ((-1031 $) |has| |#1| (-545)) ((-1025) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1032) -3891 (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1085) -3891 (|has| |#1| (-1085)) (|has| |#1| (-1025)) (|has| |#1| (-545)) (|has| |#1| (-467)) (|has| |#1| (-170)) (|has| |#1| (-145)) (|has| |#1| (-143))) ((-1074) . T) ((-1185) . T) ((-1190) |has| |#1| (-545))) +((-4318 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1025) (-827)) (-416 |#1|) (-13 (-1025) (-827)) (-416 |#3|)) (T -417)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1025) (-827))) (-4 *6 (-13 (-1025) (-827))) (-4 *2 (-416 *6)) (-5 *1 (-417 *5 *4 *6 *2)) (-4 *4 (-416 *5))))) +(-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|))) +((-1920 ((|#2| |#2|) 166)) (-1917 (((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112)) 57))) +(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1917 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112))) (-15 -1920 (|#2| |#2|))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|)) (-1149) |#2|) (T -418)) +((-1920 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-418 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1171) (-416 *3))) (-14 *4 (-1149)) (-14 *5 *2))) (-1917 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (|:| |%expansion| (-308 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-418 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-14 *6 (-1149)) (-14 *7 *3)))) +(-10 -7 (-15 -1917 ((-3 (|:| |%expansion| (-308 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112))) (-15 -1920 (|#2| |#2|))) +((-1920 ((|#2| |#2|) 90)) (-1918 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131)) 48)) (-1919 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131)) 154))) +(((-419 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1918 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -1919 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -1920 (|#2| |#2|))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|) (-10 -8 (-15 -4317 ($ |#3|)))) (-825) (-13 (-1210 |#2| |#3|) (-358) (-1171) (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $)))) (-959 |#4|) (-1149)) (T -419)) +((-1920 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-4 *2 (-13 (-27) (-1171) (-416 *3) (-10 -8 (-15 -4317 ($ *4))))) (-4 *4 (-825)) (-4 *5 (-13 (-1210 *2 *4) (-358) (-1171) (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $))))) (-5 *1 (-419 *3 *2 *4 *5 *6 *7)) (-4 *6 (-959 *5)) (-14 *7 (-1149)))) (-1919 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-4 *3 (-13 (-27) (-1171) (-416 *6) (-10 -8 (-15 -4317 ($ *7))))) (-4 *7 (-825)) (-4 *8 (-13 (-1210 *3 *7) (-358) (-1171) (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-419 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) (-14 *10 (-1149)))) (-1918 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-4 *3 (-13 (-27) (-1171) (-416 *6) (-10 -8 (-15 -4317 ($ *7))))) (-4 *7 (-825)) (-4 *8 (-13 (-1210 *3 *7) (-358) (-1171) (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) (-5 *1 (-419 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) (-14 *10 (-1149))))) +(-10 -7 (-15 -1918 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -1919 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131))))) |#2| (-112) (-1131))) (-15 -1920 (|#2| |#2|))) +((-1921 (($) 44)) (-3585 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3587 (($ $ $) 39)) (-3586 (((-112) $ $) 28)) (-3471 (((-751)) 47)) (-3590 (($ (-622 |#2|)) 20) (($) NIL)) (-3327 (($) 53)) (-3592 (((-112) $ $) 13)) (-3677 ((|#2| $) 61)) (-3678 ((|#2| $) 59)) (-2126 (((-895) $) 55)) (-3589 (($ $ $) 35)) (-2492 (($ (-895)) 50)) (-3588 (($ $ |#2|) NIL) (($ $ $) 38)) (-2069 (((-751) (-1 (-112) |#2|) $) NIL) (((-751) |#2| $) 26)) (-3884 (($ (-622 |#2|)) 24)) (-1922 (($ $) 46)) (-4317 (((-840) $) 33)) (-1923 (((-751) $) 21)) (-3591 (($ (-622 |#2|)) 19) (($) NIL)) (-3387 (((-112) $ $) 16))) +(((-420 |#1| |#2|) (-10 -8 (-15 -3471 ((-751))) (-15 -2492 (|#1| (-895))) (-15 -2126 ((-895) |#1|)) (-15 -3327 (|#1|)) (-15 -3677 (|#2| |#1|)) (-15 -3678 (|#2| |#1|)) (-15 -1921 (|#1|)) (-15 -1922 (|#1| |#1|)) (-15 -1923 ((-751) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3592 ((-112) |#1| |#1|)) (-15 -3591 (|#1|)) (-15 -3591 (|#1| (-622 |#2|))) (-15 -3590 (|#1|)) (-15 -3590 (|#1| (-622 |#2|))) (-15 -3589 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#2|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -3585 (|#1| |#1| |#2|)) (-15 -3585 (|#1| |#2| |#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|))) (-421 |#2|) (-1074)) (T -420)) +((-3471 (*1 *2) (-12 (-4 *4 (-1074)) (-5 *2 (-751)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4))))) +(-10 -8 (-15 -3471 ((-751))) (-15 -2492 (|#1| (-895))) (-15 -2126 ((-895) |#1|)) (-15 -3327 (|#1|)) (-15 -3677 (|#2| |#1|)) (-15 -3678 (|#2| |#1|)) (-15 -1921 (|#1|)) (-15 -1922 (|#1| |#1|)) (-15 -1923 ((-751) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3592 ((-112) |#1| |#1|)) (-15 -3591 (|#1|)) (-15 -3591 (|#1| (-622 |#2|))) (-15 -3590 (|#1|)) (-15 -3590 (|#1| (-622 |#2|))) (-15 -3589 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#2|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3586 ((-112) |#1| |#1|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -3585 (|#1| |#1| |#2|)) (-15 -3585 (|#1| |#2| |#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|))) +((-2898 (((-112) $ $) 19)) (-1921 (($) 67 (|has| |#1| (-363)))) (-3585 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3587 (($ $ $) 78)) (-3586 (((-112) $ $) 79)) (-1271 (((-112) $ (-751)) 8)) (-3471 (((-751)) 61 (|has| |#1| (-363)))) (-3590 (($ (-622 |#1|)) 74) (($) 73)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-3327 (($) 64 (|has| |#1| (-363)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) 70)) (-4082 (((-112) $ (-751)) 9)) (-3677 ((|#1| $) 65 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3678 ((|#1| $) 66 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-2126 (((-895) $) 63 (|has| |#1| (-363)))) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22)) (-3589 (($ $ $) 75)) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-2492 (($ (-895)) 62 (|has| |#1| (-363)))) (-3594 (((-1093) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-3588 (($ $ |#1|) 77) (($ $ $) 76)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-1922 (($ $) 68 (|has| |#1| (-363)))) (-4317 (((-840) $) 18)) (-1923 (((-751) $) 69)) (-3591 (($ (-622 |#1|)) 72) (($) 71)) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20)) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-421 |#1|) (-138) (-1074)) (T -421)) +((-1923 (*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-1074)) (-5 *2 (-751)))) (-1922 (*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-363)))) (-1921 (*1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-363)) (-4 *2 (-1074)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-827)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-827))))) +(-13 (-225 |t#1|) (-1072 |t#1|) (-10 -8 (-6 -4353) (-15 -1923 ((-751) $)) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-15 -1922 ($ $)) (-15 -1921 ($))) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-15 -3678 (|t#1| $)) (-15 -3677 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-225 |#1|) . T) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-363) |has| |#1| (-363)) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1072 |#1|) . T) ((-1074) . T) ((-1185) . T)) +((-4201 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4202 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-4318 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4202 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4201 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1074) (-421 |#1|) (-1074) (-421 |#3|)) (T -422)) +((-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1074)) (-4 *5 (-1074)) (-4 *2 (-421 *5)) (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-421 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1074)) (-4 *2 (-1074)) (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-421 *5)) (-4 *6 (-421 *2)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-421 *6)) (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-421 *5))))) +(-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4202 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4201 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1924 (((-569 |#2|) |#2| (-1149)) 36)) (-2220 (((-569 |#2|) |#2| (-1149)) 20)) (-2261 ((|#2| |#2| (-1149)) 25))) +(((-423 |#1| |#2|) (-10 -7 (-15 -2220 ((-569 |#2|) |#2| (-1149))) (-15 -1924 ((-569 |#2|) |#2| (-1149))) (-15 -2261 (|#2| |#2| (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-29 |#1|))) (T -423)) +((-2261 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-423 *4 *2)) (-4 *2 (-13 (-1171) (-29 *4))))) (-1924 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5))))) (-2220 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5)))))) +(-10 -7 (-15 -2220 ((-569 |#2|) |#2| (-1149))) (-15 -1924 ((-569 |#2|) |#2| (-1149))) (-15 -2261 (|#2| |#2| (-1149)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-1926 (($ |#2| |#1|) 35)) (-1925 (($ |#2| |#1|) 33)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-326 |#2|)) 25)) (-3461 (((-751)) NIL)) (-2991 (($) 10 T CONST)) (-2997 (($) 16 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 34)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-424 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4340)) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|) |%noBranch|) (-15 -4317 ($ |#1|)) (-15 -4317 ($ (-326 |#2|))) (-15 -1926 ($ |#2| |#1|)) (-15 -1925 ($ |#2| |#1|)))) (-13 (-170) (-38 (-402 (-538)))) (-13 (-827) (-21))) (T -424)) +((-4317 (*1 *1 *2) (-12 (-5 *1 (-424 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-538))))) (-4 *3 (-13 (-827) (-21))))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-827) (-21))) (-5 *1 (-424 *3 *4)) (-4 *3 (-13 (-170) (-38 (-402 (-538))))))) (-1926 (*1 *1 *2 *3) (-12 (-5 *1 (-424 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-538))))) (-4 *2 (-13 (-827) (-21))))) (-1925 (*1 *1 *2 *3) (-12 (-5 *1 (-424 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-538))))) (-4 *2 (-13 (-827) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4340)) (IF (|has| |#1| (-6 -4340)) (-6 -4340) |%noBranch|) |%noBranch|) (-15 -4317 ($ |#1|)) (-15 -4317 ($ (-326 |#2|))) (-15 -1926 ($ |#2| |#1|)) (-15 -1925 ($ |#2| |#1|)))) +((-4172 (((-3 |#2| (-622 |#2|)) |#2| (-1149)) 109))) +(((-425 |#1| |#2|) (-10 -7 (-15 -4172 ((-3 |#2| (-622 |#2|)) |#2| (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-936) (-29 |#1|))) (T -425)) +((-4172 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 *3 (-622 *3))) (-5 *1 (-425 *5 *3)) (-4 *3 (-13 (-1171) (-936) (-29 *5)))))) +(-10 -7 (-15 -4172 ((-3 |#2| (-622 |#2|)) |#2| (-1149)))) +((-3745 ((|#2| |#2| |#2|) 33)) (-3380 (((-113) (-113)) 44)) (-1928 ((|#2| |#2|) 66)) (-1927 ((|#2| |#2|) 69)) (-3744 ((|#2| |#2|) 32)) (-3748 ((|#2| |#2| |#2|) 35)) (-3750 ((|#2| |#2| |#2|) 37)) (-3747 ((|#2| |#2| |#2|) 34)) (-3749 ((|#2| |#2| |#2|) 36)) (-2338 (((-112) (-113)) 42)) (-3752 ((|#2| |#2|) 39)) (-3751 ((|#2| |#2|) 38)) (-3742 ((|#2| |#2|) 27)) (-3746 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3743 ((|#2| |#2| |#2|) 31))) +(((-426 |#1| |#2|) (-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -3742 (|#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -3743 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -3745 (|#2| |#2| |#2|)) (-15 -3747 (|#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2|)) (-15 -3752 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -1928 (|#2| |#2|))) (-13 (-827) (-545)) (-416 |#1|)) (T -426)) +((-1928 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-1927 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3752 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3751 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3750 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3749 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3748 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3747 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3745 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3744 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3743 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3746 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3746 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3742 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *4)) (-4 *4 (-416 *3)))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-426 *4 *5)) (-4 *5 (-416 *4))))) +(-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -3742 (|#2| |#2|)) (-15 -3746 (|#2| |#2|)) (-15 -3746 (|#2| |#2| |#2|)) (-15 -3743 (|#2| |#2| |#2|)) (-15 -3744 (|#2| |#2|)) (-15 -3745 (|#2| |#2| |#2|)) (-15 -3747 (|#2| |#2| |#2|)) (-15 -3748 (|#2| |#2| |#2|)) (-15 -3749 (|#2| |#2| |#2|)) (-15 -3750 (|#2| |#2| |#2|)) (-15 -3751 (|#2| |#2|)) (-15 -3752 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -1928 (|#2| |#2|))) +((-3166 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1143 |#2|)) (|:| |pol2| (-1143 |#2|)) (|:| |prim| (-1143 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-622 (-1143 |#2|))) (|:| |prim| (-1143 |#2|))) (-622 |#2|)) 61))) +(((-427 |#1| |#2|) (-10 -7 (-15 -3166 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-622 (-1143 |#2|))) (|:| |prim| (-1143 |#2|))) (-622 |#2|))) (IF (|has| |#2| (-27)) (-15 -3166 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1143 |#2|)) (|:| |pol2| (-1143 |#2|)) (|:| |prim| (-1143 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-545) (-827) (-145)) (-416 |#1|)) (T -427)) +((-3166 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-545) (-827) (-145))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1143 *3)) (|:| |pol2| (-1143 *3)) (|:| |prim| (-1143 *3)))) (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-416 *4)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-416 *4)) (-4 *4 (-13 (-545) (-827) (-145))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-622 (-1143 *5))) (|:| |prim| (-1143 *5)))) (-5 *1 (-427 *4 *5))))) +(-10 -7 (-15 -3166 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-622 (-1143 |#2|))) (|:| |prim| (-1143 |#2|))) (-622 |#2|))) (IF (|has| |#2| (-27)) (-15 -3166 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1143 |#2|)) (|:| |pol2| (-1143 |#2|)) (|:| |prim| (-1143 |#2|))) |#2| |#2|)) |%noBranch|)) +((-1930 (((-1237)) 19)) (-1929 (((-1143 (-402 (-538))) |#2| (-595 |#2|)) 41) (((-402 (-538)) |#2|) 25))) +(((-428 |#1| |#2|) (-10 -7 (-15 -1929 ((-402 (-538)) |#2|)) (-15 -1929 ((-1143 (-402 (-538))) |#2| (-595 |#2|))) (-15 -1930 ((-1237)))) (-13 (-827) (-545) (-1014 (-538))) (-416 |#1|)) (T -428)) +((-1930 (*1 *2) (-12 (-4 *3 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-1237)) (-5 *1 (-428 *3 *4)) (-4 *4 (-416 *3)))) (-1929 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-416 *5)) (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-428 *5 *3)))) (-1929 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-402 (-538))) (-5 *1 (-428 *4 *3)) (-4 *3 (-416 *4))))) +(-10 -7 (-15 -1929 ((-402 (-538)) |#2|)) (-15 -1929 ((-1143 (-402 (-538))) |#2| (-595 |#2|))) (-15 -1930 ((-1237)))) +((-4008 (((-112) $) 28)) (-1931 (((-112) $) 30)) (-3610 (((-112) $) 31)) (-1933 (((-112) $) 34)) (-1935 (((-112) $) 29)) (-1934 (((-112) $) 33)) (-4317 (((-840) $) 18) (($ (-1131)) 27) (($ (-1149)) 23) (((-1149) $) 22) (((-1076) $) 21)) (-1932 (((-112) $) 32)) (-3387 (((-112) $ $) 15))) +(((-429) (-13 (-597 (-840)) (-10 -8 (-15 -4317 ($ (-1131))) (-15 -4317 ($ (-1149))) (-15 -4317 ((-1149) $)) (-15 -4317 ((-1076) $)) (-15 -4008 ((-112) $)) (-15 -1935 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -1934 ((-112) $)) (-15 -1933 ((-112) $)) (-15 -1932 ((-112) $)) (-15 -1931 ((-112) $)) (-15 -3387 ((-112) $ $))))) (T -429)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-429)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-429)))) (-4008 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1933 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) (-3387 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(-13 (-597 (-840)) (-10 -8 (-15 -4317 ($ (-1131))) (-15 -4317 ($ (-1149))) (-15 -4317 ((-1149) $)) (-15 -4317 ((-1076) $)) (-15 -4008 ((-112) $)) (-15 -1935 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -1934 ((-112) $)) (-15 -1933 ((-112) $)) (-15 -1932 ((-112) $)) (-15 -1931 ((-112) $)) (-15 -3387 ((-112) $ $)))) +((-1937 (((-3 (-400 (-1143 (-402 (-538)))) "failed") |#3|) 70)) (-1936 (((-400 |#3|) |#3|) 34)) (-1939 (((-3 (-400 (-1143 (-48))) "failed") |#3|) 46 (|has| |#2| (-1014 (-48))))) (-1938 (((-3 (|:| |overq| (-1143 (-402 (-538)))) (|:| |overan| (-1143 (-48))) (|:| -2970 (-112))) |#3|) 37))) +(((-430 |#1| |#2| |#3|) (-10 -7 (-15 -1936 ((-400 |#3|) |#3|)) (-15 -1937 ((-3 (-400 (-1143 (-402 (-538)))) "failed") |#3|)) (-15 -1938 ((-3 (|:| |overq| (-1143 (-402 (-538)))) (|:| |overan| (-1143 (-48))) (|:| -2970 (-112))) |#3|)) (IF (|has| |#2| (-1014 (-48))) (-15 -1939 ((-3 (-400 (-1143 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-545) (-827) (-1014 (-538))) (-416 |#1|) (-1207 |#2|)) (T -430)) +((-1939 (*1 *2 *3) (|partial| -12 (-4 *5 (-1014 (-48))) (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) (-5 *2 (-400 (-1143 (-48)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5)))) (-1938 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) (-5 *2 (-3 (|:| |overq| (-1143 (-402 (-538)))) (|:| |overan| (-1143 (-48))) (|:| -2970 (-112)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5)))) (-1937 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) (-5 *2 (-400 (-1143 (-402 (-538))))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5)))) (-1936 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) (-5 *2 (-400 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5))))) +(-10 -7 (-15 -1936 ((-400 |#3|) |#3|)) (-15 -1937 ((-3 (-400 (-1143 (-402 (-538)))) "failed") |#3|)) (-15 -1938 ((-3 (|:| |overq| (-1143 (-402 (-538)))) (|:| |overan| (-1143 (-48))) (|:| -2970 (-112))) |#3|)) (IF (|has| |#2| (-1014 (-48))) (-15 -1939 ((-3 (-400 (-1143 (-48))) "failed") |#3|)) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-1948 (((-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) $) 11)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1946 (($) 32)) (-1943 (($) 38)) (-1944 (($) 34)) (-1941 (($) 36)) (-1945 (($) 33)) (-1942 (($) 35)) (-1940 (($) 37)) (-1947 (((-112) $) 8)) (-2682 (((-622 (-922 (-538))) $) 19)) (-3884 (($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-1149)) (-112)) 27) (($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-922 (-538))) (-112)) 28)) (-4317 (((-840) $) 23) (($ (-429)) 29)) (-3387 (((-112) $ $) NIL))) +(((-431) (-13 (-1074) (-10 -8 (-15 -4317 ((-840) $)) (-15 -4317 ($ (-429))) (-15 -1948 ((-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) $)) (-15 -2682 ((-622 (-922 (-538))) $)) (-15 -1947 ((-112) $)) (-15 -3884 ($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-1149)) (-112))) (-15 -3884 ($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-922 (-538))) (-112))) (-15 -1946 ($)) (-15 -1945 ($)) (-15 -1944 ($)) (-15 -1943 ($)) (-15 -1942 ($)) (-15 -1941 ($)) (-15 -1940 ($))))) (T -431)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-431)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-431)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void"))) (-5 *1 (-431)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-622 (-922 (-538)))) (-5 *1 (-431)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-431)))) (-3884 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *3 (-622 (-1149))) (-5 *4 (-112)) (-5 *1 (-431)))) (-3884 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-112)) (-5 *1 (-431)))) (-1946 (*1 *1) (-5 *1 (-431))) (-1945 (*1 *1) (-5 *1 (-431))) (-1944 (*1 *1) (-5 *1 (-431))) (-1943 (*1 *1) (-5 *1 (-431))) (-1942 (*1 *1) (-5 *1 (-431))) (-1941 (*1 *1) (-5 *1 (-431))) (-1940 (*1 *1) (-5 *1 (-431)))) +(-13 (-1074) (-10 -8 (-15 -4317 ((-840) $)) (-15 -4317 ($ (-429))) (-15 -1948 ((-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) $)) (-15 -2682 ((-622 (-922 (-538))) $)) (-15 -1947 ((-112) $)) (-15 -3884 ($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-1149)) (-112))) (-15 -3884 ($ (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-622 (-922 (-538))) (-112))) (-15 -1946 ($)) (-15 -1945 ($)) (-15 -1944 ($)) (-15 -1943 ($)) (-15 -1942 ($)) (-15 -1941 ($)) (-15 -1940 ($)))) +((-2898 (((-112) $ $) NIL)) (-1813 (((-1131) $ (-1131)) NIL)) (-1817 (($ $ (-1131)) NIL)) (-1814 (((-1131) $) NIL)) (-1952 (((-383) (-383) (-383)) 17) (((-383) (-383)) 15)) (-1818 (($ (-383)) NIL) (($ (-383) (-1131)) NIL)) (-3905 (((-383) $) NIL)) (-3593 (((-1131) $) NIL)) (-1815 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1951 (((-1237) (-1131)) 9)) (-1950 (((-1237) (-1131)) 10)) (-1949 (((-1237)) 11)) (-4317 (((-840) $) NIL)) (-1816 (($ $) 35)) (-3387 (((-112) $ $) NIL))) +(((-432) (-13 (-360 (-383) (-1131)) (-10 -7 (-15 -1952 ((-383) (-383) (-383))) (-15 -1952 ((-383) (-383))) (-15 -1951 ((-1237) (-1131))) (-15 -1950 ((-1237) (-1131))) (-15 -1949 ((-1237)))))) (T -432)) +((-1952 (*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-432)))) (-1952 (*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-432)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-432)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-432)))) (-1949 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-432))))) +(-13 (-360 (-383) (-1131)) (-10 -7 (-15 -1952 ((-383) (-383) (-383))) (-15 -1952 ((-383) (-383))) (-15 -1951 ((-1237) (-1131))) (-15 -1950 ((-1237) (-1131))) (-15 -1949 ((-1237))))) +((-2898 (((-112) $ $) NIL)) (-3905 (((-1149) $) 8)) (-3593 (((-1131) $) 16)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 13))) +(((-433 |#1|) (-13 (-1074) (-10 -8 (-15 -3905 ((-1149) $)))) (-1149)) (T -433)) +((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-433 *3)) (-14 *3 *2)))) +(-13 (-1074) (-10 -8 (-15 -3905 ((-1149) $)))) +((-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8) (($ (-1231 (-679))) 14) (($ (-622 (-325))) 13) (($ (-325)) 12) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 11))) +(((-434) (-138)) (T -434)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-679))) (-4 *1 (-434)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-434)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-434))))) +(-13 (-391) (-10 -8 (-15 -4317 ($ (-1231 (-679)))) (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-325))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))))) +(((-597 (-840)) . T) ((-391) . T) ((-1185) . T)) +((-3508 (((-3 $ "failed") (-1231 (-309 (-373)))) 21) (((-3 $ "failed") (-1231 (-309 (-538)))) 19) (((-3 $ "failed") (-1231 (-922 (-373)))) 17) (((-3 $ "failed") (-1231 (-922 (-538)))) 15) (((-3 $ "failed") (-1231 (-402 (-922 (-373))))) 13) (((-3 $ "failed") (-1231 (-402 (-922 (-538))))) 11)) (-3507 (($ (-1231 (-309 (-373)))) 22) (($ (-1231 (-309 (-538)))) 20) (($ (-1231 (-922 (-373)))) 18) (($ (-1231 (-922 (-538)))) 16) (($ (-1231 (-402 (-922 (-373))))) 14) (($ (-1231 (-402 (-922 (-538))))) 12)) (-3739 (((-1237) $) 7)) (-4317 (((-840) $) 8) (($ (-622 (-325))) 25) (($ (-325)) 24) (($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) 23))) +(((-435) (-138)) (T -435)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-435)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-309 (-373)))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-309 (-373)))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-309 (-538)))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-309 (-538)))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-922 (-373)))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-922 (-373)))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-922 (-538)))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-922 (-538)))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-402 (-922 (-373))))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-402 (-922 (-373))))) (-4 *1 (-435)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-1231 (-402 (-922 (-538))))) (-4 *1 (-435)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-402 (-922 (-538))))) (-4 *1 (-435))))) +(-13 (-391) (-10 -8 (-15 -4317 ($ (-622 (-325)))) (-15 -4317 ($ (-325))) (-15 -4317 ($ (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325)))))) (-15 -3507 ($ (-1231 (-309 (-373))))) (-15 -3508 ((-3 $ "failed") (-1231 (-309 (-373))))) (-15 -3507 ($ (-1231 (-309 (-538))))) (-15 -3508 ((-3 $ "failed") (-1231 (-309 (-538))))) (-15 -3507 ($ (-1231 (-922 (-373))))) (-15 -3508 ((-3 $ "failed") (-1231 (-922 (-373))))) (-15 -3507 ($ (-1231 (-922 (-538))))) (-15 -3508 ((-3 $ "failed") (-1231 (-922 (-538))))) (-15 -3507 ($ (-1231 (-402 (-922 (-373)))))) (-15 -3508 ((-3 $ "failed") (-1231 (-402 (-922 (-373)))))) (-15 -3507 ($ (-1231 (-402 (-922 (-538)))))) (-15 -3508 ((-3 $ "failed") (-1231 (-402 (-922 (-538)))))))) +(((-597 (-840)) . T) ((-391) . T) ((-1185) . T)) +((-1958 (((-112)) 17)) (-1959 (((-112) (-112)) 18)) (-1960 (((-112)) 13)) (-1961 (((-112) (-112)) 14)) (-1963 (((-112)) 15)) (-1964 (((-112) (-112)) 16)) (-1955 (((-895) (-895)) 21) (((-895)) 20)) (-1956 (((-751) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538))))) 42)) (-1954 (((-895) (-895)) 23) (((-895)) 22)) (-1957 (((-2 (|:| -2908 (-538)) (|:| -2767 (-622 |#1|))) |#1|) 62)) (-1953 (((-400 |#1|) (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538))))))) 126)) (-4094 (((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112)) 152)) (-4093 (((-400 |#1|) |#1| (-751) (-751)) 165) (((-400 |#1|) |#1| (-622 (-751)) (-751)) 162) (((-400 |#1|) |#1| (-622 (-751))) 164) (((-400 |#1|) |#1| (-751)) 163) (((-400 |#1|) |#1|) 161)) (-1975 (((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751) (-112)) 167) (((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751)) 168) (((-3 |#1| "failed") (-895) |#1| (-622 (-751))) 170) (((-3 |#1| "failed") (-895) |#1| (-751)) 169) (((-3 |#1| "failed") (-895) |#1|) 171)) (-4092 (((-400 |#1|) |#1| (-751) (-751)) 160) (((-400 |#1|) |#1| (-622 (-751)) (-751)) 156) (((-400 |#1|) |#1| (-622 (-751))) 158) (((-400 |#1|) |#1| (-751)) 157) (((-400 |#1|) |#1|) 155)) (-1962 (((-112) |#1|) 37)) (-1974 (((-717 (-751)) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538))))) 67)) (-1965 (((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112) (-1070 (-751)) (-751)) 154))) +(((-436 |#1|) (-10 -7 (-15 -1953 ((-400 |#1|) (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))))) (-15 -1974 ((-717 (-751)) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))))) (-15 -1954 ((-895))) (-15 -1954 ((-895) (-895))) (-15 -1955 ((-895))) (-15 -1955 ((-895) (-895))) (-15 -1956 ((-751) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))))) (-15 -1957 ((-2 (|:| -2908 (-538)) (|:| -2767 (-622 |#1|))) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -1960 ((-112))) (-15 -1961 ((-112) (-112))) (-15 -1962 ((-112) |#1|)) (-15 -1963 ((-112))) (-15 -1964 ((-112) (-112))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4092 ((-400 |#1|) |#1| (-751))) (-15 -4092 ((-400 |#1|) |#1| (-622 (-751)))) (-15 -4092 ((-400 |#1|) |#1| (-622 (-751)) (-751))) (-15 -4092 ((-400 |#1|) |#1| (-751) (-751))) (-15 -4093 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1| (-751))) (-15 -4093 ((-400 |#1|) |#1| (-622 (-751)))) (-15 -4093 ((-400 |#1|) |#1| (-622 (-751)) (-751))) (-15 -4093 ((-400 |#1|) |#1| (-751) (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1|)) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751) (-112))) (-15 -4094 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112))) (-15 -1965 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112) (-1070 (-751)) (-751)))) (-1207 (-538))) (T -436)) +((-1965 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1070 (-751))) (-5 *6 (-751)) (-5 *2 (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4094 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1975 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) (-1975 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) (-1975 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) (-1975 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-895)) (-5 *4 (-751)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) (-1975 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-895)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) (-4093 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4093 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4093 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-751))) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4093 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4093 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-751))) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1964 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1963 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1962 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1960 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1959 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1958 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2908 (-538)) (|:| -2767 (-622 *3)))) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -4092 *4) (|:| -4307 (-538))))) (-4 *4 (-1207 (-538))) (-5 *2 (-751)) (-5 *1 (-436 *4)))) (-1955 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1955 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1954 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1954 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -4092 *4) (|:| -4307 (-538))))) (-4 *4 (-1207 (-538))) (-5 *2 (-717 (-751))) (-5 *1 (-436 *4)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| *4) (|:| -2487 (-538))))))) (-4 *4 (-1207 (-538))) (-5 *2 (-400 *4)) (-5 *1 (-436 *4))))) +(-10 -7 (-15 -1953 ((-400 |#1|) (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))))) (-15 -1974 ((-717 (-751)) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))))) (-15 -1954 ((-895))) (-15 -1954 ((-895) (-895))) (-15 -1955 ((-895))) (-15 -1955 ((-895) (-895))) (-15 -1956 ((-751) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))))) (-15 -1957 ((-2 (|:| -2908 (-538)) (|:| -2767 (-622 |#1|))) |#1|)) (-15 -1958 ((-112))) (-15 -1959 ((-112) (-112))) (-15 -1960 ((-112))) (-15 -1961 ((-112) (-112))) (-15 -1962 ((-112) |#1|)) (-15 -1963 ((-112))) (-15 -1964 ((-112) (-112))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4092 ((-400 |#1|) |#1| (-751))) (-15 -4092 ((-400 |#1|) |#1| (-622 (-751)))) (-15 -4092 ((-400 |#1|) |#1| (-622 (-751)) (-751))) (-15 -4092 ((-400 |#1|) |#1| (-751) (-751))) (-15 -4093 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1| (-751))) (-15 -4093 ((-400 |#1|) |#1| (-622 (-751)))) (-15 -4093 ((-400 |#1|) |#1| (-622 (-751)) (-751))) (-15 -4093 ((-400 |#1|) |#1| (-751) (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1|)) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751))) (-15 -1975 ((-3 |#1| "failed") (-895) |#1| (-622 (-751)) (-751) (-112))) (-15 -4094 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112))) (-15 -1965 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112) (-1070 (-751)) (-751)))) +((-1969 (((-538) |#2|) 48) (((-538) |#2| (-751)) 47)) (-1968 (((-538) |#2|) 55)) (-1970 ((|#3| |#2|) 25)) (-3467 ((|#3| |#2| (-895)) 14)) (-4193 ((|#3| |#2|) 15)) (-1971 ((|#3| |#2|) 9)) (-2933 ((|#3| |#2|) 10)) (-1967 ((|#3| |#2| (-895)) 62) ((|#3| |#2|) 30)) (-1966 (((-538) |#2|) 57))) +(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -1966 ((-538) |#2|)) (-15 -1967 (|#3| |#2|)) (-15 -1967 (|#3| |#2| (-895))) (-15 -1968 ((-538) |#2|)) (-15 -1969 ((-538) |#2| (-751))) (-15 -1969 ((-538) |#2|)) (-15 -3467 (|#3| |#2| (-895))) (-15 -1970 (|#3| |#2|)) (-15 -1971 (|#3| |#2|)) (-15 -2933 (|#3| |#2|)) (-15 -4193 (|#3| |#2|))) (-1025) (-1207 |#1|) (-13 (-399) (-1014 |#1|) (-358) (-1171) (-279))) (T -437)) +((-4193 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) (-2933 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) (-1971 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) (-1970 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1207 *5)))) (-1969 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))) (-1969 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *5 *3 *6)) (-4 *3 (-1207 *5)) (-4 *6 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))))) (-1968 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))))) (-1967 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1207 *5)))) (-1967 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) (-1966 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5)) (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))))) +(-10 -7 (-15 -1966 ((-538) |#2|)) (-15 -1967 (|#3| |#2|)) (-15 -1967 (|#3| |#2| (-895))) (-15 -1968 ((-538) |#2|)) (-15 -1969 ((-538) |#2| (-751))) (-15 -1969 ((-538) |#2|)) (-15 -3467 (|#3| |#2| (-895))) (-15 -1970 (|#3| |#2|)) (-15 -1971 (|#3| |#2|)) (-15 -2933 (|#3| |#2|)) (-15 -4193 (|#3| |#2|))) +((-3713 ((|#2| (-1231 |#1|)) 36)) (-1973 ((|#2| |#2| |#1|) 49)) (-1972 ((|#2| |#2| |#1|) 41)) (-2378 ((|#2| |#2|) 38)) (-3524 (((-112) |#2|) 30)) (-1976 (((-622 |#2|) (-895) (-400 |#2|)) 17)) (-1975 ((|#2| (-895) (-400 |#2|)) 21)) (-1974 (((-717 (-751)) (-400 |#2|)) 25))) +(((-438 |#1| |#2|) (-10 -7 (-15 -3524 ((-112) |#2|)) (-15 -3713 (|#2| (-1231 |#1|))) (-15 -2378 (|#2| |#2|)) (-15 -1972 (|#2| |#2| |#1|)) (-15 -1973 (|#2| |#2| |#1|)) (-15 -1974 ((-717 (-751)) (-400 |#2|))) (-15 -1975 (|#2| (-895) (-400 |#2|))) (-15 -1976 ((-622 |#2|) (-895) (-400 |#2|)))) (-1025) (-1207 |#1|)) (T -438)) +((-1976 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-400 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-1025)) (-5 *2 (-622 *6)) (-5 *1 (-438 *5 *6)))) (-1975 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-400 *2)) (-4 *2 (-1207 *5)) (-5 *1 (-438 *5 *2)) (-4 *5 (-1025)))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-1025)) (-5 *2 (-717 (-751))) (-5 *1 (-438 *4 *5)))) (-1973 (*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3)))) (-1972 (*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3)))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3)))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-1025)) (-4 *2 (-1207 *4)) (-5 *1 (-438 *4 *2)))) (-3524 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1207 *4))))) +(-10 -7 (-15 -3524 ((-112) |#2|)) (-15 -3713 (|#2| (-1231 |#1|))) (-15 -2378 (|#2| |#2|)) (-15 -1972 (|#2| |#2| |#1|)) (-15 -1973 (|#2| |#2| |#1|)) (-15 -1974 ((-717 (-751)) (-400 |#2|))) (-15 -1975 (|#2| (-895) (-400 |#2|))) (-15 -1976 ((-622 |#2|) (-895) (-400 |#2|)))) +((-1979 (((-751)) 41)) (-1983 (((-751)) 23 (|has| |#1| (-399))) (((-751) (-751)) 22 (|has| |#1| (-399)))) (-1982 (((-538) |#1|) 18 (|has| |#1| (-399)))) (-1981 (((-538) |#1|) 20 (|has| |#1| (-399)))) (-1978 (((-751)) 40) (((-751) (-751)) 39)) (-1977 ((|#1| (-751) (-538)) 29)) (-1980 (((-1237)) 43))) +(((-439 |#1|) (-10 -7 (-15 -1977 (|#1| (-751) (-538))) (-15 -1978 ((-751) (-751))) (-15 -1978 ((-751))) (-15 -1979 ((-751))) (-15 -1980 ((-1237))) (IF (|has| |#1| (-399)) (PROGN (-15 -1981 ((-538) |#1|)) (-15 -1982 ((-538) |#1|)) (-15 -1983 ((-751) (-751))) (-15 -1983 ((-751)))) |%noBranch|)) (-1025)) (T -439)) +((-1983 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-1983 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-1982 (*1 *2 *3) (-12 (-5 *2 (-538)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-1981 (*1 *2 *3) (-12 (-5 *2 (-538)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) (-1980 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-1979 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-1978 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) (-1977 (*1 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-538)) (-5 *1 (-439 *2)) (-4 *2 (-1025))))) +(-10 -7 (-15 -1977 (|#1| (-751) (-538))) (-15 -1978 ((-751) (-751))) (-15 -1978 ((-751))) (-15 -1979 ((-751))) (-15 -1980 ((-1237))) (IF (|has| |#1| (-399)) (PROGN (-15 -1981 ((-538) |#1|)) (-15 -1982 ((-538) |#1|)) (-15 -1983 ((-751) (-751))) (-15 -1983 ((-751)))) |%noBranch|)) +((-1984 (((-622 (-538)) (-538)) 61)) (-4086 (((-112) (-166 (-538))) 65)) (-4092 (((-400 (-166 (-538))) (-166 (-538))) 60))) +(((-440) (-10 -7 (-15 -4092 ((-400 (-166 (-538))) (-166 (-538)))) (-15 -1984 ((-622 (-538)) (-538))) (-15 -4086 ((-112) (-166 (-538)))))) (T -440)) +((-4086 (*1 *2 *3) (-12 (-5 *3 (-166 (-538))) (-5 *2 (-112)) (-5 *1 (-440)))) (-1984 (*1 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-440)) (-5 *3 (-538)))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 (-166 (-538)))) (-5 *1 (-440)) (-5 *3 (-166 (-538)))))) +(-10 -7 (-15 -4092 ((-400 (-166 (-538))) (-166 (-538)))) (-15 -1984 ((-622 (-538)) (-538))) (-15 -4086 ((-112) (-166 (-538))))) +((-3279 ((|#4| |#4| (-622 |#4|)) 22 (|has| |#1| (-358)))) (-2335 (((-622 |#4|) (-622 |#4|) (-1131) (-1131)) 41) (((-622 |#4|) (-622 |#4|) (-1131)) 40) (((-622 |#4|) (-622 |#4|)) 35))) +(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2335 ((-622 |#4|) (-622 |#4|))) (-15 -2335 ((-622 |#4|) (-622 |#4|) (-1131))) (-15 -2335 ((-622 |#4|) (-622 |#4|) (-1131) (-1131))) (IF (|has| |#1| (-358)) (-15 -3279 (|#4| |#4| (-622 |#4|))) |%noBranch|)) (-446) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -441)) +((-3279 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-358)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *2)))) (-2335 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2335 (*1 *2 *2 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-441 *3 *4 *5 *6))))) +(-10 -7 (-15 -2335 ((-622 |#4|) (-622 |#4|))) (-15 -2335 ((-622 |#4|) (-622 |#4|) (-1131))) (-15 -2335 ((-622 |#4|) (-622 |#4|) (-1131) (-1131))) (IF (|has| |#1| (-358)) (-15 -3279 (|#4| |#4| (-622 |#4|))) |%noBranch|)) +((-1985 ((|#4| |#4| (-622 |#4|)) 61)) (-1986 (((-622 |#4|) (-622 |#4|) (-1131) (-1131)) 17) (((-622 |#4|) (-622 |#4|) (-1131)) 16) (((-622 |#4|) (-622 |#4|)) 11))) +(((-442 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1985 (|#4| |#4| (-622 |#4|))) (-15 -1986 ((-622 |#4|) (-622 |#4|))) (-15 -1986 ((-622 |#4|) (-622 |#4|) (-1131))) (-15 -1986 ((-622 |#4|) (-622 |#4|) (-1131) (-1131)))) (-302) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -442)) +((-1986 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1986 (*1 *2 *2 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *7)))) (-1986 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-442 *3 *4 *5 *6)))) (-1985 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *2))))) +(-10 -7 (-15 -1985 (|#4| |#4| (-622 |#4|))) (-15 -1986 ((-622 |#4|) (-622 |#4|))) (-15 -1986 ((-622 |#4|) (-622 |#4|) (-1131))) (-15 -1986 ((-622 |#4|) (-622 |#4|) (-1131) (-1131)))) +((-1988 (((-622 (-622 |#4|)) (-622 |#4|) (-112)) 73) (((-622 (-622 |#4|)) (-622 |#4|)) 72) (((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|) (-112)) 66) (((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|)) 67)) (-1987 (((-622 (-622 |#4|)) (-622 |#4|) (-112)) 42) (((-622 (-622 |#4|)) (-622 |#4|)) 63))) +(((-443 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1987 ((-622 (-622 |#4|)) (-622 |#4|))) (-15 -1987 ((-622 (-622 |#4|)) (-622 |#4|) (-112))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|) (-112))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-112)))) (-13 (-302) (-145)) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -443)) +((-1988 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-622 *8)))) (-1988 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-1988 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-622 *8)))) (-1988 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-1987 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8)) (-5 *3 (-622 *8)))) (-1987 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7)) (-5 *3 (-622 *7))))) +(-10 -7 (-15 -1987 ((-622 (-622 |#4|)) (-622 |#4|))) (-15 -1987 ((-622 (-622 |#4|)) (-622 |#4|) (-112))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-622 |#4|) (-112))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|))) (-15 -1988 ((-622 (-622 |#4|)) (-622 |#4|) (-112)))) +((-2012 (((-751) |#4|) 12)) (-2000 (((-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|))) |#4| (-751) (-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|)))) 31)) (-2002 (((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2001 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1990 ((|#4| |#4| (-622 |#4|)) 40)) (-1998 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-622 |#4|)) 70)) (-2005 (((-1237) |#4|) 42)) (-2008 (((-1237) (-622 |#4|)) 51)) (-2006 (((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538)) 48)) (-2009 (((-1237) (-538)) 79)) (-2003 (((-622 |#4|) (-622 |#4|)) 77)) (-2011 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|)) |#4| (-751)) 25)) (-2004 (((-538) |#4|) 78)) (-1999 ((|#4| |#4|) 29)) (-1991 (((-622 |#4|) (-622 |#4|) (-538) (-538)) 56)) (-2007 (((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538) (-538)) 89)) (-2010 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-1992 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-1997 (((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1996 (((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1993 (((-112) |#2| |#2|) 57)) (-1995 (((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1994 (((-112) |#2| |#2| |#2| |#2|) 60)) (-1989 ((|#4| |#4| (-622 |#4|)) 71))) +(((-444 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1989 (|#4| |#4| (-622 |#4|))) (-15 -1990 (|#4| |#4| (-622 |#4|))) (-15 -1991 ((-622 |#4|) (-622 |#4|) (-538) (-538))) (-15 -1992 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1993 ((-112) |#2| |#2|)) (-15 -1994 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1995 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1996 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1997 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-622 |#4|))) (-15 -1999 (|#4| |#4|)) (-15 -2000 ((-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|))) |#4| (-751) (-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|))))) (-15 -2001 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2002 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2003 ((-622 |#4|) (-622 |#4|))) (-15 -2004 ((-538) |#4|)) (-15 -2005 ((-1237) |#4|)) (-15 -2006 ((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538))) (-15 -2007 ((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538) (-538))) (-15 -2008 ((-1237) (-622 |#4|))) (-15 -2009 ((-1237) (-538))) (-15 -2010 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2011 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|)) |#4| (-751))) (-15 -2012 ((-751) |#4|))) (-446) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -444)) +((-2012 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))) (-2011 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-751)) (|:| -2120 *4))) (-5 *5 (-751)) (-4 *4 (-926 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-444 *6 *7 *8 *4)))) (-2010 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-773)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-444 *4 *5 *6 *7)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-538)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-444 *4 *5 *6 *7)))) (-2007 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-773)) (-4 *4 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) (-5 *1 (-444 *5 *6 *7 *4)))) (-2006 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-773)) (-4 *4 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) (-5 *1 (-444 *5 *6 *7 *4)))) (-2005 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))) (-2004 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-538)) (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))) (-2003 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6)))) (-2002 (*1 *2 *2 *2) (-12 (-5 *2 (-622 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-773)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6)))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-773)) (-4 *2 (-926 *4 *5 *6)) (-5 *1 (-444 *4 *5 *6 *2)) (-4 *4 (-446)) (-4 *6 (-827)))) (-2000 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 *3)))) (-5 *4 (-751)) (-4 *3 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-444 *5 *6 *7 *3)))) (-1999 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *2)) (-4 *2 (-926 *3 *4 *5)))) (-1998 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-444 *5 *6 *7 *3)))) (-1997 (*1 *2 *3 *2) (-12 (-5 *2 (-622 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-773)) (-4 *6 (-926 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-827)) (-5 *1 (-444 *4 *3 *5 *6)))) (-1996 (*1 *2 *2) (-12 (-5 *2 (-622 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-773)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6)))) (-1995 (*1 *2 *3 *2) (-12 (-5 *2 (-622 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-773)) (-4 *3 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *3)))) (-1994 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-926 *4 *3 *5)))) (-1993 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-926 *4 *3 *5)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-773)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-444 *4 *5 *6 *7)))) (-1991 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-538)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *7)))) (-1990 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *2)))) (-1989 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *2))))) +(-10 -7 (-15 -1989 (|#4| |#4| (-622 |#4|))) (-15 -1990 (|#4| |#4| (-622 |#4|))) (-15 -1991 ((-622 |#4|) (-622 |#4|) (-538) (-538))) (-15 -1992 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1993 ((-112) |#2| |#2|)) (-15 -1994 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1995 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1996 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1997 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1998 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-622 |#4|))) (-15 -1999 (|#4| |#4|)) (-15 -2000 ((-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|))) |#4| (-751) (-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|))))) (-15 -2001 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2002 ((-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-622 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2003 ((-622 |#4|) (-622 |#4|))) (-15 -2004 ((-538) |#4|)) (-15 -2005 ((-1237) |#4|)) (-15 -2006 ((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538))) (-15 -2007 ((-538) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-538) (-538) (-538) (-538))) (-15 -2008 ((-1237) (-622 |#4|))) (-15 -2009 ((-1237) (-538))) (-15 -2010 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2011 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-751)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-751)) (|:| -2120 |#4|)) |#4| (-751))) (-15 -2012 ((-751) |#4|))) +((-2013 (($ $ $) 14) (($ (-622 $)) 21)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 41)) (-3495 (($ $ $) NIL) (($ (-622 $)) 22))) +(((-445 |#1|) (-10 -8 (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2013 (|#1| (-622 |#1|))) (-15 -2013 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|))) (-446)) (T -445)) +NIL +(-10 -8 (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -2013 (|#1| (-622 |#1|))) (-15 -2013 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -3495 (|#1| |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3820 (((-3 $ "failed") $ $) 40)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-446) (-138)) (T -446)) +((-3495 (*1 *1 *1 *1) (-4 *1 (-446))) (-3495 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-446)))) (-2013 (*1 *1 *1 *1) (-4 *1 (-446))) (-2013 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-446)))) (-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-446))))) +(-13 (-545) (-10 -8 (-15 -3495 ($ $ $)) (-15 -3495 ($ (-622 $))) (-15 -2013 ($ $ $)) (-15 -2013 ($ (-622 $))) (-15 -3041 ((-1143 $) (-1143 $) (-1143 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1892 (((-3 $ #1="failed")) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3574 (((-1231 (-669 (-402 (-922 |#1|)))) (-1231 $)) NIL) (((-1231 (-669 (-402 (-922 |#1|))))) NIL)) (-1845 (((-1231 $)) NIL)) (-3896 (($) NIL T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed")) NIL)) (-1819 (((-3 $ #1#)) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-1907 (((-669 (-402 (-922 |#1|))) (-1231 $)) NIL) (((-669 (-402 (-922 |#1|)))) NIL)) (-1843 (((-402 (-922 |#1|)) $) NIL)) (-1905 (((-669 (-402 (-922 |#1|))) $ (-1231 $)) NIL) (((-669 (-402 (-922 |#1|))) $) NIL)) (-2496 (((-3 $ #1#) $) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-2022 (((-1143 (-922 (-402 (-922 |#1|))))) NIL (|has| (-402 (-922 |#1|)) (-358))) (((-1143 (-402 (-922 |#1|)))) 84 (|has| |#1| (-545)))) (-2499 (($ $ (-895)) NIL)) (-1841 (((-402 (-922 |#1|)) $) NIL)) (-1821 (((-1143 (-402 (-922 |#1|))) $) 82 (|has| (-402 (-922 |#1|)) (-545)))) (-1909 (((-402 (-922 |#1|)) (-1231 $)) NIL) (((-402 (-922 |#1|))) NIL)) (-1839 (((-1143 (-402 (-922 |#1|))) $) NIL)) (-1833 (((-112)) NIL)) (-1911 (($ (-1231 (-402 (-922 |#1|))) (-1231 $)) 103) (($ (-1231 (-402 (-922 |#1|)))) NIL)) (-3821 (((-3 $ #1#) $) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-3444 (((-895)) NIL)) (-1830 (((-112)) NIL)) (-2524 (($ $ (-895)) NIL)) (-1826 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-1828 (((-112)) NIL)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed")) NIL)) (-1820 (((-3 $ #1#)) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-1908 (((-669 (-402 (-922 |#1|))) (-1231 $)) NIL) (((-669 (-402 (-922 |#1|)))) NIL)) (-1844 (((-402 (-922 |#1|)) $) NIL)) (-1906 (((-669 (-402 (-922 |#1|))) $ (-1231 $)) NIL) (((-669 (-402 (-922 |#1|))) $) NIL)) (-2497 (((-3 $ #1#) $) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-2026 (((-1143 (-922 (-402 (-922 |#1|))))) NIL (|has| (-402 (-922 |#1|)) (-358))) (((-1143 (-402 (-922 |#1|)))) 83 (|has| |#1| (-545)))) (-2498 (($ $ (-895)) NIL)) (-1842 (((-402 (-922 |#1|)) $) NIL)) (-1822 (((-1143 (-402 (-922 |#1|))) $) 77 (|has| (-402 (-922 |#1|)) (-545)))) (-1910 (((-402 (-922 |#1|)) (-1231 $)) NIL) (((-402 (-922 |#1|))) NIL)) (-1840 (((-1143 (-402 (-922 |#1|))) $) NIL)) (-1834 (((-112)) NIL)) (-3593 (((-1131) $) NIL)) (-1825 (((-112)) NIL)) (-1827 (((-112)) NIL)) (-1829 (((-112)) NIL)) (-3594 (((-1093) $) NIL)) (-2016 (((-402 (-922 |#1|)) $ $) 71 (|has| |#1| (-545)))) (-2020 (((-402 (-922 |#1|)) $) 93 (|has| |#1| (-545)))) (-2019 (((-402 (-922 |#1|)) $) 95 (|has| |#1| (-545)))) (-2021 (((-1143 (-402 (-922 |#1|))) $) 88 (|has| |#1| (-545)))) (-2015 (((-402 (-922 |#1|))) 72 (|has| |#1| (-545)))) (-2018 (((-402 (-922 |#1|)) $ $) 64 (|has| |#1| (-545)))) (-2024 (((-402 (-922 |#1|)) $) 92 (|has| |#1| (-545)))) (-2023 (((-402 (-922 |#1|)) $) 94 (|has| |#1| (-545)))) (-2025 (((-1143 (-402 (-922 |#1|))) $) 87 (|has| |#1| (-545)))) (-2017 (((-402 (-922 |#1|))) 68 (|has| |#1| (-545)))) (-2027 (($) 101) (($ (-1149)) 107) (($ (-1231 (-1149))) 106) (($ (-1231 $)) 96) (($ (-1149) (-1231 $)) 105) (($ (-1231 (-1149)) (-1231 $)) 104)) (-1832 (((-112)) NIL)) (-4159 (((-402 (-922 |#1|)) $ (-538)) NIL)) (-3575 (((-1231 (-402 (-922 |#1|))) $ (-1231 $)) 98) (((-669 (-402 (-922 |#1|))) (-1231 $) (-1231 $)) NIL) (((-1231 (-402 (-922 |#1|))) $) 40) (((-669 (-402 (-922 |#1|))) (-1231 $)) NIL)) (-4330 (((-1231 (-402 (-922 |#1|))) $) NIL) (($ (-1231 (-402 (-922 |#1|)))) 37)) (-2014 (((-622 (-922 (-402 (-922 |#1|)))) (-1231 $)) NIL) (((-622 (-922 (-402 (-922 |#1|))))) NIL) (((-622 (-922 |#1|)) (-1231 $)) 99 (|has| |#1| (-545))) (((-622 (-922 |#1|))) 100 (|has| |#1| (-545)))) (-2686 (($ $ $) NIL)) (-1838 (((-112)) NIL)) (-4317 (((-840) $) NIL) (($ (-1231 (-402 (-922 |#1|)))) NIL)) (-2128 (((-1231 $)) 60)) (-1823 (((-622 (-1231 (-402 (-922 |#1|))))) NIL (|has| (-402 (-922 |#1|)) (-545)))) (-2687 (($ $ $ $) NIL)) (-1836 (((-112)) NIL)) (-2880 (($ (-669 (-402 (-922 |#1|))) $) NIL)) (-2685 (($ $ $) NIL)) (-1837 (((-112)) NIL)) (-1835 (((-112)) NIL)) (-1831 (((-112)) NIL)) (-2991 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) 97)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 56) (($ $ (-402 (-922 |#1|))) NIL) (($ (-402 (-922 |#1|)) $) NIL) (($ (-1115 |#2| (-402 (-922 |#1|))) $) NIL))) +(((-447 |#1| |#2| |#3| |#4|) (-13 (-413 (-402 (-922 |#1|))) (-628 (-1115 |#2| (-402 (-922 |#1|)))) (-10 -8 (-15 -4317 ($ (-1231 (-402 (-922 |#1|))))) (-15 -2029 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -2028 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -2027 ($)) (-15 -2027 ($ (-1149))) (-15 -2027 ($ (-1231 (-1149)))) (-15 -2027 ($ (-1231 $))) (-15 -2027 ($ (-1149) (-1231 $))) (-15 -2027 ($ (-1231 (-1149)) (-1231 $))) (IF (|has| |#1| (-545)) (PROGN (-15 -2026 ((-1143 (-402 (-922 |#1|))))) (-15 -2025 ((-1143 (-402 (-922 |#1|))) $)) (-15 -2024 ((-402 (-922 |#1|)) $)) (-15 -2023 ((-402 (-922 |#1|)) $)) (-15 -2022 ((-1143 (-402 (-922 |#1|))))) (-15 -2021 ((-1143 (-402 (-922 |#1|))) $)) (-15 -2020 ((-402 (-922 |#1|)) $)) (-15 -2019 ((-402 (-922 |#1|)) $)) (-15 -2018 ((-402 (-922 |#1|)) $ $)) (-15 -2017 ((-402 (-922 |#1|)))) (-15 -2016 ((-402 (-922 |#1|)) $ $)) (-15 -2015 ((-402 (-922 |#1|)))) (-15 -2014 ((-622 (-922 |#1|)) (-1231 $))) (-15 -2014 ((-622 (-922 |#1|))))) |%noBranch|))) (-170) (-895) (-622 (-1149)) (-1231 (-669 |#1|))) (T -447)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1231 (-402 (-922 *3)))) (-4 *3 (-170)) (-14 *6 (-1231 (-669 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))))) (-2029 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -2128 (-622 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2028 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-447 *3 *4 *5 *6)) (|:| -2128 (-622 (-447 *3 *4 *5 *6))))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2027 (*1 *1) (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-895)) (-14 *4 (-622 (-1149))) (-14 *5 (-1231 (-669 *2))))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 *2)) (-14 *6 (-1231 (-669 *3))))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1231 (-1149))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1231 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2027 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-622 *2)) (-14 *7 (-1231 (-669 *4))))) (-2027 (*1 *1 *2 *3) (-12 (-5 *2 (-1231 (-1149))) (-5 *3 (-1231 (-447 *4 *5 *6 *7))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-622 (-1149))) (-14 *7 (-1231 (-669 *4))))) (-2026 (*1 *2) (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2022 (*1 *2) (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2018 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2017 (*1 *2) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2016 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2015 (*1 *2) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1231 (-447 *4 *5 *6 *7))) (-5 *2 (-622 (-922 *4))) (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-545)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-622 (-1149))) (-14 *7 (-1231 (-669 *4))))) (-2014 (*1 *2) (-12 (-5 *2 (-622 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3)))))) +(-13 (-413 (-402 (-922 |#1|))) (-628 (-1115 |#2| (-402 (-922 |#1|)))) (-10 -8 (-15 -4317 ($ (-1231 (-402 (-922 |#1|))))) (-15 -2029 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -2028 ((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) "failed"))) (-15 -2027 ($)) (-15 -2027 ($ (-1149))) (-15 -2027 ($ (-1231 (-1149)))) (-15 -2027 ($ (-1231 $))) (-15 -2027 ($ (-1149) (-1231 $))) (-15 -2027 ($ (-1231 (-1149)) (-1231 $))) (IF (|has| |#1| (-545)) (PROGN (-15 -2026 ((-1143 (-402 (-922 |#1|))))) (-15 -2025 ((-1143 (-402 (-922 |#1|))) $)) (-15 -2024 ((-402 (-922 |#1|)) $)) (-15 -2023 ((-402 (-922 |#1|)) $)) (-15 -2022 ((-1143 (-402 (-922 |#1|))))) (-15 -2021 ((-1143 (-402 (-922 |#1|))) $)) (-15 -2020 ((-402 (-922 |#1|)) $)) (-15 -2019 ((-402 (-922 |#1|)) $)) (-15 -2018 ((-402 (-922 |#1|)) $ $)) (-15 -2017 ((-402 (-922 |#1|)))) (-15 -2016 ((-402 (-922 |#1|)) $ $)) (-15 -2015 ((-402 (-922 |#1|)))) (-15 -2014 ((-622 (-922 |#1|)) (-1231 $))) (-15 -2014 ((-622 (-922 |#1|))))) |%noBranch|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 13)) (-3417 (((-622 (-841 |#1|)) $) 75)) (-3419 (((-1143 $) $ (-841 |#1|)) 46) (((-1143 |#2|) $) 118)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-2178 (($ $) NIL (|has| |#2| (-545)))) (-2176 (((-112) $) NIL (|has| |#2| (-545)))) (-3152 (((-751) $) 21) (((-751) $ (-622 (-841 |#1|))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL (|has| |#2| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) 44) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-841 |#1|) #2#) $) NIL)) (-3507 ((|#2| $) 42) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-841 |#1|) $) NIL)) (-4116 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-2059 (($ $ (-622 (-538))) 80)) (-4319 (($ $) 68)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#2| (-886)))) (-1721 (($ $ |#2| |#3| $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) 58)) (-3420 (($ (-1143 |#2|) (-841 |#1|)) 123) (($ (-1143 $) (-841 |#1|)) 52)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) 59)) (-3226 (($ |#2| |#3|) 28) (($ $ (-841 |#1|) (-751)) 30) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-841 |#1|)) NIL)) (-3153 ((|#3| $) NIL) (((-751) $ (-841 |#1|)) 50) (((-622 (-751)) $ (-622 (-841 |#1|))) 57)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-1722 (($ (-1 |#3| |#3|) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-3418 (((-3 (-841 |#1|) #3="failed") $) 39)) (-3227 (($ $) NIL)) (-3525 ((|#2| $) 41)) (-2013 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -2493 (-751))) #3#) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) 40)) (-1915 ((|#2| $) 116)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) 128 (|has| |#2| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-886)))) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-841 |#1|) |#2|) 87) (($ $ (-622 (-841 |#1|)) (-622 |#2|)) 90) (($ $ (-841 |#1|) $) 85) (($ $ (-622 (-841 |#1|)) (-622 $)) 106)) (-4117 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4170 (($ $ (-841 |#1|)) 53) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4307 ((|#3| $) 67) (((-751) $ (-841 |#1|)) 37) (((-622 (-751)) $ (-622 (-841 |#1|))) 56)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-841 |#1|) (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#2| $) 125 (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4317 (((-840) $) 145) (($ (-538)) NIL) (($ |#2|) 86) (($ (-841 |#1|)) 31) (($ (-402 (-538))) NIL (-3891 (|has| |#2| (-38 (-402 (-538)))) (|has| |#2| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#2| (-545)))) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ |#3|) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#2| (-545)))) (-2991 (($) 17 T CONST)) (-2997 (($) 25 T CONST)) (-3002 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ |#2|) 64 (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 111)) (** (($ $ (-895)) NIL) (($ $ (-751)) 109)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 29) (($ $ (-402 (-538))) NIL (|has| |#2| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#2| (-38 (-402 (-538))))) (($ |#2| $) 63) (($ $ |#2|) NIL))) +(((-448 |#1| |#2| |#3|) (-13 (-926 |#2| |#3| (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538)))))) (-622 (-1149)) (-1025) (-234 (-4316 |#1|) (-751))) (T -448)) +((-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-14 *3 (-622 (-1149))) (-5 *1 (-448 *3 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-234 (-4316 *3) (-751)))))) +(-13 (-926 |#2| |#3| (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538)))))) +((-2033 (((-112) |#1| (-622 |#2|)) 69)) (-2031 (((-3 (-1231 (-622 |#2|)) "failed") (-751) |#1| (-622 |#2|)) 78)) (-2032 (((-3 (-622 |#2|) "failed") |#2| |#1| (-1231 (-622 |#2|))) 80)) (-2152 ((|#2| |#2| |#1|) 28)) (-2030 (((-751) |#2| (-622 |#2|)) 20))) +(((-449 |#1| |#2|) (-10 -7 (-15 -2152 (|#2| |#2| |#1|)) (-15 -2030 ((-751) |#2| (-622 |#2|))) (-15 -2031 ((-3 (-1231 (-622 |#2|)) "failed") (-751) |#1| (-622 |#2|))) (-15 -2032 ((-3 (-622 |#2|) "failed") |#2| |#1| (-1231 (-622 |#2|)))) (-15 -2033 ((-112) |#1| (-622 |#2|)))) (-302) (-1207 |#1|)) (T -449)) +((-2033 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *5)) (-4 *5 (-1207 *3)) (-4 *3 (-302)) (-5 *2 (-112)) (-5 *1 (-449 *3 *5)))) (-2032 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1231 (-622 *3))) (-4 *4 (-302)) (-5 *2 (-622 *3)) (-5 *1 (-449 *4 *3)) (-4 *3 (-1207 *4)))) (-2031 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-302)) (-4 *6 (-1207 *4)) (-5 *2 (-1231 (-622 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-622 *6)))) (-2030 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-302)) (-5 *2 (-751)) (-5 *1 (-449 *5 *3)))) (-2152 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1207 *3))))) +(-10 -7 (-15 -2152 (|#2| |#2| |#1|)) (-15 -2030 ((-751) |#2| (-622 |#2|))) (-15 -2031 ((-3 (-1231 (-622 |#2|)) "failed") (-751) |#1| (-622 |#2|))) (-15 -2032 ((-3 (-622 |#2|) "failed") |#2| |#1| (-1231 (-622 |#2|)))) (-15 -2033 ((-112) |#1| (-622 |#2|)))) +((-4092 (((-400 |#5|) |#5|) 24))) +(((-450 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4092 ((-400 |#5|) |#5|))) (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149))))) (-773) (-545) (-545) (-926 |#4| |#2| |#1|)) (T -450)) +((-4092 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149)))))) (-4 *5 (-773)) (-4 *7 (-545)) (-5 *2 (-400 *3)) (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-545)) (-4 *3 (-926 *7 *5 *4))))) +(-10 -7 (-15 -4092 ((-400 |#5|) |#5|))) +((-3033 ((|#3|) 37)) (-3041 (((-1143 |#4|) (-1143 |#4|) (-1143 |#4|)) 33))) +(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3041 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3033 (|#3|))) (-773) (-827) (-886) (-926 |#3| |#1| |#2|)) (T -451)) +((-3033 (*1 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-886)) (-5 *1 (-451 *3 *4 *2 *5)) (-4 *5 (-926 *2 *3 *4)))) (-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-886)) (-5 *1 (-451 *3 *4 *5 *6))))) +(-10 -7 (-15 -3041 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3033 (|#3|))) +((-4092 (((-400 (-1143 |#1|)) (-1143 |#1|)) 43))) +(((-452 |#1|) (-10 -7 (-15 -4092 ((-400 (-1143 |#1|)) (-1143 |#1|)))) (-302)) (T -452)) +((-4092 (*1 *2 *3) (-12 (-4 *4 (-302)) (-5 *2 (-400 (-1143 *4))) (-5 *1 (-452 *4)) (-5 *3 (-1143 *4))))) +(-10 -7 (-15 -4092 ((-400 (-1143 |#1|)) (-1143 |#1|)))) +((-4089 (((-51) |#2| (-1149) (-288 |#2|) (-1198 (-751))) 42) (((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-751))) 41) (((-51) |#2| (-1149) (-288 |#2|)) 35) (((-51) (-1 |#2| (-538)) (-288 |#2|)) 28)) (-4178 (((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))) 80) (((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))) 79) (((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538))) 78) (((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538))) 77) (((-51) |#2| (-1149) (-288 |#2|)) 72) (((-51) (-1 |#2| (-538)) (-288 |#2|)) 71)) (-4141 (((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))) 66) (((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))) 64)) (-4138 (((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538))) 48) (((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538))) 47))) +(((-453 |#1| |#2|) (-10 -7 (-15 -4089 ((-51) (-1 |#2| (-538)) (-288 |#2|))) (-15 -4089 ((-51) |#2| (-1149) (-288 |#2|))) (-15 -4089 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-751)))) (-15 -4089 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-751)))) (-15 -4138 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538)))) (-15 -4138 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538)))) (-15 -4141 ((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4141 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4178 ((-51) (-1 |#2| (-538)) (-288 |#2|))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|))) (-15 -4178 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538)))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538)))) (-15 -4178 ((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))))) (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -453)) +((-4178 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-402 (-538)))) (-5 *7 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *8))) (-4 *8 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *8 *3)))) (-4178 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-538)))) (-5 *4 (-288 *8)) (-5 *5 (-1198 (-402 (-538)))) (-5 *6 (-402 (-538))) (-4 *8 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *7 *8)))) (-4178 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *7 *3)))) (-4178 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-538))) (-4 *7 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *6 *7)))) (-4178 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *6 *3)))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-538))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *5 *6)))) (-4141 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-402 (-538)))) (-5 *7 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *8))) (-4 *8 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *8 *3)))) (-4141 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-402 (-538)))) (-5 *4 (-288 *8)) (-5 *5 (-1198 (-402 (-538)))) (-5 *6 (-402 (-538))) (-4 *8 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *7 *8)))) (-4138 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *7 *3)))) (-4138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-538))) (-4 *7 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *6 *7)))) (-4089 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-751))) (-4 *3 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *7 *3)))) (-4089 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-751))) (-4 *7 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *6 *7)))) (-4089 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *6 *3)))) (-4089 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-538))) (-5 *4 (-288 *6)) (-4 *6 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) (-5 *1 (-453 *5 *6))))) +(-10 -7 (-15 -4089 ((-51) (-1 |#2| (-538)) (-288 |#2|))) (-15 -4089 ((-51) |#2| (-1149) (-288 |#2|))) (-15 -4089 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-751)))) (-15 -4089 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-751)))) (-15 -4138 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538)))) (-15 -4138 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538)))) (-15 -4141 ((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4141 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4178 ((-51) (-1 |#2| (-538)) (-288 |#2|))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|))) (-15 -4178 ((-51) (-1 |#2| (-538)) (-288 |#2|) (-1198 (-538)))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-538)))) (-15 -4178 ((-51) (-1 |#2| (-402 (-538))) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538)))) (-15 -4178 ((-51) |#2| (-1149) (-288 |#2|) (-1198 (-402 (-538))) (-402 (-538))))) +((-2152 ((|#2| |#2| |#1|) 15)) (-2035 (((-622 |#2|) |#2| (-622 |#2|) |#1| (-895)) 69)) (-2034 (((-2 (|:| |plist| (-622 |#2|)) (|:| |modulo| |#1|)) |#2| (-622 |#2|) |#1| (-895)) 60))) +(((-454 |#1| |#2|) (-10 -7 (-15 -2034 ((-2 (|:| |plist| (-622 |#2|)) (|:| |modulo| |#1|)) |#2| (-622 |#2|) |#1| (-895))) (-15 -2035 ((-622 |#2|) |#2| (-622 |#2|) |#1| (-895))) (-15 -2152 (|#2| |#2| |#1|))) (-302) (-1207 |#1|)) (T -454)) +((-2152 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1207 *3)))) (-2035 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-622 *3)) (-5 *5 (-895)) (-4 *3 (-1207 *4)) (-4 *4 (-302)) (-5 *1 (-454 *4 *3)))) (-2034 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-895)) (-4 *5 (-302)) (-4 *3 (-1207 *5)) (-5 *2 (-2 (|:| |plist| (-622 *3)) (|:| |modulo| *5))) (-5 *1 (-454 *5 *3)) (-5 *4 (-622 *3))))) +(-10 -7 (-15 -2034 ((-2 (|:| |plist| (-622 |#2|)) (|:| |modulo| |#1|)) |#2| (-622 |#2|) |#1| (-895))) (-15 -2035 ((-622 |#2|) |#2| (-622 |#2|) |#1| (-895))) (-15 -2152 (|#2| |#2| |#1|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 28)) (-4070 (($ |#3|) 25)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) 32)) (-2036 (($ |#2| |#4| $) 33)) (-3226 (($ |#2| (-694 |#3| |#4| |#5|)) 24)) (-3227 (((-694 |#3| |#4| |#5|) $) 15)) (-2038 ((|#3| $) 19)) (-2039 ((|#4| $) 17)) (-3525 ((|#2| $) 29)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2037 (($ |#2| |#3| |#4|) 26)) (-2991 (($) 36 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 34)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-455 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-698 |#6|) (-698 |#2|) (-10 -8 (-15 -3525 (|#2| $)) (-15 -3227 ((-694 |#3| |#4| |#5|) $)) (-15 -2039 (|#4| $)) (-15 -2038 (|#3| $)) (-15 -4319 ($ $)) (-15 -3226 ($ |#2| (-694 |#3| |#4| |#5|))) (-15 -4070 ($ |#3|)) (-15 -2037 ($ |#2| |#3| |#4|)) (-15 -2036 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-622 (-1149)) (-170) (-827) (-234 (-4316 |#1|) (-751)) (-1 (-112) (-2 (|:| -2492 |#3|) (|:| -2493 |#4|)) (-2 (|:| -2492 |#3|) (|:| -2493 |#4|))) (-926 |#2| |#4| (-841 |#1|))) (T -455)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-4316 *3) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6)) (-2 (|:| -2492 *5) (|:| -2493 *6)))) (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-827)) (-4 *2 (-926 *4 *6 (-841 *3))))) (-3525 (*1 *2 *1) (-12 (-14 *3 (-622 (-1149))) (-4 *5 (-234 (-4316 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *4) (|:| -2493 *5)) (-2 (|:| -2492 *4) (|:| -2493 *5)))) (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-827)) (-4 *7 (-926 *2 *5 (-841 *3))))) (-3227 (*1 *2 *1) (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-4316 *3) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6)) (-2 (|:| -2492 *5) (|:| -2493 *6)))) (-5 *2 (-694 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8)) (-4 *5 (-827)) (-4 *8 (-926 *4 *6 (-841 *3))))) (-2039 (*1 *2 *1) (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-14 *6 (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *2)) (-2 (|:| -2492 *5) (|:| -2493 *2)))) (-4 *2 (-234 (-4316 *3) (-751))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7)) (-4 *5 (-827)) (-4 *7 (-926 *4 *2 (-841 *3))))) (-2038 (*1 *2 *1) (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-4316 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *5)) (-2 (|:| -2492 *2) (|:| -2493 *5)))) (-4 *2 (-827)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *7 (-926 *4 *5 (-841 *3))))) (-4319 (*1 *1 *1) (-12 (-14 *2 (-622 (-1149))) (-4 *3 (-170)) (-4 *5 (-234 (-4316 *2) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *4) (|:| -2493 *5)) (-2 (|:| -2492 *4) (|:| -2493 *5)))) (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-827)) (-4 *7 (-926 *3 *5 (-841 *2))))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-694 *5 *6 *7)) (-4 *5 (-827)) (-4 *6 (-234 (-4316 *4) (-751))) (-14 *7 (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6)) (-2 (|:| -2492 *5) (|:| -2493 *6)))) (-14 *4 (-622 (-1149))) (-4 *2 (-170)) (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) (-4 *8 (-926 *2 *6 (-841 *4))))) (-4070 (*1 *1 *2) (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-4316 *3) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *5)) (-2 (|:| -2492 *2) (|:| -2493 *5)))) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-827)) (-4 *7 (-926 *4 *5 (-841 *3))))) (-2037 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-622 (-1149))) (-4 *2 (-170)) (-4 *4 (-234 (-4316 *5) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *3) (|:| -2493 *4)) (-2 (|:| -2492 *3) (|:| -2493 *4)))) (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-827)) (-4 *7 (-926 *2 *4 (-841 *5))))) (-2036 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-622 (-1149))) (-4 *2 (-170)) (-4 *3 (-234 (-4316 *4) (-751))) (-14 *6 (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *3)) (-2 (|:| -2492 *5) (|:| -2493 *3)))) (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-827)) (-4 *7 (-926 *2 *3 (-841 *4)))))) +(-13 (-698 |#6|) (-698 |#2|) (-10 -8 (-15 -3525 (|#2| $)) (-15 -3227 ((-694 |#3| |#4| |#5|) $)) (-15 -2039 (|#4| $)) (-15 -2038 (|#3| $)) (-15 -4319 ($ $)) (-15 -3226 ($ |#2| (-694 |#3| |#4| |#5|))) (-15 -4070 ($ |#3|)) (-15 -2037 ($ |#2| |#3| |#4|)) (-15 -2036 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-2040 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37))) +(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2040 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-773) (-827) (-545) (-926 |#3| |#1| |#2|) (-13 (-1014 (-402 (-538))) (-358) (-10 -8 (-15 -4317 ($ |#4|)) (-15 -3331 (|#4| $)) (-15 -3330 (|#4| $))))) (T -456)) +((-2040 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-827)) (-4 *5 (-773)) (-4 *6 (-545)) (-4 *7 (-926 *6 *5 *3)) (-5 *1 (-456 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1014 (-402 (-538))) (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))))) +(-10 -7 (-15 -2040 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-2898 (((-112) $ $) NIL)) (-3417 (((-622 |#3|) $) 41)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) NIL (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-3233 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 47)) (-3507 (($ (-622 |#4|)) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3765 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353)))) (-2068 (((-622 |#4|) $) 18 (|has| $ (-6 -4353)))) (-3531 ((|#3| $) 45)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#4|) $) 14 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2072 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 21)) (-3247 (((-622 |#3|) $) NIL)) (-3246 (((-112) |#3| $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-3594 (((-1093) $) NIL)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 39)) (-3928 (($) 17)) (-2069 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) 16)) (-4330 (((-527) $) NIL (|has| |#4| (-598 (-527)))) (($ (-622 |#4|)) 49)) (-3884 (($ (-622 |#4|)) 13)) (-3243 (($ $ |#3|) NIL)) (-3245 (($ $ |#3|) NIL)) (-3244 (($ $ |#3|) NIL)) (-4317 (((-840) $) 38) (((-622 |#4|) $) 48)) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 30)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-457 |#1| |#2| |#3| |#4|) (-13 (-952 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4330 ($ (-622 |#4|))) (-6 -4353) (-6 -4354))) (-1025) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -457)) +((-4330 (*1 *1 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-457 *3 *4 *5 *6))))) +(-13 (-952 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4330 ($ (-622 |#4|))) (-6 -4353) (-6 -4354))) +((-2991 (($) 11)) (-2997 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-458 |#1| |#2| |#3|) (-10 -8 (-15 -2997 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2991 (|#1|))) (-459 |#2| |#3|) (-170) (-23)) (T -458)) +NIL +(-10 -8 (-15 -2997 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2991 (|#1|))) +((-2898 (((-112) $ $) 7)) (-3508 (((-3 |#1| "failed") $) 26)) (-3507 ((|#1| $) 25)) (-4304 (($ $ $) 23)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4307 ((|#2| $) 19)) (-4317 (((-840) $) 11) (($ |#1|) 27)) (-2991 (($) 18 T CONST)) (-2997 (($) 24 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 15) (($ $ $) 13)) (-4199 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-459 |#1| |#2|) (-138) (-170) (-23)) (T -459)) +((-2997 (*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4304 (*1 *1 *1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) +(-13 (-464 |t#1| |t#2|) (-1014 |t#1|) (-10 -8 (-15 (-2997) ($) -4311) (-15 -4304 ($ $ $)))) +(((-101) . T) ((-597 (-840)) . T) ((-464 |#1| |#2|) . T) ((-1014 |#1|) . T) ((-1074) . T)) +((-2041 (((-1231 (-1231 (-538))) (-1231 (-1231 (-538))) (-895)) 18)) (-2042 (((-1231 (-1231 (-538))) (-895)) 16))) +(((-460) (-10 -7 (-15 -2041 ((-1231 (-1231 (-538))) (-1231 (-1231 (-538))) (-895))) (-15 -2042 ((-1231 (-1231 (-538))) (-895))))) (T -460)) +((-2042 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1231 (-1231 (-538)))) (-5 *1 (-460)))) (-2041 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 (-1231 (-538)))) (-5 *3 (-895)) (-5 *1 (-460))))) +(-10 -7 (-15 -2041 ((-1231 (-1231 (-538))) (-1231 (-1231 (-538))) (-895))) (-15 -2042 ((-1231 (-1231 (-538))) (-895)))) +((-3103 (((-538) (-538)) 30) (((-538)) 22)) (-3107 (((-538) (-538)) 26) (((-538)) 18)) (-3105 (((-538) (-538)) 28) (((-538)) 20)) (-2044 (((-112) (-112)) 12) (((-112)) 10)) (-2043 (((-112) (-112)) 11) (((-112)) 9)) (-2045 (((-112) (-112)) 24) (((-112)) 15))) +(((-461) (-10 -7 (-15 -2043 ((-112))) (-15 -2044 ((-112))) (-15 -2043 ((-112) (-112))) (-15 -2044 ((-112) (-112))) (-15 -2045 ((-112))) (-15 -3105 ((-538))) (-15 -3107 ((-538))) (-15 -3103 ((-538))) (-15 -2045 ((-112) (-112))) (-15 -3105 ((-538) (-538))) (-15 -3107 ((-538) (-538))) (-15 -3103 ((-538) (-538))))) (T -461)) +((-3103 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-3105 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-3103 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-3107 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-3105 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) (-2045 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-2044 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-2043 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-2044 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) (-2043 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) +(-10 -7 (-15 -2043 ((-112))) (-15 -2044 ((-112))) (-15 -2043 ((-112) (-112))) (-15 -2044 ((-112) (-112))) (-15 -2045 ((-112))) (-15 -3105 ((-538))) (-15 -3107 ((-538))) (-15 -3103 ((-538))) (-15 -2045 ((-112) (-112))) (-15 -3105 ((-538) (-538))) (-15 -3107 ((-538) (-538))) (-15 -3103 ((-538) (-538)))) +((-2898 (((-112) $ $) NIL)) (-4211 (((-622 (-373)) $) 28) (((-622 (-373)) $ (-622 (-373))) 96)) (-2050 (((-622 (-1062 (-373))) $) 16) (((-622 (-1062 (-373))) $ (-622 (-1062 (-373)))) 94)) (-2047 (((-622 (-622 (-919 (-221)))) (-622 (-622 (-919 (-221)))) (-622 (-850))) 45)) (-2051 (((-622 (-622 (-919 (-221)))) $) 90)) (-4069 (((-1237) $ (-919 (-221)) (-850)) 108)) (-2052 (($ $) 89) (($ (-622 (-622 (-919 (-221))))) 99) (($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895))) 98) (($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895)) (-622 (-256))) 100)) (-3593 (((-1131) $) NIL)) (-4220 (((-538) $) 71)) (-3594 (((-1093) $) NIL)) (-2053 (($) 97)) (-2046 (((-622 (-221)) (-622 (-622 (-919 (-221))))) 56)) (-2049 (((-1237) $ (-622 (-919 (-221))) (-850) (-850) (-895)) 102) (((-1237) $ (-919 (-221))) 104) (((-1237) $ (-919 (-221)) (-850) (-850) (-895)) 103)) (-4317 (((-840) $) 114) (($ (-622 (-622 (-919 (-221))))) 109)) (-2048 (((-1237) $ (-919 (-221))) 107)) (-3387 (((-112) $ $) NIL))) +(((-462) (-13 (-1074) (-10 -8 (-15 -2053 ($)) (-15 -2052 ($ $)) (-15 -2052 ($ (-622 (-622 (-919 (-221)))))) (-15 -2052 ($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895)))) (-15 -2052 ($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895)) (-622 (-256)))) (-15 -2051 ((-622 (-622 (-919 (-221)))) $)) (-15 -4220 ((-538) $)) (-15 -2050 ((-622 (-1062 (-373))) $)) (-15 -2050 ((-622 (-1062 (-373))) $ (-622 (-1062 (-373))))) (-15 -4211 ((-622 (-373)) $)) (-15 -4211 ((-622 (-373)) $ (-622 (-373)))) (-15 -2049 ((-1237) $ (-622 (-919 (-221))) (-850) (-850) (-895))) (-15 -2049 ((-1237) $ (-919 (-221)))) (-15 -2049 ((-1237) $ (-919 (-221)) (-850) (-850) (-895))) (-15 -2048 ((-1237) $ (-919 (-221)))) (-15 -4069 ((-1237) $ (-919 (-221)) (-850))) (-15 -4317 ($ (-622 (-622 (-919 (-221)))))) (-15 -4317 ((-840) $)) (-15 -2047 ((-622 (-622 (-919 (-221)))) (-622 (-622 (-919 (-221)))) (-622 (-850)))) (-15 -2046 ((-622 (-221)) (-622 (-622 (-919 (-221))))))))) (T -462)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-462)))) (-2053 (*1 *1) (-5 *1 (-462))) (-2052 (*1 *1 *1) (-5 *1 (-462))) (-2052 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462)))) (-2052 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850))) (-5 *4 (-622 (-895))) (-5 *1 (-462)))) (-2052 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850))) (-5 *4 (-622 (-895))) (-5 *5 (-622 (-256))) (-5 *1 (-462)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-462)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-462)))) (-2050 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-462)))) (-4211 (*1 *2 *1) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-462)))) (-4211 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-462)))) (-2049 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *4 (-850)) (-5 *5 (-895)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-2049 (*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))) (-2049 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *5 (-895)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-2048 (*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))) (-4069 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-462)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462)))) (-2047 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850))) (-5 *1 (-462)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-622 (-221))) (-5 *1 (-462))))) +(-13 (-1074) (-10 -8 (-15 -2053 ($)) (-15 -2052 ($ $)) (-15 -2052 ($ (-622 (-622 (-919 (-221)))))) (-15 -2052 ($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895)))) (-15 -2052 ($ (-622 (-622 (-919 (-221)))) (-622 (-850)) (-622 (-850)) (-622 (-895)) (-622 (-256)))) (-15 -2051 ((-622 (-622 (-919 (-221)))) $)) (-15 -4220 ((-538) $)) (-15 -2050 ((-622 (-1062 (-373))) $)) (-15 -2050 ((-622 (-1062 (-373))) $ (-622 (-1062 (-373))))) (-15 -4211 ((-622 (-373)) $)) (-15 -4211 ((-622 (-373)) $ (-622 (-373)))) (-15 -2049 ((-1237) $ (-622 (-919 (-221))) (-850) (-850) (-895))) (-15 -2049 ((-1237) $ (-919 (-221)))) (-15 -2049 ((-1237) $ (-919 (-221)) (-850) (-850) (-895))) (-15 -2048 ((-1237) $ (-919 (-221)))) (-15 -4069 ((-1237) $ (-919 (-221)) (-850))) (-15 -4317 ($ (-622 (-622 (-919 (-221)))))) (-15 -4317 ((-840) $)) (-15 -2047 ((-622 (-622 (-919 (-221)))) (-622 (-622 (-919 (-221)))) (-622 (-850)))) (-15 -2046 ((-622 (-221)) (-622 (-622 (-919 (-221)))))))) +((-4197 (($ $) NIL) (($ $ $) 11))) +(((-463 |#1| |#2| |#3|) (-10 -8 (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|))) (-464 |#2| |#3|) (-170) (-23)) (T -463)) +NIL +(-10 -8 (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4307 ((|#2| $) 19)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 15) (($ $ $) 13)) (-4199 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +(((-464 |#1| |#2|) (-138) (-170) (-23)) (T -464)) +((-4307 (*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) (-2991 (*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) (-4197 (*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23))))) +(-13 (-1074) (-10 -8 (-15 -4307 (|t#2| $)) (-15 (-2991) ($) -4311) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4197 ($ $)) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2055 (((-3 (-622 (-475 |#1| |#2|)) "failed") (-622 (-475 |#1| |#2|)) (-622 (-841 |#1|))) 92)) (-2054 (((-622 (-622 (-243 |#1| |#2|))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|))) 90)) (-2056 (((-2 (|:| |dpolys| (-622 (-243 |#1| |#2|))) (|:| |coords| (-622 (-538)))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|))) 61))) +(((-465 |#1| |#2| |#3|) (-10 -7 (-15 -2054 ((-622 (-622 (-243 |#1| |#2|))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|)))) (-15 -2055 ((-3 (-622 (-475 |#1| |#2|)) "failed") (-622 (-475 |#1| |#2|)) (-622 (-841 |#1|)))) (-15 -2056 ((-2 (|:| |dpolys| (-622 (-243 |#1| |#2|))) (|:| |coords| (-622 (-538)))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|))))) (-622 (-1149)) (-446) (-446)) (T -465)) +((-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-841 *5))) (-14 *5 (-622 (-1149))) (-4 *6 (-446)) (-5 *2 (-2 (|:| |dpolys| (-622 (-243 *5 *6))) (|:| |coords| (-622 (-538))))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-622 (-243 *5 *6))) (-4 *7 (-446)))) (-2055 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-475 *4 *5))) (-5 *3 (-622 (-841 *4))) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6)) (-4 *6 (-446)))) (-2054 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-841 *5))) (-14 *5 (-622 (-1149))) (-4 *6 (-446)) (-5 *2 (-622 (-622 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-622 (-243 *5 *6))) (-4 *7 (-446))))) +(-10 -7 (-15 -2054 ((-622 (-622 (-243 |#1| |#2|))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|)))) (-15 -2055 ((-3 (-622 (-475 |#1| |#2|)) "failed") (-622 (-475 |#1| |#2|)) (-622 (-841 |#1|)))) (-15 -2056 ((-2 (|:| |dpolys| (-622 (-243 |#1| |#2|))) (|:| |coords| (-622 (-538)))) (-622 (-243 |#1| |#2|)) (-622 (-841 |#1|))))) +((-3821 (((-3 $ "failed") $) 11)) (-3342 (($ $ $) 18)) (-2686 (($ $ $) 19)) (-4308 (($ $ $) 9)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 17))) +(((-466 |#1|) (-10 -8 (-15 -2686 (|#1| |#1| |#1|)) (-15 -3342 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -4308 (|#1| |#1| |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895)))) (-467)) (T -466)) +NIL +(-10 -8 (-15 -2686 (|#1| |#1| |#1|)) (-15 -3342 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -4308 (|#1| |#1| |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895)))) +((-2898 (((-112) $ $) 7)) (-3896 (($) 18 T CONST)) (-3821 (((-3 $ "failed") $) 15)) (-2502 (((-112) $) 17)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 24)) (-3594 (((-1093) $) 10)) (-3342 (($ $ $) 21)) (-2686 (($ $ $) 20)) (-4317 (((-840) $) 11)) (-2997 (($) 19 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 23)) (** (($ $ (-895)) 13) (($ $ (-751)) 16) (($ $ (-538)) 22)) (* (($ $ $) 14))) +(((-467) (-138)) (T -467)) +((-2734 (*1 *1 *1) (-4 *1 (-467))) (-4308 (*1 *1 *1 *1) (-4 *1 (-467))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-538)))) (-3342 (*1 *1 *1 *1) (-4 *1 (-467))) (-2686 (*1 *1 *1 *1) (-4 *1 (-467)))) +(-13 (-707) (-10 -8 (-15 -2734 ($ $)) (-15 -4308 ($ $ $)) (-15 ** ($ $ (-538))) (-6 -4350) (-15 -3342 ($ $ $)) (-15 -2686 ($ $ $)))) +(((-101) . T) ((-597 (-840)) . T) ((-707) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 17)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) NIL) (($ $ (-402 (-538)) (-402 (-538))) NIL)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) NIL)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) NIL) (((-402 (-538)) $ (-402 (-538))) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) NIL) (($ $ (-402 (-538))) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-402 (-538))) NIL) (($ $ (-1055) (-402 (-538))) NIL) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) 22)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) 26 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 33 (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 27 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) NIL) (($ $ $) NIL (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 25 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $ (-1228 |#2|)) 15)) (-4307 (((-402 (-538)) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1228 |#2|)) NIL) (($ (-1212 |#1| |#2| |#3|)) 9) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 18)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) 24)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-468 |#1| |#2| |#3|) (-13 (-1214 |#1|) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4317 ($ (-1212 |#1| |#2| |#3|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -468)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-468 *3 *4 *5)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))) +(-13 (-1214 |#1|) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4317 ($ (-1212 |#1| |#2| |#3|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) 18)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) 19)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) 16)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) NIL)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-469 |#1| |#2| |#3| |#4|) (-1162 |#1| |#2|) (-1074) (-1074) (-1162 |#1| |#2|) |#2|) (T -469)) +NIL +(-1162 |#1| |#2|) +((-2898 (((-112) $ $) NIL)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) NIL)) (-4045 (((-622 $) (-622 |#4|)) NIL)) (-3417 (((-622 |#3|) $) NIL)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4051 ((|#4| |#4| $) NIL)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) 26 (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3233 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) NIL)) (-3507 (($ (-622 |#4|)) NIL)) (-4158 (((-3 $ #1#) $) 39)) (-4048 ((|#4| |#4| $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3765 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) NIL)) (-2068 (((-622 |#4|) $) 16 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3531 ((|#3| $) 33)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#4|) $) 17 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2072 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 21)) (-3247 (((-622 |#3|) $) NIL)) (-3246 (((-112) |#3| $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-4157 (((-3 |#4| #1#) $) 37)) (-4060 (((-622 |#4|) $) NIL)) (-4054 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-4062 (((-112) $ $) NIL)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4050 ((|#4| |#4| $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4042 (((-3 $ #1#) $ |#4|) 47)) (-4128 (($ $ |#4|) NIL)) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 15)) (-3928 (($) 13)) (-4307 (((-751) $) NIL)) (-2069 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) 12)) (-4330 (((-527) $) NIL (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 20)) (-3243 (($ $ |#3|) 42)) (-3245 (($ $ |#3|) 44)) (-4047 (($ $) NIL)) (-3244 (($ $ |#3|) NIL)) (-4317 (((-840) $) 31) (((-622 |#4|) $) 40)) (-4041 (((-751) $) NIL (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) NIL)) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) NIL)) (-4293 (((-112) |#3| $) NIL)) (-3387 (((-112) $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-470 |#1| |#2| |#3| |#4|) (-1180 |#1| |#2| |#3| |#4|) (-545) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -470)) +NIL +(-1180 |#1| |#2| |#3| |#4|) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3990 (($) 18)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4330 (((-373) $) 22) (((-221) $) 25) (((-402 (-1143 (-538))) $) 19) (((-527) $) 52)) (-4317 (((-840) $) 50) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (((-221) $) 24) (((-373) $) 21)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 36 T CONST)) (-2997 (($) 11 T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL))) +(((-471) (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))) (-996) (-597 (-221)) (-597 (-373)) (-598 (-402 (-1143 (-538)))) (-598 (-527)) (-10 -8 (-15 -3990 ($))))) (T -471)) +((-3990 (*1 *1) (-5 *1 (-471)))) +(-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))) (-996) (-597 (-221)) (-597 (-373)) (-598 (-402 (-1143 (-538)))) (-598 (-527)) (-10 -8 (-15 -3990 ($)))) +((-2898 (((-112) $ $) NIL)) (-3882 (((-1108) $) 11)) (-3883 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-472) (-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))) (T -472)) +((-3883 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472))))) +(-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $)))) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) 16)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) 20)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) 18)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) 13)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 19)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 11 (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) 15 (|has| $ (-6 -4353))))) +(((-473 |#1| |#2| |#3|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1074) (-1074) (-1131)) (T -473)) +NIL +(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) +((-2057 (((-538) (-538) (-538)) 7)) (-2058 (((-112) (-538) (-538) (-538) (-538)) 11)) (-3811 (((-1231 (-622 (-538))) (-751) (-751)) 23))) +(((-474) (-10 -7 (-15 -2057 ((-538) (-538) (-538))) (-15 -2058 ((-112) (-538) (-538) (-538) (-538))) (-15 -3811 ((-1231 (-622 (-538))) (-751) (-751))))) (T -474)) +((-3811 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1231 (-622 (-538)))) (-5 *1 (-474)))) (-2058 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-112)) (-5 *1 (-474)))) (-2057 (*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-474))))) +(-10 -7 (-15 -2057 ((-538) (-538) (-538))) (-15 -2058 ((-112) (-538) (-538) (-538) (-538))) (-15 -3811 ((-1231 (-622 (-538))) (-751) (-751)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-841 |#1|)) $) NIL)) (-3419 (((-1143 $) $ (-841 |#1|)) NIL) (((-1143 |#2|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-2178 (($ $) NIL (|has| |#2| (-545)))) (-2176 (((-112) $) NIL (|has| |#2| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-841 |#1|))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL (|has| |#2| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-841 |#1|) #2#) $) NIL)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-841 |#1|) $) NIL)) (-4116 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-2059 (($ $ (-622 (-538))) NIL)) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#2| (-886)))) (-1721 (($ $ |#2| (-476 (-4316 |#1|) (-751)) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#2|) (-841 |#1|)) NIL) (($ (-1143 $) (-841 |#1|)) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#2| (-476 (-4316 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-841 |#1|)) NIL)) (-3153 (((-476 (-4316 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-1722 (($ (-1 (-476 (-4316 |#1|) (-751)) (-476 (-4316 |#1|) (-751))) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-3418 (((-3 (-841 |#1|) #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#2| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -2493 (-751))) #3#) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#2| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-886)))) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-622 (-841 |#1|)) (-622 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-622 (-841 |#1|)) (-622 $)) NIL)) (-4117 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4170 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4307 (((-476 (-4316 |#1|) (-751)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-841 |#1|) (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#2| (-38 (-402 (-538)))) (|has| |#2| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#2| (-545)))) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-476 (-4316 |#1|) (-751))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#2| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#2| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#2| (-38 (-402 (-538))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-475 |#1| |#2|) (-13 (-926 |#2| (-476 (-4316 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538)))))) (-622 (-1149)) (-1025)) (T -475)) +((-2059 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-475 *3 *4)) (-14 *3 (-622 (-1149))) (-4 *4 (-1025))))) +(-13 (-926 |#2| (-476 (-4316 |#1|) (-751)) (-841 |#1|)) (-10 -8 (-15 -2059 ($ $ (-622 (-538)))))) +((-2898 (((-112) $ $) NIL (|has| |#2| (-1074)))) (-3539 (((-112) $) NIL (|has| |#2| (-130)))) (-4070 (($ (-895)) NIL (|has| |#2| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) NIL (|has| |#2| (-773)))) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#2| (-363)))) (-3986 (((-538) $) NIL (|has| |#2| (-825)))) (-4147 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1074)))) (-3507 (((-538) $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) ((|#2| $) NIL (|has| |#2| (-1074)))) (-2362 (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-3821 (((-3 $ "failed") $) NIL (|has| |#2| (-707)))) (-3327 (($) NIL (|has| |#2| (-363)))) (-1637 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ (-538)) 11)) (-3537 (((-112) $) NIL (|has| |#2| (-825)))) (-2068 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (|has| |#2| (-707)))) (-3538 (((-112) $) NIL (|has| |#2| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2511 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2072 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#2| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#2| (-1074)))) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#2| (-363)))) (-3594 (((-1093) $) NIL (|has| |#2| (-1074)))) (-4160 ((|#2| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ (-538) |#2|) NIL) ((|#2| $ (-538)) NIL)) (-4196 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-1525 (($ (-1231 |#2|)) NIL)) (-4271 (((-133)) NIL (|has| |#2| (-358)))) (-4170 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2069 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#2|) $) NIL) (($ (-538)) NIL (-3891 (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (|has| |#2| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (($ |#2|) NIL (|has| |#2| (-1074))) (((-840) $) NIL (|has| |#2| (-597 (-840))))) (-3461 (((-751)) NIL (|has| |#2| (-1025)))) (-2071 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#2| (-825)))) (-2991 (($) NIL (|has| |#2| (-130)) CONST)) (-2997 (($) NIL (|has| |#2| (-707)) CONST)) (-3002 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3387 (((-112) $ $) NIL (|has| |#2| (-1074)))) (-3017 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3018 (((-112) $ $) 15 (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-4199 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-895)) NIL (|has| |#2| (-707)))) (* (($ (-538) $) NIL (|has| |#2| (-1025))) (($ $ $) NIL (|has| |#2| (-707))) (($ $ |#2|) NIL (|has| |#2| (-707))) (($ |#2| $) NIL (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-895) $) NIL (|has| |#2| (-25)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-476 |#1| |#2|) (-234 |#1| |#2|) (-751) (-773)) (T -476)) +NIL +(-234 |#1| |#2|) +((-2898 (((-112) $ $) NIL)) (-2060 (((-622 (-499)) $) 11)) (-3905 (((-499) $) 10)) (-3593 (((-1131) $) NIL)) (-2061 (($ (-499) (-622 (-499))) 9)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-477) (-13 (-1056) (-10 -8 (-15 -2061 ($ (-499) (-622 (-499)))) (-15 -3905 ((-499) $)) (-15 -2060 ((-622 (-499)) $))))) (T -477)) +((-2061 (*1 *1 *2 *3) (-12 (-5 *3 (-622 (-499))) (-5 *2 (-499)) (-5 *1 (-477)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-477)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-622 (-499))) (-5 *1 (-477))))) +(-13 (-1056) (-10 -8 (-15 -2061 ($ (-499) (-622 (-499)))) (-15 -3905 ((-499) $)) (-15 -2060 ((-622 (-499)) $)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-3192 (($ $ $) 32)) (-3872 (($ $ $) 31)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3678 ((|#1| $) 26)) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) 27)) (-3970 (($ |#1| $) 10)) (-2062 (($ (-622 |#1|)) 12)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-1334 ((|#1| $) 23)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 9)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 29)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) 21 (|has| $ (-6 -4353))))) +(((-478 |#1|) (-13 (-944 |#1|) (-10 -8 (-15 -2062 ($ (-622 |#1|))))) (-827)) (T -478)) +((-2062 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-478 *3))))) +(-13 (-944 |#1|) (-10 -8 (-15 -2062 ($ (-622 |#1|))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4202 (($ $) 69)) (-1752 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-2092 (((-408 |#2| (-402 |#2|) |#3| |#4|) $) 44)) (-3594 (((-1093) $) NIL)) (-2501 (((-3 |#4| "failed") $) 107)) (-1753 (($ (-408 |#2| (-402 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-538)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3794 (((-2 (|:| -2417 (-408 |#2| (-402 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-4317 (((-840) $) 102)) (-2991 (($) 33 T CONST)) (-3387 (((-112) $ $) 109)) (-4197 (($ $) 72) (($ $ $) NIL)) (-4199 (($ $ $) 70)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 73))) +(((-479 |#1| |#2| |#3| |#4|) (-331 |#1| |#2| |#3| |#4|) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -479)) +NIL +(-331 |#1| |#2| |#3| |#4|) +((-2066 (((-538) (-622 (-538))) 30)) (-2063 ((|#1| (-622 |#1|)) 56)) (-2065 (((-622 |#1|) (-622 |#1|)) 57)) (-2064 (((-622 |#1|) (-622 |#1|)) 59)) (-3495 ((|#1| (-622 |#1|)) 58)) (-3150 (((-622 (-538)) (-622 |#1|)) 33))) +(((-480 |#1|) (-10 -7 (-15 -3495 (|#1| (-622 |#1|))) (-15 -2063 (|#1| (-622 |#1|))) (-15 -2064 ((-622 |#1|) (-622 |#1|))) (-15 -2065 ((-622 |#1|) (-622 |#1|))) (-15 -3150 ((-622 (-538)) (-622 |#1|))) (-15 -2066 ((-538) (-622 (-538))))) (-1207 (-538))) (T -480)) +((-2066 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-538)) (-5 *1 (-480 *4)) (-4 *4 (-1207 *2)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-1207 (-538))) (-5 *2 (-622 (-538))) (-5 *1 (-480 *4)))) (-2065 (*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1207 (-538))) (-5 *1 (-480 *3)))) (-2064 (*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1207 (-538))) (-5 *1 (-480 *3)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1207 (-538))))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1207 (-538)))))) +(-10 -7 (-15 -3495 (|#1| (-622 |#1|))) (-15 -2063 (|#1| (-622 |#1|))) (-15 -2064 ((-622 |#1|) (-622 |#1|))) (-15 -2065 ((-622 |#1|) (-622 |#1|))) (-15 -3150 ((-622 (-538)) (-622 |#1|))) (-15 -2066 ((-538) (-622 (-538))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-538) $) NIL (|has| (-538) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-538) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-538) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-538) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-538) (-1014 (-538))))) (-3507 (((-538) $) NIL) (((-1149) $) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-538) (-1014 (-538)))) (((-538) $) NIL (|has| (-538) (-1014 (-538))))) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-538) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-538) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-538) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-538) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-538) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-538) (-1124)))) (-3538 (((-112) $) NIL (|has| (-538) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-538) (-827)))) (-4318 (($ (-1 (-538) (-538)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-538) (-1124)) CONST)) (-2067 (($ (-402 (-538))) 9)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-538) (-302))) (((-402 (-538)) $) NIL)) (-3465 (((-538) $) NIL (|has| (-538) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-538)) (-622 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-538) (-538)) NIL (|has| (-538) (-304 (-538)))) (($ $ (-288 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-288 (-538)))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-1149)) (-622 (-538))) NIL (|has| (-538) (-507 (-1149) (-538)))) (($ $ (-1149) (-538)) NIL (|has| (-538) (-507 (-1149) (-538))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-538)) NIL (|has| (-538) (-281 (-538) (-538))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-538) $) NIL)) (-4330 (((-866 (-538)) $) NIL (|has| (-538) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-538) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-538) (-598 (-527)))) (((-373) $) NIL (|has| (-538) (-996))) (((-221) $) NIL (|has| (-538) (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-538) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) 8) (($ (-538)) NIL) (($ (-1149)) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL) (((-980 16) $) 10)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-538) (-886))) (|has| (-538) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-538) $) NIL (|has| (-538) (-537)))) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| (-538) (-800)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-538) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-538) (-827)))) (-4308 (($ $ $) NIL) (($ (-538) (-538)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-538) $) NIL) (($ $ (-538)) NIL))) +(((-481) (-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 16) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -2067 ($ (-402 (-538))))))) (T -481)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-980 16)) (-5 *1 (-481)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481))))) +(-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -4317 ((-980 16) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -2067 ($ (-402 (-538)))))) +((-2511 (((-622 |#2|) $) 23)) (-3596 (((-112) |#2| $) 28)) (-2070 (((-112) (-1 (-112) |#2|) $) 21)) (-4127 (($ $ (-622 (-288 |#2|))) 13) (($ $ (-288 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-622 |#2|) (-622 |#2|)) NIL)) (-2069 (((-751) (-1 (-112) |#2|) $) 22) (((-751) |#2| $) 26)) (-4317 (((-840) $) 37)) (-2071 (((-112) (-1 (-112) |#2|) $) 20)) (-3387 (((-112) $ $) 31)) (-4316 (((-751) $) 17))) +(((-482 |#1| |#2|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -3596 ((-112) |#2| |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2511 ((-622 |#2|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|))) (-483 |#2|) (-1185)) (T -482)) +NIL +(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#2| |#2|)) (-15 -4127 (|#1| |#1| (-288 |#2|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#2|)))) (-15 -3596 ((-112) |#2| |#1|)) (-15 -2069 ((-751) |#2| |#1|)) (-15 -2511 ((-622 |#2|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#2|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-483 |#1|) (-138) (-1185)) (T -483)) +((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1185)))) (-2072 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-483 *3)) (-4 *3 (-1185)))) (-2071 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1185)) (-5 *2 (-112)))) (-2070 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1185)) (-5 *2 (-112)))) (-2069 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) (-4 *4 (-1185)) (-5 *2 (-751)))) (-2068 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-5 *2 (-622 *3)))) (-2511 (*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-5 *2 (-622 *3)))) (-2069 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-751)))) (-3596 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-597 (-840))) (-6 (-597 (-840))) |%noBranch|) (IF (|has| |t#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |t#1| (-1074)) (IF (|has| |t#1| (-304 |t#1|)) (-6 (-304 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4354)) (-15 -2072 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4353)) (PROGN (-15 -2071 ((-112) (-1 (-112) |t#1|) $)) (-15 -2070 ((-112) (-1 (-112) |t#1|) $)) (-15 -2069 ((-751) (-1 (-112) |t#1|) $)) (-15 -2068 ((-622 |t#1|) $)) (-15 -2511 ((-622 |t#1|) $)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -2069 ((-751) |t#1| $)) (-15 -3596 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2073 (($ (-1131)) 8)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 14) (((-1131) $) 11)) (-3387 (((-112) $ $) 10))) +(((-484) (-13 (-1074) (-597 (-1131)) (-10 -8 (-15 -2073 ($ (-1131)))))) (T -484)) +((-2073 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-484))))) +(-13 (-1074) (-597 (-1131)) (-10 -8 (-15 -2073 ($ (-1131))))) +((-3846 (($ $) 15)) (-3844 (($ $) 24)) (-3848 (($ $) 12)) (-3849 (($ $) 10)) (-3847 (($ $) 17)) (-3845 (($ $) 22))) +(((-485 |#1|) (-10 -8 (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|))) (-486)) (T -485)) +NIL +(-10 -8 (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|))) +((-3846 (($ $) 11)) (-3844 (($ $) 10)) (-3848 (($ $) 9)) (-3849 (($ $) 8)) (-3847 (($ $) 7)) (-3845 (($ $) 6))) +(((-486) (-138)) (T -486)) +((-3846 (*1 *1 *1) (-4 *1 (-486))) (-3844 (*1 *1 *1) (-4 *1 (-486))) (-3848 (*1 *1 *1) (-4 *1 (-486))) (-3849 (*1 *1 *1) (-4 *1 (-486))) (-3847 (*1 *1 *1) (-4 *1 (-486))) (-3845 (*1 *1 *1) (-4 *1 (-486)))) +(-13 (-10 -8 (-15 -3845 ($ $)) (-15 -3847 ($ $)) (-15 -3849 ($ $)) (-15 -3848 ($ $)) (-15 -3844 ($ $)) (-15 -3846 ($ $)))) +((-4092 (((-400 |#4|) |#4| (-1 (-400 |#2|) |#2|)) 42))) +(((-487 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4| (-1 (-400 |#2|) |#2|)))) (-358) (-1207 |#1|) (-13 (-358) (-145) (-705 |#1| |#2|)) (-1207 |#3|)) (T -487)) +((-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-4 *7 (-13 (-358) (-145) (-705 *5 *6))) (-5 *2 (-400 *3)) (-5 *1 (-487 *5 *6 *7 *3)) (-4 *3 (-1207 *7))))) +(-10 -7 (-15 -4092 ((-400 |#4|) |#4| (-1 (-400 |#2|) |#2|)))) +((-2898 (((-112) $ $) NIL)) (-1667 (((-622 $) (-1143 $) (-1149)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-922 $)) NIL)) (-1265 (($ (-1143 $) (-1149)) NIL) (($ (-1143 $)) NIL) (($ (-922 $)) NIL)) (-3539 (((-112) $) 39)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-2074 (((-112) $ $) 64)) (-1660 (((-622 (-595 $)) $) 48)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1664 (($ $ (-288 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-1266 (((-622 $) (-1143 $) (-1149)) NIL) (((-622 $) (-1143 $)) NIL) (((-622 $) (-922 $)) NIL)) (-3534 (($ (-1143 $) (-1149)) NIL) (($ (-1143 $)) NIL) (($ (-922 $)) NIL)) (-3508 (((-3 (-595 $) #1="failed") $) NIL) (((-3 (-538) #1#) $) NIL) (((-3 (-402 (-538)) #1#) $) NIL)) (-3507 (((-595 $) $) NIL) (((-538) $) NIL) (((-402 (-538)) $) 50)) (-2894 (($ $ $) NIL)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-402 (-538)))) (|:| |vec| (-1231 (-402 (-538))))) (-669 $) (-1231 $)) NIL) (((-669 (-402 (-538))) (-669 $)) NIL)) (-4202 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2903 (($ $) NIL) (($ (-622 $)) NIL)) (-1659 (((-622 (-113)) $) NIL)) (-3380 (((-113) (-113)) NIL)) (-2502 (((-112) $) 42)) (-3006 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-3331 (((-1098 (-538) (-595 $)) $) 37)) (-3344 (($ $ (-538)) NIL)) (-3467 (((-1143 $) (-1143 $) (-595 $)) 78) (((-1143 $) (-1143 $) (-622 (-595 $))) 55) (($ $ (-595 $)) 67) (($ $ (-622 (-595 $))) 68)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-1657 (((-1143 $) (-595 $)) 65 (|has| $ (-1025)))) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 $ $) (-595 $)) NIL)) (-1662 (((-3 (-595 $) "failed") $) NIL)) (-2013 (($ (-622 $)) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-1661 (((-622 (-595 $)) $) NIL)) (-2317 (($ (-113) $) NIL) (($ (-113) (-622 $)) NIL)) (-2964 (((-112) $ (-113)) NIL) (((-112) $ (-1149)) NIL)) (-2734 (($ $) NIL)) (-2933 (((-751) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ (-622 $)) NIL) (($ $ $) NIL)) (-1658 (((-112) $ $) NIL) (((-112) $ (-1149)) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL (|has| $ (-1014 (-538))))) (-4127 (($ $ (-595 $) $) NIL) (($ $ (-622 (-595 $)) (-622 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-1149)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-1149) (-1 $ (-622 $))) NIL) (($ $ (-1149) (-1 $ $)) NIL) (($ $ (-622 (-113)) (-622 (-1 $ $))) NIL) (($ $ (-622 (-113)) (-622 (-1 $ (-622 $)))) NIL) (($ $ (-113) (-1 $ (-622 $))) NIL) (($ $ (-113) (-1 $ $)) NIL)) (-1704 (((-751) $) NIL)) (-4159 (($ (-113) $) NIL) (($ (-113) $ $) NIL) (($ (-113) $ $ $) NIL) (($ (-113) $ $ $ $) NIL) (($ (-113) (-622 $)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1663 (($ $) NIL) (($ $ $) NIL)) (-4170 (($ $ (-751)) NIL) (($ $) 36)) (-3330 (((-1098 (-538) (-595 $)) $) 20)) (-3536 (($ $) NIL (|has| $ (-1025)))) (-4330 (((-373) $) 92) (((-221) $) 100) (((-166 (-373)) $) 108)) (-4317 (((-840) $) NIL) (($ (-595 $)) NIL) (($ (-402 (-538))) NIL) (($ $) NIL) (($ (-538)) NIL) (($ (-1098 (-538) (-595 $))) 21)) (-3461 (((-751)) NIL)) (-2920 (($ $) NIL) (($ (-622 $)) NIL)) (-2338 (((-112) (-113)) 84)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 10 T CONST)) (-2997 (($) 22 T CONST)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 24)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4308 (($ $ $) 44)) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-402 (-538))) NIL) (($ $ (-538)) 46) (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL) (($ $ $) 27) (($ (-538) $) NIL) (($ (-751) $) NIL) (($ (-895) $) NIL))) +(((-488) (-13 (-293) (-27) (-1014 (-538)) (-1014 (-402 (-538))) (-621 (-538)) (-996) (-621 (-402 (-538))) (-145) (-598 (-166 (-373))) (-229) (-10 -8 (-15 -4317 ($ (-1098 (-538) (-595 $)))) (-15 -3331 ((-1098 (-538) (-595 $)) $)) (-15 -3330 ((-1098 (-538) (-595 $)) $)) (-15 -4202 ($ $)) (-15 -2074 ((-112) $ $)) (-15 -3467 ((-1143 $) (-1143 $) (-595 $))) (-15 -3467 ((-1143 $) (-1143 $) (-622 (-595 $)))) (-15 -3467 ($ $ (-595 $))) (-15 -3467 ($ $ (-622 (-595 $))))))) (T -488)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488)))) (-4202 (*1 *1 *1) (-5 *1 (-488))) (-2074 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-488)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 (-488))) (-5 *3 (-595 (-488))) (-5 *1 (-488)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 (-488))) (-5 *3 (-622 (-595 (-488)))) (-5 *1 (-488)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-595 (-488))) (-5 *1 (-488)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-595 (-488)))) (-5 *1 (-488))))) +(-13 (-293) (-27) (-1014 (-538)) (-1014 (-402 (-538))) (-621 (-538)) (-996) (-621 (-402 (-538))) (-145) (-598 (-166 (-373))) (-229) (-10 -8 (-15 -4317 ($ (-1098 (-538) (-595 $)))) (-15 -3331 ((-1098 (-538) (-595 $)) $)) (-15 -3330 ((-1098 (-538) (-595 $)) $)) (-15 -4202 ($ $)) (-15 -2074 ((-112) $ $)) (-15 -3467 ((-1143 $) (-1143 $) (-595 $))) (-15 -3467 ((-1143 $) (-1143 $) (-622 (-595 $)))) (-15 -3467 ($ $ (-595 $))) (-15 -3467 ($ $ (-622 (-595 $)))))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) 25 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 22 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 21)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 14)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 12 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) 23 (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) 10 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 13)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) 24) (($ $ (-1198 (-538))) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) 9 (|has| $ (-6 -4353))))) +(((-489 |#1| |#2|) (-19 |#1|) (-1185) (-538)) (T -489)) NIL (-19 |#1|) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) NIL)) (-1307 (($ $ (-536) (-487 |#1| |#3|)) NIL)) (-1306 (($ $ (-536) (-487 |#1| |#2|)) NIL)) (-3891 (($) NIL T CONST)) (-3442 (((-487 |#1| |#3|) $ (-536)) NIL)) (-1632 ((|#1| $ (-536) (-536) |#1|) NIL)) (-3443 ((|#1| $ (-536) (-536)) NIL)) (-2063 (((-620 |#1|) $) NIL)) (-3445 (((-749) $) NIL)) (-3972 (($ (-749) (-749) |#1|) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) (-536)) NIL) ((|#1| $ (-536) (-536) |#1|) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3441 (((-487 |#1| |#2|) $ (-536)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-488 |#1| |#2| |#3|) (-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) (-1183) (-536) (-536)) (T -488)) -NIL -(-56 |#1| (-487 |#1| |#3|) (-487 |#1| |#2|)) -((-2071 (((-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749)) 27)) (-2070 (((-620 (-1141 |#1|)) |#1| (-749) (-749) (-749)) 34)) (-2192 (((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-620 |#3|) (-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)) 85))) -(((-489 |#1| |#2| |#3|) (-10 -7 (-15 -2070 ((-620 (-1141 |#1|)) |#1| (-749) (-749) (-749))) (-15 -2071 ((-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749))) (-15 -2192 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-620 |#3|) (-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)))) (-343) (-1205 |#1|) (-1205 |#2|)) (T -489)) -((-2192 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 (-2 (|:| -2123 (-667 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-667 *7))))) (-5 *5 (-749)) (-4 *8 (-1205 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-343)) (-5 *2 (-2 (|:| -2123 (-667 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-667 *7)))) (-5 *1 (-489 *6 *7 *8)))) (-2071 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-749)) (-4 *5 (-343)) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-2 (|:| -2123 (-667 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-667 *6))))) (-5 *1 (-489 *5 *6 *7)) (-5 *3 (-2 (|:| -2123 (-667 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-667 *6)))) (-4 *7 (-1205 *6)))) (-2070 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-749)) (-4 *3 (-343)) (-4 *5 (-1205 *3)) (-5 *2 (-620 (-1141 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1205 *5))))) -(-10 -7 (-15 -2070 ((-620 (-1141 |#1|)) |#1| (-749) (-749) (-749))) (-15 -2071 ((-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-749) (-749))) (-15 -2192 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) (-620 |#3|) (-620 (-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) (-749)))) -((-2077 (((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))) 62)) (-2072 ((|#1| (-667 |#1|) |#1| (-749)) 25)) (-2074 (((-749) (-749) (-749)) 30)) (-2076 (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 42)) (-2075 (((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|) 50) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 47)) (-2073 ((|#1| (-667 |#1|) (-667 |#1|) |#1| (-536)) 29)) (-3683 ((|#1| (-667 |#1|)) 18))) -(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -3683 (|#1| (-667 |#1|))) (-15 -2072 (|#1| (-667 |#1|) |#1| (-749))) (-15 -2073 (|#1| (-667 |#1|) (-667 |#1|) |#1| (-536))) (-15 -2074 ((-749) (-749) (-749))) (-15 -2075 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2075 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2076 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2077 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))))) (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $)))) (-1205 |#1|) (-403 |#1| |#2|)) (T -490)) -((-2077 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2076 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2075 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2075 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2074 (*1 *2 *2 *2) (-12 (-5 *2 (-749)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) (-2073 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-667 *2)) (-5 *4 (-536)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *5 (-1205 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-2072 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-667 *2)) (-5 *4 (-749)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *5 (-1205 *2)) (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-667 *2)) (-4 *4 (-1205 *2)) (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-403 *2 *4))))) -(-10 -7 (-15 -3683 (|#1| (-667 |#1|))) (-15 -2072 (|#1| (-667 |#1|) |#1| (-749))) (-15 -2073 (|#1| (-667 |#1|) (-667 |#1|) |#1| (-536))) (-15 -2074 ((-749) (-749) (-749))) (-15 -2075 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2075 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2076 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2077 ((-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|))) (-2 (|:| -2123 (-667 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-667 |#1|)))))) -((-2893 (((-112) $ $) NIL)) (-3674 (($ $) NIL)) (-3670 (($ $ $) 35)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) $) NIL (|has| (-112) (-825))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-112) (-825)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4349)))) (-3237 (($ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-112) $ (-1196 (-536)) (-112)) NIL (|has| $ (-6 -4349))) (((-112) $ (-536) (-112)) 36 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-3760 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-4197 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-1632 (((-112) $ (-536) (-112)) NIL (|has| $ (-6 -4349)))) (-3443 (((-112) $ (-536)) NIL)) (-3773 (((-536) (-112) $ (-536)) NIL (|has| (-112) (-1072))) (((-536) (-112) $) NIL (|has| (-112) (-1072))) (((-536) (-1 (-112) (-112)) $) NIL)) (-2063 (((-620 (-112)) $) NIL (|has| $ (-6 -4348)))) (-3185 (($ $ $) 33)) (-3671 (($ $) NIL)) (-1359 (($ $ $) NIL)) (-3972 (($ (-749) (-112)) 23)) (-1360 (($ $ $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 8 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL)) (-3867 (($ $ $) NIL (|has| (-112) (-825))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2506 (((-620 (-112)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL)) (-2067 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ (-112) $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-112) $) NIL (|has| (-536) (-825)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2301 (($ $ (-112)) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-112)) (-620 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-286 (-112))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072)))) (($ $ (-620 (-286 (-112)))) NIL (-12 (|has| (-112) (-302 (-112))) (|has| (-112) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072))))) (-2307 (((-620 (-112)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 24)) (-4154 (($ $ (-1196 (-536))) NIL) (((-112) $ (-536)) 18) (((-112) $ (-536) (-112)) NIL)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2064 (((-749) (-112) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-112) (-1072)))) (((-749) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) 25)) (-4325 (((-525) $) NIL (|has| (-112) (-596 (-525))))) (-3879 (($ (-620 (-112))) NIL)) (-4156 (($ (-620 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4312 (((-838) $) 22)) (-2066 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4348)))) (-3186 (($ $ $) 31)) (-3676 (($ $ $) NIL)) (-3667 (($ $ $) 39)) (-3669 (($ $) 37)) (-3668 (($ $ $) 38)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 26)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 27)) (-3675 (($ $ $) NIL)) (-4311 (((-749) $) 10 (|has| $ (-6 -4348))))) -(((-491 |#1|) (-13 (-123) (-10 -8 (-15 -3669 ($ $)) (-15 -3667 ($ $ $)) (-15 -3668 ($ $ $)))) (-536)) (T -491)) -((-3669 (*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536)))) (-3667 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536)))) (-3668 (*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536))))) -(-13 (-123) (-10 -8 (-15 -3669 ($ $)) (-15 -3667 ($ $ $)) (-15 -3668 ($ $ $)))) -((-2079 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1141 |#4|)) 35)) (-2078 (((-1141 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1141 |#4|)) 22)) (-2080 (((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1141 |#4|))) 46)) (-2081 (((-1141 (-1141 |#4|)) (-1 |#4| |#1|) |#3|) 55))) -(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2078 (|#2| (-1 |#1| |#4|) (-1141 |#4|))) (-15 -2078 ((-1141 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2079 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1141 |#4|))) (-15 -2080 ((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1141 |#4|)))) (-15 -2081 ((-1141 (-1141 |#4|)) (-1 |#4| |#1|) |#3|))) (-1023) (-1205 |#1|) (-1205 |#2|) (-1023)) (T -492)) -((-2081 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *6 (-1205 *5)) (-5 *2 (-1141 (-1141 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1205 *6)))) (-2080 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-667 (-1141 *8))) (-4 *5 (-1023)) (-4 *8 (-1023)) (-4 *6 (-1205 *5)) (-5 *2 (-667 *6)) (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1205 *6)))) (-2079 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1141 *7)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *2 (-1205 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1205 *2)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *4 (-1205 *5)) (-5 *2 (-1141 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1205 *4)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1141 *7)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *2 (-1205 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1205 *2))))) -(-10 -7 (-15 -2078 (|#2| (-1 |#1| |#4|) (-1141 |#4|))) (-15 -2078 ((-1141 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2079 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1141 |#4|))) (-15 -2080 ((-3 (-667 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-667 (-1141 |#4|)))) (-15 -2081 ((-1141 (-1141 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2893 (((-112) $ $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2082 (((-1235) $) 19)) (-4154 (((-1129) $ (-1147)) 23)) (-3975 (((-1235) $) 15)) (-4312 (((-838) $) 21) (($ (-1129)) 20)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 9)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 8))) -(((-493) (-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $)) (-15 -4312 ($ (-1129)))))) (T -493)) -((-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1129)) (-5 *1 (-493)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-493)))) (-2082 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-493)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-493))))) -(-13 (-825) (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) (-15 -2082 ((-1235) $)) (-15 -4312 ($ (-1129))))) -((-4096 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4094 ((|#1| |#4|) 10)) (-4095 ((|#3| |#4|) 17))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4094 (|#1| |#4|)) (-15 -4095 (|#3| |#4|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-543) (-965 |#1|) (-365 |#1|) (-365 |#2|)) (T -494)) -((-4096 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) (-4095 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-4 *2 (-365 *4)) (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-494 *2 *4 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-365 *4))))) -(-10 -7 (-15 -4094 (|#1| |#4|)) (-15 -4095 (|#3| |#4|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2893 (((-112) $ $) NIL)) (-2092 (((-112) $ (-620 |#3|)) 105) (((-112) $) 106)) (-3534 (((-112) $) 149)) (-2084 (($ $ |#4|) 97) (($ $ |#4| (-620 |#3|)) 101)) (-2083 (((-1136 (-620 (-920 |#1|)) (-620 (-286 (-920 |#1|)))) (-620 |#4|)) 142 (|has| |#3| (-596 (-1147))))) (-2091 (($ $ $) 91) (($ $ |#4|) 89)) (-2497 (((-112) $) 148)) (-2088 (($ $) 109)) (-3588 (((-1129) $) NIL)) (-3584 (($ $ $) 83) (($ (-620 $)) 85)) (-2093 (((-112) |#4| $) 108)) (-2094 (((-112) $ $) 72)) (-2087 (($ (-620 |#4|)) 90)) (-3589 (((-1091) $) NIL)) (-2086 (($ (-620 |#4|)) 146)) (-2085 (((-112) $) 147)) (-2330 (($ $) 74)) (-3023 (((-620 |#4|) $) 63)) (-2090 (((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-620 |#3|)) NIL)) (-2095 (((-112) |#4| $) 77)) (-4266 (((-536) $ (-620 |#3|)) 110) (((-536) $) 111)) (-4312 (((-838) $) 145) (($ (-620 |#4|)) 86)) (-2089 (($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $))) NIL)) (-3382 (((-112) $ $) 73)) (-4194 (($ $ $) 93)) (** (($ $ (-749)) 96)) (* (($ $ $) 95))) -(((-495 |#1| |#2| |#3| |#4|) (-13 (-1072) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 -4194 ($ $ $)) (-15 -2497 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -2095 ((-112) |#4| $)) (-15 -2094 ((-112) $ $)) (-15 -2093 ((-112) |#4| $)) (-15 -2092 ((-112) $ (-620 |#3|))) (-15 -2092 ((-112) $)) (-15 -3584 ($ $ $)) (-15 -3584 ($ (-620 $))) (-15 -2091 ($ $ $)) (-15 -2091 ($ $ |#4|)) (-15 -2330 ($ $)) (-15 -2090 ((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-620 |#3|))) (-15 -2089 ($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)))) (-15 -4266 ((-536) $ (-620 |#3|))) (-15 -4266 ((-536) $)) (-15 -2088 ($ $)) (-15 -2087 ($ (-620 |#4|))) (-15 -2086 ($ (-620 |#4|))) (-15 -2085 ((-112) $)) (-15 -3023 ((-620 |#4|) $)) (-15 -4312 ($ (-620 |#4|))) (-15 -2084 ($ $ |#4|)) (-15 -2084 ($ $ |#4| (-620 |#3|))) (IF (|has| |#3| (-596 (-1147))) (-15 -2083 ((-1136 (-620 (-920 |#1|)) (-620 (-286 (-920 |#1|)))) (-620 |#4|))) |%noBranch|))) (-356) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -495)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-4194 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-2497 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-3534 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-2095 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6)))) (-2094 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-2093 (*1 *2 *3 *1) (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6)))) (-2092 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6)))) (-2092 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-3584 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-3584 (*1 *1 *2) (-12 (-5 *2 (-620 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-2091 (*1 *1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-2091 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-924 *3 *4 *5)))) (-2330 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-2090 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-2 (|:| |mval| (-667 *4)) (|:| |invmval| (-667 *4)) (|:| |genIdeal| (-495 *4 *5 *6 *7)))) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6)))) (-2089 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-667 *3)) (|:| |invmval| (-667 *3)) (|:| |genIdeal| (-495 *3 *4 *5 *6)))) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-4266 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *2 (-536)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6)))) (-4266 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-536)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-2088 (*1 *1 *1) (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-2087 (*1 *1 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2086 (*1 *1 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2085 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-3023 (*1 *2 *1) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *6)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) (-2084 (*1 *1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) (-4 *2 (-924 *3 *4 *5)))) (-2084 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-924 *4 *5 *6)))) (-2083 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *5 *6)) (-4 *6 (-596 (-1147))) (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1136 (-620 (-920 *4)) (-620 (-286 (-920 *4))))) (-5 *1 (-495 *4 *5 *6 *7))))) -(-13 (-1072) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 -4194 ($ $ $)) (-15 -2497 ((-112) $)) (-15 -3534 ((-112) $)) (-15 -2095 ((-112) |#4| $)) (-15 -2094 ((-112) $ $)) (-15 -2093 ((-112) |#4| $)) (-15 -2092 ((-112) $ (-620 |#3|))) (-15 -2092 ((-112) $)) (-15 -3584 ($ $ $)) (-15 -3584 ($ (-620 $))) (-15 -2091 ($ $ $)) (-15 -2091 ($ $ |#4|)) (-15 -2330 ($ $)) (-15 -2090 ((-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)) $ (-620 |#3|))) (-15 -2089 ($ (-2 (|:| |mval| (-667 |#1|)) (|:| |invmval| (-667 |#1|)) (|:| |genIdeal| $)))) (-15 -4266 ((-536) $ (-620 |#3|))) (-15 -4266 ((-536) $)) (-15 -2088 ($ $)) (-15 -2087 ($ (-620 |#4|))) (-15 -2086 ($ (-620 |#4|))) (-15 -2085 ((-112) $)) (-15 -3023 ((-620 |#4|) $)) (-15 -4312 ($ (-620 |#4|))) (-15 -2084 ($ $ |#4|)) (-15 -2084 ($ $ |#4| (-620 |#3|))) (IF (|has| |#3| (-596 (-1147))) (-15 -2083 ((-1136 (-620 (-920 |#1|)) (-620 (-286 (-920 |#1|)))) (-620 |#4|))) |%noBranch|))) -((-2096 (((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) 150)) (-2097 (((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) 151)) (-2098 (((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) 108)) (-4081 (((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) NIL)) (-2099 (((-620 (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) 153)) (-2100 (((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-620 (-839 |#1|))) 165))) -(((-496 |#1| |#2|) (-10 -7 (-15 -2096 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2097 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -4081 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2098 ((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2099 ((-620 (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2100 ((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-620 (-839 |#1|))))) (-620 (-1147)) (-749)) (T -496)) -((-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) (-5 *3 (-620 (-839 *4))) (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *1 (-496 *4 *5)))) (-2099 (*1 *2 *3) (-12 (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-620 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536)))))) (-5 *1 (-496 *4 *5)) (-5 *3 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))))) (-2098 (*1 *2 *2) (-12 (-5 *2 (-495 (-400 (-536)) (-233 *4 (-749)) (-839 *3) (-241 *3 (-400 (-536))))) (-14 *3 (-620 (-1147))) (-14 *4 (-749)) (-5 *1 (-496 *3 *4)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) (-5 *1 (-496 *4 *5))))) -(-10 -7 (-15 -2096 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2097 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -4081 ((-112) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2098 ((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2099 ((-620 (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536))))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))))) (-15 -2100 ((-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-495 (-400 (-536)) (-233 |#2| (-749)) (-839 |#1|) (-241 |#1| (-400 (-536)))) (-620 (-839 |#1|))))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 11) (((-1152) $) NIL) (($ (-1152)) NIL) (((-1147) $) 8)) (-3382 (((-112) $ $) NIL))) -(((-497) (-13 (-1054) (-595 (-1147)))) (T -497)) -NIL -(-13 (-1054) (-595 (-1147))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3221 (($ |#1| |#2|) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2986 (($) 12 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) 11) (($ $ $) 24)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 18))) -(((-498 |#1| |#2|) (-13 (-21) (-500 |#1| |#2|)) (-21) (-825)) (T -498)) -NIL -(-13 (-21) (-500 |#1| |#2|)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 12)) (-3891 (($) NIL T CONST)) (-4314 (($ $) 28)) (-3221 (($ |#1| |#2|) 25)) (-4313 (($ (-1 |#1| |#1|) $) 27)) (-2101 ((|#2| $) NIL)) (-3520 ((|#1| $) 29)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2986 (($) 10 T CONST)) (-3382 (((-112) $ $) NIL)) (-4194 (($ $ $) 18)) (* (($ (-893) $) NIL) (($ (-749) $) 23))) -(((-499 |#1| |#2|) (-13 (-23) (-500 |#1| |#2|)) (-23) (-825)) (T -499)) -NIL -(-13 (-23) (-500 |#1| |#2|)) -((-2893 (((-112) $ $) 7)) (-4314 (($ $) 13)) (-3221 (($ |#1| |#2|) 16)) (-4313 (($ (-1 |#1| |#1|) $) 17)) (-2101 ((|#2| $) 14)) (-3520 ((|#1| $) 15)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) -(((-500 |#1| |#2|) (-138) (-1072) (-825)) (T -500)) -((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-825)))) (-3221 (*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-825)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1072)))) (-2101 (*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-825)))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-825))))) -(-13 (-1072) (-10 -8 (-15 -4313 ($ (-1 |t#1| |t#1|) $)) (-15 -3221 ($ |t#1| |t#2|)) (-15 -3520 (|t#1| $)) (-15 -2101 (|t#2| $)) (-15 -4314 ($ $)))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-4314 (($ $) 25)) (-3221 (($ |#1| |#2|) 22)) (-4313 (($ (-1 |#1| |#1|) $) 24)) (-2101 ((|#2| $) 27)) (-3520 ((|#1| $) 26)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21)) (-3382 (((-112) $ $) 14))) -(((-501 |#1| |#2|) (-500 |#1| |#2|) (-1072) (-825)) (T -501)) -NIL -(-500 |#1| |#2|) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3221 (($ |#1| |#2|) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2986 (($) NIL T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 13)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL))) -(((-502 |#1| |#2|) (-13 (-770) (-500 |#1| |#2|)) (-770) (-825)) (T -502)) -NIL -(-13 (-770) (-500 |#1| |#2|)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2728 (($ $ $) 16)) (-1367 (((-3 $ "failed") $ $) 13)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3221 (($ |#1| |#2|) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2101 ((|#2| $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL)) (-2986 (($) NIL T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL))) -(((-503 |#1| |#2|) (-13 (-771) (-500 |#1| |#2|)) (-771) (-825)) (T -503)) -NIL -(-13 (-771) (-500 |#1| |#2|)) -((-4122 (($ $ (-620 |#2|) (-620 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-504 |#1| |#2| |#3|) (-10 -8 (-15 -4122 (|#1| |#1| |#2| |#3|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#3|)))) (-505 |#2| |#3|) (-1072) (-1183)) (T -504)) -NIL -(-10 -8 (-15 -4122 (|#1| |#1| |#2| |#3|)) (-15 -4122 (|#1| |#1| (-620 |#2|) (-620 |#3|)))) -((-4122 (($ $ (-620 |#1|) (-620 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-505 |#1| |#2|) (-138) (-1072) (-1183)) (T -505)) -((-4122 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1183)))) (-4122 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1183))))) -(-13 (-10 -8 (-15 -4122 ($ $ |t#1| |t#2|)) (-15 -4122 ($ $ (-620 |t#1|) (-620 |t#2|))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 16)) (-4128 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))) $) 18)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749) $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-2763 ((|#1| $ (-536)) 23)) (-1714 ((|#2| $ (-536)) 21)) (-2366 (($ (-1 |#1| |#1|) $) 46)) (-1713 (($ (-1 |#2| |#2|) $) 43)) (-3588 (((-1129) $) NIL)) (-1712 (($ $ $) 53 (|has| |#2| (-770)))) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 42) (($ |#1|) NIL)) (-4035 ((|#2| |#1| $) 49)) (-2986 (($) 11 T CONST)) (-3382 (((-112) $ $) 29)) (-4194 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-893) $) NIL) (($ (-749) $) 36) (($ |#2| |#1|) 31))) -(((-506 |#1| |#2| |#3|) (-316 |#1| |#2|) (-1072) (-130) |#2|) (T -506)) -NIL -(-316 |#1| |#2|) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-2102 (((-112) (-112)) 25)) (-4142 ((|#1| $ (-536) |#1|) 28 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) 52)) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-2450 (($ $) 56 (|has| |#1| (-1072)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) NIL (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) 44)) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2103 (($ $ (-536)) 13)) (-2104 (((-749) $) 11)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 23)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 21 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3187 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) 20 (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3965 (($ $ $ (-536)) 51) (($ |#1| $ (-536)) 37)) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2105 (($ (-620 |#1|)) 29)) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) 19 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 40)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 16)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) 33) (($ $ (-1196 (-536))) NIL)) (-1627 (($ $ (-1196 (-536))) 50) (($ $ (-536)) 45)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) 41 (|has| $ (-6 -4349)))) (-3754 (($ $) 32)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4145 (($ $ $) 42) (($ $ |#1|) 39)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) 17 (|has| $ (-6 -4348))))) -(((-507 |#1| |#2|) (-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-620 |#1|))) (-15 -2104 ((-749) $)) (-15 -2103 ($ $ (-536))) (-15 -2102 ((-112) (-112))))) (-1183) (-536)) (T -507)) -((-2105 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-507 *3 *4)) (-14 *4 (-536)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 (-536)))) (-2103 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 *2))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 (-536))))) -(-13 (-19 |#1|) (-275 |#1|) (-10 -8 (-15 -2105 ($ (-620 |#1|))) (-15 -2104 ((-749) $)) (-15 -2103 ($ $ (-536))) (-15 -2102 ((-112) (-112))))) -((-2893 (((-112) $ $) NIL)) (-2107 (((-1106) $) 11)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2106 (((-1106) $) 13)) (-4277 (((-1106) $) 9)) (-4312 (((-838) $) 21) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-508) (-13 (-1054) (-10 -8 (-15 -4277 ((-1106) $)) (-15 -2107 ((-1106) $)) (-15 -2106 ((-1106) $))))) (T -508)) -((-4277 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508)))) (-2106 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508))))) -(-13 (-1054) (-10 -8 (-15 -4277 ((-1106) $)) (-15 -2107 ((-1106) $)) (-15 -2106 ((-1106) $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (((-565 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-565 |#1|) (-361)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-565 |#1|) (-361)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL (|has| (-565 |#1|) (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-565 |#1|) "failed") $) NIL)) (-3502 (((-565 |#1|) $) NIL)) (-1906 (($ (-1229 (-565 |#1|))) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-565 |#1|) (-361)))) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-565 |#1|) (-361)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL (|has| (-565 |#1|) (-361)))) (-1791 (((-112) $) NIL (|has| (-565 |#1|) (-361)))) (-1881 (($ $ (-749)) NIL (-3886 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361)))) (($ $) NIL (-3886 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-4081 (((-112) $) NIL)) (-4126 (((-893) $) NIL (|has| (-565 |#1|) (-361))) (((-810 (-893)) $) NIL (-3886 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| (-565 |#1|) (-361)))) (-2122 (((-112) $) NIL (|has| (-565 |#1|) (-361)))) (-3462 (((-565 |#1|) $) NIL) (($ $ (-893)) NIL (|has| (-565 |#1|) (-361)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-565 |#1|) (-361)))) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 (-565 |#1|)) $) NIL) (((-1141 $) $ (-893)) NIL (|has| (-565 |#1|) (-361)))) (-2121 (((-893) $) NIL (|has| (-565 |#1|) (-361)))) (-1719 (((-1141 (-565 |#1|)) $) NIL (|has| (-565 |#1|) (-361)))) (-1718 (((-1141 (-565 |#1|)) $) NIL (|has| (-565 |#1|) (-361))) (((-3 (-1141 (-565 |#1|)) "failed") $ $) NIL (|has| (-565 |#1|) (-361)))) (-1720 (($ $ (-1141 (-565 |#1|))) NIL (|has| (-565 |#1|) (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-565 |#1|) (-361)) CONST)) (-2487 (($ (-893)) NIL (|has| (-565 |#1|) (-361)))) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL (|has| (-565 |#1|) (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-565 |#1|) (-361)))) (-4087 (((-398 $) $) NIL)) (-4285 (((-810 (-893))) NIL) (((-893)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-749) $) NIL (|has| (-565 |#1|) (-361))) (((-3 (-749) "failed") $ $) NIL (-3886 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-4266 (((-133)) NIL)) (-4165 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-4302 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-3531 (((-1141 (-565 |#1|))) NIL)) (-1785 (($) NIL (|has| (-565 |#1|) (-361)))) (-1721 (($) NIL (|has| (-565 |#1|) (-361)))) (-3570 (((-1229 (-565 |#1|)) $) NIL) (((-667 (-565 |#1|)) (-1229 $)) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-565 |#1|) (-361)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-565 |#1|)) NIL)) (-3030 (($ $) NIL (|has| (-565 |#1|) (-361))) (((-3 $ "failed") $) NIL (-3886 (|has| (-565 |#1|) (-143)) (|has| (-565 |#1|) (-361))))) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL) (((-1229 $) (-893)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-2997 (($ $) NIL (|has| (-565 |#1|) (-361))) (($ $ (-749)) NIL (|has| (-565 |#1|) (-361)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL) (($ $ (-565 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-565 |#1|)) NIL) (($ (-565 |#1|) $) NIL))) -(((-509 |#1| |#2|) (-322 (-565 |#1|)) (-893) (-893)) (T -509)) -NIL -(-322 (-565 |#1|)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) 35)) (-1307 (($ $ (-536) |#4|) NIL)) (-1306 (($ $ (-536) |#5|) NIL)) (-3891 (($) NIL T CONST)) (-3442 ((|#4| $ (-536)) NIL)) (-1632 ((|#1| $ (-536) (-536) |#1|) 34)) (-3443 ((|#1| $ (-536) (-536)) 32)) (-2063 (((-620 |#1|) $) NIL)) (-3445 (((-749) $) 28)) (-3972 (($ (-749) (-749) |#1|) 25)) (-3444 (((-749) $) 30)) (-4077 (((-112) $ (-749)) NIL)) (-3449 (((-536) $) 26)) (-3447 (((-536) $) 27)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) 29)) (-3446 (((-536) $) 31)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) 38 (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 14)) (-3923 (($) 16)) (-4154 ((|#1| $ (-536) (-536)) 33) ((|#1| $ (-536) (-536) |#1|) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3441 ((|#5| $ (-536)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-510 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1183) (-536) (-536) (-365 |#1|) (-365 |#1|)) (T -510)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) NIL)) (-1309 (($ $ (-538) (-489 |#1| |#3|)) NIL)) (-1308 (($ $ (-538) (-489 |#1| |#2|)) NIL)) (-3896 (($) NIL T CONST)) (-3447 (((-489 |#1| |#3|) $ (-538)) NIL)) (-1637 ((|#1| $ (-538) (-538) |#1|) NIL)) (-3448 ((|#1| $ (-538) (-538)) NIL)) (-2068 (((-622 |#1|) $) NIL)) (-3450 (((-751) $) NIL)) (-3977 (($ (-751) (-751) |#1|) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) (-538)) NIL) ((|#1| $ (-538) (-538) |#1|) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3446 (((-489 |#1| |#2|) $ (-538)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-490 |#1| |#2| |#3|) (-56 |#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) (-1185) (-538) (-538)) (T -490)) +NIL +(-56 |#1| (-489 |#1| |#3|) (-489 |#1| |#2|)) +((-2076 (((-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751)) 27)) (-2075 (((-622 (-1143 |#1|)) |#1| (-751) (-751) (-751)) 34)) (-2197 (((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-622 |#3|) (-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751)) 85))) +(((-491 |#1| |#2| |#3|) (-10 -7 (-15 -2075 ((-622 (-1143 |#1|)) |#1| (-751) (-751) (-751))) (-15 -2076 ((-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751))) (-15 -2197 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-622 |#3|) (-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751)))) (-345) (-1207 |#1|) (-1207 |#2|)) (T -491)) +((-2197 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 (-2 (|:| -2128 (-669 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-669 *7))))) (-5 *5 (-751)) (-4 *8 (-1207 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-345)) (-5 *2 (-2 (|:| -2128 (-669 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-669 *7)))) (-5 *1 (-491 *6 *7 *8)))) (-2076 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-751)) (-4 *5 (-345)) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-2 (|:| -2128 (-669 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-669 *6))))) (-5 *1 (-491 *5 *6 *7)) (-5 *3 (-2 (|:| -2128 (-669 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-669 *6)))) (-4 *7 (-1207 *6)))) (-2075 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-751)) (-4 *3 (-345)) (-4 *5 (-1207 *3)) (-5 *2 (-622 (-1143 *3))) (-5 *1 (-491 *3 *5 *6)) (-4 *6 (-1207 *5))))) +(-10 -7 (-15 -2075 ((-622 (-1143 |#1|)) |#1| (-751) (-751) (-751))) (-15 -2076 ((-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-751) (-751))) (-15 -2197 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) (-622 |#3|) (-622 (-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) (-751)))) +((-2082 (((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))) 62)) (-2077 ((|#1| (-669 |#1|) |#1| (-751)) 25)) (-2079 (((-751) (-751) (-751)) 30)) (-2081 (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 42)) (-2080 (((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|) 50) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 47)) (-2078 ((|#1| (-669 |#1|) (-669 |#1|) |#1| (-538)) 29)) (-3688 ((|#1| (-669 |#1|)) 18))) +(((-492 |#1| |#2| |#3|) (-10 -7 (-15 -3688 (|#1| (-669 |#1|))) (-15 -2077 (|#1| (-669 |#1|) |#1| (-751))) (-15 -2078 (|#1| (-669 |#1|) (-669 |#1|) |#1| (-538))) (-15 -2079 ((-751) (-751) (-751))) (-15 -2080 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2080 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -2081 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2082 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))))) (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $)))) (-1207 |#1|) (-405 |#1| |#2|)) (T -492)) +((-2082 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2081 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2080 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2080 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2079 (*1 *2 *2 *2) (-12 (-5 *2 (-751)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) (-2078 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-669 *2)) (-5 *4 (-538)) (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *5 (-1207 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-405 *2 *5)))) (-2077 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-669 *2)) (-5 *4 (-751)) (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *5 (-1207 *2)) (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-405 *2 *5)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-669 *2)) (-4 *4 (-1207 *2)) (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-5 *1 (-492 *2 *4 *5)) (-4 *5 (-405 *2 *4))))) +(-10 -7 (-15 -3688 (|#1| (-669 |#1|))) (-15 -2077 (|#1| (-669 |#1|) |#1| (-751))) (-15 -2078 (|#1| (-669 |#1|) (-669 |#1|) |#1| (-538))) (-15 -2079 ((-751) (-751) (-751))) (-15 -2080 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2080 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -2081 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2082 ((-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|))) (-2 (|:| -2128 (-669 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-669 |#1|)))))) +((-2898 (((-112) $ $) NIL)) (-3679 (($ $) NIL)) (-3675 (($ $ $) 35)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) $) NIL (|has| (-112) (-827))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-1846 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-112) (-827)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-3242 (($ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-112) $ (-1198 (-538)) (-112)) NIL (|has| $ (-6 -4354))) (((-112) $ (-538) (-112)) 36 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-3765 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-4202 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-1637 (((-112) $ (-538) (-112)) NIL (|has| $ (-6 -4354)))) (-3448 (((-112) $ (-538)) NIL)) (-3778 (((-538) (-112) $ (-538)) NIL (|has| (-112) (-1074))) (((-538) (-112) $) NIL (|has| (-112) (-1074))) (((-538) (-1 (-112) (-112)) $) NIL)) (-2068 (((-622 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3190 (($ $ $) 33)) (-3676 (($ $) NIL)) (-1360 (($ $ $) NIL)) (-3977 (($ (-751) (-112)) 23)) (-1361 (($ $ $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 8 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL)) (-3872 (($ $ $) NIL (|has| (-112) (-827))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2511 (((-622 (-112)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL)) (-2072 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-112) (-112) (-112)) $ $) 30) (($ (-1 (-112) (-112)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ (-112) $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-112) $) NIL (|has| (-538) (-827)))) (-1399 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2306 (($ $ (-112)) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-112)) (-622 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-288 (-112))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074)))) (($ $ (-622 (-288 (-112)))) NIL (-12 (|has| (-112) (-304 (-112))) (|has| (-112) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074))))) (-2312 (((-622 (-112)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 24)) (-4159 (($ $ (-1198 (-538))) NIL) (((-112) $ (-538)) 18) (((-112) $ (-538) (-112)) NIL)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2069 (((-751) (-112) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-112) (-1074)))) (((-751) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) 25)) (-4330 (((-527) $) NIL (|has| (-112) (-598 (-527))))) (-3884 (($ (-622 (-112))) NIL)) (-4161 (($ (-622 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4317 (((-840) $) 22)) (-2071 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4353)))) (-3191 (($ $ $) 31)) (-3681 (($ $ $) NIL)) (-3672 (($ $ $) 39)) (-3674 (($ $) 37)) (-3673 (($ $ $) 38)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 26)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 27)) (-3680 (($ $ $) NIL)) (-4316 (((-751) $) 10 (|has| $ (-6 -4353))))) +(((-493 |#1|) (-13 (-123) (-10 -8 (-15 -3674 ($ $)) (-15 -3672 ($ $ $)) (-15 -3673 ($ $ $)))) (-538)) (T -493)) +((-3674 (*1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538)))) (-3672 (*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538)))) (-3673 (*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538))))) +(-13 (-123) (-10 -8 (-15 -3674 ($ $)) (-15 -3672 ($ $ $)) (-15 -3673 ($ $ $)))) +((-2084 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1143 |#4|)) 35)) (-2083 (((-1143 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1143 |#4|)) 22)) (-2085 (((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1143 |#4|))) 46)) (-2086 (((-1143 (-1143 |#4|)) (-1 |#4| |#1|) |#3|) 55))) +(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2083 (|#2| (-1 |#1| |#4|) (-1143 |#4|))) (-15 -2083 ((-1143 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2084 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1143 |#4|))) (-15 -2085 ((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1143 |#4|)))) (-15 -2086 ((-1143 (-1143 |#4|)) (-1 |#4| |#1|) |#3|))) (-1025) (-1207 |#1|) (-1207 |#2|) (-1025)) (T -494)) +((-2086 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *6 (-1207 *5)) (-5 *2 (-1143 (-1143 *7))) (-5 *1 (-494 *5 *6 *4 *7)) (-4 *4 (-1207 *6)))) (-2085 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-669 (-1143 *8))) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-1207 *5)) (-5 *2 (-669 *6)) (-5 *1 (-494 *5 *6 *7 *8)) (-4 *7 (-1207 *6)))) (-2084 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1143 *7)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1207 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1207 *2)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *4 (-1207 *5)) (-5 *2 (-1143 *7)) (-5 *1 (-494 *5 *4 *6 *7)) (-4 *6 (-1207 *4)))) (-2083 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1143 *7)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1207 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1207 *2))))) +(-10 -7 (-15 -2083 (|#2| (-1 |#1| |#4|) (-1143 |#4|))) (-15 -2083 ((-1143 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2084 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1143 |#4|))) (-15 -2085 ((-3 (-669 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-669 (-1143 |#4|)))) (-15 -2086 ((-1143 (-1143 |#4|)) (-1 |#4| |#1|) |#3|))) +((-2898 (((-112) $ $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2087 (((-1237) $) 19)) (-4159 (((-1131) $ (-1149)) 23)) (-3980 (((-1237) $) 15)) (-4317 (((-840) $) 21) (($ (-1131)) 20)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 9)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 8))) +(((-495) (-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $)) (-15 -4317 ($ (-1131)))))) (T -495)) +((-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1131)) (-5 *1 (-495)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-495))))) +(-13 (-827) (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) (-15 -2087 ((-1237) $)) (-15 -4317 ($ (-1131))))) +((-4101 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-4099 ((|#1| |#4|) 10)) (-4100 ((|#3| |#4|) 17))) +(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4099 (|#1| |#4|)) (-15 -4100 (|#3| |#4|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-545) (-967 |#1|) (-367 |#1|) (-367 |#2|)) (T -496)) +((-4101 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-496 *4 *5 *6 *3)) (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) (-4100 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-4 *2 (-367 *4)) (-5 *1 (-496 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) (-4099 (*1 *2 *3) (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-496 *2 *4 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-367 *4))))) +(-10 -7 (-15 -4099 (|#1| |#4|)) (-15 -4100 (|#3| |#4|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-2898 (((-112) $ $) NIL)) (-2097 (((-112) $ (-622 |#3|)) 105) (((-112) $) 106)) (-3539 (((-112) $) 149)) (-2089 (($ $ |#4|) 97) (($ $ |#4| (-622 |#3|)) 101)) (-2088 (((-1138 (-622 (-922 |#1|)) (-622 (-288 (-922 |#1|)))) (-622 |#4|)) 142 (|has| |#3| (-598 (-1149))))) (-2096 (($ $ $) 91) (($ $ |#4|) 89)) (-2502 (((-112) $) 148)) (-2093 (($ $) 109)) (-3593 (((-1131) $) NIL)) (-3589 (($ $ $) 83) (($ (-622 $)) 85)) (-2098 (((-112) |#4| $) 108)) (-2099 (((-112) $ $) 72)) (-2092 (($ (-622 |#4|)) 90)) (-3594 (((-1093) $) NIL)) (-2091 (($ (-622 |#4|)) 146)) (-2090 (((-112) $) 147)) (-2335 (($ $) 74)) (-3028 (((-622 |#4|) $) 63)) (-2095 (((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-622 |#3|)) NIL)) (-2100 (((-112) |#4| $) 77)) (-4271 (((-538) $ (-622 |#3|)) 110) (((-538) $) 111)) (-4317 (((-840) $) 145) (($ (-622 |#4|)) 86)) (-2094 (($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $))) NIL)) (-3387 (((-112) $ $) 73)) (-4199 (($ $ $) 93)) (** (($ $ (-751)) 96)) (* (($ $ $) 95))) +(((-497 |#1| |#2| |#3| |#4|) (-13 (-1074) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 -4199 ($ $ $)) (-15 -2502 ((-112) $)) (-15 -3539 ((-112) $)) (-15 -2100 ((-112) |#4| $)) (-15 -2099 ((-112) $ $)) (-15 -2098 ((-112) |#4| $)) (-15 -2097 ((-112) $ (-622 |#3|))) (-15 -2097 ((-112) $)) (-15 -3589 ($ $ $)) (-15 -3589 ($ (-622 $))) (-15 -2096 ($ $ $)) (-15 -2096 ($ $ |#4|)) (-15 -2335 ($ $)) (-15 -2095 ((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-622 |#3|))) (-15 -2094 ($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)))) (-15 -4271 ((-538) $ (-622 |#3|))) (-15 -4271 ((-538) $)) (-15 -2093 ($ $)) (-15 -2092 ($ (-622 |#4|))) (-15 -2091 ($ (-622 |#4|))) (-15 -2090 ((-112) $)) (-15 -3028 ((-622 |#4|) $)) (-15 -4317 ($ (-622 |#4|))) (-15 -2089 ($ $ |#4|)) (-15 -2089 ($ $ |#4| (-622 |#3|))) (IF (|has| |#3| (-598 (-1149))) (-15 -2088 ((-1138 (-622 (-922 |#1|)) (-622 (-288 (-922 |#1|)))) (-622 |#4|))) |%noBranch|))) (-358) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -497)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-2502 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-3539 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-2100 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))) (-2099 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-2098 (*1 *2 *3 *1) (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6)))) (-2097 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))) (-2097 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-3589 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-3589 (*1 *1 *2) (-12 (-5 *2 (-622 (-497 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-2096 (*1 *1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-2096 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-926 *3 *4 *5)))) (-2335 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-2095 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-2 (|:| |mval| (-669 *4)) (|:| |invmval| (-669 *4)) (|:| |genIdeal| (-497 *4 *5 *6 *7)))) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))) (-2094 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-669 *3)) (|:| |invmval| (-669 *3)) (|:| |genIdeal| (-497 *3 *4 *5 *6)))) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-4271 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 (-538)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))) (-4271 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-538)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-2093 (*1 *1 *1) (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-2091 (*1 *1 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-2090 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-3028 (*1 *2 *1) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *6)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) (-2089 (*1 *1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-926 *3 *4 *5)))) (-2089 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *1 (-497 *4 *5 *6 *2)) (-4 *2 (-926 *4 *5 *6)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *5 *6)) (-4 *6 (-598 (-1149))) (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1138 (-622 (-922 *4)) (-622 (-288 (-922 *4))))) (-5 *1 (-497 *4 *5 *6 *7))))) +(-13 (-1074) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 -4199 ($ $ $)) (-15 -2502 ((-112) $)) (-15 -3539 ((-112) $)) (-15 -2100 ((-112) |#4| $)) (-15 -2099 ((-112) $ $)) (-15 -2098 ((-112) |#4| $)) (-15 -2097 ((-112) $ (-622 |#3|))) (-15 -2097 ((-112) $)) (-15 -3589 ($ $ $)) (-15 -3589 ($ (-622 $))) (-15 -2096 ($ $ $)) (-15 -2096 ($ $ |#4|)) (-15 -2335 ($ $)) (-15 -2095 ((-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)) $ (-622 |#3|))) (-15 -2094 ($ (-2 (|:| |mval| (-669 |#1|)) (|:| |invmval| (-669 |#1|)) (|:| |genIdeal| $)))) (-15 -4271 ((-538) $ (-622 |#3|))) (-15 -4271 ((-538) $)) (-15 -2093 ($ $)) (-15 -2092 ($ (-622 |#4|))) (-15 -2091 ($ (-622 |#4|))) (-15 -2090 ((-112) $)) (-15 -3028 ((-622 |#4|) $)) (-15 -4317 ($ (-622 |#4|))) (-15 -2089 ($ $ |#4|)) (-15 -2089 ($ $ |#4| (-622 |#3|))) (IF (|has| |#3| (-598 (-1149))) (-15 -2088 ((-1138 (-622 (-922 |#1|)) (-622 (-288 (-922 |#1|)))) (-622 |#4|))) |%noBranch|))) +((-2101 (((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) 150)) (-2102 (((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) 151)) (-2103 (((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) 108)) (-4086 (((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) NIL)) (-2104 (((-622 (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) 153)) (-2105 (((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-622 (-841 |#1|))) 165))) +(((-498 |#1| |#2|) (-10 -7 (-15 -2101 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2102 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -4086 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2103 ((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2104 ((-622 (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2105 ((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-622 (-841 |#1|))))) (-622 (-1149)) (-751)) (T -498)) +((-2105 (*1 *2 *2 *3) (-12 (-5 *2 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) (-5 *3 (-622 (-841 *4))) (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *1 (-498 *4 *5)))) (-2104 (*1 *2 *3) (-12 (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-622 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538)))))) (-5 *1 (-498 *4 *5)) (-5 *3 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))))) (-2103 (*1 *2 *2) (-12 (-5 *2 (-497 (-402 (-538)) (-235 *4 (-751)) (-841 *3) (-243 *3 (-402 (-538))))) (-14 *3 (-622 (-1149))) (-14 *4 (-751)) (-5 *1 (-498 *3 *4)))) (-4086 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) (-5 *1 (-498 *4 *5))))) +(-10 -7 (-15 -2101 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2102 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -4086 ((-112) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2103 ((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2104 ((-622 (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538))))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))))) (-15 -2105 ((-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-497 (-402 (-538)) (-235 |#2| (-751)) (-841 |#1|) (-243 |#1| (-402 (-538)))) (-622 (-841 |#1|))))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 11) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1149) $) 8)) (-3387 (((-112) $ $) NIL))) +(((-499) (-13 (-1056) (-597 (-1149)))) (T -499)) +NIL +(-13 (-1056) (-597 (-1149))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3226 (($ |#1| |#2|) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2106 ((|#2| $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2991 (($) 12 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) 11) (($ $ $) 24)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 18))) +(((-500 |#1| |#2|) (-13 (-21) (-502 |#1| |#2|)) (-21) (-827)) (T -500)) +NIL +(-13 (-21) (-502 |#1| |#2|)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 12)) (-3896 (($) NIL T CONST)) (-4319 (($ $) 28)) (-3226 (($ |#1| |#2|) 25)) (-4318 (($ (-1 |#1| |#1|) $) 27)) (-2106 ((|#2| $) NIL)) (-3525 ((|#1| $) 29)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2991 (($) 10 T CONST)) (-3387 (((-112) $ $) NIL)) (-4199 (($ $ $) 18)) (* (($ (-895) $) NIL) (($ (-751) $) 23))) +(((-501 |#1| |#2|) (-13 (-23) (-502 |#1| |#2|)) (-23) (-827)) (T -501)) +NIL +(-13 (-23) (-502 |#1| |#2|)) +((-2898 (((-112) $ $) 7)) (-4319 (($ $) 13)) (-3226 (($ |#1| |#2|) 16)) (-4318 (($ (-1 |#1| |#1|) $) 17)) (-2106 ((|#2| $) 14)) (-3525 ((|#1| $) 15)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6))) +(((-502 |#1| |#2|) (-138) (-1074) (-827)) (T -502)) +((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-827)))) (-3226 (*1 *1 *2 *3) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-827)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1074)))) (-2106 (*1 *2 *1) (-12 (-4 *1 (-502 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-827)))) (-4319 (*1 *1 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-827))))) +(-13 (-1074) (-10 -8 (-15 -4318 ($ (-1 |t#1| |t#1|) $)) (-15 -3226 ($ |t#1| |t#2|)) (-15 -3525 (|t#1| $)) (-15 -2106 (|t#2| $)) (-15 -4319 ($ $)))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-4319 (($ $) 25)) (-3226 (($ |#1| |#2|) 22)) (-4318 (($ (-1 |#1| |#1|) $) 24)) (-2106 ((|#2| $) 27)) (-3525 ((|#1| $) 26)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21)) (-3387 (((-112) $ $) 14))) +(((-503 |#1| |#2|) (-502 |#1| |#2|) (-1074) (-827)) (T -503)) +NIL +(-502 |#1| |#2|) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3226 (($ |#1| |#2|) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2106 ((|#2| $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2991 (($) NIL T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 13)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL))) +(((-504 |#1| |#2|) (-13 (-772) (-502 |#1| |#2|)) (-772) (-827)) (T -504)) +NIL +(-13 (-772) (-502 |#1| |#2|)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2733 (($ $ $) 16)) (-1368 (((-3 $ "failed") $ $) 13)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3226 (($ |#1| |#2|) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2106 ((|#2| $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL)) (-2991 (($) NIL T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL))) +(((-505 |#1| |#2|) (-13 (-773) (-502 |#1| |#2|)) (-773) (-827)) (T -505)) +NIL +(-13 (-773) (-502 |#1| |#2|)) +((-4127 (($ $ (-622 |#2|) (-622 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-506 |#1| |#2| |#3|) (-10 -8 (-15 -4127 (|#1| |#1| |#2| |#3|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#3|)))) (-507 |#2| |#3|) (-1074) (-1185)) (T -506)) +NIL +(-10 -8 (-15 -4127 (|#1| |#1| |#2| |#3|)) (-15 -4127 (|#1| |#1| (-622 |#2|) (-622 |#3|)))) +((-4127 (($ $ (-622 |#1|) (-622 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-507 |#1| |#2|) (-138) (-1074) (-1185)) (T -507)) +((-4127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 *5)) (-4 *1 (-507 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1185)))) (-4127 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1185))))) +(-13 (-10 -8 (-15 -4127 ($ $ |t#1| |t#2|)) (-15 -4127 ($ $ (-622 |t#1|) (-622 |t#2|))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 16)) (-4133 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))) $) 18)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751) $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-2768 ((|#1| $ (-538)) 23)) (-1719 ((|#2| $ (-538)) 21)) (-2371 (($ (-1 |#1| |#1|) $) 46)) (-1718 (($ (-1 |#2| |#2|) $) 43)) (-3593 (((-1131) $) NIL)) (-1717 (($ $ $) 53 (|has| |#2| (-772)))) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 42) (($ |#1|) NIL)) (-4040 ((|#2| |#1| $) 49)) (-2991 (($) 11 T CONST)) (-3387 (((-112) $ $) 29)) (-4199 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-895) $) NIL) (($ (-751) $) 36) (($ |#2| |#1|) 31))) +(((-508 |#1| |#2| |#3|) (-318 |#1| |#2|) (-1074) (-130) |#2|) (T -508)) +NIL +(-318 |#1| |#2|) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-2107 (((-112) (-112)) 25)) (-4147 ((|#1| $ (-538) |#1|) 28 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) 52)) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-2455 (($ $) 56 (|has| |#1| (-1074)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) NIL (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) 44)) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2108 (($ $ (-538)) 13)) (-2109 (((-751) $) 11)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 23)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 21 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3192 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 35)) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) 20 (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3970 (($ $ $ (-538)) 51) (($ |#1| $ (-538)) 37)) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2110 (($ (-622 |#1|)) 29)) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) 19 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 40)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 16)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) 33) (($ $ (-1198 (-538))) NIL)) (-1632 (($ $ (-1198 (-538))) 50) (($ $ (-538)) 45)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) 41 (|has| $ (-6 -4354)))) (-3759 (($ $) 32)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4150 (($ $ $) 42) (($ $ |#1|) 39)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) 17 (|has| $ (-6 -4353))))) +(((-509 |#1| |#2|) (-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2110 ($ (-622 |#1|))) (-15 -2109 ((-751) $)) (-15 -2108 ($ $ (-538))) (-15 -2107 ((-112) (-112))))) (-1185) (-538)) (T -509)) +((-2110 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-509 *3 *4)) (-14 *4 (-538)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 (-538)))) (-2108 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 *2))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 (-538))))) +(-13 (-19 |#1|) (-277 |#1|) (-10 -8 (-15 -2110 ($ (-622 |#1|))) (-15 -2109 ((-751) $)) (-15 -2108 ($ $ (-538))) (-15 -2107 ((-112) (-112))))) +((-2898 (((-112) $ $) NIL)) (-2112 (((-1108) $) 11)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2111 (((-1108) $) 13)) (-4282 (((-1108) $) 9)) (-4317 (((-840) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-510) (-13 (-1056) (-10 -8 (-15 -4282 ((-1108) $)) (-15 -2112 ((-1108) $)) (-15 -2111 ((-1108) $))))) (T -510)) +((-4282 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510))))) +(-13 (-1056) (-10 -8 (-15 -4282 ((-1108) $)) (-15 -2112 ((-1108) $)) (-15 -2111 ((-1108) $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (((-567 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-567 |#1|) (-363)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-567 |#1|) (-363)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL (|has| (-567 |#1|) (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-567 |#1|) "failed") $) NIL)) (-3507 (((-567 |#1|) $) NIL)) (-1911 (($ (-1231 (-567 |#1|))) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-567 |#1|) (-363)))) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-567 |#1|) (-363)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL (|has| (-567 |#1|) (-363)))) (-1796 (((-112) $) NIL (|has| (-567 |#1|) (-363)))) (-1886 (($ $ (-751)) NIL (-3891 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363)))) (($ $) NIL (-3891 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-4086 (((-112) $) NIL)) (-4131 (((-895) $) NIL (|has| (-567 |#1|) (-363))) (((-812 (-895)) $) NIL (-3891 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| (-567 |#1|) (-363)))) (-2127 (((-112) $) NIL (|has| (-567 |#1|) (-363)))) (-3467 (((-567 |#1|) $) NIL) (($ $ (-895)) NIL (|has| (-567 |#1|) (-363)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-567 |#1|) (-363)))) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 (-567 |#1|)) $) NIL) (((-1143 $) $ (-895)) NIL (|has| (-567 |#1|) (-363)))) (-2126 (((-895) $) NIL (|has| (-567 |#1|) (-363)))) (-1724 (((-1143 (-567 |#1|)) $) NIL (|has| (-567 |#1|) (-363)))) (-1723 (((-1143 (-567 |#1|)) $) NIL (|has| (-567 |#1|) (-363))) (((-3 (-1143 (-567 |#1|)) "failed") $ $) NIL (|has| (-567 |#1|) (-363)))) (-1725 (($ $ (-1143 (-567 |#1|))) NIL (|has| (-567 |#1|) (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-567 |#1|) (-363)) CONST)) (-2492 (($ (-895)) NIL (|has| (-567 |#1|) (-363)))) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL (|has| (-567 |#1|) (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-567 |#1|) (-363)))) (-4092 (((-400 $) $) NIL)) (-4290 (((-812 (-895))) NIL) (((-895)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-751) $) NIL (|has| (-567 |#1|) (-363))) (((-3 (-751) "failed") $ $) NIL (-3891 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-4271 (((-133)) NIL)) (-4170 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-4307 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-3536 (((-1143 (-567 |#1|))) NIL)) (-1790 (($) NIL (|has| (-567 |#1|) (-363)))) (-1726 (($) NIL (|has| (-567 |#1|) (-363)))) (-3575 (((-1231 (-567 |#1|)) $) NIL) (((-669 (-567 |#1|)) (-1231 $)) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-567 |#1|) (-363)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-567 |#1|)) NIL)) (-3035 (($ $) NIL (|has| (-567 |#1|) (-363))) (((-3 $ "failed") $) NIL (-3891 (|has| (-567 |#1|) (-143)) (|has| (-567 |#1|) (-363))))) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL) (((-1231 $) (-895)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-3002 (($ $) NIL (|has| (-567 |#1|) (-363))) (($ $ (-751)) NIL (|has| (-567 |#1|) (-363)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL) (($ $ (-567 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-567 |#1|)) NIL) (($ (-567 |#1|) $) NIL))) +(((-511 |#1| |#2|) (-324 (-567 |#1|)) (-895) (-895)) (T -511)) +NIL +(-324 (-567 |#1|)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) 35)) (-1309 (($ $ (-538) |#4|) NIL)) (-1308 (($ $ (-538) |#5|) NIL)) (-3896 (($) NIL T CONST)) (-3447 ((|#4| $ (-538)) NIL)) (-1637 ((|#1| $ (-538) (-538) |#1|) 34)) (-3448 ((|#1| $ (-538) (-538)) 32)) (-2068 (((-622 |#1|) $) NIL)) (-3450 (((-751) $) 28)) (-3977 (($ (-751) (-751) |#1|) 25)) (-3449 (((-751) $) 30)) (-4082 (((-112) $ (-751)) NIL)) (-3454 (((-538) $) 26)) (-3452 (((-538) $) 27)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) 29)) (-3451 (((-538) $) 31)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) 38 (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 14)) (-3928 (($) 16)) (-4159 ((|#1| $ (-538) (-538)) 33) ((|#1| $ (-538) (-538) |#1|) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3446 ((|#5| $ (-538)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-512 |#1| |#2| |#3| |#4| |#5|) (-56 |#1| |#4| |#5|) (-1185) (-538) (-538) (-367 |#1|) (-367 |#1|)) (T -512)) NIL (-56 |#1| |#4| |#5|) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) NIL)) (-4149 ((|#1| $) NIL)) (-4151 (($ $) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 59 (|has| $ (-6 -4349)))) (-1843 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4349)))) (-3237 (($ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4141 (($ $ $) 23 (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 21 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4349))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4150 ((|#1| $) NIL)) (-3891 (($) NIL T CONST)) (-2372 (($ $) 28 (|has| $ (-6 -4349)))) (-2373 (($ $) 29)) (-4153 (($ $) 18) (($ $ (-749)) 32)) (-2450 (($ $) 55 (|has| |#1| (-1072)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) NIL (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) NIL)) (-3760 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3796 (((-112) $) NIL)) (-3773 (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072))) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) (-1 (-112) |#1|) $) NIL)) (-2063 (((-620 |#1|) $) 27 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 31 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3187 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3867 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3892 (($ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) 51 (|has| |#1| (-1072)))) (-4152 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-3965 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) 13) (($ $ (-749)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-3797 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 12)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) 17)) (-3923 (($) 16)) (-4154 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1196 (-536))) NIL) ((|#1| $ (-536)) NIL) ((|#1| $ (-536) |#1|) NIL)) (-3357 (((-536) $ $) NIL)) (-1627 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-3991 (((-112) $) 34)) (-4146 (($ $) NIL)) (-4144 (($ $) NIL (|has| $ (-6 -4349)))) (-4147 (((-749) $) NIL)) (-4148 (($ $) 36)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) 35)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 26)) (-4145 (($ $ $) 54) (($ $ |#1|) NIL)) (-4156 (($ $ $) NIL) (($ |#1| $) 10) (($ (-620 $)) NIL) (($ $ |#1|) NIL)) (-4312 (((-838) $) 46 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 48 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) 9 (|has| $ (-6 -4348))))) -(((-511 |#1| |#2|) (-644 |#1|) (-1183) (-536)) (T -511)) -NIL -(-644 |#1|) -((-3440 ((|#4| |#4|) 27)) (-3439 (((-749) |#4|) 32)) (-3438 (((-749) |#4|) 33)) (-3437 (((-620 |#3|) |#4|) 40 (|has| |#3| (-6 -4349)))) (-3947 (((-3 |#4| "failed") |#4|) 51)) (-2108 ((|#4| |#4|) 44)) (-3682 ((|#1| |#4|) 43))) -(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3440 (|#4| |#4|)) (-15 -3439 ((-749) |#4|)) (-15 -3438 ((-749) |#4|)) (IF (|has| |#3| (-6 -4349)) (-15 -3437 ((-620 |#3|) |#4|)) |%noBranch|) (-15 -3682 (|#1| |#4|)) (-15 -2108 (|#4| |#4|)) (-15 -3947 ((-3 |#4| "failed") |#4|))) (-356) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|)) (T -512)) -((-3947 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-2108 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-356)) (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5)))) (-3437 (*1 *2 *3) (-12 (|has| *6 (-6 -4349)) (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-620 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3438 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3439 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3440 (*1 *2 *2) (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) -(-10 -7 (-15 -3440 (|#4| |#4|)) (-15 -3439 ((-749) |#4|)) (-15 -3438 ((-749) |#4|)) (IF (|has| |#3| (-6 -4349)) (-15 -3437 ((-620 |#3|) |#4|)) |%noBranch|) (-15 -3682 (|#1| |#4|)) (-15 -2108 (|#4| |#4|)) (-15 -3947 ((-3 |#4| "failed") |#4|))) -((-3440 ((|#8| |#4|) 20)) (-3437 (((-620 |#3|) |#4|) 29 (|has| |#7| (-6 -4349)))) (-3947 (((-3 |#8| "failed") |#4|) 23))) -(((-513 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3440 (|#8| |#4|)) (-15 -3947 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4349)) (-15 -3437 ((-620 |#3|) |#4|)) |%noBranch|)) (-543) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|) (-965 |#1|) (-365 |#5|) (-365 |#5|) (-664 |#5| |#6| |#7|)) (T -513)) -((-3437 (*1 *2 *3) (-12 (|has| *9 (-6 -4349)) (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-965 *4)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)) (-5 *2 (-620 *6)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-664 *4 *5 *6)) (-4 *10 (-664 *7 *8 *9)))) (-3947 (*1 *2 *3) (|partial| -12 (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-965 *4)) (-4 *2 (-664 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-664 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) (-3440 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-965 *4)) (-4 *2 (-664 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-664 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7))))) -(-10 -7 (-15 -3440 (|#8| |#4|)) (-15 -3947 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4349)) (-15 -3437 ((-620 |#3|) |#4|)) |%noBranch|)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749) (-749)) NIL)) (-2426 (($ $ $) NIL)) (-3768 (($ (-584 |#1| |#3|)) NIL) (($ $) NIL)) (-3451 (((-112) $) NIL)) (-2425 (($ $ (-536) (-536)) 12)) (-2424 (($ $ (-536) (-536)) NIL)) (-2423 (($ $ (-536) (-536) (-536) (-536)) NIL)) (-2428 (($ $) NIL)) (-3453 (((-112) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-2422 (($ $ (-536) (-536) $) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536)) $) NIL)) (-1307 (($ $ (-536) (-584 |#1| |#3|)) NIL)) (-1306 (($ $ (-536) (-584 |#1| |#2|)) NIL)) (-3687 (($ (-749) |#1|) NIL)) (-3891 (($) NIL T CONST)) (-3440 (($ $) 21 (|has| |#1| (-300)))) (-3442 (((-584 |#1| |#3|) $ (-536)) NIL)) (-3439 (((-749) $) 24 (|has| |#1| (-543)))) (-1632 ((|#1| $ (-536) (-536) |#1|) NIL)) (-3443 ((|#1| $ (-536) (-536)) NIL)) (-2063 (((-620 |#1|) $) NIL)) (-3438 (((-749) $) 26 (|has| |#1| (-543)))) (-3437 (((-620 (-584 |#1| |#2|)) $) 29 (|has| |#1| (-543)))) (-3445 (((-749) $) NIL)) (-3972 (($ (-749) (-749) |#1|) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3681 ((|#1| $) 19 (|has| |#1| (-6 (-4350 #1="*"))))) (-3449 (((-536) $) 10)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) 11)) (-3446 (((-536) $) NIL)) (-3454 (($ (-620 (-620 |#1|))) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3951 (((-620 (-620 |#1|)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3947 (((-3 $ #2="failed") $) 33 (|has| |#1| (-356)))) (-2427 (($ $ $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-3815 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-543)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) (-536)) NIL) ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536))) NIL)) (-3686 (($ (-620 |#1|)) NIL) (($ (-620 $)) NIL)) (-3452 (((-112) $) NIL)) (-3682 ((|#1| $) 17 (|has| |#1| (-6 (-4350 #1#))))) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3441 (((-584 |#1| |#2|) $ (-536)) NIL)) (-4312 (($ (-584 |#1| |#2|)) NIL) (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-536) $) NIL) (((-584 |#1| |#2|) $ (-584 |#1| |#2|)) NIL) (((-584 |#1| |#3|) (-584 |#1| |#3|) $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-514 |#1| |#2| |#3|) (-664 |#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) (-1023) (-536) (-536)) (T -514)) -NIL -(-664 |#1| (-584 |#1| |#3|) (-584 |#1| |#2|)) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2109 (((-620 (-1184)) $) 13)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20) (((-1152) $) NIL) (($ (-1152)) NIL) (($ (-620 (-1184))) 11)) (-3382 (((-112) $ $) NIL))) -(((-515) (-13 (-1054) (-10 -8 (-15 -4312 ($ (-620 (-1184)))) (-15 -2109 ((-620 (-1184)) $))))) (T -515)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-515)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-515))))) -(-13 (-1054) (-10 -8 (-15 -4312 ($ (-620 (-1184)))) (-15 -2109 ((-620 (-1184)) $)))) -((-2893 (((-112) $ $) NIL)) (-2110 (((-1106) $) 14)) (-3588 (((-1129) $) NIL)) (-2111 (((-1147) $) 11)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-516) (-13 (-1054) (-10 -8 (-15 -2111 ((-1147) $)) (-15 -2110 ((-1106) $))))) (T -516)) -((-2111 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-516)))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-516))))) -(-13 (-1054) (-10 -8 (-15 -2111 ((-1147) $)) (-15 -2110 ((-1106) $)))) -((-2112 (((-1091) $ (-129)) 17))) -(((-517 |#1|) (-10 -8 (-15 -2112 ((-1091) |#1| (-129)))) (-518)) (T -517)) -NIL -(-10 -8 (-15 -2112 ((-1091) |#1| (-129)))) -((-2112 (((-1091) $ (-129)) 7)) (-2113 (((-1091) $) 8)) (-1811 (($ $) 6))) -(((-518) (-138)) (T -518)) -((-2113 (*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1091)))) (-2112 (*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-129)) (-5 *2 (-1091))))) -(-13 (-171) (-10 -8 (-15 -2113 ((-1091) $)) (-15 -2112 ((-1091) $ (-129))))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) NIL)) (-4154 ((|#1| $) NIL)) (-4156 (($ $) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 59 (|has| $ (-6 -4354)))) (-1848 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1846 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) 57 (|has| $ (-6 -4354)))) (-3242 (($ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4146 (($ $ $) 23 (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 21 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4354))) (($ $ #3="rest" $) 24 (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) NIL)) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4155 ((|#1| $) NIL)) (-3896 (($) NIL T CONST)) (-2377 (($ $) 28 (|has| $ (-6 -4354)))) (-2378 (($ $) 29)) (-4158 (($ $) 18) (($ $ (-751)) 32)) (-2455 (($ $) 55 (|has| |#1| (-1074)))) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) NIL (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) NIL)) (-3765 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3801 (((-112) $) NIL)) (-3778 (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074))) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) (-1 (-112) |#1|) $) NIL)) (-2068 (((-622 |#1|) $) 27 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 31 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3192 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3872 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 53 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3897 (($ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) 51 (|has| |#1| (-1074)))) (-4157 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3970 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) 13) (($ $ (-751)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-3802 (((-112) $) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 12)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) 17)) (-3928 (($) 16)) (-4159 ((|#1| $ #1#) NIL) ((|#1| $ #2#) 15) (($ $ #3#) 20) ((|#1| $ #4#) NIL) (($ $ (-1198 (-538))) NIL) ((|#1| $ (-538)) NIL) ((|#1| $ (-538) |#1|) NIL)) (-3362 (((-538) $ $) NIL)) (-1632 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-3996 (((-112) $) 34)) (-4151 (($ $) NIL)) (-4149 (($ $) NIL (|has| $ (-6 -4354)))) (-4152 (((-751) $) NIL)) (-4153 (($ $) 36)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) 35)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 26)) (-4150 (($ $ $) 54) (($ $ |#1|) NIL)) (-4161 (($ $ $) NIL) (($ |#1| $) 10) (($ (-622 $)) NIL) (($ $ |#1|) NIL)) (-4317 (((-840) $) 46 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 48 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) 9 (|has| $ (-6 -4353))))) +(((-513 |#1| |#2|) (-646 |#1|) (-1185) (-538)) (T -513)) +NIL +(-646 |#1|) +((-3445 ((|#4| |#4|) 27)) (-3444 (((-751) |#4|) 32)) (-3443 (((-751) |#4|) 33)) (-3442 (((-622 |#3|) |#4|) 40 (|has| |#3| (-6 -4354)))) (-3952 (((-3 |#4| "failed") |#4|) 51)) (-2113 ((|#4| |#4|) 44)) (-3687 ((|#1| |#4|) 43))) +(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3445 (|#4| |#4|)) (-15 -3444 ((-751) |#4|)) (-15 -3443 ((-751) |#4|)) (IF (|has| |#3| (-6 -4354)) (-15 -3442 ((-622 |#3|) |#4|)) |%noBranch|) (-15 -3687 (|#1| |#4|)) (-15 -2113 (|#4| |#4|)) (-15 -3952 ((-3 |#4| "failed") |#4|))) (-358) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|)) (T -514)) +((-3952 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-2113 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-358)) (-5 *1 (-514 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5)))) (-3442 (*1 *2 *3) (-12 (|has| *6 (-6 -4354)) (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-622 *6)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3443 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))) +(-10 -7 (-15 -3445 (|#4| |#4|)) (-15 -3444 ((-751) |#4|)) (-15 -3443 ((-751) |#4|)) (IF (|has| |#3| (-6 -4354)) (-15 -3442 ((-622 |#3|) |#4|)) |%noBranch|) (-15 -3687 (|#1| |#4|)) (-15 -2113 (|#4| |#4|)) (-15 -3952 ((-3 |#4| "failed") |#4|))) +((-3445 ((|#8| |#4|) 20)) (-3442 (((-622 |#3|) |#4|) 29 (|has| |#7| (-6 -4354)))) (-3952 (((-3 |#8| "failed") |#4|) 23))) +(((-515 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3445 (|#8| |#4|)) (-15 -3952 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4354)) (-15 -3442 ((-622 |#3|) |#4|)) |%noBranch|)) (-545) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|) (-967 |#1|) (-367 |#5|) (-367 |#5|) (-666 |#5| |#6| |#7|)) (T -515)) +((-3442 (*1 *2 *3) (-12 (|has| *9 (-6 -4354)) (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-967 *4)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)) (-5 *2 (-622 *6)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-666 *4 *5 *6)) (-4 *10 (-666 *7 *8 *9)))) (-3952 (*1 *2 *3) (|partial| -12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-967 *4)) (-4 *2 (-666 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-666 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) (-3445 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-967 *4)) (-4 *2 (-666 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-666 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7))))) +(-10 -7 (-15 -3445 (|#8| |#4|)) (-15 -3952 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4354)) (-15 -3442 ((-622 |#3|) |#4|)) |%noBranch|)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751) (-751)) NIL)) (-2431 (($ $ $) NIL)) (-3773 (($ (-586 |#1| |#3|)) NIL) (($ $) NIL)) (-3456 (((-112) $) NIL)) (-2430 (($ $ (-538) (-538)) 12)) (-2429 (($ $ (-538) (-538)) NIL)) (-2428 (($ $ (-538) (-538) (-538) (-538)) NIL)) (-2433 (($ $) NIL)) (-3458 (((-112) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-2427 (($ $ (-538) (-538) $) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538)) $) NIL)) (-1309 (($ $ (-538) (-586 |#1| |#3|)) NIL)) (-1308 (($ $ (-538) (-586 |#1| |#2|)) NIL)) (-3692 (($ (-751) |#1|) NIL)) (-3896 (($) NIL T CONST)) (-3445 (($ $) 21 (|has| |#1| (-302)))) (-3447 (((-586 |#1| |#3|) $ (-538)) NIL)) (-3444 (((-751) $) 24 (|has| |#1| (-545)))) (-1637 ((|#1| $ (-538) (-538) |#1|) NIL)) (-3448 ((|#1| $ (-538) (-538)) NIL)) (-2068 (((-622 |#1|) $) NIL)) (-3443 (((-751) $) 26 (|has| |#1| (-545)))) (-3442 (((-622 (-586 |#1| |#2|)) $) 29 (|has| |#1| (-545)))) (-3450 (((-751) $) NIL)) (-3977 (($ (-751) (-751) |#1|) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3686 ((|#1| $) 19 (|has| |#1| (-6 (-4355 #1="*"))))) (-3454 (((-538) $) 10)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) 11)) (-3451 (((-538) $) NIL)) (-3459 (($ (-622 (-622 |#1|))) NIL)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3956 (((-622 (-622 |#1|)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3952 (((-3 $ #2="failed") $) 33 (|has| |#1| (-358)))) (-2432 (($ $ $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-3820 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-545)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) (-538)) NIL) ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538))) NIL)) (-3691 (($ (-622 |#1|)) NIL) (($ (-622 $)) NIL)) (-3457 (((-112) $) NIL)) (-3687 ((|#1| $) 17 (|has| |#1| (-6 (-4355 #1#))))) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3446 (((-586 |#1| |#2|) $ (-538)) NIL)) (-4317 (($ (-586 |#1| |#2|)) NIL) (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-538) $) NIL) (((-586 |#1| |#2|) $ (-586 |#1| |#2|)) NIL) (((-586 |#1| |#3|) (-586 |#1| |#3|) $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-516 |#1| |#2| |#3|) (-666 |#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) (-1025) (-538) (-538)) (T -516)) +NIL +(-666 |#1| (-586 |#1| |#3|) (-586 |#1| |#2|)) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2114 (((-622 (-1186)) $) 13)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL) (($ (-622 (-1186))) 11)) (-3387 (((-112) $ $) NIL))) +(((-517) (-13 (-1056) (-10 -8 (-15 -4317 ($ (-622 (-1186)))) (-15 -2114 ((-622 (-1186)) $))))) (T -517)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-517)))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-517))))) +(-13 (-1056) (-10 -8 (-15 -4317 ($ (-622 (-1186)))) (-15 -2114 ((-622 (-1186)) $)))) +((-2898 (((-112) $ $) NIL)) (-2115 (((-1108) $) 14)) (-3593 (((-1131) $) NIL)) (-2116 (((-1149) $) 11)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-518) (-13 (-1056) (-10 -8 (-15 -2116 ((-1149) $)) (-15 -2115 ((-1108) $))))) (T -518)) +((-2116 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-518)))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-518))))) +(-13 (-1056) (-10 -8 (-15 -2116 ((-1149) $)) (-15 -2115 ((-1108) $)))) +((-2117 (((-1093) $ (-129)) 17))) +(((-519 |#1|) (-10 -8 (-15 -2117 ((-1093) |#1| (-129)))) (-520)) (T -519)) +NIL +(-10 -8 (-15 -2117 ((-1093) |#1| (-129)))) +((-2117 (((-1093) $ (-129)) 7)) (-2118 (((-1093) $) 8)) (-1816 (($ $) 6))) +(((-520) (-138)) (T -520)) +((-2118 (*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-1093)))) (-2117 (*1 *2 *1 *3) (-12 (-4 *1 (-520)) (-5 *3 (-129)) (-5 *2 (-1093))))) +(-13 (-171) (-10 -8 (-15 -2118 ((-1093) $)) (-15 -2117 ((-1093) $ (-129))))) (((-171) . T)) -((-2116 (((-1141 |#1|) (-749)) 76)) (-3684 (((-1229 |#1|) (-1229 |#1|) (-893)) 69)) (-2114 (((-1235) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) |#1|) 84)) (-2118 (((-1229 |#1|) (-1229 |#1|) (-749)) 36)) (-3322 (((-1229 |#1|) (-893)) 71)) (-2120 (((-1229 |#1|) (-1229 |#1|) (-536)) 24)) (-2115 (((-1141 |#1|) (-1229 |#1|)) 77)) (-2124 (((-1229 |#1|) (-893)) 95)) (-2122 (((-112) (-1229 |#1|)) 80)) (-3462 (((-1229 |#1|) (-1229 |#1|) (-893)) 62)) (-2125 (((-1141 |#1|) (-1229 |#1|)) 89)) (-2121 (((-893) (-1229 |#1|)) 59)) (-2729 (((-1229 |#1|) (-1229 |#1|)) 30)) (-2487 (((-1229 |#1|) (-893) (-893)) 97)) (-2119 (((-1229 |#1|) (-1229 |#1|) (-1091) (-1091)) 23)) (-2117 (((-1229 |#1|) (-1229 |#1|) (-749) (-1091)) 37)) (-2123 (((-1229 (-1229 |#1|)) (-893)) 94)) (-4303 (((-1229 |#1|) (-1229 |#1|) (-1229 |#1|)) 81)) (** (((-1229 |#1|) (-1229 |#1|) (-536)) 45)) (* (((-1229 |#1|) (-1229 |#1|) (-1229 |#1|)) 25))) -(((-519 |#1|) (-10 -7 (-15 -2114 ((-1235) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) |#1|)) (-15 -3322 ((-1229 |#1|) (-893))) (-15 -2487 ((-1229 |#1|) (-893) (-893))) (-15 -2115 ((-1141 |#1|) (-1229 |#1|))) (-15 -2116 ((-1141 |#1|) (-749))) (-15 -2117 ((-1229 |#1|) (-1229 |#1|) (-749) (-1091))) (-15 -2118 ((-1229 |#1|) (-1229 |#1|) (-749))) (-15 -2119 ((-1229 |#1|) (-1229 |#1|) (-1091) (-1091))) (-15 -2120 ((-1229 |#1|) (-1229 |#1|) (-536))) (-15 ** ((-1229 |#1|) (-1229 |#1|) (-536))) (-15 * ((-1229 |#1|) (-1229 |#1|) (-1229 |#1|))) (-15 -4303 ((-1229 |#1|) (-1229 |#1|) (-1229 |#1|))) (-15 -3462 ((-1229 |#1|) (-1229 |#1|) (-893))) (-15 -3684 ((-1229 |#1|) (-1229 |#1|) (-893))) (-15 -2729 ((-1229 |#1|) (-1229 |#1|))) (-15 -2121 ((-893) (-1229 |#1|))) (-15 -2122 ((-112) (-1229 |#1|))) (-15 -2123 ((-1229 (-1229 |#1|)) (-893))) (-15 -2124 ((-1229 |#1|) (-893))) (-15 -2125 ((-1141 |#1|) (-1229 |#1|)))) (-343)) (T -519)) -((-2125 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1229 (-1229 *4))) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2122 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-519 *4)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-893)) (-5 *1 (-519 *4)))) (-2729 (*1 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (-3684 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-893)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-893)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-4303 (*1 *2 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-536)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2120 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-536)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2119 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1091)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2118 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) (-2117 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1229 *5)) (-5 *3 (-749)) (-5 *4 (-1091)) (-4 *5 (-343)) (-5 *1 (-519 *5)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)))) (-2487 (*1 *2 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) (-2114 (*1 *2 *3 *4) (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) (-4 *4 (-343)) (-5 *2 (-1235)) (-5 *1 (-519 *4))))) -(-10 -7 (-15 -2114 ((-1235) (-1229 (-620 (-2 (|:| -3756 |#1|) (|:| -2487 (-1091))))) |#1|)) (-15 -3322 ((-1229 |#1|) (-893))) (-15 -2487 ((-1229 |#1|) (-893) (-893))) (-15 -2115 ((-1141 |#1|) (-1229 |#1|))) (-15 -2116 ((-1141 |#1|) (-749))) (-15 -2117 ((-1229 |#1|) (-1229 |#1|) (-749) (-1091))) (-15 -2118 ((-1229 |#1|) (-1229 |#1|) (-749))) (-15 -2119 ((-1229 |#1|) (-1229 |#1|) (-1091) (-1091))) (-15 -2120 ((-1229 |#1|) (-1229 |#1|) (-536))) (-15 ** ((-1229 |#1|) (-1229 |#1|) (-536))) (-15 * ((-1229 |#1|) (-1229 |#1|) (-1229 |#1|))) (-15 -4303 ((-1229 |#1|) (-1229 |#1|) (-1229 |#1|))) (-15 -3462 ((-1229 |#1|) (-1229 |#1|) (-893))) (-15 -3684 ((-1229 |#1|) (-1229 |#1|) (-893))) (-15 -2729 ((-1229 |#1|) (-1229 |#1|))) (-15 -2121 ((-893) (-1229 |#1|))) (-15 -2122 ((-112) (-1229 |#1|))) (-15 -2123 ((-1229 (-1229 |#1|)) (-893))) (-15 -2124 ((-1229 |#1|) (-893))) (-15 -2125 ((-1141 |#1|) (-1229 |#1|)))) -((-2112 (((-1091) $ (-129)) NIL)) (-2113 (((-1091) $) 21)) (-2886 (((-112) $) 19)) (-2127 (($ (-381)) 12) (($ (-1129)) 14)) (-2126 (((-112) $) 22)) (-4312 (((-838) $) 26)) (-1811 (($ $) 23))) -(((-520) (-13 (-518) (-595 (-838)) (-10 -8 (-15 -2127 ($ (-381))) (-15 -2127 ($ (-1129))) (-15 -2126 ((-112) $)) (-15 -2886 ((-112) $))))) (T -520)) -((-2127 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-520)))) (-2127 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-520)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520))))) -(-13 (-518) (-595 (-838)) (-10 -8 (-15 -2127 ($ (-381))) (-15 -2127 ($ (-1129))) (-15 -2126 ((-112) $)) (-15 -2886 ((-112) $)))) -((-2129 (((-1 |#1| |#1|) |#1|) 11)) (-2128 (((-1 |#1| |#1|)) 10))) -(((-521 |#1|) (-10 -7 (-15 -2128 ((-1 |#1| |#1|))) (-15 -2129 ((-1 |#1| |#1|) |#1|))) (-13 (-705) (-25))) (T -521)) -((-2129 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25))))) (-2128 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) -(-10 -7 (-15 -2128 ((-1 |#1| |#1|))) (-15 -2129 ((-1 |#1| |#1|) |#1|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2728 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3221 (($ (-749) |#1|) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 (-749) (-749)) $) NIL)) (-2101 ((|#1| $) NIL)) (-3520 (((-749) $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20)) (-2986 (($) NIL T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL))) -(((-522 |#1|) (-13 (-771) (-500 (-749) |#1|)) (-825)) (T -522)) -NIL -(-13 (-771) (-500 (-749) |#1|)) -((-2131 (((-620 |#2|) (-1141 |#1|) |#3|) 83)) (-2132 (((-620 (-2 (|:| |outval| |#2|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-398 (-1141 |#1|)) (-1141 |#1|))) 100)) (-2130 (((-1141 |#1|) (-667 |#1|)) 95))) -(((-523 |#1| |#2| |#3|) (-10 -7 (-15 -2130 ((-1141 |#1|) (-667 |#1|))) (-15 -2131 ((-620 |#2|) (-1141 |#1|) |#3|)) (-15 -2132 ((-620 (-2 (|:| |outval| |#2|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-398 (-1141 |#1|)) (-1141 |#1|))))) (-356) (-356) (-13 (-356) (-823))) (T -523)) -((-2132 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *6)) (-5 *5 (-1 (-398 (-1141 *6)) (-1141 *6))) (-4 *6 (-356)) (-5 *2 (-620 (-2 (|:| |outval| *7) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 *7)))))) (-5 *1 (-523 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-823))))) (-2131 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *5)) (-4 *5 (-356)) (-5 *2 (-620 *6)) (-5 *1 (-523 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *2 (-1141 *4)) (-5 *1 (-523 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-823)))))) -(-10 -7 (-15 -2130 ((-1141 |#1|) (-667 |#1|))) (-15 -2131 ((-620 |#2|) (-1141 |#1|) |#3|)) (-15 -2132 ((-620 (-2 (|:| |outval| |#2|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#2|))))) (-667 |#1|) |#3| (-1 (-398 (-1141 |#1|)) (-1141 |#1|))))) -((-2858 (((-817 (-536))) 12)) (-2857 (((-817 (-536))) 14)) (-2843 (((-810 (-536))) 9))) -(((-524) (-10 -7 (-15 -2843 ((-810 (-536)))) (-15 -2858 ((-817 (-536)))) (-15 -2857 ((-817 (-536)))))) (T -524)) -((-2857 (*1 *2) (-12 (-5 *2 (-817 (-536))) (-5 *1 (-524)))) (-2858 (*1 *2) (-12 (-5 *2 (-817 (-536))) (-5 *1 (-524)))) (-2843 (*1 *2) (-12 (-5 *2 (-810 (-536))) (-5 *1 (-524))))) -(-10 -7 (-15 -2843 ((-810 (-536)))) (-15 -2858 ((-817 (-536)))) (-15 -2857 ((-817 (-536))))) -((-2893 (((-112) $ $) NIL)) (-2136 (((-1129) $) 48)) (-3606 (((-112) $) 43)) (-3602 (((-1147) $) 44)) (-3607 (((-112) $) 41)) (-3893 (((-1129) $) 42)) (-2135 (($ (-1129)) 49)) (-3609 (((-112) $) NIL)) (-3611 (((-112) $) NIL)) (-3608 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-2138 (($ $ (-620 (-1147))) 20)) (-2141 (((-51) $) 22)) (-3605 (((-112) $) NIL)) (-3601 (((-536) $) NIL)) (-3589 (((-1091) $) NIL)) (-2470 (($ $ (-620 (-1147)) (-1147)) 61)) (-3604 (((-112) $) NIL)) (-3600 (((-219) $) NIL)) (-2137 (($ $) 38)) (-3599 (((-838) $) NIL)) (-3612 (((-112) $ $) NIL)) (-4154 (($ $ (-536)) NIL) (($ $ (-620 (-536))) NIL)) (-3603 (((-620 $) $) 28)) (-2134 (((-1147) (-620 $)) 50)) (-4325 (($ (-620 $)) 57) (($ (-1129)) NIL) (($ (-1147)) 18) (($ (-536)) 8) (($ (-219)) 25) (($ (-838)) NIL) (((-1074) $) 11) (($ (-1074)) 12)) (-2133 (((-1147) (-1147) (-620 $)) 53)) (-4312 (((-838) $) 46)) (-3597 (($ $) 52)) (-3598 (($ $) 51)) (-2139 (($ $ (-620 $)) 58)) (-3610 (((-112) $) 27)) (-2986 (($) 9 T CONST)) (-2992 (($) 10 T CONST)) (-3382 (((-112) $ $) 62)) (-4303 (($ $ $) 67)) (-4194 (($ $ $) 63)) (** (($ $ (-749)) 66) (($ $ (-536)) 65)) (* (($ $ $) 64)) (-4311 (((-536) $) NIL))) -(((-525) (-13 (-1075 (-1129) (-1147) (-536) (-219) (-838)) (-596 (-1074)) (-10 -8 (-15 -2141 ((-51) $)) (-15 -4325 ($ (-1074))) (-15 -2139 ($ $ (-620 $))) (-15 -2470 ($ $ (-620 (-1147)) (-1147))) (-15 -2138 ($ $ (-620 (-1147)))) (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 -4303 ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ (-536))) (-15 0 ($) -4306) (-15 1 ($) -4306) (-15 -2137 ($ $)) (-15 -2136 ((-1129) $)) (-15 -2135 ($ (-1129))) (-15 -2134 ((-1147) (-620 $))) (-15 -2133 ((-1147) (-1147) (-620 $)))))) (T -525)) -((-2141 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-525)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-525)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-525))) (-5 *1 (-525)))) (-2470 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-1147)) (-5 *1 (-525)))) (-2138 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-525)))) (-4194 (*1 *1 *1 *1) (-5 *1 (-525))) (* (*1 *1 *1 *1) (-5 *1 (-525))) (-4303 (*1 *1 *1 *1) (-5 *1 (-525))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-525)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-525)))) (-2986 (*1 *1) (-5 *1 (-525))) (-2992 (*1 *1) (-5 *1 (-525))) (-2137 (*1 *1 *1) (-5 *1 (-525))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525)))) (-2135 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-525)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-620 (-525))) (-5 *2 (-1147)) (-5 *1 (-525)))) (-2133 (*1 *2 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-525))) (-5 *1 (-525))))) -(-13 (-1075 (-1129) (-1147) (-536) (-219) (-838)) (-596 (-1074)) (-10 -8 (-15 -2141 ((-51) $)) (-15 -4325 ($ (-1074))) (-15 -2139 ($ $ (-620 $))) (-15 -2470 ($ $ (-620 (-1147)) (-1147))) (-15 -2138 ($ $ (-620 (-1147)))) (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 -4303 ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ (-536))) (-15 (-2986) ($) -4306) (-15 (-2992) ($) -4306) (-15 -2137 ($ $)) (-15 -2136 ((-1129) $)) (-15 -2135 ($ (-1129))) (-15 -2134 ((-1147) (-620 $))) (-15 -2133 ((-1147) (-1147) (-620 $))))) -((-2140 (((-525) (-1147)) 15)) (-2141 ((|#1| (-525)) 20))) -(((-526 |#1|) (-10 -7 (-15 -2140 ((-525) (-1147))) (-15 -2141 (|#1| (-525)))) (-1183)) (T -526)) -((-2141 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-526 *2)) (-4 *2 (-1183)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-525)) (-5 *1 (-526 *4)) (-4 *4 (-1183))))) -(-10 -7 (-15 -2140 ((-525) (-1147))) (-15 -2141 (|#1| (-525)))) -((-3802 ((|#2| |#2|) 17)) (-3800 ((|#2| |#2|) 13)) (-3803 ((|#2| |#2| (-536) (-536)) 20)) (-3801 ((|#2| |#2|) 15))) -(((-527 |#1| |#2|) (-10 -7 (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2| (-536) (-536)))) (-13 (-543) (-145)) (-1222 |#1|)) (T -527)) -((-3803 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-536)) (-4 *4 (-13 (-543) (-145))) (-5 *1 (-527 *4 *2)) (-4 *2 (-1222 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3))))) -(-10 -7 (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2| (-536) (-536)))) -((-2144 (((-620 (-286 (-920 |#2|))) (-620 |#2|) (-620 (-1147))) 32)) (-2142 (((-620 |#2|) (-920 |#1|) |#3|) 53) (((-620 |#2|) (-1141 |#1|) |#3|) 52)) (-2143 (((-620 (-620 |#2|)) (-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147)) |#3|) 91))) -(((-528 |#1| |#2| |#3|) (-10 -7 (-15 -2142 ((-620 |#2|) (-1141 |#1|) |#3|)) (-15 -2142 ((-620 |#2|) (-920 |#1|) |#3|)) (-15 -2143 ((-620 (-620 |#2|)) (-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147)) |#3|)) (-15 -2144 ((-620 (-286 (-920 |#2|))) (-620 |#2|) (-620 (-1147))))) (-444) (-356) (-13 (-356) (-823))) (T -528)) -((-2144 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-1147))) (-4 *6 (-356)) (-5 *2 (-620 (-286 (-920 *6)))) (-5 *1 (-528 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-13 (-356) (-823))))) (-2143 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) (-4 *6 (-444)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-528 *6 *7 *5)) (-4 *7 (-356)) (-4 *5 (-13 (-356) (-823))))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-920 *5)) (-4 *5 (-444)) (-5 *2 (-620 *6)) (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *5)) (-4 *5 (-444)) (-5 *2 (-620 *6)) (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) -(-10 -7 (-15 -2142 ((-620 |#2|) (-1141 |#1|) |#3|)) (-15 -2142 ((-620 |#2|) (-920 |#1|) |#3|)) (-15 -2143 ((-620 (-620 |#2|)) (-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147)) |#3|)) (-15 -2144 ((-620 (-286 (-920 |#2|))) (-620 |#2|) (-620 (-1147))))) -((-2147 ((|#2| |#2| |#1|) 17)) (-2145 ((|#2| (-620 |#2|)) 27)) (-2146 ((|#2| (-620 |#2|)) 46))) -(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2145 (|#2| (-620 |#2|))) (-15 -2146 (|#2| (-620 |#2|))) (-15 -2147 (|#2| |#2| |#1|))) (-300) (-1205 |#1|) |#1| (-1 |#1| |#1| (-749))) (T -529)) -((-2147 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-749))) (-5 *1 (-529 *3 *2 *4 *5)) (-4 *2 (-1205 *3)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-529 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749))))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-529 *4 *2 *5 *6)) (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) -(-10 -7 (-15 -2145 (|#2| (-620 |#2|))) (-15 -2146 (|#2| (-620 |#2|))) (-15 -2147 (|#2| |#2| |#1|))) -((-4087 (((-398 (-1141 |#4|)) (-1141 |#4|) (-1 (-398 (-1141 |#3|)) (-1141 |#3|))) 80) (((-398 |#4|) |#4| (-1 (-398 (-1141 |#3|)) (-1141 |#3|))) 169))) -(((-530 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4| (-1 (-398 (-1141 |#3|)) (-1141 |#3|)))) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|) (-1 (-398 (-1141 |#3|)) (-1141 |#3|))))) (-825) (-771) (-13 (-300) (-145)) (-924 |#3| |#2| |#1|)) (T -530)) -((-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 (-1141 *7)) (-1141 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *8 (-924 *7 *6 *5)) (-5 *2 (-398 (-1141 *8))) (-5 *1 (-530 *5 *6 *7 *8)) (-5 *3 (-1141 *8)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 (-1141 *7)) (-1141 *7))) (-4 *7 (-13 (-300) (-145))) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-398 *3)) (-5 *1 (-530 *5 *6 *7 *3)) (-4 *3 (-924 *7 *6 *5))))) -(-10 -7 (-15 -4087 ((-398 |#4|) |#4| (-1 (-398 (-1141 |#3|)) (-1141 |#3|)))) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|) (-1 (-398 (-1141 |#3|)) (-1141 |#3|))))) -((-3802 ((|#4| |#4|) 74)) (-3800 ((|#4| |#4|) 70)) (-3803 ((|#4| |#4| (-536) (-536)) 76)) (-3801 ((|#4| |#4|) 72))) -(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3800 (|#4| |#4|)) (-15 -3801 (|#4| |#4|)) (-15 -3802 (|#4| |#4|)) (-15 -3803 (|#4| |#4| (-536) (-536)))) (-13 (-356) (-361) (-596 (-536))) (-1205 |#1|) (-703 |#1| |#2|) (-1222 |#3|)) (T -531)) -((-3803 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-536)) (-4 *4 (-13 (-356) (-361) (-596 *3))) (-4 *5 (-1205 *4)) (-4 *6 (-703 *4 *5)) (-5 *1 (-531 *4 *5 *6 *2)) (-4 *2 (-1222 *6)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5))))) -(-10 -7 (-15 -3800 (|#4| |#4|)) (-15 -3801 (|#4| |#4|)) (-15 -3802 (|#4| |#4|)) (-15 -3803 (|#4| |#4| (-536) (-536)))) -((-3802 ((|#2| |#2|) 27)) (-3800 ((|#2| |#2|) 23)) (-3803 ((|#2| |#2| (-536) (-536)) 29)) (-3801 ((|#2| |#2|) 25))) -(((-532 |#1| |#2|) (-10 -7 (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2| (-536) (-536)))) (-13 (-356) (-361) (-596 (-536))) (-1222 |#1|)) (T -532)) -((-3803 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-536)) (-4 *4 (-13 (-356) (-361) (-596 *3))) (-5 *1 (-532 *4 *2)) (-4 *2 (-1222 *4)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1222 *3)))) (-3801 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1222 *3)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) (-4 *2 (-1222 *3))))) -(-10 -7 (-15 -3800 (|#2| |#2|)) (-15 -3801 (|#2| |#2|)) (-15 -3802 (|#2| |#2|)) (-15 -3803 (|#2| |#2| (-536) (-536)))) -((-2148 (((-3 (-536) #1="failed") |#2| |#1| (-1 (-3 (-536) #1#) |#1|)) 14) (((-3 (-536) #1#) |#2| |#1| (-536) (-1 (-3 (-536) #1#) |#1|)) 13) (((-3 (-536) #1#) |#2| (-536) (-1 (-3 (-536) #1#) |#1|)) 26))) -(((-533 |#1| |#2|) (-10 -7 (-15 -2148 ((-3 (-536) #1="failed") |#2| (-536) (-1 (-3 (-536) #1#) |#1|))) (-15 -2148 ((-3 (-536) #1#) |#2| |#1| (-536) (-1 (-3 (-536) #1#) |#1|))) (-15 -2148 ((-3 (-536) #1#) |#2| |#1| (-1 (-3 (-536) #1#) |#1|)))) (-1023) (-1205 |#1|)) (T -533)) -((-2148 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-536) #1="failed") *4)) (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1205 *4)))) (-2148 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-536) #1#) *4)) (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-533 *4 *3)) (-4 *3 (-1205 *4)))) (-2148 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-536) #1#) *5)) (-4 *5 (-1023)) (-5 *2 (-536)) (-5 *1 (-533 *5 *3)) (-4 *3 (-1205 *5))))) -(-10 -7 (-15 -2148 ((-3 (-536) #1="failed") |#2| (-536) (-1 (-3 (-536) #1#) |#1|))) (-15 -2148 ((-3 (-536) #1#) |#2| |#1| (-536) (-1 (-3 (-536) #1#) |#1|))) (-15 -2148 ((-3 (-536) #1#) |#2| |#1| (-1 (-3 (-536) #1#) |#1|)))) -((-2157 (($ $ $) 79)) (-4324 (((-398 $) $) 47)) (-3503 (((-3 (-536) "failed") $) 59)) (-3502 (((-536) $) 37)) (-3352 (((-3 (-400 (-536)) "failed") $) 74)) (-3351 (((-112) $) 24)) (-3350 (((-400 (-536)) $) 72)) (-4081 (((-112) $) 50)) (-2150 (($ $ $ $) 86)) (-3532 (((-112) $) 16)) (-1414 (($ $ $) 57)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 69)) (-3798 (((-3 $ "failed") $) 64)) (-2154 (($ $) 23)) (-2149 (($ $ $) 84)) (-3799 (($) 60)) (-1412 (($ $) 53)) (-4087 (((-398 $) $) 45)) (-3002 (((-112) $) 14)) (-1699 (((-749) $) 28)) (-4165 (($ $ (-749)) NIL) (($ $) 10)) (-3754 (($ $) 17)) (-4325 (((-536) $) NIL) (((-525) $) 36) (((-864 (-536)) $) 40) (((-371) $) 31) (((-219) $) 33)) (-3456 (((-749)) 8)) (-2159 (((-112) $ $) 20)) (-3432 (($ $ $) 55))) -(((-534 |#1|) (-10 -8 (-15 -2149 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| |#1|)) (-15 -3754 (|#1| |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -2157 (|#1| |#1| |#1|)) (-15 -2159 ((-112) |#1| |#1|)) (-15 -3002 ((-112) |#1|)) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -3432 (|#1| |#1| |#1|)) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) "failed") |#1|)) (-15 -4325 ((-536) |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -3532 ((-112) |#1|)) (-15 -1699 ((-749) |#1|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4081 ((-112) |#1|)) (-15 -3456 ((-749)))) (-535)) (T -534)) -((-3456 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-534 *3)) (-4 *3 (-535))))) -(-10 -8 (-15 -2149 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#1| |#1|)) (-15 -2154 (|#1| |#1|)) (-15 -3754 (|#1| |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -2157 (|#1| |#1| |#1|)) (-15 -2159 ((-112) |#1| |#1|)) (-15 -3002 ((-112) |#1|)) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -3432 (|#1| |#1| |#1|)) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) "failed") |#1|)) (-15 -4325 ((-536) |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -3532 ((-112) |#1|)) (-15 -1699 ((-749) |#1|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4081 ((-112) |#1|)) (-15 -3456 ((-749)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-2157 (($ $ $) 82)) (-1367 (((-3 $ "failed") $ $) 19)) (-2152 (($ $ $ $) 71)) (-4129 (($ $) 49)) (-4324 (((-398 $) $) 50)) (-1700 (((-112) $ $) 122)) (-3981 (((-536) $) 111)) (-2685 (($ $ $) 85)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) "failed") $) 103)) (-3502 (((-536) $) 102)) (-2889 (($ $ $) 126)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 101) (((-667 (-536)) (-667 $)) 100)) (-3816 (((-3 $ "failed") $) 32)) (-3352 (((-3 (-400 (-536)) "failed") $) 79)) (-3351 (((-112) $) 81)) (-3350 (((-400 (-536)) $) 80)) (-3322 (($) 78) (($ $) 77)) (-2888 (($ $ $) 125)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 120)) (-4081 (((-112) $) 51)) (-2150 (($ $ $ $) 69)) (-2158 (($ $ $) 83)) (-3532 (((-112) $) 113)) (-1414 (($ $ $) 94)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 97)) (-2497 (((-112) $) 30)) (-3001 (((-112) $) 89)) (-3798 (((-3 $ "failed") $) 91)) (-3533 (((-112) $) 112)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 129)) (-2151 (($ $ $ $) 70)) (-3672 (($ $ $) 114)) (-3673 (($ $ $) 115)) (-2154 (($ $) 73)) (-4188 (($ $) 86)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2149 (($ $ $) 68)) (-3799 (($) 90 T CONST)) (-2156 (($ $) 75)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1412 (($ $) 95)) (-4087 (((-398 $) $) 48)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 127)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 121)) (-3002 (((-112) $) 88)) (-1699 (((-749) $) 123)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 124)) (-4165 (($ $ (-749)) 108) (($ $) 106)) (-2155 (($ $) 74)) (-3754 (($ $) 76)) (-4325 (((-536) $) 105) (((-525) $) 99) (((-864 (-536)) $) 98) (((-371) $) 93) (((-219) $) 92)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-536)) 104)) (-3456 (((-749)) 28)) (-2159 (((-112) $ $) 84)) (-3432 (($ $ $) 96)) (-3022 (($) 87)) (-2172 (((-112) $ $) 37)) (-2153 (($ $ $ $) 72)) (-3737 (($ $) 110)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-749)) 109) (($ $) 107)) (-2891 (((-112) $ $) 117)) (-2892 (((-112) $ $) 118)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 116)) (-3013 (((-112) $ $) 119)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-535) (-138)) (T -535)) -((-3001 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-3022 (*1 *1) (-4 *1 (-535))) (-4188 (*1 *1 *1) (-4 *1 (-535))) (-2685 (*1 *1 *1 *1) (-4 *1 (-535))) (-2159 (*1 *2 *1 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-2158 (*1 *1 *1 *1) (-4 *1 (-535))) (-2157 (*1 *1 *1 *1) (-4 *1 (-535))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-400 (-536))))) (-3352 (*1 *2 *1) (|partial| -12 (-4 *1 (-535)) (-5 *2 (-400 (-536))))) (-3322 (*1 *1) (-4 *1 (-535))) (-3322 (*1 *1 *1) (-4 *1 (-535))) (-3754 (*1 *1 *1) (-4 *1 (-535))) (-2156 (*1 *1 *1) (-4 *1 (-535))) (-2155 (*1 *1 *1) (-4 *1 (-535))) (-2154 (*1 *1 *1) (-4 *1 (-535))) (-2153 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2152 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2151 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2150 (*1 *1 *1 *1 *1) (-4 *1 (-535))) (-2149 (*1 *1 *1 *1) (-4 *1 (-535)))) -(-13 (-1188) (-300) (-798) (-227) (-596 (-536)) (-1012 (-536)) (-619 (-536)) (-596 (-525)) (-596 (-864 (-536))) (-860 (-536)) (-141) (-994) (-145) (-1122) (-10 -8 (-15 -3001 ((-112) $)) (-15 -3002 ((-112) $)) (-6 -4347) (-15 -3022 ($)) (-15 -4188 ($ $)) (-15 -2685 ($ $ $)) (-15 -2159 ((-112) $ $)) (-15 -2158 ($ $ $)) (-15 -2157 ($ $ $)) (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $)) (-15 -3322 ($)) (-15 -3322 ($ $)) (-15 -3754 ($ $)) (-15 -2156 ($ $)) (-15 -2155 ($ $)) (-15 -2154 ($ $)) (-15 -2153 ($ $ $ $)) (-15 -2152 ($ $ $ $)) (-15 -2151 ($ $ $ $)) (-15 -2150 ($ $ $ $)) (-15 -2149 ($ $ $)) (-6 -4346))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-838)) . T) ((-141) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-371)) . T) ((-596 (-525)) . T) ((-596 (-536)) . T) ((-596 (-864 (-536))) . T) ((-227) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-619 (-536)) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-798) . T) ((-823) . T) ((-825) . T) ((-860 (-536)) . T) ((-895) . T) ((-994) . T) ((-1012 (-536)) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) . T) ((-1188) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 25)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 88)) (-2173 (($ $) 89)) (-2171 (((-112) $) NIL)) (-2157 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2152 (($ $ $ $) 43)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL)) (-2685 (($ $ $) 82)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) "failed") $) NIL)) (-3502 (((-536) $) NIL)) (-2889 (($ $ $) 81)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 62) (((-667 (-536)) (-667 $)) 58)) (-3816 (((-3 $ "failed") $) 85)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL)) (-3351 (((-112) $) NIL)) (-3350 (((-400 (-536)) $) NIL)) (-3322 (($) 64) (($ $) 65)) (-2888 (($ $ $) 80)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2150 (($ $ $ $) NIL)) (-2158 (($ $ $) 55)) (-3532 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL)) (-2497 (((-112) $) 26)) (-3001 (((-112) $) 75)) (-3798 (((-3 $ "failed") $) NIL)) (-3533 (((-112) $) 35)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2151 (($ $ $ $) 44)) (-3672 (($ $ $) 77)) (-3673 (($ $ $) 76)) (-2154 (($ $) NIL)) (-4188 (($ $) 41)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) 54)) (-2149 (($ $ $) NIL)) (-3799 (($) NIL T CONST)) (-2156 (($ $) 31)) (-3589 (((-1091) $) 34)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 119)) (-3490 (($ $ $) 86) (($ (-620 $)) NIL)) (-1412 (($ $) NIL)) (-4087 (((-398 $) $) 105)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) 84)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 79)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-2155 (($ $) 32)) (-3754 (($ $) 30)) (-4325 (((-536) $) 40) (((-525) $) 52) (((-864 (-536)) $) NIL) (((-371) $) 47) (((-219) $) 49) (((-1129) $) 53)) (-4312 (((-838) $) 38) (($ (-536)) 39) (($ $) NIL) (($ (-536)) 39)) (-3456 (((-749)) NIL)) (-2159 (((-112) $ $) NIL)) (-3432 (($ $ $) NIL)) (-3022 (($) 29)) (-2172 (((-112) $ $) NIL)) (-2153 (($ $ $ $) 42)) (-3737 (($ $) 63)) (-2986 (($) 27 T CONST)) (-2992 (($) 28 T CONST)) (-2829 (((-1129) $) 20) (((-1129) $ (-112)) 22) (((-1235) (-801) $) 23) (((-1235) (-801) $ (-112)) 24)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 66)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 67)) (-4192 (($ $) 68) (($ $ $) 70)) (-4194 (($ $ $) 69)) (** (($ $ (-893)) NIL) (($ $ (-749)) 74)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 72) (($ $ $) 71))) -(((-536) (-13 (-535) (-596 (-1129)) (-799) (-10 -8 (-15 -3322 ($ $)) (-6 -4335) (-6 -4340) (-6 -4336) (-6 -4330)))) (T -536)) -((-3322 (*1 *1 *1) (-5 *1 (-536)))) -(-13 (-535) (-596 (-1129)) (-799) (-10 -8 (-15 -3322 ($ $)) (-6 -4335) (-6 -4340) (-6 -4336) (-6 -4330))) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) NIL)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) NIL)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-537 |#1| |#2| |#3|) (-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) (-1072) (-1072) (-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348)))) (T -537)) -NIL -(-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) -((-2160 (((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-1 (-1141 |#2|) (-1141 |#2|))) 51))) -(((-538 |#1| |#2|) (-10 -7 (-15 -2160 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-1 (-1141 |#2|) (-1141 |#2|))))) (-13 (-825) (-543)) (-13 (-27) (-414 |#1|))) (T -538)) -((-2160 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-593 *3)) (-5 *5 (-1 (-1141 *3) (-1141 *3))) (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-825) (-543))) (-5 *2 (-567 *3)) (-5 *1 (-538 *6 *3))))) -(-10 -7 (-15 -2160 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-1 (-1141 |#2|) (-1141 |#2|))))) -((-2162 (((-567 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2163 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2161 (((-567 |#5|) |#5| (-1 |#3| |#3|)) 202))) -(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2161 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2162 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2163 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-825) (-543) (-1012 (-536))) (-13 (-27) (-414 |#1|)) (-1205 |#2|) (-1205 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -539)) -((-2163 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-27) (-414 *4))) (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-4 *7 (-1205 (-400 *6))) (-5 *1 (-539 *4 *5 *6 *7 *2)) (-4 *2 (-335 *5 *6 *7)))) (-2162 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-4 *8 (-1205 (-400 *7))) (-5 *2 (-567 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8)))) (-2161 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-13 (-27) (-414 *5))) (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-4 *8 (-1205 (-400 *7))) (-5 *2 (-567 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) -(-10 -7 (-15 -2161 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2162 ((-567 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2163 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2166 (((-112) (-536) (-536)) 10)) (-2164 (((-536) (-536)) 7)) (-2165 (((-536) (-536) (-536)) 8))) -(((-540) (-10 -7 (-15 -2164 ((-536) (-536))) (-15 -2165 ((-536) (-536) (-536))) (-15 -2166 ((-112) (-536) (-536))))) (T -540)) -((-2166 (*1 *2 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-112)) (-5 *1 (-540)))) (-2165 (*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-540)))) (-2164 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-540))))) -(-10 -7 (-15 -2164 ((-536) (-536))) (-15 -2165 ((-536) (-536) (-536))) (-15 -2166 ((-112) (-536) (-536)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2929 ((|#1| $) 59)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-3841 (($ $) 89)) (-3997 (($ $) 72)) (-2728 ((|#1| $) 60)) (-1367 (((-3 $ "failed") $ $) 19)) (-3365 (($ $) 71)) (-3839 (($ $) 88)) (-3996 (($ $) 73)) (-3843 (($ $) 87)) (-3995 (($ $) 74)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) "failed") $) 67)) (-3502 (((-536) $) 66)) (-3816 (((-3 $ "failed") $) 32)) (-2169 (($ |#1| |#1|) 64)) (-3532 (((-112) $) 58)) (-3985 (($) 99)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 70)) (-3533 (((-112) $) 57)) (-3672 (($ $ $) 105)) (-3673 (($ $ $) 104)) (-4297 (($ $) 96)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2170 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-400 (-536))) 62)) (-2168 ((|#1| $) 61)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3815 (((-3 $ "failed") $ $) 40)) (-4298 (($ $) 97)) (-3844 (($ $) 86)) (-3994 (($ $) 75)) (-3842 (($ $) 85)) (-3993 (($ $) 76)) (-3840 (($ $) 84)) (-3992 (($ $) 77)) (-2167 (((-112) $ |#1|) 56)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-536)) 68)) (-3456 (((-749)) 28)) (-3847 (($ $) 95)) (-3835 (($ $) 83)) (-2172 (((-112) $ $) 37)) (-3845 (($ $) 94)) (-3833 (($ $) 82)) (-3849 (($ $) 93)) (-3837 (($ $) 81)) (-3850 (($ $) 92)) (-3838 (($ $) 80)) (-3848 (($ $) 91)) (-3836 (($ $) 79)) (-3846 (($ $) 90)) (-3834 (($ $) 78)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 102)) (-2892 (((-112) $ $) 101)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 103)) (-3013 (((-112) $ $) 100)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ $) 98) (($ $ (-400 (-536))) 69)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-541 |#1|) (-138) (-13 (-397) (-1169))) (T -541)) -((-2170 (*1 *1 *2 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-2169 (*1 *1 *2 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-2170 (*1 *1 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))))) (-2168 (*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-2728 (*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112)))) (-2167 (*1 *2 *1 *3) (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112))))) -(-13 (-444) (-825) (-1169) (-976) (-1012 (-536)) (-10 -8 (-6 -4124) (-15 -2170 ($ |t#1| |t#1|)) (-15 -2169 ($ |t#1| |t#1|)) (-15 -2170 ($ |t#1|)) (-15 -2170 ($ (-400 (-536)))) (-15 -2168 (|t#1| $)) (-15 -2728 (|t#1| $)) (-15 -2929 (|t#1| $)) (-15 -3532 ((-112) $)) (-15 -3533 ((-112) $)) (-15 -2167 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-277) . T) ((-283) . T) ((-444) . T) ((-484) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-825) . T) ((-976) . T) ((-1012 (-536)) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) . T) ((-1172) . T)) -((-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 9)) (-2173 (($ $) 11)) (-2171 (((-112) $) 18)) (-3816 (((-3 $ "failed") $) 16)) (-2172 (((-112) $ $) 20))) -(((-542 |#1|) (-10 -8 (-15 -2171 ((-112) |#1|)) (-15 -2172 ((-112) |#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|))) (-543)) (T -542)) -NIL -(-10 -8 (-15 -2171 ((-112) |#1|)) (-15 -2172 ((-112) |#1| |#1|)) (-15 -2173 (|#1| |#1|)) (-15 -2174 ((-2 (|:| -1887 |#1|) (|:| -4335 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ $) 40)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-543) (-138)) (T -543)) -((-3815 (*1 *1 *1 *1) (|partial| -4 *1 (-543))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1887 *1) (|:| -4335 *1) (|:| |associate| *1))) (-4 *1 (-543)))) (-2173 (*1 *1 *1) (-4 *1 (-543))) (-2172 (*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112)))) (-2171 (*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))) -(-13 (-170) (-38 $) (-283) (-10 -8 (-15 -3815 ((-3 $ "failed") $ $)) (-15 -2174 ((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $)) (-15 -2173 ($ $)) (-15 -2172 ((-112) $ $)) (-15 -2171 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2176 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1147) (-620 |#2|)) 37)) (-2178 (((-567 |#2|) |#2| (-1147)) 62)) (-2177 (((-3 |#2| "failed") |#2| (-1147)) 152)) (-2179 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1147) (-593 |#2|) (-620 (-593 |#2|))) 155)) (-2175 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1147) |#2|) 40))) -(((-544 |#1| |#2|) (-10 -7 (-15 -2175 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1147) |#2|)) (-15 -2176 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1147) (-620 |#2|))) (-15 -2177 ((-3 |#2| "failed") |#2| (-1147))) (-15 -2178 ((-567 |#2|) |#2| (-1147))) (-15 -2179 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1147) (-593 |#2|) (-620 (-593 |#2|))))) (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -544)) -((-2179 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1147)) (-5 *6 (-620 (-593 *3))) (-5 *5 (-593 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *7))) (-4 *7 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-544 *7 *3)))) (-2178 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-544 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-2177 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-544 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-2176 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-544 *6 *3)))) (-2175 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-544 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) -(-10 -7 (-15 -2175 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1147) |#2|)) (-15 -2176 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1147) (-620 |#2|))) (-15 -2177 ((-3 |#2| "failed") |#2| (-1147))) (-15 -2178 ((-567 |#2|) |#2| (-1147))) (-15 -2179 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1147) (-593 |#2|) (-620 (-593 |#2|))))) -((-4324 (((-398 |#1|) |#1|) 18)) (-4087 (((-398 |#1|) |#1|) 33)) (-2181 (((-3 |#1| "failed") |#1|) 44)) (-2180 (((-398 |#1|) |#1|) 51))) -(((-545 |#1|) (-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -2180 ((-398 |#1|) |#1|)) (-15 -2181 ((-3 |#1| "failed") |#1|))) (-535)) (T -545)) -((-2181 (*1 *2 *2) (|partial| -12 (-5 *1 (-545 *2)) (-4 *2 (-535)))) (-2180 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535)))) (-4324 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535)))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535))))) -(-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -2180 ((-398 |#1|) |#1|)) (-15 -2181 ((-3 |#1| "failed") |#1|))) -((-2182 (($) 9)) (-2185 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 35)) (-2739 (((-620 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 32)) (-3965 (($ (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2184 (($ (-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2186 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 39)) (-2307 (((-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2183 (((-1235)) 12))) -(((-546) (-10 -8 (-15 -2182 ($)) (-15 -2183 ((-1235))) (-15 -2739 ((-620 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2184 ($ (-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3965 ($ (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2185 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2307 ((-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2186 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -546)) -((-2186 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-546)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-546)))) (-2185 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-546)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-546)))) (-2184 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-546)))) (-2739 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-546)))) (-2183 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-546)))) (-2182 (*1 *1) (-5 *1 (-546)))) -(-10 -8 (-15 -2182 ($)) (-15 -2183 ((-1235))) (-15 -2739 ((-620 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2184 ($ (-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1556 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3965 ($ (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2185 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2307 ((-620 (-2 (|:| -4215 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2186 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1124 (-219))) (|:| |notEvaluated| #6#))) (|:| -1556 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-3414 (((-1141 (-400 (-1141 |#2|))) |#2| (-593 |#2|) (-593 |#2|) (-1141 |#2|)) 32)) (-2189 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) |#2| (-1141 |#2|)) 110)) (-2187 (((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|))) 80) (((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|)) 52)) (-2188 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-593 |#2|) (-593 |#2|) |#2| (-593 |#2|) |#2| (-400 (-1141 |#2|))) 87) (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-593 |#2|) (-593 |#2|) |#2| |#2| (-1141 |#2|)) 109)) (-2190 (((-3 |#2| #3="failed") |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) (-593 |#2|) |#2| (-400 (-1141 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) |#2| (-1141 |#2|)) 111)) (-2191 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|))) 128 (|has| |#3| (-636 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|)) 127 (|has| |#3| (-636 |#2|)))) (-3415 ((|#2| (-1141 (-400 (-1141 |#2|))) (-593 |#2|) |#2|) 50)) (-3408 (((-1141 (-400 (-1141 |#2|))) (-1141 |#2|) (-593 |#2|)) 31))) -(((-547 |#1| |#2| |#3|) (-10 -7 (-15 -2187 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|))) (-15 -2187 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2188 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-593 |#2|) (-593 |#2|) |#2| |#2| (-1141 |#2|))) (-15 -2188 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-593 |#2|) (-593 |#2|) |#2| (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2189 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) |#2| (-1141 |#2|))) (-15 -2189 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2190 ((-3 |#2| #3="failed") |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) |#2| (-1141 |#2|))) (-15 -2190 ((-3 |#2| #3#) |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -3414 ((-1141 (-400 (-1141 |#2|))) |#2| (-593 |#2|) (-593 |#2|) (-1141 |#2|))) (-15 -3415 (|#2| (-1141 (-400 (-1141 |#2|))) (-593 |#2|) |#2|)) (-15 -3408 ((-1141 (-400 (-1141 |#2|))) (-1141 |#2|) (-593 |#2|))) (IF (|has| |#3| (-636 |#2|)) (PROGN (-15 -2191 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|))) (-15 -2191 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|))))) |%noBranch|)) (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536))) (-13 (-414 |#1|) (-27) (-1169)) (-1072)) (T -547)) -((-2191 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-593 *4)) (-5 *6 (-400 (-1141 *4))) (-4 *4 (-13 (-414 *7) (-27) (-1169))) (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) (-5 *1 (-547 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072)))) (-2191 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-593 *4)) (-5 *6 (-1141 *4)) (-4 *4 (-13 (-414 *7) (-27) (-1169))) (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-620 *4)))) (-5 *1 (-547 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *4 (-593 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1169))) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-1141 (-400 (-1141 *6)))) (-5 *1 (-547 *5 *6 *7)) (-5 *3 (-1141 *6)) (-4 *7 (-1072)))) (-3415 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1141 (-400 (-1141 *2)))) (-5 *4 (-593 *2)) (-4 *2 (-13 (-414 *5) (-27) (-1169))) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *1 (-547 *5 *2 *6)) (-4 *6 (-1072)))) (-3414 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-1141 (-400 (-1141 *3)))) (-5 *1 (-547 *6 *3 *7)) (-5 *5 (-1141 *3)) (-4 *7 (-1072)))) (-2190 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-593 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1147))) (-5 *5 (-400 (-1141 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *1 (-547 *6 *2 *7)) (-4 *7 (-1072)))) (-2190 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-593 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1147))) (-5 *5 (-1141 *2)) (-4 *2 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *1 (-547 *6 *2 *7)) (-4 *7 (-1072)))) (-2189 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) (-5 *6 (-400 (-1141 *3))) (-4 *3 (-13 (-414 *7) (-27) (-1169))) (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-547 *7 *3 *8)) (-4 *8 (-1072)))) (-2189 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) (-5 *6 (-1141 *3)) (-4 *3 (-13 (-414 *7) (-27) (-1169))) (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-547 *7 *3 *8)) (-4 *8 (-1072)))) (-2188 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-400 (-1141 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072)))) (-2188 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-1141 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072)))) (-2187 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-593 *3)) (-5 *5 (-400 (-1141 *3))) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072)))) (-2187 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-593 *3)) (-5 *5 (-1141 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072))))) -(-10 -7 (-15 -2187 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|))) (-15 -2187 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2188 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-593 |#2|) (-593 |#2|) |#2| |#2| (-1141 |#2|))) (-15 -2188 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-593 |#2|) (-593 |#2|) |#2| (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2189 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) |#2| (-1141 |#2|))) (-15 -2189 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -2190 ((-3 |#2| #3="failed") |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) |#2| (-1141 |#2|))) (-15 -2190 ((-3 |#2| #3#) |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1147)) (-593 |#2|) |#2| (-400 (-1141 |#2|)))) (-15 -3414 ((-1141 (-400 (-1141 |#2|))) |#2| (-593 |#2|) (-593 |#2|) (-1141 |#2|))) (-15 -3415 (|#2| (-1141 (-400 (-1141 |#2|))) (-593 |#2|) |#2|)) (-15 -3408 ((-1141 (-400 (-1141 |#2|))) (-1141 |#2|) (-593 |#2|))) (IF (|has| |#3| (-636 |#2|)) (PROGN (-15 -2191 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) |#2| (-1141 |#2|))) (-15 -2191 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-593 |#2|) |#2| (-400 (-1141 |#2|))))) |%noBranch|)) -((-2201 (((-536) (-536) (-749)) 66)) (-2200 (((-536) (-536)) 65)) (-2199 (((-536) (-536)) 64)) (-2198 (((-536) (-536)) 69)) (-3133 (((-536) (-536) (-536)) 49)) (-2197 (((-536) (-536) (-536)) 46)) (-2196 (((-400 (-536)) (-536)) 20)) (-2195 (((-536) (-536)) 21)) (-2194 (((-536) (-536)) 58)) (-3130 (((-536) (-536)) 32)) (-2193 (((-620 (-536)) (-536)) 63)) (-2192 (((-536) (-536) (-536) (-536) (-536)) 44)) (-3126 (((-400 (-536)) (-536)) 41))) -(((-548) (-10 -7 (-15 -3126 ((-400 (-536)) (-536))) (-15 -2192 ((-536) (-536) (-536) (-536) (-536))) (-15 -2193 ((-620 (-536)) (-536))) (-15 -3130 ((-536) (-536))) (-15 -2194 ((-536) (-536))) (-15 -2195 ((-536) (-536))) (-15 -2196 ((-400 (-536)) (-536))) (-15 -2197 ((-536) (-536) (-536))) (-15 -3133 ((-536) (-536) (-536))) (-15 -2198 ((-536) (-536))) (-15 -2199 ((-536) (-536))) (-15 -2200 ((-536) (-536))) (-15 -2201 ((-536) (-536) (-749))))) (T -548)) -((-2201 (*1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-749)) (-5 *1 (-548)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-3133 (*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2197 (*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2196 (*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-548)) (-5 *3 (-536)))) (-2195 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2194 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-2193 (*1 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-548)) (-5 *3 (-536)))) (-2192 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) (-3126 (*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-548)) (-5 *3 (-536))))) -(-10 -7 (-15 -3126 ((-400 (-536)) (-536))) (-15 -2192 ((-536) (-536) (-536) (-536) (-536))) (-15 -2193 ((-620 (-536)) (-536))) (-15 -3130 ((-536) (-536))) (-15 -2194 ((-536) (-536))) (-15 -2195 ((-536) (-536))) (-15 -2196 ((-400 (-536)) (-536))) (-15 -2197 ((-536) (-536) (-536))) (-15 -3133 ((-536) (-536) (-536))) (-15 -2198 ((-536) (-536))) (-15 -2199 ((-536) (-536))) (-15 -2200 ((-536) (-536))) (-15 -2201 ((-536) (-536) (-749)))) -((-2202 (((-2 (|:| |answer| |#4|) (|:| -2245 |#4|)) |#4| (-1 |#2| |#2|)) 52))) -(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2202 ((-2 (|:| |answer| |#4|) (|:| -2245 |#4|)) |#4| (-1 |#2| |#2|)))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -549)) -((-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-4 *7 (-1205 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2245 *3))) (-5 *1 (-549 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7))))) -(-10 -7 (-15 -2202 ((-2 (|:| |answer| |#4|) (|:| -2245 |#4|)) |#4| (-1 |#2| |#2|)))) -((-2202 (((-2 (|:| |answer| (-400 |#2|)) (|:| -2245 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 18))) -(((-550 |#1| |#2|) (-10 -7 (-15 -2202 ((-2 (|:| |answer| (-400 |#2|)) (|:| -2245 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1205 |#1|)) (T -550)) -((-2202 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| (-400 *6)) (|:| -2245 (-400 *6)) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-550 *5 *6)) (-5 *3 (-400 *6))))) -(-10 -7 (-15 -2202 ((-2 (|:| |answer| (-400 |#2|)) (|:| -2245 (-400 |#2|)) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)))) -((-2996 (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747) (-1035)) 108) (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747)) 110)) (-4167 (((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1147)) 172) (((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1129)) 171) (((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371) (-1035)) 176) (((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371)) 177) (((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371)) 178) (((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371))))) 179) (((-1009) (-307 (-371)) (-1060 (-817 (-371)))) 167) (((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371)) 166) (((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371)) 162) (((-1009) (-747)) 155) (((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371) (-1035)) 161))) -(((-551) (-10 -7 (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371) (-1035))) (-15 -4167 ((-1009) (-747))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371) (-1035))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747) (-1035))) (-15 -4167 ((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1129))) (-15 -4167 ((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1147))))) (T -551)) -((-4167 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1063 (-817 (-371)))) (-5 *5 (-1147)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1063 (-817 (-371)))) (-5 *5 (-1129)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-747)) (-5 *4 (-1035)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) (-5 *1 (-551)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) (-5 *5 (-371)) (-5 *6 (-1035)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1009)) (-5 *1 (-551)))) (-4167 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) (-5 *6 (-1035)) (-5 *2 (-1009)) (-5 *1 (-551))))) -(-10 -7 (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371) (-1035))) (-15 -4167 ((-1009) (-747))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-1060 (-817 (-371))))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371))) (-15 -4167 ((-1009) (-307 (-371)) (-620 (-1060 (-817 (-371)))) (-371) (-371) (-1035))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009))) (-747) (-1035))) (-15 -4167 ((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1129))) (-15 -4167 ((-3 (-1009) "failed") (-307 (-371)) (-1063 (-817 (-371))) (-1147)))) -((-2205 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|)) 184)) (-2203 (((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|)) 98)) (-2204 (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-593 |#2|) (-593 |#2|) |#2|) 180)) (-2206 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1147))) 189)) (-2207 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-1147)) 197 (|has| |#3| (-636 |#2|))))) -(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -2203 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|))) (-15 -2204 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-593 |#2|) (-593 |#2|) |#2|)) (-15 -2205 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|))) (-15 -2206 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1147)))) (IF (|has| |#3| (-636 |#2|)) (-15 -2207 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-1147))) |%noBranch|)) (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536))) (-13 (-414 |#1|) (-27) (-1169)) (-1072)) (T -552)) -((-2207 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-593 *4)) (-5 *6 (-1147)) (-4 *4 (-13 (-414 *7) (-27) (-1169))) (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) (-5 *1 (-552 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072)))) (-2206 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-593 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1147))) (-4 *2 (-13 (-414 *5) (-27) (-1169))) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *1 (-552 *5 *2 *6)) (-4 *6 (-1072)))) (-2205 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1169))) (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-552 *6 *3 *7)) (-4 *7 (-1072)))) (-2204 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1169))) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1072)))) (-2203 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1169))) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) (-5 *2 (-567 *3)) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1072))))) -(-10 -7 (-15 -2203 ((-567 |#2|) |#2| (-593 |#2|) (-593 |#2|))) (-15 -2204 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-593 |#2|) (-593 |#2|) |#2|)) (-15 -2205 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-593 |#2|) (-593 |#2|) (-620 |#2|))) (-15 -2206 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-593 |#2|) (-593 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1147)))) (IF (|has| |#3| (-636 |#2|)) (-15 -2207 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2123 (-620 |#2|))) |#3| |#2| (-593 |#2|) (-593 |#2|) (-1147))) |%noBranch|)) -((-2208 (((-2 (|:| -2414 |#2|) (|:| |nconst| |#2|)) |#2| (-1147)) 64)) (-2210 (((-3 |#2| "failed") |#2| (-1147) (-817 |#2|) (-817 |#2|)) 164 (-12 (|has| |#2| (-1110)) (|has| |#1| (-596 (-864 (-536)))) (|has| |#1| (-860 (-536))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)) 147 (-12 (|has| |#2| (-610)) (|has| |#1| (-596 (-864 (-536)))) (|has| |#1| (-860 (-536)))))) (-2209 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)) 148 (-12 (|has| |#2| (-610)) (|has| |#1| (-596 (-864 (-536)))) (|has| |#1| (-860 (-536))))))) -(((-553 |#1| |#2|) (-10 -7 (-15 -2208 ((-2 (|:| -2414 |#2|) (|:| |nconst| |#2|)) |#2| (-1147))) (IF (|has| |#1| (-596 (-864 (-536)))) (IF (|has| |#1| (-860 (-536))) (PROGN (IF (|has| |#2| (-610)) (PROGN (-15 -2209 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147))) (-15 -2210 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)))) |%noBranch|) (IF (|has| |#2| (-1110)) (-15 -2210 ((-3 |#2| "failed") |#2| (-1147) (-817 |#2|) (-817 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-825) (-1012 (-536)) (-444) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -553)) -((-2210 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1147)) (-5 *4 (-817 *2)) (-4 *2 (-1110)) (-4 *2 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-596 (-864 (-536)))) (-4 *5 (-860 (-536))) (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) (-5 *1 (-553 *5 *2)))) (-2210 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-596 (-864 (-536)))) (-4 *5 (-860 (-536))) (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-610)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-2209 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-596 (-864 (-536)))) (-4 *5 (-860 (-536))) (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-610)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-2208 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) (-5 *2 (-2 (|:| -2414 *3) (|:| |nconst| *3))) (-5 *1 (-553 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) -(-10 -7 (-15 -2208 ((-2 (|:| -2414 |#2|) (|:| |nconst| |#2|)) |#2| (-1147))) (IF (|has| |#1| (-596 (-864 (-536)))) (IF (|has| |#1| (-860 (-536))) (PROGN (IF (|has| |#2| (-610)) (PROGN (-15 -2209 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147))) (-15 -2210 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)))) |%noBranch|) (IF (|has| |#2| (-1110)) (-15 -2210 ((-3 |#2| "failed") |#2| (-1147) (-817 |#2|) (-817 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2213 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-620 (-400 |#2|))) 41)) (-4167 (((-567 (-400 |#2|)) (-400 |#2|)) 28)) (-2211 (((-3 (-400 |#2|) "failed") (-400 |#2|)) 17)) (-2212 (((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|)) 48))) -(((-554 |#1| |#2|) (-10 -7 (-15 -4167 ((-567 (-400 |#2|)) (-400 |#2|))) (-15 -2211 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -2212 ((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -2213 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-620 (-400 |#2|))))) (-13 (-356) (-145) (-1012 (-536))) (-1205 |#1|)) (T -554)) -((-2213 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-620 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *5 *6)))) (-2212 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| -2246 (-400 *5)) (|:| |coeff| (-400 *5)))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5)))) (-2211 (*1 *2 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-13 (-356) (-145) (-1012 (-536)))) (-5 *1 (-554 *3 *4)))) (-4167 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) (-5 *2 (-567 (-400 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5))))) -(-10 -7 (-15 -4167 ((-567 (-400 |#2|)) (-400 |#2|))) (-15 -2211 ((-3 (-400 |#2|) "failed") (-400 |#2|))) (-15 -2212 ((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-400 |#2|))) (-15 -2213 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-620 (-400 |#2|))))) -((-2214 (((-3 (-536) "failed") |#1|) 14)) (-3605 (((-112) |#1|) 13)) (-3601 (((-536) |#1|) 9))) -(((-555 |#1|) (-10 -7 (-15 -3601 ((-536) |#1|)) (-15 -3605 ((-112) |#1|)) (-15 -2214 ((-3 (-536) "failed") |#1|))) (-1012 (-536))) (T -555)) -((-2214 (*1 *2 *3) (|partial| -12 (-5 *2 (-536)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2)))) (-3605 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-555 *3)) (-4 *3 (-1012 (-536))))) (-3601 (*1 *2 *3) (-12 (-5 *2 (-536)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2))))) -(-10 -7 (-15 -3601 ((-536) |#1|)) (-15 -3605 ((-112) |#1|)) (-15 -2214 ((-3 (-536) "failed") |#1|))) -((-2217 (((-3 (-2 (|:| |mainpart| (-400 (-920 |#1|))) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 (-920 |#1|))) (|:| |logand| (-400 (-920 |#1|))))))) "failed") (-400 (-920 |#1|)) (-1147) (-620 (-400 (-920 |#1|)))) 48)) (-2215 (((-567 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-1147)) 28)) (-2216 (((-3 (-400 (-920 |#1|)) "failed") (-400 (-920 |#1|)) (-1147)) 23)) (-2218 (((-3 (-2 (|:| -2246 (-400 (-920 |#1|))) (|:| |coeff| (-400 (-920 |#1|)))) "failed") (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|))) 35))) -(((-556 |#1|) (-10 -7 (-15 -2215 ((-567 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -2216 ((-3 (-400 (-920 |#1|)) "failed") (-400 (-920 |#1|)) (-1147))) (-15 -2217 ((-3 (-2 (|:| |mainpart| (-400 (-920 |#1|))) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 (-920 |#1|))) (|:| |logand| (-400 (-920 |#1|))))))) "failed") (-400 (-920 |#1|)) (-1147) (-620 (-400 (-920 |#1|))))) (-15 -2218 ((-3 (-2 (|:| -2246 (-400 (-920 |#1|))) (|:| |coeff| (-400 (-920 |#1|)))) "failed") (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|))))) (-13 (-543) (-1012 (-536)) (-145))) (T -556)) -((-2218 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-1012 (-536)) (-145))) (-5 *2 (-2 (|:| -2246 (-400 (-920 *5))) (|:| |coeff| (-400 (-920 *5))))) (-5 *1 (-556 *5)) (-5 *3 (-400 (-920 *5))))) (-2217 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 (-400 (-920 *6)))) (-5 *3 (-400 (-920 *6))) (-4 *6 (-13 (-543) (-1012 (-536)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *6)))) (-2216 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-400 (-920 *4))) (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-1012 (-536)) (-145))) (-5 *1 (-556 *4)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-1012 (-536)) (-145))) (-5 *2 (-567 (-400 (-920 *5)))) (-5 *1 (-556 *5)) (-5 *3 (-400 (-920 *5)))))) -(-10 -7 (-15 -2215 ((-567 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -2216 ((-3 (-400 (-920 |#1|)) "failed") (-400 (-920 |#1|)) (-1147))) (-15 -2217 ((-3 (-2 (|:| |mainpart| (-400 (-920 |#1|))) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 (-920 |#1|))) (|:| |logand| (-400 (-920 |#1|))))))) "failed") (-400 (-920 |#1|)) (-1147) (-620 (-400 (-920 |#1|))))) (-15 -2218 ((-3 (-2 (|:| -2246 (-400 (-920 |#1|))) (|:| |coeff| (-400 (-920 |#1|)))) "failed") (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|))))) -((-2893 (((-112) $ $) 58)) (-3534 (((-112) $) 36)) (-2929 ((|#1| $) 30)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) 62)) (-3841 (($ $) 122)) (-3997 (($ $) 102)) (-2728 ((|#1| $) 28)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL)) (-3839 (($ $) 124)) (-3996 (($ $) 98)) (-3843 (($ $) 126)) (-3995 (($ $) 106)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) "failed") $) 77)) (-3502 (((-536) $) 79)) (-3816 (((-3 $ "failed") $) 61)) (-2169 (($ |#1| |#1|) 26)) (-3532 (((-112) $) 33)) (-3985 (($) 88)) (-2497 (((-112) $) 43)) (-3339 (($ $ (-536)) NIL)) (-3533 (((-112) $) 34)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4297 (($ $) 90)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2170 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-400 (-536))) 76)) (-2168 ((|#1| $) 27)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) 64) (($ (-620 $)) NIL)) (-3815 (((-3 $ "failed") $ $) 63)) (-4298 (($ $) 92)) (-3844 (($ $) 130)) (-3994 (($ $) 104)) (-3842 (($ $) 132)) (-3993 (($ $) 108)) (-3840 (($ $) 128)) (-3992 (($ $) 100)) (-2167 (((-112) $ |#1|) 31)) (-4312 (((-838) $) 84) (($ (-536)) 66) (($ $) NIL) (($ (-536)) 66)) (-3456 (((-749)) 86)) (-3847 (($ $) 144)) (-3835 (($ $) 114)) (-2172 (((-112) $ $) NIL)) (-3845 (($ $) 142)) (-3833 (($ $) 110)) (-3849 (($ $) 140)) (-3837 (($ $) 120)) (-3850 (($ $) 138)) (-3838 (($ $) 118)) (-3848 (($ $) 136)) (-3836 (($ $) 116)) (-3846 (($ $) 134)) (-3834 (($ $) 112)) (-2986 (($) 21 T CONST)) (-2992 (($) 10 T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 37)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 35)) (-4192 (($ $) 41) (($ $ $) 42)) (-4194 (($ $ $) 40)) (** (($ $ (-893)) 54) (($ $ (-749)) NIL) (($ $ $) 94) (($ $ (-400 (-536))) 146)) (* (($ (-893) $) 51) (($ (-749) $) NIL) (($ (-536) $) 50) (($ $ $) 48))) -(((-557 |#1|) (-541 |#1|) (-13 (-397) (-1169))) (T -557)) -NIL -(-541 |#1|) -((-3032 (((-3 (-620 (-1141 (-536))) "failed") (-620 (-1141 (-536))) (-1141 (-536))) 24))) -(((-558) (-10 -7 (-15 -3032 ((-3 (-620 (-1141 (-536))) "failed") (-620 (-1141 (-536))) (-1141 (-536)))))) (T -558)) -((-3032 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 (-536)))) (-5 *3 (-1141 (-536))) (-5 *1 (-558))))) -(-10 -7 (-15 -3032 ((-3 (-620 (-1141 (-536))) "failed") (-620 (-1141 (-536))) (-1141 (-536))))) -((-2219 (((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-1147)) 19)) (-2222 (((-620 (-593 |#2|)) (-620 |#2|) (-1147)) 23)) (-3580 (((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-620 (-593 |#2|))) 11)) (-2223 ((|#2| |#2| (-1147)) 54 (|has| |#1| (-543)))) (-2224 ((|#2| |#2| (-1147)) 78 (-12 (|has| |#2| (-277)) (|has| |#1| (-444))))) (-2221 (((-593 |#2|) (-593 |#2|) (-620 (-593 |#2|)) (-1147)) 25)) (-2220 (((-593 |#2|) (-620 (-593 |#2|))) 24)) (-2225 (((-567 |#2|) |#2| (-1147) (-1 (-567 |#2|) |#2| (-1147)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147))) 103 (-12 (|has| |#2| (-277)) (|has| |#2| (-610)) (|has| |#2| (-1012 (-1147))) (|has| |#1| (-596 (-864 (-536)))) (|has| |#1| (-444)) (|has| |#1| (-860 (-536))))))) -(((-559 |#1| |#2|) (-10 -7 (-15 -2219 ((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-1147))) (-15 -2220 ((-593 |#2|) (-620 (-593 |#2|)))) (-15 -2221 ((-593 |#2|) (-593 |#2|) (-620 (-593 |#2|)) (-1147))) (-15 -3580 ((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-620 (-593 |#2|)))) (-15 -2222 ((-620 (-593 |#2|)) (-620 |#2|) (-1147))) (IF (|has| |#1| (-543)) (-15 -2223 (|#2| |#2| (-1147))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -2224 (|#2| |#2| (-1147))) (IF (|has| |#1| (-596 (-864 (-536)))) (IF (|has| |#1| (-860 (-536))) (IF (|has| |#2| (-610)) (IF (|has| |#2| (-1012 (-1147))) (-15 -2225 ((-567 |#2|) |#2| (-1147) (-1 (-567 |#2|) |#2| (-1147)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-825) (-414 |#1|)) (T -559)) -((-2225 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-567 *3) *3 (-1147))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1147))) (-4 *3 (-277)) (-4 *3 (-610)) (-4 *3 (-1012 *4)) (-4 *3 (-414 *7)) (-5 *4 (-1147)) (-4 *7 (-596 (-864 (-536)))) (-4 *7 (-444)) (-4 *7 (-860 (-536))) (-4 *7 (-825)) (-5 *2 (-567 *3)) (-5 *1 (-559 *7 *3)))) (-2224 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-444)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) (-4 *2 (-277)) (-4 *2 (-414 *4)))) (-2223 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-543)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) (-4 *2 (-414 *4)))) (-2222 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-1147)) (-4 *6 (-414 *5)) (-4 *5 (-825)) (-5 *2 (-620 (-593 *6))) (-5 *1 (-559 *5 *6)))) (-3580 (*1 *2 *2 *2) (-12 (-5 *2 (-620 (-593 *4))) (-4 *4 (-414 *3)) (-4 *3 (-825)) (-5 *1 (-559 *3 *4)))) (-2221 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-620 (-593 *6))) (-5 *4 (-1147)) (-5 *2 (-593 *6)) (-4 *6 (-414 *5)) (-4 *5 (-825)) (-5 *1 (-559 *5 *6)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-620 (-593 *5))) (-4 *4 (-825)) (-5 *2 (-593 *5)) (-5 *1 (-559 *4 *5)) (-4 *5 (-414 *4)))) (-2219 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-593 *5))) (-5 *3 (-1147)) (-4 *5 (-414 *4)) (-4 *4 (-825)) (-5 *1 (-559 *4 *5))))) -(-10 -7 (-15 -2219 ((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-1147))) (-15 -2220 ((-593 |#2|) (-620 (-593 |#2|)))) (-15 -2221 ((-593 |#2|) (-593 |#2|) (-620 (-593 |#2|)) (-1147))) (-15 -3580 ((-620 (-593 |#2|)) (-620 (-593 |#2|)) (-620 (-593 |#2|)))) (-15 -2222 ((-620 (-593 |#2|)) (-620 |#2|) (-1147))) (IF (|has| |#1| (-543)) (-15 -2223 (|#2| |#2| (-1147))) |%noBranch|) (IF (|has| |#1| (-444)) (IF (|has| |#2| (-277)) (PROGN (-15 -2224 (|#2| |#2| (-1147))) (IF (|has| |#1| (-596 (-864 (-536)))) (IF (|has| |#1| (-860 (-536))) (IF (|has| |#2| (-610)) (IF (|has| |#2| (-1012 (-1147))) (-15 -2225 ((-567 |#2|) |#2| (-1147) (-1 (-567 |#2|) |#2| (-1147)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1147)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-2228 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-620 |#1|) "failed") (-536) |#1| |#1|)) 172)) (-2231 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-620 (-400 |#2|))) 148)) (-2234 (((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-620 (-400 |#2|))) 145)) (-2235 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2226 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2233 (((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|)) 175)) (-2229 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|)) 178)) (-2237 (((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|)) 84)) (-2238 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2232 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-620 (-400 |#2|))) 152)) (-2236 (((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|)) 137)) (-2227 (((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|)) 162)) (-2230 (((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-400 |#2|)) 183))) -(((-560 |#1| |#2|) (-10 -7 (-15 -2226 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2227 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|))) (-15 -2228 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-620 |#1|) "failed") (-536) |#1| |#1|))) (-15 -2229 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|))) (-15 -2230 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-400 |#2|))) (-15 -2231 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-620 (-400 |#2|)))) (-15 -2232 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-620 (-400 |#2|)))) (-15 -2233 ((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2234 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-620 (-400 |#2|)))) (-15 -2235 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2236 ((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|))) (-15 -2237 ((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2238 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-356) (-1205 |#1|)) (T -560)) -((-2238 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-560 *5 *3)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |ir| (-567 (-400 *6))) (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6)))) (-2236 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-603 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3467 *4) (|:| |sol?| (-112))) (-536) *4)) (-4 *4 (-356)) (-4 *5 (-1205 *4)) (-5 *1 (-560 *4 *5)))) (-2235 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-356)) (-5 *1 (-560 *4 *2)) (-4 *2 (-1205 *4)))) (-2234 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-620 (-400 *7))) (-4 *7 (-1205 *6)) (-5 *3 (-400 *7)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *7)))) (-2233 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -2246 (-400 *6)) (|:| |coeff| (-400 *6)))) (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6)))) (-2232 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3467 *7) (|:| |sol?| (-112))) (-536) *7)) (-5 *6 (-620 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1205 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-560 *7 *8)))) (-2231 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2246 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-620 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1205 *7)) (-5 *3 (-400 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-560 *7 *8)))) (-2230 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3467 *6) (|:| |sol?| (-112))) (-536) *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -2246 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2229 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) (-2 (|:| -2246 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2228 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-620 *6) "failed") (-536) *6 *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2227 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3467 *6) (|:| |sol?| (-112))) (-536) *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7)))) (-2226 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) -(-10 -7 (-15 -2226 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2227 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|))) (-15 -2228 ((-2 (|:| |answer| (-567 (-400 |#2|))) (|:| |a0| |#1|)) (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-620 |#1|) "failed") (-536) |#1| |#1|))) (-15 -2229 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-400 |#2|))) (-15 -2230 ((-3 (-2 (|:| |answer| (-400 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-400 |#2|))) (-15 -2231 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-620 (-400 |#2|)))) (-15 -2232 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|))))))) (|:| |a0| |#1|)) "failed") (-400 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|) (-620 (-400 |#2|)))) (-15 -2233 ((-3 (-2 (|:| -2246 (-400 |#2|)) (|:| |coeff| (-400 |#2|))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-400 |#2|))) (-15 -2234 ((-3 (-2 (|:| |mainpart| (-400 |#2|)) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| (-400 |#2|)) (|:| |logand| (-400 |#2|)))))) "failed") (-400 |#2|) (-1 |#2| |#2|) (-620 (-400 |#2|)))) (-15 -2235 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2236 ((-3 (-603 |#1| |#2|) "failed") (-603 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3467 |#1|) (|:| |sol?| (-112))) (-536) |#1|))) (-15 -2237 ((-2 (|:| |ir| (-567 (-400 |#2|))) (|:| |specpart| (-400 |#2|)) (|:| |polypart| |#2|)) (-400 |#2|) (-1 |#2| |#2|))) (-15 -2238 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2239 (((-3 |#2| "failed") |#2| (-1147) (-1147)) 10))) -(((-561 |#1| |#2|) (-10 -7 (-15 -2239 ((-3 |#2| "failed") |#2| (-1147) (-1147)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-934) (-1110) (-29 |#1|))) (T -561)) -((-2239 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1147)) (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1169) (-934) (-1110) (-29 *4)))))) -(-10 -7 (-15 -2239 ((-3 |#2| "failed") |#2| (-1147) (-1147)))) -((-2884 (((-1091) $ (-129)) 12)) (-2885 (((-1091) $ (-128)) 11)) (-2112 (((-1091) $ (-129)) 7)) (-2113 (((-1091) $) 8)) (-1811 (($ $) 6))) -(((-562) (-138)) (T -562)) -NIL -(-13 (-518) (-836)) -(((-171) . T) ((-518) . T) ((-836) . T)) -((-2893 (((-112) $ $) NIL)) (-3809 (($) 7 T CONST)) (-3588 (((-1129) $) NIL)) (-2241 (($) 6 T CONST)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 14)) (-2240 (($) 8 T CONST)) (-3382 (((-112) $ $) 10))) -(((-563) (-13 (-1072) (-10 -8 (-15 -2241 ($) -4306) (-15 -3809 ($) -4306) (-15 -2240 ($) -4306)))) (T -563)) -((-2241 (*1 *1) (-5 *1 (-563))) (-3809 (*1 *1) (-5 *1 (-563))) (-2240 (*1 *1) (-5 *1 (-563)))) -(-13 (-1072) (-10 -8 (-15 -2241 ($) -4306) (-15 -3809 ($) -4306) (-15 -2240 ($) -4306))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $ (-536)) 66)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2935 (($ (-1141 (-536)) (-536)) 72)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) 58)) (-2936 (($ $) 34)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4126 (((-749) $) 15)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2938 (((-536)) 29)) (-2937 (((-536) $) 32)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4123 (($ $ (-536)) 21)) (-3815 (((-3 $ "failed") $ $) 59)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) 16)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 61)) (-2939 (((-1124 (-536)) $) 18)) (-3219 (($ $) 23)) (-4312 (((-838) $) 87) (($ (-536)) 52) (($ $) NIL)) (-3456 (((-749)) 14)) (-2172 (((-112) $ $) NIL)) (-4124 (((-536) $ (-536)) 36)) (-2986 (($) 35 T CONST)) (-2992 (($) 19 T CONST)) (-3382 (((-112) $ $) 39)) (-4192 (($ $) 51) (($ $ $) 37)) (-4194 (($ $ $) 50)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 54) (($ $ $) 55))) -(((-564 |#1| |#2|) (-844 |#1|) (-536) (-112)) (T -564)) -NIL -(-844 |#1|) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 21)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (($ $ (-893)) NIL (|has| $ (-361))) (($ $) NIL)) (-1786 (((-1156 (-893) (-749)) (-536)) 47)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 $ "failed") $) 75)) (-3502 (($ $) 74)) (-1906 (($ (-1229 $)) 73)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) 32)) (-3322 (($) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) 49)) (-1791 (((-112) $) NIL)) (-1881 (($ $) NIL) (($ $ (-749)) NIL)) (-4081 (((-112) $) NIL)) (-4126 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-2497 (((-112) $) NIL)) (-2124 (($) 37 (|has| $ (-361)))) (-2122 (((-112) $) NIL (|has| $ (-361)))) (-3462 (($ $ (-893)) NIL (|has| $ (-361))) (($ $) NIL)) (-3798 (((-3 $ "failed") $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 $) $ (-893)) NIL (|has| $ (-361))) (((-1141 $) $) 83)) (-2121 (((-893) $) 55)) (-1719 (((-1141 $) $) NIL (|has| $ (-361)))) (-1718 (((-3 (-1141 $) "failed") $ $) NIL (|has| $ (-361))) (((-1141 $) $) NIL (|has| $ (-361)))) (-1720 (($ $ (-1141 $)) NIL (|has| $ (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL T CONST)) (-2487 (($ (-893)) 48)) (-4286 (((-112) $) 67)) (-3589 (((-1091) $) NIL)) (-2496 (($) 19 (|has| $ (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 42)) (-4087 (((-398 $) $) NIL)) (-4285 (((-893)) 66) (((-810 (-893))) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-3 (-749) "failed") $ $) NIL) (((-749) $) NIL)) (-4266 (((-133)) NIL)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-4302 (((-893) $) 65) (((-810 (-893)) $) NIL)) (-3531 (((-1141 $)) 82)) (-1785 (($) 54)) (-1721 (($) 38 (|has| $ (-361)))) (-3570 (((-667 $) (-1229 $)) NIL) (((-1229 $) $) 71)) (-4325 (((-536) $) 28)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) 30) (($ $) NIL) (($ (-400 (-536))) NIL)) (-3030 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3456 (((-749)) 39)) (-2123 (((-1229 $) (-893)) 77) (((-1229 $)) 76)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) 22 T CONST)) (-2992 (($) 18 T CONST)) (-4283 (($ $ (-749)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 26)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 61) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) -(((-565 |#1|) (-13 (-343) (-322 $) (-596 (-536))) (-893)) (T -565)) -NIL -(-13 (-343) (-322 $) (-596 (-536))) -((-2242 (((-1235) (-1129)) 10))) -(((-566) (-10 -7 (-15 -2242 ((-1235) (-1129))))) (T -566)) -((-2242 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-566))))) -(-10 -7 (-15 -2242 ((-1235) (-1129)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| "failed") $) 69)) (-3502 ((|#1| $) NIL)) (-2246 ((|#1| $) 26)) (-2244 (((-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2247 (($ |#1| (-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) (-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2245 (((-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) $) 27)) (-3588 (((-1129) $) NIL)) (-3160 (($ |#1| |#1|) 33) (($ |#1| (-1147)) 44 (|has| |#1| (-1012 (-1147))))) (-3589 (((-1091) $) NIL)) (-2243 (((-112) $) 30)) (-4165 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1147)) 82 (|has| |#1| (-874 (-1147))))) (-4312 (((-838) $) 96) (($ |#1|) 25)) (-2986 (($) 16 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) 15) (($ $ $) NIL)) (-4194 (($ $ $) 78)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 14) (($ (-400 (-536)) $) 36) (($ $ (-400 (-536))) NIL))) -(((-567 |#1|) (-13 (-696 (-400 (-536))) (-1012 |#1|) (-10 -8 (-15 -2247 ($ |#1| (-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) (-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2246 (|#1| $)) (-15 -2245 ((-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) $)) (-15 -2244 ((-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2243 ((-112) $)) (-15 -3160 ($ |#1| |#1|)) (-15 -4165 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-874 (-1147))) (-15 -4165 (|#1| $ (-1147))) |%noBranch|) (IF (|has| |#1| (-1012 (-1147))) (-15 -3160 ($ |#1| (-1147))) |%noBranch|))) (-356)) (T -567)) -((-2247 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 *2)) (|:| |logand| (-1141 *2))))) (-5 *4 (-620 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) (-5 *1 (-567 *2)))) (-2246 (*1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 *3)) (|:| |logand| (-1141 *3))))) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-356)))) (-3160 (*1 *1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-4165 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-567 *2)) (-4 *2 (-356)))) (-4165 (*1 *2 *1 *3) (-12 (-4 *2 (-356)) (-4 *2 (-874 *3)) (-5 *1 (-567 *2)) (-5 *3 (-1147)))) (-3160 (*1 *1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *1 (-567 *2)) (-4 *2 (-1012 *3)) (-4 *2 (-356))))) -(-13 (-696 (-400 (-536))) (-1012 |#1|) (-10 -8 (-15 -2247 ($ |#1| (-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) (-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2246 (|#1| $)) (-15 -2245 ((-620 (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 |#1|)) (|:| |logand| (-1141 |#1|)))) $)) (-15 -2244 ((-620 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2243 ((-112) $)) (-15 -3160 ($ |#1| |#1|)) (-15 -4165 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-874 (-1147))) (-15 -4165 (|#1| $ (-1147))) |%noBranch|) (IF (|has| |#1| (-1012 (-1147))) (-15 -3160 ($ |#1| (-1147))) |%noBranch|))) -((-4313 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|)) 30))) -(((-568 |#1| |#2|) (-10 -7 (-15 -4313 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|))) (-15 -4313 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4313 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4313 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-356) (-356)) (T -568)) -((-4313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-568 *5 *6)))) (-4313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) (-4 *2 (-356)) (-5 *1 (-568 *5 *2)))) (-4313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2246 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-2 (|:| -2246 *6) (|:| |coeff| *6))) (-5 *1 (-568 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-356)) (-4 *6 (-356)) (-5 *2 (-567 *6)) (-5 *1 (-568 *5 *6))))) -(-10 -7 (-15 -4313 ((-567 |#2|) (-1 |#2| |#1|) (-567 |#1|))) (-15 -4313 ((-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2246 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4313 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4313 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-3772 (((-567 |#2|) (-567 |#2|)) 40)) (-4318 (((-620 |#2|) (-567 |#2|)) 42)) (-2255 ((|#2| (-567 |#2|)) 48))) -(((-569 |#1| |#2|) (-10 -7 (-15 -3772 ((-567 |#2|) (-567 |#2|))) (-15 -4318 ((-620 |#2|) (-567 |#2|))) (-15 -2255 (|#2| (-567 |#2|)))) (-13 (-444) (-1012 (-536)) (-825) (-619 (-536))) (-13 (-29 |#1|) (-1169))) (T -569)) -((-2255 (*1 *2 *3) (-12 (-5 *3 (-567 *2)) (-4 *2 (-13 (-29 *4) (-1169))) (-5 *1 (-569 *4 *2)) (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-567 *5)) (-4 *5 (-13 (-29 *4) (-1169))) (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-620 *5)) (-5 *1 (-569 *4 *5)))) (-3772 (*1 *2 *2) (-12 (-5 *2 (-567 *4)) (-4 *4 (-13 (-29 *3) (-1169))) (-4 *3 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *1 (-569 *3 *4))))) -(-10 -7 (-15 -3772 ((-567 |#2|) (-567 |#2|))) (-15 -4318 ((-620 |#2|) (-567 |#2|))) (-15 -2255 (|#2| (-567 |#2|)))) -((-2251 (((-112) |#1|) 16)) (-2252 (((-3 |#1| "failed") |#1|) 14)) (-2249 (((-2 (|:| -3022 |#1|) (|:| -2488 (-749))) |#1|) 31) (((-3 |#1| "failed") |#1| (-749)) 18)) (-2248 (((-112) |#1| (-749)) 19)) (-2253 ((|#1| |#1|) 32)) (-2250 ((|#1| |#1| (-749)) 34))) -(((-570 |#1|) (-10 -7 (-15 -2248 ((-112) |#1| (-749))) (-15 -2249 ((-3 |#1| "failed") |#1| (-749))) (-15 -2249 ((-2 (|:| -3022 |#1|) (|:| -2488 (-749))) |#1|)) (-15 -2250 (|#1| |#1| (-749))) (-15 -2251 ((-112) |#1|)) (-15 -2252 ((-3 |#1| "failed") |#1|)) (-15 -2253 (|#1| |#1|))) (-535)) (T -570)) -((-2253 (*1 *2 *2) (-12 (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-2252 (*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-2251 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535)))) (-2250 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-2249 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3022 *3) (|:| -2488 (-749)))) (-5 *1 (-570 *3)) (-4 *3 (-535)))) (-2249 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) (-2248 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) -(-10 -7 (-15 -2248 ((-112) |#1| (-749))) (-15 -2249 ((-3 |#1| "failed") |#1| (-749))) (-15 -2249 ((-2 (|:| -3022 |#1|) (|:| -2488 (-749))) |#1|)) (-15 -2250 (|#1| |#1| (-749))) (-15 -2251 ((-112) |#1|)) (-15 -2252 ((-3 |#1| "failed") |#1|)) (-15 -2253 (|#1| |#1|))) -((-2254 (((-1141 |#1|) (-893)) 27))) -(((-571 |#1|) (-10 -7 (-15 -2254 ((-1141 |#1|) (-893)))) (-343)) (T -571)) -((-2254 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-571 *4)) (-4 *4 (-343))))) -(-10 -7 (-15 -2254 ((-1141 |#1|) (-893)))) -((-3772 (((-567 (-400 (-920 |#1|))) (-567 (-400 (-920 |#1|)))) 27)) (-4167 (((-3 (-307 |#1|) (-620 (-307 |#1|))) (-400 (-920 |#1|)) (-1147)) 34 (|has| |#1| (-145)))) (-4318 (((-620 (-307 |#1|)) (-567 (-400 (-920 |#1|)))) 19)) (-2256 (((-307 |#1|) (-400 (-920 |#1|)) (-1147)) 32 (|has| |#1| (-145)))) (-2255 (((-307 |#1|) (-567 (-400 (-920 |#1|)))) 21))) -(((-572 |#1|) (-10 -7 (-15 -3772 ((-567 (-400 (-920 |#1|))) (-567 (-400 (-920 |#1|))))) (-15 -4318 ((-620 (-307 |#1|)) (-567 (-400 (-920 |#1|))))) (-15 -2255 ((-307 |#1|) (-567 (-400 (-920 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4167 ((-3 (-307 |#1|) (-620 (-307 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -2256 ((-307 |#1|) (-400 (-920 |#1|)) (-1147)))) |%noBranch|)) (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (T -572)) -((-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-307 *5)) (-5 *1 (-572 *5)))) (-4167 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-145)) (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-3 (-307 *5) (-620 (-307 *5)))) (-5 *1 (-572 *5)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-567 (-400 (-920 *4)))) (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-307 *4)) (-5 *1 (-572 *4)))) (-4318 (*1 *2 *3) (-12 (-5 *3 (-567 (-400 (-920 *4)))) (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-620 (-307 *4))) (-5 *1 (-572 *4)))) (-3772 (*1 *2 *2) (-12 (-5 *2 (-567 (-400 (-920 *3)))) (-4 *3 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *1 (-572 *3))))) -(-10 -7 (-15 -3772 ((-567 (-400 (-920 |#1|))) (-567 (-400 (-920 |#1|))))) (-15 -4318 ((-620 (-307 |#1|)) (-567 (-400 (-920 |#1|))))) (-15 -2255 ((-307 |#1|) (-567 (-400 (-920 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4167 ((-3 (-307 |#1|) (-620 (-307 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -2256 ((-307 |#1|) (-400 (-920 |#1|)) (-1147)))) |%noBranch|)) -((-2258 (((-620 (-667 (-536))) (-620 (-536)) (-620 (-876 (-536)))) 46) (((-620 (-667 (-536))) (-620 (-536))) 47) (((-667 (-536)) (-620 (-536)) (-876 (-536))) 42)) (-2257 (((-749) (-620 (-536))) 40))) -(((-573) (-10 -7 (-15 -2257 ((-749) (-620 (-536)))) (-15 -2258 ((-667 (-536)) (-620 (-536)) (-876 (-536)))) (-15 -2258 ((-620 (-667 (-536))) (-620 (-536)))) (-15 -2258 ((-620 (-667 (-536))) (-620 (-536)) (-620 (-876 (-536))))))) (T -573)) -((-2258 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-536))) (-5 *4 (-620 (-876 (-536)))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-573)))) (-2258 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-573)))) (-2258 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-536))) (-5 *4 (-876 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-573)))) (-2257 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-749)) (-5 *1 (-573))))) -(-10 -7 (-15 -2257 ((-749) (-620 (-536)))) (-15 -2258 ((-667 (-536)) (-620 (-536)) (-876 (-536)))) (-15 -2258 ((-620 (-667 (-536))) (-620 (-536)))) (-15 -2258 ((-620 (-667 (-536))) (-620 (-536)) (-620 (-876 (-536)))))) -((-3559 (((-620 |#5|) |#5| (-112)) 73)) (-2259 (((-112) |#5| (-620 |#5|)) 30))) -(((-574 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3559 ((-620 |#5|) |#5| (-112))) (-15 -2259 ((-112) |#5| (-620 |#5|)))) (-13 (-300) (-145)) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -574)) -((-2259 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-574 *5 *6 *7 *8 *3)))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-620 *3)) (-5 *1 (-574 *5 *6 *7 *8 *3)) (-4 *3 (-1080 *5 *6 *7 *8))))) -(-10 -7 (-15 -3559 ((-620 |#5|) |#5| (-112))) (-15 -2259 ((-112) |#5| (-620 |#5|)))) -((-2893 (((-112) $ $) NIL)) (-3877 (((-1106) $) 11)) (-3878 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-575) (-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $))))) (T -575)) -((-3878 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-575)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-575))))) -(-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $)))) -((-2893 (((-112) $ $) NIL (|has| (-142) (-1072)))) (-3780 (($ $) 34)) (-3781 (($ $) NIL)) (-3771 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-3778 (((-112) $ $) 51)) (-3777 (((-112) $ $ (-536)) 46)) (-3772 (((-620 $) $ (-142)) 60) (((-620 $) $ (-139)) 61)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-825)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-142) (-825))))) (-3237 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-142) $ (-536) (-142)) 45 (|has| $ (-6 -4349))) (((-142) $ (-1196 (-536)) (-142)) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-3769 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-3774 (($ $ (-1196 (-536)) $) 44)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-3760 (($ (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4348)))) (-1632 (((-142) $ (-536) (-142)) NIL (|has| $ (-6 -4349)))) (-3443 (((-142) $ (-536)) NIL)) (-3779 (((-112) $ $) 72)) (-3773 (((-536) (-1 (-112) (-142)) $) NIL) (((-536) (-142) $) NIL (|has| (-142) (-1072))) (((-536) (-142) $ (-536)) 48 (|has| (-142) (-1072))) (((-536) $ $ (-536)) 47) (((-536) (-139) $ (-536)) 50)) (-2063 (((-620 (-142)) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) (-142)) 9)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 28 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| (-142) (-825)))) (-3867 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-825)))) (-2506 (((-620 (-142)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2303 (((-536) $) 42 (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-142) (-825)))) (-3775 (((-112) $ $ (-142)) 73)) (-3776 (((-749) $ $ (-142)) 70)) (-2067 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3782 (($ $) 37)) (-3783 (($ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3770 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-3588 (((-1129) $) 38 (|has| (-142) (-1072)))) (-2377 (($ (-142) $ (-536)) NIL) (($ $ $ (-536)) 23)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-536) $) 69) (((-1091) $) NIL (|has| (-142) (-1072)))) (-4155 (((-142) $) NIL (|has| (-536) (-825)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2301 (($ $ (-142)) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-620 (-142)) (-620 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2307 (((-620 (-142)) $) NIL)) (-3757 (((-112) $) 12)) (-3923 (($) 10)) (-4154 (((-142) $ (-536) (-142)) NIL) (((-142) $ (-536)) 52) (($ $ (-1196 (-536))) 21) (($ $ $) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348))) (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-1842 (($ $ $ (-536)) 66 (|has| $ (-6 -4349)))) (-3754 (($ $) 17)) (-4325 (((-525) $) NIL (|has| (-142) (-596 (-525))))) (-3879 (($ (-620 (-142))) NIL)) (-4156 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-620 $)) 67)) (-4312 (($ (-142)) NIL) (((-838) $) 27 (|has| (-142) (-595 (-838))))) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-142) (-825)))) (-3382 (((-112) $ $) 14 (|has| (-142) (-1072)))) (-3012 (((-112) $ $) NIL (|has| (-142) (-825)))) (-3013 (((-112) $ $) 15 (|has| (-142) (-825)))) (-4311 (((-749) $) 13 (|has| $ (-6 -4348))))) -(((-576 |#1|) (-13 (-1115) (-10 -8 (-15 -3589 ((-536) $)))) (-536)) (T -576)) -((-3589 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-576 *3)) (-14 *3 *2)))) -(-13 (-1115) (-10 -8 (-15 -3589 ((-536) $)))) -((-3881 (((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2| (-1060 |#4|)) 32))) -(((-577 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3881 ((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2| (-1060 |#4|))) (-15 -3881 ((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2|))) (-771) (-825) (-543) (-924 |#3| |#1| |#2|)) (T -577)) -((-3881 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-543)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-536)))) (-5 *1 (-577 *5 *4 *6 *3)) (-4 *3 (-924 *6 *5 *4)))) (-3881 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1060 *3)) (-4 *3 (-924 *7 *6 *4)) (-4 *6 (-771)) (-4 *4 (-825)) (-4 *7 (-543)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-536)))) (-5 *1 (-577 *6 *4 *7 *3))))) -(-10 -7 (-15 -3881 ((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2| (-1060 |#4|))) (-15 -3881 ((-2 (|:| |num| |#4|) (|:| |den| (-536))) |#4| |#2|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 63)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-536)) 54) (($ $ (-536) (-536)) 55)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) 60)) (-2290 (($ $) 100)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2288 (((-838) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) (-1000 (-817 (-536))) (-1147) |#1| (-400 (-536))) 224)) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) 34)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3220 (((-112) $) NIL)) (-4126 (((-536) $) 58) (((-536) $ (-536)) 59)) (-2497 (((-112) $) NIL)) (-4131 (($ $ (-893)) 76)) (-4170 (($ (-1 |#1| (-536)) $) 73)) (-4292 (((-112) $) 25)) (-3221 (($ |#1| (-536)) 22) (($ $ (-1053) (-536)) NIL) (($ $ (-620 (-1053)) (-620 (-536))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) 67)) (-2294 (($ (-1000 (-817 (-536))) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) 13)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-4167 (($ $) 150 (|has| |#1| (-38 (-400 (-536)))))) (-2291 (((-3 $ "failed") $ $ (-112)) 99)) (-2289 (($ $ $) 108)) (-3589 (((-1091) $) NIL)) (-2292 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) 15)) (-2293 (((-1000 (-817 (-536))) $) 14)) (-4123 (($ $ (-536)) 45)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-536)))))) (-4154 ((|#1| $ (-536)) 57) (($ $ $) NIL (|has| (-536) (-1083)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (-4302 (((-536) $) NIL)) (-3219 (($ $) 46)) (-4312 (((-838) $) NIL) (($ (-536)) 28) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543))) (($ |#1|) 27 (|has| |#1| (-170)))) (-4035 ((|#1| $ (-536)) 56)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) 37)) (-4127 ((|#1| $) NIL)) (-2269 (($ $) 186 (|has| |#1| (-38 (-400 (-536)))))) (-2281 (($ $) 158 (|has| |#1| (-38 (-400 (-536)))))) (-2271 (($ $) 190 (|has| |#1| (-38 (-400 (-536)))))) (-2283 (($ $) 163 (|has| |#1| (-38 (-400 (-536)))))) (-2267 (($ $) 189 (|has| |#1| (-38 (-400 (-536)))))) (-2279 (($ $) 162 (|has| |#1| (-38 (-400 (-536)))))) (-2286 (($ $ (-400 (-536))) 166 (|has| |#1| (-38 (-400 (-536)))))) (-2287 (($ $ |#1|) 146 (|has| |#1| (-38 (-400 (-536)))))) (-2284 (($ $) 192 (|has| |#1| (-38 (-400 (-536)))))) (-2285 (($ $) 149 (|has| |#1| (-38 (-400 (-536)))))) (-2266 (($ $) 191 (|has| |#1| (-38 (-400 (-536)))))) (-2278 (($ $) 164 (|has| |#1| (-38 (-400 (-536)))))) (-2268 (($ $) 187 (|has| |#1| (-38 (-400 (-536)))))) (-2280 (($ $) 160 (|has| |#1| (-38 (-400 (-536)))))) (-2270 (($ $) 188 (|has| |#1| (-38 (-400 (-536)))))) (-2282 (($ $) 161 (|has| |#1| (-38 (-400 (-536)))))) (-2263 (($ $) 197 (|has| |#1| (-38 (-400 (-536)))))) (-2275 (($ $) 173 (|has| |#1| (-38 (-400 (-536)))))) (-2265 (($ $) 194 (|has| |#1| (-38 (-400 (-536)))))) (-2277 (($ $) 168 (|has| |#1| (-38 (-400 (-536)))))) (-2261 (($ $) 201 (|has| |#1| (-38 (-400 (-536)))))) (-2273 (($ $) 177 (|has| |#1| (-38 (-400 (-536)))))) (-2260 (($ $) 203 (|has| |#1| (-38 (-400 (-536)))))) (-2272 (($ $) 179 (|has| |#1| (-38 (-400 (-536)))))) (-2262 (($ $) 199 (|has| |#1| (-38 (-400 (-536)))))) (-2274 (($ $) 175 (|has| |#1| (-38 (-400 (-536)))))) (-2264 (($ $) 196 (|has| |#1| (-38 (-400 (-536)))))) (-2276 (($ $) 171 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-4124 ((|#1| $ (-536)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-2986 (($) 29 T CONST)) (-2992 (($) 38 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (-3382 (((-112) $ $) 65)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) 84) (($ $ $) 64)) (-4194 (($ $ $) 81)) (** (($ $ (-893)) NIL) (($ $ (-749)) 103)) (* (($ (-893) $) 89) (($ (-749) $) 87) (($ (-536) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-578 |#1|) (-13 (-1208 |#1| (-536)) (-10 -8 (-15 -2294 ($ (-1000 (-817 (-536))) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))))) (-15 -2293 ((-1000 (-817 (-536))) $)) (-15 -2292 ((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $)) (-15 -4173 ($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))))) (-15 -4292 ((-112) $)) (-15 -4170 ($ (-1 |#1| (-536)) $)) (-15 -2291 ((-3 $ "failed") $ $ (-112))) (-15 -2290 ($ $)) (-15 -2289 ($ $ $)) (-15 -2288 ((-838) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) (-1000 (-817 (-536))) (-1147) |#1| (-400 (-536)))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $)) (-15 -2287 ($ $ |#1|)) (-15 -2286 ($ $ (-400 (-536)))) (-15 -2285 ($ $)) (-15 -2284 ($ $)) (-15 -2283 ($ $)) (-15 -2282 ($ $)) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $))) |%noBranch|))) (-1023)) (T -578)) -((-4292 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1023)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-1000 (-817 (-536)))) (-5 *3 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *4)))) (-4 *4 (-1023)) (-5 *1 (-578 *4)))) (-2293 (*1 *2 *1) (-12 (-5 *2 (-1000 (-817 (-536)))) (-5 *1 (-578 *3)) (-4 *3 (-1023)))) (-2292 (*1 *2 *1) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-5 *1 (-578 *3)) (-4 *3 (-1023)))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-4 *3 (-1023)) (-5 *1 (-578 *3)))) (-4170 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-536))) (-4 *3 (-1023)) (-5 *1 (-578 *3)))) (-2291 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1023)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1023)))) (-2289 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1023)))) (-2288 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *6)))) (-5 *4 (-1000 (-817 (-536)))) (-5 *5 (-1147)) (-5 *7 (-400 (-536))) (-4 *6 (-1023)) (-5 *2 (-838)) (-5 *1 (-578 *6)))) (-4167 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2287 (*1 *1 *1 *2) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-578 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1023)))) (-2285 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2283 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2281 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2280 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2278 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2276 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2272 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2270 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2264 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2263 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2262 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2261 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) -(-13 (-1208 |#1| (-536)) (-10 -8 (-15 -2294 ($ (-1000 (-817 (-536))) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))))) (-15 -2293 ((-1000 (-817 (-536))) $)) (-15 -2292 ((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $)) (-15 -4173 ($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))))) (-15 -4292 ((-112) $)) (-15 -4170 ($ (-1 |#1| (-536)) $)) (-15 -2291 ((-3 $ "failed") $ $ (-112))) (-15 -2290 ($ $)) (-15 -2289 ($ $ $)) (-15 -2288 ((-838) (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) (-1000 (-817 (-536))) (-1147) |#1| (-400 (-536)))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $)) (-15 -2287 ($ $ |#1|)) (-15 -2286 ($ $ (-400 (-536)))) (-15 -2285 ($ $)) (-15 -2284 ($ $)) (-15 -2283 ($ $)) (-15 -2282 ($ $)) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $)) (-15 -2264 ($ $)) (-15 -2263 ($ $)) (-15 -2262 ($ $)) (-15 -2261 ($ $)) (-15 -2260 ($ $))) |%noBranch|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4173 (($ (-1124 |#1|)) 9)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) 42)) (-3220 (((-112) $) 52)) (-4126 (((-749) $) 55) (((-749) $ (-749)) 54)) (-2497 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ "failed") $ $) 44 (|has| |#1| (-543)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-1124 |#1|) $) 23)) (-3456 (((-749)) 51)) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 10 T CONST)) (-2992 (($) 14 T CONST)) (-3382 (((-112) $ $) 22)) (-4192 (($ $) 30) (($ $ $) 16)) (-4194 (($ $ $) 25)) (** (($ $ (-893)) NIL) (($ $ (-749)) 49)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-536)) 36))) -(((-579 |#1|) (-13 (-1023) (-10 -8 (-15 -4172 ((-1124 |#1|) $)) (-15 -4173 ($ (-1124 |#1|))) (-15 -3220 ((-112) $)) (-15 -4126 ((-749) $)) (-15 -4126 ((-749) $ (-749))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-536))) (IF (|has| |#1| (-543)) (-6 (-543)) |%noBranch|))) (-1023)) (T -579)) -((-4172 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-579 *3)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) (-4126 (*1 *2 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1023)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1023)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-579 *3)) (-4 *3 (-1023))))) -(-13 (-1023) (-10 -8 (-15 -4172 ((-1124 |#1|) $)) (-15 -4173 ($ (-1124 |#1|))) (-15 -3220 ((-112) $)) (-15 -4126 ((-749) $)) (-15 -4126 ((-749) $ (-749))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-536))) (IF (|has| |#1| (-543)) (-6 (-543)) |%noBranch|))) -((-4313 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 15))) -(((-580 |#1| |#2|) (-10 -7 (-15 -4313 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1183) (-1183)) (T -580)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-583 *6)) (-5 *1 (-580 *5 *6))))) -(-10 -7 (-15 -4313 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) -((-4313 (((-1124 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1124 |#2|)) 20) (((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-583 |#2|)) 19) (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 18))) -(((-581 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))) (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-583 |#2|))) (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1124 |#2|)))) (-1183) (-1183) (-1183)) (T -581)) -((-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-1124 *7)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) (-5 *1 (-581 *6 *7 *8)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) (-5 *1 (-581 *6 *7 *8)))) (-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-583 *8)) (-5 *1 (-581 *6 *7 *8))))) -(-10 -7 (-15 -4313 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))) (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-583 |#2|))) (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-1124 |#2|)))) -((-2299 ((|#3| |#3| (-620 (-593 |#3|)) (-620 (-1147))) 55)) (-2298 (((-166 |#2|) |#3|) 117)) (-2295 ((|#3| (-166 |#2|)) 44)) (-2296 ((|#2| |#3|) 19)) (-2297 ((|#3| |#2|) 33))) -(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -2295 (|#3| (-166 |#2|))) (-15 -2296 (|#2| |#3|)) (-15 -2297 (|#3| |#2|)) (-15 -2298 ((-166 |#2|) |#3|)) (-15 -2299 (|#3| |#3| (-620 (-593 |#3|)) (-620 (-1147))))) (-13 (-543) (-825)) (-13 (-414 |#1|) (-976) (-1169)) (-13 (-414 (-166 |#1|)) (-976) (-1169))) (T -582)) -((-2299 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-620 (-593 *2))) (-5 *4 (-620 (-1147))) (-4 *2 (-13 (-414 (-166 *5)) (-976) (-1169))) (-4 *5 (-13 (-543) (-825))) (-5 *1 (-582 *5 *6 *2)) (-4 *6 (-13 (-414 *5) (-976) (-1169))))) (-2298 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825))) (-5 *2 (-166 *5)) (-5 *1 (-582 *4 *5 *3)) (-4 *5 (-13 (-414 *4) (-976) (-1169))) (-4 *3 (-13 (-414 (-166 *4)) (-976) (-1169))))) (-2297 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825))) (-4 *2 (-13 (-414 (-166 *4)) (-976) (-1169))) (-5 *1 (-582 *4 *3 *2)) (-4 *3 (-13 (-414 *4) (-976) (-1169))))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-825))) (-4 *2 (-13 (-414 *4) (-976) (-1169))) (-5 *1 (-582 *4 *2 *3)) (-4 *3 (-13 (-414 (-166 *4)) (-976) (-1169))))) (-2295 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-414 *4) (-976) (-1169))) (-4 *4 (-13 (-543) (-825))) (-4 *2 (-13 (-414 (-166 *4)) (-976) (-1169))) (-5 *1 (-582 *4 *5 *2))))) -(-10 -7 (-15 -2295 (|#3| (-166 |#2|))) (-15 -2296 (|#2| |#3|)) (-15 -2297 (|#3| |#2|)) (-15 -2298 ((-166 |#2|) |#3|)) (-15 -2299 (|#3| |#3| (-620 (-593 |#3|)) (-620 (-1147))))) -((-4068 (($ (-1 (-112) |#1|) $) 17)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3806 (($ (-1 |#1| |#1|) |#1|) 9)) (-3805 (($ (-1 (-112) |#1|) $) 13)) (-3804 (($ (-1 (-112) |#1|) $) 15)) (-3879 (((-1124 |#1|) $) 18)) (-4312 (((-838) $) NIL))) -(((-583 |#1|) (-13 (-595 (-838)) (-10 -8 (-15 -4313 ($ (-1 |#1| |#1|) $)) (-15 -3805 ($ (-1 (-112) |#1|) $)) (-15 -3804 ($ (-1 (-112) |#1|) $)) (-15 -4068 ($ (-1 (-112) |#1|) $)) (-15 -3806 ($ (-1 |#1| |#1|) |#1|)) (-15 -3879 ((-1124 |#1|) $)))) (-1183)) (T -583)) -((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) (-3805 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) (-3804 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) (-4068 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1183))))) -(-13 (-595 (-838)) (-10 -8 (-15 -4313 ($ (-1 |#1| |#1|) $)) (-15 -3805 ($ (-1 (-112) |#1|) $)) (-15 -3804 ($ (-1 (-112) |#1|) $)) (-15 -4068 ($ (-1 (-112) |#1|) $)) (-15 -3806 ($ (-1 |#1| |#1|) |#1|)) (-15 -3879 ((-1124 |#1|) $)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749)) NIL (|has| |#1| (-23)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4190 (((-667 |#1|) $ $) NIL (|has| |#1| (-1023)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4187 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-4074 (((-112) $ (-749)) NIL)) (-4188 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-4191 ((|#1| $ $) NIL (|has| |#1| (-1023)))) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-4189 (($ $ $) NIL (|has| |#1| (-1023)))) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4192 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4194 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-536) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-584 |#1| |#2|) (-1228 |#1|) (-1183) (-536)) (T -584)) -NIL -(-1228 |#1|) -((-2300 (((-1235) $ |#2| |#2|) 36)) (-2302 ((|#2| $) 23)) (-2303 ((|#2| $) 21)) (-2067 (($ (-1 |#3| |#3|) $) 32)) (-4313 (($ (-1 |#3| |#3|) $) 30)) (-4155 ((|#3| $) 26)) (-2301 (($ $ |#3|) 33)) (-2304 (((-112) |#3| $) 17)) (-2307 (((-620 |#3|) $) 15)) (-4154 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-585 |#1| |#2| |#3|) (-10 -8 (-15 -2300 ((-1235) |#1| |#2| |#2|)) (-15 -2301 (|#1| |#1| |#3|)) (-15 -4155 (|#3| |#1|)) (-15 -2302 (|#2| |#1|)) (-15 -2303 (|#2| |#1|)) (-15 -2304 ((-112) |#3| |#1|)) (-15 -2307 ((-620 |#3|) |#1|)) (-15 -4154 (|#3| |#1| |#2|)) (-15 -4154 (|#3| |#1| |#2| |#3|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4313 (|#1| (-1 |#3| |#3|) |#1|))) (-586 |#2| |#3|) (-1072) (-1183)) (T -585)) -NIL -(-10 -8 (-15 -2300 ((-1235) |#1| |#2| |#2|)) (-15 -2301 (|#1| |#1| |#3|)) (-15 -4155 (|#3| |#1|)) (-15 -2302 (|#2| |#1|)) (-15 -2303 (|#2| |#1|)) (-15 -2304 ((-112) |#3| |#1|)) (-15 -2307 ((-620 |#3|) |#1|)) (-15 -4154 (|#3| |#1| |#2|)) (-15 -4154 (|#3| |#1| |#2| |#3|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4313 (|#1| (-1 |#3| |#3|) |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#2| (-1072)))) (-2300 (((-1235) $ |#1| |#1|) 40 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-1632 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) 51)) (-2063 (((-620 |#2|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2302 ((|#1| $) 43 (|has| |#1| (-825)))) (-2506 (((-620 |#2|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-2303 ((|#1| $) 44 (|has| |#1| (-825)))) (-2067 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#2| (-1072)))) (-2305 (((-620 |#1|) $) 46)) (-2306 (((-112) |#1| $) 47)) (-3589 (((-1091) $) 21 (|has| |#2| (-1072)))) (-4155 ((|#2| $) 42 (|has| |#1| (-825)))) (-2301 (($ $ |#2|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) 26 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) 25 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) 23 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2064 (((-749) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4348))) (((-749) |#2| $) 28 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#2| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#2| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-586 |#1| |#2|) (-138) (-1072) (-1183)) (T -586)) -((-2307 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-620 *4)))) (-2306 (*1 *2 *3 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-112)))) (-2305 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-620 *3)))) (-2304 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-586 *4 *3)) (-4 *4 (-1072)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112)))) (-2303 (*1 *2 *1) (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1183)) (-4 *2 (-1072)) (-4 *2 (-825)))) (-2302 (*1 *2 *1) (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1183)) (-4 *2 (-1072)) (-4 *2 (-825)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-586 *3 *2)) (-4 *3 (-1072)) (-4 *3 (-825)) (-4 *2 (-1183)))) (-2301 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-586 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) (-2300 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-1235))))) -(-13 (-481 |t#2|) (-281 |t#1| |t#2|) (-10 -8 (-15 -2307 ((-620 |t#2|) $)) (-15 -2306 ((-112) |t#1| $)) (-15 -2305 ((-620 |t#1|) $)) (IF (|has| |t#2| (-1072)) (IF (|has| $ (-6 -4348)) (-15 -2304 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-825)) (PROGN (-15 -2303 (|t#1| $)) (-15 -2302 (|t#1| $)) (-15 -4155 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4349)) (PROGN (-15 -2301 ($ $ |t#2|)) (-15 -2300 ((-1235) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#2| (-1072)) ((-595 (-838)) -3886 (|has| |#2| (-1072)) (|has| |#2| (-595 (-838)))) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-1072) |has| |#2| (-1072)) ((-1183) . T)) -((-4312 (((-838) $) 19) (((-128) $) 14) (($ (-128)) 13))) -(((-587) (-13 (-595 (-838)) (-595 (-128)) (-10 -8 (-15 -4312 ($ (-128)))))) (T -587)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-587))))) -(-13 (-595 (-838)) (-595 (-128)) (-10 -8 (-15 -4312 ($ (-128))))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (((-1152) $) NIL) (($ (-1152)) NIL) (((-1184) $) 14) (($ (-620 (-1184))) 13)) (-2308 (((-620 (-1184)) $) 10)) (-3382 (((-112) $ $) NIL))) -(((-588) (-13 (-1054) (-595 (-1184)) (-10 -8 (-15 -4312 ($ (-620 (-1184)))) (-15 -2308 ((-620 (-1184)) $))))) (T -588)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-588)))) (-2308 (*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-588))))) -(-13 (-1054) (-595 (-1184)) (-10 -8 (-15 -4312 ($ (-620 (-1184)))) (-15 -2308 ((-620 (-1184)) $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3569 (((-1229 (-667 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1229 (-667 |#1|)) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1840 (((-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-3891 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1814 (((-3 $ #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1902 (((-667 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1838 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1900 (((-667 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2491 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2017 (((-1141 (-920 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2494 (($ $ (-893)) NIL)) (-1836 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1816 (((-1141 |#1|) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1904 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1834 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1906 (($ (-1229 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1229 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-3816 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-3439 (((-893)) NIL (|has| |#2| (-360 |#1|)))) (-1825 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2519 (($ $ (-893)) NIL)) (-1821 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1819 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1823 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1815 (((-3 $ #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1903 (((-667 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1839 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1901 (((-667 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2492 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2021 (((-1141 (-920 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2493 (($ $ (-893)) NIL)) (-1837 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1817 (((-1141 |#1|) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1905 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1835 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3588 (((-1129) $) NIL)) (-1820 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1822 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3589 (((-1091) $) NIL)) (-1827 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4154 ((|#1| $ (-536)) NIL (|has| |#2| (-411 |#1|)))) (-3570 (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-411 |#1|))) (((-1229 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $) (-1229 $)) NIL (|has| |#2| (-360 |#1|))) (((-1229 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-4325 (($ (-1229 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1229 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2009 (((-620 (-920 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-620 (-920 |#1|)) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2681 (($ $ $) NIL)) (-1833 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4312 (((-838) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2123 (((-1229 $)) NIL (|has| |#2| (-411 |#1|)))) (-1818 (((-620 (-1229 |#1|))) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2682 (($ $ $ $) NIL)) (-1831 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2875 (($ (-667 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2680 (($ $ $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1826 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2986 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) 24)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-589 |#1| |#2|) (-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -4312 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-723 |#1|)) (T -589)) -((-4312 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-589 *3 *2)) (-4 *2 (-723 *3))))) -(-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -4312 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) -((-2893 (((-112) $ $) NIL)) (-1808 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) 33)) (-3955 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL) (($) NIL)) (-2300 (((-1235) $ (-1129) (-1129)) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-1129) |#1|) 43)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#1| #1="failed") (-1129) $) 46)) (-3891 (($) NIL T CONST)) (-1812 (($ $ (-1129)) 24)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-3759 (((-3 |#1| #1#) (-1129) $) 47) (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (|has| $ (-6 -4348)))) (-3760 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-4197 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-1809 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) 32)) (-1632 ((|#1| $ (-1129) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-1129)) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-2350 (($ $) 48)) (-1813 (($ (-381)) 22) (($ (-381) (-1129)) 21)) (-3900 (((-381) $) 34)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348))) (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (((-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-2303 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-2739 (((-620 (-1129)) $) 39)) (-2310 (((-112) (-1129) $) NIL)) (-1810 (((-1129) $) 35)) (-1331 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-2305 (((-620 (-1129)) $) NIL)) (-2306 (((-112) (-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 ((|#1| $) NIL (|has| (-1129) (-825)))) (-1399 (((-3 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) "failed") (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-620 (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 37)) (-4154 ((|#1| $ (-1129) |#1|) NIL) ((|#1| $ (-1129)) 42)) (-1518 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL) (($) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (((-749) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (((-749) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-4312 (((-838) $) 20)) (-1811 (($ $) 25)) (-1333 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 19)) (-4311 (((-749) $) 41 (|has| $ (-6 -4348))))) -(((-590 |#1|) (-13 (-358 (-381) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) (-1160 (-1129) |#1|) (-10 -8 (-6 -4348) (-15 -2350 ($ $)))) (-1072)) (T -590)) -((-2350 (*1 *1 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1072))))) -(-13 (-358 (-381) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) (-1160 (-1129) |#1|) (-10 -8 (-6 -4348) (-15 -2350 ($ $)))) -((-3591 (((-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) 15)) (-2739 (((-620 |#2|) $) 19)) (-2310 (((-112) |#2| $) 12))) -(((-591 |#1| |#2| |#3|) (-10 -8 (-15 -2739 ((-620 |#2|) |#1|)) (-15 -2310 ((-112) |#2| |#1|)) (-15 -3591 ((-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|))) (-592 |#2| |#3|) (-1072) (-1072)) (T -591)) -NIL -(-10 -8 (-15 -2739 ((-620 |#2|) |#1|)) (-15 -2310 ((-112) |#2| |#1|)) (-15 -3591 ((-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|))) -((-2893 (((-112) $ $) 19 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 55 (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| "failed") |#1| $) 61)) (-3891 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 46 (|has| $ (-6 -4348))) (((-3 |#2| "failed") |#1| $) 62)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 54 (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 56 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 53 (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-2739 (((-620 |#1|) $) 63)) (-2310 (((-112) |#1| $) 64)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 39)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 40)) (-3589 (((-1091) $) 21 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 51)) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 41)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) 26 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 25 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 24 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 23 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-1518 (($) 49) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 48)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 31 (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 50)) (-4312 (((-838) $) 18 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 42)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-592 |#1| |#2|) (-138) (-1072) (-1072)) (T -592)) -((-2310 (*1 *2 *3 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-112)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-620 *3)))) (-3759 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) (-2309 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) -(-13 (-223 (-2 (|:| -4215 |t#1|) (|:| -2186 |t#2|))) (-10 -8 (-15 -2310 ((-112) |t#1| $)) (-15 -2739 ((-620 |t#1|) $)) (-15 -3759 ((-3 |t#2| "failed") |t#1| $)) (-15 -2309 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-106 #1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((-101) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) ((-595 (-838)) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838)))) ((-149 #1#) . T) ((-596 (-525)) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))) ((-223 #1#) . T) ((-229 #1#) . T) ((-302 #1#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-481 #1#) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-1072) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-2311 (((-3 (-1147) "failed") $) 37)) (-1368 (((-1235) $ (-749)) 26)) (-3773 (((-749) $) 25)) (-3375 (((-113) $) 12)) (-3900 (((-1147) $) 20)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2312 (($ (-113) (-620 |#1|) (-749)) 30) (($ (-1147)) 31)) (-2959 (((-112) $ (-113)) 18) (((-112) $ (-1147)) 16)) (-2928 (((-749) $) 22)) (-3589 (((-1091) $) NIL)) (-4325 (((-864 (-536)) $) 77 (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) 84 (|has| |#1| (-596 (-864 (-371))))) (((-525) $) 69 (|has| |#1| (-596 (-525))))) (-4312 (((-838) $) 55)) (-2313 (((-620 |#1|) $) 24)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 41)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 42))) -(((-593 |#1|) (-13 (-131) (-858 |#1|) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -3375 ((-113) $)) (-15 -2313 ((-620 |#1|) $)) (-15 -2928 ((-749) $)) (-15 -2312 ($ (-113) (-620 |#1|) (-749))) (-15 -2312 ($ (-1147))) (-15 -2311 ((-3 (-1147) "failed") $)) (-15 -2959 ((-112) $ (-113))) (-15 -2959 ((-112) $ (-1147))) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|))) (-825)) (T -593)) -((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-2312 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-620 *5)) (-5 *4 (-749)) (-4 *5 (-825)) (-5 *1 (-593 *5)))) (-2312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-2311 (*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) (-2959 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-593 *4)) (-4 *4 (-825)))) (-2959 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-112)) (-5 *1 (-593 *4)) (-4 *4 (-825))))) -(-13 (-131) (-858 |#1|) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -3375 ((-113) $)) (-15 -2313 ((-620 |#1|) $)) (-15 -2928 ((-749) $)) (-15 -2312 ($ (-113) (-620 |#1|) (-749))) (-15 -2312 ($ (-1147))) (-15 -2311 ((-3 (-1147) "failed") $)) (-15 -2959 ((-112) $ (-113))) (-15 -2959 ((-112) $ (-1147))) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|))) -((-2314 (((-593 |#2|) |#1|) 15)) (-2315 (((-3 |#1| "failed") (-593 |#2|)) 19))) -(((-594 |#1| |#2|) (-10 -7 (-15 -2314 ((-593 |#2|) |#1|)) (-15 -2315 ((-3 |#1| "failed") (-593 |#2|)))) (-825) (-825)) (T -594)) -((-2315 (*1 *2 *3) (|partial| -12 (-5 *3 (-593 *4)) (-4 *4 (-825)) (-4 *2 (-825)) (-5 *1 (-594 *2 *4)))) (-2314 (*1 *2 *3) (-12 (-5 *2 (-593 *4)) (-5 *1 (-594 *3 *4)) (-4 *3 (-825)) (-4 *4 (-825))))) -(-10 -7 (-15 -2314 ((-593 |#2|) |#1|)) (-15 -2315 ((-3 |#1| "failed") (-593 |#2|)))) -((-4312 ((|#1| $) 6))) -(((-595 |#1|) (-138) (-1183)) (T -595)) -((-4312 (*1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1183))))) -(-13 (-10 -8 (-15 -4312 (|t#1| $)))) -((-4325 ((|#1| $) 6))) -(((-596 |#1|) (-138) (-1183)) (T -596)) -((-4325 (*1 *2 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1183))))) -(-13 (-10 -8 (-15 -4325 (|t#1| $)))) -((-2316 (((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)) 15) (((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 16))) -(((-597 |#1| |#2|) (-10 -7 (-15 -2316 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -2316 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)))) (-13 (-145) (-27) (-1012 (-536)) (-1012 (-400 (-536)))) (-1205 |#1|)) (T -597)) -((-2316 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-145) (-27) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-1141 (-400 *6))) (-5 *1 (-597 *5 *6)) (-5 *3 (-400 *6)))) (-2316 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-1141 (-400 *5))) (-5 *1 (-597 *4 *5)) (-5 *3 (-400 *5))))) -(-10 -7 (-15 -2316 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|))) (-15 -2316 ((-3 (-1141 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 (-398 |#2|) |#2|)))) -((-2893 (((-112) $ $) NIL)) (-2318 (($) 11 T CONST)) (-2317 (($) 12 T CONST)) (-3185 (($ $ $) 24)) (-3671 (($ $) 22)) (-3588 (((-1129) $) NIL)) (-3184 (($ $ $) 25)) (-3589 (((-1091) $) NIL)) (-2319 (($) 10 T CONST)) (-3183 (($ $ $) 26)) (-4312 (((-838) $) 30)) (-3924 (((-112) $ (|[\|\|]| -2319)) 19) (((-112) $ (|[\|\|]| -2318)) 21) (((-112) $ (|[\|\|]| -2317)) 17)) (-3186 (($ $ $) 23)) (-3382 (((-112) $ $) 15))) -(((-598) (-13 (-941) (-10 -8 (-15 -2319 ($) -4306) (-15 -2318 ($) -4306) (-15 -2317 ($) -4306) (-15 -3924 ((-112) $ (|[\|\|]| -2319))) (-15 -3924 ((-112) $ (|[\|\|]| -2318))) (-15 -3924 ((-112) $ (|[\|\|]| -2317)))))) (T -598)) -((-2319 (*1 *1) (-5 *1 (-598))) (-2318 (*1 *1) (-5 *1 (-598))) (-2317 (*1 *1) (-5 *1 (-598))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2319)) (-5 *2 (-112)) (-5 *1 (-598)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2318)) (-5 *2 (-112)) (-5 *1 (-598)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2317)) (-5 *2 (-112)) (-5 *1 (-598))))) -(-13 (-941) (-10 -8 (-15 -2319 ($) -4306) (-15 -2318 ($) -4306) (-15 -2317 ($) -4306) (-15 -3924 ((-112) $ (|[\|\|]| -2319))) (-15 -3924 ((-112) $ (|[\|\|]| -2318))) (-15 -3924 ((-112) $ (|[\|\|]| -2317))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3981 (((-536) $) NIL (|has| |#1| (-823)))) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-3532 (((-112) $) NIL (|has| |#1| (-823)))) (-2497 (((-112) $) NIL)) (-3326 ((|#1| $) 13)) (-3533 (((-112) $) NIL (|has| |#1| (-823)))) (-3672 (($ $ $) NIL (|has| |#1| (-823)))) (-3673 (($ $ $) NIL (|has| |#1| (-823)))) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3325 ((|#3| $) 15)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL)) (-3456 (((-749)) 20)) (-3737 (($ $) NIL (|has| |#1| (-823)))) (-2986 (($) NIL T CONST)) (-2992 (($) 12 T CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-823)))) (-4303 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-599 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (-15 -4303 ($ $ |#3|)) (-15 -4303 ($ |#1| |#3|)) (-15 -3326 (|#1| $)) (-15 -3325 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-705) |#2|)) (T -599)) -((-4303 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-705) *4)))) (-4303 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-705) *4)))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-705) *3)))) (-3325 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (-15 -4303 ($ $ |#3|)) (-15 -4303 ($ |#1| |#3|)) (-15 -3326 (|#1| $)) (-15 -3325 (|#3| $)))) -((-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) 10))) -(((-600 |#1| |#2|) (-10 -8 (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-601 |#2|) (-1023)) (T -600)) -NIL -(-10 -8 (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 34)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ |#1| $) 35))) -(((-601 |#1|) (-138) (-1023)) (T -601)) -((-4312 (*1 *1 *2) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1023))))) -(-13 (-1023) (-626 |t#1|) (-10 -8 (-15 -4312 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2320 ((|#2| |#2| (-1147) (-1147)) 18))) -(((-602 |#1| |#2|) (-10 -7 (-15 -2320 (|#2| |#2| (-1147) (-1147)))) (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-934) (-29 |#1|))) (T -602)) -((-2320 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-602 *4 *2)) (-4 *2 (-13 (-1169) (-934) (-29 *4)))))) -(-10 -7 (-15 -2320 (|#2| |#2| (-1147) (-1147)))) -((-2893 (((-112) $ $) 56)) (-3534 (((-112) $) 52)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-2321 ((|#1| $) 49)) (-1367 (((-3 $ "failed") $ $) NIL)) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4106 (((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)) 97 (|has| |#1| (-356)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) 24)) (-3816 (((-3 $ "failed") $) 75)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4126 (((-536) $) 19)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) 36)) (-3221 (($ |#1| (-536)) 21)) (-3520 ((|#1| $) 51)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) 87 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 100 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ $) 79)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-1699 (((-749) $) 99 (|has| |#1| (-356)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 98 (|has| |#1| (-356)))) (-4165 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-4302 (((-536) $) 34)) (-4325 (((-400 |#2|) $) 42)) (-4312 (((-838) $) 62) (($ (-536)) 32) (($ $) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) 31) (($ |#2|) 22)) (-4035 ((|#1| $ (-536)) 63)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) 29)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 9 T CONST)) (-2992 (($) 12 T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3382 (((-112) $ $) 17)) (-4192 (($ $) 46) (($ $ $) NIL)) (-4194 (($ $ $) 76)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 26) (($ $ $) 44))) -(((-603 |#1| |#2|) (-13 (-225 |#2|) (-543) (-596 (-400 |#2|)) (-405 |#1|) (-1012 |#2|) (-10 -8 (-15 -4292 ((-112) $)) (-15 -4302 ((-536) $)) (-15 -4126 ((-536) $)) (-15 -4314 ($ $)) (-15 -3520 (|#1| $)) (-15 -2321 (|#1| $)) (-15 -4035 (|#1| $ (-536))) (-15 -3221 ($ |#1| (-536))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4106 ((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) (-543) (-1205 |#1|)) (T -603)) -((-4292 (*1 *2 *1) (-12 (-4 *3 (-543)) (-5 *2 (-112)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) (-4302 (*1 *2 *1) (-12 (-4 *3 (-543)) (-5 *2 (-536)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) (-4126 (*1 *2 *1) (-12 (-4 *3 (-543)) (-5 *2 (-536)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) (-4314 (*1 *1 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2)))) (-3520 (*1 *2 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2)))) (-2321 (*1 *2 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *2 (-543)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1205 *2)))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-4 *2 (-543)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1205 *2)))) (-4106 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-543)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| -1879 (-603 *4 *5)) (|:| -1878 (-400 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-400 *5))))) -(-13 (-225 |#2|) (-543) (-596 (-400 |#2|)) (-405 |#1|) (-1012 |#2|) (-10 -8 (-15 -4292 ((-112) $)) (-15 -4302 ((-536) $)) (-15 -4126 ((-536) $)) (-15 -4314 ($ $)) (-15 -3520 (|#1| $)) (-15 -2321 (|#1| $)) (-15 -4035 (|#1| $ (-536))) (-15 -3221 ($ |#1| (-536))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-6 (-300)) (-15 -4106 ((-2 (|:| -1879 $) (|:| -1878 (-400 |#2|))) (-400 |#2|)))) |%noBranch|))) -((-4040 (((-620 |#6|) (-620 |#4|) (-112)) 47)) (-2322 ((|#6| |#6|) 40))) -(((-604 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2322 (|#6| |#6|)) (-15 -4040 ((-620 |#6|) (-620 |#4|) (-112)))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|) (-1080 |#1| |#2| |#3| |#4|)) (T -604)) -((-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 *10)) (-5 *1 (-604 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *10 (-1080 *5 *6 *7 *8)))) (-2322 (*1 *2 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *1 (-604 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *2 (-1080 *3 *4 *5 *6))))) -(-10 -7 (-15 -2322 (|#6| |#6|)) (-15 -4040 ((-620 |#6|) (-620 |#4|) (-112)))) -((-2323 (((-112) |#3| (-749) (-620 |#3|)) 23)) (-2324 (((-3 (-2 (|:| |polfac| (-620 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-620 (-1141 |#3|)))) "failed") |#3| (-620 (-1141 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2762 (-620 (-2 (|:| |irr| |#4|) (|:| -2482 (-536)))))) (-620 |#3|) (-620 |#1|) (-620 |#3|)) 55))) -(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2323 ((-112) |#3| (-749) (-620 |#3|))) (-15 -2324 ((-3 (-2 (|:| |polfac| (-620 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-620 (-1141 |#3|)))) "failed") |#3| (-620 (-1141 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2762 (-620 (-2 (|:| |irr| |#4|) (|:| -2482 (-536)))))) (-620 |#3|) (-620 |#1|) (-620 |#3|)))) (-825) (-771) (-300) (-924 |#3| |#2| |#1|)) (T -605)) -((-2324 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2762 (-620 (-2 (|:| |irr| *10) (|:| -2482 (-536))))))) (-5 *6 (-620 *3)) (-5 *7 (-620 *8)) (-4 *8 (-825)) (-4 *3 (-300)) (-4 *10 (-924 *3 *9 *8)) (-4 *9 (-771)) (-5 *2 (-2 (|:| |polfac| (-620 *10)) (|:| |correct| *3) (|:| |corrfact| (-620 (-1141 *3))))) (-5 *1 (-605 *8 *9 *3 *10)) (-5 *4 (-620 (-1141 *3))))) (-2323 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-749)) (-5 *5 (-620 *3)) (-4 *3 (-300)) (-4 *6 (-825)) (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-605 *6 *7 *3 *8)) (-4 *8 (-924 *3 *7 *6))))) -(-10 -7 (-15 -2323 ((-112) |#3| (-749) (-620 |#3|))) (-15 -2324 ((-3 (-2 (|:| |polfac| (-620 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-620 (-1141 |#3|)))) "failed") |#3| (-620 (-1141 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2762 (-620 (-2 (|:| |irr| |#4|) (|:| -2482 (-536)))))) (-620 |#3|) (-620 |#1|) (-620 |#3|)))) -((-2893 (((-112) $ $) NIL)) (-3877 (((-1106) $) 11)) (-3878 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-606) (-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $))))) (T -606)) -((-3878 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-606)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-606))))) -(-13 (-1054) (-10 -8 (-15 -3878 ((-1106) $)) (-15 -3877 ((-1106) $)))) -((-2893 (((-112) $ $) NIL)) (-4289 (((-620 |#1|) $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-4291 (($ $) 67)) (-4297 (((-642 |#1| |#2|) $) 52)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 70)) (-2325 (((-620 (-286 |#2|)) $ $) 33)) (-3589 (((-1091) $) NIL)) (-4298 (($ (-642 |#1| |#2|)) 48)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) 58) (((-1245 |#1| |#2|) $) NIL) (((-1250 |#1| |#2|) $) 66)) (-2992 (($) 53 T CONST)) (-2326 (((-620 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $) 31)) (-2327 (((-620 (-642 |#1| |#2|)) (-620 |#1|)) 65)) (-2991 (((-620 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $) 37)) (-3382 (((-112) $ $) 54)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ $ $) 44))) -(((-607 |#1| |#2| |#3|) (-13 (-465) (-10 -8 (-15 -4298 ($ (-642 |#1| |#2|))) (-15 -4297 ((-642 |#1| |#2|) $)) (-15 -2991 ((-620 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $)) (-15 -4312 ((-1245 |#1| |#2|) $)) (-15 -4312 ((-1250 |#1| |#2|) $)) (-15 -4291 ($ $)) (-15 -4289 ((-620 |#1|) $)) (-15 -2327 ((-620 (-642 |#1| |#2|)) (-620 |#1|))) (-15 -2326 ((-620 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $)) (-15 -2325 ((-620 (-286 |#2|)) $ $)))) (-825) (-13 (-170) (-696 (-400 (-536)))) (-893)) (T -607)) -((-4298 (*1 *1 *2) (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-5 *1 (-607 *3 *4 *5)) (-14 *5 (-893)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-642 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |k| (-867 *3)) (|:| |c| *4)))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-4291 (*1 *1 *1) (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-13 (-170) (-696 (-400 (-536))))) (-14 *4 (-893)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-825)) (-5 *2 (-620 (-642 *4 *5))) (-5 *1 (-607 *4 *5 *6)) (-4 *5 (-13 (-170) (-696 (-400 (-536))))) (-14 *6 (-893)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |k| (-650 *3)) (|:| |c| *4)))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) (-2325 (*1 *2 *1 *1) (-12 (-5 *2 (-620 (-286 *4))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893))))) -(-13 (-465) (-10 -8 (-15 -4298 ($ (-642 |#1| |#2|))) (-15 -4297 ((-642 |#1| |#2|) $)) (-15 -2991 ((-620 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $)) (-15 -4312 ((-1245 |#1| |#2|) $)) (-15 -4312 ((-1250 |#1| |#2|) $)) (-15 -4291 ($ $)) (-15 -4289 ((-620 |#1|) $)) (-15 -2327 ((-620 (-642 |#1| |#2|)) (-620 |#1|))) (-15 -2326 ((-620 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $)) (-15 -2325 ((-620 (-286 |#2|)) $ $)))) -((-4040 (((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112)) 72) (((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112)) 58)) (-2328 (((-112) (-620 (-758 |#1| (-839 |#2|)))) 23)) (-2332 (((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112)) 71)) (-2331 (((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112)) 57)) (-2330 (((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|)))) 27)) (-2329 (((-3 (-620 (-758 |#1| (-839 |#2|))) "failed") (-620 (-758 |#1| (-839 |#2|)))) 26))) -(((-608 |#1| |#2|) (-10 -7 (-15 -2328 ((-112) (-620 (-758 |#1| (-839 |#2|))))) (-15 -2329 ((-3 (-620 (-758 |#1| (-839 |#2|))) "failed") (-620 (-758 |#1| (-839 |#2|))))) (-15 -2330 ((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|))))) (-15 -2331 ((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -2332 ((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -4040 ((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -4040 ((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112)))) (-444) (-620 (-1147))) (T -608)) -((-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1117 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) (-5 *1 (-608 *5 *6)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-608 *5 *6)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1117 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) (-5 *1 (-608 *5 *6)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-608 *5 *6)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-620 (-758 *3 (-839 *4)))) (-4 *3 (-444)) (-14 *4 (-620 (-1147))) (-5 *1 (-608 *3 *4)))) (-2329 (*1 *2 *2) (|partial| -12 (-5 *2 (-620 (-758 *3 (-839 *4)))) (-4 *3 (-444)) (-14 *4 (-620 (-1147))) (-5 *1 (-608 *3 *4)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-620 (-758 *4 (-839 *5)))) (-4 *4 (-444)) (-14 *5 (-620 (-1147))) (-5 *2 (-112)) (-5 *1 (-608 *4 *5))))) -(-10 -7 (-15 -2328 ((-112) (-620 (-758 |#1| (-839 |#2|))))) (-15 -2329 ((-3 (-620 (-758 |#1| (-839 |#2|))) "failed") (-620 (-758 |#1| (-839 |#2|))))) (-15 -2330 ((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|))))) (-15 -2331 ((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -2332 ((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -4040 ((-620 (-1020 |#1| |#2|)) (-620 (-758 |#1| (-839 |#2|))) (-112))) (-15 -4040 ((-620 (-1117 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|)))) (-620 (-758 |#1| (-839 |#2|))) (-112)))) -((-3375 (((-113) (-113)) 83)) (-2336 ((|#2| |#2|) 30)) (-3160 ((|#2| |#2| (-1063 |#2|)) 79) ((|#2| |#2| (-1147)) 52)) (-2334 ((|#2| |#2|) 29)) (-2335 ((|#2| |#2|) 31)) (-2333 (((-112) (-113)) 34)) (-2338 ((|#2| |#2|) 26)) (-2339 ((|#2| |#2|) 28)) (-2337 ((|#2| |#2|) 27))) -(((-609 |#1| |#2|) (-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -2339 (|#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2337 (|#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -3160 (|#2| |#2| (-1147))) (-15 -3160 (|#2| |#2| (-1063 |#2|)))) (-13 (-825) (-543)) (-13 (-414 |#1|) (-976) (-1169))) (T -609)) -((-3160 (*1 *2 *2 *3) (-12 (-5 *3 (-1063 *2)) (-4 *2 (-13 (-414 *4) (-976) (-1169))) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-609 *4 *2)))) (-3160 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-609 *4 *2)) (-4 *2 (-13 (-414 *4) (-976) (-1169))))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-2336 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-2337 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-2338 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) (-4 *2 (-13 (-414 *3) (-976) (-1169))))) (-3375 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *4)) (-4 *4 (-13 (-414 *3) (-976) (-1169))))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-609 *4 *5)) (-4 *5 (-13 (-414 *4) (-976) (-1169)))))) -(-10 -7 (-15 -2333 ((-112) (-113))) (-15 -3375 ((-113) (-113))) (-15 -2339 (|#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2337 (|#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -3160 (|#2| |#2| (-1147))) (-15 -3160 (|#2| |#2| (-1063 |#2|)))) -((-3841 (($ $) 38)) (-3997 (($ $) 21)) (-3839 (($ $) 37)) (-3996 (($ $) 22)) (-3843 (($ $) 36)) (-3995 (($ $) 23)) (-3985 (($) 48)) (-4297 (($ $) 45)) (-2336 (($ $) 17)) (-3160 (($ $ (-1063 $)) 7) (($ $ (-1147)) 6)) (-4298 (($ $) 46)) (-2334 (($ $) 15)) (-2335 (($ $) 16)) (-3844 (($ $) 35)) (-3994 (($ $) 24)) (-3842 (($ $) 34)) (-3993 (($ $) 25)) (-3840 (($ $) 33)) (-3992 (($ $) 26)) (-3847 (($ $) 44)) (-3835 (($ $) 32)) (-3845 (($ $) 43)) (-3833 (($ $) 31)) (-3849 (($ $) 42)) (-3837 (($ $) 30)) (-3850 (($ $) 41)) (-3838 (($ $) 29)) (-3848 (($ $) 40)) (-3836 (($ $) 28)) (-3846 (($ $) 39)) (-3834 (($ $) 27)) (-2338 (($ $) 19)) (-2339 (($ $) 20)) (-2337 (($ $) 18)) (** (($ $ $) 47))) -(((-610) (-138)) (T -610)) -((-2339 (*1 *1 *1) (-4 *1 (-610))) (-2338 (*1 *1 *1) (-4 *1 (-610))) (-2337 (*1 *1 *1) (-4 *1 (-610))) (-2336 (*1 *1 *1) (-4 *1 (-610))) (-2335 (*1 *1 *1) (-4 *1 (-610))) (-2334 (*1 *1 *1) (-4 *1 (-610)))) -(-13 (-934) (-1169) (-10 -8 (-15 -2339 ($ $)) (-15 -2338 ($ $)) (-15 -2337 ($ $)) (-15 -2336 ($ $)) (-15 -2335 ($ $)) (-15 -2334 ($ $)))) -(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-934) . T) ((-1169) . T) ((-1172) . T)) -((-2349 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 53)) (-2342 (((-620 (-241 |#1| |#2|)) (-620 (-473 |#1| |#2|))) 68)) (-2343 (((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-839 |#1|)) 70) (((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)) (-839 |#1|)) 69)) (-2340 (((-2 (|:| |gblist| (-620 (-241 |#1| |#2|))) (|:| |gvlist| (-620 (-536)))) (-620 (-473 |#1| |#2|))) 108)) (-2347 (((-620 (-473 |#1| |#2|)) (-839 |#1|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|))) 83)) (-2341 (((-2 (|:| |glbase| (-620 (-241 |#1| |#2|))) (|:| |glval| (-620 (-536)))) (-620 (-241 |#1| |#2|))) 118)) (-2345 (((-1229 |#2|) (-473 |#1| |#2|) (-620 (-473 |#1| |#2|))) 58)) (-2344 (((-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|))) 41)) (-2348 (((-241 |#1| |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|))) 50)) (-2346 (((-241 |#1| |#2|) (-620 |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|))) 91))) -(((-611 |#1| |#2|) (-10 -7 (-15 -2340 ((-2 (|:| |gblist| (-620 (-241 |#1| |#2|))) (|:| |gvlist| (-620 (-536)))) (-620 (-473 |#1| |#2|)))) (-15 -2341 ((-2 (|:| |glbase| (-620 (-241 |#1| |#2|))) (|:| |glval| (-620 (-536)))) (-620 (-241 |#1| |#2|)))) (-15 -2342 ((-620 (-241 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2343 ((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -2343 ((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -2344 ((-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2345 ((-1229 |#2|) (-473 |#1| |#2|) (-620 (-473 |#1| |#2|)))) (-15 -2346 ((-241 |#1| |#2|) (-620 |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|)))) (-15 -2347 ((-620 (-473 |#1| |#2|)) (-839 |#1|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2348 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|)))) (-15 -2349 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) (-620 (-1147)) (-444)) (T -611)) -((-2349 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *2 (-473 *4 *5)) (-5 *1 (-611 *4 *5)))) (-2348 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5)))) (-2347 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-620 (-473 *4 *5))) (-5 *3 (-839 *4)) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *1 (-611 *4 *5)))) (-2346 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-241 *5 *6))) (-4 *6 (-444)) (-5 *2 (-241 *5 *6)) (-14 *5 (-620 (-1147))) (-5 *1 (-611 *5 *6)))) (-2345 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-620 (-1147))) (-4 *6 (-444)) (-5 *2 (-1229 *6)) (-5 *1 (-611 *5 *6)))) (-2344 (*1 *2 *2) (-12 (-5 *2 (-620 (-473 *3 *4))) (-14 *3 (-620 (-1147))) (-4 *4 (-444)) (-5 *1 (-611 *3 *4)))) (-2343 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-473 *5 *6))) (-5 *4 (-839 *5)) (-14 *5 (-620 (-1147))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444)))) (-2343 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-620 (-473 *5 *6))) (-5 *4 (-839 *5)) (-14 *5 (-620 (-1147))) (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444)))) (-2342 (*1 *2 *3) (-12 (-5 *3 (-620 (-473 *4 *5))) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *2 (-620 (-241 *4 *5))) (-5 *1 (-611 *4 *5)))) (-2341 (*1 *2 *3) (-12 (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |glbase| (-620 (-241 *4 *5))) (|:| |glval| (-620 (-536))))) (-5 *1 (-611 *4 *5)) (-5 *3 (-620 (-241 *4 *5))))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-620 (-473 *4 *5))) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *2 (-2 (|:| |gblist| (-620 (-241 *4 *5))) (|:| |gvlist| (-620 (-536))))) (-5 *1 (-611 *4 *5))))) -(-10 -7 (-15 -2340 ((-2 (|:| |gblist| (-620 (-241 |#1| |#2|))) (|:| |gvlist| (-620 (-536)))) (-620 (-473 |#1| |#2|)))) (-15 -2341 ((-2 (|:| |glbase| (-620 (-241 |#1| |#2|))) (|:| |glval| (-620 (-536)))) (-620 (-241 |#1| |#2|)))) (-15 -2342 ((-620 (-241 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2343 ((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -2343 ((-473 |#1| |#2|) (-620 (-473 |#1| |#2|)) (-839 |#1|))) (-15 -2344 ((-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2345 ((-1229 |#2|) (-473 |#1| |#2|) (-620 (-473 |#1| |#2|)))) (-15 -2346 ((-241 |#1| |#2|) (-620 |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|)))) (-15 -2347 ((-620 (-473 |#1| |#2|)) (-839 |#1|) (-620 (-473 |#1| |#2|)) (-620 (-473 |#1| |#2|)))) (-15 -2348 ((-241 |#1| |#2|) (-241 |#1| |#2|) (-620 (-241 |#1| |#2|)))) (-15 -2349 ((-473 |#1| |#2|) (-241 |#1| |#2|)))) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL)) (-2300 (((-1235) $ (-1129) (-1129)) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-51) $ (-1129) (-51)) 16) (((-51) $ (-1147) (-51)) 17)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 (-51) #1="failed") (-1129) $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072))))) (-3759 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-3 (-51) #1#) (-1129) $) NIL)) (-3760 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (((-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-1632 (((-51) $ (-1129) (-51)) NIL (|has| $ (-6 -4349)))) (-3443 (((-51) $ (-1129)) NIL)) (-2063 (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-2350 (($ $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2506 (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2303 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4349))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2351 (($ (-381)) 9)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072))))) (-2739 (((-620 (-1129)) $) NIL)) (-2310 (((-112) (-1129) $) NIL)) (-1331 (((-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL)) (-3965 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL)) (-2305 (((-620 (-1129)) $) NIL)) (-2306 (((-112) (-1129) $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072))))) (-4155 (((-51) $) NIL (|has| (-1129) (-825)))) (-1399 (((-3 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) "failed") (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL)) (-2301 (($ $ (-51)) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (($ $ (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (($ $ (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-51)) (-620 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-620 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2307 (((-620 (-51)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (((-51) $ (-1129)) 14) (((-51) $ (-1129) (-51)) NIL) (((-51) $ (-1147)) 15)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072)))) (((-749) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072)))) (((-749) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-595 (-838))) (|has| (-51) (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 (-51))) (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-612) (-13 (-1160 (-1129) (-51)) (-10 -8 (-15 -2351 ($ (-381))) (-15 -2350 ($ $)) (-15 -4154 ((-51) $ (-1147))) (-15 -4142 ((-51) $ (-1147) (-51)))))) (T -612)) -((-2351 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-612)))) (-2350 (*1 *1 *1) (-5 *1 (-612))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-51)) (-5 *1 (-612)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1147)) (-5 *1 (-612))))) -(-13 (-1160 (-1129) (-51)) (-10 -8 (-15 -2351 ($ (-381))) (-15 -2350 ($ $)) (-15 -4154 ((-51) $ (-1147))) (-15 -4142 ((-51) $ (-1147) (-51))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3569 (((-1229 (-667 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-1229 (-667 |#1|)) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1840 (((-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-3891 (($) NIL T CONST)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1814 (((-3 $ #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1902 (((-667 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1838 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1900 (((-667 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2491 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2017 (((-1141 (-920 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2494 (($ $ (-893)) NIL)) (-1836 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1816 (((-1141 |#1|) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1904 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1834 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1906 (($ (-1229 |#1|)) NIL (|has| |#2| (-411 |#1|))) (($ (-1229 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-3816 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-3439 (((-893)) NIL (|has| |#2| (-360 |#1|)))) (-1825 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2519 (($ $ (-893)) NIL)) (-1821 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1819 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1823 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1815 (((-3 $ #1#)) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1903 (((-667 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1839 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1901 (((-667 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2492 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2021 (((-1141 (-920 |#1|))) NIL (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-356))))) (-2493 (($ $ (-893)) NIL)) (-1837 ((|#1| $) NIL (|has| |#2| (-360 |#1|)))) (-1817 (((-1141 |#1|) $) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-1905 ((|#1|) NIL (|has| |#2| (-411 |#1|))) ((|#1| (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-1835 (((-1141 |#1|) $) NIL (|has| |#2| (-360 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3588 (((-1129) $) NIL)) (-1820 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1822 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-3589 (((-1091) $) NIL)) (-1827 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4154 ((|#1| $ (-536)) NIL (|has| |#2| (-411 |#1|)))) (-3570 (((-667 |#1|) (-1229 $)) NIL (|has| |#2| (-411 |#1|))) (((-1229 |#1|) $) NIL (|has| |#2| (-411 |#1|))) (((-667 |#1|) (-1229 $) (-1229 $)) NIL (|has| |#2| (-360 |#1|))) (((-1229 |#1|) $ (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-4325 (($ (-1229 |#1|)) NIL (|has| |#2| (-411 |#1|))) (((-1229 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2009 (((-620 (-920 |#1|))) NIL (|has| |#2| (-411 |#1|))) (((-620 (-920 |#1|)) (-1229 $)) NIL (|has| |#2| (-360 |#1|)))) (-2681 (($ $ $) NIL)) (-1833 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-4312 (((-838) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2123 (((-1229 $)) NIL (|has| |#2| (-411 |#1|)))) (-1818 (((-620 (-1229 |#1|))) NIL (-3886 (-12 (|has| |#2| (-360 |#1|)) (|has| |#1| (-543))) (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-543)))))) (-2682 (($ $ $ $) NIL)) (-1831 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2875 (($ (-667 |#1|) $) NIL (|has| |#2| (-411 |#1|)))) (-2680 (($ $ $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-1826 (((-112)) NIL (|has| |#2| (-360 |#1|)))) (-2986 (($) 15 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) 17)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-613 |#1| |#2|) (-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -4312 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) (-170) (-723 |#1|)) (T -613)) -((-4312 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-613 *3 *2)) (-4 *2 (-723 *3))))) -(-13 (-723 |#1|) (-595 |#2|) (-10 -8 (-15 -4312 ($ |#2|)) (IF (|has| |#2| (-411 |#1|)) (-6 (-411 |#1|)) |%noBranch|) (IF (|has| |#2| (-360 |#1|)) (-6 (-360 |#1|)) |%noBranch|))) -((-4303 (($ $ |#2|) 10))) -(((-614 |#1| |#2|) (-10 -8 (-15 -4303 (|#1| |#1| |#2|))) (-615 |#2|) (-170)) (T -614)) -NIL -(-10 -8 (-15 -4303 (|#1| |#1| |#2|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3879 (($ $ $) 29)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 28 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-615 |#1|) (-138) (-170)) (T -615)) -((-3879 (*1 *1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-170)))) (-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) -(-13 (-696 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3879 ($ $ $)) (IF (|has| |t#1| (-356)) (-15 -4303 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-1029 |#1|) . T) ((-1072) . T)) -((-2353 (((-3 (-817 |#2|) #1="failed") |#2| (-286 |#2|) (-1129)) 82) (((-3 (-817 |#2|) (-2 (|:| |leftHandLimit| (-3 (-817 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-817 |#2|) #1#))) "failed") |#2| (-286 (-817 |#2|))) 104)) (-2352 (((-3 (-810 |#2|) "failed") |#2| (-286 (-810 |#2|))) 109))) -(((-616 |#1| |#2|) (-10 -7 (-15 -2353 ((-3 (-817 |#2|) (-2 (|:| |leftHandLimit| (-3 (-817 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-817 |#2|) #1#))) "failed") |#2| (-286 (-817 |#2|)))) (-15 -2352 ((-3 (-810 |#2|) "failed") |#2| (-286 (-810 |#2|)))) (-15 -2353 ((-3 (-817 |#2|) #1#) |#2| (-286 |#2|) (-1129)))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -616)) -((-2353 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1129)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-817 *3)) (-5 *1 (-616 *6 *3)))) (-2352 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-286 (-810 *3))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-810 *3)) (-5 *1 (-616 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-817 *3))) (-4 *3 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-3 (-817 *3) (-2 (|:| |leftHandLimit| (-3 (-817 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-817 *3) #1#))) "failed")) (-5 *1 (-616 *5 *3))))) -(-10 -7 (-15 -2353 ((-3 (-817 |#2|) (-2 (|:| |leftHandLimit| (-3 (-817 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-817 |#2|) #1#))) "failed") |#2| (-286 (-817 |#2|)))) (-15 -2352 ((-3 (-810 |#2|) "failed") |#2| (-286 (-810 |#2|)))) (-15 -2353 ((-3 (-817 |#2|) #1#) |#2| (-286 |#2|) (-1129)))) -((-2353 (((-3 (-817 (-400 (-920 |#1|))) #1="failed") (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))) (-1129)) 80) (((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2="failed") (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|)))) 20) (((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2#) (-400 (-920 |#1|)) (-286 (-817 (-920 |#1|)))) 35)) (-2352 (((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|)))) 23) (((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-810 (-920 |#1|)))) 43))) -(((-617 |#1|) (-10 -7 (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2="failed") (-400 (-920 |#1|)) (-286 (-817 (-920 |#1|))))) (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2#) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -2352 ((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-810 (-920 |#1|))))) (-15 -2352 ((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) #1#) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))) (-1129)))) (-444)) (T -617)) -((-2353 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-286 (-400 (-920 *6)))) (-5 *5 (-1129)) (-5 *3 (-400 (-920 *6))) (-4 *6 (-444)) (-5 *2 (-817 *3)) (-5 *1 (-617 *6)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-444)) (-5 *2 (-810 *3)) (-5 *1 (-617 *5)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-810 (-920 *5)))) (-4 *5 (-444)) (-5 *2 (-810 (-400 (-920 *5)))) (-5 *1 (-617 *5)) (-5 *3 (-400 (-920 *5))))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-444)) (-5 *2 (-3 (-817 *3) (-2 (|:| |leftHandLimit| (-3 (-817 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-817 *3) #1#))) #2="failed")) (-5 *1 (-617 *5)))) (-2353 (*1 *2 *3 *4) (-12 (-5 *4 (-286 (-817 (-920 *5)))) (-4 *5 (-444)) (-5 *2 (-3 (-817 (-400 (-920 *5))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 *5))) #1#)) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 *5))) #1#))) #2#)) (-5 *1 (-617 *5)) (-5 *3 (-400 (-920 *5)))))) -(-10 -7 (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2="failed") (-400 (-920 |#1|)) (-286 (-817 (-920 |#1|))))) (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-817 (-400 (-920 |#1|))) #1#))) #2#) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -2352 ((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-810 (-920 |#1|))))) (-15 -2352 ((-810 (-400 (-920 |#1|))) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -2353 ((-3 (-817 (-400 (-920 |#1|))) #1#) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))) (-1129)))) -((-2356 (((-3 (-1229 (-400 |#1|)) "failed") (-1229 |#2|) |#2|) 57 (-3671 (|has| |#1| (-356)))) (((-3 (-1229 |#1|) "failed") (-1229 |#2|) |#2|) 42 (|has| |#1| (-356)))) (-2354 (((-112) (-1229 |#2|)) 30)) (-2355 (((-3 (-1229 |#1|) "failed") (-1229 |#2|)) 33))) -(((-618 |#1| |#2|) (-10 -7 (-15 -2354 ((-112) (-1229 |#2|))) (-15 -2355 ((-3 (-1229 |#1|) "failed") (-1229 |#2|))) (IF (|has| |#1| (-356)) (-15 -2356 ((-3 (-1229 |#1|) "failed") (-1229 |#2|) |#2|)) (-15 -2356 ((-3 (-1229 (-400 |#1|)) "failed") (-1229 |#2|) |#2|)))) (-543) (-619 |#1|)) (T -618)) -((-2356 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 *5)) (-3671 (-4 *5 (-356))) (-4 *5 (-543)) (-5 *2 (-1229 (-400 *5))) (-5 *1 (-618 *5 *4)))) (-2356 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 *5)) (-4 *5 (-356)) (-4 *5 (-543)) (-5 *2 (-1229 *5)) (-5 *1 (-618 *5 *4)))) (-2355 (*1 *2 *3) (|partial| -12 (-5 *3 (-1229 *5)) (-4 *5 (-619 *4)) (-4 *4 (-543)) (-5 *2 (-1229 *4)) (-5 *1 (-618 *4 *5)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-1229 *5)) (-4 *5 (-619 *4)) (-4 *4 (-543)) (-5 *2 (-112)) (-5 *1 (-618 *4 *5))))) -(-10 -7 (-15 -2354 ((-112) (-1229 |#2|))) (-15 -2355 ((-3 (-1229 |#1|) "failed") (-1229 |#2|))) (IF (|has| |#1| (-356)) (-15 -2356 ((-3 (-1229 |#1|) "failed") (-1229 |#2|) |#2|)) (-15 -2356 ((-3 (-1229 (-400 |#1|)) "failed") (-1229 |#2|) |#2|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2357 (((-667 |#1|) (-667 $)) 34) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 33)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-619 |#1|) (-138) (-1023)) (T -619)) -((-2357 (*1 *2 *3) (-12 (-5 *3 (-667 *1)) (-4 *1 (-619 *4)) (-4 *4 (-1023)) (-5 *2 (-667 *4)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *1)) (-5 *4 (-1229 *1)) (-4 *1 (-619 *5)) (-4 *5 (-1023)) (-5 *2 (-2 (|:| -1695 (-667 *5)) (|:| |vec| (-1229 *5))))))) -(-13 (-1023) (-10 -8 (-15 -2357 ((-667 |t#1|) (-667 $))) (-15 -2357 ((-2 (|:| -1695 (-667 |t#1|)) (|:| |vec| (-1229 |t#1|))) (-667 $) (-1229 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) NIL)) (-4149 ((|#1| $) NIL)) (-4151 (($ $) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) $) NIL (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1841 (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-3237 (($ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4141 (($ $ $) NIL (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-2360 (($ $ $) 32 (|has| |#1| (-1072)))) (-2359 (($ $ $) 34 (|has| |#1| (-1072)))) (-2358 (($ $ $) 37 (|has| |#1| (-1072)))) (-1626 (($ (-1 (-112) |#1|) $) NIL)) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4150 ((|#1| $) NIL)) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-4153 (($ $) NIL) (($ $ (-749)) NIL)) (-2450 (($ $) NIL (|has| |#1| (-1072)))) (-1398 (($ $) 31 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) NIL (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) NIL)) (-3760 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3796 (((-112) $) NIL)) (-3773 (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072))) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) (-1 (-112) |#1|) $) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-2362 (((-112) $) 9)) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2363 (($) 7)) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3187 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3867 (($ $ $) NIL (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3892 (($ |#1|) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-4152 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-3965 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-3797 (((-112) $) NIL)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1196 (-536))) NIL) ((|#1| $ (-536)) 36) ((|#1| $ (-536) |#1|) NIL)) (-3357 (((-536) $ $) NIL)) (-1627 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-3991 (((-112) $) NIL)) (-4146 (($ $) NIL)) (-4144 (($ $) NIL (|has| $ (-6 -4349)))) (-4147 (((-749) $) NIL)) (-4148 (($ $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) 45 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-3810 (($ |#1| $) 10)) (-4145 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4156 (($ $ $) 30) (($ |#1| $) NIL) (($ (-620 $)) NIL) (($ $ |#1|) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2361 (($ $ $) 11)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2829 (((-1129) $) 26 (|has| |#1| (-799))) (((-1129) $ (-112)) 27 (|has| |#1| (-799))) (((-1235) (-801) $) 28 (|has| |#1| (-799))) (((-1235) (-801) $ (-112)) 29 (|has| |#1| (-799)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-620 |#1|) (-13 (-644 |#1|) (-10 -8 (-15 -2363 ($)) (-15 -2362 ((-112) $)) (-15 -3810 ($ |#1| $)) (-15 -2361 ($ $ $)) (IF (|has| |#1| (-1072)) (PROGN (-15 -2360 ($ $ $)) (-15 -2359 ($ $ $)) (-15 -2358 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|))) (-1183)) (T -620)) -((-2363 (*1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183)))) (-2362 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-620 *3)) (-4 *3 (-1183)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183)))) (-2361 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183)))) (-2360 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183)))) (-2359 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183)))) (-2358 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183))))) -(-13 (-644 |#1|) (-10 -8 (-15 -2363 ($)) (-15 -2362 ((-112) $)) (-15 -3810 ($ |#1| $)) (-15 -2361 ($ $ $)) (IF (|has| |#1| (-1072)) (PROGN (-15 -2360 ($ $ $)) (-15 -2359 ($ $ $)) (-15 -2358 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-799)) (-6 (-799)) |%noBranch|))) -((-4196 (((-620 |#2|) (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|) 16)) (-4197 ((|#2| (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|) 18)) (-4313 (((-620 |#2|) (-1 |#2| |#1|) (-620 |#1|)) 13))) -(((-621 |#1| |#2|) (-10 -7 (-15 -4196 ((-620 |#2|) (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|)) (-15 -4313 ((-620 |#2|) (-1 |#2| |#1|) (-620 |#1|)))) (-1183) (-1183)) (T -621)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-620 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-620 *6)) (-5 *1 (-621 *5 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-620 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-621 *5 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-620 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-5 *2 (-620 *5)) (-5 *1 (-621 *6 *5))))) -(-10 -7 (-15 -4196 ((-620 |#2|) (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-620 |#1|) |#2|)) (-15 -4313 ((-620 |#2|) (-1 |#2| |#1|) (-620 |#1|)))) -((-3776 ((|#2| (-620 |#1|) (-620 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-620 |#1|) (-620 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) |#2|) 17) ((|#2| (-620 |#1|) (-620 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|)) 12))) -(((-622 |#1| |#2|) (-10 -7 (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|))) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1|)) (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) |#2|)) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1| |#2|)) (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) (-1 |#2| |#1|))) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1| (-1 |#2| |#1|)))) (-1072) (-1183)) (T -622)) -((-3776 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1072)) (-4 *2 (-1183)) (-5 *1 (-622 *5 *2)))) (-3776 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-620 *5)) (-5 *4 (-620 *6)) (-4 *5 (-1072)) (-4 *6 (-1183)) (-5 *1 (-622 *5 *6)))) (-3776 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-4 *5 (-1072)) (-4 *2 (-1183)) (-5 *1 (-622 *5 *2)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 *5)) (-4 *6 (-1072)) (-4 *5 (-1183)) (-5 *2 (-1 *5 *6)) (-5 *1 (-622 *6 *5)))) (-3776 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-4 *5 (-1072)) (-4 *2 (-1183)) (-5 *1 (-622 *5 *2)))) (-3776 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *6)) (-4 *5 (-1072)) (-4 *6 (-1183)) (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *6))))) -(-10 -7 (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|))) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1|)) (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) |#2|)) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1| |#2|)) (-15 -3776 ((-1 |#2| |#1|) (-620 |#1|) (-620 |#2|) (-1 |#2| |#1|))) (-15 -3776 (|#2| (-620 |#1|) (-620 |#2|) |#1| (-1 |#2| |#1|)))) -((-4313 (((-620 |#3|) (-1 |#3| |#1| |#2|) (-620 |#1|) (-620 |#2|)) 13))) -(((-623 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-620 |#3|) (-1 |#3| |#1| |#2|) (-620 |#1|) (-620 |#2|)))) (-1183) (-1183) (-1183)) (T -623)) -((-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-620 *6)) (-5 *5 (-620 *7)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-620 *8)) (-5 *1 (-623 *6 *7 *8))))) -(-10 -7 (-15 -4313 ((-620 |#3|) (-1 |#3| |#1| |#2|) (-620 |#1|) (-620 |#2|)))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 11) (((-1152) $) NIL) (($ (-1152)) NIL) ((|#1| $) 8)) (-3382 (((-112) $ $) NIL))) -(((-624 |#1|) (-13 (-1054) (-595 |#1|)) (-1072)) (T -624)) -NIL -(-13 (-1054) (-595 |#1|)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2364 (($ |#1| |#1| $) 43)) (-1269 (((-112) $ (-749)) NIL)) (-1626 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2450 (($ $) 45)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) 52 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 9 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 37)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) 46)) (-3965 (($ |#1| $) 26) (($ |#1| $ (-749)) 42)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1332 ((|#1| $) 48)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 21)) (-3923 (($) 25)) (-2365 (((-112) $) 50)) (-2449 (((-620 (-2 (|:| -2186 |#1|) (|:| -2064 (-749)))) $) 59)) (-1518 (($) 23) (($ (-620 |#1|)) 18)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) 56 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 19)) (-4325 (((-525) $) 34 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4312 (((-838) $) 14 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 22)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 61 (|has| |#1| (-1072)))) (-4311 (((-749) $) 16 (|has| $ (-6 -4348))))) -(((-625 |#1|) (-13 (-673 |#1|) (-10 -8 (-6 -4348) (-15 -2365 ((-112) $)) (-15 -2364 ($ |#1| |#1| $)))) (-1072)) (T -625)) -((-2365 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1072)))) (-2364 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1072))))) -(-13 (-673 |#1|) (-10 -8 (-6 -4348) (-15 -2365 ((-112) $)) (-15 -2364 ($ |#1| |#1| $)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23))) -(((-626 |#1|) (-138) (-1030)) (T -626)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1030))))) +((-2121 (((-1143 |#1|) (-751)) 76)) (-3689 (((-1231 |#1|) (-1231 |#1|) (-895)) 69)) (-2119 (((-1237) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) |#1|) 84)) (-2123 (((-1231 |#1|) (-1231 |#1|) (-751)) 36)) (-3327 (((-1231 |#1|) (-895)) 71)) (-2125 (((-1231 |#1|) (-1231 |#1|) (-538)) 24)) (-2120 (((-1143 |#1|) (-1231 |#1|)) 77)) (-2129 (((-1231 |#1|) (-895)) 95)) (-2127 (((-112) (-1231 |#1|)) 80)) (-3467 (((-1231 |#1|) (-1231 |#1|) (-895)) 62)) (-2130 (((-1143 |#1|) (-1231 |#1|)) 89)) (-2126 (((-895) (-1231 |#1|)) 59)) (-2734 (((-1231 |#1|) (-1231 |#1|)) 30)) (-2492 (((-1231 |#1|) (-895) (-895)) 97)) (-2124 (((-1231 |#1|) (-1231 |#1|) (-1093) (-1093)) 23)) (-2122 (((-1231 |#1|) (-1231 |#1|) (-751) (-1093)) 37)) (-2128 (((-1231 (-1231 |#1|)) (-895)) 94)) (-4308 (((-1231 |#1|) (-1231 |#1|) (-1231 |#1|)) 81)) (** (((-1231 |#1|) (-1231 |#1|) (-538)) 45)) (* (((-1231 |#1|) (-1231 |#1|) (-1231 |#1|)) 25))) +(((-521 |#1|) (-10 -7 (-15 -2119 ((-1237) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) |#1|)) (-15 -3327 ((-1231 |#1|) (-895))) (-15 -2492 ((-1231 |#1|) (-895) (-895))) (-15 -2120 ((-1143 |#1|) (-1231 |#1|))) (-15 -2121 ((-1143 |#1|) (-751))) (-15 -2122 ((-1231 |#1|) (-1231 |#1|) (-751) (-1093))) (-15 -2123 ((-1231 |#1|) (-1231 |#1|) (-751))) (-15 -2124 ((-1231 |#1|) (-1231 |#1|) (-1093) (-1093))) (-15 -2125 ((-1231 |#1|) (-1231 |#1|) (-538))) (-15 ** ((-1231 |#1|) (-1231 |#1|) (-538))) (-15 * ((-1231 |#1|) (-1231 |#1|) (-1231 |#1|))) (-15 -4308 ((-1231 |#1|) (-1231 |#1|) (-1231 |#1|))) (-15 -3467 ((-1231 |#1|) (-1231 |#1|) (-895))) (-15 -3689 ((-1231 |#1|) (-1231 |#1|) (-895))) (-15 -2734 ((-1231 |#1|) (-1231 |#1|))) (-15 -2126 ((-895) (-1231 |#1|))) (-15 -2127 ((-112) (-1231 |#1|))) (-15 -2128 ((-1231 (-1231 |#1|)) (-895))) (-15 -2129 ((-1231 |#1|) (-895))) (-15 -2130 ((-1143 |#1|) (-1231 |#1|)))) (-345)) (T -521)) +((-2130 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1231 (-1231 *4))) (-5 *1 (-521 *4)) (-4 *4 (-345)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-521 *4)))) (-2126 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-895)) (-5 *1 (-521 *4)))) (-2734 (*1 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3)))) (-3689 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-895)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-895)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-4308 (*1 *2 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-538)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-2125 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-538)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-2124 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1093)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-2123 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) (-2122 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1231 *5)) (-5 *3 (-751)) (-5 *4 (-1093)) (-4 *5 (-345)) (-5 *1 (-521 *5)))) (-2121 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4)))) (-2492 (*1 *2 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) (-4 *4 (-345)) (-5 *2 (-1237)) (-5 *1 (-521 *4))))) +(-10 -7 (-15 -2119 ((-1237) (-1231 (-622 (-2 (|:| -3761 |#1|) (|:| -2492 (-1093))))) |#1|)) (-15 -3327 ((-1231 |#1|) (-895))) (-15 -2492 ((-1231 |#1|) (-895) (-895))) (-15 -2120 ((-1143 |#1|) (-1231 |#1|))) (-15 -2121 ((-1143 |#1|) (-751))) (-15 -2122 ((-1231 |#1|) (-1231 |#1|) (-751) (-1093))) (-15 -2123 ((-1231 |#1|) (-1231 |#1|) (-751))) (-15 -2124 ((-1231 |#1|) (-1231 |#1|) (-1093) (-1093))) (-15 -2125 ((-1231 |#1|) (-1231 |#1|) (-538))) (-15 ** ((-1231 |#1|) (-1231 |#1|) (-538))) (-15 * ((-1231 |#1|) (-1231 |#1|) (-1231 |#1|))) (-15 -4308 ((-1231 |#1|) (-1231 |#1|) (-1231 |#1|))) (-15 -3467 ((-1231 |#1|) (-1231 |#1|) (-895))) (-15 -3689 ((-1231 |#1|) (-1231 |#1|) (-895))) (-15 -2734 ((-1231 |#1|) (-1231 |#1|))) (-15 -2126 ((-895) (-1231 |#1|))) (-15 -2127 ((-112) (-1231 |#1|))) (-15 -2128 ((-1231 (-1231 |#1|)) (-895))) (-15 -2129 ((-1231 |#1|) (-895))) (-15 -2130 ((-1143 |#1|) (-1231 |#1|)))) +((-2117 (((-1093) $ (-129)) NIL)) (-2118 (((-1093) $) 21)) (-2891 (((-112) $) 19)) (-2132 (($ (-383)) 12) (($ (-1131)) 14)) (-2131 (((-112) $) 22)) (-4317 (((-840) $) 26)) (-1816 (($ $) 23))) +(((-522) (-13 (-520) (-597 (-840)) (-10 -8 (-15 -2132 ($ (-383))) (-15 -2132 ($ (-1131))) (-15 -2131 ((-112) $)) (-15 -2891 ((-112) $))))) (T -522)) +((-2132 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-522)))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-522)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522))))) +(-13 (-520) (-597 (-840)) (-10 -8 (-15 -2132 ($ (-383))) (-15 -2132 ($ (-1131))) (-15 -2131 ((-112) $)) (-15 -2891 ((-112) $)))) +((-2134 (((-1 |#1| |#1|) |#1|) 11)) (-2133 (((-1 |#1| |#1|)) 10))) +(((-523 |#1|) (-10 -7 (-15 -2133 ((-1 |#1| |#1|))) (-15 -2134 ((-1 |#1| |#1|) |#1|))) (-13 (-707) (-25))) (T -523)) +((-2134 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25))))) (-2133 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25)))))) +(-10 -7 (-15 -2133 ((-1 |#1| |#1|))) (-15 -2134 ((-1 |#1| |#1|) |#1|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2733 (($ $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3226 (($ (-751) |#1|) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 (-751) (-751)) $) NIL)) (-2106 ((|#1| $) NIL)) (-3525 (((-751) $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20)) (-2991 (($) NIL T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL))) +(((-524 |#1|) (-13 (-773) (-502 (-751) |#1|)) (-827)) (T -524)) +NIL +(-13 (-773) (-502 (-751) |#1|)) +((-2136 (((-622 |#2|) (-1143 |#1|) |#3|) 83)) (-2137 (((-622 (-2 (|:| |outval| |#2|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-400 (-1143 |#1|)) (-1143 |#1|))) 100)) (-2135 (((-1143 |#1|) (-669 |#1|)) 95))) +(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -2135 ((-1143 |#1|) (-669 |#1|))) (-15 -2136 ((-622 |#2|) (-1143 |#1|) |#3|)) (-15 -2137 ((-622 (-2 (|:| |outval| |#2|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-400 (-1143 |#1|)) (-1143 |#1|))))) (-358) (-358) (-13 (-358) (-825))) (T -525)) +((-2137 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *6)) (-5 *5 (-1 (-400 (-1143 *6)) (-1143 *6))) (-4 *6 (-358)) (-5 *2 (-622 (-2 (|:| |outval| *7) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 *7)))))) (-5 *1 (-525 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-825))))) (-2136 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *5)) (-4 *5 (-358)) (-5 *2 (-622 *6)) (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *2 (-1143 *4)) (-5 *1 (-525 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-825)))))) +(-10 -7 (-15 -2135 ((-1143 |#1|) (-669 |#1|))) (-15 -2136 ((-622 |#2|) (-1143 |#1|) |#3|)) (-15 -2137 ((-622 (-2 (|:| |outval| |#2|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#2|))))) (-669 |#1|) |#3| (-1 (-400 (-1143 |#1|)) (-1143 |#1|))))) +((-2863 (((-819 (-538))) 12)) (-2862 (((-819 (-538))) 14)) (-2848 (((-812 (-538))) 9))) +(((-526) (-10 -7 (-15 -2848 ((-812 (-538)))) (-15 -2863 ((-819 (-538)))) (-15 -2862 ((-819 (-538)))))) (T -526)) +((-2862 (*1 *2) (-12 (-5 *2 (-819 (-538))) (-5 *1 (-526)))) (-2863 (*1 *2) (-12 (-5 *2 (-819 (-538))) (-5 *1 (-526)))) (-2848 (*1 *2) (-12 (-5 *2 (-812 (-538))) (-5 *1 (-526))))) +(-10 -7 (-15 -2848 ((-812 (-538)))) (-15 -2863 ((-819 (-538)))) (-15 -2862 ((-819 (-538))))) +((-2898 (((-112) $ $) NIL)) (-2141 (((-1131) $) 48)) (-3611 (((-112) $) 43)) (-3607 (((-1149) $) 44)) (-3612 (((-112) $) 41)) (-3898 (((-1131) $) 42)) (-2140 (($ (-1131)) 49)) (-3614 (((-112) $) NIL)) (-3616 (((-112) $) NIL)) (-3613 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-2143 (($ $ (-622 (-1149))) 20)) (-2146 (((-51) $) 22)) (-3610 (((-112) $) NIL)) (-3606 (((-538) $) NIL)) (-3594 (((-1093) $) NIL)) (-2475 (($ $ (-622 (-1149)) (-1149)) 61)) (-3609 (((-112) $) NIL)) (-3605 (((-221) $) NIL)) (-2142 (($ $) 38)) (-3604 (((-840) $) NIL)) (-3617 (((-112) $ $) NIL)) (-4159 (($ $ (-538)) NIL) (($ $ (-622 (-538))) NIL)) (-3608 (((-622 $) $) 28)) (-2139 (((-1149) (-622 $)) 50)) (-4330 (($ (-622 $)) 57) (($ (-1131)) NIL) (($ (-1149)) 18) (($ (-538)) 8) (($ (-221)) 25) (($ (-840)) NIL) (((-1076) $) 11) (($ (-1076)) 12)) (-2138 (((-1149) (-1149) (-622 $)) 53)) (-4317 (((-840) $) 46)) (-3602 (($ $) 52)) (-3603 (($ $) 51)) (-2144 (($ $ (-622 $)) 58)) (-3615 (((-112) $) 27)) (-2991 (($) 9 T CONST)) (-2997 (($) 10 T CONST)) (-3387 (((-112) $ $) 62)) (-4308 (($ $ $) 67)) (-4199 (($ $ $) 63)) (** (($ $ (-751)) 66) (($ $ (-538)) 65)) (* (($ $ $) 64)) (-4316 (((-538) $) NIL))) +(((-527) (-13 (-1077 (-1131) (-1149) (-538) (-221) (-840)) (-598 (-1076)) (-10 -8 (-15 -2146 ((-51) $)) (-15 -4330 ($ (-1076))) (-15 -2144 ($ $ (-622 $))) (-15 -2475 ($ $ (-622 (-1149)) (-1149))) (-15 -2143 ($ $ (-622 (-1149)))) (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 -4308 ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ (-538))) (-15 0 ($) -4311) (-15 1 ($) -4311) (-15 -2142 ($ $)) (-15 -2141 ((-1131) $)) (-15 -2140 ($ (-1131))) (-15 -2139 ((-1149) (-622 $))) (-15 -2138 ((-1149) (-1149) (-622 $)))))) (T -527)) +((-2146 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-527)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-527)))) (-2144 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-527))) (-5 *1 (-527)))) (-2475 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-1149)) (-5 *1 (-527)))) (-2143 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-527)))) (-4199 (*1 *1 *1 *1) (-5 *1 (-527))) (* (*1 *1 *1 *1) (-5 *1 (-527))) (-4308 (*1 *1 *1 *1) (-5 *1 (-527))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-527)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-527)))) (-2991 (*1 *1) (-5 *1 (-527))) (-2997 (*1 *1) (-5 *1 (-527))) (-2142 (*1 *1 *1) (-5 *1 (-527))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-527)))) (-2140 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-527)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-622 (-527))) (-5 *2 (-1149)) (-5 *1 (-527)))) (-2138 (*1 *2 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-527))) (-5 *1 (-527))))) +(-13 (-1077 (-1131) (-1149) (-538) (-221) (-840)) (-598 (-1076)) (-10 -8 (-15 -2146 ((-51) $)) (-15 -4330 ($ (-1076))) (-15 -2144 ($ $ (-622 $))) (-15 -2475 ($ $ (-622 (-1149)) (-1149))) (-15 -2143 ($ $ (-622 (-1149)))) (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 -4308 ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ (-538))) (-15 (-2991) ($) -4311) (-15 (-2997) ($) -4311) (-15 -2142 ($ $)) (-15 -2141 ((-1131) $)) (-15 -2140 ($ (-1131))) (-15 -2139 ((-1149) (-622 $))) (-15 -2138 ((-1149) (-1149) (-622 $))))) +((-2145 (((-527) (-1149)) 15)) (-2146 ((|#1| (-527)) 20))) +(((-528 |#1|) (-10 -7 (-15 -2145 ((-527) (-1149))) (-15 -2146 (|#1| (-527)))) (-1185)) (T -528)) +((-2146 (*1 *2 *3) (-12 (-5 *3 (-527)) (-5 *1 (-528 *2)) (-4 *2 (-1185)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-527)) (-5 *1 (-528 *4)) (-4 *4 (-1185))))) +(-10 -7 (-15 -2145 ((-527) (-1149))) (-15 -2146 (|#1| (-527)))) +((-3807 ((|#2| |#2|) 17)) (-3805 ((|#2| |#2|) 13)) (-3808 ((|#2| |#2| (-538) (-538)) 20)) (-3806 ((|#2| |#2|) 15))) +(((-529 |#1| |#2|) (-10 -7 (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2| (-538) (-538)))) (-13 (-545) (-145)) (-1224 |#1|)) (T -529)) +((-3808 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-538)) (-4 *4 (-13 (-545) (-145))) (-5 *1 (-529 *4 *2)) (-4 *2 (-1224 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3))))) +(-10 -7 (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2| (-538) (-538)))) +((-2149 (((-622 (-288 (-922 |#2|))) (-622 |#2|) (-622 (-1149))) 32)) (-2147 (((-622 |#2|) (-922 |#1|) |#3|) 53) (((-622 |#2|) (-1143 |#1|) |#3|) 52)) (-2148 (((-622 (-622 |#2|)) (-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)) |#3|) 91))) +(((-530 |#1| |#2| |#3|) (-10 -7 (-15 -2147 ((-622 |#2|) (-1143 |#1|) |#3|)) (-15 -2147 ((-622 |#2|) (-922 |#1|) |#3|)) (-15 -2148 ((-622 (-622 |#2|)) (-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)) |#3|)) (-15 -2149 ((-622 (-288 (-922 |#2|))) (-622 |#2|) (-622 (-1149))))) (-446) (-358) (-13 (-358) (-825))) (T -530)) +((-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-1149))) (-4 *6 (-358)) (-5 *2 (-622 (-288 (-922 *6)))) (-5 *1 (-530 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-13 (-358) (-825))))) (-2148 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) (-4 *6 (-446)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-358)) (-4 *5 (-13 (-358) (-825))))) (-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-922 *5)) (-4 *5 (-446)) (-5 *2 (-622 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))) (-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *5)) (-4 *5 (-446)) (-5 *2 (-622 *6)) (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825)))))) +(-10 -7 (-15 -2147 ((-622 |#2|) (-1143 |#1|) |#3|)) (-15 -2147 ((-622 |#2|) (-922 |#1|) |#3|)) (-15 -2148 ((-622 (-622 |#2|)) (-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)) |#3|)) (-15 -2149 ((-622 (-288 (-922 |#2|))) (-622 |#2|) (-622 (-1149))))) +((-2152 ((|#2| |#2| |#1|) 17)) (-2150 ((|#2| (-622 |#2|)) 27)) (-2151 ((|#2| (-622 |#2|)) 46))) +(((-531 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2150 (|#2| (-622 |#2|))) (-15 -2151 (|#2| (-622 |#2|))) (-15 -2152 (|#2| |#2| |#1|))) (-302) (-1207 |#1|) |#1| (-1 |#1| |#1| (-751))) (T -531)) +((-2152 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-751))) (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1207 *3)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751))))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-531 *4 *2 *5 *6)) (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751)))))) +(-10 -7 (-15 -2150 (|#2| (-622 |#2|))) (-15 -2151 (|#2| (-622 |#2|))) (-15 -2152 (|#2| |#2| |#1|))) +((-4092 (((-400 (-1143 |#4|)) (-1143 |#4|) (-1 (-400 (-1143 |#3|)) (-1143 |#3|))) 80) (((-400 |#4|) |#4| (-1 (-400 (-1143 |#3|)) (-1143 |#3|))) 169))) +(((-532 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4| (-1 (-400 (-1143 |#3|)) (-1143 |#3|)))) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|) (-1 (-400 (-1143 |#3|)) (-1143 |#3|))))) (-827) (-773) (-13 (-302) (-145)) (-926 |#3| |#2| |#1|)) (T -532)) +((-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-400 (-1143 *7)) (-1143 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *8 (-926 *7 *6 *5)) (-5 *2 (-400 (-1143 *8))) (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1143 *8)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-400 (-1143 *7)) (-1143 *7))) (-4 *7 (-13 (-302) (-145))) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-400 *3)) (-5 *1 (-532 *5 *6 *7 *3)) (-4 *3 (-926 *7 *6 *5))))) +(-10 -7 (-15 -4092 ((-400 |#4|) |#4| (-1 (-400 (-1143 |#3|)) (-1143 |#3|)))) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|) (-1 (-400 (-1143 |#3|)) (-1143 |#3|))))) +((-3807 ((|#4| |#4|) 74)) (-3805 ((|#4| |#4|) 70)) (-3808 ((|#4| |#4| (-538) (-538)) 76)) (-3806 ((|#4| |#4|) 72))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3805 (|#4| |#4|)) (-15 -3806 (|#4| |#4|)) (-15 -3807 (|#4| |#4|)) (-15 -3808 (|#4| |#4| (-538) (-538)))) (-13 (-358) (-363) (-598 (-538))) (-1207 |#1|) (-705 |#1| |#2|) (-1224 |#3|)) (T -533)) +((-3808 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-538)) (-4 *4 (-13 (-358) (-363) (-598 *3))) (-4 *5 (-1207 *4)) (-4 *6 (-705 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) (-4 *2 (-1224 *6)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3)) (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5))))) +(-10 -7 (-15 -3805 (|#4| |#4|)) (-15 -3806 (|#4| |#4|)) (-15 -3807 (|#4| |#4|)) (-15 -3808 (|#4| |#4| (-538) (-538)))) +((-3807 ((|#2| |#2|) 27)) (-3805 ((|#2| |#2|) 23)) (-3808 ((|#2| |#2| (-538) (-538)) 29)) (-3806 ((|#2| |#2|) 25))) +(((-534 |#1| |#2|) (-10 -7 (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2| (-538) (-538)))) (-13 (-358) (-363) (-598 (-538))) (-1224 |#1|)) (T -534)) +((-3808 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-538)) (-4 *4 (-13 (-358) (-363) (-598 *3))) (-5 *1 (-534 *4 *2)) (-4 *2 (-1224 *4)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1224 *3)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1224 *3)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2)) (-4 *2 (-1224 *3))))) +(-10 -7 (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3808 (|#2| |#2| (-538) (-538)))) +((-2153 (((-3 (-538) #1="failed") |#2| |#1| (-1 (-3 (-538) #1#) |#1|)) 14) (((-3 (-538) #1#) |#2| |#1| (-538) (-1 (-3 (-538) #1#) |#1|)) 13) (((-3 (-538) #1#) |#2| (-538) (-1 (-3 (-538) #1#) |#1|)) 26))) +(((-535 |#1| |#2|) (-10 -7 (-15 -2153 ((-3 (-538) #1="failed") |#2| (-538) (-1 (-3 (-538) #1#) |#1|))) (-15 -2153 ((-3 (-538) #1#) |#2| |#1| (-538) (-1 (-3 (-538) #1#) |#1|))) (-15 -2153 ((-3 (-538) #1#) |#2| |#1| (-1 (-3 (-538) #1#) |#1|)))) (-1025) (-1207 |#1|)) (T -535)) +((-2153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-538) #1="failed") *4)) (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1207 *4)))) (-2153 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-538) #1#) *4)) (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-535 *4 *3)) (-4 *3 (-1207 *4)))) (-2153 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-538) #1#) *5)) (-4 *5 (-1025)) (-5 *2 (-538)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1207 *5))))) +(-10 -7 (-15 -2153 ((-3 (-538) #1="failed") |#2| (-538) (-1 (-3 (-538) #1#) |#1|))) (-15 -2153 ((-3 (-538) #1#) |#2| |#1| (-538) (-1 (-3 (-538) #1#) |#1|))) (-15 -2153 ((-3 (-538) #1#) |#2| |#1| (-1 (-3 (-538) #1#) |#1|)))) +((-2162 (($ $ $) 79)) (-4329 (((-400 $) $) 47)) (-3508 (((-3 (-538) "failed") $) 59)) (-3507 (((-538) $) 37)) (-3357 (((-3 (-402 (-538)) "failed") $) 74)) (-3356 (((-112) $) 24)) (-3355 (((-402 (-538)) $) 72)) (-4086 (((-112) $) 50)) (-2155 (($ $ $ $) 86)) (-3537 (((-112) $) 16)) (-1414 (($ $ $) 57)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 69)) (-3803 (((-3 $ "failed") $) 64)) (-2159 (($ $) 23)) (-2154 (($ $ $) 84)) (-3804 (($) 60)) (-1412 (($ $) 53)) (-4092 (((-400 $) $) 45)) (-3007 (((-112) $) 14)) (-1704 (((-751) $) 28)) (-4170 (($ $ (-751)) NIL) (($ $) 10)) (-3759 (($ $) 17)) (-4330 (((-538) $) NIL) (((-527) $) 36) (((-866 (-538)) $) 40) (((-373) $) 31) (((-221) $) 33)) (-3461 (((-751)) 8)) (-2164 (((-112) $ $) 20)) (-3437 (($ $ $) 55))) +(((-536 |#1|) (-10 -8 (-15 -2154 (|#1| |#1| |#1|)) (-15 -2155 (|#1| |#1| |#1| |#1|)) (-15 -2159 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -2162 (|#1| |#1| |#1|)) (-15 -2164 ((-112) |#1| |#1|)) (-15 -3007 ((-112) |#1|)) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -3437 (|#1| |#1| |#1|)) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) "failed") |#1|)) (-15 -4330 ((-538) |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3537 ((-112) |#1|)) (-15 -1704 ((-751) |#1|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -3461 ((-751)))) (-537)) (T -536)) +((-3461 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-536 *3)) (-4 *3 (-537))))) +(-10 -8 (-15 -2154 (|#1| |#1| |#1|)) (-15 -2155 (|#1| |#1| |#1| |#1|)) (-15 -2159 (|#1| |#1|)) (-15 -3759 (|#1| |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -2162 (|#1| |#1| |#1|)) (-15 -2164 ((-112) |#1| |#1|)) (-15 -3007 ((-112) |#1|)) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -1412 (|#1| |#1|)) (-15 -3437 (|#1| |#1| |#1|)) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) "failed") |#1|)) (-15 -4330 ((-538) |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -3537 ((-112) |#1|)) (-15 -1704 ((-751) |#1|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4086 ((-112) |#1|)) (-15 -3461 ((-751)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-2162 (($ $ $) 82)) (-1368 (((-3 $ "failed") $ $) 19)) (-2157 (($ $ $ $) 71)) (-4134 (($ $) 49)) (-4329 (((-400 $) $) 50)) (-1705 (((-112) $ $) 122)) (-3986 (((-538) $) 111)) (-2690 (($ $ $) 85)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) "failed") $) 103)) (-3507 (((-538) $) 102)) (-2894 (($ $ $) 126)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 101) (((-669 (-538)) (-669 $)) 100)) (-3821 (((-3 $ "failed") $) 32)) (-3357 (((-3 (-402 (-538)) "failed") $) 79)) (-3356 (((-112) $) 81)) (-3355 (((-402 (-538)) $) 80)) (-3327 (($) 78) (($ $) 77)) (-2893 (($ $ $) 125)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 120)) (-4086 (((-112) $) 51)) (-2155 (($ $ $ $) 69)) (-2163 (($ $ $) 83)) (-3537 (((-112) $) 113)) (-1414 (($ $ $) 94)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 97)) (-2502 (((-112) $) 30)) (-3006 (((-112) $) 89)) (-3803 (((-3 $ "failed") $) 91)) (-3538 (((-112) $) 112)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 129)) (-2156 (($ $ $ $) 70)) (-3677 (($ $ $) 114)) (-3678 (($ $ $) 115)) (-2159 (($ $) 73)) (-4193 (($ $) 86)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2154 (($ $ $) 68)) (-3804 (($) 90 T CONST)) (-2161 (($ $) 75)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1412 (($ $) 95)) (-4092 (((-400 $) $) 48)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 128) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 127)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 121)) (-3007 (((-112) $) 88)) (-1704 (((-751) $) 123)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 124)) (-4170 (($ $ (-751)) 108) (($ $) 106)) (-2160 (($ $) 74)) (-3759 (($ $) 76)) (-4330 (((-538) $) 105) (((-527) $) 99) (((-866 (-538)) $) 98) (((-373) $) 93) (((-221) $) 92)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-538)) 104)) (-3461 (((-751)) 28)) (-2164 (((-112) $ $) 84)) (-3437 (($ $ $) 96)) (-3027 (($) 87)) (-2177 (((-112) $ $) 37)) (-2158 (($ $ $ $) 72)) (-3742 (($ $) 110)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-751)) 109) (($ $) 107)) (-2896 (((-112) $ $) 117)) (-2897 (((-112) $ $) 118)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 116)) (-3018 (((-112) $ $) 119)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-537) (-138)) (T -537)) +((-3006 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3027 (*1 *1) (-4 *1 (-537))) (-4193 (*1 *1 *1) (-4 *1 (-537))) (-2690 (*1 *1 *1 *1) (-4 *1 (-537))) (-2164 (*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-2163 (*1 *1 *1 *1) (-4 *1 (-537))) (-2162 (*1 *1 *1 *1) (-4 *1 (-537))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-402 (-538))))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-402 (-538))))) (-3327 (*1 *1) (-4 *1 (-537))) (-3327 (*1 *1 *1) (-4 *1 (-537))) (-3759 (*1 *1 *1) (-4 *1 (-537))) (-2161 (*1 *1 *1) (-4 *1 (-537))) (-2160 (*1 *1 *1) (-4 *1 (-537))) (-2159 (*1 *1 *1) (-4 *1 (-537))) (-2158 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-2157 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-2156 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-2155 (*1 *1 *1 *1 *1) (-4 *1 (-537))) (-2154 (*1 *1 *1 *1) (-4 *1 (-537)))) +(-13 (-1190) (-302) (-800) (-229) (-598 (-538)) (-1014 (-538)) (-621 (-538)) (-598 (-527)) (-598 (-866 (-538))) (-862 (-538)) (-141) (-996) (-145) (-1124) (-10 -8 (-15 -3006 ((-112) $)) (-15 -3007 ((-112) $)) (-6 -4352) (-15 -3027 ($)) (-15 -4193 ($ $)) (-15 -2690 ($ $ $)) (-15 -2164 ((-112) $ $)) (-15 -2163 ($ $ $)) (-15 -2162 ($ $ $)) (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $)) (-15 -3327 ($)) (-15 -3327 ($ $)) (-15 -3759 ($ $)) (-15 -2161 ($ $)) (-15 -2160 ($ $)) (-15 -2159 ($ $)) (-15 -2158 ($ $ $ $)) (-15 -2157 ($ $ $ $)) (-15 -2156 ($ $ $ $)) (-15 -2155 ($ $ $ $)) (-15 -2154 ($ $ $)) (-6 -4351))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-840)) . T) ((-141) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-373)) . T) ((-598 (-527)) . T) ((-598 (-538)) . T) ((-598 (-866 (-538))) . T) ((-229) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-621 (-538)) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-800) . T) ((-825) . T) ((-827) . T) ((-862 (-538)) . T) ((-897) . T) ((-996) . T) ((-1014 (-538)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) . T) ((-1190) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 25)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 88)) (-2178 (($ $) 89)) (-2176 (((-112) $) NIL)) (-2162 (($ $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2157 (($ $ $ $) 43)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL)) (-2690 (($ $ $) 82)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) "failed") $) NIL)) (-3507 (((-538) $) NIL)) (-2894 (($ $ $) 81)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 62) (((-669 (-538)) (-669 $)) 58)) (-3821 (((-3 $ "failed") $) 85)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL)) (-3356 (((-112) $) NIL)) (-3355 (((-402 (-538)) $) NIL)) (-3327 (($) 64) (($ $) 65)) (-2893 (($ $ $) 80)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2155 (($ $ $ $) NIL)) (-2163 (($ $ $) 55)) (-3537 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL)) (-2502 (((-112) $) 26)) (-3006 (((-112) $) 75)) (-3803 (((-3 $ "failed") $) NIL)) (-3538 (((-112) $) 35)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2156 (($ $ $ $) 44)) (-3677 (($ $ $) 77)) (-3678 (($ $ $) 76)) (-2159 (($ $) NIL)) (-4193 (($ $) 41)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) 54)) (-2154 (($ $ $) NIL)) (-3804 (($) NIL T CONST)) (-2161 (($ $) 31)) (-3594 (((-1093) $) 34)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 119)) (-3495 (($ $ $) 86) (($ (-622 $)) NIL)) (-1412 (($ $) NIL)) (-4092 (((-400 $) $) 105)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) 84)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 79)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-2160 (($ $) 32)) (-3759 (($ $) 30)) (-4330 (((-538) $) 40) (((-527) $) 52) (((-866 (-538)) $) NIL) (((-373) $) 47) (((-221) $) 49) (((-1131) $) 53)) (-4317 (((-840) $) 38) (($ (-538)) 39) (($ $) NIL) (($ (-538)) 39)) (-3461 (((-751)) NIL)) (-2164 (((-112) $ $) NIL)) (-3437 (($ $ $) NIL)) (-3027 (($) 29)) (-2177 (((-112) $ $) NIL)) (-2158 (($ $ $ $) 42)) (-3742 (($ $) 63)) (-2991 (($) 27 T CONST)) (-2997 (($) 28 T CONST)) (-2834 (((-1131) $) 20) (((-1131) $ (-112)) 22) (((-1237) (-803) $) 23) (((-1237) (-803) $ (-112)) 24)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 66)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 67)) (-4197 (($ $) 68) (($ $ $) 70)) (-4199 (($ $ $) 69)) (** (($ $ (-895)) NIL) (($ $ (-751)) 74)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 72) (($ $ $) 71))) +(((-538) (-13 (-537) (-598 (-1131)) (-801) (-10 -8 (-15 -3327 ($ $)) (-6 -4340) (-6 -4345) (-6 -4341) (-6 -4335)))) (T -538)) +((-3327 (*1 *1 *1) (-5 *1 (-538)))) +(-13 (-537) (-598 (-1131)) (-801) (-10 -8 (-15 -3327 ($ $)) (-6 -4340) (-6 -4345) (-6 -4341) (-6 -4335))) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) NIL)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) NIL)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-539 |#1| |#2| |#3|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1074) (-1074) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353)))) (T -539)) +NIL +(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) +((-2165 (((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-1 (-1143 |#2|) (-1143 |#2|))) 51))) +(((-540 |#1| |#2|) (-10 -7 (-15 -2165 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-1 (-1143 |#2|) (-1143 |#2|))))) (-13 (-827) (-545)) (-13 (-27) (-416 |#1|))) (T -540)) +((-2165 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-595 *3)) (-5 *5 (-1 (-1143 *3) (-1143 *3))) (-4 *3 (-13 (-27) (-416 *6))) (-4 *6 (-13 (-827) (-545))) (-5 *2 (-569 *3)) (-5 *1 (-540 *6 *3))))) +(-10 -7 (-15 -2165 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-1 (-1143 |#2|) (-1143 |#2|))))) +((-2167 (((-569 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-2168 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2166 (((-569 |#5|) |#5| (-1 |#3| |#3|)) 202))) +(((-541 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2166 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2167 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2168 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-827) (-545) (-1014 (-538))) (-13 (-27) (-416 |#1|)) (-1207 |#2|) (-1207 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -541)) +((-2168 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-27) (-416 *4))) (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-4 *7 (-1207 (-402 *6))) (-5 *1 (-541 *4 *5 *6 *7 *2)) (-4 *2 (-337 *5 *6 *7)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-13 (-27) (-416 *5))) (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-4 *8 (-1207 (-402 *7))) (-5 *2 (-569 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8)))) (-2166 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-13 (-27) (-416 *5))) (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-4 *8 (-1207 (-402 *7))) (-5 *2 (-569 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8))))) +(-10 -7 (-15 -2166 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2167 ((-569 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2168 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2171 (((-112) (-538) (-538)) 10)) (-2169 (((-538) (-538)) 7)) (-2170 (((-538) (-538) (-538)) 8))) +(((-542) (-10 -7 (-15 -2169 ((-538) (-538))) (-15 -2170 ((-538) (-538) (-538))) (-15 -2171 ((-112) (-538) (-538))))) (T -542)) +((-2171 (*1 *2 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-112)) (-5 *1 (-542)))) (-2170 (*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-542)))) (-2169 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-542))))) +(-10 -7 (-15 -2169 ((-538) (-538))) (-15 -2170 ((-538) (-538) (-538))) (-15 -2171 ((-112) (-538) (-538)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2934 ((|#1| $) 59)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-3846 (($ $) 89)) (-4002 (($ $) 72)) (-2733 ((|#1| $) 60)) (-1368 (((-3 $ "failed") $ $) 19)) (-3370 (($ $) 71)) (-3844 (($ $) 88)) (-4001 (($ $) 73)) (-3848 (($ $) 87)) (-4000 (($ $) 74)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) "failed") $) 67)) (-3507 (((-538) $) 66)) (-3821 (((-3 $ "failed") $) 32)) (-2174 (($ |#1| |#1|) 64)) (-3537 (((-112) $) 58)) (-3990 (($) 99)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 70)) (-3538 (((-112) $) 57)) (-3677 (($ $ $) 105)) (-3678 (($ $ $) 104)) (-4302 (($ $) 96)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2175 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-402 (-538))) 62)) (-2173 ((|#1| $) 61)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3820 (((-3 $ "failed") $ $) 40)) (-4303 (($ $) 97)) (-3849 (($ $) 86)) (-3999 (($ $) 75)) (-3847 (($ $) 85)) (-3998 (($ $) 76)) (-3845 (($ $) 84)) (-3997 (($ $) 77)) (-2172 (((-112) $ |#1|) 56)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-538)) 68)) (-3461 (((-751)) 28)) (-3852 (($ $) 95)) (-3840 (($ $) 83)) (-2177 (((-112) $ $) 37)) (-3850 (($ $) 94)) (-3838 (($ $) 82)) (-3854 (($ $) 93)) (-3842 (($ $) 81)) (-3855 (($ $) 92)) (-3843 (($ $) 80)) (-3853 (($ $) 91)) (-3841 (($ $) 79)) (-3851 (($ $) 90)) (-3839 (($ $) 78)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 102)) (-2897 (((-112) $ $) 101)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 103)) (-3018 (((-112) $ $) 100)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ $) 98) (($ $ (-402 (-538))) 69)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-543 |#1|) (-138) (-13 (-399) (-1171))) (T -543)) +((-2175 (*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-2174 (*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-2175 (*1 *1 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-2175 (*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-2934 (*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) (-2172 (*1 *2 *1 *3) (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112))))) +(-13 (-446) (-827) (-1171) (-978) (-1014 (-538)) (-10 -8 (-6 -4129) (-15 -2175 ($ |t#1| |t#1|)) (-15 -2174 ($ |t#1| |t#1|)) (-15 -2175 ($ |t#1|)) (-15 -2175 ($ (-402 (-538)))) (-15 -2173 (|t#1| $)) (-15 -2733 (|t#1| $)) (-15 -2934 (|t#1| $)) (-15 -3537 ((-112) $)) (-15 -3538 ((-112) $)) (-15 -2172 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-94) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-279) . T) ((-285) . T) ((-446) . T) ((-486) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-827) . T) ((-978) . T) ((-1014 (-538)) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) . T) ((-1174) . T)) +((-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 9)) (-2178 (($ $) 11)) (-2176 (((-112) $) 18)) (-3821 (((-3 $ "failed") $) 16)) (-2177 (((-112) $ $) 20))) +(((-544 |#1|) (-10 -8 (-15 -2176 ((-112) |#1|)) (-15 -2177 ((-112) |#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|))) (-545)) (T -544)) +NIL +(-10 -8 (-15 -2176 ((-112) |#1|)) (-15 -2177 ((-112) |#1| |#1|)) (-15 -2178 (|#1| |#1|)) (-15 -2179 ((-2 (|:| -1892 |#1|) (|:| -4340 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ $) 40)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-545) (-138)) (T -545)) +((-3820 (*1 *1 *1 *1) (|partial| -4 *1 (-545))) (-2179 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1892 *1) (|:| -4340 *1) (|:| |associate| *1))) (-4 *1 (-545)))) (-2178 (*1 *1 *1) (-4 *1 (-545))) (-2177 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))) +(-13 (-170) (-38 $) (-285) (-10 -8 (-15 -3820 ((-3 $ "failed") $ $)) (-15 -2179 ((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $)) (-15 -2178 ($ $)) (-15 -2177 ((-112) $ $)) (-15 -2176 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2181 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-622 |#2|)) 37)) (-2183 (((-569 |#2|) |#2| (-1149)) 62)) (-2182 (((-3 |#2| "failed") |#2| (-1149)) 152)) (-2184 (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1149) (-595 |#2|) (-622 (-595 |#2|))) 155)) (-2180 (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1149) |#2|) 40))) +(((-546 |#1| |#2|) (-10 -7 (-15 -2180 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1149) |#2|)) (-15 -2181 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-622 |#2|))) (-15 -2182 ((-3 |#2| "failed") |#2| (-1149))) (-15 -2183 ((-569 |#2|) |#2| (-1149))) (-15 -2184 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1149) (-595 |#2|) (-622 (-595 |#2|))))) (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -546)) +((-2184 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1149)) (-5 *6 (-622 (-595 *3))) (-5 *5 (-595 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *7))) (-4 *7 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-546 *7 *3)))) (-2183 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-546 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-2182 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-546 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-2181 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-546 *6 *3)))) (-2180 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-546 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))))) +(-10 -7 (-15 -2180 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1149) |#2|)) (-15 -2181 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1149) (-622 |#2|))) (-15 -2182 ((-3 |#2| "failed") |#2| (-1149))) (-15 -2183 ((-569 |#2|) |#2| (-1149))) (-15 -2184 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1149) (-595 |#2|) (-622 (-595 |#2|))))) +((-4329 (((-400 |#1|) |#1|) 18)) (-4092 (((-400 |#1|) |#1|) 33)) (-2186 (((-3 |#1| "failed") |#1|) 44)) (-2185 (((-400 |#1|) |#1|) 51))) +(((-547 |#1|) (-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -2185 ((-400 |#1|) |#1|)) (-15 -2186 ((-3 |#1| "failed") |#1|))) (-537)) (T -547)) +((-2186 (*1 *2 *2) (|partial| -12 (-5 *1 (-547 *2)) (-4 *2 (-537)))) (-2185 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537)))) (-4329 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537)))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537))))) +(-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -2185 ((-400 |#1|) |#1|)) (-15 -2186 ((-3 |#1| "failed") |#1|))) +((-2187 (($) 9)) (-2190 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 35)) (-2744 (((-622 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 32)) (-3970 (($ (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 29)) (-2189 (($ (-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 27)) (-2191 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 39)) (-2312 (((-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 37)) (-2188 (((-1237)) 12))) +(((-548) (-10 -8 (-15 -2187 ($)) (-15 -2188 ((-1237))) (-15 -2744 ((-622 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -2189 ($ (-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3970 ($ (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2190 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2312 ((-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2191 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -548)) +((-2191 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-548)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-548)))) (-2190 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-548)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-548)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-548)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-548)))) (-2188 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-548)))) (-2187 (*1 *1) (-5 *1 (-548)))) +(-10 -8 (-15 -2187 ($)) (-15 -2188 ((-1237))) (-15 -2744 ((-622 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -2189 ($ (-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1561 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -3970 ($ (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2190 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2312 ((-622 (-2 (|:| -4220 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2191 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| #6#))) (|:| -1561 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) +((-3419 (((-1143 (-402 (-1143 |#2|))) |#2| (-595 |#2|) (-595 |#2|) (-1143 |#2|)) 32)) (-2194 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) |#2| (-1143 |#2|)) 110)) (-2192 (((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|))) 80) (((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|)) 52)) (-2193 (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #2="failed") |#2| (-595 |#2|) (-595 |#2|) |#2| (-595 |#2|) |#2| (-402 (-1143 |#2|))) 87) (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #2#) |#2| (-595 |#2|) (-595 |#2|) |#2| |#2| (-1143 |#2|)) 109)) (-2195 (((-3 |#2| #3="failed") |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) (-595 |#2|) |#2| (-402 (-1143 |#2|))) 105) (((-3 |#2| #3#) |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) |#2| (-1143 |#2|)) 111)) (-2196 (((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|))) 128 (|has| |#3| (-638 |#2|))) (((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|)) 127 (|has| |#3| (-638 |#2|)))) (-3420 ((|#2| (-1143 (-402 (-1143 |#2|))) (-595 |#2|) |#2|) 50)) (-3413 (((-1143 (-402 (-1143 |#2|))) (-1143 |#2|) (-595 |#2|)) 31))) +(((-549 |#1| |#2| |#3|) (-10 -7 (-15 -2192 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|))) (-15 -2192 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2193 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-595 |#2|) (-595 |#2|) |#2| |#2| (-1143 |#2|))) (-15 -2193 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-595 |#2|) (-595 |#2|) |#2| (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) |#2| (-1143 |#2|))) (-15 -2194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2195 ((-3 |#2| #3="failed") |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) |#2| (-1143 |#2|))) (-15 -2195 ((-3 |#2| #3#) |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -3419 ((-1143 (-402 (-1143 |#2|))) |#2| (-595 |#2|) (-595 |#2|) (-1143 |#2|))) (-15 -3420 (|#2| (-1143 (-402 (-1143 |#2|))) (-595 |#2|) |#2|)) (-15 -3413 ((-1143 (-402 (-1143 |#2|))) (-1143 |#2|) (-595 |#2|))) (IF (|has| |#3| (-638 |#2|)) (PROGN (-15 -2196 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|))) (-15 -2196 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|))))) |%noBranch|)) (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))) (-13 (-416 |#1|) (-27) (-1171)) (-1074)) (T -549)) +((-2196 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-595 *4)) (-5 *6 (-402 (-1143 *4))) (-4 *4 (-13 (-416 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4)))) (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074)))) (-2196 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-595 *4)) (-5 *6 (-1143 *4)) (-4 *4 (-13 (-416 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2128 (-622 *4)))) (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *4 (-595 *6)) (-4 *6 (-13 (-416 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-1143 (-402 (-1143 *6)))) (-5 *1 (-549 *5 *6 *7)) (-5 *3 (-1143 *6)) (-4 *7 (-1074)))) (-3420 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1143 (-402 (-1143 *2)))) (-5 *4 (-595 *2)) (-4 *2 (-13 (-416 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *1 (-549 *5 *2 *6)) (-4 *6 (-1074)))) (-3419 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-1143 (-402 (-1143 *3)))) (-5 *1 (-549 *6 *3 *7)) (-5 *5 (-1143 *3)) (-4 *7 (-1074)))) (-2195 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1149))) (-5 *5 (-402 (-1143 *2))) (-4 *2 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1074)))) (-2195 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1149))) (-5 *5 (-1143 *2)) (-4 *2 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1074)))) (-2194 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) (-5 *6 (-402 (-1143 *3))) (-4 *3 (-13 (-416 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1074)))) (-2194 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) (-5 *6 (-1143 *3)) (-4 *3 (-13 (-416 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1074)))) (-2193 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-402 (-1143 *3))) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074)))) (-2193 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-1143 *3)) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074)))) (-2192 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-595 *3)) (-5 *5 (-402 (-1143 *3))) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074)))) (-2192 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-595 *3)) (-5 *5 (-1143 *3)) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074))))) +(-10 -7 (-15 -2192 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|))) (-15 -2192 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2193 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-595 |#2|) (-595 |#2|) |#2| |#2| (-1143 |#2|))) (-15 -2193 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-595 |#2|) (-595 |#2|) |#2| (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2="failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) |#2| (-1143 |#2|))) (-15 -2194 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #2#) |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -2195 ((-3 |#2| #3="failed") |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) |#2| (-1143 |#2|))) (-15 -2195 ((-3 |#2| #3#) |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #3#) |#2| |#2| (-1149)) (-595 |#2|) |#2| (-402 (-1143 |#2|)))) (-15 -3419 ((-1143 (-402 (-1143 |#2|))) |#2| (-595 |#2|) (-595 |#2|) (-1143 |#2|))) (-15 -3420 (|#2| (-1143 (-402 (-1143 |#2|))) (-595 |#2|) |#2|)) (-15 -3413 ((-1143 (-402 (-1143 |#2|))) (-1143 |#2|) (-595 |#2|))) (IF (|has| |#3| (-638 |#2|)) (PROGN (-15 -2196 ((-2 (|:| |particular| (-3 |#2| #4="failed")) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) |#2| (-1143 |#2|))) (-15 -2196 ((-2 (|:| |particular| (-3 |#2| #4#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-595 |#2|) |#2| (-402 (-1143 |#2|))))) |%noBranch|)) +((-2206 (((-538) (-538) (-751)) 66)) (-2205 (((-538) (-538)) 65)) (-2204 (((-538) (-538)) 64)) (-2203 (((-538) (-538)) 69)) (-3138 (((-538) (-538) (-538)) 49)) (-2202 (((-538) (-538) (-538)) 46)) (-2201 (((-402 (-538)) (-538)) 20)) (-2200 (((-538) (-538)) 21)) (-2199 (((-538) (-538)) 58)) (-3135 (((-538) (-538)) 32)) (-2198 (((-622 (-538)) (-538)) 63)) (-2197 (((-538) (-538) (-538) (-538) (-538)) 44)) (-3131 (((-402 (-538)) (-538)) 41))) +(((-550) (-10 -7 (-15 -3131 ((-402 (-538)) (-538))) (-15 -2197 ((-538) (-538) (-538) (-538) (-538))) (-15 -2198 ((-622 (-538)) (-538))) (-15 -3135 ((-538) (-538))) (-15 -2199 ((-538) (-538))) (-15 -2200 ((-538) (-538))) (-15 -2201 ((-402 (-538)) (-538))) (-15 -2202 ((-538) (-538) (-538))) (-15 -3138 ((-538) (-538) (-538))) (-15 -2203 ((-538) (-538))) (-15 -2204 ((-538) (-538))) (-15 -2205 ((-538) (-538))) (-15 -2206 ((-538) (-538) (-751))))) (T -550)) +((-2206 (*1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-751)) (-5 *1 (-550)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2204 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2203 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-3138 (*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2202 (*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2201 (*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-550)) (-5 *3 (-538)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-2198 (*1 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-550)) (-5 *3 (-538)))) (-2197 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) (-3131 (*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-550)) (-5 *3 (-538))))) +(-10 -7 (-15 -3131 ((-402 (-538)) (-538))) (-15 -2197 ((-538) (-538) (-538) (-538) (-538))) (-15 -2198 ((-622 (-538)) (-538))) (-15 -3135 ((-538) (-538))) (-15 -2199 ((-538) (-538))) (-15 -2200 ((-538) (-538))) (-15 -2201 ((-402 (-538)) (-538))) (-15 -2202 ((-538) (-538) (-538))) (-15 -3138 ((-538) (-538) (-538))) (-15 -2203 ((-538) (-538))) (-15 -2204 ((-538) (-538))) (-15 -2205 ((-538) (-538))) (-15 -2206 ((-538) (-538) (-751)))) +((-2207 (((-2 (|:| |answer| |#4|) (|:| -2250 |#4|)) |#4| (-1 |#2| |#2|)) 52))) +(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2207 ((-2 (|:| |answer| |#4|) (|:| -2250 |#4|)) |#4| (-1 |#2| |#2|)))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -551)) +((-2207 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-4 *7 (-1207 (-402 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2250 *3))) (-5 *1 (-551 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7))))) +(-10 -7 (-15 -2207 ((-2 (|:| |answer| |#4|) (|:| -2250 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2207 (((-2 (|:| |answer| (-402 |#2|)) (|:| -2250 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 18))) +(((-552 |#1| |#2|) (-10 -7 (-15 -2207 ((-2 (|:| |answer| (-402 |#2|)) (|:| -2250 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1207 |#1|)) (T -552)) +((-2207 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| (-402 *6)) (|:| -2250 (-402 *6)) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-552 *5 *6)) (-5 *3 (-402 *6))))) +(-10 -7 (-15 -2207 ((-2 (|:| |answer| (-402 |#2|)) (|:| -2250 (-402 |#2|)) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)))) +((-3001 (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749) (-1037)) 108) (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749)) 110)) (-4172 (((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1149)) 172) (((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1131)) 171) (((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373) (-1037)) 176) (((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373)) 177) (((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373)) 178) (((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373))))) 179) (((-1011) (-309 (-373)) (-1062 (-819 (-373)))) 167) (((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373)) 166) (((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373)) 162) (((-1011) (-749)) 155) (((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373) (-1037)) 161))) +(((-553) (-10 -7 (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373) (-1037))) (-15 -4172 ((-1011) (-749))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373) (-1037))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749) (-1037))) (-15 -4172 ((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1131))) (-15 -4172 ((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1149))))) (T -553)) +((-4172 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-373))) (-5 *4 (-1065 (-819 (-373)))) (-5 *5 (-1149)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-309 (-373))) (-5 *4 (-1065 (-819 (-373)))) (-5 *5 (-1131)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) (-5 *1 (-553)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) (-5 *5 (-373)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1011)) (-5 *1 (-553)))) (-4172 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553))))) +(-10 -7 (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373) (-1037))) (-15 -4172 ((-1011) (-749))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-1062 (-819 (-373))))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373))) (-15 -4172 ((-1011) (-309 (-373)) (-622 (-1062 (-819 (-373)))) (-373) (-373) (-1037))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011))) (-749) (-1037))) (-15 -4172 ((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1131))) (-15 -4172 ((-3 (-1011) "failed") (-309 (-373)) (-1065 (-819 (-373))) (-1149)))) +((-2210 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|)) 184)) (-2208 (((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|)) 98)) (-2209 (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-595 |#2|) (-595 |#2|) |#2|) 180)) (-2211 (((-3 |#2| #1="failed") |#2| |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1149))) 189)) (-2212 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-1149)) 197 (|has| |#3| (-638 |#2|))))) +(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -2208 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|))) (-15 -2209 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-595 |#2|) (-595 |#2|) |#2|)) (-15 -2210 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|))) (-15 -2211 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1149)))) (IF (|has| |#3| (-638 |#2|)) (-15 -2212 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-1149))) |%noBranch|)) (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538))) (-13 (-416 |#1|) (-27) (-1171)) (-1074)) (T -554)) +((-2212 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-595 *4)) (-5 *6 (-1149)) (-4 *4 (-13 (-416 *7) (-27) (-1171))) (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4)))) (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074)))) (-2211 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1149))) (-4 *2 (-13 (-416 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1074)))) (-2210 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) (-4 *3 (-13 (-416 *6) (-27) (-1171))) (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1074)))) (-2209 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1074)))) (-2208 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *5) (-27) (-1171))) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-569 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1074))))) +(-10 -7 (-15 -2208 ((-569 |#2|) |#2| (-595 |#2|) (-595 |#2|))) (-15 -2209 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-595 |#2|) (-595 |#2|) |#2|)) (-15 -2210 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-595 |#2|) (-595 |#2|) (-622 |#2|))) (-15 -2211 ((-3 |#2| #1="failed") |#2| |#2| |#2| (-595 |#2|) (-595 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1149)))) (IF (|has| |#3| (-638 |#2|)) (-15 -2212 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2128 (-622 |#2|))) |#3| |#2| (-595 |#2|) (-595 |#2|) (-1149))) |%noBranch|)) +((-2213 (((-2 (|:| -2419 |#2|) (|:| |nconst| |#2|)) |#2| (-1149)) 64)) (-2215 (((-3 |#2| "failed") |#2| (-1149) (-819 |#2|) (-819 |#2|)) 164 (-12 (|has| |#2| (-1112)) (|has| |#1| (-598 (-866 (-538)))) (|has| |#1| (-862 (-538))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)) 147 (-12 (|has| |#2| (-612)) (|has| |#1| (-598 (-866 (-538)))) (|has| |#1| (-862 (-538)))))) (-2214 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)) 148 (-12 (|has| |#2| (-612)) (|has| |#1| (-598 (-866 (-538)))) (|has| |#1| (-862 (-538))))))) +(((-555 |#1| |#2|) (-10 -7 (-15 -2213 ((-2 (|:| -2419 |#2|) (|:| |nconst| |#2|)) |#2| (-1149))) (IF (|has| |#1| (-598 (-866 (-538)))) (IF (|has| |#1| (-862 (-538))) (PROGN (IF (|has| |#2| (-612)) (PROGN (-15 -2214 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) (-15 -2215 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) (IF (|has| |#2| (-1112)) (-15 -2215 ((-3 |#2| "failed") |#2| (-1149) (-819 |#2|) (-819 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-827) (-1014 (-538)) (-446) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -555)) +((-2215 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1149)) (-5 *4 (-819 *2)) (-4 *2 (-1112)) (-4 *2 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-598 (-866 (-538)))) (-4 *5 (-862 (-538))) (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) (-5 *1 (-555 *5 *2)))) (-2215 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-866 (-538)))) (-4 *5 (-862 (-538))) (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-2214 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-866 (-538)))) (-4 *5 (-862 (-538))) (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-2213 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) (-5 *2 (-2 (|:| -2419 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))))) +(-10 -7 (-15 -2213 ((-2 (|:| -2419 |#2|) (|:| |nconst| |#2|)) |#2| (-1149))) (IF (|has| |#1| (-598 (-866 (-538)))) (IF (|has| |#1| (-862 (-538))) (PROGN (IF (|has| |#2| (-612)) (PROGN (-15 -2214 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) (-15 -2215 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) (IF (|has| |#2| (-1112)) (-15 -2215 ((-3 |#2| "failed") |#2| (-1149) (-819 |#2|) (-819 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2218 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-622 (-402 |#2|))) 41)) (-4172 (((-569 (-402 |#2|)) (-402 |#2|)) 28)) (-2216 (((-3 (-402 |#2|) "failed") (-402 |#2|)) 17)) (-2217 (((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|)) 48))) +(((-556 |#1| |#2|) (-10 -7 (-15 -4172 ((-569 (-402 |#2|)) (-402 |#2|))) (-15 -2216 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2217 ((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2218 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-622 (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-538))) (-1207 |#1|)) (T -556)) +((-2218 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-622 (-402 *6))) (-5 *3 (-402 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *5 *6)))) (-2217 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| -2251 (-402 *5)) (|:| |coeff| (-402 *5)))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5)))) (-2216 (*1 *2 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-13 (-358) (-145) (-1014 (-538)))) (-5 *1 (-556 *3 *4)))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) (-5 *2 (-569 (-402 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5))))) +(-10 -7 (-15 -4172 ((-569 (-402 |#2|)) (-402 |#2|))) (-15 -2216 ((-3 (-402 |#2|) "failed") (-402 |#2|))) (-15 -2217 ((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-402 |#2|))) (-15 -2218 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-622 (-402 |#2|))))) +((-2219 (((-3 (-538) "failed") |#1|) 14)) (-3610 (((-112) |#1|) 13)) (-3606 (((-538) |#1|) 9))) +(((-557 |#1|) (-10 -7 (-15 -3606 ((-538) |#1|)) (-15 -3610 ((-112) |#1|)) (-15 -2219 ((-3 (-538) "failed") |#1|))) (-1014 (-538))) (T -557)) +((-2219 (*1 *2 *3) (|partial| -12 (-5 *2 (-538)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2)))) (-3610 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-557 *3)) (-4 *3 (-1014 (-538))))) (-3606 (*1 *2 *3) (-12 (-5 *2 (-538)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2))))) +(-10 -7 (-15 -3606 ((-538) |#1|)) (-15 -3610 ((-112) |#1|)) (-15 -2219 ((-3 (-538) "failed") |#1|))) +((-2222 (((-3 (-2 (|:| |mainpart| (-402 (-922 |#1|))) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 (-922 |#1|))) (|:| |logand| (-402 (-922 |#1|))))))) "failed") (-402 (-922 |#1|)) (-1149) (-622 (-402 (-922 |#1|)))) 48)) (-2220 (((-569 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-1149)) 28)) (-2221 (((-3 (-402 (-922 |#1|)) "failed") (-402 (-922 |#1|)) (-1149)) 23)) (-2223 (((-3 (-2 (|:| -2251 (-402 (-922 |#1|))) (|:| |coeff| (-402 (-922 |#1|)))) "failed") (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|))) 35))) +(((-558 |#1|) (-10 -7 (-15 -2220 ((-569 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -2221 ((-3 (-402 (-922 |#1|)) "failed") (-402 (-922 |#1|)) (-1149))) (-15 -2222 ((-3 (-2 (|:| |mainpart| (-402 (-922 |#1|))) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 (-922 |#1|))) (|:| |logand| (-402 (-922 |#1|))))))) "failed") (-402 (-922 |#1|)) (-1149) (-622 (-402 (-922 |#1|))))) (-15 -2223 ((-3 (-2 (|:| -2251 (-402 (-922 |#1|))) (|:| |coeff| (-402 (-922 |#1|)))) "failed") (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|))))) (-13 (-545) (-1014 (-538)) (-145))) (T -558)) +((-2223 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-1014 (-538)) (-145))) (-5 *2 (-2 (|:| -2251 (-402 (-922 *5))) (|:| |coeff| (-402 (-922 *5))))) (-5 *1 (-558 *5)) (-5 *3 (-402 (-922 *5))))) (-2222 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 (-402 (-922 *6)))) (-5 *3 (-402 (-922 *6))) (-4 *6 (-13 (-545) (-1014 (-538)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-558 *6)))) (-2221 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-402 (-922 *4))) (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-1014 (-538)) (-145))) (-5 *1 (-558 *4)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-1014 (-538)) (-145))) (-5 *2 (-569 (-402 (-922 *5)))) (-5 *1 (-558 *5)) (-5 *3 (-402 (-922 *5)))))) +(-10 -7 (-15 -2220 ((-569 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -2221 ((-3 (-402 (-922 |#1|)) "failed") (-402 (-922 |#1|)) (-1149))) (-15 -2222 ((-3 (-2 (|:| |mainpart| (-402 (-922 |#1|))) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 (-922 |#1|))) (|:| |logand| (-402 (-922 |#1|))))))) "failed") (-402 (-922 |#1|)) (-1149) (-622 (-402 (-922 |#1|))))) (-15 -2223 ((-3 (-2 (|:| -2251 (-402 (-922 |#1|))) (|:| |coeff| (-402 (-922 |#1|)))) "failed") (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|))))) +((-2898 (((-112) $ $) 58)) (-3539 (((-112) $) 36)) (-2934 ((|#1| $) 30)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) 62)) (-3846 (($ $) 122)) (-4002 (($ $) 102)) (-2733 ((|#1| $) 28)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $) NIL)) (-3844 (($ $) 124)) (-4001 (($ $) 98)) (-3848 (($ $) 126)) (-4000 (($ $) 106)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) "failed") $) 77)) (-3507 (((-538) $) 79)) (-3821 (((-3 $ "failed") $) 61)) (-2174 (($ |#1| |#1|) 26)) (-3537 (((-112) $) 33)) (-3990 (($) 88)) (-2502 (((-112) $) 43)) (-3344 (($ $ (-538)) NIL)) (-3538 (((-112) $) 34)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4302 (($ $) 90)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2175 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-402 (-538))) 76)) (-2173 ((|#1| $) 27)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) 64) (($ (-622 $)) NIL)) (-3820 (((-3 $ "failed") $ $) 63)) (-4303 (($ $) 92)) (-3849 (($ $) 130)) (-3999 (($ $) 104)) (-3847 (($ $) 132)) (-3998 (($ $) 108)) (-3845 (($ $) 128)) (-3997 (($ $) 100)) (-2172 (((-112) $ |#1|) 31)) (-4317 (((-840) $) 84) (($ (-538)) 66) (($ $) NIL) (($ (-538)) 66)) (-3461 (((-751)) 86)) (-3852 (($ $) 144)) (-3840 (($ $) 114)) (-2177 (((-112) $ $) NIL)) (-3850 (($ $) 142)) (-3838 (($ $) 110)) (-3854 (($ $) 140)) (-3842 (($ $) 120)) (-3855 (($ $) 138)) (-3843 (($ $) 118)) (-3853 (($ $) 136)) (-3841 (($ $) 116)) (-3851 (($ $) 134)) (-3839 (($ $) 112)) (-2991 (($) 21 T CONST)) (-2997 (($) 10 T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 37)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 35)) (-4197 (($ $) 41) (($ $ $) 42)) (-4199 (($ $ $) 40)) (** (($ $ (-895)) 54) (($ $ (-751)) NIL) (($ $ $) 94) (($ $ (-402 (-538))) 146)) (* (($ (-895) $) 51) (($ (-751) $) NIL) (($ (-538) $) 50) (($ $ $) 48))) +(((-559 |#1|) (-543 |#1|) (-13 (-399) (-1171))) (T -559)) +NIL +(-543 |#1|) +((-3037 (((-3 (-622 (-1143 (-538))) "failed") (-622 (-1143 (-538))) (-1143 (-538))) 24))) +(((-560) (-10 -7 (-15 -3037 ((-3 (-622 (-1143 (-538))) "failed") (-622 (-1143 (-538))) (-1143 (-538)))))) (T -560)) +((-3037 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 (-538)))) (-5 *3 (-1143 (-538))) (-5 *1 (-560))))) +(-10 -7 (-15 -3037 ((-3 (-622 (-1143 (-538))) "failed") (-622 (-1143 (-538))) (-1143 (-538))))) +((-2224 (((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-1149)) 19)) (-2227 (((-622 (-595 |#2|)) (-622 |#2|) (-1149)) 23)) (-3585 (((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-622 (-595 |#2|))) 11)) (-2228 ((|#2| |#2| (-1149)) 54 (|has| |#1| (-545)))) (-2229 ((|#2| |#2| (-1149)) 78 (-12 (|has| |#2| (-279)) (|has| |#1| (-446))))) (-2226 (((-595 |#2|) (-595 |#2|) (-622 (-595 |#2|)) (-1149)) 25)) (-2225 (((-595 |#2|) (-622 (-595 |#2|))) 24)) (-2230 (((-569 |#2|) |#2| (-1149) (-1 (-569 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149))) 103 (-12 (|has| |#2| (-279)) (|has| |#2| (-612)) (|has| |#2| (-1014 (-1149))) (|has| |#1| (-598 (-866 (-538)))) (|has| |#1| (-446)) (|has| |#1| (-862 (-538))))))) +(((-561 |#1| |#2|) (-10 -7 (-15 -2224 ((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-1149))) (-15 -2225 ((-595 |#2|) (-622 (-595 |#2|)))) (-15 -2226 ((-595 |#2|) (-595 |#2|) (-622 (-595 |#2|)) (-1149))) (-15 -3585 ((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-622 (-595 |#2|)))) (-15 -2227 ((-622 (-595 |#2|)) (-622 |#2|) (-1149))) (IF (|has| |#1| (-545)) (-15 -2228 (|#2| |#2| (-1149))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -2229 (|#2| |#2| (-1149))) (IF (|has| |#1| (-598 (-866 (-538)))) (IF (|has| |#1| (-862 (-538))) (IF (|has| |#2| (-612)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2230 ((-569 |#2|) |#2| (-1149) (-1 (-569 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-827) (-416 |#1|)) (T -561)) +((-2230 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-569 *3) *3 (-1149))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1149))) (-4 *3 (-279)) (-4 *3 (-612)) (-4 *3 (-1014 *4)) (-4 *3 (-416 *7)) (-5 *4 (-1149)) (-4 *7 (-598 (-866 (-538)))) (-4 *7 (-446)) (-4 *7 (-862 (-538))) (-4 *7 (-827)) (-5 *2 (-569 *3)) (-5 *1 (-561 *7 *3)))) (-2229 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-446)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2)) (-4 *2 (-279)) (-4 *2 (-416 *4)))) (-2228 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-545)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2)) (-4 *2 (-416 *4)))) (-2227 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-1149)) (-4 *6 (-416 *5)) (-4 *5 (-827)) (-5 *2 (-622 (-595 *6))) (-5 *1 (-561 *5 *6)))) (-3585 (*1 *2 *2 *2) (-12 (-5 *2 (-622 (-595 *4))) (-4 *4 (-416 *3)) (-4 *3 (-827)) (-5 *1 (-561 *3 *4)))) (-2226 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-622 (-595 *6))) (-5 *4 (-1149)) (-5 *2 (-595 *6)) (-4 *6 (-416 *5)) (-4 *5 (-827)) (-5 *1 (-561 *5 *6)))) (-2225 (*1 *2 *3) (-12 (-5 *3 (-622 (-595 *5))) (-4 *4 (-827)) (-5 *2 (-595 *5)) (-5 *1 (-561 *4 *5)) (-4 *5 (-416 *4)))) (-2224 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-595 *5))) (-5 *3 (-1149)) (-4 *5 (-416 *4)) (-4 *4 (-827)) (-5 *1 (-561 *4 *5))))) +(-10 -7 (-15 -2224 ((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-1149))) (-15 -2225 ((-595 |#2|) (-622 (-595 |#2|)))) (-15 -2226 ((-595 |#2|) (-595 |#2|) (-622 (-595 |#2|)) (-1149))) (-15 -3585 ((-622 (-595 |#2|)) (-622 (-595 |#2|)) (-622 (-595 |#2|)))) (-15 -2227 ((-622 (-595 |#2|)) (-622 |#2|) (-1149))) (IF (|has| |#1| (-545)) (-15 -2228 (|#2| |#2| (-1149))) |%noBranch|) (IF (|has| |#1| (-446)) (IF (|has| |#2| (-279)) (PROGN (-15 -2229 (|#2| |#2| (-1149))) (IF (|has| |#1| (-598 (-866 (-538)))) (IF (|has| |#1| (-862 (-538))) (IF (|has| |#2| (-612)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2230 ((-569 |#2|) |#2| (-1149) (-1 (-569 |#2|) |#2| (-1149)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1149)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2233 (((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-622 |#1|) "failed") (-538) |#1| |#1|)) 172)) (-2236 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) (-622 (-402 |#2|))) 148)) (-2239 (((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-622 (-402 |#2|))) 145)) (-2240 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 133)) (-2231 (((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 158)) (-2238 (((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|)) 175)) (-2234 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-402 |#2|)) 178)) (-2242 (((-2 (|:| |ir| (-569 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|)) 84)) (-2243 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2237 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-622 (-402 |#2|))) 152)) (-2241 (((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|)) 137)) (-2232 (((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|)) 162)) (-2235 (((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-402 |#2|)) 183))) +(((-562 |#1| |#2|) (-10 -7 (-15 -2231 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2232 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|))) (-15 -2233 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-622 |#1|) "failed") (-538) |#1| |#1|))) (-15 -2234 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-402 |#2|))) (-15 -2235 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-402 |#2|))) (-15 -2236 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-622 (-402 |#2|)))) (-15 -2237 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-622 (-402 |#2|)))) (-15 -2238 ((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -2239 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-622 (-402 |#2|)))) (-15 -2240 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2241 ((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|))) (-15 -2242 ((-2 (|:| |ir| (-569 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -2243 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-358) (-1207 |#1|)) (T -562)) +((-2243 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-562 *5 *3)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |ir| (-569 (-402 *6))) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))) (-2241 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-605 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3472 *4) (|:| |sol?| (-112))) (-538) *4)) (-4 *4 (-358)) (-4 *5 (-1207 *4)) (-5 *1 (-562 *4 *5)))) (-2240 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-358)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1207 *4)))) (-2239 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-622 (-402 *7))) (-4 *7 (-1207 *6)) (-5 *3 (-402 *7)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *6 *7)))) (-2238 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -2251 (-402 *6)) (|:| |coeff| (-402 *6)))) (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6)))) (-2237 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3472 *7) (|:| |sol?| (-112))) (-538) *7)) (-5 *6 (-622 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1207 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-2236 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2251 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-622 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1207 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-562 *7 *8)))) (-2235 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3472 *6) (|:| |sol?| (-112))) (-538) *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -2251 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2234 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2251 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) (-2 (|:| -2251 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2233 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-622 *6) "failed") (-538) *6 *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2232 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3472 *6) (|:| |sol?| (-112))) (-538) *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7)))) (-2231 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2251 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6))) (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) +(-10 -7 (-15 -2231 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2232 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|))) (-15 -2233 ((-2 (|:| |answer| (-569 (-402 |#2|))) (|:| |a0| |#1|)) (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-622 |#1|) "failed") (-538) |#1| |#1|))) (-15 -2234 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-402 |#2|))) (-15 -2235 ((-3 (-2 (|:| |answer| (-402 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-402 |#2|))) (-15 -2236 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-622 (-402 |#2|)))) (-15 -2237 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|))))))) (|:| |a0| |#1|)) "failed") (-402 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|) (-622 (-402 |#2|)))) (-15 -2238 ((-3 (-2 (|:| -2251 (-402 |#2|)) (|:| |coeff| (-402 |#2|))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-402 |#2|))) (-15 -2239 ((-3 (-2 (|:| |mainpart| (-402 |#2|)) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| (-402 |#2|)) (|:| |logand| (-402 |#2|)))))) "failed") (-402 |#2|) (-1 |#2| |#2|) (-622 (-402 |#2|)))) (-15 -2240 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2241 ((-3 (-605 |#1| |#2|) "failed") (-605 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3472 |#1|) (|:| |sol?| (-112))) (-538) |#1|))) (-15 -2242 ((-2 (|:| |ir| (-569 (-402 |#2|))) (|:| |specpart| (-402 |#2|)) (|:| |polypart| |#2|)) (-402 |#2|) (-1 |#2| |#2|))) (-15 -2243 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-2244 (((-3 |#2| "failed") |#2| (-1149) (-1149)) 10))) +(((-563 |#1| |#2|) (-10 -7 (-15 -2244 ((-3 |#2| "failed") |#2| (-1149) (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-936) (-1112) (-29 |#1|))) (T -563)) +((-2244 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1171) (-936) (-1112) (-29 *4)))))) +(-10 -7 (-15 -2244 ((-3 |#2| "failed") |#2| (-1149) (-1149)))) +((-2889 (((-1093) $ (-129)) 12)) (-2890 (((-1093) $ (-128)) 11)) (-2117 (((-1093) $ (-129)) 7)) (-2118 (((-1093) $) 8)) (-1816 (($ $) 6))) +(((-564) (-138)) (T -564)) +NIL +(-13 (-520) (-838)) +(((-171) . T) ((-520) . T) ((-838) . T)) +((-2898 (((-112) $ $) NIL)) (-3814 (($) 7 T CONST)) (-3593 (((-1131) $) NIL)) (-2246 (($) 6 T CONST)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 14)) (-2245 (($) 8 T CONST)) (-3387 (((-112) $ $) 10))) +(((-565) (-13 (-1074) (-10 -8 (-15 -2246 ($) -4311) (-15 -3814 ($) -4311) (-15 -2245 ($) -4311)))) (T -565)) +((-2246 (*1 *1) (-5 *1 (-565))) (-3814 (*1 *1) (-5 *1 (-565))) (-2245 (*1 *1) (-5 *1 (-565)))) +(-13 (-1074) (-10 -8 (-15 -2246 ($) -4311) (-15 -3814 ($) -4311) (-15 -2245 ($) -4311))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $ (-538)) 66)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2940 (($ (-1143 (-538)) (-538)) 72)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) 58)) (-2941 (($ $) 34)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4131 (((-751) $) 15)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2943 (((-538)) 29)) (-2942 (((-538) $) 32)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4128 (($ $ (-538)) 21)) (-3820 (((-3 $ "failed") $ $) 59)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) 16)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 61)) (-2944 (((-1126 (-538)) $) 18)) (-3224 (($ $) 23)) (-4317 (((-840) $) 87) (($ (-538)) 52) (($ $) NIL)) (-3461 (((-751)) 14)) (-2177 (((-112) $ $) NIL)) (-4129 (((-538) $ (-538)) 36)) (-2991 (($) 35 T CONST)) (-2997 (($) 19 T CONST)) (-3387 (((-112) $ $) 39)) (-4197 (($ $) 51) (($ $ $) 37)) (-4199 (($ $ $) 50)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 54) (($ $ $) 55))) +(((-566 |#1| |#2|) (-846 |#1|) (-538) (-112)) (T -566)) +NIL +(-846 |#1|) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 21)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (($ $ (-895)) NIL (|has| $ (-363))) (($ $) NIL)) (-1791 (((-1158 (-895) (-751)) (-538)) 47)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 $ "failed") $) 75)) (-3507 (($ $) 74)) (-1911 (($ (-1231 $)) 73)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) 32)) (-3327 (($) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) 49)) (-1796 (((-112) $) NIL)) (-1886 (($ $) NIL) (($ $ (-751)) NIL)) (-4086 (((-112) $) NIL)) (-4131 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-2502 (((-112) $) NIL)) (-2129 (($) 37 (|has| $ (-363)))) (-2127 (((-112) $) NIL (|has| $ (-363)))) (-3467 (($ $ (-895)) NIL (|has| $ (-363))) (($ $) NIL)) (-3803 (((-3 $ "failed") $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 $) $ (-895)) NIL (|has| $ (-363))) (((-1143 $) $) 83)) (-2126 (((-895) $) 55)) (-1724 (((-1143 $) $) NIL (|has| $ (-363)))) (-1723 (((-3 (-1143 $) "failed") $ $) NIL (|has| $ (-363))) (((-1143 $) $) NIL (|has| $ (-363)))) (-1725 (($ $ (-1143 $)) NIL (|has| $ (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL T CONST)) (-2492 (($ (-895)) 48)) (-4291 (((-112) $) 67)) (-3594 (((-1093) $) NIL)) (-2501 (($) 19 (|has| $ (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 42)) (-4092 (((-400 $) $) NIL)) (-4290 (((-895)) 66) (((-812 (-895))) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-3 (-751) "failed") $ $) NIL) (((-751) $) NIL)) (-4271 (((-133)) NIL)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-4307 (((-895) $) 65) (((-812 (-895)) $) NIL)) (-3536 (((-1143 $)) 82)) (-1790 (($) 54)) (-1726 (($) 38 (|has| $ (-363)))) (-3575 (((-669 $) (-1231 $)) NIL) (((-1231 $) $) 71)) (-4330 (((-538) $) 28)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) 30) (($ $) NIL) (($ (-402 (-538))) NIL)) (-3035 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3461 (((-751)) 39)) (-2128 (((-1231 $) (-895)) 77) (((-1231 $)) 76)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) 22 T CONST)) (-2997 (($) 18 T CONST)) (-4288 (($ $ (-751)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 26)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 61) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL))) +(((-567 |#1|) (-13 (-345) (-324 $) (-598 (-538))) (-895)) (T -567)) +NIL +(-13 (-345) (-324 $) (-598 (-538))) +((-2247 (((-1237) (-1131)) 10))) +(((-568) (-10 -7 (-15 -2247 ((-1237) (-1131))))) (T -568)) +((-2247 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-568))))) +(-10 -7 (-15 -2247 ((-1237) (-1131)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| "failed") $) 69)) (-3507 ((|#1| $) NIL)) (-2251 ((|#1| $) 26)) (-2249 (((-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2252 (($ |#1| (-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) (-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2250 (((-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) $) 27)) (-3593 (((-1131) $) NIL)) (-3165 (($ |#1| |#1|) 33) (($ |#1| (-1149)) 44 (|has| |#1| (-1014 (-1149))))) (-3594 (((-1093) $) NIL)) (-2248 (((-112) $) 30)) (-4170 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1149)) 82 (|has| |#1| (-876 (-1149))))) (-4317 (((-840) $) 96) (($ |#1|) 25)) (-2991 (($) 16 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) 15) (($ $ $) NIL)) (-4199 (($ $ $) 78)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 14) (($ (-402 (-538)) $) 36) (($ $ (-402 (-538))) NIL))) +(((-569 |#1|) (-13 (-698 (-402 (-538))) (-1014 |#1|) (-10 -8 (-15 -2252 ($ |#1| (-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) (-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2251 (|#1| $)) (-15 -2250 ((-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) $)) (-15 -2249 ((-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2248 ((-112) $)) (-15 -3165 ($ |#1| |#1|)) (-15 -4170 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-876 (-1149))) (-15 -4170 (|#1| $ (-1149))) |%noBranch|) (IF (|has| |#1| (-1014 (-1149))) (-15 -3165 ($ |#1| (-1149))) |%noBranch|))) (-358)) (T -569)) +((-2252 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 *2)) (|:| |logand| (-1143 *2))))) (-5 *4 (-622 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-358)) (-5 *1 (-569 *2)))) (-2251 (*1 *2 *1) (-12 (-5 *1 (-569 *2)) (-4 *2 (-358)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 *3)) (|:| |logand| (-1143 *3))))) (-5 *1 (-569 *3)) (-4 *3 (-358)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-569 *3)) (-4 *3 (-358)))) (-2248 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-358)))) (-3165 (*1 *1 *2 *2) (-12 (-5 *1 (-569 *2)) (-4 *2 (-358)))) (-4170 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-569 *2)) (-4 *2 (-358)))) (-4170 (*1 *2 *1 *3) (-12 (-4 *2 (-358)) (-4 *2 (-876 *3)) (-5 *1 (-569 *2)) (-5 *3 (-1149)))) (-3165 (*1 *1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *1 (-569 *2)) (-4 *2 (-1014 *3)) (-4 *2 (-358))))) +(-13 (-698 (-402 (-538))) (-1014 |#1|) (-10 -8 (-15 -2252 ($ |#1| (-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) (-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2251 (|#1| $)) (-15 -2250 ((-622 (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 |#1|)) (|:| |logand| (-1143 |#1|)))) $)) (-15 -2249 ((-622 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2248 ((-112) $)) (-15 -3165 ($ |#1| |#1|)) (-15 -4170 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-876 (-1149))) (-15 -4170 (|#1| $ (-1149))) |%noBranch|) (IF (|has| |#1| (-1014 (-1149))) (-15 -3165 ($ |#1| (-1149))) |%noBranch|))) +((-4318 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|)) 30))) +(((-570 |#1| |#2|) (-10 -7 (-15 -4318 ((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|))) (-15 -4318 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4318 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4318 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-358) (-358)) (T -570)) +((-4318 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-570 *5 *6)))) (-4318 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-358)) (-4 *2 (-358)) (-5 *1 (-570 *5 *2)))) (-4318 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2251 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| -2251 *6) (|:| |coeff| *6))) (-5 *1 (-570 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-569 *5)) (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-569 *6)) (-5 *1 (-570 *5 *6))))) +(-10 -7 (-15 -4318 ((-569 |#2|) (-1 |#2| |#1|) (-569 |#1|))) (-15 -4318 ((-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2251 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -4318 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -4318 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3777 (((-569 |#2|) (-569 |#2|)) 40)) (-4323 (((-622 |#2|) (-569 |#2|)) 42)) (-2260 ((|#2| (-569 |#2|)) 48))) +(((-571 |#1| |#2|) (-10 -7 (-15 -3777 ((-569 |#2|) (-569 |#2|))) (-15 -4323 ((-622 |#2|) (-569 |#2|))) (-15 -2260 (|#2| (-569 |#2|)))) (-13 (-446) (-1014 (-538)) (-827) (-621 (-538))) (-13 (-29 |#1|) (-1171))) (T -571)) +((-2260 (*1 *2 *3) (-12 (-5 *3 (-569 *2)) (-4 *2 (-13 (-29 *4) (-1171))) (-5 *1 (-571 *4 *2)) (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-569 *5)) (-4 *5 (-13 (-29 *4) (-1171))) (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-622 *5)) (-5 *1 (-571 *4 *5)))) (-3777 (*1 *2 *2) (-12 (-5 *2 (-569 *4)) (-4 *4 (-13 (-29 *3) (-1171))) (-4 *3 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *1 (-571 *3 *4))))) +(-10 -7 (-15 -3777 ((-569 |#2|) (-569 |#2|))) (-15 -4323 ((-622 |#2|) (-569 |#2|))) (-15 -2260 (|#2| (-569 |#2|)))) +((-2256 (((-112) |#1|) 16)) (-2257 (((-3 |#1| "failed") |#1|) 14)) (-2254 (((-2 (|:| -3027 |#1|) (|:| -2493 (-751))) |#1|) 31) (((-3 |#1| "failed") |#1| (-751)) 18)) (-2253 (((-112) |#1| (-751)) 19)) (-2258 ((|#1| |#1|) 32)) (-2255 ((|#1| |#1| (-751)) 34))) +(((-572 |#1|) (-10 -7 (-15 -2253 ((-112) |#1| (-751))) (-15 -2254 ((-3 |#1| "failed") |#1| (-751))) (-15 -2254 ((-2 (|:| -3027 |#1|) (|:| -2493 (-751))) |#1|)) (-15 -2255 (|#1| |#1| (-751))) (-15 -2256 ((-112) |#1|)) (-15 -2257 ((-3 |#1| "failed") |#1|)) (-15 -2258 (|#1| |#1|))) (-537)) (T -572)) +((-2258 (*1 *2 *2) (-12 (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-2257 (*1 *2 *2) (|partial| -12 (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537)))) (-2255 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-2254 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3027 *3) (|:| -2493 (-751)))) (-5 *1 (-572 *3)) (-4 *3 (-537)))) (-2254 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537))))) +(-10 -7 (-15 -2253 ((-112) |#1| (-751))) (-15 -2254 ((-3 |#1| "failed") |#1| (-751))) (-15 -2254 ((-2 (|:| -3027 |#1|) (|:| -2493 (-751))) |#1|)) (-15 -2255 (|#1| |#1| (-751))) (-15 -2256 ((-112) |#1|)) (-15 -2257 ((-3 |#1| "failed") |#1|)) (-15 -2258 (|#1| |#1|))) +((-2259 (((-1143 |#1|) (-895)) 27))) +(((-573 |#1|) (-10 -7 (-15 -2259 ((-1143 |#1|) (-895)))) (-345)) (T -573)) +((-2259 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-573 *4)) (-4 *4 (-345))))) +(-10 -7 (-15 -2259 ((-1143 |#1|) (-895)))) +((-3777 (((-569 (-402 (-922 |#1|))) (-569 (-402 (-922 |#1|)))) 27)) (-4172 (((-3 (-309 |#1|) (-622 (-309 |#1|))) (-402 (-922 |#1|)) (-1149)) 34 (|has| |#1| (-145)))) (-4323 (((-622 (-309 |#1|)) (-569 (-402 (-922 |#1|)))) 19)) (-2261 (((-309 |#1|) (-402 (-922 |#1|)) (-1149)) 32 (|has| |#1| (-145)))) (-2260 (((-309 |#1|) (-569 (-402 (-922 |#1|)))) 21))) +(((-574 |#1|) (-10 -7 (-15 -3777 ((-569 (-402 (-922 |#1|))) (-569 (-402 (-922 |#1|))))) (-15 -4323 ((-622 (-309 |#1|)) (-569 (-402 (-922 |#1|))))) (-15 -2260 ((-309 |#1|) (-569 (-402 (-922 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4172 ((-3 (-309 |#1|) (-622 (-309 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -2261 ((-309 |#1|) (-402 (-922 |#1|)) (-1149)))) |%noBranch|)) (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (T -574)) +((-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-309 *5)) (-5 *1 (-574 *5)))) (-4172 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-3 (-309 *5) (-622 (-309 *5)))) (-5 *1 (-574 *5)))) (-2260 (*1 *2 *3) (-12 (-5 *3 (-569 (-402 (-922 *4)))) (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-309 *4)) (-5 *1 (-574 *4)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-569 (-402 (-922 *4)))) (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-622 (-309 *4))) (-5 *1 (-574 *4)))) (-3777 (*1 *2 *2) (-12 (-5 *2 (-569 (-402 (-922 *3)))) (-4 *3 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *1 (-574 *3))))) +(-10 -7 (-15 -3777 ((-569 (-402 (-922 |#1|))) (-569 (-402 (-922 |#1|))))) (-15 -4323 ((-622 (-309 |#1|)) (-569 (-402 (-922 |#1|))))) (-15 -2260 ((-309 |#1|) (-569 (-402 (-922 |#1|))))) (IF (|has| |#1| (-145)) (PROGN (-15 -4172 ((-3 (-309 |#1|) (-622 (-309 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -2261 ((-309 |#1|) (-402 (-922 |#1|)) (-1149)))) |%noBranch|)) +((-2263 (((-622 (-669 (-538))) (-622 (-538)) (-622 (-878 (-538)))) 46) (((-622 (-669 (-538))) (-622 (-538))) 47) (((-669 (-538)) (-622 (-538)) (-878 (-538))) 42)) (-2262 (((-751) (-622 (-538))) 40))) +(((-575) (-10 -7 (-15 -2262 ((-751) (-622 (-538)))) (-15 -2263 ((-669 (-538)) (-622 (-538)) (-878 (-538)))) (-15 -2263 ((-622 (-669 (-538))) (-622 (-538)))) (-15 -2263 ((-622 (-669 (-538))) (-622 (-538)) (-622 (-878 (-538))))))) (T -575)) +((-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-538))) (-5 *4 (-622 (-878 (-538)))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-575)))) (-2263 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-575)))) (-2263 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-538))) (-5 *4 (-878 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-575)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-751)) (-5 *1 (-575))))) +(-10 -7 (-15 -2262 ((-751) (-622 (-538)))) (-15 -2263 ((-669 (-538)) (-622 (-538)) (-878 (-538)))) (-15 -2263 ((-622 (-669 (-538))) (-622 (-538)))) (-15 -2263 ((-622 (-669 (-538))) (-622 (-538)) (-622 (-878 (-538)))))) +((-3564 (((-622 |#5|) |#5| (-112)) 73)) (-2264 (((-112) |#5| (-622 |#5|)) 30))) +(((-576 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3564 ((-622 |#5|) |#5| (-112))) (-15 -2264 ((-112) |#5| (-622 |#5|)))) (-13 (-302) (-145)) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -576)) +((-2264 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-576 *5 *6 *7 *8 *3)))) (-3564 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-622 *3)) (-5 *1 (-576 *5 *6 *7 *8 *3)) (-4 *3 (-1082 *5 *6 *7 *8))))) +(-10 -7 (-15 -3564 ((-622 |#5|) |#5| (-112))) (-15 -2264 ((-112) |#5| (-622 |#5|)))) +((-2898 (((-112) $ $) NIL)) (-3882 (((-1108) $) 11)) (-3883 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-577) (-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))) (T -577)) +((-3883 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577))))) +(-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $)))) +((-2898 (((-112) $ $) NIL (|has| (-142) (-1074)))) (-3785 (($ $) 34)) (-3786 (($ $) NIL)) (-3776 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-3783 (((-112) $ $) 51)) (-3782 (((-112) $ $ (-538)) 46)) (-3777 (((-622 $) $ (-142)) 60) (((-622 $) $ (-139)) 61)) (-1848 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-827)))) (-1846 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-142) (-827))))) (-3242 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-142) $ (-538) (-142)) 45 (|has| $ (-6 -4354))) (((-142) $ (-1198 (-538)) (-142)) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-3774 (($ $ (-142)) 64) (($ $ (-139)) 65)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-3779 (($ $ (-1198 (-538)) $) 44)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-3765 (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353)))) (-1637 (((-142) $ (-538) (-142)) NIL (|has| $ (-6 -4354)))) (-3448 (((-142) $ (-538)) NIL)) (-3784 (((-112) $ $) 72)) (-3778 (((-538) (-1 (-112) (-142)) $) NIL) (((-538) (-142) $) NIL (|has| (-142) (-1074))) (((-538) (-142) $ (-538)) 48 (|has| (-142) (-1074))) (((-538) $ $ (-538)) 47) (((-538) (-139) $ (-538)) 50)) (-2068 (((-622 (-142)) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) (-142)) 9)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 28 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| (-142) (-827)))) (-3872 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-827)))) (-2511 (((-622 (-142)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2308 (((-538) $) 42 (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-142) (-827)))) (-3780 (((-112) $ $ (-142)) 73)) (-3781 (((-751) $ $ (-142)) 70)) (-2072 (($ (-1 (-142) (-142)) $) 33 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3787 (($ $) 37)) (-3788 (($ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3775 (($ $ (-142)) 62) (($ $ (-139)) 63)) (-3593 (((-1131) $) 38 (|has| (-142) (-1074)))) (-2382 (($ (-142) $ (-538)) NIL) (($ $ $ (-538)) 23)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-538) $) 69) (((-1093) $) NIL (|has| (-142) (-1074)))) (-4160 (((-142) $) NIL (|has| (-538) (-827)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2306 (($ $ (-142)) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-288 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-622 (-142)) (-622 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2312 (((-622 (-142)) $) NIL)) (-3762 (((-112) $) 12)) (-3928 (($) 10)) (-4159 (((-142) $ (-538) (-142)) NIL) (((-142) $ (-538)) 52) (($ $ (-1198 (-538))) 21) (($ $ $) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-1847 (($ $ $ (-538)) 66 (|has| $ (-6 -4354)))) (-3759 (($ $) 17)) (-4330 (((-527) $) NIL (|has| (-142) (-598 (-527))))) (-3884 (($ (-622 (-142))) NIL)) (-4161 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) 16) (($ (-622 $)) 67)) (-4317 (($ (-142)) NIL) (((-840) $) 27 (|has| (-142) (-597 (-840))))) (-2071 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-142) (-827)))) (-3387 (((-112) $ $) 14 (|has| (-142) (-1074)))) (-3017 (((-112) $ $) NIL (|has| (-142) (-827)))) (-3018 (((-112) $ $) 15 (|has| (-142) (-827)))) (-4316 (((-751) $) 13 (|has| $ (-6 -4353))))) +(((-578 |#1|) (-13 (-1117) (-10 -8 (-15 -3594 ((-538) $)))) (-538)) (T -578)) +((-3594 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-578 *3)) (-14 *3 *2)))) +(-13 (-1117) (-10 -8 (-15 -3594 ((-538) $)))) +((-3886 (((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2| (-1062 |#4|)) 32))) +(((-579 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3886 ((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2| (-1062 |#4|))) (-15 -3886 ((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2|))) (-773) (-827) (-545) (-926 |#3| |#1| |#2|)) (T -579)) +((-3886 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-538)))) (-5 *1 (-579 *5 *4 *6 *3)) (-4 *3 (-926 *6 *5 *4)))) (-3886 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1062 *3)) (-4 *3 (-926 *7 *6 *4)) (-4 *6 (-773)) (-4 *4 (-827)) (-4 *7 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-538)))) (-5 *1 (-579 *6 *4 *7 *3))))) +(-10 -7 (-15 -3886 ((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2| (-1062 |#4|))) (-15 -3886 ((-2 (|:| |num| |#4|) (|:| |den| (-538))) |#4| |#2|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 63)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-538)) 54) (($ $ (-538) (-538)) 55)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) 60)) (-2295 (($ $) 100)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2293 (((-840) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) (-1002 (-819 (-538))) (-1149) |#1| (-402 (-538))) 224)) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) 34)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3225 (((-112) $) NIL)) (-4131 (((-538) $) 58) (((-538) $ (-538)) 59)) (-2502 (((-112) $) NIL)) (-4136 (($ $ (-895)) 76)) (-4175 (($ (-1 |#1| (-538)) $) 73)) (-4297 (((-112) $) 25)) (-3226 (($ |#1| (-538)) 22) (($ $ (-1055) (-538)) NIL) (($ $ (-622 (-1055)) (-622 (-538))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) 67)) (-2299 (($ (-1002 (-819 (-538))) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) 13)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-4172 (($ $) 150 (|has| |#1| (-38 (-402 (-538)))))) (-2296 (((-3 $ "failed") $ $ (-112)) 99)) (-2294 (($ $ $) 108)) (-3594 (((-1093) $) NIL)) (-2297 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) 15)) (-2298 (((-1002 (-819 (-538))) $) 14)) (-4128 (($ $ (-538)) 45)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-538)))))) (-4159 ((|#1| $ (-538)) 57) (($ $ $) NIL (|has| (-538) (-1085)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (-4307 (((-538) $) NIL)) (-3224 (($ $) 46)) (-4317 (((-840) $) NIL) (($ (-538)) 28) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 27 (|has| |#1| (-170)))) (-4040 ((|#1| $ (-538)) 56)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) 37)) (-4132 ((|#1| $) NIL)) (-2274 (($ $) 186 (|has| |#1| (-38 (-402 (-538)))))) (-2286 (($ $) 158 (|has| |#1| (-38 (-402 (-538)))))) (-2276 (($ $) 190 (|has| |#1| (-38 (-402 (-538)))))) (-2288 (($ $) 163 (|has| |#1| (-38 (-402 (-538)))))) (-2272 (($ $) 189 (|has| |#1| (-38 (-402 (-538)))))) (-2284 (($ $) 162 (|has| |#1| (-38 (-402 (-538)))))) (-2291 (($ $ (-402 (-538))) 166 (|has| |#1| (-38 (-402 (-538)))))) (-2292 (($ $ |#1|) 146 (|has| |#1| (-38 (-402 (-538)))))) (-2289 (($ $) 192 (|has| |#1| (-38 (-402 (-538)))))) (-2290 (($ $) 149 (|has| |#1| (-38 (-402 (-538)))))) (-2271 (($ $) 191 (|has| |#1| (-38 (-402 (-538)))))) (-2283 (($ $) 164 (|has| |#1| (-38 (-402 (-538)))))) (-2273 (($ $) 187 (|has| |#1| (-38 (-402 (-538)))))) (-2285 (($ $) 160 (|has| |#1| (-38 (-402 (-538)))))) (-2275 (($ $) 188 (|has| |#1| (-38 (-402 (-538)))))) (-2287 (($ $) 161 (|has| |#1| (-38 (-402 (-538)))))) (-2268 (($ $) 197 (|has| |#1| (-38 (-402 (-538)))))) (-2280 (($ $) 173 (|has| |#1| (-38 (-402 (-538)))))) (-2270 (($ $) 194 (|has| |#1| (-38 (-402 (-538)))))) (-2282 (($ $) 168 (|has| |#1| (-38 (-402 (-538)))))) (-2266 (($ $) 201 (|has| |#1| (-38 (-402 (-538)))))) (-2278 (($ $) 177 (|has| |#1| (-38 (-402 (-538)))))) (-2265 (($ $) 203 (|has| |#1| (-38 (-402 (-538)))))) (-2277 (($ $) 179 (|has| |#1| (-38 (-402 (-538)))))) (-2267 (($ $) 199 (|has| |#1| (-38 (-402 (-538)))))) (-2279 (($ $) 175 (|has| |#1| (-38 (-402 (-538)))))) (-2269 (($ $) 196 (|has| |#1| (-38 (-402 (-538)))))) (-2281 (($ $) 171 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-4129 ((|#1| $ (-538)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-2991 (($) 29 T CONST)) (-2997 (($) 38 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (-3387 (((-112) $ $) 65)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) 84) (($ $ $) 64)) (-4199 (($ $ $) 81)) (** (($ $ (-895)) NIL) (($ $ (-751)) 103)) (* (($ (-895) $) 89) (($ (-751) $) 87) (($ (-538) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-580 |#1|) (-13 (-1210 |#1| (-538)) (-10 -8 (-15 -2299 ($ (-1002 (-819 (-538))) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))))) (-15 -2298 ((-1002 (-819 (-538))) $)) (-15 -2297 ((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $)) (-15 -4178 ($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))))) (-15 -4297 ((-112) $)) (-15 -4175 ($ (-1 |#1| (-538)) $)) (-15 -2296 ((-3 $ "failed") $ $ (-112))) (-15 -2295 ($ $)) (-15 -2294 ($ $ $)) (-15 -2293 ((-840) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) (-1002 (-819 (-538))) (-1149) |#1| (-402 (-538)))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $)) (-15 -2292 ($ $ |#1|)) (-15 -2291 ($ $ (-402 (-538)))) (-15 -2290 ($ $)) (-15 -2289 ($ $)) (-15 -2288 ($ $)) (-15 -2287 ($ $)) (-15 -2286 ($ $)) (-15 -2285 ($ $)) (-15 -2284 ($ $)) (-15 -2283 ($ $)) (-15 -2282 ($ $)) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $))) |%noBranch|))) (-1025)) (T -580)) +((-4297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2299 (*1 *1 *2 *3) (-12 (-5 *2 (-1002 (-819 (-538)))) (-5 *3 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *4)))) (-4 *4 (-1025)) (-5 *1 (-580 *4)))) (-2298 (*1 *2 *1) (-12 (-5 *2 (-1002 (-819 (-538)))) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2297 (*1 *2 *1) (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-4 *3 (-1025)) (-5 *1 (-580 *3)))) (-4175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-538))) (-4 *3 (-1025)) (-5 *1 (-580 *3)))) (-2296 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) (-2295 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))) (-2294 (*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025)))) (-2293 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *6)))) (-5 *4 (-1002 (-819 (-538)))) (-5 *5 (-1149)) (-5 *7 (-402 (-538))) (-4 *6 (-1025)) (-5 *2 (-840)) (-5 *1 (-580 *6)))) (-4172 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2292 (*1 *1 *1 *2) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2291 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-580 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1025)))) (-2290 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2289 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2288 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2287 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2286 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2285 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2283 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2281 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2280 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2278 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2277 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2276 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2275 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2273 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2272 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2271 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2270 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2268 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) +(-13 (-1210 |#1| (-538)) (-10 -8 (-15 -2299 ($ (-1002 (-819 (-538))) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))))) (-15 -2298 ((-1002 (-819 (-538))) $)) (-15 -2297 ((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $)) (-15 -4178 ($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))))) (-15 -4297 ((-112) $)) (-15 -4175 ($ (-1 |#1| (-538)) $)) (-15 -2296 ((-3 $ "failed") $ $ (-112))) (-15 -2295 ($ $)) (-15 -2294 ($ $ $)) (-15 -2293 ((-840) (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) (-1002 (-819 (-538))) (-1149) |#1| (-402 (-538)))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $)) (-15 -2292 ($ $ |#1|)) (-15 -2291 ($ $ (-402 (-538)))) (-15 -2290 ($ $)) (-15 -2289 ($ $)) (-15 -2288 ($ $)) (-15 -2287 ($ $)) (-15 -2286 ($ $)) (-15 -2285 ($ $)) (-15 -2284 ($ $)) (-15 -2283 ($ $)) (-15 -2282 ($ $)) (-15 -2281 ($ $)) (-15 -2280 ($ $)) (-15 -2279 ($ $)) (-15 -2278 ($ $)) (-15 -2277 ($ $)) (-15 -2276 ($ $)) (-15 -2275 ($ $)) (-15 -2274 ($ $)) (-15 -2273 ($ $)) (-15 -2272 ($ $)) (-15 -2271 ($ $)) (-15 -2270 ($ $)) (-15 -2269 ($ $)) (-15 -2268 ($ $)) (-15 -2267 ($ $)) (-15 -2266 ($ $)) (-15 -2265 ($ $))) |%noBranch|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4178 (($ (-1126 |#1|)) 9)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) 42)) (-3225 (((-112) $) 52)) (-4131 (((-751) $) 55) (((-751) $ (-751)) 54)) (-2502 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ "failed") $ $) 44 (|has| |#1| (-545)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-1126 |#1|) $) 23)) (-3461 (((-751)) 51)) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 10 T CONST)) (-2997 (($) 14 T CONST)) (-3387 (((-112) $ $) 22)) (-4197 (($ $) 30) (($ $ $) 16)) (-4199 (($ $ $) 25)) (** (($ $ (-895)) NIL) (($ $ (-751)) 49)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-538)) 36))) +(((-581 |#1|) (-13 (-1025) (-10 -8 (-15 -4177 ((-1126 |#1|) $)) (-15 -4178 ($ (-1126 |#1|))) (-15 -3225 ((-112) $)) (-15 -4131 ((-751) $)) (-15 -4131 ((-751) $ (-751))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-538))) (IF (|has| |#1| (-545)) (-6 (-545)) |%noBranch|))) (-1025)) (T -581)) +((-4177 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-581 *3)))) (-3225 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (-4131 (*1 *2 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-581 *3)) (-4 *3 (-1025))))) +(-13 (-1025) (-10 -8 (-15 -4177 ((-1126 |#1|) $)) (-15 -4178 ($ (-1126 |#1|))) (-15 -3225 ((-112) $)) (-15 -4131 ((-751) $)) (-15 -4131 ((-751) $ (-751))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-538))) (IF (|has| |#1| (-545)) (-6 (-545)) |%noBranch|))) +((-4318 (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 15))) +(((-582 |#1| |#2|) (-10 -7 (-15 -4318 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) (-1185) (-1185)) (T -582)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-585 *6)) (-5 *1 (-582 *5 *6))))) +(-10 -7 (-15 -4318 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)))) +((-4318 (((-1126 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1126 |#2|)) 20) (((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-585 |#2|)) 19) (((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|)) 18))) +(((-583 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|))) (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-585 |#2|))) (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1126 |#2|)))) (-1185) (-1185) (-1185)) (T -583)) +((-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-1126 *7)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8)) (-5 *1 (-583 *6 *7 *8)))) (-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1126 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8)) (-5 *1 (-583 *6 *7 *8)))) (-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-585 *8)) (-5 *1 (-583 *6 *7 *8))))) +(-10 -7 (-15 -4318 ((-585 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-585 |#2|))) (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-585 |#2|))) (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-585 |#1|) (-1126 |#2|)))) +((-2304 ((|#3| |#3| (-622 (-595 |#3|)) (-622 (-1149))) 55)) (-2303 (((-166 |#2|) |#3|) 117)) (-2300 ((|#3| (-166 |#2|)) 44)) (-2301 ((|#2| |#3|) 19)) (-2302 ((|#3| |#2|) 33))) +(((-584 |#1| |#2| |#3|) (-10 -7 (-15 -2300 (|#3| (-166 |#2|))) (-15 -2301 (|#2| |#3|)) (-15 -2302 (|#3| |#2|)) (-15 -2303 ((-166 |#2|) |#3|)) (-15 -2304 (|#3| |#3| (-622 (-595 |#3|)) (-622 (-1149))))) (-13 (-545) (-827)) (-13 (-416 |#1|) (-978) (-1171)) (-13 (-416 (-166 |#1|)) (-978) (-1171))) (T -584)) +((-2304 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-622 (-595 *2))) (-5 *4 (-622 (-1149))) (-4 *2 (-13 (-416 (-166 *5)) (-978) (-1171))) (-4 *5 (-13 (-545) (-827))) (-5 *1 (-584 *5 *6 *2)) (-4 *6 (-13 (-416 *5) (-978) (-1171))))) (-2303 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827))) (-5 *2 (-166 *5)) (-5 *1 (-584 *4 *5 *3)) (-4 *5 (-13 (-416 *4) (-978) (-1171))) (-4 *3 (-13 (-416 (-166 *4)) (-978) (-1171))))) (-2302 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827))) (-4 *2 (-13 (-416 (-166 *4)) (-978) (-1171))) (-5 *1 (-584 *4 *3 *2)) (-4 *3 (-13 (-416 *4) (-978) (-1171))))) (-2301 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-827))) (-4 *2 (-13 (-416 *4) (-978) (-1171))) (-5 *1 (-584 *4 *2 *3)) (-4 *3 (-13 (-416 (-166 *4)) (-978) (-1171))))) (-2300 (*1 *2 *3) (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-416 *4) (-978) (-1171))) (-4 *4 (-13 (-545) (-827))) (-4 *2 (-13 (-416 (-166 *4)) (-978) (-1171))) (-5 *1 (-584 *4 *5 *2))))) +(-10 -7 (-15 -2300 (|#3| (-166 |#2|))) (-15 -2301 (|#2| |#3|)) (-15 -2302 (|#3| |#2|)) (-15 -2303 ((-166 |#2|) |#3|)) (-15 -2304 (|#3| |#3| (-622 (-595 |#3|)) (-622 (-1149))))) +((-4073 (($ (-1 (-112) |#1|) $) 17)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3811 (($ (-1 |#1| |#1|) |#1|) 9)) (-3810 (($ (-1 (-112) |#1|) $) 13)) (-3809 (($ (-1 (-112) |#1|) $) 15)) (-3884 (((-1126 |#1|) $) 18)) (-4317 (((-840) $) NIL))) +(((-585 |#1|) (-13 (-597 (-840)) (-10 -8 (-15 -4318 ($ (-1 |#1| |#1|) $)) (-15 -3810 ($ (-1 (-112) |#1|) $)) (-15 -3809 ($ (-1 (-112) |#1|) $)) (-15 -4073 ($ (-1 (-112) |#1|) $)) (-15 -3811 ($ (-1 |#1| |#1|) |#1|)) (-15 -3884 ((-1126 |#1|) $)))) (-1185)) (T -585)) +((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) (-3811 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1185))))) +(-13 (-597 (-840)) (-10 -8 (-15 -4318 ($ (-1 |#1| |#1|) $)) (-15 -3810 ($ (-1 (-112) |#1|) $)) (-15 -3809 ($ (-1 (-112) |#1|) $)) (-15 -4073 ($ (-1 (-112) |#1|) $)) (-15 -3811 ($ (-1 |#1| |#1|) |#1|)) (-15 -3884 ((-1126 |#1|) $)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751)) NIL (|has| |#1| (-23)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4195 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4192 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-4079 (((-112) $ (-751)) NIL)) (-4193 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-4196 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-1025)))) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4197 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4199 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-538) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-586 |#1| |#2|) (-1230 |#1|) (-1185) (-538)) (T -586)) +NIL +(-1230 |#1|) +((-2305 (((-1237) $ |#2| |#2|) 36)) (-2307 ((|#2| $) 23)) (-2308 ((|#2| $) 21)) (-2072 (($ (-1 |#3| |#3|) $) 32)) (-4318 (($ (-1 |#3| |#3|) $) 30)) (-4160 ((|#3| $) 26)) (-2306 (($ $ |#3|) 33)) (-2309 (((-112) |#3| $) 17)) (-2312 (((-622 |#3|) $) 15)) (-4159 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-587 |#1| |#2| |#3|) (-10 -8 (-15 -2305 ((-1237) |#1| |#2| |#2|)) (-15 -2306 (|#1| |#1| |#3|)) (-15 -4160 (|#3| |#1|)) (-15 -2307 (|#2| |#1|)) (-15 -2308 (|#2| |#1|)) (-15 -2309 ((-112) |#3| |#1|)) (-15 -2312 ((-622 |#3|) |#1|)) (-15 -4159 (|#3| |#1| |#2|)) (-15 -4159 (|#3| |#1| |#2| |#3|)) (-15 -2072 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4318 (|#1| (-1 |#3| |#3|) |#1|))) (-588 |#2| |#3|) (-1074) (-1185)) (T -587)) +NIL +(-10 -8 (-15 -2305 ((-1237) |#1| |#2| |#2|)) (-15 -2306 (|#1| |#1| |#3|)) (-15 -4160 (|#3| |#1|)) (-15 -2307 (|#2| |#1|)) (-15 -2308 (|#2| |#1|)) (-15 -2309 ((-112) |#3| |#1|)) (-15 -2312 ((-622 |#3|) |#1|)) (-15 -4159 (|#3| |#1| |#2|)) (-15 -4159 (|#3| |#1| |#2| |#3|)) (-15 -2072 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4318 (|#1| (-1 |#3| |#3|) |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#2| (-1074)))) (-2305 (((-1237) $ |#1| |#1|) 40 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-1637 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) 51)) (-2068 (((-622 |#2|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2307 ((|#1| $) 43 (|has| |#1| (-827)))) (-2511 (((-622 |#2|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-2308 ((|#1| $) 44 (|has| |#1| (-827)))) (-2072 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#2| (-1074)))) (-2310 (((-622 |#1|) $) 46)) (-2311 (((-112) |#1| $) 47)) (-3594 (((-1093) $) 21 (|has| |#2| (-1074)))) (-4160 ((|#2| $) 42 (|has| |#1| (-827)))) (-2306 (($ $ |#2|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) 26 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) 25 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) 23 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2069 (((-751) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4353))) (((-751) |#2| $) 28 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#2| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#2| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-588 |#1| |#2|) (-138) (-1074) (-1185)) (T -588)) +((-2312 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-622 *4)))) (-2311 (*1 *2 *3 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-112)))) (-2310 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-622 *3)))) (-2309 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-588 *4 *3)) (-4 *4 (-1074)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-2308 (*1 *2 *1) (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1185)) (-4 *2 (-1074)) (-4 *2 (-827)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1185)) (-4 *2 (-1074)) (-4 *2 (-827)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1074)) (-4 *3 (-827)) (-4 *2 (-1185)))) (-2306 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) (-2305 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-1237))))) +(-13 (-483 |t#2|) (-283 |t#1| |t#2|) (-10 -8 (-15 -2312 ((-622 |t#2|) $)) (-15 -2311 ((-112) |t#1| $)) (-15 -2310 ((-622 |t#1|) $)) (IF (|has| |t#2| (-1074)) (IF (|has| $ (-6 -4353)) (-15 -2309 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827)) (PROGN (-15 -2308 (|t#1| $)) (-15 -2307 (|t#1| $)) (-15 -4160 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -2306 ($ $ |t#2|)) (-15 -2305 ((-1237) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#2| (-1074)) ((-597 (-840)) -3891 (|has| |#2| (-1074)) (|has| |#2| (-597 (-840)))) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-483 |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-1074) |has| |#2| (-1074)) ((-1185) . T)) +((-4317 (((-840) $) 19) (((-128) $) 14) (($ (-128)) 13))) +(((-589) (-13 (-597 (-840)) (-597 (-128)) (-10 -8 (-15 -4317 ($ (-128)))))) (T -589)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-589))))) +(-13 (-597 (-840)) (-597 (-128)) (-10 -8 (-15 -4317 ($ (-128))))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1186) $) 14) (($ (-622 (-1186))) 13)) (-2313 (((-622 (-1186)) $) 10)) (-3387 (((-112) $ $) NIL))) +(((-590) (-13 (-1056) (-597 (-1186)) (-10 -8 (-15 -4317 ($ (-622 (-1186)))) (-15 -2313 ((-622 (-1186)) $))))) (T -590)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-590)))) (-2313 (*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-590))))) +(-13 (-1056) (-597 (-1186)) (-10 -8 (-15 -4317 ($ (-622 (-1186)))) (-15 -2313 ((-622 (-1186)) $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1892 (((-3 $ #1="failed")) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3574 (((-1231 (-669 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-1231 (-669 |#1|)) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1845 (((-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-3896 (($) NIL T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1819 (((-3 $ #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1907 (((-669 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1843 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1905 (((-669 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2496 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2022 (((-1143 (-922 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-358))))) (-2499 (($ $ (-895)) NIL)) (-1841 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1821 (((-1143 |#1|) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1909 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1839 (((-1143 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1833 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1911 (($ (-1231 |#1|)) NIL (|has| |#2| (-413 |#1|))) (($ (-1231 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-3821 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-3444 (((-895)) NIL (|has| |#2| (-362 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2524 (($ $ (-895)) NIL)) (-1826 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1820 (((-3 $ #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1908 (((-669 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1844 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1906 (((-669 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2497 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2026 (((-1143 (-922 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-358))))) (-2498 (($ $ (-895)) NIL)) (-1842 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1822 (((-1143 |#1|) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1910 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1840 (((-1143 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1834 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3593 (((-1131) $) NIL)) (-1825 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1827 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3594 (((-1093) $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4159 ((|#1| $ (-538)) NIL (|has| |#2| (-413 |#1|)))) (-3575 (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-413 |#1|))) (((-1231 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $) (-1231 $)) NIL (|has| |#2| (-362 |#1|))) (((-1231 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-4330 (($ (-1231 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-1231 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-2014 (((-622 (-922 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-622 (-922 |#1|)) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2686 (($ $ $) NIL)) (-1838 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4317 (((-840) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2128 (((-1231 $)) NIL (|has| |#2| (-413 |#1|)))) (-1823 (((-622 (-1231 |#1|))) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2687 (($ $ $ $) NIL)) (-1836 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2880 (($ (-669 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-2685 (($ $ $) NIL)) (-1837 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1835 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1831 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2991 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) 24)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-591 |#1| |#2|) (-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -4317 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-725 |#1|)) (T -591)) +((-4317 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-591 *3 *2)) (-4 *2 (-725 *3))))) +(-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -4317 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) +((-2898 (((-112) $ $) NIL)) (-1813 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) 33)) (-3960 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL) (($) NIL)) (-2305 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-1131) |#1|) 43)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#1| #1="failed") (-1131) $) 46)) (-3896 (($) NIL T CONST)) (-1817 (($ $ (-1131)) 24)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-3764 (((-3 |#1| #1#) (-1131) $) 47) (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (|has| $ (-6 -4353)))) (-3765 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-4202 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-1814 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) 32)) (-1637 ((|#1| $ (-1131) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-1131)) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2355 (($ $) 48)) (-1818 (($ (-383)) 22) (($ (-383) (-1131)) 21)) (-3905 (((-383) $) 34)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353))) (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (((-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-2308 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-2744 (((-622 (-1131)) $) 39)) (-2315 (((-112) (-1131) $) NIL)) (-1815 (((-1131) $) 35)) (-1333 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-2310 (((-622 (-1131)) $) NIL)) (-2311 (((-112) (-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 ((|#1| $) NIL (|has| (-1131) (-827)))) (-1399 (((-3 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) "failed") (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-622 (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 37)) (-4159 ((|#1| $ (-1131) |#1|) NIL) ((|#1| $ (-1131)) 42)) (-1523 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL) (($) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (((-751) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (((-751) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-4317 (((-840) $) 20)) (-1816 (($ $) 25)) (-1335 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 19)) (-4316 (((-751) $) 41 (|has| $ (-6 -4353))))) +(((-592 |#1|) (-13 (-360 (-383) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) (-1162 (-1131) |#1|) (-10 -8 (-6 -4353) (-15 -2355 ($ $)))) (-1074)) (T -592)) +((-2355 (*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1074))))) +(-13 (-360 (-383) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) (-1162 (-1131) |#1|) (-10 -8 (-6 -4353) (-15 -2355 ($ $)))) +((-3596 (((-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) 15)) (-2744 (((-622 |#2|) $) 19)) (-2315 (((-112) |#2| $) 12))) +(((-593 |#1| |#2| |#3|) (-10 -8 (-15 -2744 ((-622 |#2|) |#1|)) (-15 -2315 ((-112) |#2| |#1|)) (-15 -3596 ((-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|))) (-594 |#2| |#3|) (-1074) (-1074)) (T -593)) +NIL +(-10 -8 (-15 -2744 ((-622 |#2|) |#1|)) (-15 -2315 ((-112) |#2| |#1|)) (-15 -3596 ((-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|))) +((-2898 (((-112) $ $) 19 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 55 (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| "failed") |#1| $) 61)) (-3896 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| "failed") |#1| $) 62)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 54 (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 56 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-2744 (((-622 |#1|) $) 63)) (-2315 (((-112) |#1| $) 64)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 39)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 40)) (-3594 (((-1093) $) 21 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 51)) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 41)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) 26 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 25 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 24 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 23 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-1523 (($) 49) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 48)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 50)) (-4317 (((-840) $) 18 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 42)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-594 |#1| |#2|) (-138) (-1074) (-1074)) (T -594)) +((-2315 (*1 *2 *3 *1) (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-112)))) (-2744 (*1 *2 *1) (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-622 *3)))) (-3764 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))) (-2314 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074))))) +(-13 (-225 (-2 (|:| -4220 |t#1|) (|:| -2191 |t#2|))) (-10 -8 (-15 -2315 ((-112) |t#1| $)) (-15 -2744 ((-622 |t#1|) $)) (-15 -3764 ((-3 |t#2| "failed") |t#1| $)) (-15 -2314 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-106 #1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((-101) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) ((-597 (-840)) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840)))) ((-149 #1#) . T) ((-598 (-527)) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))) ((-225 #1#) . T) ((-231 #1#) . T) ((-304 #1#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-483 #1#) . T) ((-507 #1# #1#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-1074) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-2316 (((-3 (-1149) "failed") $) 37)) (-1369 (((-1237) $ (-751)) 26)) (-3778 (((-751) $) 25)) (-3380 (((-113) $) 12)) (-3905 (((-1149) $) 20)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2317 (($ (-113) (-622 |#1|) (-751)) 30) (($ (-1149)) 31)) (-2964 (((-112) $ (-113)) 18) (((-112) $ (-1149)) 16)) (-2933 (((-751) $) 22)) (-3594 (((-1093) $) NIL)) (-4330 (((-866 (-538)) $) 77 (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) 84 (|has| |#1| (-598 (-866 (-373))))) (((-527) $) 69 (|has| |#1| (-598 (-527))))) (-4317 (((-840) $) 55)) (-2318 (((-622 |#1|) $) 24)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 41)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 42))) +(((-595 |#1|) (-13 (-131) (-860 |#1|) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -3380 ((-113) $)) (-15 -2318 ((-622 |#1|) $)) (-15 -2933 ((-751) $)) (-15 -2317 ($ (-113) (-622 |#1|) (-751))) (-15 -2317 ($ (-1149))) (-15 -2316 ((-3 (-1149) "failed") $)) (-15 -2964 ((-112) $ (-113))) (-15 -2964 ((-112) $ (-1149))) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|))) (-827)) (T -595)) +((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-2318 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-2317 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-113)) (-5 *3 (-622 *5)) (-5 *4 (-751)) (-4 *5 (-827)) (-5 *1 (-595 *5)))) (-2317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-2316 (*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-595 *4)) (-4 *4 (-827)))) (-2964 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-595 *4)) (-4 *4 (-827))))) +(-13 (-131) (-860 |#1|) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -3380 ((-113) $)) (-15 -2318 ((-622 |#1|) $)) (-15 -2933 ((-751) $)) (-15 -2317 ($ (-113) (-622 |#1|) (-751))) (-15 -2317 ($ (-1149))) (-15 -2316 ((-3 (-1149) "failed") $)) (-15 -2964 ((-112) $ (-113))) (-15 -2964 ((-112) $ (-1149))) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|))) +((-2319 (((-595 |#2|) |#1|) 15)) (-2320 (((-3 |#1| "failed") (-595 |#2|)) 19))) +(((-596 |#1| |#2|) (-10 -7 (-15 -2319 ((-595 |#2|) |#1|)) (-15 -2320 ((-3 |#1| "failed") (-595 |#2|)))) (-827) (-827)) (T -596)) +((-2320 (*1 *2 *3) (|partial| -12 (-5 *3 (-595 *4)) (-4 *4 (-827)) (-4 *2 (-827)) (-5 *1 (-596 *2 *4)))) (-2319 (*1 *2 *3) (-12 (-5 *2 (-595 *4)) (-5 *1 (-596 *3 *4)) (-4 *3 (-827)) (-4 *4 (-827))))) +(-10 -7 (-15 -2319 ((-595 |#2|) |#1|)) (-15 -2320 ((-3 |#1| "failed") (-595 |#2|)))) +((-4317 ((|#1| $) 6))) +(((-597 |#1|) (-138) (-1185)) (T -597)) +((-4317 (*1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1185))))) +(-13 (-10 -8 (-15 -4317 (|t#1| $)))) +((-4330 ((|#1| $) 6))) +(((-598 |#1|) (-138) (-1185)) (T -598)) +((-4330 (*1 *2 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1185))))) +(-13 (-10 -8 (-15 -4330 (|t#1| $)))) +((-2321 (((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-400 |#2|) |#2|)) 15) (((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 16))) +(((-599 |#1| |#2|) (-10 -7 (-15 -2321 ((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -2321 ((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-400 |#2|) |#2|)))) (-13 (-145) (-27) (-1014 (-538)) (-1014 (-402 (-538)))) (-1207 |#1|)) (T -599)) +((-2321 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-145) (-27) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-1143 (-402 *6))) (-5 *1 (-599 *5 *6)) (-5 *3 (-402 *6)))) (-2321 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-145) (-27) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-1143 (-402 *5))) (-5 *1 (-599 *4 *5)) (-5 *3 (-402 *5))))) +(-10 -7 (-15 -2321 ((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|))) (-15 -2321 ((-3 (-1143 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 (-400 |#2|) |#2|)))) +((-2898 (((-112) $ $) NIL)) (-2323 (($) 11 T CONST)) (-2322 (($) 12 T CONST)) (-3190 (($ $ $) 24)) (-3676 (($ $) 22)) (-3593 (((-1131) $) NIL)) (-3189 (($ $ $) 25)) (-3594 (((-1093) $) NIL)) (-2324 (($) 10 T CONST)) (-3188 (($ $ $) 26)) (-4317 (((-840) $) 30)) (-3929 (((-112) $ (|[\|\|]| -2324)) 19) (((-112) $ (|[\|\|]| -2323)) 21) (((-112) $ (|[\|\|]| -2322)) 17)) (-3191 (($ $ $) 23)) (-3387 (((-112) $ $) 15))) +(((-600) (-13 (-943) (-10 -8 (-15 -2324 ($) -4311) (-15 -2323 ($) -4311) (-15 -2322 ($) -4311) (-15 -3929 ((-112) $ (|[\|\|]| -2324))) (-15 -3929 ((-112) $ (|[\|\|]| -2323))) (-15 -3929 ((-112) $ (|[\|\|]| -2322)))))) (T -600)) +((-2324 (*1 *1) (-5 *1 (-600))) (-2323 (*1 *1) (-5 *1 (-600))) (-2322 (*1 *1) (-5 *1 (-600))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2324)) (-5 *2 (-112)) (-5 *1 (-600)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2323)) (-5 *2 (-112)) (-5 *1 (-600)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2322)) (-5 *2 (-112)) (-5 *1 (-600))))) +(-13 (-943) (-10 -8 (-15 -2324 ($) -4311) (-15 -2323 ($) -4311) (-15 -2322 ($) -4311) (-15 -3929 ((-112) $ (|[\|\|]| -2324))) (-15 -3929 ((-112) $ (|[\|\|]| -2323))) (-15 -3929 ((-112) $ (|[\|\|]| -2322))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3986 (((-538) $) NIL (|has| |#1| (-825)))) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-3537 (((-112) $) NIL (|has| |#1| (-825)))) (-2502 (((-112) $) NIL)) (-3331 ((|#1| $) 13)) (-3538 (((-112) $) NIL (|has| |#1| (-825)))) (-3677 (($ $ $) NIL (|has| |#1| (-825)))) (-3678 (($ $ $) NIL (|has| |#1| (-825)))) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3330 ((|#3| $) 15)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL)) (-3461 (((-751)) 20)) (-3742 (($ $) NIL (|has| |#1| (-825)))) (-2991 (($) NIL T CONST)) (-2997 (($) 12 T CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4308 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-601 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (-15 -4308 ($ $ |#3|)) (-15 -4308 ($ |#1| |#3|)) (-15 -3331 (|#1| $)) (-15 -3330 (|#3| $)))) (-38 |#2|) (-170) (|SubsetCategory| (-707) |#2|)) (T -601)) +((-4308 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-707) *4)))) (-4308 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-601 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-707) *4)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-601 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-707) *3)))) (-3330 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (-15 -4308 ($ $ |#3|)) (-15 -4308 ($ |#1| |#3|)) (-15 -3331 (|#1| $)) (-15 -3330 (|#3| $)))) +((-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) 10))) +(((-602 |#1| |#2|) (-10 -8 (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-603 |#2|) (-1025)) (T -602)) +NIL +(-10 -8 (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 34)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ |#1| $) 35))) +(((-603 |#1|) (-138) (-1025)) (T -603)) +((-4317 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1025))))) +(-13 (-1025) (-628 |t#1|) (-10 -8 (-15 -4317 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2325 ((|#2| |#2| (-1149) (-1149)) 18))) +(((-604 |#1| |#2|) (-10 -7 (-15 -2325 (|#2| |#2| (-1149) (-1149)))) (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-936) (-29 |#1|))) (T -604)) +((-2325 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-604 *4 *2)) (-4 *2 (-13 (-1171) (-936) (-29 *4)))))) +(-10 -7 (-15 -2325 (|#2| |#2| (-1149) (-1149)))) +((-2898 (((-112) $ $) 56)) (-3539 (((-112) $) 52)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-2326 ((|#1| $) 49)) (-1368 (((-3 $ "failed") $ $) NIL)) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-4111 (((-2 (|:| -1884 $) (|:| -1883 (-402 |#2|))) (-402 |#2|)) 97 (|has| |#1| (-358)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 85) (((-3 |#2| #1#) $) 81)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) 24)) (-3821 (((-3 $ "failed") $) 75)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4131 (((-538) $) 19)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) 36)) (-3226 (($ |#1| (-538)) 21)) (-3525 ((|#1| $) 51)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) 87 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 100 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ $) 79)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-1704 (((-751) $) 99 (|has| |#1| (-358)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 98 (|has| |#1| (-358)))) (-4170 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-4307 (((-538) $) 34)) (-4330 (((-402 |#2|) $) 42)) (-4317 (((-840) $) 62) (($ (-538)) 32) (($ $) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) 31) (($ |#2|) 22)) (-4040 ((|#1| $ (-538)) 63)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) 29)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 9 T CONST)) (-2997 (($) 12 T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3387 (((-112) $ $) 17)) (-4197 (($ $) 46) (($ $ $) NIL)) (-4199 (($ $ $) 76)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 26) (($ $ $) 44))) +(((-605 |#1| |#2|) (-13 (-227 |#2|) (-545) (-598 (-402 |#2|)) (-407 |#1|) (-1014 |#2|) (-10 -8 (-15 -4297 ((-112) $)) (-15 -4307 ((-538) $)) (-15 -4131 ((-538) $)) (-15 -4319 ($ $)) (-15 -3525 (|#1| $)) (-15 -2326 (|#1| $)) (-15 -4040 (|#1| $ (-538))) (-15 -3226 ($ |#1| (-538))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -4111 ((-2 (|:| -1884 $) (|:| -1883 (-402 |#2|))) (-402 |#2|)))) |%noBranch|))) (-545) (-1207 |#1|)) (T -605)) +((-4297 (*1 *2 *1) (-12 (-4 *3 (-545)) (-5 *2 (-112)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3)))) (-4307 (*1 *2 *1) (-12 (-4 *3 (-545)) (-5 *2 (-538)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3)))) (-4131 (*1 *2 *1) (-12 (-4 *3 (-545)) (-5 *2 (-538)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3)))) (-4319 (*1 *1 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2)))) (-3525 (*1 *2 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2)))) (-2326 (*1 *2 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *2 (-545)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1207 *2)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-4 *2 (-545)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1207 *2)))) (-4111 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-545)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| -1884 (-605 *4 *5)) (|:| -1883 (-402 *5)))) (-5 *1 (-605 *4 *5)) (-5 *3 (-402 *5))))) +(-13 (-227 |#2|) (-545) (-598 (-402 |#2|)) (-407 |#1|) (-1014 |#2|) (-10 -8 (-15 -4297 ((-112) $)) (-15 -4307 ((-538) $)) (-15 -4131 ((-538) $)) (-15 -4319 ($ $)) (-15 -3525 (|#1| $)) (-15 -2326 (|#1| $)) (-15 -4040 (|#1| $ (-538))) (-15 -3226 ($ |#1| (-538))) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-6 (-302)) (-15 -4111 ((-2 (|:| -1884 $) (|:| -1883 (-402 |#2|))) (-402 |#2|)))) |%noBranch|))) +((-4045 (((-622 |#6|) (-622 |#4|) (-112)) 47)) (-2327 ((|#6| |#6|) 40))) +(((-606 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2327 (|#6| |#6|)) (-15 -4045 ((-622 |#6|) (-622 |#4|) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|) (-1082 |#1| |#2| |#3| |#4|)) (T -606)) +((-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 *10)) (-5 *1 (-606 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *10 (-1082 *5 *6 *7 *8)))) (-2327 (*1 *2 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-606 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *2 (-1082 *3 *4 *5 *6))))) +(-10 -7 (-15 -2327 (|#6| |#6|)) (-15 -4045 ((-622 |#6|) (-622 |#4|) (-112)))) +((-2328 (((-112) |#3| (-751) (-622 |#3|)) 23)) (-2329 (((-3 (-2 (|:| |polfac| (-622 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-622 (-1143 |#3|)))) "failed") |#3| (-622 (-1143 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2767 (-622 (-2 (|:| |irr| |#4|) (|:| -2487 (-538)))))) (-622 |#3|) (-622 |#1|) (-622 |#3|)) 55))) +(((-607 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2328 ((-112) |#3| (-751) (-622 |#3|))) (-15 -2329 ((-3 (-2 (|:| |polfac| (-622 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-622 (-1143 |#3|)))) "failed") |#3| (-622 (-1143 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2767 (-622 (-2 (|:| |irr| |#4|) (|:| -2487 (-538)))))) (-622 |#3|) (-622 |#1|) (-622 |#3|)))) (-827) (-773) (-302) (-926 |#3| |#2| |#1|)) (T -607)) +((-2329 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2767 (-622 (-2 (|:| |irr| *10) (|:| -2487 (-538))))))) (-5 *6 (-622 *3)) (-5 *7 (-622 *8)) (-4 *8 (-827)) (-4 *3 (-302)) (-4 *10 (-926 *3 *9 *8)) (-4 *9 (-773)) (-5 *2 (-2 (|:| |polfac| (-622 *10)) (|:| |correct| *3) (|:| |corrfact| (-622 (-1143 *3))))) (-5 *1 (-607 *8 *9 *3 *10)) (-5 *4 (-622 (-1143 *3))))) (-2328 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-751)) (-5 *5 (-622 *3)) (-4 *3 (-302)) (-4 *6 (-827)) (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-607 *6 *7 *3 *8)) (-4 *8 (-926 *3 *7 *6))))) +(-10 -7 (-15 -2328 ((-112) |#3| (-751) (-622 |#3|))) (-15 -2329 ((-3 (-2 (|:| |polfac| (-622 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-622 (-1143 |#3|)))) "failed") |#3| (-622 (-1143 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2767 (-622 (-2 (|:| |irr| |#4|) (|:| -2487 (-538)))))) (-622 |#3|) (-622 |#1|) (-622 |#3|)))) +((-2898 (((-112) $ $) NIL)) (-3882 (((-1108) $) 11)) (-3883 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-608) (-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $))))) (T -608)) +((-3883 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608))))) +(-13 (-1056) (-10 -8 (-15 -3883 ((-1108) $)) (-15 -3882 ((-1108) $)))) +((-2898 (((-112) $ $) NIL)) (-4294 (((-622 |#1|) $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-4296 (($ $) 67)) (-4302 (((-644 |#1| |#2|) $) 52)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 70)) (-2330 (((-622 (-288 |#2|)) $ $) 33)) (-3594 (((-1093) $) NIL)) (-4303 (($ (-644 |#1| |#2|)) 48)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) 58) (((-1247 |#1| |#2|) $) NIL) (((-1252 |#1| |#2|) $) 66)) (-2997 (($) 53 T CONST)) (-2331 (((-622 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $) 31)) (-2332 (((-622 (-644 |#1| |#2|)) (-622 |#1|)) 65)) (-2996 (((-622 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $) 37)) (-3387 (((-112) $ $) 54)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ $ $) 44))) +(((-609 |#1| |#2| |#3|) (-13 (-467) (-10 -8 (-15 -4303 ($ (-644 |#1| |#2|))) (-15 -4302 ((-644 |#1| |#2|) $)) (-15 -2996 ((-622 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $)) (-15 -4317 ((-1247 |#1| |#2|) $)) (-15 -4317 ((-1252 |#1| |#2|) $)) (-15 -4296 ($ $)) (-15 -4294 ((-622 |#1|) $)) (-15 -2332 ((-622 (-644 |#1| |#2|)) (-622 |#1|))) (-15 -2331 ((-622 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $)) (-15 -2330 ((-622 (-288 |#2|)) $ $)))) (-827) (-13 (-170) (-698 (-402 (-538)))) (-895)) (T -609)) +((-4303 (*1 *1 *2) (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-5 *1 (-609 *3 *4 *5)) (-14 *5 (-895)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-644 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |k| (-869 *3)) (|:| |c| *4)))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-4296 (*1 *1 *1) (-12 (-5 *1 (-609 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-13 (-170) (-698 (-402 (-538))))) (-14 *4 (-895)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-2332 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-827)) (-5 *2 (-622 (-644 *4 *5))) (-5 *1 (-609 *4 *5 *6)) (-4 *5 (-13 (-170) (-698 (-402 (-538))))) (-14 *6 (-895)))) (-2331 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |k| (-652 *3)) (|:| |c| *4)))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) (-2330 (*1 *2 *1 *1) (-12 (-5 *2 (-622 (-288 *4))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895))))) +(-13 (-467) (-10 -8 (-15 -4303 ($ (-644 |#1| |#2|))) (-15 -4302 ((-644 |#1| |#2|) $)) (-15 -2996 ((-622 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $)) (-15 -4317 ((-1247 |#1| |#2|) $)) (-15 -4317 ((-1252 |#1| |#2|) $)) (-15 -4296 ($ $)) (-15 -4294 ((-622 |#1|) $)) (-15 -2332 ((-622 (-644 |#1| |#2|)) (-622 |#1|))) (-15 -2331 ((-622 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $)) (-15 -2330 ((-622 (-288 |#2|)) $ $)))) +((-4045 (((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112)) 72) (((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112)) 58)) (-2333 (((-112) (-622 (-760 |#1| (-841 |#2|)))) 23)) (-2337 (((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112)) 71)) (-2336 (((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112)) 57)) (-2335 (((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|)))) 27)) (-2334 (((-3 (-622 (-760 |#1| (-841 |#2|))) "failed") (-622 (-760 |#1| (-841 |#2|)))) 26))) +(((-610 |#1| |#2|) (-10 -7 (-15 -2333 ((-112) (-622 (-760 |#1| (-841 |#2|))))) (-15 -2334 ((-3 (-622 (-760 |#1| (-841 |#2|))) "failed") (-622 (-760 |#1| (-841 |#2|))))) (-15 -2335 ((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|))))) (-15 -2336 ((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -2337 ((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -4045 ((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -4045 ((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112)))) (-446) (-622 (-1149))) (T -610)) +((-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) (-5 *1 (-610 *5 *6)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-610 *5 *6)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) (-5 *1 (-610 *5 *6)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-610 *5 *6)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-622 (-760 *3 (-841 *4)))) (-4 *3 (-446)) (-14 *4 (-622 (-1149))) (-5 *1 (-610 *3 *4)))) (-2334 (*1 *2 *2) (|partial| -12 (-5 *2 (-622 (-760 *3 (-841 *4)))) (-4 *3 (-446)) (-14 *4 (-622 (-1149))) (-5 *1 (-610 *3 *4)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-622 (-760 *4 (-841 *5)))) (-4 *4 (-446)) (-14 *5 (-622 (-1149))) (-5 *2 (-112)) (-5 *1 (-610 *4 *5))))) +(-10 -7 (-15 -2333 ((-112) (-622 (-760 |#1| (-841 |#2|))))) (-15 -2334 ((-3 (-622 (-760 |#1| (-841 |#2|))) "failed") (-622 (-760 |#1| (-841 |#2|))))) (-15 -2335 ((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|))))) (-15 -2336 ((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -2337 ((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -4045 ((-622 (-1022 |#1| |#2|)) (-622 (-760 |#1| (-841 |#2|))) (-112))) (-15 -4045 ((-622 (-1119 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|)))) (-622 (-760 |#1| (-841 |#2|))) (-112)))) +((-3380 (((-113) (-113)) 83)) (-2341 ((|#2| |#2|) 30)) (-3165 ((|#2| |#2| (-1065 |#2|)) 79) ((|#2| |#2| (-1149)) 52)) (-2339 ((|#2| |#2|) 29)) (-2340 ((|#2| |#2|) 31)) (-2338 (((-112) (-113)) 34)) (-2343 ((|#2| |#2|) 26)) (-2344 ((|#2| |#2|) 28)) (-2342 ((|#2| |#2|) 27))) +(((-611 |#1| |#2|) (-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -2344 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2342 (|#2| |#2|)) (-15 -2341 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -3165 (|#2| |#2| (-1149))) (-15 -3165 (|#2| |#2| (-1065 |#2|)))) (-13 (-827) (-545)) (-13 (-416 |#1|) (-978) (-1171))) (T -611)) +((-3165 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-416 *4) (-978) (-1171))) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-611 *4 *2)))) (-3165 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-611 *4 *2)) (-4 *2 (-13 (-416 *4) (-978) (-1171))))) (-2340 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-2341 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-2342 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-2344 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) (-4 *2 (-13 (-416 *3) (-978) (-1171))))) (-3380 (*1 *2 *2) (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *4)) (-4 *4 (-13 (-416 *3) (-978) (-1171))))) (-2338 (*1 *2 *3) (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-611 *4 *5)) (-4 *5 (-13 (-416 *4) (-978) (-1171)))))) +(-10 -7 (-15 -2338 ((-112) (-113))) (-15 -3380 ((-113) (-113))) (-15 -2344 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2342 (|#2| |#2|)) (-15 -2341 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2340 (|#2| |#2|)) (-15 -3165 (|#2| |#2| (-1149))) (-15 -3165 (|#2| |#2| (-1065 |#2|)))) +((-3846 (($ $) 38)) (-4002 (($ $) 21)) (-3844 (($ $) 37)) (-4001 (($ $) 22)) (-3848 (($ $) 36)) (-4000 (($ $) 23)) (-3990 (($) 48)) (-4302 (($ $) 45)) (-2341 (($ $) 17)) (-3165 (($ $ (-1065 $)) 7) (($ $ (-1149)) 6)) (-4303 (($ $) 46)) (-2339 (($ $) 15)) (-2340 (($ $) 16)) (-3849 (($ $) 35)) (-3999 (($ $) 24)) (-3847 (($ $) 34)) (-3998 (($ $) 25)) (-3845 (($ $) 33)) (-3997 (($ $) 26)) (-3852 (($ $) 44)) (-3840 (($ $) 32)) (-3850 (($ $) 43)) (-3838 (($ $) 31)) (-3854 (($ $) 42)) (-3842 (($ $) 30)) (-3855 (($ $) 41)) (-3843 (($ $) 29)) (-3853 (($ $) 40)) (-3841 (($ $) 28)) (-3851 (($ $) 39)) (-3839 (($ $) 27)) (-2343 (($ $) 19)) (-2344 (($ $) 20)) (-2342 (($ $) 18)) (** (($ $ $) 47))) +(((-612) (-138)) (T -612)) +((-2344 (*1 *1 *1) (-4 *1 (-612))) (-2343 (*1 *1 *1) (-4 *1 (-612))) (-2342 (*1 *1 *1) (-4 *1 (-612))) (-2341 (*1 *1 *1) (-4 *1 (-612))) (-2340 (*1 *1 *1) (-4 *1 (-612))) (-2339 (*1 *1 *1) (-4 *1 (-612)))) +(-13 (-936) (-1171) (-10 -8 (-15 -2344 ($ $)) (-15 -2343 ($ $)) (-15 -2342 ($ $)) (-15 -2341 ($ $)) (-15 -2340 ($ $)) (-15 -2339 ($ $)))) +(((-35) . T) ((-94) . T) ((-279) . T) ((-486) . T) ((-936) . T) ((-1171) . T) ((-1174) . T)) +((-2354 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 53)) (-2347 (((-622 (-243 |#1| |#2|)) (-622 (-475 |#1| |#2|))) 68)) (-2348 (((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-841 |#1|)) 70) (((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)) (-841 |#1|)) 69)) (-2345 (((-2 (|:| |gblist| (-622 (-243 |#1| |#2|))) (|:| |gvlist| (-622 (-538)))) (-622 (-475 |#1| |#2|))) 108)) (-2352 (((-622 (-475 |#1| |#2|)) (-841 |#1|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|))) 83)) (-2346 (((-2 (|:| |glbase| (-622 (-243 |#1| |#2|))) (|:| |glval| (-622 (-538)))) (-622 (-243 |#1| |#2|))) 118)) (-2350 (((-1231 |#2|) (-475 |#1| |#2|) (-622 (-475 |#1| |#2|))) 58)) (-2349 (((-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|))) 41)) (-2353 (((-243 |#1| |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|))) 50)) (-2351 (((-243 |#1| |#2|) (-622 |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|))) 91))) +(((-613 |#1| |#2|) (-10 -7 (-15 -2345 ((-2 (|:| |gblist| (-622 (-243 |#1| |#2|))) (|:| |gvlist| (-622 (-538)))) (-622 (-475 |#1| |#2|)))) (-15 -2346 ((-2 (|:| |glbase| (-622 (-243 |#1| |#2|))) (|:| |glval| (-622 (-538)))) (-622 (-243 |#1| |#2|)))) (-15 -2347 ((-622 (-243 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2348 ((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -2348 ((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -2349 ((-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2350 ((-1231 |#2|) (-475 |#1| |#2|) (-622 (-475 |#1| |#2|)))) (-15 -2351 ((-243 |#1| |#2|) (-622 |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|)))) (-15 -2352 ((-622 (-475 |#1| |#2|)) (-841 |#1|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2353 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|)))) (-15 -2354 ((-475 |#1| |#2|) (-243 |#1| |#2|)))) (-622 (-1149)) (-446)) (T -613)) +((-2354 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *2 (-475 *4 *5)) (-5 *1 (-613 *4 *5)))) (-2353 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-243 *4 *5))) (-5 *2 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))) (-2352 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-622 (-475 *4 *5))) (-5 *3 (-841 *4)) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *1 (-613 *4 *5)))) (-2351 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-243 *5 *6))) (-4 *6 (-446)) (-5 *2 (-243 *5 *6)) (-14 *5 (-622 (-1149))) (-5 *1 (-613 *5 *6)))) (-2350 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-475 *5 *6))) (-5 *3 (-475 *5 *6)) (-14 *5 (-622 (-1149))) (-4 *6 (-446)) (-5 *2 (-1231 *6)) (-5 *1 (-613 *5 *6)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-622 (-475 *3 *4))) (-14 *3 (-622 (-1149))) (-4 *4 (-446)) (-5 *1 (-613 *3 *4)))) (-2348 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-622 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446)))) (-2348 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-622 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-622 (-1149))) (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446)))) (-2347 (*1 *2 *3) (-12 (-5 *3 (-622 (-475 *4 *5))) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *2 (-622 (-243 *4 *5))) (-5 *1 (-613 *4 *5)))) (-2346 (*1 *2 *3) (-12 (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |glbase| (-622 (-243 *4 *5))) (|:| |glval| (-622 (-538))))) (-5 *1 (-613 *4 *5)) (-5 *3 (-622 (-243 *4 *5))))) (-2345 (*1 *2 *3) (-12 (-5 *3 (-622 (-475 *4 *5))) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *2 (-2 (|:| |gblist| (-622 (-243 *4 *5))) (|:| |gvlist| (-622 (-538))))) (-5 *1 (-613 *4 *5))))) +(-10 -7 (-15 -2345 ((-2 (|:| |gblist| (-622 (-243 |#1| |#2|))) (|:| |gvlist| (-622 (-538)))) (-622 (-475 |#1| |#2|)))) (-15 -2346 ((-2 (|:| |glbase| (-622 (-243 |#1| |#2|))) (|:| |glval| (-622 (-538)))) (-622 (-243 |#1| |#2|)))) (-15 -2347 ((-622 (-243 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2348 ((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -2348 ((-475 |#1| |#2|) (-622 (-475 |#1| |#2|)) (-841 |#1|))) (-15 -2349 ((-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2350 ((-1231 |#2|) (-475 |#1| |#2|) (-622 (-475 |#1| |#2|)))) (-15 -2351 ((-243 |#1| |#2|) (-622 |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|)))) (-15 -2352 ((-622 (-475 |#1| |#2|)) (-841 |#1|) (-622 (-475 |#1| |#2|)) (-622 (-475 |#1| |#2|)))) (-15 -2353 ((-243 |#1| |#2|) (-243 |#1| |#2|) (-622 (-243 |#1| |#2|)))) (-15 -2354 ((-475 |#1| |#2|) (-243 |#1| |#2|)))) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL)) (-2305 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-51) $ (-1131) (-51)) 16) (((-51) $ (-1149) (-51)) 17)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 (-51) #1="failed") (-1131) $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074))))) (-3764 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-51) #1#) (-1131) $) NIL)) (-3765 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (((-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-1637 (((-51) $ (-1131) (-51)) NIL (|has| $ (-6 -4354)))) (-3448 (((-51) $ (-1131)) NIL)) (-2068 (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-2355 (($ $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2511 (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2308 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2356 (($ (-383)) 9)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074))))) (-2744 (((-622 (-1131)) $) NIL)) (-2315 (((-112) (-1131) $) NIL)) (-1333 (((-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL)) (-3970 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL)) (-2310 (((-622 (-1131)) $) NIL)) (-2311 (((-112) (-1131) $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074))))) (-4160 (((-51) $) NIL (|has| (-1131) (-827)))) (-1399 (((-3 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) "failed") (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL)) (-2306 (($ $ (-51)) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (($ $ (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (($ $ (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-51)) (-622 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-288 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-622 (-288 (-51)))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2312 (((-622 (-51)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (((-51) $ (-1131)) 14) (((-51) $ (-1131) (-51)) NIL) (((-51) $ (-1149)) 15)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074)))) (((-751) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074)))) (((-751) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-597 (-840))) (|has| (-51) (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 (-51))) (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-614) (-13 (-1162 (-1131) (-51)) (-10 -8 (-15 -2356 ($ (-383))) (-15 -2355 ($ $)) (-15 -4159 ((-51) $ (-1149))) (-15 -4147 ((-51) $ (-1149) (-51)))))) (T -614)) +((-2356 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-614)))) (-2355 (*1 *1 *1) (-5 *1 (-614))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-51)) (-5 *1 (-614)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1149)) (-5 *1 (-614))))) +(-13 (-1162 (-1131) (-51)) (-10 -8 (-15 -2356 ($ (-383))) (-15 -2355 ($ $)) (-15 -4159 ((-51) $ (-1149))) (-15 -4147 ((-51) $ (-1149) (-51))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1892 (((-3 $ #1="failed")) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3574 (((-1231 (-669 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-1231 (-669 |#1|)) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1845 (((-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-3896 (($) NIL T CONST)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1819 (((-3 $ #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1907 (((-669 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1843 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1905 (((-669 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2496 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2022 (((-1143 (-922 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-358))))) (-2499 (($ $ (-895)) NIL)) (-1841 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1821 (((-1143 |#1|) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1909 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1839 (((-1143 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1833 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1911 (($ (-1231 |#1|)) NIL (|has| |#2| (-413 |#1|))) (($ (-1231 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-3821 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-3444 (((-895)) NIL (|has| |#2| (-362 |#1|)))) (-1830 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2524 (($ $ (-895)) NIL)) (-1826 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1824 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1828 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1820 (((-3 $ #1#)) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1908 (((-669 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1844 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1906 (((-669 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2497 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2026 (((-1143 (-922 |#1|))) NIL (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-358))))) (-2498 (($ $ (-895)) NIL)) (-1842 ((|#1| $) NIL (|has| |#2| (-362 |#1|)))) (-1822 (((-1143 |#1|) $) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-1910 ((|#1|) NIL (|has| |#2| (-413 |#1|))) ((|#1| (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-1840 (((-1143 |#1|) $) NIL (|has| |#2| (-362 |#1|)))) (-1834 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3593 (((-1131) $) NIL)) (-1825 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1827 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1829 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-3594 (((-1093) $) NIL)) (-1832 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4159 ((|#1| $ (-538)) NIL (|has| |#2| (-413 |#1|)))) (-3575 (((-669 |#1|) (-1231 $)) NIL (|has| |#2| (-413 |#1|))) (((-1231 |#1|) $) NIL (|has| |#2| (-413 |#1|))) (((-669 |#1|) (-1231 $) (-1231 $)) NIL (|has| |#2| (-362 |#1|))) (((-1231 |#1|) $ (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-4330 (($ (-1231 |#1|)) NIL (|has| |#2| (-413 |#1|))) (((-1231 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-2014 (((-622 (-922 |#1|))) NIL (|has| |#2| (-413 |#1|))) (((-622 (-922 |#1|)) (-1231 $)) NIL (|has| |#2| (-362 |#1|)))) (-2686 (($ $ $) NIL)) (-1838 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-4317 (((-840) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2128 (((-1231 $)) NIL (|has| |#2| (-413 |#1|)))) (-1823 (((-622 (-1231 |#1|))) NIL (-3891 (-12 (|has| |#2| (-362 |#1|)) (|has| |#1| (-545))) (-12 (|has| |#2| (-413 |#1|)) (|has| |#1| (-545)))))) (-2687 (($ $ $ $) NIL)) (-1836 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2880 (($ (-669 |#1|) $) NIL (|has| |#2| (-413 |#1|)))) (-2685 (($ $ $) NIL)) (-1837 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1835 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-1831 (((-112)) NIL (|has| |#2| (-362 |#1|)))) (-2991 (($) 15 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) 17)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-615 |#1| |#2|) (-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -4317 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) (-170) (-725 |#1|)) (T -615)) +((-4317 (*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-615 *3 *2)) (-4 *2 (-725 *3))))) +(-13 (-725 |#1|) (-597 |#2|) (-10 -8 (-15 -4317 ($ |#2|)) (IF (|has| |#2| (-413 |#1|)) (-6 (-413 |#1|)) |%noBranch|) (IF (|has| |#2| (-362 |#1|)) (-6 (-362 |#1|)) |%noBranch|))) +((-4308 (($ $ |#2|) 10))) +(((-616 |#1| |#2|) (-10 -8 (-15 -4308 (|#1| |#1| |#2|))) (-617 |#2|) (-170)) (T -616)) +NIL +(-10 -8 (-15 -4308 (|#1| |#1| |#2|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3884 (($ $ $) 29)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 28 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-617 |#1|) (-138) (-170)) (T -617)) +((-3884 (*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)) (-4 *2 (-358))))) +(-13 (-698 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3884 ($ $ $)) (IF (|has| |t#1| (-358)) (-15 -4308 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-1031 |#1|) . T) ((-1074) . T)) +((-2358 (((-3 (-819 |#2|) #1="failed") |#2| (-288 |#2|) (-1131)) 82) (((-3 (-819 |#2|) (-2 (|:| |leftHandLimit| (-3 (-819 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-819 |#2|) #1#))) "failed") |#2| (-288 (-819 |#2|))) 104)) (-2357 (((-3 (-812 |#2|) "failed") |#2| (-288 (-812 |#2|))) 109))) +(((-618 |#1| |#2|) (-10 -7 (-15 -2358 ((-3 (-819 |#2|) (-2 (|:| |leftHandLimit| (-3 (-819 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-819 |#2|) #1#))) "failed") |#2| (-288 (-819 |#2|)))) (-15 -2357 ((-3 (-812 |#2|) "failed") |#2| (-288 (-812 |#2|)))) (-15 -2358 ((-3 (-819 |#2|) #1#) |#2| (-288 |#2|) (-1131)))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -618)) +((-2358 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1131)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-819 *3)) (-5 *1 (-618 *6 *3)))) (-2357 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-288 (-812 *3))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-812 *3)) (-5 *1 (-618 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) (-2358 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-819 *3))) (-4 *3 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-3 (-819 *3) (-2 (|:| |leftHandLimit| (-3 (-819 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-819 *3) #1#))) "failed")) (-5 *1 (-618 *5 *3))))) +(-10 -7 (-15 -2358 ((-3 (-819 |#2|) (-2 (|:| |leftHandLimit| (-3 (-819 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-819 |#2|) #1#))) "failed") |#2| (-288 (-819 |#2|)))) (-15 -2357 ((-3 (-812 |#2|) "failed") |#2| (-288 (-812 |#2|)))) (-15 -2358 ((-3 (-819 |#2|) #1#) |#2| (-288 |#2|) (-1131)))) +((-2358 (((-3 (-819 (-402 (-922 |#1|))) #1="failed") (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))) (-1131)) 80) (((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2="failed") (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|)))) 20) (((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2#) (-402 (-922 |#1|)) (-288 (-819 (-922 |#1|)))) 35)) (-2357 (((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|)))) 23) (((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-812 (-922 |#1|)))) 43))) +(((-619 |#1|) (-10 -7 (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2="failed") (-402 (-922 |#1|)) (-288 (-819 (-922 |#1|))))) (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2#) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -2357 ((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-812 (-922 |#1|))))) (-15 -2357 ((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) #1#) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))) (-1131)))) (-446)) (T -619)) +((-2358 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-288 (-402 (-922 *6)))) (-5 *5 (-1131)) (-5 *3 (-402 (-922 *6))) (-4 *6 (-446)) (-5 *2 (-819 *3)) (-5 *1 (-619 *6)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-446)) (-5 *2 (-812 *3)) (-5 *1 (-619 *5)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-812 (-922 *5)))) (-4 *5 (-446)) (-5 *2 (-812 (-402 (-922 *5)))) (-5 *1 (-619 *5)) (-5 *3 (-402 (-922 *5))))) (-2358 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-446)) (-5 *2 (-3 (-819 *3) (-2 (|:| |leftHandLimit| (-3 (-819 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-819 *3) #1#))) #2="failed")) (-5 *1 (-619 *5)))) (-2358 (*1 *2 *3 *4) (-12 (-5 *4 (-288 (-819 (-922 *5)))) (-4 *5 (-446)) (-5 *2 (-3 (-819 (-402 (-922 *5))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 *5))) #1#)) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 *5))) #1#))) #2#)) (-5 *1 (-619 *5)) (-5 *3 (-402 (-922 *5)))))) +(-10 -7 (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2="failed") (-402 (-922 |#1|)) (-288 (-819 (-922 |#1|))))) (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-819 (-402 (-922 |#1|))) #1#))) #2#) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -2357 ((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-812 (-922 |#1|))))) (-15 -2357 ((-812 (-402 (-922 |#1|))) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -2358 ((-3 (-819 (-402 (-922 |#1|))) #1#) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))) (-1131)))) +((-2361 (((-3 (-1231 (-402 |#1|)) "failed") (-1231 |#2|) |#2|) 57 (-3676 (|has| |#1| (-358)))) (((-3 (-1231 |#1|) "failed") (-1231 |#2|) |#2|) 42 (|has| |#1| (-358)))) (-2359 (((-112) (-1231 |#2|)) 30)) (-2360 (((-3 (-1231 |#1|) "failed") (-1231 |#2|)) 33))) +(((-620 |#1| |#2|) (-10 -7 (-15 -2359 ((-112) (-1231 |#2|))) (-15 -2360 ((-3 (-1231 |#1|) "failed") (-1231 |#2|))) (IF (|has| |#1| (-358)) (-15 -2361 ((-3 (-1231 |#1|) "failed") (-1231 |#2|) |#2|)) (-15 -2361 ((-3 (-1231 (-402 |#1|)) "failed") (-1231 |#2|) |#2|)))) (-545) (-621 |#1|)) (T -620)) +((-2361 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 *5)) (-3676 (-4 *5 (-358))) (-4 *5 (-545)) (-5 *2 (-1231 (-402 *5))) (-5 *1 (-620 *5 *4)))) (-2361 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 *5)) (-4 *5 (-358)) (-4 *5 (-545)) (-5 *2 (-1231 *5)) (-5 *1 (-620 *5 *4)))) (-2360 (*1 *2 *3) (|partial| -12 (-5 *3 (-1231 *5)) (-4 *5 (-621 *4)) (-4 *4 (-545)) (-5 *2 (-1231 *4)) (-5 *1 (-620 *4 *5)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-1231 *5)) (-4 *5 (-621 *4)) (-4 *4 (-545)) (-5 *2 (-112)) (-5 *1 (-620 *4 *5))))) +(-10 -7 (-15 -2359 ((-112) (-1231 |#2|))) (-15 -2360 ((-3 (-1231 |#1|) "failed") (-1231 |#2|))) (IF (|has| |#1| (-358)) (-15 -2361 ((-3 (-1231 |#1|) "failed") (-1231 |#2|) |#2|)) (-15 -2361 ((-3 (-1231 (-402 |#1|)) "failed") (-1231 |#2|) |#2|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2362 (((-669 |#1|) (-669 $)) 34) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 33)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-621 |#1|) (-138) (-1025)) (T -621)) +((-2362 (*1 *2 *3) (-12 (-5 *3 (-669 *1)) (-4 *1 (-621 *4)) (-4 *4 (-1025)) (-5 *2 (-669 *4)))) (-2362 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *1)) (-5 *4 (-1231 *1)) (-4 *1 (-621 *5)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -1700 (-669 *5)) (|:| |vec| (-1231 *5))))))) +(-13 (-1025) (-10 -8 (-15 -2362 ((-669 |t#1|) (-669 $))) (-15 -2362 ((-2 (|:| -1700 (-669 |t#1|)) (|:| |vec| (-1231 |t#1|))) (-669 $) (-1231 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) NIL)) (-4154 ((|#1| $) NIL)) (-4156 (($ $) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) $) NIL (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-1846 (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-3242 (($ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4146 (($ $ $) NIL (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #3="rest" $) NIL (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-2365 (($ $ $) 32 (|has| |#1| (-1074)))) (-2364 (($ $ $) 34 (|has| |#1| (-1074)))) (-2363 (($ $ $) 37 (|has| |#1| (-1074)))) (-1631 (($ (-1 (-112) |#1|) $) NIL)) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4155 ((|#1| $) NIL)) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-4158 (($ $) NIL) (($ $ (-751)) NIL)) (-2455 (($ $) NIL (|has| |#1| (-1074)))) (-1398 (($ $) 31 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) NIL (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) NIL)) (-3765 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3801 (((-112) $) NIL)) (-3778 (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074))) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) (-1 (-112) |#1|) $) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-2367 (((-112) $) 9)) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2368 (($) 7)) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3192 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3872 (($ $ $) NIL (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 33 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3897 (($ |#1|) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-4157 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-3970 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-3802 (((-112) $) NIL)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1198 (-538))) NIL) ((|#1| $ (-538)) 36) ((|#1| $ (-538) |#1|) NIL)) (-3362 (((-538) $ $) NIL)) (-1632 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-3996 (((-112) $) NIL)) (-4151 (($ $) NIL)) (-4149 (($ $) NIL (|has| $ (-6 -4354)))) (-4152 (((-751) $) NIL)) (-4153 (($ $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) 45 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-3815 (($ |#1| $) 10)) (-4150 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4161 (($ $ $) 30) (($ |#1| $) NIL) (($ (-622 $)) NIL) (($ $ |#1|) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2366 (($ $ $) 11)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2834 (((-1131) $) 26 (|has| |#1| (-801))) (((-1131) $ (-112)) 27 (|has| |#1| (-801))) (((-1237) (-803) $) 28 (|has| |#1| (-801))) (((-1237) (-803) $ (-112)) 29 (|has| |#1| (-801)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-622 |#1|) (-13 (-646 |#1|) (-10 -8 (-15 -2368 ($)) (-15 -2367 ((-112) $)) (-15 -3815 ($ |#1| $)) (-15 -2366 ($ $ $)) (IF (|has| |#1| (-1074)) (PROGN (-15 -2365 ($ $ $)) (-15 -2364 ($ $ $)) (-15 -2363 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|))) (-1185)) (T -622)) +((-2368 (*1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185)))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-622 *3)) (-4 *3 (-1185)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185)))) (-2366 (*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185)))) (-2365 (*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)))) (-2364 (*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)))) (-2363 (*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185))))) +(-13 (-646 |#1|) (-10 -8 (-15 -2368 ($)) (-15 -2367 ((-112) $)) (-15 -3815 ($ |#1| $)) (-15 -2366 ($ $ $)) (IF (|has| |#1| (-1074)) (PROGN (-15 -2365 ($ $ $)) (-15 -2364 ($ $ $)) (-15 -2363 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-801)) (-6 (-801)) |%noBranch|))) +((-4201 (((-622 |#2|) (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|) 16)) (-4202 ((|#2| (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|) 18)) (-4318 (((-622 |#2|) (-1 |#2| |#1|) (-622 |#1|)) 13))) +(((-623 |#1| |#2|) (-10 -7 (-15 -4201 ((-622 |#2|) (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|)) (-15 -4318 ((-622 |#2|) (-1 |#2| |#1|) (-622 |#1|)))) (-1185) (-1185)) (T -623)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-622 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-622 *6)) (-5 *1 (-623 *5 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-622 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-623 *5 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-622 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-5 *2 (-622 *5)) (-5 *1 (-623 *6 *5))))) +(-10 -7 (-15 -4201 ((-622 |#2|) (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-622 |#1|) |#2|)) (-15 -4318 ((-622 |#2|) (-1 |#2| |#1|) (-622 |#1|)))) +((-3781 ((|#2| (-622 |#1|) (-622 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-622 |#1|) (-622 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) |#2|) 17) ((|#2| (-622 |#1|) (-622 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|)) 12))) +(((-624 |#1| |#2|) (-10 -7 (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|))) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1|)) (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) |#2|)) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1| |#2|)) (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) (-1 |#2| |#1|))) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1| (-1 |#2| |#1|)))) (-1074) (-1185)) (T -624)) +((-3781 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1074)) (-4 *2 (-1185)) (-5 *1 (-624 *5 *2)))) (-3781 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-622 *5)) (-5 *4 (-622 *6)) (-4 *5 (-1074)) (-4 *6 (-1185)) (-5 *1 (-624 *5 *6)))) (-3781 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-4 *5 (-1074)) (-4 *2 (-1185)) (-5 *1 (-624 *5 *2)))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 *5)) (-4 *6 (-1074)) (-4 *5 (-1185)) (-5 *2 (-1 *5 *6)) (-5 *1 (-624 *6 *5)))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-4 *5 (-1074)) (-4 *2 (-1185)) (-5 *1 (-624 *5 *2)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *6)) (-4 *5 (-1074)) (-4 *6 (-1185)) (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *6))))) +(-10 -7 (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|))) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1|)) (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) |#2|)) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1| |#2|)) (-15 -3781 ((-1 |#2| |#1|) (-622 |#1|) (-622 |#2|) (-1 |#2| |#1|))) (-15 -3781 (|#2| (-622 |#1|) (-622 |#2|) |#1| (-1 |#2| |#1|)))) +((-4318 (((-622 |#3|) (-1 |#3| |#1| |#2|) (-622 |#1|) (-622 |#2|)) 13))) +(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-622 |#3|) (-1 |#3| |#1| |#2|) (-622 |#1|) (-622 |#2|)))) (-1185) (-1185) (-1185)) (T -625)) +((-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-622 *6)) (-5 *5 (-622 *7)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-622 *8)) (-5 *1 (-625 *6 *7 *8))))) +(-10 -7 (-15 -4318 ((-622 |#3|) (-1 |#3| |#1| |#2|) (-622 |#1|) (-622 |#2|)))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 11) (((-1154) $) NIL) (($ (-1154)) NIL) ((|#1| $) 8)) (-3387 (((-112) $ $) NIL))) +(((-626 |#1|) (-13 (-1056) (-597 |#1|)) (-1074)) (T -626)) +NIL +(-13 (-1056) (-597 |#1|)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2369 (($ |#1| |#1| $) 43)) (-1271 (((-112) $ (-751)) NIL)) (-1631 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2455 (($ $) 45)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) 52 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 9 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 37)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) 46)) (-3970 (($ |#1| $) 26) (($ |#1| $ (-751)) 42)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1334 ((|#1| $) 48)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 21)) (-3928 (($) 25)) (-2370 (((-112) $) 50)) (-2454 (((-622 (-2 (|:| -2191 |#1|) (|:| -2069 (-751)))) $) 59)) (-1523 (($) 23) (($ (-622 |#1|)) 18)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) 56 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 19)) (-4330 (((-527) $) 34 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4317 (((-840) $) 14 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 22)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 61 (|has| |#1| (-1074)))) (-4316 (((-751) $) 16 (|has| $ (-6 -4353))))) +(((-627 |#1|) (-13 (-675 |#1|) (-10 -8 (-6 -4353) (-15 -2370 ((-112) $)) (-15 -2369 ($ |#1| |#1| $)))) (-1074)) (T -627)) +((-2370 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3)) (-4 *3 (-1074)))) (-2369 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1074))))) +(-13 (-675 |#1|) (-10 -8 (-6 -4353) (-15 -2370 ((-112) $)) (-15 -2369 ($ |#1| |#1| $)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23))) +(((-628 |#1|) (-138) (-1032)) (T -628)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1032))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3466 (((-749) $) 15)) (-2370 (($ $ |#1|) 56)) (-2372 (($ $) 32)) (-2373 (($ $) 31)) (-3503 (((-3 |#1| "failed") $) 48)) (-3502 ((|#1| $) NIL)) (-2402 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3882 (((-838) $ (-1 (-838) (-838) (-838)) (-1 (-838) (-838) (-838)) (-536)) 46)) (-2763 ((|#1| $ (-536)) 30)) (-2764 ((|#2| $ (-536)) 29)) (-2366 (($ (-1 |#1| |#1|) $) 34)) (-2367 (($ (-1 |#2| |#2|) $) 38)) (-2371 (($) 10)) (-2375 (($ |#1| |#2|) 22)) (-2374 (($ (-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|)))) 23)) (-2376 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))) $) 13)) (-2369 (($ |#1| $) 57)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2368 (((-112) $ $) 60)) (-4312 (((-838) $) 19) (($ |#1|) 16)) (-3382 (((-112) $ $) 25))) -(((-627 |#1| |#2| |#3|) (-13 (-1072) (-1012 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-1 (-838) (-838) (-838)) (-1 (-838) (-838) (-838)) (-536))) (-15 -2376 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))) $)) (-15 -2375 ($ |#1| |#2|)) (-15 -2374 ($ (-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))))) (-15 -2764 (|#2| $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2373 ($ $)) (-15 -2372 ($ $)) (-15 -3466 ((-749) $)) (-15 -2371 ($)) (-15 -2370 ($ $ |#1|)) (-15 -2369 ($ |#1| $)) (-15 -2402 ($ |#1| |#2| $)) (-15 -2402 ($ $ $)) (-15 -2368 ((-112) $ $)) (-15 -2367 ($ (-1 |#2| |#2|) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)))) (-1072) (-23) |#2|) (T -627)) -((-3882 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-838) (-838) (-838))) (-5 *4 (-536)) (-5 *2 (-838)) (-5 *1 (-627 *5 *6 *7)) (-4 *5 (-1072)) (-4 *6 (-23)) (-14 *7 *6))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) (-14 *5 *4))) (-2375 (*1 *1 *2 *3) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))) (-4 *3 (-1072)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5)))) (-2764 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *2 (-23)) (-5 *1 (-627 *4 *2 *5)) (-4 *4 (-1072)) (-14 *5 *2))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *2 (-1072)) (-5 *1 (-627 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) (-14 *5 *4))) (-2371 (*1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2370 (*1 *1 *1 *2) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2369 (*1 *1 *2 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2402 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2402 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) (-2368 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) (-14 *5 *4))) (-2367 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)))) (-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-627 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1072) (-1012 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-1 (-838) (-838) (-838)) (-1 (-838) (-838) (-838)) (-536))) (-15 -2376 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))) $)) (-15 -2375 ($ |#1| |#2|)) (-15 -2374 ($ (-620 (-2 (|:| |gen| |#1|) (|:| -4298 |#2|))))) (-15 -2764 (|#2| $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2373 ($ $)) (-15 -2372 ($ $)) (-15 -3466 ((-749) $)) (-15 -2371 ($)) (-15 -2370 ($ $ |#1|)) (-15 -2369 ($ |#1| $)) (-15 -2402 ($ |#1| |#2| $)) (-15 -2402 ($ $ $)) (-15 -2368 ((-112) $ $)) (-15 -2367 ($ (-1 |#2| |#2|) $)) (-15 -2366 ($ (-1 |#1| |#1|) $)))) -((-2303 (((-536) $) 24)) (-2377 (($ |#2| $ (-536)) 22) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) 12)) (-2306 (((-112) (-536) $) 15)) (-4156 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-620 $)) NIL))) -(((-628 |#1| |#2|) (-10 -8 (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -2303 ((-536) |#1|)) (-15 -2305 ((-620 (-536)) |#1|)) (-15 -2306 ((-112) (-536) |#1|))) (-629 |#2|) (-1183)) (T -628)) -NIL -(-10 -8 (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -2303 ((-536) |#1|)) (-15 -2305 ((-620 (-536)) |#1|)) (-15 -2306 ((-112) (-536) |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-629 |#1|) (-138) (-1183)) (T -629)) -((-3972 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-4156 (*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) (-4156 (*1 *1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) (-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) (-4156 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-4313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-2378 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-2378 (*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-2377 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-629 *2)) (-4 *2 (-1183)))) (-2377 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1196 (-536))) (|has| *1 (-6 -4349)) (-4 *1 (-629 *2)) (-4 *2 (-1183))))) -(-13 (-586 (-536) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3972 ($ (-749) |t#1|)) (-15 -4156 ($ $ |t#1|)) (-15 -4156 ($ |t#1| $)) (-15 -4156 ($ $ $)) (-15 -4156 ($ (-620 $))) (-15 -4313 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4154 ($ $ (-1196 (-536)))) (-15 -2378 ($ $ (-536))) (-15 -2378 ($ $ (-1196 (-536)))) (-15 -2377 ($ |t#1| $ (-536))) (-15 -2377 ($ $ $ (-536))) (IF (|has| $ (-6 -4349)) (-15 -4142 (|t#1| $ (-1196 (-536)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 15)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3326 ((|#1| $) 21)) (-3672 (($ $ $) NIL (|has| |#1| (-769)))) (-3673 (($ $ $) NIL (|has| |#1| (-769)))) (-3588 (((-1129) $) 46)) (-3589 (((-1091) $) NIL)) (-3325 ((|#3| $) 22)) (-4312 (((-838) $) 42)) (-2986 (($) 10 T CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-769)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-769)))) (-3382 (((-112) $ $) 20)) (-3012 (((-112) $ $) NIL (|has| |#1| (-769)))) (-3013 (((-112) $ $) 24 (|has| |#1| (-769)))) (-4303 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4192 (($ $) 17) (($ $ $) NIL)) (-4194 (($ $ $) 27)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-630 |#1| |#2| |#3|) (-13 (-696 |#2|) (-10 -8 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) (-15 -4303 ($ $ |#3|)) (-15 -4303 ($ |#1| |#3|)) (-15 -3326 (|#1| $)) (-15 -3325 (|#3| $)))) (-696 |#2|) (-170) (|SubsetCategory| (-705) |#2|)) (T -630)) -((-4303 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-696 *4)) (-4 *2 (|SubsetCategory| (-705) *4)))) (-4303 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-630 *2 *4 *3)) (-4 *2 (-696 *4)) (-4 *3 (|SubsetCategory| (-705) *4)))) (-3326 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-696 *3)) (-5 *1 (-630 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-705) *3)))) (-3325 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-696 *4))))) -(-13 (-696 |#2|) (-10 -8 (IF (|has| |#1| (-769)) (-6 (-769)) |%noBranch|) (-15 -4303 ($ $ |#3|)) (-15 -4303 ($ |#1| |#3|)) (-15 -3326 (|#1| $)) (-15 -3325 (|#3| $)))) -((-3931 (((-3 |#2| "failed") |#3| |#2| (-1147) |#2| (-620 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) "failed") |#3| |#2| (-1147)) 44))) -(((-631 |#1| |#2| |#3|) (-10 -7 (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) "failed") |#3| |#2| (-1147))) (-15 -3931 ((-3 |#2| "failed") |#3| |#2| (-1147) |#2| (-620 |#2|)))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145)) (-13 (-29 |#1|) (-1169) (-934)) (-636 |#2|)) (T -631)) -((-3931 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 *2)) (-4 *2 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *1 (-631 *6 *2 *3)) (-4 *3 (-636 *2)))) (-3931 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1147)) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-4 *4 (-13 (-29 *6) (-1169) (-934))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-620 *4)))) (-5 *1 (-631 *6 *4 *3)) (-4 *3 (-636 *4))))) -(-10 -7 (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) "failed") |#3| |#2| (-1147))) (-15 -3931 ((-3 |#2| "failed") |#3| |#2| (-1147) |#2| (-620 |#2|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-356)))) (-2381 (($ $ $) 28 (|has| |#1| (-356)))) (-2382 (($ $ (-749)) 31 (|has| |#1| (-356)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2867 (($ $ $) NIL (|has| |#1| (-356)))) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2865 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-2497 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) NIL)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-3148 (((-749) $) NIL)) (-2872 (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $ $) NIL (|has| |#1| (-356)))) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2870 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2871 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-543)))) (-4154 ((|#1| $ |#1|) 24)) (-2383 (($ $ $) 33 (|has| |#1| (-356)))) (-4302 (((-749) $) NIL)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) 20) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) NIL)) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2875 ((|#1| $ |#1| |#1|) 23)) (-2849 (($ $) NIL)) (-2986 (($) 21 T CONST)) (-2992 (($) 8 T CONST)) (-2997 (($) NIL)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-632 |#1| |#2|) (-636 |#1|) (-1023) (-1 |#1| |#1|)) (T -632)) -NIL -(-636 |#1|) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-356)))) (-2381 (($ $ $) NIL (|has| |#1| (-356)))) (-2382 (($ $ (-749)) NIL (|has| |#1| (-356)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2867 (($ $ $) NIL (|has| |#1| (-356)))) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2865 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-2497 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) NIL)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-3148 (((-749) $) NIL)) (-2872 (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $ $) NIL (|has| |#1| (-356)))) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2870 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2871 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-543)))) (-4154 ((|#1| $ |#1|) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (((-749) $) NIL)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) NIL)) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2875 ((|#1| $ |#1| |#1|) NIL)) (-2849 (($ $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($) NIL)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-633 |#1|) (-636 |#1|) (-227)) (T -633)) -NIL -(-636 |#1|) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2379 (($ $) NIL (|has| |#1| (-356)))) (-2381 (($ $ $) NIL (|has| |#1| (-356)))) (-2382 (($ $ (-749)) NIL (|has| |#1| (-356)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2867 (($ $ $) NIL (|has| |#1| (-356)))) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2865 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-2497 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) NIL)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-3148 (((-749) $) NIL)) (-2872 (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $ $) NIL (|has| |#1| (-356)))) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2870 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2871 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-543)))) (-4154 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2383 (($ $ $) NIL (|has| |#1| (-356)))) (-4302 (((-749) $) NIL)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) NIL)) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2875 ((|#1| $ |#1| |#1|) NIL)) (-2849 (($ $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($) NIL)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-634 |#1| |#2|) (-13 (-636 |#1|) (-279 |#2| |#2|)) (-227) (-13 (-626 |#1|) (-10 -8 (-15 -4165 ($ $))))) (T -634)) -NIL -(-13 (-636 |#1|) (-279 |#2| |#2|)) -((-2379 (($ $) 26)) (-2849 (($ $) 24)) (-2997 (($) 12))) -(((-635 |#1| |#2|) (-10 -8 (-15 -2379 (|#1| |#1|)) (-15 -2849 (|#1| |#1|)) (-15 -2997 (|#1|))) (-636 |#2|) (-1023)) (T -635)) -NIL -(-10 -8 (-15 -2379 (|#1| |#1|)) (-15 -2849 (|#1| |#1|)) (-15 -2997 (|#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2379 (($ $) 80 (|has| |#1| (-356)))) (-2381 (($ $ $) 82 (|has| |#1| (-356)))) (-2382 (($ $ (-749)) 81 (|has| |#1| (-356)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2866 (($ $ $) 43 (|has| |#1| (-356)))) (-2867 (($ $ $) 44 (|has| |#1| (-356)))) (-2868 (($ $ $) 46 (|has| |#1| (-356)))) (-2864 (($ $ $) 41 (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 40 (|has| |#1| (-356)))) (-2865 (((-3 $ #1="failed") $ $) 42 (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 45 (|has| |#1| (-356)))) (-3503 (((-3 (-536) #2="failed") $) 72 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) 70 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) 67)) (-3502 (((-536) $) 73 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 71 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 66)) (-4314 (($ $) 62)) (-3816 (((-3 $ "failed") $) 32)) (-3852 (($ $) 53 (|has| |#1| (-444)))) (-2497 (((-112) $) 30)) (-3221 (($ |#1| (-749)) 60)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55 (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 56 (|has| |#1| (-543)))) (-3148 (((-749) $) 64)) (-2872 (($ $ $) 50 (|has| |#1| (-356)))) (-2873 (($ $ $) 51 (|has| |#1| (-356)))) (-2862 (($ $ $) 39 (|has| |#1| (-356)))) (-2870 (($ $ $) 48 (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 47 (|has| |#1| (-356)))) (-2871 (((-3 $ #1#) $ $) 49 (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 52 (|has| |#1| (-356)))) (-3520 ((|#1| $) 63)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ #1#) $ |#1|) 57 (|has| |#1| (-543)))) (-4154 ((|#1| $ |#1|) 85)) (-2383 (($ $ $) 79 (|has| |#1| (-356)))) (-4302 (((-749) $) 65)) (-3145 ((|#1| $) 54 (|has| |#1| (-444)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 69 (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) 68)) (-4172 (((-620 |#1|) $) 59)) (-4035 ((|#1| $ (-749)) 61)) (-3456 (((-749)) 28)) (-2875 ((|#1| $ |#1| |#1|) 58)) (-2849 (($ $) 83)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($) 84)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-636 |#1|) (-138) (-1023)) (T -636)) -((-2997 (*1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)))) (-2849 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)))) (-2381 (*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2382 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-636 *3)) (-4 *3 (-1023)) (-4 *3 (-356)))) (-2379 (*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2383 (*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) -(-13 (-827 |t#1|) (-279 |t#1| |t#1|) (-10 -8 (-15 -2997 ($)) (-15 -2849 ($ $)) (IF (|has| |t#1| (-356)) (PROGN (-15 -2381 ($ $ $)) (-15 -2382 ($ $ (-749))) (-15 -2379 ($ $)) (-15 -2383 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-279 |#1| |#1|) . T) ((-405 |#1|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-827 |#1|) . T)) -((-2380 (((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|))) 74 (|has| |#1| (-27)))) (-4087 (((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|))) 73 (|has| |#1| (-27))) (((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|)) 17))) -(((-637 |#1| |#2|) (-10 -7 (-15 -4087 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4087 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|)))) (-15 -2380 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|))))) |%noBranch|)) (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536)))) (-1205 |#1|)) (T -637)) -((-2380 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-633 (-400 *5)))) (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-400 *5))))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-633 (-400 *5)))) (-5 *1 (-637 *4 *5)) (-5 *3 (-633 (-400 *5))))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-633 (-400 *6)))) (-5 *1 (-637 *5 *6)) (-5 *3 (-633 (-400 *6)))))) -(-10 -7 (-15 -4087 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4087 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|)))) (-15 -2380 ((-620 (-633 (-400 |#2|))) (-633 (-400 |#2|))))) |%noBranch|)) -((-2381 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2382 ((|#2| |#2| (-749) (-1 |#1| |#1|)) 40)) (-2383 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) -(((-638 |#1| |#2|) (-10 -7 (-15 -2381 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2382 (|#2| |#2| (-749) (-1 |#1| |#1|))) (-15 -2383 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-356) (-636 |#1|)) (T -638)) -((-2383 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-638 *4 *2)) (-4 *2 (-636 *4)))) (-2382 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-638 *5 *2)) (-4 *2 (-636 *5)))) (-2381 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-638 *4 *2)) (-4 *2 (-636 *4))))) -(-10 -7 (-15 -2381 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2382 (|#2| |#2| (-749) (-1 |#1| |#1|))) (-15 -2383 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3676 (($ $ $) 9))) -(((-639 |#1|) (-10 -8 (-15 -3676 (|#1| |#1| |#1|))) (-640)) (T -639)) -NIL -(-10 -8 (-15 -3676 (|#1| |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3674 (($ $) 10)) (-3676 (($ $ $) 8)) (-3382 (((-112) $ $) 6)) (-3675 (($ $ $) 9))) -(((-640) (-138)) (T -640)) -((-3674 (*1 *1 *1) (-4 *1 (-640))) (-3675 (*1 *1 *1 *1) (-4 *1 (-640))) (-3676 (*1 *1 *1 *1) (-4 *1 (-640)))) -(-13 (-101) (-10 -8 (-15 -3674 ($ $)) (-15 -3675 ($ $ $)) (-15 -3676 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3471 (((-751) $) 15)) (-2375 (($ $ |#1|) 56)) (-2377 (($ $) 32)) (-2378 (($ $) 31)) (-3508 (((-3 |#1| "failed") $) 48)) (-3507 ((|#1| $) NIL)) (-2407 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3887 (((-840) $ (-1 (-840) (-840) (-840)) (-1 (-840) (-840) (-840)) (-538)) 46)) (-2768 ((|#1| $ (-538)) 30)) (-2769 ((|#2| $ (-538)) 29)) (-2371 (($ (-1 |#1| |#1|) $) 34)) (-2372 (($ (-1 |#2| |#2|) $) 38)) (-2376 (($) 10)) (-2380 (($ |#1| |#2|) 22)) (-2379 (($ (-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|)))) 23)) (-2381 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))) $) 13)) (-2374 (($ |#1| $) 57)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2373 (((-112) $ $) 60)) (-4317 (((-840) $) 19) (($ |#1|) 16)) (-3387 (((-112) $ $) 25))) +(((-629 |#1| |#2| |#3|) (-13 (-1074) (-1014 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-1 (-840) (-840) (-840)) (-1 (-840) (-840) (-840)) (-538))) (-15 -2381 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))) $)) (-15 -2380 ($ |#1| |#2|)) (-15 -2379 ($ (-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))))) (-15 -2769 (|#2| $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2378 ($ $)) (-15 -2377 ($ $)) (-15 -3471 ((-751) $)) (-15 -2376 ($)) (-15 -2375 ($ $ |#1|)) (-15 -2374 ($ |#1| $)) (-15 -2407 ($ |#1| |#2| $)) (-15 -2407 ($ $ $)) (-15 -2373 ((-112) $ $)) (-15 -2372 ($ (-1 |#2| |#2|) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)))) (-1074) (-23) |#2|) (T -629)) +((-3887 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-840) (-840) (-840))) (-5 *4 (-538)) (-5 *2 (-840)) (-5 *1 (-629 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-23)) (-14 *7 *6))) (-2381 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4)))) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4))) (-2380 (*1 *1 *2 *3) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2379 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4)))) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *2 (-23)) (-5 *1 (-629 *4 *2 *5)) (-4 *4 (-1074)) (-14 *5 *2))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *2 (-1074)) (-5 *1 (-629 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2378 (*1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2377 (*1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4))) (-2376 (*1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2375 (*1 *1 *1 *2) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2374 (*1 *1 *2 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2407 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2407 (*1 *1 *1 *1) (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) (-2373 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4))) (-2372 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)))) (-2371 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-629 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1074) (-1014 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-1 (-840) (-840) (-840)) (-1 (-840) (-840) (-840)) (-538))) (-15 -2381 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))) $)) (-15 -2380 ($ |#1| |#2|)) (-15 -2379 ($ (-622 (-2 (|:| |gen| |#1|) (|:| -4303 |#2|))))) (-15 -2769 (|#2| $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2378 ($ $)) (-15 -2377 ($ $)) (-15 -3471 ((-751) $)) (-15 -2376 ($)) (-15 -2375 ($ $ |#1|)) (-15 -2374 ($ |#1| $)) (-15 -2407 ($ |#1| |#2| $)) (-15 -2407 ($ $ $)) (-15 -2373 ((-112) $ $)) (-15 -2372 ($ (-1 |#2| |#2|) $)) (-15 -2371 ($ (-1 |#1| |#1|) $)))) +((-2308 (((-538) $) 24)) (-2382 (($ |#2| $ (-538)) 22) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) 12)) (-2311 (((-112) (-538) $) 15)) (-4161 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-622 $)) NIL))) +(((-630 |#1| |#2|) (-10 -8 (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -2308 ((-538) |#1|)) (-15 -2310 ((-622 (-538)) |#1|)) (-15 -2311 ((-112) (-538) |#1|))) (-631 |#2|) (-1185)) (T -630)) +NIL +(-10 -8 (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -2308 ((-538) |#1|)) (-15 -2310 ((-622 (-538)) |#1|)) (-15 -2311 ((-112) (-538) |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 70)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-631 |#1|) (-138) (-1185)) (T -631)) +((-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-4161 (*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185)))) (-4161 (*1 *1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185)))) (-4161 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185)))) (-4161 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-4318 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-2383 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-2383 (*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-2382 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-631 *2)) (-4 *2 (-1185)))) (-2382 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1198 (-538))) (|has| *1 (-6 -4354)) (-4 *1 (-631 *2)) (-4 *2 (-1185))))) +(-13 (-588 (-538) |t#1|) (-149 |t#1|) (-10 -8 (-15 -3977 ($ (-751) |t#1|)) (-15 -4161 ($ $ |t#1|)) (-15 -4161 ($ |t#1| $)) (-15 -4161 ($ $ $)) (-15 -4161 ($ (-622 $))) (-15 -4318 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4159 ($ $ (-1198 (-538)))) (-15 -2383 ($ $ (-538))) (-15 -2383 ($ $ (-1198 (-538)))) (-15 -2382 ($ |t#1| $ (-538))) (-15 -2382 ($ $ $ (-538))) (IF (|has| $ (-6 -4354)) (-15 -4147 (|t#1| $ (-1198 (-538)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 15)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3331 ((|#1| $) 21)) (-3677 (($ $ $) NIL (|has| |#1| (-771)))) (-3678 (($ $ $) NIL (|has| |#1| (-771)))) (-3593 (((-1131) $) 46)) (-3594 (((-1093) $) NIL)) (-3330 ((|#3| $) 22)) (-4317 (((-840) $) 42)) (-2991 (($) 10 T CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-771)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-771)))) (-3387 (((-112) $ $) 20)) (-3017 (((-112) $ $) NIL (|has| |#1| (-771)))) (-3018 (((-112) $ $) 24 (|has| |#1| (-771)))) (-4308 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4197 (($ $) 17) (($ $ $) NIL)) (-4199 (($ $ $) 27)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-632 |#1| |#2| |#3|) (-13 (-698 |#2|) (-10 -8 (IF (|has| |#1| (-771)) (-6 (-771)) |%noBranch|) (-15 -4308 ($ $ |#3|)) (-15 -4308 ($ |#1| |#3|)) (-15 -3331 (|#1| $)) (-15 -3330 (|#3| $)))) (-698 |#2|) (-170) (|SubsetCategory| (-707) |#2|)) (T -632)) +((-4308 (*1 *1 *1 *2) (-12 (-4 *4 (-170)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-698 *4)) (-4 *2 (|SubsetCategory| (-707) *4)))) (-4308 (*1 *1 *2 *3) (-12 (-4 *4 (-170)) (-5 *1 (-632 *2 *4 *3)) (-4 *2 (-698 *4)) (-4 *3 (|SubsetCategory| (-707) *4)))) (-3331 (*1 *2 *1) (-12 (-4 *3 (-170)) (-4 *2 (-698 *3)) (-5 *1 (-632 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-707) *3)))) (-3330 (*1 *2 *1) (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-698 *4))))) +(-13 (-698 |#2|) (-10 -8 (IF (|has| |#1| (-771)) (-6 (-771)) |%noBranch|) (-15 -4308 ($ $ |#3|)) (-15 -4308 ($ |#1| |#3|)) (-15 -3331 (|#1| $)) (-15 -3330 (|#3| $)))) +((-3936 (((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-622 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) "failed") |#3| |#2| (-1149)) 44))) +(((-633 |#1| |#2| |#3|) (-10 -7 (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) "failed") |#3| |#2| (-1149))) (-15 -3936 ((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-622 |#2|)))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)) (-13 (-29 |#1|) (-1171) (-936)) (-638 |#2|)) (T -633)) +((-3936 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *1 (-633 *6 *2 *3)) (-4 *3 (-638 *2)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-4 *4 (-13 (-29 *6) (-1171) (-936))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2128 (-622 *4)))) (-5 *1 (-633 *6 *4 *3)) (-4 *3 (-638 *4))))) +(-10 -7 (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) "failed") |#3| |#2| (-1149))) (-15 -3936 ((-3 |#2| "failed") |#3| |#2| (-1149) |#2| (-622 |#2|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-358)))) (-2386 (($ $ $) 28 (|has| |#1| (-358)))) (-2387 (($ $ (-751)) 31 (|has| |#1| (-358)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2871 (($ $ $) NIL (|has| |#1| (-358)))) (-2872 (($ $ $) NIL (|has| |#1| (-358)))) (-2873 (($ $ $) NIL (|has| |#1| (-358)))) (-2869 (($ $ $) NIL (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2870 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-2502 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) NIL)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-3153 (((-751) $) NIL)) (-2877 (($ $ $) NIL (|has| |#1| (-358)))) (-2878 (($ $ $) NIL (|has| |#1| (-358)))) (-2867 (($ $ $) NIL (|has| |#1| (-358)))) (-2875 (($ $ $) NIL (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2876 (((-3 $ #1#) $ $) NIL (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-545)))) (-4159 ((|#1| $ |#1|) 24)) (-2388 (($ $ $) 33 (|has| |#1| (-358)))) (-4307 (((-751) $) NIL)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) 20) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) NIL)) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2880 ((|#1| $ |#1| |#1|) 23)) (-2854 (($ $) NIL)) (-2991 (($) 21 T CONST)) (-2997 (($) 8 T CONST)) (-3002 (($) NIL)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-634 |#1| |#2|) (-638 |#1|) (-1025) (-1 |#1| |#1|)) (T -634)) +NIL +(-638 |#1|) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-358)))) (-2386 (($ $ $) NIL (|has| |#1| (-358)))) (-2387 (($ $ (-751)) NIL (|has| |#1| (-358)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2871 (($ $ $) NIL (|has| |#1| (-358)))) (-2872 (($ $ $) NIL (|has| |#1| (-358)))) (-2873 (($ $ $) NIL (|has| |#1| (-358)))) (-2869 (($ $ $) NIL (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2870 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-2502 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) NIL)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-3153 (((-751) $) NIL)) (-2877 (($ $ $) NIL (|has| |#1| (-358)))) (-2878 (($ $ $) NIL (|has| |#1| (-358)))) (-2867 (($ $ $) NIL (|has| |#1| (-358)))) (-2875 (($ $ $) NIL (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2876 (((-3 $ #1#) $ $) NIL (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-545)))) (-4159 ((|#1| $ |#1|) NIL)) (-2388 (($ $ $) NIL (|has| |#1| (-358)))) (-4307 (((-751) $) NIL)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) NIL)) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2880 ((|#1| $ |#1| |#1|) NIL)) (-2854 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($) NIL)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-635 |#1|) (-638 |#1|) (-229)) (T -635)) +NIL +(-638 |#1|) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2384 (($ $) NIL (|has| |#1| (-358)))) (-2386 (($ $ $) NIL (|has| |#1| (-358)))) (-2387 (($ $ (-751)) NIL (|has| |#1| (-358)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2871 (($ $ $) NIL (|has| |#1| (-358)))) (-2872 (($ $ $) NIL (|has| |#1| (-358)))) (-2873 (($ $ $) NIL (|has| |#1| (-358)))) (-2869 (($ $ $) NIL (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2870 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-2502 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) NIL)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-3153 (((-751) $) NIL)) (-2877 (($ $ $) NIL (|has| |#1| (-358)))) (-2878 (($ $ $) NIL (|has| |#1| (-358)))) (-2867 (($ $ $) NIL (|has| |#1| (-358)))) (-2875 (($ $ $) NIL (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2876 (((-3 $ #1#) $ $) NIL (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-545)))) (-4159 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2388 (($ $ $) NIL (|has| |#1| (-358)))) (-4307 (((-751) $) NIL)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) NIL)) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2880 ((|#1| $ |#1| |#1|) NIL)) (-2854 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($) NIL)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-636 |#1| |#2|) (-13 (-638 |#1|) (-281 |#2| |#2|)) (-229) (-13 (-628 |#1|) (-10 -8 (-15 -4170 ($ $))))) (T -636)) +NIL +(-13 (-638 |#1|) (-281 |#2| |#2|)) +((-2384 (($ $) 26)) (-2854 (($ $) 24)) (-3002 (($) 12))) +(((-637 |#1| |#2|) (-10 -8 (-15 -2384 (|#1| |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -3002 (|#1|))) (-638 |#2|) (-1025)) (T -637)) +NIL +(-10 -8 (-15 -2384 (|#1| |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -3002 (|#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2384 (($ $) 80 (|has| |#1| (-358)))) (-2386 (($ $ $) 82 (|has| |#1| (-358)))) (-2387 (($ $ (-751)) 81 (|has| |#1| (-358)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2871 (($ $ $) 43 (|has| |#1| (-358)))) (-2872 (($ $ $) 44 (|has| |#1| (-358)))) (-2873 (($ $ $) 46 (|has| |#1| (-358)))) (-2869 (($ $ $) 41 (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 40 (|has| |#1| (-358)))) (-2870 (((-3 $ #1="failed") $ $) 42 (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 45 (|has| |#1| (-358)))) (-3508 (((-3 (-538) #2="failed") $) 72 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) 70 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) 67)) (-3507 (((-538) $) 73 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 71 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 66)) (-4319 (($ $) 62)) (-3821 (((-3 $ "failed") $) 32)) (-3857 (($ $) 53 (|has| |#1| (-446)))) (-2502 (((-112) $) 30)) (-3226 (($ |#1| (-751)) 60)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55 (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 56 (|has| |#1| (-545)))) (-3153 (((-751) $) 64)) (-2877 (($ $ $) 50 (|has| |#1| (-358)))) (-2878 (($ $ $) 51 (|has| |#1| (-358)))) (-2867 (($ $ $) 39 (|has| |#1| (-358)))) (-2875 (($ $ $) 48 (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 47 (|has| |#1| (-358)))) (-2876 (((-3 $ #1#) $ $) 49 (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 52 (|has| |#1| (-358)))) (-3525 ((|#1| $) 63)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ #1#) $ |#1|) 57 (|has| |#1| (-545)))) (-4159 ((|#1| $ |#1|) 85)) (-2388 (($ $ $) 79 (|has| |#1| (-358)))) (-4307 (((-751) $) 65)) (-3150 ((|#1| $) 54 (|has| |#1| (-446)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 69 (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) 68)) (-4177 (((-622 |#1|) $) 59)) (-4040 ((|#1| $ (-751)) 61)) (-3461 (((-751)) 28)) (-2880 ((|#1| $ |#1| |#1|) 58)) (-2854 (($ $) 83)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($) 84)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-638 |#1|) (-138) (-1025)) (T -638)) +((-3002 (*1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)))) (-2854 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)))) (-2386 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2387 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-638 *3)) (-4 *3 (-1025)) (-4 *3 (-358)))) (-2384 (*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2388 (*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) +(-13 (-829 |t#1|) (-281 |t#1| |t#1|) (-10 -8 (-15 -3002 ($)) (-15 -2854 ($ $)) (IF (|has| |t#1| (-358)) (PROGN (-15 -2386 ($ $ $)) (-15 -2387 ($ $ (-751))) (-15 -2384 ($ $)) (-15 -2388 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-281 |#1| |#1|) . T) ((-407 |#1|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-829 |#1|) . T)) +((-2385 (((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|))) 74 (|has| |#1| (-27)))) (-4092 (((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|))) 73 (|has| |#1| (-27))) (((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|)) 17))) +(((-639 |#1| |#2|) (-10 -7 (-15 -4092 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4092 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|)))) (-15 -2385 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|))))) |%noBranch|)) (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))) (-1207 |#1|)) (T -639)) +((-2385 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-635 (-402 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-402 *5))))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-635 (-402 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-635 (-402 *5))))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-635 (-402 *6)))) (-5 *1 (-639 *5 *6)) (-5 *3 (-635 (-402 *6)))))) +(-10 -7 (-15 -4092 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4092 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|)))) (-15 -2385 ((-622 (-635 (-402 |#2|))) (-635 (-402 |#2|))))) |%noBranch|)) +((-2386 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2387 ((|#2| |#2| (-751) (-1 |#1| |#1|)) 40)) (-2388 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61))) +(((-640 |#1| |#2|) (-10 -7 (-15 -2386 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2387 (|#2| |#2| (-751) (-1 |#1| |#1|))) (-15 -2388 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-358) (-638 |#1|)) (T -640)) +((-2388 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-640 *4 *2)) (-4 *2 (-638 *4)))) (-2387 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-640 *5 *2)) (-4 *2 (-638 *5)))) (-2386 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-640 *4 *2)) (-4 *2 (-638 *4))))) +(-10 -7 (-15 -2386 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2387 (|#2| |#2| (-751) (-1 |#1| |#1|))) (-15 -2388 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-3681 (($ $ $) 9))) +(((-641 |#1|) (-10 -8 (-15 -3681 (|#1| |#1| |#1|))) (-642)) (T -641)) +NIL +(-10 -8 (-15 -3681 (|#1| |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3679 (($ $) 10)) (-3681 (($ $ $) 8)) (-3387 (((-112) $ $) 6)) (-3680 (($ $ $) 9))) +(((-642) (-138)) (T -642)) +((-3679 (*1 *1 *1) (-4 *1 (-642))) (-3680 (*1 *1 *1 *1) (-4 *1 (-642))) (-3681 (*1 *1 *1 *1) (-4 *1 (-642)))) +(-13 (-101) (-10 -8 (-15 -3679 ($ $)) (-15 -3680 ($ $ $)) (-15 -3681 ($ $ $)))) (((-101) . T)) -((-2384 (((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|)) 33))) -(((-641 |#1|) (-10 -7 (-15 -2384 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|)))) (-884)) (T -641)) -((-2384 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 *4))) (-5 *3 (-1141 *4)) (-4 *4 (-884)) (-5 *1 (-641 *4))))) -(-10 -7 (-15 -2384 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4289 (((-620 |#1|) $) 82)) (-4301 (($ $ (-749)) 90)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4294 (((-1254 |#1| |#2|) (-1254 |#1| |#2|) $) 48)) (-3503 (((-3 (-650 |#1|) "failed") $) NIL)) (-3502 (((-650 |#1|) $) NIL)) (-4314 (($ $) 89)) (-2505 (((-749) $) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ (-650 |#1|) |#2|) 68)) (-4291 (($ $) 86)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-4295 (((-1254 |#1| |#2|) (-1254 |#1| |#2|) $) 47)) (-1860 (((-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3222 (((-650 |#1|) $) NIL)) (-3520 ((|#2| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4122 (($ $ |#1| $) 30) (($ $ (-620 |#1|) (-620 $)) 32)) (-4302 (((-749) $) 88)) (-3879 (($ $ $) 20) (($ (-650 |#1|) (-650 |#1|)) 77) (($ (-650 |#1|) $) 75) (($ $ (-650 |#1|)) 76)) (-4312 (((-838) $) NIL) (($ |#1|) 74) (((-1245 |#1| |#2|) $) 58) (((-1254 |#1| |#2|) $) 41) (($ (-650 |#1|)) 25)) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-650 |#1|)) NIL)) (-4308 ((|#2| (-1254 |#1| |#2|) $) 43)) (-2986 (($) 23 T CONST)) (-2991 (((-620 (-2 (|:| |k| (-650 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4300 (((-3 $ "failed") (-1245 |#1| |#2|)) 60)) (-1844 (($ (-650 |#1|)) 14)) (-3382 (((-112) $ $) 44)) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) 66) (($ $ $) NIL)) (-4194 (($ $ $) 29)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-650 |#1|)) NIL))) -(((-642 |#1| |#2|) (-13 (-367 |#1| |#2|) (-377 |#2| (-650 |#1|)) (-10 -8 (-15 -4300 ((-3 $ "failed") (-1245 |#1| |#2|))) (-15 -3879 ($ (-650 |#1|) (-650 |#1|))) (-15 -3879 ($ (-650 |#1|) $)) (-15 -3879 ($ $ (-650 |#1|))))) (-825) (-170)) (T -642)) -((-4300 (*1 *1 *2) (|partial| -12 (-5 *2 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *1 (-642 *3 *4)))) (-3879 (*1 *1 *2 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) (-3879 (*1 *1 *2 *1) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170))))) -(-13 (-367 |#1| |#2|) (-377 |#2| (-650 |#1|)) (-10 -8 (-15 -4300 ((-3 $ "failed") (-1245 |#1| |#2|))) (-15 -3879 ($ (-650 |#1|) (-650 |#1|))) (-15 -3879 ($ (-650 |#1|) $)) (-15 -3879 ($ $ (-650 |#1|))))) -((-1843 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-1841 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1626 (($ (-1 (-112) |#2|) $) 28)) (-2372 (($ $) 56)) (-2450 (($ $) 64)) (-3759 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-4197 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3773 (((-536) |#2| $ (-536)) 61) (((-536) |#2| $) NIL) (((-536) (-1 (-112) |#2|) $) 47)) (-3972 (($ (-749) |#2|) 54)) (-3187 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3867 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4313 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3892 (($ |#2|) 15)) (-3965 (($ $ $ (-536)) 36) (($ |#2| $ (-536)) 34)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-1627 (($ $ (-1196 (-536))) 44) (($ $ (-536)) 38)) (-1842 (($ $ $ (-536)) 60)) (-3754 (($ $) 58)) (-3013 (((-112) $ $) 66))) -(((-643 |#1| |#2|) (-10 -8 (-15 -3892 (|#1| |#2|)) (-15 -1627 (|#1| |#1| (-536))) (-15 -1627 (|#1| |#1| (-1196 (-536)))) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3965 (|#1| |#2| |#1| (-536))) (-15 -3965 (|#1| |#1| |#1| (-536))) (-15 -3187 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -3187 (|#1| |#1| |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3867 (|#1| |#1| |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -1842 (|#1| |#1| |#1| (-536))) (-15 -2372 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3972 (|#1| (-749) |#2|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1|))) (-644 |#2|) (-1183)) (T -643)) -NIL -(-10 -8 (-15 -3892 (|#1| |#2|)) (-15 -1627 (|#1| |#1| (-536))) (-15 -1627 (|#1| |#1| (-1196 (-536)))) (-15 -3759 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3965 (|#1| |#2| |#1| (-536))) (-15 -3965 (|#1| |#1| |#1| (-536))) (-15 -3187 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1626 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3759 (|#1| |#2| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -3187 (|#1| |#1| |#1|)) (-15 -3867 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1843 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3773 ((-536) (-1 (-112) |#2|) |#1|)) (-15 -3773 ((-536) |#2| |#1|)) (-15 -3773 ((-536) |#2| |#1| (-536))) (-15 -3867 (|#1| |#1| |#1|)) (-15 -1843 ((-112) |#1|)) (-15 -1842 (|#1| |#1| |#1| (-536))) (-15 -2372 (|#1| |#1|)) (-15 -1841 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1841 (|#1| |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4197 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3972 (|#1| (-749) |#2|)) (-15 -4313 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3754 (|#1| |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-4149 ((|#1| $) 65)) (-4151 (($ $) 67)) (-2300 (((-1235) $ (-536) (-536)) 97 (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 52 (|has| $ (-6 -4349)))) (-1843 (((-112) $) 142 (|has| |#1| (-825))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-1841 (($ $) 146 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4349)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4349)))) (-3237 (($ $) 141 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-4141 (($ $ $) 56 (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) 54 (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 58 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4349))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 117 (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) 86 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-1626 (($ (-1 (-112) |#1|) $) 129)) (-4068 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4348)))) (-4150 ((|#1| $) 66)) (-3891 (($) 7 T CONST)) (-2372 (($ $) 144 (|has| $ (-6 -4349)))) (-2373 (($ $) 134)) (-4153 (($ $) 73) (($ $ (-749)) 71)) (-2450 (($ $) 131 (|has| |#1| (-1072)))) (-1398 (($ $) 99 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 130 (|has| |#1| (-1072))) (($ (-1 (-112) |#1|) $) 125)) (-3760 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4348))) (($ |#1| $) 100 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1632 ((|#1| $ (-536) |#1|) 85 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 87)) (-3796 (((-112) $) 83)) (-3773 (((-536) |#1| $ (-536)) 139 (|has| |#1| (-1072))) (((-536) |#1| $) 138 (|has| |#1| (-1072))) (((-536) (-1 (-112) |#1|) $) 137)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) 108)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 95 (|has| (-536) (-825)))) (-3672 (($ $ $) 147 (|has| |#1| (-825)))) (-3187 (($ $ $) 132 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3867 (($ $ $) 140 (|has| |#1| (-825))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 94 (|has| (-536) (-825)))) (-3673 (($ $ $) 148 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3892 (($ |#1|) 122)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-4152 ((|#1| $) 70) (($ $ (-749)) 68)) (-3965 (($ $ $ (-536)) 127) (($ |#1| $ (-536)) 126)) (-2377 (($ $ $ (-536)) 116) (($ |#1| $ (-536)) 115)) (-2305 (((-620 (-536)) $) 92)) (-2306 (((-112) (-536) $) 91)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 76) (($ $ (-749)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2301 (($ $ |#1|) 96 (|has| $ (-6 -4349)))) (-3797 (((-112) $) 84)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 90)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1196 (-536))) 112) ((|#1| $ (-536)) 89) ((|#1| $ (-536) |#1|) 88)) (-3357 (((-536) $ $) 44)) (-1627 (($ $ (-1196 (-536))) 124) (($ $ (-536)) 123)) (-2378 (($ $ (-1196 (-536))) 114) (($ $ (-536)) 113)) (-3991 (((-112) $) 46)) (-4146 (($ $) 62)) (-4144 (($ $) 59 (|has| $ (-6 -4349)))) (-4147 (((-749) $) 63)) (-4148 (($ $) 64)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 143 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 98 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 107)) (-4145 (($ $ $) 61) (($ $ |#1|) 60)) (-4156 (($ $ $) 78) (($ |#1| $) 77) (($ (-620 $)) 110) (($ $ |#1|) 109)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 150 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 151 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) 149 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 152 (|has| |#1| (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-644 |#1|) (-138) (-1183)) (T -644)) -((-3892 (*1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1183))))) -(-13 (-1120 |t#1|) (-365 |t#1|) (-275 |t#1|) (-10 -8 (-15 -3892 ($ |t#1|)))) -(((-34) . T) ((-101) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-275 |#1|) . T) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-825) |has| |#1| (-825)) ((-984 |#1|) . T) ((-1072) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-1120 |#1|) . T) ((-1183) . T) ((-1218 |#1|) . T)) -((-3931 (((-620 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-620 |#3|)))) |#4| (-620 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-620 |#3|))) |#4| |#3|) 45)) (-3439 (((-749) |#4| |#3|) 17)) (-3694 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2385 (((-112) |#4| |#3|) 13))) -(((-645 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3931 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-620 |#3|))) |#4| |#3|)) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-620 |#3|)))) |#4| (-620 |#3|))) (-15 -3694 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2385 ((-112) |#4| |#3|)) (-15 -3439 ((-749) |#4| |#3|))) (-356) (-13 (-365 |#1|) (-10 -7 (-6 -4349))) (-13 (-365 |#1|) (-10 -7 (-6 -4349))) (-664 |#1| |#2| |#3|)) (T -645)) -((-3439 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-749)) (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) (-2385 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-112)) (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) (-3694 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4349)))) (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349)))) (-5 *1 (-645 *4 *5 *2 *3)) (-4 *3 (-664 *4 *5 *2)))) (-3931 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-620 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2123 (-620 *7))))) (-5 *1 (-645 *5 *6 *7 *3)) (-5 *4 (-620 *7)) (-4 *3 (-664 *5 *6 *7)))) (-3931 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-620 *4)))) (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4))))) -(-10 -7 (-15 -3931 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2123 (-620 |#3|))) |#4| |#3|)) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2123 (-620 |#3|)))) |#4| (-620 |#3|))) (-15 -3694 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2385 ((-112) |#4| |#3|)) (-15 -3439 ((-749) |#4| |#3|))) -((-3931 (((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1="failed")) (|:| -2123 (-620 (-1229 |#1|))))) (-620 (-620 |#1|)) (-620 (-1229 |#1|))) 22) (((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|))))) (-667 |#1|) (-620 (-1229 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|)))) (-620 (-620 |#1|)) (-1229 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|)) 14)) (-3439 (((-749) (-667 |#1|) (-1229 |#1|)) 30)) (-3694 (((-3 (-1229 |#1|) #1#) (-667 |#1|) (-1229 |#1|)) 24)) (-2385 (((-112) (-667 |#1|) (-1229 |#1|)) 27))) -(((-646 |#1|) (-10 -7 (-15 -3931 ((-2 (|:| |particular| (-3 (-1229 |#1|) #1="failed")) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|))) (-15 -3931 ((-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|)))) (-620 (-620 |#1|)) (-1229 |#1|))) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|))))) (-667 |#1|) (-620 (-1229 |#1|)))) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|))))) (-620 (-620 |#1|)) (-620 (-1229 |#1|)))) (-15 -3694 ((-3 (-1229 |#1|) #1#) (-667 |#1|) (-1229 |#1|))) (-15 -2385 ((-112) (-667 |#1|) (-1229 |#1|))) (-15 -3439 ((-749) (-667 |#1|) (-1229 |#1|)))) (-356)) (T -646)) -((-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-5 *2 (-749)) (-5 *1 (-646 *5)))) (-2385 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-5 *2 (-112)) (-5 *1 (-646 *5)))) (-3694 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1229 *4)) (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *1 (-646 *4)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-620 *5))) (-4 *5 (-356)) (-5 *2 (-620 (-2 (|:| |particular| (-3 (-1229 *5) #1="failed")) (|:| -2123 (-620 (-1229 *5)))))) (-5 *1 (-646 *5)) (-5 *4 (-620 (-1229 *5))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-620 (-2 (|:| |particular| (-3 (-1229 *5) #1#)) (|:| -2123 (-620 (-1229 *5)))))) (-5 *1 (-646 *5)) (-5 *4 (-620 (-1229 *5))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-620 *5))) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1229 *5) #1#)) (|:| -2123 (-620 (-1229 *5))))) (-5 *1 (-646 *5)) (-5 *4 (-1229 *5)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |particular| (-3 (-1229 *5) #1#)) (|:| -2123 (-620 (-1229 *5))))) (-5 *1 (-646 *5)) (-5 *4 (-1229 *5))))) -(-10 -7 (-15 -3931 ((-2 (|:| |particular| (-3 (-1229 |#1|) #1="failed")) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|))) (-15 -3931 ((-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|)))) (-620 (-620 |#1|)) (-1229 |#1|))) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|))))) (-667 |#1|) (-620 (-1229 |#1|)))) (-15 -3931 ((-620 (-2 (|:| |particular| (-3 (-1229 |#1|) #1#)) (|:| -2123 (-620 (-1229 |#1|))))) (-620 (-620 |#1|)) (-620 (-1229 |#1|)))) (-15 -3694 ((-3 (-1229 |#1|) #1#) (-667 |#1|) (-1229 |#1|))) (-15 -2385 ((-112) (-667 |#1|) (-1229 |#1|))) (-15 -3439 ((-749) (-667 |#1|) (-1229 |#1|)))) -((-2386 (((-2 (|:| |particular| (-3 (-1229 (-400 |#4|)) "failed")) (|:| -2123 (-620 (-1229 (-400 |#4|))))) (-620 |#4|) (-620 |#3|)) 45))) -(((-647 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2386 ((-2 (|:| |particular| (-3 (-1229 (-400 |#4|)) "failed")) (|:| -2123 (-620 (-1229 (-400 |#4|))))) (-620 |#4|) (-620 |#3|)))) (-543) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -647)) -((-2386 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *7)) (-4 *7 (-825)) (-4 *8 (-924 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-5 *2 (-2 (|:| |particular| (-3 (-1229 (-400 *8)) "failed")) (|:| -2123 (-620 (-1229 (-400 *8)))))) (-5 *1 (-647 *5 *6 *7 *8))))) -(-10 -7 (-15 -2386 ((-2 (|:| |particular| (-3 (-1229 (-400 |#4|)) "failed")) (|:| -2123 (-620 (-1229 (-400 |#4|))))) (-620 |#4|) (-620 |#3|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1887 (((-3 $ #1="failed")) NIL (|has| |#2| (-543)))) (-3684 ((|#2| $) NIL)) (-3451 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3569 (((-1229 (-667 |#2|))) NIL) (((-1229 (-667 |#2|)) (-1229 $)) NIL)) (-3453 (((-112) $) NIL)) (-1840 (((-1229 $)) 37)) (-1269 (((-112) $ (-749)) NIL)) (-3687 (($ |#2|) NIL)) (-3891 (($) NIL T CONST)) (-3440 (($ $) NIL (|has| |#2| (-300)))) (-3442 (((-233 |#1| |#2|) $ (-536)) NIL)) (-2023 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (|has| |#2| (-543)))) (-1814 (((-3 $ #1#)) NIL (|has| |#2| (-543)))) (-1902 (((-667 |#2|)) NIL) (((-667 |#2|) (-1229 $)) NIL)) (-1838 ((|#2| $) NIL)) (-1900 (((-667 |#2|) $) NIL) (((-667 |#2|) $ (-1229 $)) NIL)) (-2491 (((-3 $ #1#) $) NIL (|has| |#2| (-543)))) (-2017 (((-1141 (-920 |#2|))) NIL (|has| |#2| (-356)))) (-2494 (($ $ (-893)) NIL)) (-1836 ((|#2| $) NIL)) (-1816 (((-1141 |#2|) $) NIL (|has| |#2| (-543)))) (-1904 ((|#2|) NIL) ((|#2| (-1229 $)) NIL)) (-1834 (((-1141 |#2|) $) NIL)) (-1828 (((-112)) NIL)) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 |#2| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) ((|#2| $) NIL)) (-1906 (($ (-1229 |#2|)) NIL) (($ (-1229 |#2|) (-1229 $)) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3439 (((-749) $) NIL (|has| |#2| (-543))) (((-893)) 38)) (-3443 ((|#2| $ (-536) (-536)) NIL)) (-1825 (((-112)) NIL)) (-2519 (($ $ (-893)) NIL)) (-2063 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL)) (-3438 (((-749) $) NIL (|has| |#2| (-543)))) (-3437 (((-620 (-233 |#1| |#2|)) $) NIL (|has| |#2| (-543)))) (-3445 (((-749) $) NIL)) (-1821 (((-112)) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3681 ((|#2| $) NIL (|has| |#2| (-6 (-4350 #3="*"))))) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-3454 (($ (-620 (-620 |#2|))) NIL)) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3951 (((-620 (-620 |#2|)) $) NIL)) (-1819 (((-112)) NIL)) (-1823 (((-112)) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-2024 (((-3 (-2 (|:| |particular| $) (|:| -2123 (-620 $))) #1#)) NIL (|has| |#2| (-543)))) (-1815 (((-3 $ #1#)) NIL (|has| |#2| (-543)))) (-1903 (((-667 |#2|)) NIL) (((-667 |#2|) (-1229 $)) NIL)) (-1839 ((|#2| $) NIL)) (-1901 (((-667 |#2|) $) NIL) (((-667 |#2|) $ (-1229 $)) NIL)) (-2492 (((-3 $ #1#) $) NIL (|has| |#2| (-543)))) (-2021 (((-1141 (-920 |#2|))) NIL (|has| |#2| (-356)))) (-2493 (($ $ (-893)) NIL)) (-1837 ((|#2| $) NIL)) (-1817 (((-1141 |#2|) $) NIL (|has| |#2| (-543)))) (-1905 ((|#2|) NIL) ((|#2| (-1229 $)) NIL)) (-1835 (((-1141 |#2|) $) NIL)) (-1829 (((-112)) NIL)) (-3588 (((-1129) $) NIL)) (-1820 (((-112)) NIL)) (-1822 (((-112)) NIL)) (-1824 (((-112)) NIL)) (-3947 (((-3 $ "failed") $) NIL (|has| |#2| (-356)))) (-3589 (((-1091) $) NIL)) (-1827 (((-112)) NIL)) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ (-536) (-536) |#2|) NIL) ((|#2| $ (-536) (-536)) 22) ((|#2| $ (-536)) NIL)) (-4165 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3683 ((|#2| $) NIL)) (-3686 (($ (-620 |#2|)) NIL)) (-3452 (((-112) $) NIL)) (-3685 (((-233 |#1| |#2|) $) NIL)) (-3682 ((|#2| $) NIL (|has| |#2| (-6 (-4350 #3#))))) (-2064 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3754 (($ $) NIL)) (-3570 (((-667 |#2|) (-1229 $)) NIL) (((-1229 |#2|) $) NIL) (((-667 |#2|) (-1229 $) (-1229 $)) NIL) (((-1229 |#2|) $ (-1229 $)) 25)) (-4325 (($ (-1229 |#2|)) NIL) (((-1229 |#2|) $) NIL)) (-2009 (((-620 (-920 |#2|))) NIL) (((-620 (-920 |#2|)) (-1229 $)) NIL)) (-2681 (($ $ $) NIL)) (-1833 (((-112)) NIL)) (-3441 (((-233 |#1| |#2|) $ (-536)) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#2| (-1012 (-400 (-536))))) (($ |#2|) NIL) (((-667 |#2|) $) NIL)) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) 36)) (-1818 (((-620 (-1229 |#2|))) NIL (|has| |#2| (-543)))) (-2682 (($ $ $ $) NIL)) (-1831 (((-112)) NIL)) (-2875 (($ (-667 |#2|) $) NIL)) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-2680 (($ $ $) NIL)) (-1832 (((-112)) NIL)) (-1830 (((-112)) NIL)) (-1826 (((-112)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#2| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) NIL) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-648 |#1| |#2|) (-13 (-1094 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-595 (-667 |#2|)) (-411 |#2|)) (-893) (-170)) (T -648)) -NIL -(-13 (-1094 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-595 (-667 |#2|)) (-411 |#2|)) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3594 (((-620 (-1106)) $) 10)) (-4312 (((-838) $) 18) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-649) (-13 (-1054) (-10 -8 (-15 -3594 ((-620 (-1106)) $))))) (T -649)) -((-3594 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-649))))) -(-13 (-1054) (-10 -8 (-15 -3594 ((-620 (-1106)) $)))) -((-2893 (((-112) $ $) NIL)) (-4289 (((-620 |#1|) $) NIL)) (-3467 (($ $) 52)) (-2990 (((-112) $) NIL)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-2389 (((-3 $ "failed") (-797 |#1|)) 23)) (-2391 (((-112) (-797 |#1|)) 15)) (-2390 (($ (-797 |#1|)) 24)) (-2768 (((-112) $ $) 30)) (-4188 (((-893) $) 37)) (-3468 (($ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4087 (((-620 $) (-797 |#1|)) 17)) (-4312 (((-838) $) 43) (($ |#1|) 34) (((-797 |#1|) $) 39) (((-655 |#1|) $) 44)) (-2388 (((-57 (-620 $)) (-620 |#1|) (-893)) 57)) (-2387 (((-620 $) (-620 |#1|) (-893)) 60)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 53)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 38))) -(((-650 |#1|) (-13 (-825) (-1012 |#1|) (-10 -8 (-15 -2990 ((-112) $)) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -4188 ((-893) $)) (-15 -2768 ((-112) $ $)) (-15 -4312 ((-797 |#1|) $)) (-15 -4312 ((-655 |#1|) $)) (-15 -4087 ((-620 $) (-797 |#1|))) (-15 -2391 ((-112) (-797 |#1|))) (-15 -2390 ($ (-797 |#1|))) (-15 -2389 ((-3 $ "failed") (-797 |#1|))) (-15 -4289 ((-620 |#1|) $)) (-15 -2388 ((-57 (-620 $)) (-620 |#1|) (-893))) (-15 -2387 ((-620 $) (-620 |#1|) (-893))))) (-825)) (T -650)) -((-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-3468 (*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) (-3467 (*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-2768 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-620 (-650 *4))) (-5 *1 (-650 *4)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-112)) (-5 *1 (-650 *4)))) (-2390 (*1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3)))) (-2389 (*1 *1 *2) (|partial| -12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) (-2388 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-893)) (-4 *5 (-825)) (-5 *2 (-57 (-620 (-650 *5)))) (-5 *1 (-650 *5)))) (-2387 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-893)) (-4 *5 (-825)) (-5 *2 (-620 (-650 *5))) (-5 *1 (-650 *5))))) -(-13 (-825) (-1012 |#1|) (-10 -8 (-15 -2990 ((-112) $)) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -4188 ((-893) $)) (-15 -2768 ((-112) $ $)) (-15 -4312 ((-797 |#1|) $)) (-15 -4312 ((-655 |#1|) $)) (-15 -4087 ((-620 $) (-797 |#1|))) (-15 -2391 ((-112) (-797 |#1|))) (-15 -2390 ($ (-797 |#1|))) (-15 -2389 ((-3 $ "failed") (-797 |#1|))) (-15 -4289 ((-620 |#1|) $)) (-15 -2388 ((-57 (-620 $)) (-620 |#1|) (-893))) (-15 -2387 ((-620 $) (-620 |#1|) (-893))))) -((-3756 ((|#2| $) 76)) (-4151 (($ $) 96)) (-1269 (((-112) $ (-749)) 26)) (-4153 (($ $) 85) (($ $ (-749)) 88)) (-3796 (((-112) $) 97)) (-3359 (((-620 $) $) 72)) (-3355 (((-112) $ $) 71)) (-4077 (((-112) $ (-749)) 24)) (-2302 (((-536) $) 46)) (-2303 (((-536) $) 45)) (-4074 (((-112) $ (-749)) 22)) (-3876 (((-112) $) 74)) (-4152 ((|#2| $) 89) (($ $ (-749)) 92)) (-2377 (($ $ $ (-536)) 62) (($ |#2| $ (-536)) 61)) (-2305 (((-620 (-536)) $) 44)) (-2306 (((-112) (-536) $) 42)) (-4155 ((|#2| $) NIL) (($ $ (-749)) 84)) (-4123 (($ $ (-536)) 100)) (-3797 (((-112) $) 99)) (-2065 (((-112) (-1 (-112) |#2|) $) 32)) (-2307 (((-620 |#2|) $) 33)) (-4154 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1196 (-536))) 58) ((|#2| $ (-536)) 40) ((|#2| $ (-536) |#2|) 41)) (-3357 (((-536) $ $) 70)) (-2378 (($ $ (-1196 (-536))) 57) (($ $ (-536)) 51)) (-3991 (((-112) $) 66)) (-4146 (($ $) 81)) (-4147 (((-749) $) 80)) (-4148 (($ $) 79)) (-3879 (($ (-620 |#2|)) 37)) (-3219 (($ $) 101)) (-3871 (((-620 $) $) 69)) (-3356 (((-112) $ $) 68)) (-2066 (((-112) (-1 (-112) |#2|) $) 31)) (-3382 (((-112) $ $) 18)) (-4311 (((-749) $) 29))) -(((-651 |#1| |#2|) (-10 -8 (-15 -3219 (|#1| |#1|)) (-15 -4123 (|#1| |#1| (-536))) (-15 -3796 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -2307 ((-620 |#2|) |#1|)) (-15 -2306 ((-112) (-536) |#1|)) (-15 -2305 ((-620 (-536)) |#1|)) (-15 -2303 ((-536) |#1|)) (-15 -2302 ((-536) |#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -4146 (|#1| |#1|)) (-15 -4147 ((-749) |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "last")) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| "rest")) (-15 -4153 (|#1| |#1|)) (-15 -4155 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "first")) (-15 -4155 (|#2| |#1|)) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3356 ((-112) |#1| |#1|)) (-15 -3357 ((-536) |#1| |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| "value")) (-15 -3756 (|#2| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749)))) (-652 |#2|) (-1183)) (T -651)) -NIL -(-10 -8 (-15 -3219 (|#1| |#1|)) (-15 -4123 (|#1| |#1| (-536))) (-15 -3796 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -2307 ((-620 |#2|) |#1|)) (-15 -2306 ((-112) (-536) |#1|)) (-15 -2305 ((-620 (-536)) |#1|)) (-15 -2303 ((-536) |#1|)) (-15 -2302 ((-536) |#1|)) (-15 -3879 (|#1| (-620 |#2|))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -2378 (|#1| |#1| (-536))) (-15 -2378 (|#1| |#1| (-1196 (-536)))) (-15 -2377 (|#1| |#2| |#1| (-536))) (-15 -2377 (|#1| |#1| |#1| (-536))) (-15 -4146 (|#1| |#1|)) (-15 -4147 ((-749) |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "last")) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| "rest")) (-15 -4153 (|#1| |#1|)) (-15 -4155 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "first")) (-15 -4155 (|#2| |#1|)) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3356 ((-112) |#1| |#1|)) (-15 -3357 ((-536) |#1| |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| "value")) (-15 -3756 (|#2| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -2065 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749)))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-4149 ((|#1| $) 65)) (-4151 (($ $) 67)) (-2300 (((-1235) $ (-536) (-536)) 97 (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 52 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-4141 (($ $ $) 56 (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) 54 (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 58 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4349))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 117 (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) 86 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 102)) (-4150 ((|#1| $) 66)) (-3891 (($) 7 T CONST)) (-2393 (($ $) 124)) (-4153 (($ $) 73) (($ $ (-749)) 71)) (-1398 (($ $) 99 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 100 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 103)) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1632 ((|#1| $ (-536) |#1|) 85 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 87)) (-3796 (((-112) $) 83)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-2392 (((-749) $) 123)) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) 108)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 95 (|has| (-536) (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 94 (|has| (-536) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-2395 (($ $) 126)) (-2396 (((-112) $) 127)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-4152 ((|#1| $) 70) (($ $ (-749)) 68)) (-2377 (($ $ $ (-536)) 116) (($ |#1| $ (-536)) 115)) (-2305 (((-620 (-536)) $) 92)) (-2306 (((-112) (-536) $) 91)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2394 ((|#1| $) 125)) (-4155 ((|#1| $) 76) (($ $ (-749)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2301 (($ $ |#1|) 96 (|has| $ (-6 -4349)))) (-4123 (($ $ (-536)) 122)) (-3797 (((-112) $) 84)) (-2397 (((-112) $) 128)) (-2398 (((-112) $) 129)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 90)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1196 (-536))) 112) ((|#1| $ (-536)) 89) ((|#1| $ (-536) |#1|) 88)) (-3357 (((-536) $ $) 44)) (-2378 (($ $ (-1196 (-536))) 114) (($ $ (-536)) 113)) (-3991 (((-112) $) 46)) (-4146 (($ $) 62)) (-4144 (($ $) 59 (|has| $ (-6 -4349)))) (-4147 (((-749) $) 63)) (-4148 (($ $) 64)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 98 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 107)) (-4145 (($ $ $) 61 (|has| $ (-6 -4349))) (($ $ |#1|) 60 (|has| $ (-6 -4349)))) (-4156 (($ $ $) 78) (($ |#1| $) 77) (($ (-620 $)) 110) (($ $ |#1|) 109)) (-3219 (($ $) 121)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-652 |#1|) (-138) (-1183)) (T -652)) -((-3760 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) (-4068 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-2396 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-2395 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183)))) (-2393 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183)))) (-2392 (*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) (-4123 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) (-3219 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183))))) -(-13 (-1120 |t#1|) (-10 -8 (-15 -3760 ($ (-1 (-112) |t#1|) $)) (-15 -4068 ($ (-1 (-112) |t#1|) $)) (-15 -2398 ((-112) $)) (-15 -2397 ((-112) $)) (-15 -2396 ((-112) $)) (-15 -2395 ($ $)) (-15 -2394 (|t#1| $)) (-15 -2393 ($ $)) (-15 -2392 ((-749) $)) (-15 -4123 ($ $ (-536))) (-15 -3219 ($ $)))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1120 |#1|) . T) ((-1183) . T) ((-1218 |#1|) . T)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2404 (($ (-749) (-749) (-749)) 33 (|has| |#1| (-1023)))) (-1269 (((-112) $ (-749)) NIL)) (-2401 ((|#1| $ (-749) (-749) (-749) |#1|) 27)) (-3891 (($) NIL T CONST)) (-2402 (($ $ $) 37 (|has| |#1| (-1023)))) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2399 (((-1229 (-749)) $) 9)) (-2400 (($ (-1147) $ $) 22)) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2403 (($ (-749)) 35 (|has| |#1| (-1023)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-749) (-749) (-749)) 25)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-3879 (($ (-620 (-620 (-620 |#1|)))) 44)) (-4312 (($ (-932 (-932 (-932 |#1|)))) 15) (((-932 (-932 (-932 |#1|))) $) 12) (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-653 |#1|) (-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1023)) (PROGN (-15 -2404 ($ (-749) (-749) (-749))) (-15 -2403 ($ (-749))) (-15 -2402 ($ $ $))) |%noBranch|) (-15 -3879 ($ (-620 (-620 (-620 |#1|))))) (-15 -4154 (|#1| $ (-749) (-749) (-749))) (-15 -2401 (|#1| $ (-749) (-749) (-749) |#1|)) (-15 -4312 ($ (-932 (-932 (-932 |#1|))))) (-15 -4312 ((-932 (-932 (-932 |#1|))) $)) (-15 -2400 ($ (-1147) $ $)) (-15 -2399 ((-1229 (-749)) $)))) (-1072)) (T -653)) -((-2404 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1023)) (-4 *3 (-1072)))) (-2403 (*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1023)) (-4 *3 (-1072)))) (-2402 (*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1023)) (-4 *2 (-1072)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-620 *3)))) (-4 *3 (-1072)) (-5 *1 (-653 *3)))) (-4154 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1072)))) (-2401 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1072)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-4 *3 (-1072)) (-5 *1 (-653 *3)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-5 *1 (-653 *3)) (-4 *3 (-1072)))) (-2400 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-653 *3)) (-4 *3 (-1072)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1229 (-749))) (-5 *1 (-653 *3)) (-4 *3 (-1072))))) -(-13 (-481 |#1|) (-10 -8 (IF (|has| |#1| (-1023)) (PROGN (-15 -2404 ($ (-749) (-749) (-749))) (-15 -2403 ($ (-749))) (-15 -2402 ($ $ $))) |%noBranch|) (-15 -3879 ($ (-620 (-620 (-620 |#1|))))) (-15 -4154 (|#1| $ (-749) (-749) (-749))) (-15 -2401 (|#1| $ (-749) (-749) (-749) |#1|)) (-15 -4312 ($ (-932 (-932 (-932 |#1|))))) (-15 -4312 ((-932 (-932 (-932 |#1|))) $)) (-15 -2400 ($ (-1147) $ $)) (-15 -2399 ((-1229 (-749)) $)))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3524 (((-475) $) 10)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 12)) (-3382 (((-112) $ $) NIL))) -(((-654) (-13 (-1054) (-10 -8 (-15 -3524 ((-475) $)) (-15 -3579 ((-1106) $))))) (T -654)) -((-3524 (*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-654)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-654))))) -(-13 (-1054) (-10 -8 (-15 -3524 ((-475) $)) (-15 -3579 ((-1106) $)))) -((-2893 (((-112) $ $) NIL)) (-4289 (((-620 |#1|) $) 14)) (-3467 (($ $) 18)) (-2990 (((-112) $) 19)) (-3503 (((-3 |#1| "failed") $) 22)) (-3502 ((|#1| $) 20)) (-4153 (($ $) 36)) (-4291 (($ $) 24)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-2768 (((-112) $ $) 42)) (-4188 (((-893) $) 38)) (-3468 (($ $) 17)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 ((|#1| $) 35)) (-4312 (((-838) $) 31) (($ |#1|) 23) (((-797 |#1|) $) 27)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 12)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 40)) (* (($ $ $) 34))) -(((-655 |#1|) (-13 (-825) (-1012 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4312 ((-797 |#1|) $)) (-15 -4155 (|#1| $)) (-15 -3468 ($ $)) (-15 -4188 ((-893) $)) (-15 -2768 ((-112) $ $)) (-15 -4291 ($ $)) (-15 -4153 ($ $)) (-15 -2990 ((-112) $)) (-15 -3467 ($ $)) (-15 -4289 ((-620 |#1|) $)))) (-825)) (T -655)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-4155 (*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-3468 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-2768 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-4291 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-4153 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) (-3467 (*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825))))) -(-13 (-825) (-1012 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4312 ((-797 |#1|) $)) (-15 -4155 (|#1| $)) (-15 -3468 ($ $)) (-15 -4188 ((-893) $)) (-15 -2768 ((-112) $ $)) (-15 -4291 ($ $)) (-15 -4153 ($ $)) (-15 -2990 ((-112) $)) (-15 -3467 ($ $)) (-15 -4289 ((-620 |#1|) $)))) -((-2413 ((|#1| (-1 |#1| (-749) |#1|) (-749) |#1|) 11)) (-2405 ((|#1| (-1 |#1| |#1|) (-749) |#1|) 9))) -(((-656 |#1|) (-10 -7 (-15 -2405 (|#1| (-1 |#1| |#1|) (-749) |#1|)) (-15 -2413 (|#1| (-1 |#1| (-749) |#1|) (-749) |#1|))) (-1072)) (T -656)) -((-2413 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-749) *2)) (-5 *4 (-749)) (-4 *2 (-1072)) (-5 *1 (-656 *2)))) (-2405 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-749)) (-4 *2 (-1072)) (-5 *1 (-656 *2))))) -(-10 -7 (-15 -2405 (|#1| (-1 |#1| |#1|) (-749) |#1|)) (-15 -2413 (|#1| (-1 |#1| (-749) |#1|) (-749) |#1|))) -((-2407 ((|#2| |#1| |#2|) 9)) (-2406 ((|#1| |#1| |#2|) 8))) -(((-657 |#1| |#2|) (-10 -7 (-15 -2406 (|#1| |#1| |#2|)) (-15 -2407 (|#2| |#1| |#2|))) (-1072) (-1072)) (T -657)) -((-2407 (*1 *2 *3 *2) (-12 (-5 *1 (-657 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) (-2406 (*1 *2 *2 *3) (-12 (-5 *1 (-657 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) -(-10 -7 (-15 -2406 (|#1| |#1| |#2|)) (-15 -2407 (|#2| |#1| |#2|))) -((-2408 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-658 |#1| |#2| |#3|) (-10 -7 (-15 -2408 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1072) (-1072) (-1072)) (T -658)) -((-2408 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)) (-5 *1 (-658 *5 *6 *2))))) -(-10 -7 (-15 -2408 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2893 (((-112) $ $) NIL)) (-3664 (((-1184) $) 20)) (-3663 (((-620 (-1184)) $) 18)) (-2409 (($ (-620 (-1184)) (-1184)) 13)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 29) (((-1152) $) NIL) (($ (-1152)) NIL) (((-1184) $) 21) (($ (-1086)) 10)) (-3382 (((-112) $ $) NIL))) -(((-659) (-13 (-1054) (-595 (-1184)) (-10 -8 (-15 -4312 ($ (-1086))) (-15 -2409 ($ (-620 (-1184)) (-1184))) (-15 -3663 ((-620 (-1184)) $)) (-15 -3664 ((-1184) $))))) (T -659)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-659)))) (-2409 (*1 *1 *2 *3) (-12 (-5 *2 (-620 (-1184))) (-5 *3 (-1184)) (-5 *1 (-659)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-659)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-659))))) -(-13 (-1054) (-595 (-1184)) (-10 -8 (-15 -4312 ($ (-1086))) (-15 -2409 ($ (-620 (-1184)) (-1184))) (-15 -3663 ((-620 (-1184)) $)) (-15 -3664 ((-1184) $)))) -((-2413 (((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)) 23)) (-2410 (((-1 |#1|) |#1|) 8)) (-2412 ((|#1| |#1|) 16)) (-2411 (((-620 |#1|) (-1 (-620 |#1|) (-620 |#1|)) (-536)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4312 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-749)) 20))) -(((-660 |#1|) (-10 -7 (-15 -2410 ((-1 |#1|) |#1|)) (-15 -4312 ((-1 |#1|) |#1|)) (-15 -2411 (|#1| (-1 |#1| |#1|))) (-15 -2411 ((-620 |#1|) (-1 (-620 |#1|) (-620 |#1|)) (-536))) (-15 -2412 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-749))) (-15 -2413 ((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)))) (-1072)) (T -660)) -((-2413 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-749) *3)) (-4 *3 (-1072)) (-5 *1 (-660 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *4 (-1072)) (-5 *1 (-660 *4)))) (-2412 (*1 *2 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1072)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-620 *5) (-620 *5))) (-5 *4 (-536)) (-5 *2 (-620 *5)) (-5 *1 (-660 *5)) (-4 *5 (-1072)))) (-2411 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-660 *2)) (-4 *2 (-1072)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1072)))) (-2410 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1072))))) -(-10 -7 (-15 -2410 ((-1 |#1|) |#1|)) (-15 -4312 ((-1 |#1|) |#1|)) (-15 -2411 (|#1| (-1 |#1| |#1|))) (-15 -2411 ((-620 |#1|) (-1 (-620 |#1|) (-620 |#1|)) (-536))) (-15 -2412 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-749))) (-15 -2413 ((-1 |#1| (-749) |#1|) (-1 |#1| (-749) |#1|)))) -((-2416 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2415 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4306 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2414 (((-1 |#2| |#1|) |#2|) 11))) -(((-661 |#1| |#2|) (-10 -7 (-15 -2414 ((-1 |#2| |#1|) |#2|)) (-15 -2415 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4306 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2416 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1072) (-1072)) (T -661)) -((-2416 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1072)) (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5)) (-4 *4 (-1072)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-5 *2 (-1 *5)) (-5 *1 (-661 *4 *5)))) (-2414 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-661 *4 *3)) (-4 *4 (-1072)) (-4 *3 (-1072))))) -(-10 -7 (-15 -2414 ((-1 |#2| |#1|) |#2|)) (-15 -2415 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4306 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2416 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-2421 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2417 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2418 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2419 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2420 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-662 |#1| |#2| |#3|) (-10 -7 (-15 -2417 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2418 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2419 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2420 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2421 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1072) (-1072) (-1072)) (T -662)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-1 *7 *5)) (-5 *1 (-662 *5 *6 *7)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-662 *4 *5 *6)))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *4 (-1072)))) (-2419 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-662 *4 *5 *6)) (-4 *5 (-1072)))) (-2418 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *4 *5 *6)))) (-2417 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1072)) (-4 *4 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *4 *6))))) -(-10 -7 (-15 -2417 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2418 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2419 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2420 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2421 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-4193 (($ (-749) (-749)) 33)) (-2426 (($ $ $) 56)) (-3768 (($ |#3|) 52) (($ $) 53)) (-3451 (((-112) $) 28)) (-2425 (($ $ (-536) (-536)) 58)) (-2424 (($ $ (-536) (-536)) 59)) (-2423 (($ $ (-536) (-536) (-536) (-536)) 63)) (-2428 (($ $) 54)) (-3453 (((-112) $) 14)) (-2422 (($ $ (-536) (-536) $) 64)) (-4142 ((|#2| $ (-536) (-536) |#2|) NIL) (($ $ (-620 (-536)) (-620 (-536)) $) 62)) (-3687 (($ (-749) |#2|) 39)) (-3454 (($ (-620 (-620 |#2|))) 37)) (-3951 (((-620 (-620 |#2|)) $) 57)) (-2427 (($ $ $) 55)) (-3815 (((-3 $ "failed") $ |#2|) 91)) (-4154 ((|#2| $ (-536) (-536)) NIL) ((|#2| $ (-536) (-536) |#2|) NIL) (($ $ (-620 (-536)) (-620 (-536))) 61)) (-3686 (($ (-620 |#2|)) 40) (($ (-620 $)) 42)) (-3452 (((-112) $) 24)) (-4312 (($ |#4|) 47) (((-838) $) NIL)) (-3450 (((-112) $) 30)) (-4303 (($ $ |#2|) 93)) (-4192 (($ $ $) 68) (($ $) 71)) (-4194 (($ $ $) 66)) (** (($ $ (-749)) 80) (($ $ (-536)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-536) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) -(((-663 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -4303 (|#1| |#1| |#2|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1| (-536) (-536) |#1|)) (-15 -2423 (|#1| |#1| (-536) (-536) (-536) (-536))) (-15 -2424 (|#1| |#1| (-536) (-536))) (-15 -2425 (|#1| |#1| (-536) (-536))) (-15 -4142 (|#1| |#1| (-620 (-536)) (-620 (-536)) |#1|)) (-15 -4154 (|#1| |#1| (-620 (-536)) (-620 (-536)))) (-15 -3951 ((-620 (-620 |#2|)) |#1|)) (-15 -2426 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3768 (|#1| |#3|)) (-15 -4312 (|#1| |#4|)) (-15 -3686 (|#1| (-620 |#1|))) (-15 -3686 (|#1| (-620 |#2|))) (-15 -3687 (|#1| (-749) |#2|)) (-15 -3454 (|#1| (-620 (-620 |#2|)))) (-15 -4193 (|#1| (-749) (-749))) (-15 -3450 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3452 ((-112) |#1|)) (-15 -3453 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536)))) (-664 |#2| |#3| |#4|) (-1023) (-365 |#2|) (-365 |#2|)) (T -663)) -NIL -(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -4303 (|#1| |#1| |#2|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-749))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1| (-536) (-536) |#1|)) (-15 -2423 (|#1| |#1| (-536) (-536) (-536) (-536))) (-15 -2424 (|#1| |#1| (-536) (-536))) (-15 -2425 (|#1| |#1| (-536) (-536))) (-15 -4142 (|#1| |#1| (-620 (-536)) (-620 (-536)) |#1|)) (-15 -4154 (|#1| |#1| (-620 (-536)) (-620 (-536)))) (-15 -3951 ((-620 (-620 |#2|)) |#1|)) (-15 -2426 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -3768 (|#1| |#1|)) (-15 -3768 (|#1| |#3|)) (-15 -4312 (|#1| |#4|)) (-15 -3686 (|#1| (-620 |#1|))) (-15 -3686 (|#1| (-620 |#2|))) (-15 -3687 (|#1| (-749) |#2|)) (-15 -3454 (|#1| (-620 (-620 |#2|)))) (-15 -4193 (|#1| (-749) (-749))) (-15 -3450 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3452 ((-112) |#1|)) (-15 -3453 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) (-536)))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-4193 (($ (-749) (-749)) 97)) (-2426 (($ $ $) 87)) (-3768 (($ |#2|) 91) (($ $) 90)) (-3451 (((-112) $) 99)) (-2425 (($ $ (-536) (-536)) 83)) (-2424 (($ $ (-536) (-536)) 82)) (-2423 (($ $ (-536) (-536) (-536) (-536)) 81)) (-2428 (($ $) 89)) (-3453 (((-112) $) 101)) (-1269 (((-112) $ (-749)) 8)) (-2422 (($ $ (-536) (-536) $) 80)) (-4142 ((|#1| $ (-536) (-536) |#1|) 44) (($ $ (-620 (-536)) (-620 (-536)) $) 84)) (-1307 (($ $ (-536) |#2|) 42)) (-1306 (($ $ (-536) |#3|) 41)) (-3687 (($ (-749) |#1|) 95)) (-3891 (($) 7 T CONST)) (-3440 (($ $) 67 (|has| |#1| (-300)))) (-3442 ((|#2| $ (-536)) 46)) (-3439 (((-749) $) 66 (|has| |#1| (-543)))) (-1632 ((|#1| $ (-536) (-536) |#1|) 43)) (-3443 ((|#1| $ (-536) (-536)) 48)) (-2063 (((-620 |#1|) $) 30)) (-3438 (((-749) $) 65 (|has| |#1| (-543)))) (-3437 (((-620 |#3|) $) 64 (|has| |#1| (-543)))) (-3445 (((-749) $) 51)) (-3972 (($ (-749) (-749) |#1|) 57)) (-3444 (((-749) $) 50)) (-4077 (((-112) $ (-749)) 9)) (-3681 ((|#1| $) 62 (|has| |#1| (-6 (-4350 #1="*"))))) (-3449 (((-536) $) 55)) (-3447 (((-536) $) 53)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3448 (((-536) $) 54)) (-3446 (((-536) $) 52)) (-3454 (($ (-620 (-620 |#1|))) 96)) (-2067 (($ (-1 |#1| |#1|) $) 34)) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3951 (((-620 (-620 |#1|)) $) 86)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3947 (((-3 $ "failed") $) 61 (|has| |#1| (-356)))) (-2427 (($ $ $) 88)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) 56)) (-3815 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-543)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) (-536)) 49) ((|#1| $ (-536) (-536) |#1|) 47) (($ $ (-620 (-536)) (-620 (-536))) 85)) (-3686 (($ (-620 |#1|)) 94) (($ (-620 $)) 93)) (-3452 (((-112) $) 100)) (-3682 ((|#1| $) 63 (|has| |#1| (-6 (-4350 #1#))))) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-3441 ((|#3| $ (-536)) 45)) (-4312 (($ |#3|) 92) (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3450 (((-112) $) 98)) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4303 (($ $ |#1|) 68 (|has| |#1| (-356)))) (-4192 (($ $ $) 78) (($ $) 77)) (-4194 (($ $ $) 79)) (** (($ $ (-749)) 70) (($ $ (-536)) 60 (|has| |#1| (-356)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-536) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-664 |#1| |#2| |#3|) (-138) (-1023) (-365 |t#1|) (-365 |t#1|)) (T -664)) -((-3453 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-112)))) (-4193 (*1 *1 *2 *2) (-12 (-5 *2 (-749)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3454 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3687 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *2)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (-3768 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-664 *3 *2 *4)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2428 (*1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2427 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-2426 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-620 (-620 *3))))) (-4154 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-620 (-536))) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4142 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-620 (-536))) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2425 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2424 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2423 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-2422 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-4194 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4192 (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (-4192 (*1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-664 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *2 (-365 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-664 *3 *2 *4)) (-4 *3 (-1023)) (-4 *2 (-365 *3)) (-4 *4 (-365 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) (-3815 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-543)))) (-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-356)))) (-3440 (*1 *1 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-300)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-749)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-749)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-620 *5)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4350 #1="*"))) (-4 *2 (-1023)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (|has| *2 (-6 (-4350 #1#))) (-4 *2 (-1023)))) (-3947 (*1 *1 *1) (|partial| -12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) (-4 *2 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-4 *3 (-356))))) -(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4349) (-6 -4348) (-15 -3453 ((-112) $)) (-15 -3452 ((-112) $)) (-15 -3451 ((-112) $)) (-15 -3450 ((-112) $)) (-15 -4193 ($ (-749) (-749))) (-15 -3454 ($ (-620 (-620 |t#1|)))) (-15 -3687 ($ (-749) |t#1|)) (-15 -3686 ($ (-620 |t#1|))) (-15 -3686 ($ (-620 $))) (-15 -4312 ($ |t#3|)) (-15 -3768 ($ |t#2|)) (-15 -3768 ($ $)) (-15 -2428 ($ $)) (-15 -2427 ($ $ $)) (-15 -2426 ($ $ $)) (-15 -3951 ((-620 (-620 |t#1|)) $)) (-15 -4154 ($ $ (-620 (-536)) (-620 (-536)))) (-15 -4142 ($ $ (-620 (-536)) (-620 (-536)) $)) (-15 -2425 ($ $ (-536) (-536))) (-15 -2424 ($ $ (-536) (-536))) (-15 -2423 ($ $ (-536) (-536) (-536) (-536))) (-15 -2422 ($ $ (-536) (-536) $)) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -4192 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-536) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-749))) (IF (|has| |t#1| (-543)) (-15 -3815 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -4303 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-300)) (-15 -3440 ($ $)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3439 ((-749) $)) (-15 -3438 ((-749) $)) (-15 -3437 ((-620 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4350 "*"))) (PROGN (-15 -3682 (|t#1| $)) (-15 -3681 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -3947 ((-3 $ "failed") $)) (-15 ** ($ $ (-536)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-56 |#1| |#2| |#3|) . T) ((-1183) . T)) -((-4197 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4313 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-665 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4313 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4313 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4197 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1023) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|) (-1023) (-365 |#5|) (-365 |#5|) (-664 |#5| |#6| |#7|)) (T -665)) -((-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1023)) (-4 *2 (-1023)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) (-4 *9 (-365 *2)) (-5 *1 (-665 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-664 *5 *6 *7)) (-4 *10 (-664 *2 *8 *9)))) (-4313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1023)) (-4 *8 (-1023)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-664 *8 *9 *10)) (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-664 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1023)) (-4 *8 (-1023)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-664 *8 *9 *10)) (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-664 *5 *6 *7)) (-4 *9 (-365 *8)) (-4 *10 (-365 *8))))) -(-10 -7 (-15 -4313 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4313 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4197 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-3440 ((|#4| |#4|) 72 (|has| |#1| (-300)))) (-3439 (((-749) |#4|) 99 (|has| |#1| (-543)))) (-3438 (((-749) |#4|) 76 (|has| |#1| (-543)))) (-3437 (((-620 |#3|) |#4|) 83 (|has| |#1| (-543)))) (-2466 (((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|) 111 (|has| |#1| (-300)))) (-3681 ((|#1| |#4|) 35)) (-2433 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-543)))) (-3947 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-356)))) (-2432 ((|#4| |#4|) 68 (|has| |#1| (-543)))) (-2430 ((|#4| |#4| |#1| (-536) (-536)) 43)) (-2429 ((|#4| |#4| (-536) (-536)) 38)) (-2431 ((|#4| |#4| |#1| (-536) (-536)) 48)) (-3682 ((|#1| |#4|) 78)) (-2849 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-543))))) -(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3682 (|#1| |#4|)) (-15 -3681 (|#1| |#4|)) (-15 -2429 (|#4| |#4| (-536) (-536))) (-15 -2430 (|#4| |#4| |#1| (-536) (-536))) (-15 -2431 (|#4| |#4| |#1| (-536) (-536))) (IF (|has| |#1| (-543)) (PROGN (-15 -3439 ((-749) |#4|)) (-15 -3438 ((-749) |#4|)) (-15 -3437 ((-620 |#3|) |#4|)) (-15 -2432 (|#4| |#4|)) (-15 -2433 ((-3 |#4| "failed") |#4|)) (-15 -2849 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3440 (|#4| |#4|)) (-15 -2466 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3947 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|)) (T -666)) -((-3947 (*1 *2 *2) (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-2466 (*1 *2 *3 *3) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-666 *3 *4 *5 *6)) (-4 *6 (-664 *3 *4 *5)))) (-3440 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-2849 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-2433 (*1 *2 *2) (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-2432 (*1 *2 *2) (-12 (-4 *3 (-543)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-3437 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-620 *6)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3438 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3439 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-2431 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-536)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-664 *3 *5 *6)))) (-2430 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-536)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-664 *3 *5 *6)))) (-2429 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-536)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *1 (-666 *4 *5 *6 *2)) (-4 *2 (-664 *4 *5 *6)))) (-3681 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5)))) (-3682 (*1 *2 *3) (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5))))) -(-10 -7 (-15 -3682 (|#1| |#4|)) (-15 -3681 (|#1| |#4|)) (-15 -2429 (|#4| |#4| (-536) (-536))) (-15 -2430 (|#4| |#4| |#1| (-536) (-536))) (-15 -2431 (|#4| |#4| |#1| (-536) (-536))) (IF (|has| |#1| (-543)) (PROGN (-15 -3439 ((-749) |#4|)) (-15 -3438 ((-749) |#4|)) (-15 -3437 ((-620 |#3|) |#4|)) (-15 -2432 (|#4| |#4|)) (-15 -2433 ((-3 |#4| "failed") |#4|)) (-15 -2849 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-300)) (PROGN (-15 -3440 (|#4| |#4|)) (-15 -2466 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3947 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749) (-749)) 47)) (-2426 (($ $ $) NIL)) (-3768 (($ (-1229 |#1|)) NIL) (($ $) NIL)) (-3451 (((-112) $) NIL)) (-2425 (($ $ (-536) (-536)) 12)) (-2424 (($ $ (-536) (-536)) NIL)) (-2423 (($ $ (-536) (-536) (-536) (-536)) NIL)) (-2428 (($ $) NIL)) (-3453 (((-112) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-2422 (($ $ (-536) (-536) $) NIL)) (-4142 ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536)) $) NIL)) (-1307 (($ $ (-536) (-1229 |#1|)) NIL)) (-1306 (($ $ (-536) (-1229 |#1|)) NIL)) (-3687 (($ (-749) |#1|) 22)) (-3891 (($) NIL T CONST)) (-3440 (($ $) 31 (|has| |#1| (-300)))) (-3442 (((-1229 |#1|) $ (-536)) NIL)) (-3439 (((-749) $) 33 (|has| |#1| (-543)))) (-1632 ((|#1| $ (-536) (-536) |#1|) 51)) (-3443 ((|#1| $ (-536) (-536)) NIL)) (-2063 (((-620 |#1|) $) NIL)) (-3438 (((-749) $) 35 (|has| |#1| (-543)))) (-3437 (((-620 (-1229 |#1|)) $) 38 (|has| |#1| (-543)))) (-3445 (((-749) $) 20)) (-3972 (($ (-749) (-749) |#1|) 16)) (-3444 (((-749) $) 21)) (-4077 (((-112) $ (-749)) NIL)) (-3681 ((|#1| $) 29 (|has| |#1| (-6 (-4350 #1="*"))))) (-3449 (((-536) $) 9)) (-3447 (((-536) $) 10)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3448 (((-536) $) 11)) (-3446 (((-536) $) 48)) (-3454 (($ (-620 (-620 |#1|))) NIL)) (-2067 (($ (-1 |#1| |#1|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3951 (((-620 (-620 |#1|)) $) 60)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3947 (((-3 $ #2="failed") $) 45 (|has| |#1| (-356)))) (-2427 (($ $ $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2301 (($ $ |#1|) NIL)) (-3815 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-543)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) (-536)) NIL) ((|#1| $ (-536) (-536) |#1|) NIL) (($ $ (-620 (-536)) (-620 (-536))) NIL)) (-3686 (($ (-620 |#1|)) NIL) (($ (-620 $)) NIL) (($ (-1229 |#1|)) 52)) (-3452 (((-112) $) NIL)) (-3682 ((|#1| $) 27 (|has| |#1| (-6 (-4350 #1#))))) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4325 (((-525) $) 64 (|has| |#1| (-596 (-525))))) (-3441 (((-1229 |#1|) $ (-536)) NIL)) (-4312 (($ (-1229 |#1|)) NIL) (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $ $) NIL) (($ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) 23) (($ $ (-536)) 46 (|has| |#1| (-356)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-536) $) NIL) (((-1229 |#1|) $ (-1229 |#1|)) NIL) (((-1229 |#1|) (-1229 |#1|) $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-667 |#1|) (-13 (-664 |#1| (-1229 |#1|) (-1229 |#1|)) (-10 -8 (-15 -3686 ($ (-1229 |#1|))) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3947 ((-3 $ "failed") $)) |%noBranch|))) (-1023)) (T -667)) -((-3947 (*1 *1 *1) (|partial| -12 (-5 *1 (-667 *2)) (-4 *2 (-356)) (-4 *2 (-1023)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1023)) (-5 *1 (-667 *3))))) -(-13 (-664 |#1| (-1229 |#1|) (-1229 |#1|)) (-10 -8 (-15 -3686 ($ (-1229 |#1|))) (IF (|has| |#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |#1| (-356)) (-15 -3947 ((-3 $ "failed") $)) |%noBranch|))) -((-2439 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 25)) (-2438 (((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|) 21)) (-2440 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749)) 26)) (-2435 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 14)) (-2436 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|)) 18) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 16)) (-2437 (((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|)) 20)) (-2434 (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 12)) (** (((-667 |#1|) (-667 |#1|) (-749)) 30))) -(((-668 |#1|) (-10 -7 (-15 -2434 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2435 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2436 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2436 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2437 ((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|))) (-15 -2438 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2439 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2440 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749))) (-15 ** ((-667 |#1|) (-667 |#1|) (-749)))) (-1023)) (T -668)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-668 *4)))) (-2440 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-668 *4)))) (-2439 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2438 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2437 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2436 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2436 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2435 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) (-2434 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) -(-10 -7 (-15 -2434 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2435 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2436 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2436 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2437 ((-667 |#1|) (-667 |#1|) |#1| (-667 |#1|))) (-15 -2438 ((-667 |#1|) (-667 |#1|) (-667 |#1|) |#1|)) (-15 -2439 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -2440 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-667 |#1|) (-749))) (-15 ** ((-667 |#1|) (-667 |#1|) (-749)))) -((-2441 (($) 8 T CONST)) (-4312 (((-838) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3924 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2441)) 16)) (-3930 ((|#1| $) 11))) -(((-669 |#1|) (-13 (-1225) (-595 (-838)) (-10 -8 (-15 -3924 ((-112) $ (|[\|\|]| |#1|))) (-15 -3924 ((-112) $ (|[\|\|]| -2441))) (-15 -4312 ($ |#1|)) (-15 -4312 (|#1| $)) (-15 -3930 (|#1| $)) (-15 -2441 ($) -4306))) (-595 (-838))) (T -669)) -((-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-595 (-838))) (-5 *2 (-112)) (-5 *1 (-669 *4)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2441)) (-5 *2 (-112)) (-5 *1 (-669 *4)) (-4 *4 (-595 (-838))))) (-4312 (*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) (-4312 (*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) (-3930 (*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) (-2441 (*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838)))))) -(-13 (-1225) (-595 (-838)) (-10 -8 (-15 -3924 ((-112) $ (|[\|\|]| |#1|))) (-15 -3924 ((-112) $ (|[\|\|]| -2441))) (-15 -4312 ($ |#1|)) (-15 -4312 (|#1| $)) (-15 -3930 (|#1| $)) (-15 -2441 ($) -4306))) -((-2444 ((|#2| |#2| |#4|) 25)) (-2447 (((-667 |#2|) |#3| |#4|) 31)) (-2445 (((-667 |#2|) |#2| |#4|) 30)) (-2442 (((-1229 |#2|) |#2| |#4|) 16)) (-2443 ((|#2| |#3| |#4|) 24)) (-2448 (((-667 |#2|) |#3| |#4| (-749) (-749)) 38)) (-2446 (((-667 |#2|) |#2| |#4| (-749)) 37))) -(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2442 ((-1229 |#2|) |#2| |#4|)) (-15 -2443 (|#2| |#3| |#4|)) (-15 -2444 (|#2| |#2| |#4|)) (-15 -2445 ((-667 |#2|) |#2| |#4|)) (-15 -2446 ((-667 |#2|) |#2| |#4| (-749))) (-15 -2447 ((-667 |#2|) |#3| |#4|)) (-15 -2448 ((-667 |#2|) |#3| |#4| (-749) (-749)))) (-1072) (-874 |#1|) (-365 |#2|) (-13 (-365 |#1|) (-10 -7 (-6 -4348)))) (T -670)) -((-2448 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-749)) (-4 *6 (-1072)) (-4 *7 (-874 *6)) (-5 *2 (-667 *7)) (-5 *1 (-670 *6 *7 *3 *4)) (-4 *3 (-365 *7)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4348)))))) (-2447 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-4 *6 (-874 *5)) (-5 *2 (-667 *6)) (-5 *1 (-670 *5 *6 *3 *4)) (-4 *3 (-365 *6)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348)))))) (-2446 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-1072)) (-4 *3 (-874 *6)) (-5 *2 (-667 *3)) (-5 *1 (-670 *6 *3 *7 *4)) (-4 *7 (-365 *3)) (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4348)))))) (-2445 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-4 *3 (-874 *5)) (-5 *2 (-667 *3)) (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348)))))) (-2444 (*1 *2 *2 *3) (-12 (-4 *4 (-1072)) (-4 *2 (-874 *4)) (-5 *1 (-670 *4 *2 *5 *3)) (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4348)))))) (-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-4 *2 (-874 *5)) (-5 *1 (-670 *5 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348)))))) (-2442 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-4 *3 (-874 *5)) (-5 *2 (-1229 *3)) (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-365 *3)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348))))))) -(-10 -7 (-15 -2442 ((-1229 |#2|) |#2| |#4|)) (-15 -2443 (|#2| |#3| |#4|)) (-15 -2444 (|#2| |#2| |#4|)) (-15 -2445 ((-667 |#2|) |#2| |#4|)) (-15 -2446 ((-667 |#2|) |#2| |#4| (-749))) (-15 -2447 ((-667 |#2|) |#3| |#4|)) (-15 -2448 ((-667 |#2|) |#3| |#4| (-749) (-749)))) -((-4096 (((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)) 20)) (-4094 ((|#1| (-667 |#2|)) 9)) (-4095 (((-667 |#1|) (-667 |#2|)) 18))) -(((-671 |#1| |#2|) (-10 -7 (-15 -4094 (|#1| (-667 |#2|))) (-15 -4095 ((-667 |#1|) (-667 |#2|))) (-15 -4096 ((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)))) (-543) (-965 |#1|)) (T -671)) -((-4096 (*1 *2 *3) (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-543)) (-5 *2 (-2 (|:| |num| (-667 *4)) (|:| |den| *4))) (-5 *1 (-671 *4 *5)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-543)) (-5 *2 (-667 *4)) (-5 *1 (-671 *4 *5)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-667 *4)) (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-671 *2 *4))))) -(-10 -7 (-15 -4094 (|#1| (-667 |#2|))) (-15 -4095 ((-667 |#1|) (-667 |#2|))) (-15 -4096 ((-2 (|:| |num| (-667 |#1|)) (|:| |den| |#1|)) (-667 |#2|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1896 (((-667 (-677))) NIL) (((-667 (-677)) (-1229 $)) NIL)) (-3684 (((-677) $) NIL)) (-3841 (($ $) NIL (|has| (-677) (-1169)))) (-3997 (($ $) NIL (|has| (-677) (-1169)))) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-677) (-343)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-884))))) (-4129 (($ $) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| (-677) (-884))) (|has| (-677) (-356))))) (-4324 (((-398 $) $) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| (-677) (-884))) (|has| (-677) (-356))))) (-3365 (($ $) NIL (-12 (|has| (-677) (-976)) (|has| (-677) (-1169))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-884))))) (-1700 (((-112) $ $) NIL (|has| (-677) (-300)))) (-3466 (((-749)) NIL (|has| (-677) (-361)))) (-3839 (($ $) NIL (|has| (-677) (-1169)))) (-3996 (($ $) NIL (|has| (-677) (-1169)))) (-3843 (($ $) NIL (|has| (-677) (-1169)))) (-3995 (($ $) NIL (|has| (-677) (-1169)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) NIL) (((-3 (-677) #2#) $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-677) (-1012 (-400 (-536)))))) (-3502 (((-536) $) NIL) (((-677) $) NIL) (((-400 (-536)) $) NIL (|has| (-677) (-1012 (-400 (-536)))))) (-1906 (($ (-1229 (-677))) NIL) (($ (-1229 (-677)) (-1229 $)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-677) (-343)))) (-2889 (($ $ $) NIL (|has| (-677) (-300)))) (-1895 (((-667 (-677)) $) NIL) (((-667 (-677)) $ (-1229 $)) NIL)) (-2357 (((-667 (-677)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-677))) (|:| |vec| (-1229 (-677)))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-677) (-619 (-536)))) (((-667 (-536)) (-667 $)) NIL (|has| (-677) (-619 (-536))))) (-4197 (((-3 $ "failed") (-400 (-1141 (-677)))) NIL (|has| (-677) (-356))) (($ (-1141 (-677))) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4001 (((-677) $) 29)) (-3352 (((-3 (-400 (-536)) #3="failed") $) NIL (|has| (-677) (-535)))) (-3351 (((-112) $) NIL (|has| (-677) (-535)))) (-3350 (((-400 (-536)) $) NIL (|has| (-677) (-535)))) (-3439 (((-893)) NIL)) (-3322 (($) NIL (|has| (-677) (-361)))) (-2888 (($ $ $) NIL (|has| (-677) (-300)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| (-677) (-300)))) (-3161 (($) NIL (|has| (-677) (-343)))) (-1791 (((-112) $) NIL (|has| (-677) (-343)))) (-1881 (($ $) NIL (|has| (-677) (-343))) (($ $ (-749)) NIL (|has| (-677) (-343)))) (-4081 (((-112) $) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| (-677) (-884))) (|has| (-677) (-356))))) (-1420 (((-2 (|:| |r| (-677)) (|:| |phi| (-677))) $) NIL (-12 (|has| (-677) (-1032)) (|has| (-677) (-1169))))) (-3985 (($) NIL (|has| (-677) (-1169)))) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-677) (-860 (-371)))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-677) (-860 (-536))))) (-4126 (((-810 (-893)) $) NIL (|has| (-677) (-343))) (((-893) $) NIL (|has| (-677) (-343)))) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (-12 (|has| (-677) (-976)) (|has| (-677) (-1169))))) (-3462 (((-677) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-677) (-343)))) (-1697 (((-3 (-620 $) #4="failed") (-620 $) $) NIL (|has| (-677) (-300)))) (-2125 (((-1141 (-677)) $) NIL (|has| (-677) (-356)))) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4313 (($ (-1 (-677) (-677)) $) NIL)) (-2121 (((-893) $) NIL (|has| (-677) (-361)))) (-4297 (($ $) NIL (|has| (-677) (-1169)))) (-3408 (((-1141 (-677)) $) NIL)) (-2008 (($ (-620 $)) NIL (|has| (-677) (-300))) (($ $ $) NIL (|has| (-677) (-300)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| (-677) (-356)))) (-3799 (($) NIL (|has| (-677) (-343)) CONST)) (-2487 (($ (-893)) NIL (|has| (-677) (-361)))) (-1422 (($) NIL)) (-4002 (((-677) $) 31)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| (-677) (-300)))) (-3490 (($ (-620 $)) NIL (|has| (-677) (-300))) (($ $ $) NIL (|has| (-677) (-300)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-677) (-343)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-884))))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-677) (-300)) (|has| (-677) (-884))))) (-4087 (((-398 $) $) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| (-677) (-884))) (|has| (-677) (-356))))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-677) (-300))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| (-677) (-300)))) (-3815 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-677)) NIL (|has| (-677) (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| (-677) (-300)))) (-4298 (($ $) NIL (|has| (-677) (-1169)))) (-4122 (($ $ (-1147) (-677)) NIL (|has| (-677) (-505 (-1147) (-677)))) (($ $ (-620 (-1147)) (-620 (-677))) NIL (|has| (-677) (-505 (-1147) (-677)))) (($ $ (-620 (-286 (-677)))) NIL (|has| (-677) (-302 (-677)))) (($ $ (-286 (-677))) NIL (|has| (-677) (-302 (-677)))) (($ $ (-677) (-677)) NIL (|has| (-677) (-302 (-677)))) (($ $ (-620 (-677)) (-620 (-677))) NIL (|has| (-677) (-302 (-677))))) (-1699 (((-749) $) NIL (|has| (-677) (-300)))) (-4154 (($ $ (-677)) NIL (|has| (-677) (-279 (-677) (-677))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| (-677) (-300)))) (-4112 (((-677)) NIL) (((-677) (-1229 $)) NIL)) (-1882 (((-3 (-749) "failed") $ $) NIL (|has| (-677) (-343))) (((-749) $) NIL (|has| (-677) (-343)))) (-4165 (($ $ (-1 (-677) (-677))) NIL) (($ $ (-1 (-677) (-677)) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-1147)) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-749)) NIL (|has| (-677) (-227))) (($ $) NIL (|has| (-677) (-227)))) (-2495 (((-667 (-677)) (-1229 $) (-1 (-677) (-677))) NIL (|has| (-677) (-356)))) (-3531 (((-1141 (-677))) NIL)) (-3844 (($ $) NIL (|has| (-677) (-1169)))) (-3994 (($ $) NIL (|has| (-677) (-1169)))) (-1785 (($) NIL (|has| (-677) (-343)))) (-3842 (($ $) NIL (|has| (-677) (-1169)))) (-3993 (($ $) NIL (|has| (-677) (-1169)))) (-3840 (($ $) NIL (|has| (-677) (-1169)))) (-3992 (($ $) NIL (|has| (-677) (-1169)))) (-3570 (((-667 (-677)) (-1229 $)) NIL) (((-1229 (-677)) $) NIL) (((-667 (-677)) (-1229 $) (-1229 $)) NIL) (((-1229 (-677)) $ (-1229 $)) NIL)) (-4325 (((-525) $) NIL (|has| (-677) (-596 (-525)))) (((-166 (-219)) $) NIL (|has| (-677) (-994))) (((-166 (-371)) $) NIL (|has| (-677) (-994))) (((-864 (-371)) $) NIL (|has| (-677) (-596 (-864 (-371))))) (((-864 (-536)) $) NIL (|has| (-677) (-596 (-864 (-536))))) (($ (-1141 (-677))) NIL) (((-1141 (-677)) $) NIL) (($ (-1229 (-677))) NIL) (((-1229 (-677)) $) NIL)) (-3337 (($ $) NIL)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| $ (-143)) (|has| (-677) (-884))) (|has| (-677) (-343))))) (-1421 (($ (-677) (-677)) 12)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-536)) NIL) (($ (-677)) NIL) (($ (-166 (-371))) 13) (($ (-166 (-536))) 19) (($ (-166 (-677))) 28) (($ (-166 (-679))) 25) (((-166 (-371)) $) 33) (($ (-400 (-536))) NIL (-3886 (|has| (-677) (-356)) (|has| (-677) (-1012 (-400 (-536))))))) (-3030 (($ $) NIL (|has| (-677) (-343))) (((-3 $ #1#) $) NIL (-3886 (-12 (|has| (-677) (-300)) (|has| $ (-143)) (|has| (-677) (-884))) (|has| (-677) (-143))))) (-2693 (((-1141 (-677)) $) NIL)) (-3456 (((-749)) NIL)) (-2123 (((-1229 $)) NIL)) (-3847 (($ $) NIL (|has| (-677) (-1169)))) (-3835 (($ $) NIL (|has| (-677) (-1169)))) (-2172 (((-112) $ $) NIL)) (-3845 (($ $) NIL (|has| (-677) (-1169)))) (-3833 (($ $) NIL (|has| (-677) (-1169)))) (-3849 (($ $) NIL (|has| (-677) (-1169)))) (-3837 (($ $) NIL (|has| (-677) (-1169)))) (-2313 (((-677) $) NIL (|has| (-677) (-1169)))) (-3850 (($ $) NIL (|has| (-677) (-1169)))) (-3838 (($ $) NIL (|has| (-677) (-1169)))) (-3848 (($ $) NIL (|has| (-677) (-1169)))) (-3836 (($ $) NIL (|has| (-677) (-1169)))) (-3846 (($ $) NIL (|has| (-677) (-1169)))) (-3834 (($ $) NIL (|has| (-677) (-1169)))) (-3737 (($ $) NIL (|has| (-677) (-1032)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1 (-677) (-677))) NIL) (($ $ (-1 (-677) (-677)) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-1147)) NIL (|has| (-677) (-874 (-1147)))) (($ $ (-749)) NIL (|has| (-677) (-227))) (($ $) NIL (|has| (-677) (-227)))) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL (|has| (-677) (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ $) NIL (|has| (-677) (-1169))) (($ $ (-400 (-536))) NIL (-12 (|has| (-677) (-976)) (|has| (-677) (-1169)))) (($ $ (-536)) NIL (|has| (-677) (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ (-677) $) NIL) (($ $ (-677)) NIL) (($ (-400 (-536)) $) NIL (|has| (-677) (-356))) (($ $ (-400 (-536))) NIL (|has| (-677) (-356))))) -(((-672) (-13 (-380) (-164 (-677)) (-10 -8 (-15 -4312 ($ (-166 (-371)))) (-15 -4312 ($ (-166 (-536)))) (-15 -4312 ($ (-166 (-677)))) (-15 -4312 ($ (-166 (-679)))) (-15 -4312 ((-166 (-371)) $))))) (T -672)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-672)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-166 (-536))) (-5 *1 (-672)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-166 (-677))) (-5 *1 (-672)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-166 (-679))) (-5 *1 (-672)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-672))))) -(-13 (-380) (-164 (-677)) (-10 -8 (-15 -4312 ($ (-166 (-371)))) (-15 -4312 ($ (-166 (-536)))) (-15 -4312 ($ (-166 (-677)))) (-15 -4312 ($ (-166 (-679)))) (-15 -4312 ((-166 (-371)) $)))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2450 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2449 (((-620 (-2 (|:| -2186 |#1|) (|:| -2064 (-749)))) $) 61)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-673 |#1|) (-138) (-1072)) (T -673)) -((-3965 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-673 *2)) (-4 *2 (-1072)))) (-2450 (*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1072)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-673 *3)) (-4 *3 (-1072)) (-5 *2 (-620 (-2 (|:| -2186 *3) (|:| -2064 (-749)))))))) -(-13 (-229 |t#1|) (-10 -8 (-15 -3965 ($ |t#1| $ (-749))) (-15 -2450 ($ $)) (-15 -2449 ((-620 (-2 (|:| -2186 |t#1|) (|:| -2064 (-749)))) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-2453 (((-620 |#1|) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) (-536)) 47)) (-2451 ((|#1| |#1| (-536)) 46)) (-3490 ((|#1| |#1| |#1| (-536)) 36)) (-4087 (((-620 |#1|) |#1| (-536)) 39)) (-2454 ((|#1| |#1| (-536) |#1| (-536)) 32)) (-2452 (((-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) |#1| (-536)) 45))) -(((-674 |#1|) (-10 -7 (-15 -3490 (|#1| |#1| |#1| (-536))) (-15 -2451 (|#1| |#1| (-536))) (-15 -4087 ((-620 |#1|) |#1| (-536))) (-15 -2452 ((-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) |#1| (-536))) (-15 -2453 ((-620 |#1|) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) (-536))) (-15 -2454 (|#1| |#1| (-536) |#1| (-536)))) (-1205 (-536))) (T -674)) -((-2454 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3)))) (-2453 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-2 (|:| -4087 *5) (|:| -4302 (-536))))) (-5 *4 (-536)) (-4 *5 (-1205 *4)) (-5 *2 (-620 *5)) (-5 *1 (-674 *5)))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-5 *2 (-620 (-2 (|:| -4087 *3) (|:| -4302 *4)))) (-5 *1 (-674 *3)) (-4 *3 (-1205 *4)))) (-4087 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-5 *2 (-620 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1205 *4)))) (-2451 (*1 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3)))) (-3490 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3))))) -(-10 -7 (-15 -3490 (|#1| |#1| |#1| (-536))) (-15 -2451 (|#1| |#1| (-536))) (-15 -4087 ((-620 |#1|) |#1| (-536))) (-15 -2452 ((-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) |#1| (-536))) (-15 -2453 ((-620 |#1|) (-620 (-2 (|:| -4087 |#1|) (|:| -4302 (-536)))) (-536))) (-15 -2454 (|#1| |#1| (-536) |#1| (-536)))) -((-2458 (((-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))) 17)) (-2455 (((-1104 (-219)) (-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254))) 40) (((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254))) 42) (((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1060 (-219)) (-1060 (-219)) (-620 (-254))) 44)) (-2457 (((-1104 (-219)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-620 (-254))) NIL)) (-2456 (((-1104 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1060 (-219)) (-1060 (-219)) (-620 (-254))) 45))) -(((-675) (-10 -7 (-15 -2455 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2455 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2455 ((-1104 (-219)) (-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2456 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2457 ((-1104 (-219)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2458 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219)))))) (T -675)) -((-2458 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1 (-219) (-219) (-219) (-219))) (-5 *2 (-1 (-917 (-219)) (-219) (-219))) (-5 *1 (-675)))) (-2457 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675)))) (-2456 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined")) (-5 *5 (-1060 (-219))) (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675)))) (-2455 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-219))) (-5 *5 (-620 (-254))) (-5 *1 (-675)))) (-2455 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-219))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675)))) (-2455 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) #1#)) (-5 *5 (-1060 (-219))) (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675))))) -(-10 -7 (-15 -2455 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1="undefined") (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2455 ((-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2455 ((-1104 (-219)) (-1104 (-219)) (-1 (-917 (-219)) (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2456 ((-1104 (-219)) (-1 (-219) (-219) (-219)) (-3 (-1 (-219) (-219) (-219) (-219)) #1#) (-1060 (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2457 ((-1104 (-219)) (-307 (-536)) (-307 (-536)) (-307 (-536)) (-1 (-219) (-219)) (-1060 (-219)) (-620 (-254)))) (-15 -2458 ((-1 (-917 (-219)) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219)) (-1 (-219) (-219) (-219) (-219))))) -((-4087 (((-398 (-1141 |#4|)) (-1141 |#4|)) 73) (((-398 |#4|) |#4|) 221))) -(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4|)) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|)))) (-825) (-771) (-343) (-924 |#3| |#2| |#1|)) (T -676)) -((-4087 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-343)) (-4 *7 (-924 *6 *5 *4)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4))))) -(-10 -7 (-15 -4087 ((-398 |#4|) |#4|)) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 84)) (-3459 (((-536) $) 30)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4125 (($ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL)) (-3891 (($) NIL T CONST)) (-3457 (($ $) NIL)) (-3503 (((-3 (-536) #1="failed") $) 73) (((-3 (-400 (-536)) #1#) $) 26) (((-3 (-371) #1#) $) 70)) (-3502 (((-536) $) 75) (((-400 (-536)) $) 67) (((-371) $) 68)) (-2889 (($ $ $) 96)) (-3816 (((-3 $ "failed") $) 87)) (-2888 (($ $ $) 95)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2461 (((-893)) 77) (((-893) (-893)) 76)) (-3532 (((-112) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL)) (-4126 (((-536) $) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL)) (-3462 (($ $) NIL)) (-3533 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL)) (-2459 (((-536) (-536)) 81) (((-536)) 82)) (-3672 (($ $ $) NIL) (($) NIL (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-2460 (((-536) (-536)) 79) (((-536)) 80)) (-3673 (($ $ $) NIL) (($) NIL (-12 (-3671 (|has| $ (-6 -4331))) (-3671 (|has| $ (-6 -4339)))))) (-2462 (((-536) $) 16)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 91)) (-1884 (((-893) (-536)) NIL (|has| $ (-6 -4339)))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL)) (-3460 (($ $) NIL)) (-3600 (($ (-536) (-536)) NIL) (($ (-536) (-536) (-893)) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) 92)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-2488 (((-536) $) 22)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 94)) (-2939 (((-893)) NIL) (((-893) (-893)) NIL (|has| $ (-6 -4339)))) (-1883 (((-893) (-536)) NIL (|has| $ (-6 -4339)))) (-4325 (((-371) $) NIL) (((-219) $) NIL) (((-864 (-371)) $) NIL)) (-4312 (((-838) $) 52) (($ (-536)) 63) (($ $) NIL) (($ (-400 (-536))) 66) (($ (-536)) 63) (($ (-400 (-536))) 66) (($ (-371)) 60) (((-371) $) 50) (($ (-679)) 55)) (-3456 (((-749)) 103)) (-3275 (($ (-536) (-536) (-893)) 44)) (-3461 (($ $) NIL)) (-1885 (((-893)) NIL) (((-893) (-893)) NIL (|has| $ (-6 -4339)))) (-3022 (((-893)) 35) (((-893) (-893)) 78)) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL)) (-2986 (($) 32 T CONST)) (-2992 (($) 17 T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 83)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 101)) (-4303 (($ $ $) 65)) (-4192 (($ $) 99) (($ $ $) 100)) (-4194 (($ $ $) 98)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL) (($ $ (-400 (-536))) 90)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 97) (($ $ $) 88) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) -(((-677) (-13 (-397) (-380) (-356) (-1012 (-371)) (-1012 (-400 (-536))) (-145) (-10 -8 (-15 -2461 ((-893) (-893))) (-15 -2461 ((-893))) (-15 -3022 ((-893) (-893))) (-15 -2460 ((-536) (-536))) (-15 -2460 ((-536))) (-15 -2459 ((-536) (-536))) (-15 -2459 ((-536))) (-15 -4312 ((-371) $)) (-15 -4312 ($ (-679))) (-15 -2462 ((-536) $)) (-15 -2488 ((-536) $)) (-15 -3275 ($ (-536) (-536) (-893)))))) (T -677)) -((-2488 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-2461 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677)))) (-2461 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677)))) (-3022 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677)))) (-2460 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-2460 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-2459 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-677)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-679)) (-5 *1 (-677)))) (-3275 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-893)) (-5 *1 (-677))))) -(-13 (-397) (-380) (-356) (-1012 (-371)) (-1012 (-400 (-536))) (-145) (-10 -8 (-15 -2461 ((-893) (-893))) (-15 -2461 ((-893))) (-15 -3022 ((-893) (-893))) (-15 -2460 ((-536) (-536))) (-15 -2460 ((-536))) (-15 -2459 ((-536) (-536))) (-15 -2459 ((-536))) (-15 -4312 ((-371) $)) (-15 -4312 ($ (-679))) (-15 -2462 ((-536) $)) (-15 -2488 ((-536) $)) (-15 -3275 ($ (-536) (-536) (-893))))) -((-2465 (((-667 |#1|) (-667 |#1|) |#1| |#1|) 65)) (-3440 (((-667 |#1|) (-667 |#1|) |#1|) 48)) (-2464 (((-667 |#1|) (-667 |#1|) |#1|) 66)) (-2463 (((-667 |#1|) (-667 |#1|)) 49)) (-2466 (((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|) 64))) -(((-678 |#1|) (-10 -7 (-15 -2463 ((-667 |#1|) (-667 |#1|))) (-15 -3440 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2464 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2465 ((-667 |#1|) (-667 |#1|) |#1| |#1|)) (-15 -2466 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|))) (-300)) (T -678)) -((-2466 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-678 *3)) (-4 *3 (-300)))) (-2465 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-2464 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-3440 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) (-2463 (*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) -(-10 -7 (-15 -2463 ((-667 |#1|) (-667 |#1|))) (-15 -3440 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2464 ((-667 |#1|) (-667 |#1|) |#1|)) (-15 -2465 ((-667 |#1|) (-667 |#1|) |#1| |#1|)) (-15 -2466 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-2157 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2152 (($ $ $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL)) (-2685 (($ $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) "failed") $) 27)) (-3502 (((-536) $) 25)) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL)) (-3351 (((-112) $) NIL)) (-3350 (((-400 (-536)) $) NIL)) (-3322 (($ $) NIL) (($) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2150 (($ $ $ $) NIL)) (-2158 (($ $ $) NIL)) (-3532 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL)) (-2497 (((-112) $) NIL)) (-3001 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $) NIL)) (-3533 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2151 (($ $ $ $) NIL)) (-3672 (($ $ $) NIL)) (-2467 (((-893) (-893)) 10) (((-893)) 9)) (-3673 (($ $ $) NIL)) (-2154 (($ $) NIL)) (-4188 (($ $) NIL)) (-2008 (($ (-620 $)) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2149 (($ $ $) NIL)) (-3799 (($) NIL T CONST)) (-2156 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ (-620 $)) NIL) (($ $ $) NIL)) (-1412 (($ $) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL) (($ $ (-749)) NIL)) (-2155 (($ $) NIL)) (-3754 (($ $) NIL)) (-4325 (((-219) $) NIL) (((-371) $) NIL) (((-864 (-536)) $) NIL) (((-525) $) NIL) (((-536) $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) 24) (($ $) NIL) (($ (-536)) 24) (((-307 $) (-307 (-536))) 18)) (-3456 (((-749)) NIL)) (-2159 (((-112) $ $) NIL)) (-3432 (($ $ $) NIL)) (-3022 (($) NIL)) (-2172 (((-112) $ $) NIL)) (-2153 (($ $ $ $) NIL)) (-3737 (($ $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL) (($ $ (-749)) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL))) -(((-679) (-13 (-380) (-535) (-10 -8 (-15 -2467 ((-893) (-893))) (-15 -2467 ((-893))) (-15 -4312 ((-307 $) (-307 (-536))))))) (T -679)) -((-2467 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-679)))) (-2467 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-679)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-307 (-536))) (-5 *2 (-307 (-679))) (-5 *1 (-679))))) -(-13 (-380) (-535) (-10 -8 (-15 -2467 ((-893) (-893))) (-15 -2467 ((-893))) (-15 -4312 ((-307 $) (-307 (-536)))))) -((-2473 (((-1 |#4| |#2| |#3|) |#1| (-1147) (-1147)) 19)) (-2468 (((-1 |#4| |#2| |#3|) (-1147)) 12))) -(((-680 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2468 ((-1 |#4| |#2| |#3|) (-1147))) (-15 -2473 ((-1 |#4| |#2| |#3|) |#1| (-1147) (-1147)))) (-596 (-525)) (-1183) (-1183) (-1183)) (T -680)) -((-2473 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1147)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *3 *5 *6 *7)) (-4 *3 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *7 (-1183)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *4 *5 *6 *7)) (-4 *4 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *7 (-1183))))) -(-10 -7 (-15 -2468 ((-1 |#4| |#2| |#3|) (-1147))) (-15 -2473 ((-1 |#4| |#2| |#3|) |#1| (-1147) (-1147)))) -((-2893 (((-112) $ $) NIL)) (-1368 (((-1235) $ (-749)) 14)) (-3773 (((-749) $) 12)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 25)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 24))) -(((-681 |#1|) (-13 (-131) (-595 |#1|) (-10 -8 (-15 -4312 ($ |#1|)))) (-1072)) (T -681)) -((-4312 (*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-1072))))) -(-13 (-131) (-595 |#1|) (-10 -8 (-15 -4312 ($ |#1|)))) -((-2469 (((-1 (-219) (-219) (-219)) |#1| (-1147) (-1147)) 34) (((-1 (-219) (-219)) |#1| (-1147)) 39))) -(((-682 |#1|) (-10 -7 (-15 -2469 ((-1 (-219) (-219)) |#1| (-1147))) (-15 -2469 ((-1 (-219) (-219) (-219)) |#1| (-1147) (-1147)))) (-596 (-525))) (T -682)) -((-2469 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1147)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-682 *3)) (-4 *3 (-596 (-525))))) (-2469 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-682 *3)) (-4 *3 (-596 (-525)))))) -(-10 -7 (-15 -2469 ((-1 (-219) (-219)) |#1| (-1147))) (-15 -2469 ((-1 (-219) (-219) (-219)) |#1| (-1147) (-1147)))) -((-2470 (((-1147) |#1| (-1147) (-620 (-1147))) 9) (((-1147) |#1| (-1147) (-1147) (-1147)) 12) (((-1147) |#1| (-1147) (-1147)) 11) (((-1147) |#1| (-1147)) 10))) -(((-683 |#1|) (-10 -7 (-15 -2470 ((-1147) |#1| (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-1147) (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-620 (-1147))))) (-596 (-525))) (T -683)) -((-2470 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-620 (-1147))) (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) (-2470 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) (-2470 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) (-2470 (*1 *2 *3 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525)))))) -(-10 -7 (-15 -2470 ((-1147) |#1| (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-1147) (-1147))) (-15 -2470 ((-1147) |#1| (-1147) (-620 (-1147))))) -((-2471 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-684 |#1| |#2|) (-10 -7 (-15 -2471 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1183) (-1183)) (T -684)) -((-2471 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-1183)) (-4 *4 (-1183))))) -(-10 -7 (-15 -2471 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2472 (((-1 |#3| |#2|) (-1147)) 11)) (-2473 (((-1 |#3| |#2|) |#1| (-1147)) 21))) -(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -2472 ((-1 |#3| |#2|) (-1147))) (-15 -2473 ((-1 |#3| |#2|) |#1| (-1147)))) (-596 (-525)) (-1183) (-1183)) (T -685)) -((-2473 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *3 *5 *6)) (-4 *3 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183))))) -(-10 -7 (-15 -2472 ((-1 |#3| |#2|) (-1147))) (-15 -2473 ((-1 |#3| |#2|) |#1| (-1147)))) -((-2476 (((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#4|)) (-620 |#3|) (-620 |#4|) (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#4|)))) (-620 (-749)) (-1229 (-620 (-1141 |#3|))) |#3|) 62)) (-2475 (((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#3|)) (-620 |#3|) (-620 |#4|) (-620 (-749)) |#3|) 75)) (-2474 (((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 |#3|) (-620 (-749)) (-620 (-1141 |#4|)) (-1229 (-620 (-1141 |#3|))) |#3|) 34))) -(((-686 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2474 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 |#3|) (-620 (-749)) (-620 (-1141 |#4|)) (-1229 (-620 (-1141 |#3|))) |#3|)) (-15 -2475 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#3|)) (-620 |#3|) (-620 |#4|) (-620 (-749)) |#3|)) (-15 -2476 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#4|)) (-620 |#3|) (-620 |#4|) (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#4|)))) (-620 (-749)) (-1229 (-620 (-1141 |#3|))) |#3|))) (-771) (-825) (-300) (-924 |#3| |#1| |#2|)) (T -686)) -((-2476 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-620 (-1141 *13))) (-5 *3 (-1141 *13)) (-5 *4 (-620 *12)) (-5 *5 (-620 *10)) (-5 *6 (-620 *13)) (-5 *7 (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| *13))))) (-5 *8 (-620 (-749))) (-5 *9 (-1229 (-620 (-1141 *10)))) (-4 *12 (-825)) (-4 *10 (-300)) (-4 *13 (-924 *10 *11 *12)) (-4 *11 (-771)) (-5 *1 (-686 *11 *12 *10 *13)))) (-2475 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-620 *11)) (-5 *5 (-620 (-1141 *9))) (-5 *6 (-620 *9)) (-5 *7 (-620 *12)) (-5 *8 (-620 (-749))) (-4 *11 (-825)) (-4 *9 (-300)) (-4 *12 (-924 *9 *10 *11)) (-4 *10 (-771)) (-5 *2 (-620 (-1141 *12))) (-5 *1 (-686 *10 *11 *9 *12)) (-5 *3 (-1141 *12)))) (-2474 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-620 (-1141 *11))) (-5 *3 (-1141 *11)) (-5 *4 (-620 *10)) (-5 *5 (-620 *8)) (-5 *6 (-620 (-749))) (-5 *7 (-1229 (-620 (-1141 *8)))) (-4 *10 (-825)) (-4 *8 (-300)) (-4 *11 (-924 *8 *9 *10)) (-4 *9 (-771)) (-5 *1 (-686 *9 *10 *8 *11))))) -(-10 -7 (-15 -2474 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 |#3|) (-620 (-749)) (-620 (-1141 |#4|)) (-1229 (-620 (-1141 |#3|))) |#3|)) (-15 -2475 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#3|)) (-620 |#3|) (-620 |#4|) (-620 (-749)) |#3|)) (-15 -2476 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-620 |#2|) (-620 (-1141 |#4|)) (-620 |#3|) (-620 |#4|) (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#4|)))) (-620 (-749)) (-1229 (-620 (-1141 |#3|))) |#3|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4314 (($ $) 39)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3221 (($ |#1| (-749)) 37)) (-3148 (((-749) $) 41)) (-3520 ((|#1| $) 40)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4302 (((-749) $) 42)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-4035 ((|#1| $ (-749)) 38)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) -(((-687 |#1|) (-138) (-1023)) (T -687)) -((-4302 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1023)))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1023)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1023)))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1023))))) -(-13 (-1023) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4302 ((-749) $)) (-15 -3148 ((-749) $)) (-15 -3520 (|t#1| $)) (-15 -4314 ($ $)) (-15 -4035 (|t#1| $ (-749))) (-15 -3221 ($ |t#1| (-749))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-4313 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-688 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4313 (|#6| (-1 |#4| |#1|) |#3|))) (-543) (-1205 |#1|) (-1205 (-400 |#2|)) (-543) (-1205 |#4|) (-1205 (-400 |#5|))) (T -688)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-543)) (-4 *7 (-543)) (-4 *6 (-1205 *5)) (-4 *2 (-1205 (-400 *8))) (-5 *1 (-688 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1205 (-400 *6))) (-4 *8 (-1205 *7))))) -(-10 -7 (-15 -4313 (|#6| (-1 |#4| |#1|) |#3|))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2477 (((-1129) (-838)) 31)) (-3975 (((-1235) (-1129)) 28)) (-2479 (((-1129) (-838)) 24)) (-2478 (((-1129) (-838)) 25)) (-4312 (((-838) $) NIL) (((-1129) (-838)) 23)) (-3382 (((-112) $ $) NIL))) -(((-689) (-13 (-1072) (-10 -7 (-15 -4312 ((-1129) (-838))) (-15 -2479 ((-1129) (-838))) (-15 -2478 ((-1129) (-838))) (-15 -2477 ((-1129) (-838))) (-15 -3975 ((-1235) (-1129)))))) (T -689)) -((-4312 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689)))) (-2478 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-689))))) -(-13 (-1072) (-10 -7 (-15 -4312 ((-1129) (-838))) (-15 -2479 ((-1129) (-838))) (-15 -2478 ((-1129) (-838))) (-15 -2477 ((-1129) (-838))) (-15 -3975 ((-1235) (-1129))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL)) (-4197 (($ |#1| |#2|) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2938 ((|#2| $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-2489 (((-3 $ "failed") $ $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) ((|#1| $) NIL)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) -(((-690 |#1| |#2| |#3| |#4| |#5|) (-13 (-356) (-10 -8 (-15 -2938 (|#2| $)) (-15 -4312 (|#1| $)) (-15 -4197 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -690)) -((-2938 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4197 (*1 *1 *2 *3) (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-356) (-10 -8 (-15 -2938 (|#2| $)) (-15 -4312 (|#1| $)) (-15 -4197 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)))) -((-2893 (((-112) $ $) 78)) (-3534 (((-112) $) 30)) (-4121 (((-1229 |#1|) $ (-749)) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4119 (($ (-1141 |#1|)) NIL)) (-3414 (((-1141 $) $ (-1053)) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1053))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4110 (($ $ $) NIL (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3466 (((-749)) 47 (|has| |#1| (-361)))) (-4115 (($ $ (-749)) NIL)) (-4114 (($ $ (-749)) NIL)) (-2486 ((|#2| |#2|) 44)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-1053) #2#) $) NIL)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-1053) $) NIL)) (-4111 (($ $ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) 34)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-4197 (($ |#2|) 42)) (-3816 (((-3 $ "failed") $) 86)) (-3322 (($) 51 (|has| |#1| (-361)))) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4113 (($ $ $) NIL)) (-4108 (($ $ $) NIL (|has| |#1| (-543)))) (-4107 (((-2 (|:| -4308 |#1|) (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-2482 (((-932 $)) 80)) (-1716 (($ $ |#1| (-749) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1053) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1053) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ $) NIL (|has| |#1| (-543)))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-1122)))) (-3415 (($ (-1141 |#1|) (-1053)) NIL) (($ (-1141 $) (-1053)) NIL)) (-4131 (($ $ (-749)) NIL)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) 77) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1053)) NIL) (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-2938 ((|#2|) 45)) (-3148 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-749) (-749)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (((-1141 |#1|) $) NIL)) (-3413 (((-3 (-1053) #4="failed") $) NIL)) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-3408 ((|#2| $) 41)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) 28)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) NIL)) (-3151 (((-3 (-620 $) #4#) $) NIL)) (-3150 (((-3 (-620 $) #4#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1053)) (|:| -2488 (-749))) #4#) $) NIL)) (-4167 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) NIL (|has| |#1| (-1122)) CONST)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-2480 (($ $) 79 (|has| |#1| (-343)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1053) |#1|) NIL) (($ $ (-620 (-1053)) (-620 |#1|)) NIL) (($ $ (-1053) $) NIL) (($ $ (-620 (-1053)) (-620 $)) NIL)) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-543))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-543)))) (-4118 (((-3 $ #5="failed") $ (-749)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 87 (|has| |#1| (-356)))) (-4112 (($ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4165 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4302 (((-749) $) 32) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1053) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-2481 (((-932 $)) 36)) (-4109 (((-3 $ #5#) $ $) NIL (|has| |#1| (-543))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-543)))) (-4312 (((-838) $) 61) (($ (-536)) NIL) (($ |#1|) 58) (($ (-1053)) NIL) (($ |#2|) 68) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) 63) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 20 T CONST)) (-2485 (((-1229 |#1|) $) 75)) (-2484 (($ (-1229 |#1|)) 50)) (-2992 (($) 8 T CONST)) (-2997 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2483 (((-1229 |#1|) $) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 69)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) 72) (($ $ $) NIL)) (-4194 (($ $ $) 33)) (** (($ $ (-893)) NIL) (($ $ (-749)) 81)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 57) (($ $ $) 74) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) -(((-691 |#1| |#2|) (-13 (-1205 |#1|) (-10 -8 (-15 -2486 (|#2| |#2|)) (-15 -2938 (|#2|)) (-15 -4197 ($ |#2|)) (-15 -3408 (|#2| $)) (-15 -4312 ($ |#2|)) (-15 -2485 ((-1229 |#1|) $)) (-15 -2484 ($ (-1229 |#1|))) (-15 -2483 ((-1229 |#1|) $)) (-15 -2482 ((-932 $))) (-15 -2481 ((-932 $))) (IF (|has| |#1| (-343)) (-15 -2480 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) (-1023) (-1205 |#1|)) (T -691)) -((-2486 (*1 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3)))) (-2938 (*1 *2) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1023)))) (-4197 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3)))) (-3408 (*1 *2 *1) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1023)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3)))) (-2485 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-1229 *3)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1205 *3)))) (-2484 (*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1023)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1205 *3)))) (-2483 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-1229 *3)) (-5 *1 (-691 *3 *4)) (-4 *4 (-1205 *3)))) (-2482 (*1 *2) (-12 (-4 *3 (-1023)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) (-4 *4 (-1205 *3)))) (-2481 (*1 *2) (-12 (-4 *3 (-1023)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) (-4 *4 (-1205 *3)))) (-2480 (*1 *1 *1) (-12 (-4 *2 (-343)) (-4 *2 (-1023)) (-5 *1 (-691 *2 *3)) (-4 *3 (-1205 *2))))) -(-13 (-1205 |#1|) (-10 -8 (-15 -2486 (|#2| |#2|)) (-15 -2938 (|#2|)) (-15 -4197 ($ |#2|)) (-15 -3408 (|#2| $)) (-15 -4312 ($ |#2|)) (-15 -2485 ((-1229 |#1|) $)) (-15 -2484 ($ (-1229 |#1|))) (-15 -2483 ((-1229 |#1|) $)) (-15 -2482 ((-932 $))) (-15 -2481 ((-932 $))) (IF (|has| |#1| (-343)) (-15 -2480 ($ $)) |%noBranch|) (IF (|has| |#1| (-361)) (-6 (-361)) |%noBranch|))) -((-2893 (((-112) $ $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2487 ((|#1| $) 13)) (-3589 (((-1091) $) NIL)) (-2488 ((|#2| $) 12)) (-3879 (($ |#1| |#2|) 16)) (-4312 (((-838) $) NIL) (($ (-2 (|:| -2487 |#1|) (|:| -2488 |#2|))) 15) (((-2 (|:| -2487 |#1|) (|:| -2488 |#2|)) $) 14)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 11))) -(((-692 |#1| |#2| |#3|) (-13 (-825) (-10 -8 (-15 -2488 (|#2| $)) (-15 -2487 (|#1| $)) (-15 -4312 ($ (-2 (|:| -2487 |#1|) (|:| -2488 |#2|)))) (-15 -4312 ((-2 (|:| -2487 |#1|) (|:| -2488 |#2|)) $)) (-15 -3879 ($ |#1| |#2|)))) (-825) (-1072) (-1 (-112) (-2 (|:| -2487 |#1|) (|:| -2488 |#2|)) (-2 (|:| -2487 |#1|) (|:| -2488 |#2|)))) (T -692)) -((-2488 (*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-692 *3 *2 *4)) (-4 *3 (-825)) (-14 *4 (-1 (-112) (-2 (|:| -2487 *3) (|:| -2488 *2)) (-2 (|:| -2487 *3) (|:| -2488 *2)))))) (-2487 (*1 *2 *1) (-12 (-4 *2 (-825)) (-5 *1 (-692 *2 *3 *4)) (-4 *3 (-1072)) (-14 *4 (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *3)) (-2 (|:| -2487 *2) (|:| -2488 *3)))))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2487 *3) (|:| -2488 *4))) (-4 *3 (-825)) (-4 *4 (-1072)) (-5 *1 (-692 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2487 *3) (|:| -2488 *4))) (-5 *1 (-692 *3 *4 *5)) (-4 *3 (-825)) (-4 *4 (-1072)) (-14 *5 (-1 (-112) *2 *2)))) (-3879 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-1072)) (-14 *4 (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *3)) (-2 (|:| -2487 *2) (|:| -2488 *3))))))) -(-13 (-825) (-10 -8 (-15 -2488 (|#2| $)) (-15 -2487 (|#1| $)) (-15 -4312 ($ (-2 (|:| -2487 |#1|) (|:| -2488 |#2|)))) (-15 -4312 ((-2 (|:| -2487 |#1|) (|:| -2488 |#2|)) $)) (-15 -3879 ($ |#1| |#2|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 59)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #1="failed") $) 89) (((-3 (-113) #1#) $) 95)) (-3502 ((|#1| $) NIL) (((-113) $) 39)) (-3816 (((-3 $ "failed") $) 90)) (-2845 ((|#2| (-113) |#2|) 82)) (-2497 (((-112) $) NIL)) (-2844 (($ |#1| (-354 (-113))) 14)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2846 (($ $ (-1 |#2| |#2|)) 58)) (-2847 (($ $ (-1 |#2| |#2|)) 44)) (-4154 ((|#2| $ |#2|) 33)) (-2848 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-4312 (((-838) $) 66) (($ (-536)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) 37)) (-2849 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2986 (($) 21 T CONST)) (-2992 (($) 9 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) 48) (($ $ $) NIL)) (-4194 (($ $ $) 73)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ (-113) (-536)) NIL) (($ $ (-536)) 57)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170))))) -(((-693 |#1| |#2|) (-13 (-1023) (-1012 |#1|) (-1012 (-113)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2849 ($ $)) (-15 -2849 ($ $ $)) (-15 -2848 (|#1| |#1|))) |%noBranch|) (-15 -2847 ($ $ (-1 |#2| |#2|))) (-15 -2846 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-536))) (-15 ** ($ $ (-536))) (-15 -2845 (|#2| (-113) |#2|)) (-15 -2844 ($ |#1| (-354 (-113)))))) (-1023) (-626 |#1|)) (T -693)) -((-2849 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-2849 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-2848 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) (-2847 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1023)) (-5 *1 (-693 *3 *4)))) (-2846 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1023)) (-5 *1 (-693 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-693 *4 *5)) (-4 *5 (-626 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *3 (-1023)) (-5 *1 (-693 *3 *4)) (-4 *4 (-626 *3)))) (-2845 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1023)) (-5 *1 (-693 *4 *2)) (-4 *2 (-626 *4)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-4 *2 (-1023)) (-5 *1 (-693 *2 *4)) (-4 *4 (-626 *2))))) -(-13 (-1023) (-1012 |#1|) (-1012 (-113)) (-279 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2849 ($ $)) (-15 -2849 ($ $ $)) (-15 -2848 (|#1| |#1|))) |%noBranch|) (-15 -2847 ($ $ (-1 |#2| |#2|))) (-15 -2846 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-536))) (-15 ** ($ $ (-536))) (-15 -2845 (|#2| (-113) |#2|)) (-15 -2844 ($ |#1| (-354 (-113)))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 33)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4197 (($ |#1| |#2|) 25)) (-3816 (((-3 $ "failed") $) 48)) (-2497 (((-112) $) 35)) (-2938 ((|#2| $) 12)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 49)) (-3589 (((-1091) $) NIL)) (-2489 (((-3 $ "failed") $ $) 47)) (-4312 (((-838) $) 24) (($ (-536)) 19) ((|#1| $) 13)) (-3456 (((-749)) 28)) (-2986 (($) 16 T CONST)) (-2992 (($) 30 T CONST)) (-3382 (((-112) $ $) 38)) (-4192 (($ $) 43) (($ $ $) 37)) (-4194 (($ $ $) 40)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 21) (($ $ $) 20))) -(((-694 |#1| |#2| |#3| |#4| |#5|) (-13 (-1023) (-10 -8 (-15 -2938 (|#2| $)) (-15 -4312 (|#1| $)) (-15 -4197 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3816 ((-3 $ "failed") $)) (-15 -2729 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -694)) -((-3816 (*1 *1 *1) (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2938 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4197 (*1 *1 *2 *3) (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2729 (*1 *1 *1) (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -(-13 (-1023) (-10 -8 (-15 -2938 (|#2| $)) (-15 -4312 (|#1| $)) (-15 -4197 ($ |#1| |#2|)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -3816 ((-3 $ "failed") $)) (-15 -2729 ($ $)))) -((* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-695 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) (-696 |#2|) (-170)) (T -695)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-696 |#1|) (-138) (-170)) (T -696)) +((-2389 (((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|)) 33))) +(((-643 |#1|) (-10 -7 (-15 -2389 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|)))) (-886)) (T -643)) +((-2389 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 *4))) (-5 *3 (-1143 *4)) (-4 *4 (-886)) (-5 *1 (-643 *4))))) +(-10 -7 (-15 -2389 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4294 (((-622 |#1|) $) 82)) (-4306 (($ $ (-751)) 90)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4299 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 48)) (-3508 (((-3 (-652 |#1|) "failed") $) NIL)) (-3507 (((-652 |#1|) $) NIL)) (-4319 (($ $) 89)) (-2510 (((-751) $) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ (-652 |#1|) |#2|) 68)) (-4296 (($ $) 86)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-4300 (((-1256 |#1| |#2|) (-1256 |#1| |#2|) $) 47)) (-1865 (((-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3227 (((-652 |#1|) $) NIL)) (-3525 ((|#2| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4127 (($ $ |#1| $) 30) (($ $ (-622 |#1|) (-622 $)) 32)) (-4307 (((-751) $) 88)) (-3884 (($ $ $) 20) (($ (-652 |#1|) (-652 |#1|)) 77) (($ (-652 |#1|) $) 75) (($ $ (-652 |#1|)) 76)) (-4317 (((-840) $) NIL) (($ |#1|) 74) (((-1247 |#1| |#2|) $) 58) (((-1256 |#1| |#2|) $) 41) (($ (-652 |#1|)) 25)) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-652 |#1|)) NIL)) (-4313 ((|#2| (-1256 |#1| |#2|) $) 43)) (-2991 (($) 23 T CONST)) (-2996 (((-622 (-2 (|:| |k| (-652 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4305 (((-3 $ "failed") (-1247 |#1| |#2|)) 60)) (-1849 (($ (-652 |#1|)) 14)) (-3387 (((-112) $ $) 44)) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) 66) (($ $ $) NIL)) (-4199 (($ $ $) 29)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-652 |#1|)) NIL))) +(((-644 |#1| |#2|) (-13 (-369 |#1| |#2|) (-379 |#2| (-652 |#1|)) (-10 -8 (-15 -4305 ((-3 $ "failed") (-1247 |#1| |#2|))) (-15 -3884 ($ (-652 |#1|) (-652 |#1|))) (-15 -3884 ($ (-652 |#1|) $)) (-15 -3884 ($ $ (-652 |#1|))))) (-827) (-170)) (T -644)) +((-4305 (*1 *1 *2) (|partial| -12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *1 (-644 *3 *4)))) (-3884 (*1 *1 *2 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) (-3884 (*1 *1 *2 *1) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170))))) +(-13 (-369 |#1| |#2|) (-379 |#2| (-652 |#1|)) (-10 -8 (-15 -4305 ((-3 $ "failed") (-1247 |#1| |#2|))) (-15 -3884 ($ (-652 |#1|) (-652 |#1|))) (-15 -3884 ($ (-652 |#1|) $)) (-15 -3884 ($ $ (-652 |#1|))))) +((-1848 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 50)) (-1846 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1631 (($ (-1 (-112) |#2|) $) 28)) (-2377 (($ $) 56)) (-2455 (($ $) 64)) (-3764 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 37)) (-4202 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3778 (((-538) |#2| $ (-538)) 61) (((-538) |#2| $) NIL) (((-538) (-1 (-112) |#2|) $) 47)) (-3977 (($ (-751) |#2|) 54)) (-3192 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-3872 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-4318 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3897 (($ |#2|) 15)) (-3970 (($ $ $ (-538)) 36) (($ |#2| $ (-538)) 34)) (-1399 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 46)) (-1632 (($ $ (-1198 (-538))) 44) (($ $ (-538)) 38)) (-1847 (($ $ $ (-538)) 60)) (-3759 (($ $) 58)) (-3018 (((-112) $ $) 66))) +(((-645 |#1| |#2|) (-10 -8 (-15 -3897 (|#1| |#2|)) (-15 -1632 (|#1| |#1| (-538))) (-15 -1632 (|#1| |#1| (-1198 (-538)))) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3970 (|#1| |#2| |#1| (-538))) (-15 -3970 (|#1| |#1| |#1| (-538))) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3192 (|#1| |#1| |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3872 (|#1| |#1| |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -1847 (|#1| |#1| |#1| (-538))) (-15 -2377 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3977 (|#1| (-751) |#2|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1|))) (-646 |#2|) (-1185)) (T -645)) +NIL +(-10 -8 (-15 -3897 (|#1| |#2|)) (-15 -1632 (|#1| |#1| (-538))) (-15 -1632 (|#1| |#1| (-1198 (-538)))) (-15 -3764 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3970 (|#1| |#2| |#1| (-538))) (-15 -3970 (|#1| |#1| |#1| (-538))) (-15 -3192 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1631 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3764 (|#1| |#2| |#1|)) (-15 -2455 (|#1| |#1|)) (-15 -3192 (|#1| |#1| |#1|)) (-15 -3872 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1848 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3778 ((-538) (-1 (-112) |#2|) |#1|)) (-15 -3778 ((-538) |#2| |#1|)) (-15 -3778 ((-538) |#2| |#1| (-538))) (-15 -3872 (|#1| |#1| |#1|)) (-15 -1848 ((-112) |#1|)) (-15 -1847 (|#1| |#1| |#1| (-538))) (-15 -2377 (|#1| |#1|)) (-15 -1846 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1846 (|#1| |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4202 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1399 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3977 (|#1| (-751) |#2|)) (-15 -4318 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3759 (|#1| |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-4154 ((|#1| $) 65)) (-4156 (($ $) 67)) (-2305 (((-1237) $ (-538) (-538)) 97 (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 52 (|has| $ (-6 -4354)))) (-1848 (((-112) $) 142 (|has| |#1| (-827))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-1846 (($ $) 146 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4354)))) (-3242 (($ $) 141 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-4146 (($ $ $) 56 (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) 86 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-1631 (($ (-1 (-112) |#1|) $) 129)) (-4073 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4353)))) (-4155 ((|#1| $) 66)) (-3896 (($) 7 T CONST)) (-2377 (($ $) 144 (|has| $ (-6 -4354)))) (-2378 (($ $) 134)) (-4158 (($ $) 73) (($ $ (-751)) 71)) (-2455 (($ $) 131 (|has| |#1| (-1074)))) (-1398 (($ $) 99 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 130 (|has| |#1| (-1074))) (($ (-1 (-112) |#1|) $) 125)) (-3765 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4353))) (($ |#1| $) 100 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1637 ((|#1| $ (-538) |#1|) 85 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 87)) (-3801 (((-112) $) 83)) (-3778 (((-538) |#1| $ (-538)) 139 (|has| |#1| (-1074))) (((-538) |#1| $) 138 (|has| |#1| (-1074))) (((-538) (-1 (-112) |#1|) $) 137)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) 108)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 95 (|has| (-538) (-827)))) (-3677 (($ $ $) 147 (|has| |#1| (-827)))) (-3192 (($ $ $) 132 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-3872 (($ $ $) 140 (|has| |#1| (-827))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 94 (|has| (-538) (-827)))) (-3678 (($ $ $) 148 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3897 (($ |#1|) 122)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-4157 ((|#1| $) 70) (($ $ (-751)) 68)) (-3970 (($ $ $ (-538)) 127) (($ |#1| $ (-538)) 126)) (-2382 (($ $ $ (-538)) 116) (($ |#1| $ (-538)) 115)) (-2310 (((-622 (-538)) $) 92)) (-2311 (((-112) (-538) $) 91)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 76) (($ $ (-751)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2306 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-3802 (((-112) $) 84)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 90)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1198 (-538))) 112) ((|#1| $ (-538)) 89) ((|#1| $ (-538) |#1|) 88)) (-3362 (((-538) $ $) 44)) (-1632 (($ $ (-1198 (-538))) 124) (($ $ (-538)) 123)) (-2383 (($ $ (-1198 (-538))) 114) (($ $ (-538)) 113)) (-3996 (((-112) $) 46)) (-4151 (($ $) 62)) (-4149 (($ $) 59 (|has| $ (-6 -4354)))) (-4152 (((-751) $) 63)) (-4153 (($ $) 64)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 143 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 98 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 107)) (-4150 (($ $ $) 61) (($ $ |#1|) 60)) (-4161 (($ $ $) 78) (($ |#1| $) 77) (($ (-622 $)) 110) (($ $ |#1|) 109)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 150 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 151 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) 149 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 152 (|has| |#1| (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-646 |#1|) (-138) (-1185)) (T -646)) +((-3897 (*1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1185))))) +(-13 (-1122 |t#1|) (-367 |t#1|) (-277 |t#1|) (-10 -8 (-15 -3897 ($ |t#1|)))) +(((-34) . T) ((-101) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-277 |#1|) . T) ((-367 |#1|) . T) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-827) |has| |#1| (-827)) ((-986 |#1|) . T) ((-1074) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-1122 |#1|) . T) ((-1185) . T) ((-1220 |#1|) . T)) +((-3936 (((-622 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2128 (-622 |#3|)))) |#4| (-622 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2128 (-622 |#3|))) |#4| |#3|) 45)) (-3444 (((-751) |#4| |#3|) 17)) (-3699 (((-3 |#3| #1#) |#4| |#3|) 20)) (-2390 (((-112) |#4| |#3|) 13))) +(((-647 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3936 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2128 (-622 |#3|))) |#4| |#3|)) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2128 (-622 |#3|)))) |#4| (-622 |#3|))) (-15 -3699 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2390 ((-112) |#4| |#3|)) (-15 -3444 ((-751) |#4| |#3|))) (-358) (-13 (-367 |#1|) (-10 -7 (-6 -4354))) (-13 (-367 |#1|) (-10 -7 (-6 -4354))) (-666 |#1| |#2| |#3|)) (T -647)) +((-3444 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-751)) (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))) (-2390 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-112)) (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))) (-3699 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-358)) (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4354)))) (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))) (-5 *1 (-647 *4 *5 *2 *3)) (-4 *3 (-666 *4 *5 *2)))) (-3936 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-622 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2128 (-622 *7))))) (-5 *1 (-647 *5 *6 *7 *3)) (-5 *4 (-622 *7)) (-4 *3 (-666 *5 *6 *7)))) (-3936 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2128 (-622 *4)))) (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4))))) +(-10 -7 (-15 -3936 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2128 (-622 |#3|))) |#4| |#3|)) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2128 (-622 |#3|)))) |#4| (-622 |#3|))) (-15 -3699 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2390 ((-112) |#4| |#3|)) (-15 -3444 ((-751) |#4| |#3|))) +((-3936 (((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1="failed")) (|:| -2128 (-622 (-1231 |#1|))))) (-622 (-622 |#1|)) (-622 (-1231 |#1|))) 22) (((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|))))) (-669 |#1|) (-622 (-1231 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|)))) (-622 (-622 |#1|)) (-1231 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|)) 14)) (-3444 (((-751) (-669 |#1|) (-1231 |#1|)) 30)) (-3699 (((-3 (-1231 |#1|) #1#) (-669 |#1|) (-1231 |#1|)) 24)) (-2390 (((-112) (-669 |#1|) (-1231 |#1|)) 27))) +(((-648 |#1|) (-10 -7 (-15 -3936 ((-2 (|:| |particular| (-3 (-1231 |#1|) #1="failed")) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|))) (-15 -3936 ((-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|)))) (-622 (-622 |#1|)) (-1231 |#1|))) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|))))) (-669 |#1|) (-622 (-1231 |#1|)))) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|))))) (-622 (-622 |#1|)) (-622 (-1231 |#1|)))) (-15 -3699 ((-3 (-1231 |#1|) #1#) (-669 |#1|) (-1231 |#1|))) (-15 -2390 ((-112) (-669 |#1|) (-1231 |#1|))) (-15 -3444 ((-751) (-669 |#1|) (-1231 |#1|)))) (-358)) (T -648)) +((-3444 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-5 *2 (-751)) (-5 *1 (-648 *5)))) (-2390 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-5 *2 (-112)) (-5 *1 (-648 *5)))) (-3699 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1231 *4)) (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *1 (-648 *4)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-622 *5))) (-4 *5 (-358)) (-5 *2 (-622 (-2 (|:| |particular| (-3 (-1231 *5) #1="failed")) (|:| -2128 (-622 (-1231 *5)))))) (-5 *1 (-648 *5)) (-5 *4 (-622 (-1231 *5))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-622 (-2 (|:| |particular| (-3 (-1231 *5) #1#)) (|:| -2128 (-622 (-1231 *5)))))) (-5 *1 (-648 *5)) (-5 *4 (-622 (-1231 *5))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-622 *5))) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1231 *5) #1#)) (|:| -2128 (-622 (-1231 *5))))) (-5 *1 (-648 *5)) (-5 *4 (-1231 *5)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |particular| (-3 (-1231 *5) #1#)) (|:| -2128 (-622 (-1231 *5))))) (-5 *1 (-648 *5)) (-5 *4 (-1231 *5))))) +(-10 -7 (-15 -3936 ((-2 (|:| |particular| (-3 (-1231 |#1|) #1="failed")) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|))) (-15 -3936 ((-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|)))) (-622 (-622 |#1|)) (-1231 |#1|))) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|))))) (-669 |#1|) (-622 (-1231 |#1|)))) (-15 -3936 ((-622 (-2 (|:| |particular| (-3 (-1231 |#1|) #1#)) (|:| -2128 (-622 (-1231 |#1|))))) (-622 (-622 |#1|)) (-622 (-1231 |#1|)))) (-15 -3699 ((-3 (-1231 |#1|) #1#) (-669 |#1|) (-1231 |#1|))) (-15 -2390 ((-112) (-669 |#1|) (-1231 |#1|))) (-15 -3444 ((-751) (-669 |#1|) (-1231 |#1|)))) +((-2391 (((-2 (|:| |particular| (-3 (-1231 (-402 |#4|)) "failed")) (|:| -2128 (-622 (-1231 (-402 |#4|))))) (-622 |#4|) (-622 |#3|)) 45))) +(((-649 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2391 ((-2 (|:| |particular| (-3 (-1231 (-402 |#4|)) "failed")) (|:| -2128 (-622 (-1231 (-402 |#4|))))) (-622 |#4|) (-622 |#3|)))) (-545) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -649)) +((-2391 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *7)) (-4 *7 (-827)) (-4 *8 (-926 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-5 *2 (-2 (|:| |particular| (-3 (-1231 (-402 *8)) "failed")) (|:| -2128 (-622 (-1231 (-402 *8)))))) (-5 *1 (-649 *5 *6 *7 *8))))) +(-10 -7 (-15 -2391 ((-2 (|:| |particular| (-3 (-1231 (-402 |#4|)) "failed")) (|:| -2128 (-622 (-1231 (-402 |#4|))))) (-622 |#4|) (-622 |#3|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1892 (((-3 $ #1="failed")) NIL (|has| |#2| (-545)))) (-3689 ((|#2| $) NIL)) (-3456 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3574 (((-1231 (-669 |#2|))) NIL) (((-1231 (-669 |#2|)) (-1231 $)) NIL)) (-3458 (((-112) $) NIL)) (-1845 (((-1231 $)) 37)) (-1271 (((-112) $ (-751)) NIL)) (-3692 (($ |#2|) NIL)) (-3896 (($) NIL T CONST)) (-3445 (($ $) NIL (|has| |#2| (-302)))) (-3447 (((-235 |#1| |#2|) $ (-538)) NIL)) (-2028 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (|has| |#2| (-545)))) (-1819 (((-3 $ #1#)) NIL (|has| |#2| (-545)))) (-1907 (((-669 |#2|)) NIL) (((-669 |#2|) (-1231 $)) NIL)) (-1843 ((|#2| $) NIL)) (-1905 (((-669 |#2|) $) NIL) (((-669 |#2|) $ (-1231 $)) NIL)) (-2496 (((-3 $ #1#) $) NIL (|has| |#2| (-545)))) (-2022 (((-1143 (-922 |#2|))) NIL (|has| |#2| (-358)))) (-2499 (($ $ (-895)) NIL)) (-1841 ((|#2| $) NIL)) (-1821 (((-1143 |#2|) $) NIL (|has| |#2| (-545)))) (-1909 ((|#2|) NIL) ((|#2| (-1231 $)) NIL)) (-1839 (((-1143 |#2|) $) NIL)) (-1833 (((-112)) NIL)) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 |#2| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) ((|#2| $) NIL)) (-1911 (($ (-1231 |#2|)) NIL) (($ (-1231 |#2|) (-1231 $)) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3444 (((-751) $) NIL (|has| |#2| (-545))) (((-895)) 38)) (-3448 ((|#2| $ (-538) (-538)) NIL)) (-1830 (((-112)) NIL)) (-2524 (($ $ (-895)) NIL)) (-2068 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL)) (-3443 (((-751) $) NIL (|has| |#2| (-545)))) (-3442 (((-622 (-235 |#1| |#2|)) $) NIL (|has| |#2| (-545)))) (-3450 (((-751) $) NIL)) (-1826 (((-112)) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3686 ((|#2| $) NIL (|has| |#2| (-6 (-4355 #3="*"))))) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-3459 (($ (-622 (-622 |#2|))) NIL)) (-2072 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3956 (((-622 (-622 |#2|)) $) NIL)) (-1824 (((-112)) NIL)) (-1828 (((-112)) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-2029 (((-3 (-2 (|:| |particular| $) (|:| -2128 (-622 $))) #1#)) NIL (|has| |#2| (-545)))) (-1820 (((-3 $ #1#)) NIL (|has| |#2| (-545)))) (-1908 (((-669 |#2|)) NIL) (((-669 |#2|) (-1231 $)) NIL)) (-1844 ((|#2| $) NIL)) (-1906 (((-669 |#2|) $) NIL) (((-669 |#2|) $ (-1231 $)) NIL)) (-2497 (((-3 $ #1#) $) NIL (|has| |#2| (-545)))) (-2026 (((-1143 (-922 |#2|))) NIL (|has| |#2| (-358)))) (-2498 (($ $ (-895)) NIL)) (-1842 ((|#2| $) NIL)) (-1822 (((-1143 |#2|) $) NIL (|has| |#2| (-545)))) (-1910 ((|#2|) NIL) ((|#2| (-1231 $)) NIL)) (-1840 (((-1143 |#2|) $) NIL)) (-1834 (((-112)) NIL)) (-3593 (((-1131) $) NIL)) (-1825 (((-112)) NIL)) (-1827 (((-112)) NIL)) (-1829 (((-112)) NIL)) (-3952 (((-3 $ "failed") $) NIL (|has| |#2| (-358)))) (-3594 (((-1093) $) NIL)) (-1832 (((-112)) NIL)) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545)))) (-2070 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ (-538) (-538) |#2|) NIL) ((|#2| $ (-538) (-538)) 22) ((|#2| $ (-538)) NIL)) (-4170 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3688 ((|#2| $) NIL)) (-3691 (($ (-622 |#2|)) NIL)) (-3457 (((-112) $) NIL)) (-3690 (((-235 |#1| |#2|) $) NIL)) (-3687 ((|#2| $) NIL (|has| |#2| (-6 (-4355 #3#))))) (-2069 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3759 (($ $) NIL)) (-3575 (((-669 |#2|) (-1231 $)) NIL) (((-1231 |#2|) $) NIL) (((-669 |#2|) (-1231 $) (-1231 $)) NIL) (((-1231 |#2|) $ (-1231 $)) 25)) (-4330 (($ (-1231 |#2|)) NIL) (((-1231 |#2|) $) NIL)) (-2014 (((-622 (-922 |#2|))) NIL) (((-622 (-922 |#2|)) (-1231 $)) NIL)) (-2686 (($ $ $) NIL)) (-1838 (((-112)) NIL)) (-3446 (((-235 |#1| |#2|) $ (-538)) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#2| (-1014 (-402 (-538))))) (($ |#2|) NIL) (((-669 |#2|) $) NIL)) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) 36)) (-1823 (((-622 (-1231 |#2|))) NIL (|has| |#2| (-545)))) (-2687 (($ $ $ $) NIL)) (-1836 (((-112)) NIL)) (-2880 (($ (-669 |#2|) $) NIL)) (-2071 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-2685 (($ $ $) NIL)) (-1837 (((-112)) NIL)) (-1835 (((-112)) NIL)) (-1831 (((-112)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#2| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) NIL) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-650 |#1| |#2|) (-13 (-1096 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-597 (-669 |#2|)) (-413 |#2|)) (-895) (-170)) (T -650)) +NIL +(-13 (-1096 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-597 (-669 |#2|)) (-413 |#2|)) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3599 (((-622 (-1108)) $) 10)) (-4317 (((-840) $) 18) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-651) (-13 (-1056) (-10 -8 (-15 -3599 ((-622 (-1108)) $))))) (T -651)) +((-3599 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-651))))) +(-13 (-1056) (-10 -8 (-15 -3599 ((-622 (-1108)) $)))) +((-2898 (((-112) $ $) NIL)) (-4294 (((-622 |#1|) $) NIL)) (-3472 (($ $) 52)) (-2995 (((-112) $) NIL)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-2394 (((-3 $ "failed") (-799 |#1|)) 23)) (-2396 (((-112) (-799 |#1|)) 15)) (-2395 (($ (-799 |#1|)) 24)) (-2773 (((-112) $ $) 30)) (-4193 (((-895) $) 37)) (-3473 (($ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4092 (((-622 $) (-799 |#1|)) 17)) (-4317 (((-840) $) 43) (($ |#1|) 34) (((-799 |#1|) $) 39) (((-657 |#1|) $) 44)) (-2393 (((-57 (-622 $)) (-622 |#1|) (-895)) 57)) (-2392 (((-622 $) (-622 |#1|) (-895)) 60)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 53)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 38))) +(((-652 |#1|) (-13 (-827) (-1014 |#1|) (-10 -8 (-15 -2995 ((-112) $)) (-15 -3473 ($ $)) (-15 -3472 ($ $)) (-15 -4193 ((-895) $)) (-15 -2773 ((-112) $ $)) (-15 -4317 ((-799 |#1|) $)) (-15 -4317 ((-657 |#1|) $)) (-15 -4092 ((-622 $) (-799 |#1|))) (-15 -2396 ((-112) (-799 |#1|))) (-15 -2395 ($ (-799 |#1|))) (-15 -2394 ((-3 $ "failed") (-799 |#1|))) (-15 -4294 ((-622 |#1|) $)) (-15 -2393 ((-57 (-622 $)) (-622 |#1|) (-895))) (-15 -2392 ((-622 $) (-622 |#1|) (-895))))) (-827)) (T -652)) +((-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-3473 (*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) (-3472 (*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-2773 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-622 (-652 *4))) (-5 *1 (-652 *4)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-112)) (-5 *1 (-652 *4)))) (-2395 (*1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))) (-2394 (*1 *1 *2) (|partial| -12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) (-2393 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-895)) (-4 *5 (-827)) (-5 *2 (-57 (-622 (-652 *5)))) (-5 *1 (-652 *5)))) (-2392 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-895)) (-4 *5 (-827)) (-5 *2 (-622 (-652 *5))) (-5 *1 (-652 *5))))) +(-13 (-827) (-1014 |#1|) (-10 -8 (-15 -2995 ((-112) $)) (-15 -3473 ($ $)) (-15 -3472 ($ $)) (-15 -4193 ((-895) $)) (-15 -2773 ((-112) $ $)) (-15 -4317 ((-799 |#1|) $)) (-15 -4317 ((-657 |#1|) $)) (-15 -4092 ((-622 $) (-799 |#1|))) (-15 -2396 ((-112) (-799 |#1|))) (-15 -2395 ($ (-799 |#1|))) (-15 -2394 ((-3 $ "failed") (-799 |#1|))) (-15 -4294 ((-622 |#1|) $)) (-15 -2393 ((-57 (-622 $)) (-622 |#1|) (-895))) (-15 -2392 ((-622 $) (-622 |#1|) (-895))))) +((-3761 ((|#2| $) 76)) (-4156 (($ $) 96)) (-1271 (((-112) $ (-751)) 26)) (-4158 (($ $) 85) (($ $ (-751)) 88)) (-3801 (((-112) $) 97)) (-3364 (((-622 $) $) 72)) (-3360 (((-112) $ $) 71)) (-4082 (((-112) $ (-751)) 24)) (-2307 (((-538) $) 46)) (-2308 (((-538) $) 45)) (-4079 (((-112) $ (-751)) 22)) (-3881 (((-112) $) 74)) (-4157 ((|#2| $) 89) (($ $ (-751)) 92)) (-2382 (($ $ $ (-538)) 62) (($ |#2| $ (-538)) 61)) (-2310 (((-622 (-538)) $) 44)) (-2311 (((-112) (-538) $) 42)) (-4160 ((|#2| $) NIL) (($ $ (-751)) 84)) (-4128 (($ $ (-538)) 100)) (-3802 (((-112) $) 99)) (-2070 (((-112) (-1 (-112) |#2|) $) 32)) (-2312 (((-622 |#2|) $) 33)) (-4159 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1198 (-538))) 58) ((|#2| $ (-538)) 40) ((|#2| $ (-538) |#2|) 41)) (-3362 (((-538) $ $) 70)) (-2383 (($ $ (-1198 (-538))) 57) (($ $ (-538)) 51)) (-3996 (((-112) $) 66)) (-4151 (($ $) 81)) (-4152 (((-751) $) 80)) (-4153 (($ $) 79)) (-3884 (($ (-622 |#2|)) 37)) (-3224 (($ $) 101)) (-3876 (((-622 $) $) 69)) (-3361 (((-112) $ $) 68)) (-2071 (((-112) (-1 (-112) |#2|) $) 31)) (-3387 (((-112) $ $) 18)) (-4316 (((-751) $) 29))) +(((-653 |#1| |#2|) (-10 -8 (-15 -3224 (|#1| |#1|)) (-15 -4128 (|#1| |#1| (-538))) (-15 -3801 ((-112) |#1|)) (-15 -3802 ((-112) |#1|)) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -2312 ((-622 |#2|) |#1|)) (-15 -2311 ((-112) (-538) |#1|)) (-15 -2310 ((-622 (-538)) |#1|)) (-15 -2308 ((-538) |#1|)) (-15 -2307 ((-538) |#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -4151 (|#1| |#1|)) (-15 -4152 ((-751) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "last")) (-15 -4157 (|#2| |#1|)) (-15 -4158 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| "rest")) (-15 -4158 (|#1| |#1|)) (-15 -4160 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "first")) (-15 -4160 (|#2| |#1|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3361 ((-112) |#1| |#1|)) (-15 -3362 ((-538) |#1| |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| "value")) (-15 -3761 (|#2| |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751)))) (-654 |#2|) (-1185)) (T -653)) +NIL +(-10 -8 (-15 -3224 (|#1| |#1|)) (-15 -4128 (|#1| |#1| (-538))) (-15 -3801 ((-112) |#1|)) (-15 -3802 ((-112) |#1|)) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -2312 ((-622 |#2|) |#1|)) (-15 -2311 ((-112) (-538) |#1|)) (-15 -2310 ((-622 (-538)) |#1|)) (-15 -2308 ((-538) |#1|)) (-15 -2307 ((-538) |#1|)) (-15 -3884 (|#1| (-622 |#2|))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -2383 (|#1| |#1| (-538))) (-15 -2383 (|#1| |#1| (-1198 (-538)))) (-15 -2382 (|#1| |#2| |#1| (-538))) (-15 -2382 (|#1| |#1| |#1| (-538))) (-15 -4151 (|#1| |#1|)) (-15 -4152 ((-751) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "last")) (-15 -4157 (|#2| |#1|)) (-15 -4158 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| "rest")) (-15 -4158 (|#1| |#1|)) (-15 -4160 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "first")) (-15 -4160 (|#2| |#1|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3361 ((-112) |#1| |#1|)) (-15 -3362 ((-538) |#1| |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| "value")) (-15 -3761 (|#2| |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -2070 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751)))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-4154 ((|#1| $) 65)) (-4156 (($ $) 67)) (-2305 (((-1237) $ (-538) (-538)) 97 (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 52 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-4146 (($ $ $) 56 (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) 86 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 102)) (-4155 ((|#1| $) 66)) (-3896 (($) 7 T CONST)) (-2398 (($ $) 124)) (-4158 (($ $) 73) (($ $ (-751)) 71)) (-1398 (($ $) 99 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 100 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 103)) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1637 ((|#1| $ (-538) |#1|) 85 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 87)) (-3801 (((-112) $) 83)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-2397 (((-751) $) 123)) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) 108)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 95 (|has| (-538) (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 94 (|has| (-538) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-2400 (($ $) 126)) (-2401 (((-112) $) 127)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-4157 ((|#1| $) 70) (($ $ (-751)) 68)) (-2382 (($ $ $ (-538)) 116) (($ |#1| $ (-538)) 115)) (-2310 (((-622 (-538)) $) 92)) (-2311 (((-112) (-538) $) 91)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2399 ((|#1| $) 125)) (-4160 ((|#1| $) 76) (($ $ (-751)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2306 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-4128 (($ $ (-538)) 122)) (-3802 (((-112) $) 84)) (-2402 (((-112) $) 128)) (-2403 (((-112) $) 129)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 90)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1198 (-538))) 112) ((|#1| $ (-538)) 89) ((|#1| $ (-538) |#1|) 88)) (-3362 (((-538) $ $) 44)) (-2383 (($ $ (-1198 (-538))) 114) (($ $ (-538)) 113)) (-3996 (((-112) $) 46)) (-4151 (($ $) 62)) (-4149 (($ $) 59 (|has| $ (-6 -4354)))) (-4152 (((-751) $) 63)) (-4153 (($ $) 64)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 98 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 107)) (-4150 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-4161 (($ $ $) 78) (($ |#1| $) 77) (($ (-622 $)) 110) (($ $ |#1|) 109)) (-3224 (($ $) 121)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-654 |#1|) (-138) (-1185)) (T -654)) +((-3765 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1185)))) (-4073 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1185)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-2402 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-2400 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))) (-2399 (*1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))) (-2398 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-654 *3)) (-4 *3 (-1185)))) (-3224 (*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185))))) +(-13 (-1122 |t#1|) (-10 -8 (-15 -3765 ($ (-1 (-112) |t#1|) $)) (-15 -4073 ($ (-1 (-112) |t#1|) $)) (-15 -2403 ((-112) $)) (-15 -2402 ((-112) $)) (-15 -2401 ((-112) $)) (-15 -2400 ($ $)) (-15 -2399 (|t#1| $)) (-15 -2398 ($ $)) (-15 -2397 ((-751) $)) (-15 -4128 ($ $ (-538))) (-15 -3224 ($ $)))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1122 |#1|) . T) ((-1185) . T) ((-1220 |#1|) . T)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2409 (($ (-751) (-751) (-751)) 33 (|has| |#1| (-1025)))) (-1271 (((-112) $ (-751)) NIL)) (-2406 ((|#1| $ (-751) (-751) (-751) |#1|) 27)) (-3896 (($) NIL T CONST)) (-2407 (($ $ $) 37 (|has| |#1| (-1025)))) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2404 (((-1231 (-751)) $) 9)) (-2405 (($ (-1149) $ $) 22)) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2408 (($ (-751)) 35 (|has| |#1| (-1025)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-751) (-751) (-751)) 25)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-3884 (($ (-622 (-622 (-622 |#1|)))) 44)) (-4317 (($ (-934 (-934 (-934 |#1|)))) 15) (((-934 (-934 (-934 |#1|))) $) 12) (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-655 |#1|) (-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1025)) (PROGN (-15 -2409 ($ (-751) (-751) (-751))) (-15 -2408 ($ (-751))) (-15 -2407 ($ $ $))) |%noBranch|) (-15 -3884 ($ (-622 (-622 (-622 |#1|))))) (-15 -4159 (|#1| $ (-751) (-751) (-751))) (-15 -2406 (|#1| $ (-751) (-751) (-751) |#1|)) (-15 -4317 ($ (-934 (-934 (-934 |#1|))))) (-15 -4317 ((-934 (-934 (-934 |#1|))) $)) (-15 -2405 ($ (-1149) $ $)) (-15 -2404 ((-1231 (-751)) $)))) (-1074)) (T -655)) +((-2409 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1074)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1074)))) (-2407 (*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1025)) (-4 *2 (-1074)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-622 *3)))) (-4 *3 (-1074)) (-5 *1 (-655 *3)))) (-4159 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1074)))) (-2406 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1074)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-4 *3 (-1074)) (-5 *1 (-655 *3)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-5 *1 (-655 *3)) (-4 *3 (-1074)))) (-2405 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-655 *3)) (-4 *3 (-1074)))) (-2404 (*1 *2 *1) (-12 (-5 *2 (-1231 (-751))) (-5 *1 (-655 *3)) (-4 *3 (-1074))))) +(-13 (-483 |#1|) (-10 -8 (IF (|has| |#1| (-1025)) (PROGN (-15 -2409 ($ (-751) (-751) (-751))) (-15 -2408 ($ (-751))) (-15 -2407 ($ $ $))) |%noBranch|) (-15 -3884 ($ (-622 (-622 (-622 |#1|))))) (-15 -4159 (|#1| $ (-751) (-751) (-751))) (-15 -2406 (|#1| $ (-751) (-751) (-751) |#1|)) (-15 -4317 ($ (-934 (-934 (-934 |#1|))))) (-15 -4317 ((-934 (-934 (-934 |#1|))) $)) (-15 -2405 ($ (-1149) $ $)) (-15 -2404 ((-1231 (-751)) $)))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3529 (((-477) $) 10)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 12)) (-3387 (((-112) $ $) NIL))) +(((-656) (-13 (-1056) (-10 -8 (-15 -3529 ((-477) $)) (-15 -3584 ((-1108) $))))) (T -656)) +((-3529 (*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-656)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-656))))) +(-13 (-1056) (-10 -8 (-15 -3529 ((-477) $)) (-15 -3584 ((-1108) $)))) +((-2898 (((-112) $ $) NIL)) (-4294 (((-622 |#1|) $) 14)) (-3472 (($ $) 18)) (-2995 (((-112) $) 19)) (-3508 (((-3 |#1| "failed") $) 22)) (-3507 ((|#1| $) 20)) (-4158 (($ $) 36)) (-4296 (($ $) 24)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-2773 (((-112) $ $) 42)) (-4193 (((-895) $) 38)) (-3473 (($ $) 17)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 ((|#1| $) 35)) (-4317 (((-840) $) 31) (($ |#1|) 23) (((-799 |#1|) $) 27)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 12)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 40)) (* (($ $ $) 34))) +(((-657 |#1|) (-13 (-827) (-1014 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4317 ((-799 |#1|) $)) (-15 -4160 (|#1| $)) (-15 -3473 ($ $)) (-15 -4193 ((-895) $)) (-15 -2773 ((-112) $ $)) (-15 -4296 ($ $)) (-15 -4158 ($ $)) (-15 -2995 ((-112) $)) (-15 -3472 ($ $)) (-15 -4294 ((-622 |#1|) $)))) (-827)) (T -657)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-4160 (*1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-3473 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-2773 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-4296 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-4158 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) (-3472 (*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827))))) +(-13 (-827) (-1014 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4317 ((-799 |#1|) $)) (-15 -4160 (|#1| $)) (-15 -3473 ($ $)) (-15 -4193 ((-895) $)) (-15 -2773 ((-112) $ $)) (-15 -4296 ($ $)) (-15 -4158 ($ $)) (-15 -2995 ((-112) $)) (-15 -3472 ($ $)) (-15 -4294 ((-622 |#1|) $)))) +((-2418 ((|#1| (-1 |#1| (-751) |#1|) (-751) |#1|) 11)) (-2410 ((|#1| (-1 |#1| |#1|) (-751) |#1|) 9))) +(((-658 |#1|) (-10 -7 (-15 -2410 (|#1| (-1 |#1| |#1|) (-751) |#1|)) (-15 -2418 (|#1| (-1 |#1| (-751) |#1|) (-751) |#1|))) (-1074)) (T -658)) +((-2418 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-751) *2)) (-5 *4 (-751)) (-4 *2 (-1074)) (-5 *1 (-658 *2)))) (-2410 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-751)) (-4 *2 (-1074)) (-5 *1 (-658 *2))))) +(-10 -7 (-15 -2410 (|#1| (-1 |#1| |#1|) (-751) |#1|)) (-15 -2418 (|#1| (-1 |#1| (-751) |#1|) (-751) |#1|))) +((-2412 ((|#2| |#1| |#2|) 9)) (-2411 ((|#1| |#1| |#2|) 8))) +(((-659 |#1| |#2|) (-10 -7 (-15 -2411 (|#1| |#1| |#2|)) (-15 -2412 (|#2| |#1| |#2|))) (-1074) (-1074)) (T -659)) +((-2412 (*1 *2 *3 *2) (-12 (-5 *1 (-659 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))) (-2411 (*1 *2 *2 *3) (-12 (-5 *1 (-659 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074))))) +(-10 -7 (-15 -2411 (|#1| |#1| |#2|)) (-15 -2412 (|#2| |#1| |#2|))) +((-2413 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-660 |#1| |#2| |#3|) (-10 -7 (-15 -2413 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1074) (-1074) (-1074)) (T -660)) +((-2413 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)) (-5 *1 (-660 *5 *6 *2))))) +(-10 -7 (-15 -2413 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-2898 (((-112) $ $) NIL)) (-3669 (((-1186) $) 20)) (-3668 (((-622 (-1186)) $) 18)) (-2414 (($ (-622 (-1186)) (-1186)) 13)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 29) (((-1154) $) NIL) (($ (-1154)) NIL) (((-1186) $) 21) (($ (-1088)) 10)) (-3387 (((-112) $ $) NIL))) +(((-661) (-13 (-1056) (-597 (-1186)) (-10 -8 (-15 -4317 ($ (-1088))) (-15 -2414 ($ (-622 (-1186)) (-1186))) (-15 -3668 ((-622 (-1186)) $)) (-15 -3669 ((-1186) $))))) (T -661)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-661)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-622 (-1186))) (-5 *3 (-1186)) (-5 *1 (-661)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-661)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-661))))) +(-13 (-1056) (-597 (-1186)) (-10 -8 (-15 -4317 ($ (-1088))) (-15 -2414 ($ (-622 (-1186)) (-1186))) (-15 -3668 ((-622 (-1186)) $)) (-15 -3669 ((-1186) $)))) +((-2418 (((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|)) 23)) (-2415 (((-1 |#1|) |#1|) 8)) (-2417 ((|#1| |#1|) 16)) (-2416 (((-622 |#1|) (-1 (-622 |#1|) (-622 |#1|)) (-538)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-4317 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-751)) 20))) +(((-662 |#1|) (-10 -7 (-15 -2415 ((-1 |#1|) |#1|)) (-15 -4317 ((-1 |#1|) |#1|)) (-15 -2416 (|#1| (-1 |#1| |#1|))) (-15 -2416 ((-622 |#1|) (-1 (-622 |#1|) (-622 |#1|)) (-538))) (-15 -2417 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-751))) (-15 -2418 ((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|)))) (-1074)) (T -662)) +((-2418 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-751) *3)) (-4 *3 (-1074)) (-5 *1 (-662 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *4 (-1074)) (-5 *1 (-662 *4)))) (-2417 (*1 *2 *2) (-12 (-5 *1 (-662 *2)) (-4 *2 (-1074)))) (-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-622 *5) (-622 *5))) (-5 *4 (-538)) (-5 *2 (-622 *5)) (-5 *1 (-662 *5)) (-4 *5 (-1074)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-662 *2)) (-4 *2 (-1074)))) (-4317 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1074)))) (-2415 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1074))))) +(-10 -7 (-15 -2415 ((-1 |#1|) |#1|)) (-15 -4317 ((-1 |#1|) |#1|)) (-15 -2416 (|#1| (-1 |#1| |#1|))) (-15 -2416 ((-622 |#1|) (-1 (-622 |#1|) (-622 |#1|)) (-538))) (-15 -2417 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-751))) (-15 -2418 ((-1 |#1| (-751) |#1|) (-1 |#1| (-751) |#1|)))) +((-2421 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2420 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-4311 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2419 (((-1 |#2| |#1|) |#2|) 11))) +(((-663 |#1| |#2|) (-10 -7 (-15 -2419 ((-1 |#2| |#1|) |#2|)) (-15 -2420 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4311 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2421 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1074) (-1074)) (T -663)) +((-2421 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1074)) (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5)) (-4 *4 (-1074)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-5 *2 (-1 *5)) (-5 *1 (-663 *4 *5)))) (-2419 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-663 *4 *3)) (-4 *4 (-1074)) (-4 *3 (-1074))))) +(-10 -7 (-15 -2419 ((-1 |#2| |#1|) |#2|)) (-15 -2420 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4311 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2421 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-2426 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2422 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2423 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2424 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2425 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -2422 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2423 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2424 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2425 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2426 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1074) (-1074) (-1074)) (T -664)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-1 *7 *5)) (-5 *1 (-664 *5 *6 *7)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-664 *4 *5 *6)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *4 (-1074)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-664 *4 *5 *6)) (-4 *5 (-1074)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6)))) (-2422 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1074)) (-4 *4 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *5 *4 *6))))) +(-10 -7 (-15 -2422 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2423 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2424 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2425 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2426 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-4198 (($ (-751) (-751)) 33)) (-2431 (($ $ $) 56)) (-3773 (($ |#3|) 52) (($ $) 53)) (-3456 (((-112) $) 28)) (-2430 (($ $ (-538) (-538)) 58)) (-2429 (($ $ (-538) (-538)) 59)) (-2428 (($ $ (-538) (-538) (-538) (-538)) 63)) (-2433 (($ $) 54)) (-3458 (((-112) $) 14)) (-2427 (($ $ (-538) (-538) $) 64)) (-4147 ((|#2| $ (-538) (-538) |#2|) NIL) (($ $ (-622 (-538)) (-622 (-538)) $) 62)) (-3692 (($ (-751) |#2|) 39)) (-3459 (($ (-622 (-622 |#2|))) 37)) (-3956 (((-622 (-622 |#2|)) $) 57)) (-2432 (($ $ $) 55)) (-3820 (((-3 $ "failed") $ |#2|) 91)) (-4159 ((|#2| $ (-538) (-538)) NIL) ((|#2| $ (-538) (-538) |#2|) NIL) (($ $ (-622 (-538)) (-622 (-538))) 61)) (-3691 (($ (-622 |#2|)) 40) (($ (-622 $)) 42)) (-3457 (((-112) $) 24)) (-4317 (($ |#4|) 47) (((-840) $) NIL)) (-3455 (((-112) $) 30)) (-4308 (($ $ |#2|) 93)) (-4197 (($ $ $) 68) (($ $) 71)) (-4199 (($ $ $) 66)) (** (($ $ (-751)) 80) (($ $ (-538)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-538) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88))) +(((-665 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -4308 (|#1| |#1| |#2|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1| (-538) (-538) |#1|)) (-15 -2428 (|#1| |#1| (-538) (-538) (-538) (-538))) (-15 -2429 (|#1| |#1| (-538) (-538))) (-15 -2430 (|#1| |#1| (-538) (-538))) (-15 -4147 (|#1| |#1| (-622 (-538)) (-622 (-538)) |#1|)) (-15 -4159 (|#1| |#1| (-622 (-538)) (-622 (-538)))) (-15 -3956 ((-622 (-622 |#2|)) |#1|)) (-15 -2431 (|#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3773 (|#1| |#3|)) (-15 -4317 (|#1| |#4|)) (-15 -3691 (|#1| (-622 |#1|))) (-15 -3691 (|#1| (-622 |#2|))) (-15 -3692 (|#1| (-751) |#2|)) (-15 -3459 (|#1| (-622 (-622 |#2|)))) (-15 -4198 (|#1| (-751) (-751))) (-15 -3455 ((-112) |#1|)) (-15 -3456 ((-112) |#1|)) (-15 -3457 ((-112) |#1|)) (-15 -3458 ((-112) |#1|)) (-15 -4147 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538)))) (-666 |#2| |#3| |#4|) (-1025) (-367 |#2|) (-367 |#2|)) (T -665)) +NIL +(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -4308 (|#1| |#1| |#2|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-751))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -2427 (|#1| |#1| (-538) (-538) |#1|)) (-15 -2428 (|#1| |#1| (-538) (-538) (-538) (-538))) (-15 -2429 (|#1| |#1| (-538) (-538))) (-15 -2430 (|#1| |#1| (-538) (-538))) (-15 -4147 (|#1| |#1| (-622 (-538)) (-622 (-538)) |#1|)) (-15 -4159 (|#1| |#1| (-622 (-538)) (-622 (-538)))) (-15 -3956 ((-622 (-622 |#2|)) |#1|)) (-15 -2431 (|#1| |#1| |#1|)) (-15 -2432 (|#1| |#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -3773 (|#1| |#3|)) (-15 -4317 (|#1| |#4|)) (-15 -3691 (|#1| (-622 |#1|))) (-15 -3691 (|#1| (-622 |#2|))) (-15 -3692 (|#1| (-751) |#2|)) (-15 -3459 (|#1| (-622 (-622 |#2|)))) (-15 -4198 (|#1| (-751) (-751))) (-15 -3455 ((-112) |#1|)) (-15 -3456 ((-112) |#1|)) (-15 -3457 ((-112) |#1|)) (-15 -3458 ((-112) |#1|)) (-15 -4147 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) (-538)))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-4198 (($ (-751) (-751)) 97)) (-2431 (($ $ $) 87)) (-3773 (($ |#2|) 91) (($ $) 90)) (-3456 (((-112) $) 99)) (-2430 (($ $ (-538) (-538)) 83)) (-2429 (($ $ (-538) (-538)) 82)) (-2428 (($ $ (-538) (-538) (-538) (-538)) 81)) (-2433 (($ $) 89)) (-3458 (((-112) $) 101)) (-1271 (((-112) $ (-751)) 8)) (-2427 (($ $ (-538) (-538) $) 80)) (-4147 ((|#1| $ (-538) (-538) |#1|) 44) (($ $ (-622 (-538)) (-622 (-538)) $) 84)) (-1309 (($ $ (-538) |#2|) 42)) (-1308 (($ $ (-538) |#3|) 41)) (-3692 (($ (-751) |#1|) 95)) (-3896 (($) 7 T CONST)) (-3445 (($ $) 67 (|has| |#1| (-302)))) (-3447 ((|#2| $ (-538)) 46)) (-3444 (((-751) $) 66 (|has| |#1| (-545)))) (-1637 ((|#1| $ (-538) (-538) |#1|) 43)) (-3448 ((|#1| $ (-538) (-538)) 48)) (-2068 (((-622 |#1|) $) 30)) (-3443 (((-751) $) 65 (|has| |#1| (-545)))) (-3442 (((-622 |#3|) $) 64 (|has| |#1| (-545)))) (-3450 (((-751) $) 51)) (-3977 (($ (-751) (-751) |#1|) 57)) (-3449 (((-751) $) 50)) (-4082 (((-112) $ (-751)) 9)) (-3686 ((|#1| $) 62 (|has| |#1| (-6 (-4355 #1="*"))))) (-3454 (((-538) $) 55)) (-3452 (((-538) $) 53)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3453 (((-538) $) 54)) (-3451 (((-538) $) 52)) (-3459 (($ (-622 (-622 |#1|))) 96)) (-2072 (($ (-1 |#1| |#1|) $) 34)) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3956 (((-622 (-622 |#1|)) $) 86)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3952 (((-3 $ "failed") $) 61 (|has| |#1| (-358)))) (-2432 (($ $ $) 88)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) 56)) (-3820 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-545)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) (-538)) 49) ((|#1| $ (-538) (-538) |#1|) 47) (($ $ (-622 (-538)) (-622 (-538))) 85)) (-3691 (($ (-622 |#1|)) 94) (($ (-622 $)) 93)) (-3457 (((-112) $) 100)) (-3687 ((|#1| $) 63 (|has| |#1| (-6 (-4355 #1#))))) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-3446 ((|#3| $ (-538)) 45)) (-4317 (($ |#3|) 92) (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3455 (((-112) $) 98)) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4308 (($ $ |#1|) 68 (|has| |#1| (-358)))) (-4197 (($ $ $) 78) (($ $) 77)) (-4199 (($ $ $) 79)) (** (($ $ (-751)) 70) (($ $ (-538)) 60 (|has| |#1| (-358)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-538) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-666 |#1| |#2| |#3|) (-138) (-1025) (-367 |t#1|) (-367 |t#1|)) (T -666)) +((-3458 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-112)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-112)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-112)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-112)))) (-4198 (*1 *1 *2 *2) (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3692 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *2)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (-3773 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-666 *3 *2 *4)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2433 (*1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2432 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-2431 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-622 (-622 *3))))) (-4159 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-622 (-538))) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4147 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-622 (-538))) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2430 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2429 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2428 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-2427 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-4197 (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-666 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *2 (-367 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-666 *3 *2 *4)) (-4 *3 (-1025)) (-4 *2 (-367 *3)) (-4 *4 (-367 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) (-3820 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-545)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-358)))) (-3445 (*1 *1 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-302)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-751)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-751)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-622 *5)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4355 #1="*"))) (-4 *2 (-1025)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (|has| *2 (-6 (-4355 #1#))) (-4 *2 (-1025)))) (-3952 (*1 *1 *1) (|partial| -12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) (-4 *2 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-4 *3 (-358))))) +(-13 (-56 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4354) (-6 -4353) (-15 -3458 ((-112) $)) (-15 -3457 ((-112) $)) (-15 -3456 ((-112) $)) (-15 -3455 ((-112) $)) (-15 -4198 ($ (-751) (-751))) (-15 -3459 ($ (-622 (-622 |t#1|)))) (-15 -3692 ($ (-751) |t#1|)) (-15 -3691 ($ (-622 |t#1|))) (-15 -3691 ($ (-622 $))) (-15 -4317 ($ |t#3|)) (-15 -3773 ($ |t#2|)) (-15 -3773 ($ $)) (-15 -2433 ($ $)) (-15 -2432 ($ $ $)) (-15 -2431 ($ $ $)) (-15 -3956 ((-622 (-622 |t#1|)) $)) (-15 -4159 ($ $ (-622 (-538)) (-622 (-538)))) (-15 -4147 ($ $ (-622 (-538)) (-622 (-538)) $)) (-15 -2430 ($ $ (-538) (-538))) (-15 -2429 ($ $ (-538) (-538))) (-15 -2428 ($ $ (-538) (-538) (-538) (-538))) (-15 -2427 ($ $ (-538) (-538) $)) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -4197 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-538) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-751))) (IF (|has| |t#1| (-545)) (-15 -3820 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -4308 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-302)) (-15 -3445 ($ $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3444 ((-751) $)) (-15 -3443 ((-751) $)) (-15 -3442 ((-622 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4355 "*"))) (PROGN (-15 -3687 (|t#1| $)) (-15 -3686 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -3952 ((-3 $ "failed") $)) (-15 ** ($ $ (-538)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-56 |#1| |#2| |#3|) . T) ((-1185) . T)) +((-4202 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-4318 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-667 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4318 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4318 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4202 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1025) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|) (-1025) (-367 |#5|) (-367 |#5|) (-666 |#5| |#6| |#7|)) (T -667)) +((-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1025)) (-4 *2 (-1025)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) (-4 *9 (-367 *2)) (-5 *1 (-667 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-666 *5 *6 *7)) (-4 *10 (-666 *2 *8 *9)))) (-4318 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-666 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-666 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-666 *8 *9 *10)) (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-666 *5 *6 *7)) (-4 *9 (-367 *8)) (-4 *10 (-367 *8))))) +(-10 -7 (-15 -4318 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4318 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4202 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-3445 ((|#4| |#4|) 72 (|has| |#1| (-302)))) (-3444 (((-751) |#4|) 99 (|has| |#1| (-545)))) (-3443 (((-751) |#4|) 76 (|has| |#1| (-545)))) (-3442 (((-622 |#3|) |#4|) 83 (|has| |#1| (-545)))) (-2471 (((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|) 111 (|has| |#1| (-302)))) (-3686 ((|#1| |#4|) 35)) (-2438 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-545)))) (-3952 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-358)))) (-2437 ((|#4| |#4|) 68 (|has| |#1| (-545)))) (-2435 ((|#4| |#4| |#1| (-538) (-538)) 43)) (-2434 ((|#4| |#4| (-538) (-538)) 38)) (-2436 ((|#4| |#4| |#1| (-538) (-538)) 48)) (-3687 ((|#1| |#4|) 78)) (-2854 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-545))))) +(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3687 (|#1| |#4|)) (-15 -3686 (|#1| |#4|)) (-15 -2434 (|#4| |#4| (-538) (-538))) (-15 -2435 (|#4| |#4| |#1| (-538) (-538))) (-15 -2436 (|#4| |#4| |#1| (-538) (-538))) (IF (|has| |#1| (-545)) (PROGN (-15 -3444 ((-751) |#4|)) (-15 -3443 ((-751) |#4|)) (-15 -3442 ((-622 |#3|) |#4|)) (-15 -2437 (|#4| |#4|)) (-15 -2438 ((-3 |#4| "failed") |#4|)) (-15 -2854 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -3445 (|#4| |#4|)) (-15 -2471 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3952 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-170) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|)) (T -668)) +((-3952 (*1 *2 *2) (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-2471 (*1 *2 *3 *3) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-668 *3 *4 *5 *6)) (-4 *6 (-666 *3 *4 *5)))) (-3445 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-2854 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-2438 (*1 *2 *2) (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-2437 (*1 *2 *2) (-12 (-4 *3 (-545)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-3442 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-622 *6)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3443 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-2436 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-538)) (-4 *3 (-170)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-666 *3 *5 *6)))) (-2435 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-538)) (-4 *3 (-170)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-666 *3 *5 *6)))) (-2434 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-538)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *1 (-668 *4 *5 *6 *2)) (-4 *2 (-666 *4 *5 *6)))) (-3686 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-170)) (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5)))) (-3687 (*1 *2 *3) (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-170)) (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5))))) +(-10 -7 (-15 -3687 (|#1| |#4|)) (-15 -3686 (|#1| |#4|)) (-15 -2434 (|#4| |#4| (-538) (-538))) (-15 -2435 (|#4| |#4| |#1| (-538) (-538))) (-15 -2436 (|#4| |#4| |#1| (-538) (-538))) (IF (|has| |#1| (-545)) (PROGN (-15 -3444 ((-751) |#4|)) (-15 -3443 ((-751) |#4|)) (-15 -3442 ((-622 |#3|) |#4|)) (-15 -2437 (|#4| |#4|)) (-15 -2438 ((-3 |#4| "failed") |#4|)) (-15 -2854 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-302)) (PROGN (-15 -3445 (|#4| |#4|)) (-15 -2471 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3952 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751) (-751)) 47)) (-2431 (($ $ $) NIL)) (-3773 (($ (-1231 |#1|)) NIL) (($ $) NIL)) (-3456 (((-112) $) NIL)) (-2430 (($ $ (-538) (-538)) 12)) (-2429 (($ $ (-538) (-538)) NIL)) (-2428 (($ $ (-538) (-538) (-538) (-538)) NIL)) (-2433 (($ $) NIL)) (-3458 (((-112) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-2427 (($ $ (-538) (-538) $) NIL)) (-4147 ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538)) $) NIL)) (-1309 (($ $ (-538) (-1231 |#1|)) NIL)) (-1308 (($ $ (-538) (-1231 |#1|)) NIL)) (-3692 (($ (-751) |#1|) 22)) (-3896 (($) NIL T CONST)) (-3445 (($ $) 31 (|has| |#1| (-302)))) (-3447 (((-1231 |#1|) $ (-538)) NIL)) (-3444 (((-751) $) 33 (|has| |#1| (-545)))) (-1637 ((|#1| $ (-538) (-538) |#1|) 51)) (-3448 ((|#1| $ (-538) (-538)) NIL)) (-2068 (((-622 |#1|) $) NIL)) (-3443 (((-751) $) 35 (|has| |#1| (-545)))) (-3442 (((-622 (-1231 |#1|)) $) 38 (|has| |#1| (-545)))) (-3450 (((-751) $) 20)) (-3977 (($ (-751) (-751) |#1|) 16)) (-3449 (((-751) $) 21)) (-4082 (((-112) $ (-751)) NIL)) (-3686 ((|#1| $) 29 (|has| |#1| (-6 (-4355 #1="*"))))) (-3454 (((-538) $) 9)) (-3452 (((-538) $) 10)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3453 (((-538) $) 11)) (-3451 (((-538) $) 48)) (-3459 (($ (-622 (-622 |#1|))) NIL)) (-2072 (($ (-1 |#1| |#1|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3956 (((-622 (-622 |#1|)) $) 60)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3952 (((-3 $ #2="failed") $) 45 (|has| |#1| (-358)))) (-2432 (($ $ $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2306 (($ $ |#1|) NIL)) (-3820 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-545)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) (-538)) NIL) ((|#1| $ (-538) (-538) |#1|) NIL) (($ $ (-622 (-538)) (-622 (-538))) NIL)) (-3691 (($ (-622 |#1|)) NIL) (($ (-622 $)) NIL) (($ (-1231 |#1|)) 52)) (-3457 (((-112) $) NIL)) (-3687 ((|#1| $) 27 (|has| |#1| (-6 (-4355 #1#))))) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4330 (((-527) $) 64 (|has| |#1| (-598 (-527))))) (-3446 (((-1231 |#1|) $ (-538)) NIL)) (-4317 (($ (-1231 |#1|)) NIL) (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $ $) NIL) (($ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) 23) (($ $ (-538)) 46 (|has| |#1| (-358)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-538) $) NIL) (((-1231 |#1|) $ (-1231 |#1|)) NIL) (((-1231 |#1|) (-1231 |#1|) $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-669 |#1|) (-13 (-666 |#1| (-1231 |#1|) (-1231 |#1|)) (-10 -8 (-15 -3691 ($ (-1231 |#1|))) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3952 ((-3 $ "failed") $)) |%noBranch|))) (-1025)) (T -669)) +((-3952 (*1 *1 *1) (|partial| -12 (-5 *1 (-669 *2)) (-4 *2 (-358)) (-4 *2 (-1025)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1025)) (-5 *1 (-669 *3))))) +(-13 (-666 |#1| (-1231 |#1|) (-1231 |#1|)) (-10 -8 (-15 -3691 ($ (-1231 |#1|))) (IF (|has| |#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |#1| (-358)) (-15 -3952 ((-3 $ "failed") $)) |%noBranch|))) +((-2444 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 25)) (-2443 (((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|) 21)) (-2445 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751)) 26)) (-2440 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 14)) (-2441 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|)) 18) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 16)) (-2442 (((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|)) 20)) (-2439 (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 12)) (** (((-669 |#1|) (-669 |#1|) (-751)) 30))) +(((-670 |#1|) (-10 -7 (-15 -2439 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2440 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2441 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2441 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2442 ((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|))) (-15 -2443 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -2444 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2445 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751))) (-15 ** ((-669 |#1|) (-669 |#1|) (-751)))) (-1025)) (T -670)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4)))) (-2445 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4)))) (-2444 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2443 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2442 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2441 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2441 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2440 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) (-2439 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) +(-10 -7 (-15 -2439 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2440 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2441 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2441 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2442 ((-669 |#1|) (-669 |#1|) |#1| (-669 |#1|))) (-15 -2443 ((-669 |#1|) (-669 |#1|) (-669 |#1|) |#1|)) (-15 -2444 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -2445 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-669 |#1|) (-751))) (-15 ** ((-669 |#1|) (-669 |#1|) (-751)))) +((-2446 (($) 8 T CONST)) (-4317 (((-840) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3929 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -2446)) 16)) (-3935 ((|#1| $) 11))) +(((-671 |#1|) (-13 (-1227) (-597 (-840)) (-10 -8 (-15 -3929 ((-112) $ (|[\|\|]| |#1|))) (-15 -3929 ((-112) $ (|[\|\|]| -2446))) (-15 -4317 ($ |#1|)) (-15 -4317 (|#1| $)) (-15 -3935 (|#1| $)) (-15 -2446 ($) -4311))) (-597 (-840))) (T -671)) +((-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-597 (-840))) (-5 *2 (-112)) (-5 *1 (-671 *4)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2446)) (-5 *2 (-112)) (-5 *1 (-671 *4)) (-4 *4 (-597 (-840))))) (-4317 (*1 *1 *2) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))) (-4317 (*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))) (-3935 (*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))) (-2446 (*1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840)))))) +(-13 (-1227) (-597 (-840)) (-10 -8 (-15 -3929 ((-112) $ (|[\|\|]| |#1|))) (-15 -3929 ((-112) $ (|[\|\|]| -2446))) (-15 -4317 ($ |#1|)) (-15 -4317 (|#1| $)) (-15 -3935 (|#1| $)) (-15 -2446 ($) -4311))) +((-2449 ((|#2| |#2| |#4|) 25)) (-2452 (((-669 |#2|) |#3| |#4|) 31)) (-2450 (((-669 |#2|) |#2| |#4|) 30)) (-2447 (((-1231 |#2|) |#2| |#4|) 16)) (-2448 ((|#2| |#3| |#4|) 24)) (-2453 (((-669 |#2|) |#3| |#4| (-751) (-751)) 38)) (-2451 (((-669 |#2|) |#2| |#4| (-751)) 37))) +(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2447 ((-1231 |#2|) |#2| |#4|)) (-15 -2448 (|#2| |#3| |#4|)) (-15 -2449 (|#2| |#2| |#4|)) (-15 -2450 ((-669 |#2|) |#2| |#4|)) (-15 -2451 ((-669 |#2|) |#2| |#4| (-751))) (-15 -2452 ((-669 |#2|) |#3| |#4|)) (-15 -2453 ((-669 |#2|) |#3| |#4| (-751) (-751)))) (-1074) (-876 |#1|) (-367 |#2|) (-13 (-367 |#1|) (-10 -7 (-6 -4353)))) (T -672)) +((-2453 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-751)) (-4 *6 (-1074)) (-4 *7 (-876 *6)) (-5 *2 (-669 *7)) (-5 *1 (-672 *6 *7 *3 *4)) (-4 *3 (-367 *7)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4353)))))) (-2452 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-4 *6 (-876 *5)) (-5 *2 (-669 *6)) (-5 *1 (-672 *5 *6 *3 *4)) (-4 *3 (-367 *6)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))) (-2451 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-1074)) (-4 *3 (-876 *6)) (-5 *2 (-669 *3)) (-5 *1 (-672 *6 *3 *7 *4)) (-4 *7 (-367 *3)) (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4353)))))) (-2450 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-4 *3 (-876 *5)) (-5 *2 (-669 *3)) (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))) (-2449 (*1 *2 *2 *3) (-12 (-4 *4 (-1074)) (-4 *2 (-876 *4)) (-5 *1 (-672 *4 *2 *5 *3)) (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4353)))))) (-2448 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-4 *2 (-876 *5)) (-5 *1 (-672 *5 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353)))))) (-2447 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-4 *3 (-876 *5)) (-5 *2 (-1231 *3)) (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-367 *3)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353))))))) +(-10 -7 (-15 -2447 ((-1231 |#2|) |#2| |#4|)) (-15 -2448 (|#2| |#3| |#4|)) (-15 -2449 (|#2| |#2| |#4|)) (-15 -2450 ((-669 |#2|) |#2| |#4|)) (-15 -2451 ((-669 |#2|) |#2| |#4| (-751))) (-15 -2452 ((-669 |#2|) |#3| |#4|)) (-15 -2453 ((-669 |#2|) |#3| |#4| (-751) (-751)))) +((-4101 (((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|)) 20)) (-4099 ((|#1| (-669 |#2|)) 9)) (-4100 (((-669 |#1|) (-669 |#2|)) 18))) +(((-673 |#1| |#2|) (-10 -7 (-15 -4099 (|#1| (-669 |#2|))) (-15 -4100 ((-669 |#1|) (-669 |#2|))) (-15 -4101 ((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|)))) (-545) (-967 |#1|)) (T -673)) +((-4101 (*1 *2 *3) (-12 (-5 *3 (-669 *5)) (-4 *5 (-967 *4)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |num| (-669 *4)) (|:| |den| *4))) (-5 *1 (-673 *4 *5)))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-669 *5)) (-4 *5 (-967 *4)) (-4 *4 (-545)) (-5 *2 (-669 *4)) (-5 *1 (-673 *4 *5)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-669 *4)) (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-673 *2 *4))))) +(-10 -7 (-15 -4099 (|#1| (-669 |#2|))) (-15 -4100 ((-669 |#1|) (-669 |#2|))) (-15 -4101 ((-2 (|:| |num| (-669 |#1|)) (|:| |den| |#1|)) (-669 |#2|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1901 (((-669 (-679))) NIL) (((-669 (-679)) (-1231 $)) NIL)) (-3689 (((-679) $) NIL)) (-3846 (($ $) NIL (|has| (-679) (-1171)))) (-4002 (($ $) NIL (|has| (-679) (-1171)))) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-679) (-345)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-886))))) (-4134 (($ $) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| (-679) (-886))) (|has| (-679) (-358))))) (-4329 (((-400 $) $) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| (-679) (-886))) (|has| (-679) (-358))))) (-3370 (($ $) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-886))))) (-1705 (((-112) $ $) NIL (|has| (-679) (-302)))) (-3471 (((-751)) NIL (|has| (-679) (-363)))) (-3844 (($ $) NIL (|has| (-679) (-1171)))) (-4001 (($ $) NIL (|has| (-679) (-1171)))) (-3848 (($ $) NIL (|has| (-679) (-1171)))) (-4000 (($ $) NIL (|has| (-679) (-1171)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) NIL) (((-3 (-679) #2#) $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-679) (-1014 (-402 (-538)))))) (-3507 (((-538) $) NIL) (((-679) $) NIL) (((-402 (-538)) $) NIL (|has| (-679) (-1014 (-402 (-538)))))) (-1911 (($ (-1231 (-679))) NIL) (($ (-1231 (-679)) (-1231 $)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-679) (-345)))) (-2894 (($ $ $) NIL (|has| (-679) (-302)))) (-1900 (((-669 (-679)) $) NIL) (((-669 (-679)) $ (-1231 $)) NIL)) (-2362 (((-669 (-679)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-679))) (|:| |vec| (-1231 (-679)))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-679) (-621 (-538)))) (((-669 (-538)) (-669 $)) NIL (|has| (-679) (-621 (-538))))) (-4202 (((-3 $ "failed") (-402 (-1143 (-679)))) NIL (|has| (-679) (-358))) (($ (-1143 (-679))) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4006 (((-679) $) 29)) (-3357 (((-3 (-402 (-538)) #3="failed") $) NIL (|has| (-679) (-537)))) (-3356 (((-112) $) NIL (|has| (-679) (-537)))) (-3355 (((-402 (-538)) $) NIL (|has| (-679) (-537)))) (-3444 (((-895)) NIL)) (-3327 (($) NIL (|has| (-679) (-363)))) (-2893 (($ $ $) NIL (|has| (-679) (-302)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| (-679) (-302)))) (-3166 (($) NIL (|has| (-679) (-345)))) (-1796 (((-112) $) NIL (|has| (-679) (-345)))) (-1886 (($ $) NIL (|has| (-679) (-345))) (($ $ (-751)) NIL (|has| (-679) (-345)))) (-4086 (((-112) $) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| (-679) (-886))) (|has| (-679) (-358))))) (-1420 (((-2 (|:| |r| (-679)) (|:| |phi| (-679))) $) NIL (-12 (|has| (-679) (-1034)) (|has| (-679) (-1171))))) (-3990 (($) NIL (|has| (-679) (-1171)))) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-679) (-862 (-373)))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-679) (-862 (-538))))) (-4131 (((-812 (-895)) $) NIL (|has| (-679) (-345))) (((-895) $) NIL (|has| (-679) (-345)))) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171))))) (-3467 (((-679) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-679) (-345)))) (-1702 (((-3 (-622 $) #4="failed") (-622 $) $) NIL (|has| (-679) (-302)))) (-2130 (((-1143 (-679)) $) NIL (|has| (-679) (-358)))) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4318 (($ (-1 (-679) (-679)) $) NIL)) (-2126 (((-895) $) NIL (|has| (-679) (-363)))) (-4302 (($ $) NIL (|has| (-679) (-1171)))) (-3413 (((-1143 (-679)) $) NIL)) (-2013 (($ (-622 $)) NIL (|has| (-679) (-302))) (($ $ $) NIL (|has| (-679) (-302)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| (-679) (-358)))) (-3804 (($) NIL (|has| (-679) (-345)) CONST)) (-2492 (($ (-895)) NIL (|has| (-679) (-363)))) (-1422 (($) NIL)) (-4007 (((-679) $) 31)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| (-679) (-302)))) (-3495 (($ (-622 $)) NIL (|has| (-679) (-302))) (($ $ $) NIL (|has| (-679) (-302)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-679) (-345)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-886))))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-679) (-302)) (|has| (-679) (-886))))) (-4092 (((-400 $) $) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| (-679) (-886))) (|has| (-679) (-358))))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #4#) $ $ $) NIL (|has| (-679) (-302))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| (-679) (-302)))) (-3820 (((-3 $ "failed") $ $) NIL) (((-3 $ #3#) $ (-679)) NIL (|has| (-679) (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| (-679) (-302)))) (-4303 (($ $) NIL (|has| (-679) (-1171)))) (-4127 (($ $ (-1149) (-679)) NIL (|has| (-679) (-507 (-1149) (-679)))) (($ $ (-622 (-1149)) (-622 (-679))) NIL (|has| (-679) (-507 (-1149) (-679)))) (($ $ (-622 (-288 (-679)))) NIL (|has| (-679) (-304 (-679)))) (($ $ (-288 (-679))) NIL (|has| (-679) (-304 (-679)))) (($ $ (-679) (-679)) NIL (|has| (-679) (-304 (-679)))) (($ $ (-622 (-679)) (-622 (-679))) NIL (|has| (-679) (-304 (-679))))) (-1704 (((-751) $) NIL (|has| (-679) (-302)))) (-4159 (($ $ (-679)) NIL (|has| (-679) (-281 (-679) (-679))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| (-679) (-302)))) (-4117 (((-679)) NIL) (((-679) (-1231 $)) NIL)) (-1887 (((-3 (-751) "failed") $ $) NIL (|has| (-679) (-345))) (((-751) $) NIL (|has| (-679) (-345)))) (-4170 (($ $ (-1 (-679) (-679))) NIL) (($ $ (-1 (-679) (-679)) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-751)) NIL (|has| (-679) (-229))) (($ $) NIL (|has| (-679) (-229)))) (-2500 (((-669 (-679)) (-1231 $) (-1 (-679) (-679))) NIL (|has| (-679) (-358)))) (-3536 (((-1143 (-679))) NIL)) (-3849 (($ $) NIL (|has| (-679) (-1171)))) (-3999 (($ $) NIL (|has| (-679) (-1171)))) (-1790 (($) NIL (|has| (-679) (-345)))) (-3847 (($ $) NIL (|has| (-679) (-1171)))) (-3998 (($ $) NIL (|has| (-679) (-1171)))) (-3845 (($ $) NIL (|has| (-679) (-1171)))) (-3997 (($ $) NIL (|has| (-679) (-1171)))) (-3575 (((-669 (-679)) (-1231 $)) NIL) (((-1231 (-679)) $) NIL) (((-669 (-679)) (-1231 $) (-1231 $)) NIL) (((-1231 (-679)) $ (-1231 $)) NIL)) (-4330 (((-527) $) NIL (|has| (-679) (-598 (-527)))) (((-166 (-221)) $) NIL (|has| (-679) (-996))) (((-166 (-373)) $) NIL (|has| (-679) (-996))) (((-866 (-373)) $) NIL (|has| (-679) (-598 (-866 (-373))))) (((-866 (-538)) $) NIL (|has| (-679) (-598 (-866 (-538))))) (($ (-1143 (-679))) NIL) (((-1143 (-679)) $) NIL) (($ (-1231 (-679))) NIL) (((-1231 (-679)) $) NIL)) (-3342 (($ $) NIL)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| $ (-143)) (|has| (-679) (-886))) (|has| (-679) (-345))))) (-1421 (($ (-679) (-679)) 12)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-538)) NIL) (($ (-679)) NIL) (($ (-166 (-373))) 13) (($ (-166 (-538))) 19) (($ (-166 (-679))) 28) (($ (-166 (-681))) 25) (((-166 (-373)) $) 33) (($ (-402 (-538))) NIL (-3891 (|has| (-679) (-358)) (|has| (-679) (-1014 (-402 (-538))))))) (-3035 (($ $) NIL (|has| (-679) (-345))) (((-3 $ #1#) $) NIL (-3891 (-12 (|has| (-679) (-302)) (|has| $ (-143)) (|has| (-679) (-886))) (|has| (-679) (-143))))) (-2698 (((-1143 (-679)) $) NIL)) (-3461 (((-751)) NIL)) (-2128 (((-1231 $)) NIL)) (-3852 (($ $) NIL (|has| (-679) (-1171)))) (-3840 (($ $) NIL (|has| (-679) (-1171)))) (-2177 (((-112) $ $) NIL)) (-3850 (($ $) NIL (|has| (-679) (-1171)))) (-3838 (($ $) NIL (|has| (-679) (-1171)))) (-3854 (($ $) NIL (|has| (-679) (-1171)))) (-3842 (($ $) NIL (|has| (-679) (-1171)))) (-2318 (((-679) $) NIL (|has| (-679) (-1171)))) (-3855 (($ $) NIL (|has| (-679) (-1171)))) (-3843 (($ $) NIL (|has| (-679) (-1171)))) (-3853 (($ $) NIL (|has| (-679) (-1171)))) (-3841 (($ $) NIL (|has| (-679) (-1171)))) (-3851 (($ $) NIL (|has| (-679) (-1171)))) (-3839 (($ $) NIL (|has| (-679) (-1171)))) (-3742 (($ $) NIL (|has| (-679) (-1034)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1 (-679) (-679))) NIL) (($ $ (-1 (-679) (-679)) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-1149)) NIL (|has| (-679) (-876 (-1149)))) (($ $ (-751)) NIL (|has| (-679) (-229))) (($ $) NIL (|has| (-679) (-229)))) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL (|has| (-679) (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ $) NIL (|has| (-679) (-1171))) (($ $ (-402 (-538))) NIL (-12 (|has| (-679) (-978)) (|has| (-679) (-1171)))) (($ $ (-538)) NIL (|has| (-679) (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ (-679) $) NIL) (($ $ (-679)) NIL) (($ (-402 (-538)) $) NIL (|has| (-679) (-358))) (($ $ (-402 (-538))) NIL (|has| (-679) (-358))))) +(((-674) (-13 (-382) (-164 (-679)) (-10 -8 (-15 -4317 ($ (-166 (-373)))) (-15 -4317 ($ (-166 (-538)))) (-15 -4317 ($ (-166 (-679)))) (-15 -4317 ($ (-166 (-681)))) (-15 -4317 ((-166 (-373)) $))))) (T -674)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-674)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-166 (-538))) (-5 *1 (-674)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-166 (-679))) (-5 *1 (-674)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-166 (-681))) (-5 *1 (-674)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-674))))) +(-13 (-382) (-164 (-679)) (-10 -8 (-15 -4317 ($ (-166 (-373)))) (-15 -4317 ($ (-166 (-538)))) (-15 -4317 ($ (-166 (-679)))) (-15 -4317 ($ (-166 (-681)))) (-15 -4317 ((-166 (-373)) $)))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2455 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2454 (((-622 (-2 (|:| -2191 |#1|) (|:| -2069 (-751)))) $) 61)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-675 |#1|) (-138) (-1074)) (T -675)) +((-3970 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-675 *2)) (-4 *2 (-1074)))) (-2455 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1074)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1074)) (-5 *2 (-622 (-2 (|:| -2191 *3) (|:| -2069 (-751)))))))) +(-13 (-231 |t#1|) (-10 -8 (-15 -3970 ($ |t#1| $ (-751))) (-15 -2455 ($ $)) (-15 -2454 ((-622 (-2 (|:| -2191 |t#1|) (|:| -2069 (-751)))) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-2458 (((-622 |#1|) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) (-538)) 47)) (-2456 ((|#1| |#1| (-538)) 46)) (-3495 ((|#1| |#1| |#1| (-538)) 36)) (-4092 (((-622 |#1|) |#1| (-538)) 39)) (-2459 ((|#1| |#1| (-538) |#1| (-538)) 32)) (-2457 (((-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) |#1| (-538)) 45))) +(((-676 |#1|) (-10 -7 (-15 -3495 (|#1| |#1| |#1| (-538))) (-15 -2456 (|#1| |#1| (-538))) (-15 -4092 ((-622 |#1|) |#1| (-538))) (-15 -2457 ((-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) |#1| (-538))) (-15 -2458 ((-622 |#1|) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) (-538))) (-15 -2459 (|#1| |#1| (-538) |#1| (-538)))) (-1207 (-538))) (T -676)) +((-2459 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3)))) (-2458 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-2 (|:| -4092 *5) (|:| -4307 (-538))))) (-5 *4 (-538)) (-4 *5 (-1207 *4)) (-5 *2 (-622 *5)) (-5 *1 (-676 *5)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-5 *2 (-622 (-2 (|:| -4092 *3) (|:| -4307 *4)))) (-5 *1 (-676 *3)) (-4 *3 (-1207 *4)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-5 *2 (-622 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1207 *4)))) (-2456 (*1 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3)))) (-3495 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3))))) +(-10 -7 (-15 -3495 (|#1| |#1| |#1| (-538))) (-15 -2456 (|#1| |#1| (-538))) (-15 -4092 ((-622 |#1|) |#1| (-538))) (-15 -2457 ((-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) |#1| (-538))) (-15 -2458 ((-622 |#1|) (-622 (-2 (|:| -4092 |#1|) (|:| -4307 (-538)))) (-538))) (-15 -2459 (|#1| |#1| (-538) |#1| (-538)))) +((-2463 (((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))) 17)) (-2460 (((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256))) 40) (((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256))) 42) (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1="undefined") (-1062 (-221)) (-1062 (-221)) (-622 (-256))) 44)) (-2462 (((-1106 (-221)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-622 (-256))) NIL)) (-2461 (((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1#) (-1062 (-221)) (-1062 (-221)) (-622 (-256))) 45))) +(((-677) (-10 -7 (-15 -2460 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1="undefined") (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2460 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2460 ((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2461 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1#) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2462 ((-1106 (-221)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2463 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221)))))) (T -677)) +((-2463 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1 (-221) (-221) (-221) (-221))) (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *1 (-677)))) (-2462 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-2461 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) #1="undefined")) (-5 *5 (-1062 (-221))) (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-2460 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-221))) (-5 *5 (-622 (-256))) (-5 *1 (-677)))) (-2460 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-221))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) (-2460 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) #1#)) (-5 *5 (-1062 (-221))) (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677))))) +(-10 -7 (-15 -2460 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1="undefined") (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2460 ((-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2460 ((-1106 (-221)) (-1106 (-221)) (-1 (-919 (-221)) (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2461 ((-1106 (-221)) (-1 (-221) (-221) (-221)) (-3 (-1 (-221) (-221) (-221) (-221)) #1#) (-1062 (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2462 ((-1106 (-221)) (-309 (-538)) (-309 (-538)) (-309 (-538)) (-1 (-221) (-221)) (-1062 (-221)) (-622 (-256)))) (-15 -2463 ((-1 (-919 (-221)) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221)) (-1 (-221) (-221) (-221) (-221))))) +((-4092 (((-400 (-1143 |#4|)) (-1143 |#4|)) 73) (((-400 |#4|) |#4|) 221))) +(((-678 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4|)) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|)))) (-827) (-773) (-345) (-926 |#3| |#2| |#1|)) (T -678)) +((-4092 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-345)) (-4 *7 (-926 *6 *5 *4)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-345)) (-5 *2 (-400 *3)) (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4))))) +(-10 -7 (-15 -4092 ((-400 |#4|) |#4|)) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 84)) (-3464 (((-538) $) 30)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4130 (($ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL)) (-3896 (($) NIL T CONST)) (-3462 (($ $) NIL)) (-3508 (((-3 (-538) #1="failed") $) 73) (((-3 (-402 (-538)) #1#) $) 26) (((-3 (-373) #1#) $) 70)) (-3507 (((-538) $) 75) (((-402 (-538)) $) 67) (((-373) $) 68)) (-2894 (($ $ $) 96)) (-3821 (((-3 $ "failed") $) 87)) (-2893 (($ $ $) 95)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2466 (((-895)) 77) (((-895) (-895)) 76)) (-3537 (((-112) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL)) (-4131 (((-538) $) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL)) (-3467 (($ $) NIL)) (-3538 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL)) (-2464 (((-538) (-538)) 81) (((-538)) 82)) (-3677 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-2465 (((-538) (-538)) 79) (((-538)) 80)) (-3678 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4336))) (-3676 (|has| $ (-6 -4344)))))) (-2467 (((-538) $) 16)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 91)) (-1889 (((-895) (-538)) NIL (|has| $ (-6 -4344)))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL)) (-3465 (($ $) NIL)) (-3605 (($ (-538) (-538)) NIL) (($ (-538) (-538) (-895)) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) 92)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-2493 (((-538) $) 22)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 94)) (-2944 (((-895)) NIL) (((-895) (-895)) NIL (|has| $ (-6 -4344)))) (-1888 (((-895) (-538)) NIL (|has| $ (-6 -4344)))) (-4330 (((-373) $) NIL) (((-221) $) NIL) (((-866 (-373)) $) NIL)) (-4317 (((-840) $) 52) (($ (-538)) 63) (($ $) NIL) (($ (-402 (-538))) 66) (($ (-538)) 63) (($ (-402 (-538))) 66) (($ (-373)) 60) (((-373) $) 50) (($ (-681)) 55)) (-3461 (((-751)) 103)) (-3280 (($ (-538) (-538) (-895)) 44)) (-3466 (($ $) NIL)) (-1890 (((-895)) NIL) (((-895) (-895)) NIL (|has| $ (-6 -4344)))) (-3027 (((-895)) 35) (((-895) (-895)) 78)) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL)) (-2991 (($) 32 T CONST)) (-2997 (($) 17 T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 83)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 101)) (-4308 (($ $ $) 65)) (-4197 (($ $) 99) (($ $ $) 100)) (-4199 (($ $ $) 98)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL) (($ $ (-402 (-538))) 90)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 97) (($ $ $) 88) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL))) +(((-679) (-13 (-399) (-382) (-358) (-1014 (-373)) (-1014 (-402 (-538))) (-145) (-10 -8 (-15 -2466 ((-895) (-895))) (-15 -2466 ((-895))) (-15 -3027 ((-895) (-895))) (-15 -2465 ((-538) (-538))) (-15 -2465 ((-538))) (-15 -2464 ((-538) (-538))) (-15 -2464 ((-538))) (-15 -4317 ((-373) $)) (-15 -4317 ($ (-681))) (-15 -2467 ((-538) $)) (-15 -2493 ((-538) $)) (-15 -3280 ($ (-538) (-538) (-895)))))) (T -679)) +((-2493 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-2466 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) (-2466 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) (-3027 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-2465 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-2464 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-679)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-681)) (-5 *1 (-679)))) (-3280 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-895)) (-5 *1 (-679))))) +(-13 (-399) (-382) (-358) (-1014 (-373)) (-1014 (-402 (-538))) (-145) (-10 -8 (-15 -2466 ((-895) (-895))) (-15 -2466 ((-895))) (-15 -3027 ((-895) (-895))) (-15 -2465 ((-538) (-538))) (-15 -2465 ((-538))) (-15 -2464 ((-538) (-538))) (-15 -2464 ((-538))) (-15 -4317 ((-373) $)) (-15 -4317 ($ (-681))) (-15 -2467 ((-538) $)) (-15 -2493 ((-538) $)) (-15 -3280 ($ (-538) (-538) (-895))))) +((-2470 (((-669 |#1|) (-669 |#1|) |#1| |#1|) 65)) (-3445 (((-669 |#1|) (-669 |#1|) |#1|) 48)) (-2469 (((-669 |#1|) (-669 |#1|) |#1|) 66)) (-2468 (((-669 |#1|) (-669 |#1|)) 49)) (-2471 (((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|) 64))) +(((-680 |#1|) (-10 -7 (-15 -2468 ((-669 |#1|) (-669 |#1|))) (-15 -3445 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -2469 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -2470 ((-669 |#1|) (-669 |#1|) |#1| |#1|)) (-15 -2471 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|))) (-302)) (T -680)) +((-2471 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-680 *3)) (-4 *3 (-302)))) (-2470 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-2469 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-3445 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3))))) +(-10 -7 (-15 -2468 ((-669 |#1|) (-669 |#1|))) (-15 -3445 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -2469 ((-669 |#1|) (-669 |#1|) |#1|)) (-15 -2470 ((-669 |#1|) (-669 |#1|) |#1| |#1|)) (-15 -2471 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-2162 (($ $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2157 (($ $ $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL)) (-2690 (($ $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) "failed") $) 27)) (-3507 (((-538) $) 25)) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL)) (-3356 (((-112) $) NIL)) (-3355 (((-402 (-538)) $) NIL)) (-3327 (($ $) NIL) (($) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2155 (($ $ $ $) NIL)) (-2163 (($ $ $) NIL)) (-3537 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL)) (-2502 (((-112) $) NIL)) (-3006 (((-112) $) NIL)) (-3803 (((-3 $ "failed") $) NIL)) (-3538 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2156 (($ $ $ $) NIL)) (-3677 (($ $ $) NIL)) (-2472 (((-895) (-895)) 10) (((-895)) 9)) (-3678 (($ $ $) NIL)) (-2159 (($ $) NIL)) (-4193 (($ $) NIL)) (-2013 (($ (-622 $)) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2154 (($ $ $) NIL)) (-3804 (($) NIL T CONST)) (-2161 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ (-622 $)) NIL) (($ $ $) NIL)) (-1412 (($ $) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL) (($ $ (-751)) NIL)) (-2160 (($ $) NIL)) (-3759 (($ $) NIL)) (-4330 (((-221) $) NIL) (((-373) $) NIL) (((-866 (-538)) $) NIL) (((-527) $) NIL) (((-538) $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) 24) (($ $) NIL) (($ (-538)) 24) (((-309 $) (-309 (-538))) 18)) (-3461 (((-751)) NIL)) (-2164 (((-112) $ $) NIL)) (-3437 (($ $ $) NIL)) (-3027 (($) NIL)) (-2177 (((-112) $ $) NIL)) (-2158 (($ $ $ $) NIL)) (-3742 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL) (($ $ (-751)) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL))) +(((-681) (-13 (-382) (-537) (-10 -8 (-15 -2472 ((-895) (-895))) (-15 -2472 ((-895))) (-15 -4317 ((-309 $) (-309 (-538))))))) (T -681)) +((-2472 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-681)))) (-2472 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-681)))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-309 (-538))) (-5 *2 (-309 (-681))) (-5 *1 (-681))))) +(-13 (-382) (-537) (-10 -8 (-15 -2472 ((-895) (-895))) (-15 -2472 ((-895))) (-15 -4317 ((-309 $) (-309 (-538)))))) +((-2478 (((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149)) 19)) (-2473 (((-1 |#4| |#2| |#3|) (-1149)) 12))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-1 |#4| |#2| |#3|) (-1149))) (-15 -2478 ((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149)))) (-598 (-527)) (-1185) (-1185) (-1185)) (T -682)) +((-2478 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *3 *5 *6 *7)) (-4 *3 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *7 (-1185)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *4 *5 *6 *7)) (-4 *4 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *7 (-1185))))) +(-10 -7 (-15 -2473 ((-1 |#4| |#2| |#3|) (-1149))) (-15 -2478 ((-1 |#4| |#2| |#3|) |#1| (-1149) (-1149)))) +((-2898 (((-112) $ $) NIL)) (-1369 (((-1237) $ (-751)) 14)) (-3778 (((-751) $) 12)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 25)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 24))) +(((-683 |#1|) (-13 (-131) (-597 |#1|) (-10 -8 (-15 -4317 ($ |#1|)))) (-1074)) (T -683)) +((-4317 (*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1074))))) +(-13 (-131) (-597 |#1|) (-10 -8 (-15 -4317 ($ |#1|)))) +((-2474 (((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149)) 34) (((-1 (-221) (-221)) |#1| (-1149)) 39))) +(((-684 |#1|) (-10 -7 (-15 -2474 ((-1 (-221) (-221)) |#1| (-1149))) (-15 -2474 ((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149)))) (-598 (-527))) (T -684)) +((-2474 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-684 *3)) (-4 *3 (-598 (-527))))) (-2474 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-684 *3)) (-4 *3 (-598 (-527)))))) +(-10 -7 (-15 -2474 ((-1 (-221) (-221)) |#1| (-1149))) (-15 -2474 ((-1 (-221) (-221) (-221)) |#1| (-1149) (-1149)))) +((-2475 (((-1149) |#1| (-1149) (-622 (-1149))) 9) (((-1149) |#1| (-1149) (-1149) (-1149)) 12) (((-1149) |#1| (-1149) (-1149)) 11) (((-1149) |#1| (-1149)) 10))) +(((-685 |#1|) (-10 -7 (-15 -2475 ((-1149) |#1| (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-1149) (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-622 (-1149))))) (-598 (-527))) (T -685)) +((-2475 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-622 (-1149))) (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527))))) (-2475 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527))))) (-2475 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527))))) (-2475 (*1 *2 *3 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527)))))) +(-10 -7 (-15 -2475 ((-1149) |#1| (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-1149) (-1149))) (-15 -2475 ((-1149) |#1| (-1149) (-622 (-1149))))) +((-2476 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-686 |#1| |#2|) (-10 -7 (-15 -2476 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1185) (-1185)) (T -686)) +((-2476 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-686 *3 *4)) (-4 *3 (-1185)) (-4 *4 (-1185))))) +(-10 -7 (-15 -2476 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-2477 (((-1 |#3| |#2|) (-1149)) 11)) (-2478 (((-1 |#3| |#2|) |#1| (-1149)) 21))) +(((-687 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-1 |#3| |#2|) (-1149))) (-15 -2478 ((-1 |#3| |#2|) |#1| (-1149)))) (-598 (-527)) (-1185) (-1185)) (T -687)) +((-2478 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *3 *5 *6)) (-4 *3 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *4 *5 *6)) (-4 *4 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185))))) +(-10 -7 (-15 -2477 ((-1 |#3| |#2|) (-1149))) (-15 -2478 ((-1 |#3| |#2|) |#1| (-1149)))) +((-2481 (((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#4|)) (-622 |#3|) (-622 |#4|) (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#4|)))) (-622 (-751)) (-1231 (-622 (-1143 |#3|))) |#3|) 62)) (-2480 (((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#3|)) (-622 |#3|) (-622 |#4|) (-622 (-751)) |#3|) 75)) (-2479 (((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 |#3|) (-622 (-751)) (-622 (-1143 |#4|)) (-1231 (-622 (-1143 |#3|))) |#3|) 34))) +(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2479 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 |#3|) (-622 (-751)) (-622 (-1143 |#4|)) (-1231 (-622 (-1143 |#3|))) |#3|)) (-15 -2480 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#3|)) (-622 |#3|) (-622 |#4|) (-622 (-751)) |#3|)) (-15 -2481 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#4|)) (-622 |#3|) (-622 |#4|) (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#4|)))) (-622 (-751)) (-1231 (-622 (-1143 |#3|))) |#3|))) (-773) (-827) (-302) (-926 |#3| |#1| |#2|)) (T -688)) +((-2481 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-622 (-1143 *13))) (-5 *3 (-1143 *13)) (-5 *4 (-622 *12)) (-5 *5 (-622 *10)) (-5 *6 (-622 *13)) (-5 *7 (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| *13))))) (-5 *8 (-622 (-751))) (-5 *9 (-1231 (-622 (-1143 *10)))) (-4 *12 (-827)) (-4 *10 (-302)) (-4 *13 (-926 *10 *11 *12)) (-4 *11 (-773)) (-5 *1 (-688 *11 *12 *10 *13)))) (-2480 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-622 *11)) (-5 *5 (-622 (-1143 *9))) (-5 *6 (-622 *9)) (-5 *7 (-622 *12)) (-5 *8 (-622 (-751))) (-4 *11 (-827)) (-4 *9 (-302)) (-4 *12 (-926 *9 *10 *11)) (-4 *10 (-773)) (-5 *2 (-622 (-1143 *12))) (-5 *1 (-688 *10 *11 *9 *12)) (-5 *3 (-1143 *12)))) (-2479 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-622 (-1143 *11))) (-5 *3 (-1143 *11)) (-5 *4 (-622 *10)) (-5 *5 (-622 *8)) (-5 *6 (-622 (-751))) (-5 *7 (-1231 (-622 (-1143 *8)))) (-4 *10 (-827)) (-4 *8 (-302)) (-4 *11 (-926 *8 *9 *10)) (-4 *9 (-773)) (-5 *1 (-688 *9 *10 *8 *11))))) +(-10 -7 (-15 -2479 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 |#3|) (-622 (-751)) (-622 (-1143 |#4|)) (-1231 (-622 (-1143 |#3|))) |#3|)) (-15 -2480 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#3|)) (-622 |#3|) (-622 |#4|) (-622 (-751)) |#3|)) (-15 -2481 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-622 |#2|) (-622 (-1143 |#4|)) (-622 |#3|) (-622 |#4|) (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#4|)))) (-622 (-751)) (-1231 (-622 (-1143 |#3|))) |#3|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4319 (($ $) 39)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3226 (($ |#1| (-751)) 37)) (-3153 (((-751) $) 41)) (-3525 ((|#1| $) 40)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4307 (((-751) $) 42)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 36 (|has| |#1| (-170)))) (-4040 ((|#1| $ (-751)) 38)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43))) +(((-689 |#1|) (-138) (-1025)) (T -689)) +((-4307 (*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-4319 (*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025))))) +(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4307 ((-751) $)) (-15 -3153 ((-751) $)) (-15 -3525 (|t#1| $)) (-15 -4319 ($ $)) (-15 -4040 (|t#1| $ (-751))) (-15 -3226 ($ |t#1| (-751))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-4318 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-690 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4318 (|#6| (-1 |#4| |#1|) |#3|))) (-545) (-1207 |#1|) (-1207 (-402 |#2|)) (-545) (-1207 |#4|) (-1207 (-402 |#5|))) (T -690)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-545)) (-4 *7 (-545)) (-4 *6 (-1207 *5)) (-4 *2 (-1207 (-402 *8))) (-5 *1 (-690 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1207 (-402 *6))) (-4 *8 (-1207 *7))))) +(-10 -7 (-15 -4318 (|#6| (-1 |#4| |#1|) |#3|))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2482 (((-1131) (-840)) 31)) (-3980 (((-1237) (-1131)) 28)) (-2484 (((-1131) (-840)) 24)) (-2483 (((-1131) (-840)) 25)) (-4317 (((-840) $) NIL) (((-1131) (-840)) 23)) (-3387 (((-112) $ $) NIL))) +(((-691) (-13 (-1074) (-10 -7 (-15 -4317 ((-1131) (-840))) (-15 -2484 ((-1131) (-840))) (-15 -2483 ((-1131) (-840))) (-15 -2482 ((-1131) (-840))) (-15 -3980 ((-1237) (-1131)))))) (T -691)) +((-4317 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-2483 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-691))))) +(-13 (-1074) (-10 -7 (-15 -4317 ((-1131) (-840))) (-15 -2484 ((-1131) (-840))) (-15 -2483 ((-1131) (-840))) (-15 -2482 ((-1131) (-840))) (-15 -3980 ((-1237) (-1131))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL)) (-4202 (($ |#1| |#2|) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2943 ((|#2| $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-2494 (((-3 $ "failed") $ $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) ((|#1| $) NIL)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL))) +(((-692 |#1| |#2| |#3| |#4| |#5|) (-13 (-358) (-10 -8 (-15 -2943 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -4202 ($ |#1| |#2|)) (-15 -2494 ((-3 $ "failed") $ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -692)) +((-2943 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4202 (*1 *1 *2 *3) (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2494 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-358) (-10 -8 (-15 -2943 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -4202 ($ |#1| |#2|)) (-15 -2494 ((-3 $ "failed") $ $)))) +((-2898 (((-112) $ $) 78)) (-3539 (((-112) $) 30)) (-4126 (((-1231 |#1|) $ (-751)) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4124 (($ (-1143 |#1|)) NIL)) (-3419 (((-1143 $) $ (-1055)) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1055))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4115 (($ $ $) NIL (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3471 (((-751)) 47 (|has| |#1| (-363)))) (-4120 (($ $ (-751)) NIL)) (-4119 (($ $ (-751)) NIL)) (-2491 ((|#2| |#2|) 44)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-1055) #2#) $) NIL)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-1055) $) NIL)) (-4116 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) NIL (|has| |#1| (-170)))) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) 34)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4202 (($ |#2|) 42)) (-3821 (((-3 $ "failed") $) 86)) (-3327 (($) 51 (|has| |#1| (-363)))) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4118 (($ $ $) NIL)) (-4113 (($ $ $) NIL (|has| |#1| (-545)))) (-4112 (((-2 (|:| -4313 |#1|) (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-2487 (((-934 $)) 80)) (-1721 (($ $ |#1| (-751) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1055) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1055) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ $) NIL (|has| |#1| (-545)))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3420 (($ (-1143 |#1|) (-1055)) NIL) (($ (-1143 $) (-1055)) NIL)) (-4136 (($ $ (-751)) NIL)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) 77) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1055)) NIL) (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-2943 ((|#2|) 45)) (-3153 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-751) (-751)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4125 (((-1143 |#1|) $) NIL)) (-3418 (((-3 (-1055) #4="failed") $) NIL)) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-3413 ((|#2| $) 41)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) 28)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) NIL)) (-3156 (((-3 (-622 $) #4#) $) NIL)) (-3155 (((-3 (-622 $) #4#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1055)) (|:| -2493 (-751))) #4#) $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) NIL (|has| |#1| (-1124)) CONST)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-2485 (($ $) 79 (|has| |#1| (-345)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-622 (-1055)) (-622 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-622 (-1055)) (-622 $)) NIL)) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-545))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-545)))) (-4123 (((-3 $ #5="failed") $ (-751)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 87 (|has| |#1| (-358)))) (-4117 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4170 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4307 (((-751) $) 32) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1055) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-2486 (((-934 $)) 36)) (-4114 (((-3 $ #5#) $ $) NIL (|has| |#1| (-545))) (((-3 (-402 $) #5#) (-402 $) $) NIL (|has| |#1| (-545)))) (-4317 (((-840) $) 61) (($ (-538)) NIL) (($ |#1|) 58) (($ (-1055)) NIL) (($ |#2|) 68) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) 63) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 20 T CONST)) (-2490 (((-1231 |#1|) $) 75)) (-2489 (($ (-1231 |#1|)) 50)) (-2997 (($) 8 T CONST)) (-3002 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2488 (((-1231 |#1|) $) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 69)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) 72) (($ $ $) NIL)) (-4199 (($ $ $) 33)) (** (($ $ (-895)) NIL) (($ $ (-751)) 81)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 57) (($ $ $) 74) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 55) (($ $ |#1|) NIL))) +(((-693 |#1| |#2|) (-13 (-1207 |#1|) (-10 -8 (-15 -2491 (|#2| |#2|)) (-15 -2943 (|#2|)) (-15 -4202 ($ |#2|)) (-15 -3413 (|#2| $)) (-15 -4317 ($ |#2|)) (-15 -2490 ((-1231 |#1|) $)) (-15 -2489 ($ (-1231 |#1|))) (-15 -2488 ((-1231 |#1|) $)) (-15 -2487 ((-934 $))) (-15 -2486 ((-934 $))) (IF (|has| |#1| (-345)) (-15 -2485 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|))) (-1025) (-1207 |#1|)) (T -693)) +((-2491 (*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3)))) (-2943 (*1 *2) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) (-4202 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3)))) (-3413 (*1 *2 *1) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3)))) (-2490 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-1231 *3)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1207 *3)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1025)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1207 *3)))) (-2488 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-1231 *3)) (-5 *1 (-693 *3 *4)) (-4 *4 (-1207 *3)))) (-2487 (*1 *2) (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *4 (-1207 *3)))) (-2486 (*1 *2) (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) (-4 *4 (-1207 *3)))) (-2485 (*1 *1 *1) (-12 (-4 *2 (-345)) (-4 *2 (-1025)) (-5 *1 (-693 *2 *3)) (-4 *3 (-1207 *2))))) +(-13 (-1207 |#1|) (-10 -8 (-15 -2491 (|#2| |#2|)) (-15 -2943 (|#2|)) (-15 -4202 ($ |#2|)) (-15 -3413 (|#2| $)) (-15 -4317 ($ |#2|)) (-15 -2490 ((-1231 |#1|) $)) (-15 -2489 ($ (-1231 |#1|))) (-15 -2488 ((-1231 |#1|) $)) (-15 -2487 ((-934 $))) (-15 -2486 ((-934 $))) (IF (|has| |#1| (-345)) (-15 -2485 ($ $)) |%noBranch|) (IF (|has| |#1| (-363)) (-6 (-363)) |%noBranch|))) +((-2898 (((-112) $ $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2492 ((|#1| $) 13)) (-3594 (((-1093) $) NIL)) (-2493 ((|#2| $) 12)) (-3884 (($ |#1| |#2|) 16)) (-4317 (((-840) $) NIL) (($ (-2 (|:| -2492 |#1|) (|:| -2493 |#2|))) 15) (((-2 (|:| -2492 |#1|) (|:| -2493 |#2|)) $) 14)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 11))) +(((-694 |#1| |#2| |#3|) (-13 (-827) (-10 -8 (-15 -2493 (|#2| $)) (-15 -2492 (|#1| $)) (-15 -4317 ($ (-2 (|:| -2492 |#1|) (|:| -2493 |#2|)))) (-15 -4317 ((-2 (|:| -2492 |#1|) (|:| -2493 |#2|)) $)) (-15 -3884 ($ |#1| |#2|)))) (-827) (-1074) (-1 (-112) (-2 (|:| -2492 |#1|) (|:| -2493 |#2|)) (-2 (|:| -2492 |#1|) (|:| -2493 |#2|)))) (T -694)) +((-2493 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-694 *3 *2 *4)) (-4 *3 (-827)) (-14 *4 (-1 (-112) (-2 (|:| -2492 *3) (|:| -2493 *2)) (-2 (|:| -2492 *3) (|:| -2493 *2)))))) (-2492 (*1 *2 *1) (-12 (-4 *2 (-827)) (-5 *1 (-694 *2 *3 *4)) (-4 *3 (-1074)) (-14 *4 (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *3)) (-2 (|:| -2492 *2) (|:| -2493 *3)))))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2492 *3) (|:| -2493 *4))) (-4 *3 (-827)) (-4 *4 (-1074)) (-5 *1 (-694 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2492 *3) (|:| -2493 *4))) (-5 *1 (-694 *3 *4 *5)) (-4 *3 (-827)) (-4 *4 (-1074)) (-14 *5 (-1 (-112) *2 *2)))) (-3884 (*1 *1 *2 *3) (-12 (-5 *1 (-694 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-1074)) (-14 *4 (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *3)) (-2 (|:| -2492 *2) (|:| -2493 *3))))))) +(-13 (-827) (-10 -8 (-15 -2493 (|#2| $)) (-15 -2492 (|#1| $)) (-15 -4317 ($ (-2 (|:| -2492 |#1|) (|:| -2493 |#2|)))) (-15 -4317 ((-2 (|:| -2492 |#1|) (|:| -2493 |#2|)) $)) (-15 -3884 ($ |#1| |#2|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 59)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #1="failed") $) 89) (((-3 (-113) #1#) $) 95)) (-3507 ((|#1| $) NIL) (((-113) $) 39)) (-3821 (((-3 $ "failed") $) 90)) (-2850 ((|#2| (-113) |#2|) 82)) (-2502 (((-112) $) NIL)) (-2849 (($ |#1| (-356 (-113))) 14)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2851 (($ $ (-1 |#2| |#2|)) 58)) (-2852 (($ $ (-1 |#2| |#2|)) 44)) (-4159 ((|#2| $ |#2|) 33)) (-2853 ((|#1| |#1|) 105 (|has| |#1| (-170)))) (-4317 (((-840) $) 66) (($ (-538)) 18) (($ |#1|) 17) (($ (-113)) 23)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) 37)) (-2854 (($ $) 99 (|has| |#1| (-170))) (($ $ $) 103 (|has| |#1| (-170)))) (-2991 (($) 21 T CONST)) (-2997 (($) 9 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) 48) (($ $ $) NIL)) (-4199 (($ $ $) 73)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ (-113) (-538)) NIL) (($ $ (-538)) 57)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-170))) (($ $ |#1|) 97 (|has| |#1| (-170))))) +(((-695 |#1| |#2|) (-13 (-1025) (-1014 |#1|) (-1014 (-113)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2854 ($ $)) (-15 -2854 ($ $ $)) (-15 -2853 (|#1| |#1|))) |%noBranch|) (-15 -2852 ($ $ (-1 |#2| |#2|))) (-15 -2851 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-538))) (-15 ** ($ $ (-538))) (-15 -2850 (|#2| (-113) |#2|)) (-15 -2849 ($ |#1| (-356 (-113)))))) (-1025) (-628 |#1|)) (T -695)) +((-2854 (*1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-2854 (*1 *1 *1 *1) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-2853 (*1 *2 *2) (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) (-2852 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)))) (-2851 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *5)) (-4 *5 (-628 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)) (-4 *4 (-628 *3)))) (-2850 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *2)) (-4 *2 (-628 *4)))) (-2849 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-113))) (-4 *2 (-1025)) (-5 *1 (-695 *2 *4)) (-4 *4 (-628 *2))))) +(-13 (-1025) (-1014 |#1|) (-1014 (-113)) (-281 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2854 ($ $)) (-15 -2854 ($ $ $)) (-15 -2853 (|#1| |#1|))) |%noBranch|) (-15 -2852 ($ $ (-1 |#2| |#2|))) (-15 -2851 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-113) (-538))) (-15 ** ($ $ (-538))) (-15 -2850 (|#2| (-113) |#2|)) (-15 -2849 ($ |#1| (-356 (-113)))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 33)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4202 (($ |#1| |#2|) 25)) (-3821 (((-3 $ "failed") $) 48)) (-2502 (((-112) $) 35)) (-2943 ((|#2| $) 12)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 49)) (-3594 (((-1093) $) NIL)) (-2494 (((-3 $ "failed") $ $) 47)) (-4317 (((-840) $) 24) (($ (-538)) 19) ((|#1| $) 13)) (-3461 (((-751)) 28)) (-2991 (($) 16 T CONST)) (-2997 (($) 30 T CONST)) (-3387 (((-112) $ $) 38)) (-4197 (($ $) 43) (($ $ $) 37)) (-4199 (($ $ $) 40)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 21) (($ $ $) 20))) +(((-696 |#1| |#2| |#3| |#4| |#5|) (-13 (-1025) (-10 -8 (-15 -2943 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -4202 ($ |#1| |#2|)) (-15 -2494 ((-3 $ "failed") $ $)) (-15 -3821 ((-3 $ "failed") $)) (-15 -2734 ($ $)))) (-170) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -696)) +((-3821 (*1 *1 *1) (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-2943 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-696 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-170)) (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4202 (*1 *1 *2 *3) (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2494 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2734 (*1 *1 *1) (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +(-13 (-1025) (-10 -8 (-15 -2943 (|#2| $)) (-15 -4317 (|#1| $)) (-15 -4202 ($ |#1| |#2|)) (-15 -2494 ((-3 $ "failed") $ $)) (-15 -3821 ((-3 $ "failed") $)) (-15 -2734 ($ $)))) +((* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-697 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) (-698 |#2|) (-170)) (T -697)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-698 |#1|) (-138) (-170)) (T -698)) NIL (-13 (-111 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-1029 |#1|) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-2685 (($ |#1|) 17) (($ $ |#1|) 20)) (-4202 (($ |#1|) 18) (($ $ |#1|) 21)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2497 (((-112) $) NIL)) (-2490 (($ |#1| |#1| |#1| |#1|) 8)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 16)) (-3589 (((-1091) $) NIL)) (-4122 ((|#1| $ |#1|) 24) (((-810 |#1|) $ (-810 |#1|)) 32)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-4312 (((-838) $) 39)) (-2992 (($) 9 T CONST)) (-3382 (((-112) $ $) 44)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ $ $) 14))) -(((-697 |#1|) (-13 (-465) (-10 -8 (-15 -2490 ($ |#1| |#1| |#1| |#1|)) (-15 -2685 ($ |#1|)) (-15 -4202 ($ |#1|)) (-15 -3816 ($)) (-15 -2685 ($ $ |#1|)) (-15 -4202 ($ $ |#1|)) (-15 -3816 ($ $)) (-15 -4122 (|#1| $ |#1|)) (-15 -4122 ((-810 |#1|) $ (-810 |#1|))))) (-356)) (T -697)) -((-2490 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-2685 (*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-4202 (*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-3816 (*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-2685 (*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-3816 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-4122 (*1 *2 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) (-4122 (*1 *2 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *3 (-356)) (-5 *1 (-697 *3))))) -(-13 (-465) (-10 -8 (-15 -2490 ($ |#1| |#1| |#1| |#1|)) (-15 -2685 ($ |#1|)) (-15 -4202 ($ |#1|)) (-15 -3816 ($)) (-15 -2685 ($ $ |#1|)) (-15 -4202 ($ $ |#1|)) (-15 -3816 ($ $)) (-15 -4122 (|#1| $ |#1|)) (-15 -4122 ((-810 |#1|) $ (-810 |#1|))))) -((-2494 (($ $ (-893)) 12)) (-2493 (($ $ (-893)) 13)) (** (($ $ (-893)) 10))) -(((-698 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-893))) (-15 -2493 (|#1| |#1| (-893))) (-15 -2494 (|#1| |#1| (-893)))) (-699)) (T -698)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-893))) (-15 -2493 (|#1| |#1| (-893))) (-15 -2494 (|#1| |#1| (-893)))) -((-2893 (((-112) $ $) 7)) (-2494 (($ $ (-893)) 15)) (-2493 (($ $ (-893)) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6)) (** (($ $ (-893)) 13)) (* (($ $ $) 16))) -(((-699) (-138)) (T -699)) -((* (*1 *1 *1 *1) (-4 *1 (-699))) (-2494 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893)))) (-2493 (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893))))) -(-13 (-1072) (-10 -8 (-15 * ($ $ $)) (-15 -2494 ($ $ (-893))) (-15 -2493 ($ $ (-893))) (-15 ** ($ $ (-893))))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2494 (($ $ (-893)) NIL) (($ $ (-749)) 17)) (-2497 (((-112) $) 10)) (-2493 (($ $ (-893)) NIL) (($ $ (-749)) 18)) (** (($ $ (-893)) NIL) (($ $ (-749)) 15))) -(((-700 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-749))) (-15 -2493 (|#1| |#1| (-749))) (-15 -2494 (|#1| |#1| (-749))) (-15 -2497 ((-112) |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 -2493 (|#1| |#1| (-893))) (-15 -2494 (|#1| |#1| (-893)))) (-701)) (T -700)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-749))) (-15 -2493 (|#1| |#1| (-749))) (-15 -2494 (|#1| |#1| (-749))) (-15 -2497 ((-112) |#1|)) (-15 ** (|#1| |#1| (-893))) (-15 -2493 (|#1| |#1| (-893))) (-15 -2494 (|#1| |#1| (-893)))) -((-2893 (((-112) $ $) 7)) (-2491 (((-3 $ "failed") $) 17)) (-2494 (($ $ (-893)) 15) (($ $ (-749)) 22)) (-3816 (((-3 $ "failed") $) 19)) (-2497 (((-112) $) 23)) (-2492 (((-3 $ "failed") $) 18)) (-2493 (($ $ (-893)) 14) (($ $ (-749)) 21)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2992 (($) 24 T CONST)) (-3382 (((-112) $ $) 6)) (** (($ $ (-893)) 13) (($ $ (-749)) 20)) (* (($ $ $) 16))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-1031 |#1|) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-2690 (($ |#1|) 17) (($ $ |#1|) 20)) (-4207 (($ |#1|) 18) (($ $ |#1|) 21)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2502 (((-112) $) NIL)) (-2495 (($ |#1| |#1| |#1| |#1|) 8)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 16)) (-3594 (((-1093) $) NIL)) (-4127 ((|#1| $ |#1|) 24) (((-812 |#1|) $ (-812 |#1|)) 32)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-4317 (((-840) $) 39)) (-2997 (($) 9 T CONST)) (-3387 (((-112) $ $) 44)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ $ $) 14))) +(((-699 |#1|) (-13 (-467) (-10 -8 (-15 -2495 ($ |#1| |#1| |#1| |#1|)) (-15 -2690 ($ |#1|)) (-15 -4207 ($ |#1|)) (-15 -3821 ($)) (-15 -2690 ($ $ |#1|)) (-15 -4207 ($ $ |#1|)) (-15 -3821 ($ $)) (-15 -4127 (|#1| $ |#1|)) (-15 -4127 ((-812 |#1|) $ (-812 |#1|))))) (-358)) (T -699)) +((-2495 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-2690 (*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4207 (*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-3821 (*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-2690 (*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-3821 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4127 (*1 *2 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) (-4127 (*1 *2 *1 *2) (-12 (-5 *2 (-812 *3)) (-4 *3 (-358)) (-5 *1 (-699 *3))))) +(-13 (-467) (-10 -8 (-15 -2495 ($ |#1| |#1| |#1| |#1|)) (-15 -2690 ($ |#1|)) (-15 -4207 ($ |#1|)) (-15 -3821 ($)) (-15 -2690 ($ $ |#1|)) (-15 -4207 ($ $ |#1|)) (-15 -3821 ($ $)) (-15 -4127 (|#1| $ |#1|)) (-15 -4127 ((-812 |#1|) $ (-812 |#1|))))) +((-2499 (($ $ (-895)) 12)) (-2498 (($ $ (-895)) 13)) (** (($ $ (-895)) 10))) +(((-700 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-895))) (-15 -2498 (|#1| |#1| (-895))) (-15 -2499 (|#1| |#1| (-895)))) (-701)) (T -700)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-895))) (-15 -2498 (|#1| |#1| (-895))) (-15 -2499 (|#1| |#1| (-895)))) +((-2898 (((-112) $ $) 7)) (-2499 (($ $ (-895)) 15)) (-2498 (($ $ (-895)) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)) (** (($ $ (-895)) 13)) (* (($ $ $) 16))) (((-701) (-138)) (T -701)) -((-2992 (*1 *1) (-4 *1 (-701))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) (-2494 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (-2493 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) (-3816 (*1 *1 *1) (|partial| -4 *1 (-701))) (-2492 (*1 *1 *1) (|partial| -4 *1 (-701))) (-2491 (*1 *1 *1) (|partial| -4 *1 (-701)))) -(-13 (-699) (-10 -8 (-15 (-2992) ($) -4306) (-15 -2497 ((-112) $)) (-15 -2494 ($ $ (-749))) (-15 -2493 ($ $ (-749))) (-15 ** ($ $ (-749))) (-15 -3816 ((-3 $ "failed") $)) (-15 -2492 ((-3 $ "failed") $)) (-15 -2491 ((-3 $ "failed") $)))) -(((-101) . T) ((-595 (-838)) . T) ((-699) . T) ((-1072) . T)) -((-3466 (((-749)) 34)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL) ((|#2| $) 22)) (-4197 (($ |#3|) NIL) (((-3 $ "failed") (-400 |#3|)) 44)) (-3816 (((-3 $ "failed") $) 64)) (-3322 (($) 38)) (-3462 ((|#2| $) 20)) (-2496 (($) 17)) (-4165 (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-2495 (((-667 |#2|) (-1229 $) (-1 |#2| |#2|)) 59)) (-4325 (((-1229 |#2|) $) NIL) (($ (-1229 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2693 ((|#3| $) 32)) (-2123 (((-1229 $)) 29))) -(((-702 |#1| |#2| |#3|) (-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -3322 (|#1|)) (-15 -3466 ((-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2495 ((-667 |#2|) (-1229 |#1|) (-1 |#2| |#2|))) (-15 -4197 ((-3 |#1| "failed") (-400 |#3|))) (-15 -4325 (|#1| |#3|)) (-15 -4197 (|#1| |#3|)) (-15 -2496 (|#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 (|#3| |#1|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -2123 ((-1229 |#1|))) (-15 -2693 (|#3| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|))) (-703 |#2| |#3|) (-170) (-1205 |#2|)) (T -702)) -((-3466 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-749)) (-5 *1 (-702 *3 *4 *5)) (-4 *3 (-703 *4 *5))))) -(-10 -8 (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -3322 (|#1|)) (-15 -3466 ((-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -2495 ((-667 |#2|) (-1229 |#1|) (-1 |#2| |#2|))) (-15 -4197 ((-3 |#1| "failed") (-400 |#3|))) (-15 -4325 (|#1| |#3|)) (-15 -4197 (|#1| |#3|)) (-15 -2496 (|#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4325 (|#3| |#1|)) (-15 -4325 (|#1| (-1229 |#2|))) (-15 -4325 ((-1229 |#2|) |#1|)) (-15 -2123 ((-1229 |#1|))) (-15 -2693 (|#3| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3816 ((-3 |#1| "failed") |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 91 (|has| |#1| (-356)))) (-2173 (($ $) 92 (|has| |#1| (-356)))) (-2171 (((-112) $) 94 (|has| |#1| (-356)))) (-1896 (((-667 |#1|) (-1229 $)) 44) (((-667 |#1|)) 59)) (-3684 ((|#1| $) 50)) (-1786 (((-1156 (-893) (-749)) (-536)) 144 (|has| |#1| (-343)))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 111 (|has| |#1| (-356)))) (-4324 (((-398 $) $) 112 (|has| |#1| (-356)))) (-1700 (((-112) $ $) 102 (|has| |#1| (-356)))) (-3466 (((-749)) 85 (|has| |#1| (-361)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 166 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 164 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 163)) (-3502 (((-536) $) 167 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 165 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 162)) (-1906 (($ (-1229 |#1|) (-1229 $)) 46) (($ (-1229 |#1|)) 62)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-343)))) (-2889 (($ $ $) 106 (|has| |#1| (-356)))) (-1895 (((-667 |#1|) $ (-1229 $)) 51) (((-667 |#1|) $) 57)) (-2357 (((-667 (-536)) (-667 $)) 161 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 160 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 159) (((-667 |#1|) (-667 $)) 158)) (-4197 (($ |#2|) 155) (((-3 $ "failed") (-400 |#2|)) 152 (|has| |#1| (-356)))) (-3816 (((-3 $ "failed") $) 32)) (-3439 (((-893)) 52)) (-3322 (($) 88 (|has| |#1| (-361)))) (-2888 (($ $ $) 105 (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 100 (|has| |#1| (-356)))) (-3161 (($) 146 (|has| |#1| (-343)))) (-1791 (((-112) $) 147 (|has| |#1| (-343)))) (-1881 (($ $ (-749)) 138 (|has| |#1| (-343))) (($ $) 137 (|has| |#1| (-343)))) (-4081 (((-112) $) 113 (|has| |#1| (-356)))) (-4126 (((-893) $) 149 (|has| |#1| (-343))) (((-810 (-893)) $) 135 (|has| |#1| (-343)))) (-2497 (((-112) $) 30)) (-3462 ((|#1| $) 49)) (-3798 (((-3 $ "failed") $) 139 (|has| |#1| (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 109 (|has| |#1| (-356)))) (-2125 ((|#2| $) 42 (|has| |#1| (-356)))) (-2121 (((-893) $) 87 (|has| |#1| (-361)))) (-3408 ((|#2| $) 153)) (-2008 (($ (-620 $)) 98 (|has| |#1| (-356))) (($ $ $) 97 (|has| |#1| (-356)))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 114 (|has| |#1| (-356)))) (-3799 (($) 140 (|has| |#1| (-343)) CONST)) (-2487 (($ (-893)) 86 (|has| |#1| (-361)))) (-3589 (((-1091) $) 10)) (-2496 (($) 157)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 99 (|has| |#1| (-356)))) (-3490 (($ (-620 $)) 96 (|has| |#1| (-356))) (($ $ $) 95 (|has| |#1| (-356)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) 143 (|has| |#1| (-343)))) (-4087 (((-398 $) $) 110 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 107 (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ $) 90 (|has| |#1| (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 101 (|has| |#1| (-356)))) (-1699 (((-749) $) 103 (|has| |#1| (-356)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 104 (|has| |#1| (-356)))) (-4112 ((|#1| (-1229 $)) 45) ((|#1|) 58)) (-1882 (((-749) $) 148 (|has| |#1| (-343))) (((-3 (-749) "failed") $ $) 136 (|has| |#1| (-343)))) (-4165 (($ $) 134 (-3886 (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-749)) 132 (-3886 (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1147)) 130 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-620 (-1147))) 129 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-1147) (-749)) 128 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-620 (-1147)) (-620 (-749))) 127 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-749)) 120 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-356)))) (-2495 (((-667 |#1|) (-1229 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-356)))) (-3531 ((|#2|) 156)) (-1785 (($) 145 (|has| |#1| (-343)))) (-3570 (((-1229 |#1|) $ (-1229 $)) 48) (((-667 |#1|) (-1229 $) (-1229 $)) 47) (((-1229 |#1|) $) 64) (((-667 |#1|) (-1229 $)) 63)) (-4325 (((-1229 |#1|) $) 61) (($ (-1229 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 142 (|has| |#1| (-343)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-356))) (($ (-400 (-536))) 84 (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536))))))) (-3030 (($ $) 141 (|has| |#1| (-343))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2693 ((|#2| $) 43)) (-3456 (((-749)) 28)) (-2123 (((-1229 $)) 65)) (-2172 (((-112) $ $) 93 (|has| |#1| (-356)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $) 133 (-3886 (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-749)) 131 (-3886 (-3186 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1147)) 126 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-620 (-1147))) 125 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-1147) (-749)) 124 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-620 (-1147)) (-620 (-749))) 123 (-3186 (|has| |#1| (-874 (-1147))) (|has| |#1| (-356)))) (($ $ (-1 |#1| |#1|) (-749)) 122 (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-356)))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 118 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 115 (|has| |#1| (-356)))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-400 (-536)) $) 117 (|has| |#1| (-356))) (($ $ (-400 (-536))) 116 (|has| |#1| (-356))))) -(((-703 |#1| |#2|) (-138) (-170) (-1205 |t#1|)) (T -703)) -((-2496 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-703 *2 *3)) (-4 *3 (-1205 *2)))) (-3531 (*1 *2) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) (-4197 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1205 *3)))) (-4325 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1205 *3)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) (-4197 (*1 *1 *2) (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-356)) (-4 *3 (-170)) (-4 *1 (-703 *3 *4)))) (-2495 (*1 *2 *3 *4) (-12 (-5 *3 (-1229 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-4 *1 (-703 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1205 *5)) (-5 *2 (-667 *5))))) -(-13 (-403 |t#1| |t#2|) (-170) (-596 |t#2|) (-405 |t#1|) (-370 |t#1|) (-10 -8 (-15 -2496 ($)) (-15 -3531 (|t#2|)) (-15 -4197 ($ |t#2|)) (-15 -4325 ($ |t#2|)) (-15 -3408 (|t#2| $)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-356)) (-6 (-225 |t#1|)) (-15 -4197 ((-3 $ "failed") (-400 |t#2|))) (-15 -2495 ((-667 |t#1|) (-1229 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-343)) (-6 (-343)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-38 |#1|) . T) ((-38 $) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-101) . T) ((-111 #1# #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3886 (|has| |#1| (-343)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-596 |#2|) . T) ((-225 |#1|) |has| |#1| (-356)) ((-227) -3886 (|has| |#1| (-343)) (-12 (|has| |#1| (-227)) (|has| |#1| (-356)))) ((-237) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-283) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-300) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-356) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-395) |has| |#1| (-343)) ((-361) -3886 (|has| |#1| (-343)) (|has| |#1| (-361))) ((-343) |has| |#1| (-343)) ((-363 |#1| |#2|) . T) ((-403 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-543) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-626 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-696 |#1|) . T) ((-696 $) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147)))) ((-895) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 #1#) -3886 (|has| |#1| (-343)) (|has| |#1| (-356))) ((-1029 |#1|) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| |#1| (-343)) ((-1188) -3886 (|has| |#1| (-343)) (|has| |#1| (-356)))) -((-3891 (($) 11)) (-3816 (((-3 $ "failed") $) 13)) (-2497 (((-112) $) 10)) (** (($ $ (-893)) NIL) (($ $ (-749)) 18))) -(((-704 |#1|) (-10 -8 (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 -2497 ((-112) |#1|)) (-15 -3891 (|#1|)) (-15 ** (|#1| |#1| (-893)))) (-705)) (T -704)) -NIL -(-10 -8 (-15 -3816 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-749))) (-15 -2497 ((-112) |#1|)) (-15 -3891 (|#1|)) (-15 ** (|#1| |#1| (-893)))) -((-2893 (((-112) $ $) 7)) (-3891 (($) 18 T CONST)) (-3816 (((-3 $ "failed") $) 15)) (-2497 (((-112) $) 17)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2992 (($) 19 T CONST)) (-3382 (((-112) $ $) 6)) (** (($ $ (-893)) 13) (($ $ (-749)) 16)) (* (($ $ $) 14))) -(((-705) (-138)) (T -705)) -((-2992 (*1 *1) (-4 *1 (-705))) (-3891 (*1 *1) (-4 *1 (-705))) (-2497 (*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-749)))) (-3816 (*1 *1 *1) (|partial| -4 *1 (-705)))) -(-13 (-1083) (-10 -8 (-15 (-2992) ($) -4306) (-15 -3891 ($) -4306) (-15 -2497 ((-112) $)) (-15 ** ($ $ (-749))) (-15 -3816 ((-3 $ "failed") $)))) -(((-101) . T) ((-595 (-838)) . T) ((-1083) . T) ((-1072) . T)) -((-2498 (((-2 (|:| -3420 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3772 (((-2 (|:| -3420 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2499 ((|#2| (-400 |#2|) (-1 |#2| |#2|)) 13)) (-3789 (((-2 (|:| |poly| |#2|) (|:| -3420 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)) 47))) -(((-706 |#1| |#2|) (-10 -7 (-15 -3772 ((-2 (|:| -3420 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2498 ((-2 (|:| -3420 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2499 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3789 ((-2 (|:| |poly| |#2|) (|:| -3420 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) (-356) (-1205 |#1|)) (T -706)) -((-3789 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3420 (-400 *6)) (|:| |special| (-400 *6)))) (-5 *1 (-706 *5 *6)) (-5 *3 (-400 *6)))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1205 *5)) (-5 *1 (-706 *5 *2)) (-4 *5 (-356)))) (-2498 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3420 (-398 *3)) (|:| |special| (-398 *3)))) (-5 *1 (-706 *5 *3)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3420 *3) (|:| |special| *3))) (-5 *1 (-706 *5 *3))))) -(-10 -7 (-15 -3772 ((-2 (|:| -3420 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2498 ((-2 (|:| -3420 (-398 |#2|)) (|:| |special| (-398 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2499 (|#2| (-400 |#2|) (-1 |#2| |#2|))) (-15 -3789 ((-2 (|:| |poly| |#2|) (|:| -3420 (-400 |#2|)) (|:| |special| (-400 |#2|))) (-400 |#2|) (-1 |#2| |#2|)))) -((-2500 ((|#7| (-620 |#5|) |#6|) NIL)) (-4313 ((|#7| (-1 |#5| |#4|) |#6|) 26))) -(((-707 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4313 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2500 (|#7| (-620 |#5|) |#6|))) (-825) (-771) (-771) (-1023) (-1023) (-924 |#4| |#2| |#1|) (-924 |#5| |#3| |#1|)) (T -707)) -((-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *9)) (-4 *9 (-1023)) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *8 (-1023)) (-4 *2 (-924 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) (-4 *4 (-924 *8 *6 *5)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1023)) (-4 *9 (-1023)) (-4 *5 (-825)) (-4 *6 (-771)) (-4 *2 (-924 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-771)) (-4 *4 (-924 *8 *6 *5))))) -(-10 -7 (-15 -4313 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2500 (|#7| (-620 |#5|) |#6|))) -((-4313 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-708 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4313 (|#7| (-1 |#2| |#1|) |#6|))) (-825) (-825) (-771) (-771) (-1023) (-924 |#5| |#3| |#1|) (-924 |#5| |#4| |#2|)) (T -708)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-4 *7 (-771)) (-4 *9 (-1023)) (-4 *2 (-924 *9 *8 *6)) (-5 *1 (-708 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-771)) (-4 *4 (-924 *9 *7 *5))))) -(-10 -7 (-15 -4313 (|#7| (-1 |#2| |#1|) |#6|))) -((-4087 (((-398 |#4|) |#4|) 41))) -(((-709 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4|))) (-771) (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147))))) (-300) (-924 (-920 |#3|) |#1| |#2|)) (T -709)) -((-4087 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147)))))) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-709 *4 *5 *6 *3)) (-4 *3 (-924 (-920 *6) *4 *5))))) -(-10 -7 (-15 -4087 ((-398 |#4|) |#4|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-839 |#1|)) $) NIL)) (-3414 (((-1141 $) $ (-839 |#1|)) NIL) (((-1141 |#2|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-543)))) (-2173 (($ $) NIL (|has| |#2| (-543)))) (-2171 (((-112) $) NIL (|has| |#2| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-839 |#1|))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL (|has| |#2| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-839 |#1|) #2#) $) NIL)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-839 |#1|) $) NIL)) (-4111 (($ $ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#2| (-884)))) (-1716 (($ $ |#2| (-522 (-839 |#1|)) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-839 |#1|) (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#2|) (-839 |#1|)) NIL) (($ (-1141 $) (-839 |#1|)) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#2| (-522 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-839 |#1|)) NIL)) (-3148 (((-522 (-839 |#1|)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-1717 (($ (-1 (-522 (-839 |#1|)) (-522 (-839 |#1|))) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-3413 (((-3 (-839 |#1|) #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#2| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-839 |#1|)) (|:| -2488 (-749))) #3#) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-884)))) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-839 |#1|) |#2|) NIL) (($ $ (-620 (-839 |#1|)) (-620 |#2|)) NIL) (($ $ (-839 |#1|) $) NIL) (($ $ (-620 (-839 |#1|)) (-620 $)) NIL)) (-4112 (($ $ (-839 |#1|)) NIL (|has| |#2| (-170)))) (-4165 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-4302 (((-522 (-839 |#1|)) $) NIL) (((-749) $ (-839 |#1|)) NIL) (((-620 (-749)) $ (-620 (-839 |#1|))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-839 |#1|) (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-839 |#1|) (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-839 |#1|)) NIL (|has| |#2| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-839 |#1|)) NIL) (($ $) NIL (|has| |#2| (-543))) (($ (-400 (-536))) NIL (-3886 (|has| |#2| (-38 (-400 (-536)))) (|has| |#2| (-1012 (-400 (-536))))))) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-522 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-3030 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#2| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-839 |#1|)) NIL) (($ $ (-620 (-839 |#1|))) NIL) (($ $ (-839 |#1|) (-749)) NIL) (($ $ (-620 (-839 |#1|)) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#2| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#2| (-38 (-400 (-536))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-710 |#1| |#2|) (-924 |#2| (-522 (-839 |#1|)) (-839 |#1|)) (-620 (-1147)) (-1023)) (T -710)) -NIL -(-924 |#2| (-522 (-839 |#1|)) (-839 |#1|)) -((-2501 (((-2 (|:| -2728 (-920 |#3|)) (|:| -2168 (-920 |#3|))) |#4|) 14)) (-3314 ((|#4| |#4| |#2|) 33)) (-2504 ((|#4| (-400 (-920 |#3|)) |#2|) 64)) (-2503 ((|#4| (-1141 (-920 |#3|)) |#2|) 77)) (-2502 ((|#4| (-1141 |#4|) |#2|) 51)) (-3313 ((|#4| |#4| |#2|) 54)) (-4087 (((-398 |#4|) |#4|) 40))) -(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2501 ((-2 (|:| -2728 (-920 |#3|)) (|:| -2168 (-920 |#3|))) |#4|)) (-15 -3313 (|#4| |#4| |#2|)) (-15 -2502 (|#4| (-1141 |#4|) |#2|)) (-15 -3314 (|#4| |#4| |#2|)) (-15 -2503 (|#4| (-1141 (-920 |#3|)) |#2|)) (-15 -2504 (|#4| (-400 (-920 |#3|)) |#2|)) (-15 -4087 ((-398 |#4|) |#4|))) (-771) (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)))) (-543) (-924 (-400 (-920 |#3|)) |#1| |#2|)) (T -711)) -((-4087 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *6 (-543)) (-5 *2 (-398 *3)) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-924 (-400 (-920 *6)) *4 *5)))) (-2504 (*1 *2 *3 *4) (-12 (-4 *6 (-543)) (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-5 *3 (-400 (-920 *6))) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))))) (-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 (-920 *6))) (-4 *6 (-543)) (-4 *2 (-924 (-400 (-920 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))))) (-3314 (*1 *2 *2 *3) (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *5 (-543)) (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-924 (-400 (-920 *5)) *4 *3)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-1141 *2)) (-4 *2 (-924 (-400 (-920 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *6 (-543)))) (-3313 (*1 *2 *2 *3) (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *5 (-543)) (-5 *1 (-711 *4 *3 *5 *2)) (-4 *2 (-924 (-400 (-920 *5)) *4 *3)))) (-2501 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *6 (-543)) (-5 *2 (-2 (|:| -2728 (-920 *6)) (|:| -2168 (-920 *6)))) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-924 (-400 (-920 *6)) *4 *5))))) -(-10 -7 (-15 -2501 ((-2 (|:| -2728 (-920 |#3|)) (|:| -2168 (-920 |#3|))) |#4|)) (-15 -3313 (|#4| |#4| |#2|)) (-15 -2502 (|#4| (-1141 |#4|) |#2|)) (-15 -3314 (|#4| |#4| |#2|)) (-15 -2503 (|#4| (-1141 (-920 |#3|)) |#2|)) (-15 -2504 (|#4| (-400 (-920 |#3|)) |#2|)) (-15 -4087 ((-398 |#4|) |#4|))) -((-4087 (((-398 |#4|) |#4|) 52))) -(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4|))) (-771) (-825) (-13 (-300) (-145)) (-924 (-400 |#3|) |#1| |#2|)) (T -712)) -((-4087 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-712 *4 *5 *6 *3)) (-4 *3 (-924 (-400 *6) *4 *5))))) -(-10 -7 (-15 -4087 ((-398 |#4|) |#4|))) -((-4313 (((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)) 18))) -(((-713 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)))) (-1023) (-1023) (-705)) (T -713)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5 *7)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *7 (-705)) (-5 *2 (-714 *6 *7)) (-5 *1 (-713 *5 *6 *7))))) -(-10 -7 (-15 -4313 ((-714 |#2| |#3|) (-1 |#2| |#1|) (-714 |#1| |#3|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 28)) (-4128 (((-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|))) $) 29)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749)) 20 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3502 ((|#2| $) NIL) ((|#1| $) NIL)) (-4314 (($ $) 79 (|has| |#2| (-825)))) (-3816 (((-3 $ "failed") $) 65)) (-3322 (($) 35 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) 55)) (-3149 (((-620 $) $) 39)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| |#2|) 16)) (-4313 (($ (-1 |#1| |#1|) $) 54)) (-2121 (((-893) $) 32 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3222 ((|#2| $) 78 (|has| |#2| (-825)))) (-3520 ((|#1| $) 77 (|has| |#2| (-825)))) (-3588 (((-1129) $) NIL)) (-2487 (($ (-893)) 27 (-12 (|has| |#2| (-361)) (|has| |#1| (-361))))) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 76) (($ (-536)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|)))) 11)) (-4172 (((-620 |#1|) $) 41)) (-4035 ((|#1| $ |#2|) 88)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-2986 (($) 12 T CONST)) (-2992 (($) 33 T CONST)) (-3382 (((-112) $ $) 80)) (-4192 (($ $) 47) (($ $ $) NIL)) (-4194 (($ $ $) 26)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-714 |#1| |#2|) (-13 (-1023) (-1012 |#2|) (-1012 |#1|) (-10 -8 (-15 -3221 ($ |#1| |#2|)) (-15 -4035 (|#1| $ |#2|)) (-15 -4312 ($ (-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|))))) (-15 -4128 ((-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|))) $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (-15 -4292 ((-112) $)) (-15 -4172 ((-620 |#1|) $)) (-15 -3149 ((-620 $) $)) (-15 -2505 ((-749) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-825)) (PROGN (-15 -3222 (|#2| $)) (-15 -3520 (|#1| $)) (-15 -4314 ($ $))) |%noBranch|))) (-1023) (-705)) (T -714)) -((-3221 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-705)))) (-4035 (*1 *2 *1 *3) (-12 (-4 *2 (-1023)) (-5 *1 (-714 *2 *3)) (-4 *3 (-705)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4308 *3) (|:| -4293 *4)))) (-4 *3 (-1023)) (-4 *4 (-705)) (-5 *1 (-714 *3 *4)))) (-4128 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| -4308 *3) (|:| -4293 *4)))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-714 *3 *4)) (-4 *4 (-705)))) (-4292 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-620 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) (-3222 (*1 *2 *1) (-12 (-4 *2 (-705)) (-4 *2 (-825)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1023)))) (-3520 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *3 (-705)))) (-4314 (*1 *1 *1) (-12 (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1023)) (-4 *3 (-705))))) -(-13 (-1023) (-1012 |#2|) (-1012 |#1|) (-10 -8 (-15 -3221 ($ |#1| |#2|)) (-15 -4035 (|#1| $ |#2|)) (-15 -4312 ($ (-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|))))) (-15 -4128 ((-620 (-2 (|:| -4308 |#1|) (|:| -4293 |#2|))) $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (-15 -4292 ((-112) $)) (-15 -4172 ((-620 |#1|) $)) (-15 -3149 ((-620 $) $)) (-15 -2505 ((-749) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-825)) (PROGN (-15 -3222 (|#2| $)) (-15 -3520 (|#1| $)) (-15 -4314 ($ $))) |%noBranch|))) -((-2893 (((-112) $ $) NIL)) (-3580 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3582 (($ $ $) 79)) (-3581 (((-112) $ $) 83)) (-1269 (((-112) $ (-749)) NIL)) (-3585 (($ (-620 |#1|)) 24) (($) 16)) (-1626 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2450 (($ $) 71)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) 61 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4348))) (($ |#1| $ (-536)) 62) (($ (-1 (-112) |#1|) $ (-536)) 65)) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (($ |#1| $ (-536)) 67) (($ (-1 (-112) |#1|) $ (-536)) 68)) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 32 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) 82)) (-2507 (($) 14) (($ |#1|) 26) (($ (-620 |#1|)) 21)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) 38)) (-3591 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 75)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3584 (($ $ $) 77)) (-1331 ((|#1| $) 55)) (-3965 (($ |#1| $) 56) (($ |#1| $ (-749)) 72)) (-3589 (((-1091) $) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1332 ((|#1| $) 54)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 50)) (-3923 (($) 13)) (-2449 (((-620 (-2 (|:| -2186 |#1|) (|:| -2064 (-749)))) $) 48)) (-3583 (($ $ |#1|) NIL) (($ $ $) 78)) (-1518 (($) 15) (($ (-620 |#1|)) 23)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) 60 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 66)) (-4325 (((-525) $) 36 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 20)) (-4312 (((-838) $) 44)) (-3586 (($ (-620 |#1|)) 25) (($) 17)) (-1333 (($ (-620 |#1|)) 22)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 81)) (-4311 (((-749) $) 59 (|has| $ (-6 -4348))))) -(((-715 |#1|) (-13 (-716 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -2507 ($)) (-15 -2507 ($ |#1|)) (-15 -2507 ($ (-620 |#1|))) (-15 -2506 ((-620 |#1|) $)) (-15 -3760 ($ |#1| $ (-536))) (-15 -3760 ($ (-1 (-112) |#1|) $ (-536))) (-15 -3759 ($ |#1| $ (-536))) (-15 -3759 ($ (-1 (-112) |#1|) $ (-536))))) (-1072)) (T -715)) -((-2507 (*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-1072)))) (-2507 (*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-1072)))) (-2507 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-715 *3)))) (-2506 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-715 *3)) (-4 *3 (-1072)))) (-3760 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-715 *2)) (-4 *2 (-1072)))) (-3760 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-536)) (-4 *4 (-1072)) (-5 *1 (-715 *4)))) (-3759 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-715 *2)) (-4 *2 (-1072)))) (-3759 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-536)) (-4 *4 (-1072)) (-5 *1 (-715 *4))))) -(-13 (-716 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -2507 ($)) (-15 -2507 ($ |#1|)) (-15 -2507 ($ (-620 |#1|))) (-15 -2506 ((-620 |#1|) $)) (-15 -3760 ($ |#1| $ (-536))) (-15 -3760 ($ (-1 (-112) |#1|) $ (-536))) (-15 -3759 ($ |#1| $ (-536))) (-15 -3759 ($ (-1 (-112) |#1|) $ (-536))))) -((-2893 (((-112) $ $) 19)) (-3580 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3582 (($ $ $) 72)) (-3581 (((-112) $ $) 73)) (-1269 (((-112) $ (-749)) 8)) (-3585 (($ (-620 |#1|)) 68) (($) 67)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2450 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) 64)) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22)) (-3584 (($ $ $) 69)) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3589 (((-1091) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2449 (((-620 (-2 (|:| -2186 |#1|) (|:| -2064 (-749)))) $) 61)) (-3583 (($ $ |#1|) 71) (($ $ $) 70)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-4312 (((-838) $) 18)) (-3586 (($ (-620 |#1|)) 66) (($) 65)) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20)) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-716 |#1|) (-138) (-1072)) (T -716)) -NIL -(-13 (-673 |t#1|) (-1070 |t#1|)) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-673 |#1|) . T) ((-1070 |#1|) . T) ((-1072) . T) ((-1183) . T)) -((-2508 (((-1235) (-1129)) 8))) -(((-717) (-10 -7 (-15 -2508 ((-1235) (-1129))))) (T -717)) -((-2508 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-717))))) -(-10 -7 (-15 -2508 ((-1235) (-1129)))) -((-2509 (((-620 |#1|) (-620 |#1|) (-620 |#1|)) 10))) -(((-718 |#1|) (-10 -7 (-15 -2509 ((-620 |#1|) (-620 |#1|) (-620 |#1|)))) (-825)) (T -718)) -((-2509 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-718 *3))))) -(-10 -7 (-15 -2509 ((-620 |#1|) (-620 |#1|) (-620 |#1|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 |#2|) $) 134)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 127 (|has| |#1| (-543)))) (-2173 (($ $) 126 (|has| |#1| (-543)))) (-2171 (((-112) $) 124 (|has| |#1| (-543)))) (-3841 (($ $) 83 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 66 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-3365 (($ $) 65 (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) 82 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 67 (|has| |#1| (-38 (-400 (-536)))))) (-3843 (($ $) 81 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 68 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-4314 (($ $) 118)) (-3816 (((-3 $ "failed") $) 32)) (-4169 (((-920 |#1|) $ (-749)) 96) (((-920 |#1|) $ (-749) (-749)) 95)) (-3220 (((-112) $) 135)) (-3985 (($) 93 (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $ |#2|) 98) (((-749) $ |#2| (-749)) 97)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 64 (|has| |#1| (-38 (-400 (-536)))))) (-4292 (((-112) $) 116)) (-3221 (($ $ (-620 |#2|) (-620 (-522 |#2|))) 133) (($ $ |#2| (-522 |#2|)) 132) (($ |#1| (-522 |#2|)) 117) (($ $ |#2| (-749)) 100) (($ $ (-620 |#2|) (-620 (-749))) 99)) (-4313 (($ (-1 |#1| |#1|) $) 115)) (-4297 (($ $) 90 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 113)) (-3520 ((|#1| $) 112)) (-3588 (((-1129) $) 9)) (-4167 (($ $ |#2|) 94 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) 10)) (-4123 (($ $ (-749)) 101)) (-3815 (((-3 $ "failed") $ $) 128 (|has| |#1| (-543)))) (-4298 (($ $) 91 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (($ $ |#2| $) 109) (($ $ (-620 |#2|) (-620 $)) 108) (($ $ (-620 (-286 $))) 107) (($ $ (-286 $)) 106) (($ $ $ $) 105) (($ $ (-620 $) (-620 $)) 104)) (-4165 (($ $ |#2|) 40) (($ $ (-620 |#2|)) 39) (($ $ |#2| (-749)) 38) (($ $ (-620 |#2|) (-620 (-749))) 37)) (-4302 (((-522 |#2|) $) 114)) (-3844 (($ $) 80 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 69 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 79 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 70 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 78 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 71 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 136)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-543))) (($ (-400 (-536))) 121 (|has| |#1| (-38 (-400 (-536)))))) (-4035 ((|#1| $ (-522 |#2|)) 119) (($ $ |#2| (-749)) 103) (($ $ (-620 |#2|) (-620 (-749))) 102)) (-3030 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-3847 (($ $) 89 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 77 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 125 (|has| |#1| (-543)))) (-3845 (($ $) 88 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 76 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 87 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 75 (|has| |#1| (-38 (-400 (-536)))))) (-3850 (($ $) 86 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 74 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 85 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 73 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 84 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 72 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ |#2|) 36) (($ $ (-620 |#2|)) 35) (($ $ |#2| (-749)) 34) (($ $ (-620 |#2|) (-620 (-749))) 33)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 120 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ $) 92 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 63 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 123 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 122 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 111) (($ $ |#1|) 110))) -(((-719 |#1| |#2|) (-138) (-1023) (-825)) (T -719)) -((-4035 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1023)) (-4 *2 (-825)))) (-4035 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *5)) (-5 *3 (-620 (-749))) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)))) (-4123 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-719 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-825)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1023)) (-4 *2 (-825)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *5)) (-5 *3 (-620 (-749))) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)))) (-4126 (*1 *2 *1 *3) (-12 (-4 *1 (-719 *4 *3)) (-4 *4 (-1023)) (-4 *3 (-825)) (-5 *2 (-749)))) (-4126 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-749)) (-4 *1 (-719 *4 *3)) (-4 *4 (-1023)) (-4 *3 (-825)))) (-4169 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)) (-5 *2 (-920 *4)))) (-4169 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)) (-5 *2 (-920 *4)))) (-4167 (*1 *1 *1 *2) (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-825)) (-4 *3 (-38 (-400 (-536))))))) -(-13 (-874 |t#2|) (-947 |t#1| (-522 |t#2|) |t#2|) (-505 |t#2| $) (-302 $) (-10 -8 (-15 -4035 ($ $ |t#2| (-749))) (-15 -4035 ($ $ (-620 |t#2|) (-620 (-749)))) (-15 -4123 ($ $ (-749))) (-15 -3221 ($ $ |t#2| (-749))) (-15 -3221 ($ $ (-620 |t#2|) (-620 (-749)))) (-15 -4126 ((-749) $ |t#2|)) (-15 -4126 ((-749) $ |t#2| (-749))) (-15 -4169 ((-920 |t#1|) $ (-749))) (-15 -4169 ((-920 |t#1|) $ (-749) (-749))) (IF (|has| |t#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $ |t#2|)) (-6 (-976)) (-6 (-1169))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-522 |#2|)) . T) ((-25) . T) ((-38 #2=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-283) |has| |#1| (-543)) ((-302 $) . T) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-505 |#2| $) . T) ((-505 $ $) . T) ((-543) |has| |#1| (-543)) ((-626 #2#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #2#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-874 |#2|) . T) ((-947 |#1| #1# |#2|) . T) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-1029 #2#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536))))) -((-4087 (((-398 (-1141 |#4|)) (-1141 |#4|)) 30) (((-398 |#4|) |#4|) 26))) -(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 |#4|) |#4|)) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|)))) (-825) (-771) (-13 (-300) (-145)) (-924 |#3| |#2| |#1|)) (T -720)) -((-4087 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-924 *6 *5 *4)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4))))) -(-10 -7 (-15 -4087 ((-398 |#4|) |#4|)) (-15 -4087 ((-398 (-1141 |#4|)) (-1141 |#4|)))) -((-2512 (((-398 |#4|) |#4| |#2|) 120)) (-2510 (((-398 |#4|) |#4|) NIL)) (-4324 (((-398 (-1141 |#4|)) (-1141 |#4|)) 111) (((-398 |#4|) |#4|) 41)) (-2514 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-620 (-2 (|:| -4087 (-1141 |#4|)) (|:| -2488 (-536)))))) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|))) 69)) (-2518 (((-1141 |#3|) (-1141 |#3|) (-536)) 139)) (-2517 (((-620 (-749)) (-1141 |#4|) (-620 |#2|) (-749)) 61)) (-3408 (((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-1141 |#3|) (-1141 |#3|) |#4| (-620 |#2|) (-620 (-749)) (-620 |#3|)) 65)) (-2515 (((-2 (|:| |upol| (-1141 |#3|)) (|:| |Lval| (-620 |#3|)) (|:| |Lfact| (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536))))) (|:| |ctpol| |#3|)) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|))) 26)) (-2513 (((-2 (|:| -2115 (-1141 |#4|)) (|:| |polval| (-1141 |#3|))) (-1141 |#4|) (-1141 |#3|) (-536)) 57)) (-2511 (((-536) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536))))) 136)) (-2516 ((|#4| (-536) (-398 |#4|)) 58)) (-3711 (((-112) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536))))) NIL))) -(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4324 ((-398 |#4|) |#4|)) (-15 -4324 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -2510 ((-398 |#4|) |#4|)) (-15 -2511 ((-536) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))))) (-15 -2512 ((-398 |#4|) |#4| |#2|)) (-15 -2513 ((-2 (|:| -2115 (-1141 |#4|)) (|:| |polval| (-1141 |#3|))) (-1141 |#4|) (-1141 |#3|) (-536))) (-15 -2514 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-620 (-2 (|:| -4087 (-1141 |#4|)) (|:| -2488 (-536)))))) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|)))) (-15 -2515 ((-2 (|:| |upol| (-1141 |#3|)) (|:| |Lval| (-620 |#3|)) (|:| |Lfact| (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536))))) (|:| |ctpol| |#3|)) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|)))) (-15 -2516 (|#4| (-536) (-398 |#4|))) (-15 -3711 ((-112) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))))) (-15 -3408 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-1141 |#3|) (-1141 |#3|) |#4| (-620 |#2|) (-620 (-749)) (-620 |#3|))) (-15 -2517 ((-620 (-749)) (-1141 |#4|) (-620 |#2|) (-749))) (-15 -2518 ((-1141 |#3|) (-1141 |#3|) (-536)))) (-771) (-825) (-300) (-924 |#3| |#1| |#2|)) (T -721)) -((-2518 (*1 *2 *2 *3) (-12 (-5 *2 (-1141 *6)) (-5 *3 (-536)) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) (-2517 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-4 *7 (-825)) (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) (-4 *8 (-300)) (-5 *2 (-620 (-749))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *5 (-749)))) (-3408 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1141 *11)) (-5 *6 (-620 *10)) (-5 *7 (-620 (-749))) (-5 *8 (-620 *11)) (-4 *10 (-825)) (-4 *11 (-300)) (-4 *9 (-771)) (-4 *5 (-924 *11 *9 *10)) (-5 *2 (-620 (-1141 *5))) (-5 *1 (-721 *9 *10 *11 *5)) (-5 *3 (-1141 *5)))) (-3711 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-2 (|:| -4087 (-1141 *6)) (|:| -2488 (-536))))) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-536)) (-5 *4 (-398 *2)) (-4 *2 (-924 *7 *5 *6)) (-5 *1 (-721 *5 *6 *7 *2)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-300)))) (-2515 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-5 *5 (-620 (-620 *8))) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) (-5 *2 (-2 (|:| |upol| (-1141 *8)) (|:| |Lval| (-620 *8)) (|:| |Lfact| (-620 (-2 (|:| -4087 (-1141 *8)) (|:| -2488 (-536))))) (|:| |ctpol| *8))) (-5 *1 (-721 *6 *7 *8 *9)))) (-2514 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-620 *7)) (-5 *5 (-620 (-620 *8))) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *6 (-771)) (-4 *9 (-924 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-620 (-2 (|:| -4087 (-1141 *9)) (|:| -2488 (-536))))))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9)))) (-2513 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-536)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-924 *8 *6 *7)) (-5 *2 (-2 (|:| -2115 (-1141 *9)) (|:| |polval| (-1141 *8)))) (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9)) (-5 *4 (-1141 *8)))) (-2512 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-721 *5 *4 *6 *3)) (-4 *3 (-924 *6 *5 *4)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -4087 (-1141 *6)) (|:| -2488 (-536))))) (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-536)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) (-2510 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-924 *6 *4 *5)))) (-4324 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-721 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-4324 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-924 *6 *4 *5))))) -(-10 -7 (-15 -4324 ((-398 |#4|) |#4|)) (-15 -4324 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -2510 ((-398 |#4|) |#4|)) (-15 -2511 ((-536) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))))) (-15 -2512 ((-398 |#4|) |#4| |#2|)) (-15 -2513 ((-2 (|:| -2115 (-1141 |#4|)) (|:| |polval| (-1141 |#3|))) (-1141 |#4|) (-1141 |#3|) (-536))) (-15 -2514 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-620 (-2 (|:| -4087 (-1141 |#4|)) (|:| -2488 (-536)))))) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|)))) (-15 -2515 ((-2 (|:| |upol| (-1141 |#3|)) (|:| |Lval| (-620 |#3|)) (|:| |Lfact| (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536))))) (|:| |ctpol| |#3|)) (-1141 |#4|) (-620 |#2|) (-620 (-620 |#3|)))) (-15 -2516 (|#4| (-536) (-398 |#4|))) (-15 -3711 ((-112) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))) (-620 (-2 (|:| -4087 (-1141 |#3|)) (|:| -2488 (-536)))))) (-15 -3408 ((-3 (-620 (-1141 |#4|)) "failed") (-1141 |#4|) (-1141 |#3|) (-1141 |#3|) |#4| (-620 |#2|) (-620 (-749)) (-620 |#3|))) (-15 -2517 ((-620 (-749)) (-1141 |#4|) (-620 |#2|) (-749))) (-15 -2518 ((-1141 |#3|) (-1141 |#3|) (-536)))) -((-2519 (($ $ (-893)) 12))) -(((-722 |#1| |#2|) (-10 -8 (-15 -2519 (|#1| |#1| (-893)))) (-723 |#2|) (-170)) (T -722)) -NIL -(-10 -8 (-15 -2519 (|#1| |#1| (-893)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2494 (($ $ (-893)) 28)) (-2519 (($ $ (-893)) 33)) (-2493 (($ $ (-893)) 29)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-2681 (($ $ $) 25)) (-4312 (((-838) $) 11)) (-2682 (($ $ $ $) 26)) (-2680 (($ $ $) 24)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 30)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-723 |#1|) (-138) (-170)) (T -723)) -((-2519 (*1 *1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-723 *3)) (-4 *3 (-170))))) -(-13 (-740) (-696 |t#1|) (-10 -8 (-15 -2519 ($ $ (-893))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-699) . T) ((-740) . T) ((-1029 |#1|) . T) ((-1072) . T)) -((-2521 (((-1009) (-667 (-219)) (-536) (-112) (-536)) 25)) (-2520 (((-1009) (-667 (-219)) (-536) (-112) (-536)) 24))) -(((-724) (-10 -7 (-15 -2520 ((-1009) (-667 (-219)) (-536) (-112) (-536))) (-15 -2521 ((-1009) (-667 (-219)) (-536) (-112) (-536))))) (T -724)) -((-2521 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-724)))) (-2520 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-724))))) -(-10 -7 (-15 -2520 ((-1009) (-667 (-219)) (-536) (-112) (-536))) (-15 -2521 ((-1009) (-667 (-219)) (-536) (-112) (-536)))) -((-2524 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) 43)) (-2523 (((-1009) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) 39)) (-2522 (((-1009) (-219) (-219) (-219) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) 32))) -(((-725) (-10 -7 (-15 -2522 ((-1009) (-219) (-219) (-219) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2523 ((-1009) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2524 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN))))))) (T -725)) -((-2524 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1009)) (-5 *1 (-725)))) (-2523 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1009)) (-5 *1 (-725)))) (-2522 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) (-5 *1 (-725))))) -(-10 -7 (-15 -2522 ((-1009) (-219) (-219) (-219) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2523 ((-1009) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN))))) (-15 -2524 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))))) -((-2536 (((-1009) (-536) (-536) (-667 (-219)) (-536)) 34)) (-2535 (((-1009) (-536) (-536) (-667 (-219)) (-536)) 33)) (-2534 (((-1009) (-536) (-667 (-219)) (-536)) 32)) (-2533 (((-1009) (-536) (-667 (-219)) (-536)) 31)) (-2532 (((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 30)) (-2531 (((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 29)) (-2530 (((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536)) 28)) (-2529 (((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536)) 27)) (-2528 (((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 24)) (-2527 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536)) 23)) (-2526 (((-1009) (-536) (-667 (-219)) (-536)) 22)) (-2525 (((-1009) (-536) (-667 (-219)) (-536)) 21))) -(((-726) (-10 -7 (-15 -2525 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2526 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2527 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2528 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2529 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2530 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2531 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2532 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2533 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2534 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2535 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2536 ((-1009) (-536) (-536) (-667 (-219)) (-536))))) (T -726)) -((-2536 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2535 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2534 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2533 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2532 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2531 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2530 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2529 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2528 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2527 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2526 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726)))) (-2525 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) -(-10 -7 (-15 -2525 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2526 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2527 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2528 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2529 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2530 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2531 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2532 ((-1009) (-536) (-536) (-1129) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2533 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2534 ((-1009) (-536) (-667 (-219)) (-536))) (-15 -2535 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2536 ((-1009) (-536) (-536) (-667 (-219)) (-536)))) -((-2548 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) 52)) (-2547 (((-1009) (-667 (-219)) (-667 (-219)) (-536) (-536)) 51)) (-2546 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) 50)) (-2545 (((-1009) (-219) (-219) (-536) (-536) (-536) (-536)) 46)) (-2544 (((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 45)) (-2543 (((-1009) (-219) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 44)) (-2542 (((-1009) (-219) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 43)) (-2541 (((-1009) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) 42)) (-2540 (((-1009) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) 38)) (-2539 (((-1009) (-219) (-219) (-536) (-667 (-219)) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) 37)) (-2538 (((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) 33)) (-2537 (((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) 32))) -(((-727) (-10 -7 (-15 -2537 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2538 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2539 ((-1009) (-219) (-219) (-536) (-667 (-219)) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2540 ((-1009) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2541 ((-1009) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2542 ((-1009) (-219) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2543 ((-1009) (-219) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2544 ((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2545 ((-1009) (-219) (-219) (-536) (-536) (-536) (-536))) (-15 -2546 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))) (-15 -2547 ((-1009) (-667 (-219)) (-667 (-219)) (-536) (-536))) (-15 -2548 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))))) (T -727)) -((-2548 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2547 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2546 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2545 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2544 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2543 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2542 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2541 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2540 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2539 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2538 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) (-5 *1 (-727)))) (-2537 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) (-5 *1 (-727))))) -(-10 -7 (-15 -2537 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2538 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2539 ((-1009) (-219) (-219) (-536) (-667 (-219)) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2540 ((-1009) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423))))) (-15 -2541 ((-1009) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2542 ((-1009) (-219) (-219) (-219) (-219) (-536) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2543 ((-1009) (-219) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2544 ((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G))))) (-15 -2545 ((-1009) (-219) (-219) (-536) (-536) (-536) (-536))) (-15 -2546 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN))))) (-15 -2547 ((-1009) (-667 (-219)) (-667 (-219)) (-536) (-536))) (-15 -2548 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-219) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))))) -((-2556 (((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2555 (((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381)) 69) (((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2554 (((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) 57)) (-2553 (((-1009) (-667 (-219)) (-667 (-219)) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) 50)) (-2552 (((-1009) (-219) (-536) (-536) (-1129) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2551 (((-1009) (-219) (-536) (-536) (-219) (-1129) (-219) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2550 (((-1009) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) 42)) (-2549 (((-1009) (-219) (-536) (-536) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) 38))) -(((-728) (-10 -7 (-15 -2549 ((-1009) (-219) (-536) (-536) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2550 ((-1009) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2551 ((-1009) (-219) (-536) (-536) (-219) (-1129) (-219) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2552 ((-1009) (-219) (-536) (-536) (-1129) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2553 ((-1009) (-667 (-219)) (-667 (-219)) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2554 ((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG))))) (-15 -2555 ((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))))) (-15 -2555 ((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381))) (-15 -2556 ((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -728)) -((-2556 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2555 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-381)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2555 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2554 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2553 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2552 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-536)) (-5 *5 (-1129)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2551 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-536)) (-5 *5 (-1129)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2550 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728)))) (-2549 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-728))))) -(-10 -7 (-15 -2549 ((-1009) (-219) (-536) (-536) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2550 ((-1009) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2551 ((-1009) (-219) (-536) (-536) (-219) (-1129) (-219) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2552 ((-1009) (-219) (-536) (-536) (-1129) (-536) (-219) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT))))) (-15 -2553 ((-1009) (-667 (-219)) (-667 (-219)) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN))))) (-15 -2554 ((-1009) (-219) (-219) (-536) (-219) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG))))) (-15 -2555 ((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))))) (-15 -2555 ((-1009) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL))) (-381) (-381))) (-15 -2556 ((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-2559 (((-1009) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-653 (-219)) (-536)) 45)) (-2558 (((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-1129) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) 41)) (-2557 (((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 23))) -(((-729) (-10 -7 (-15 -2557 ((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2558 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-1129) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY))))) (-15 -2559 ((-1009) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-653 (-219)) (-536))))) (T -729)) -((-2559 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-653 (-219))) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-729)))) (-2558 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-1129)) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1009)) (-5 *1 (-729)))) (-2557 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-729))))) -(-10 -7 (-15 -2557 ((-1009) (-536) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2558 ((-1009) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-1129) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY))))) (-15 -2559 ((-1009) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-653 (-219)) (-536)))) -((-2569 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-536)) 35)) (-2568 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-219) (-219) (-536)) 34)) (-2567 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-667 (-219)) (-219) (-219) (-536)) 33)) (-2566 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 29)) (-2565 (((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 28)) (-2564 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536)) 27)) (-2563 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536)) 24)) (-2562 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536)) 23)) (-2561 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536)) 22)) (-2560 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536)) 21))) -(((-730) (-10 -7 (-15 -2560 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536))) (-15 -2561 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2562 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2563 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2564 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536))) (-15 -2565 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2566 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2567 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-667 (-219)) (-219) (-219) (-536))) (-15 -2568 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-219) (-219) (-536))) (-15 -2569 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-536))))) (T -730)) -((-2569 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2568 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2567 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *6 (-219)) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2566 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2565 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2564 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2563 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2562 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2561 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730)))) (-2560 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) -(-10 -7 (-15 -2560 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536))) (-15 -2561 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2562 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2563 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2564 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-219) (-536))) (-15 -2565 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2566 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2567 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-667 (-219)) (-219) (-219) (-536))) (-15 -2568 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-219) (-219) (-536))) (-15 -2569 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-667 (-219)) (-219) (-219) (-536)))) -((-2587 (((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536)) 45)) (-2586 (((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-536)) 44)) (-2585 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536)) 43)) (-2584 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 42)) (-2583 (((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536)) 41)) (-2582 (((-1009) (-1129) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536)) 40)) (-2581 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536) (-536) (-536) (-219) (-667 (-219)) (-536)) 39)) (-2580 (((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536))) 38)) (-2579 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536)) 35)) (-2578 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536)) 34)) (-2577 (((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536)) 33)) (-2576 (((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 32)) (-2575 (((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536)) 31)) (-2574 (((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-536)) 30)) (-2573 (((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-536) (-536) (-536)) 29)) (-2572 (((-1009) (-536) (-536) (-536) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-536)) (-536) (-536) (-536)) 28)) (-2571 (((-1009) (-536) (-667 (-219)) (-219) (-536)) 24)) (-2570 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 21))) -(((-731) (-10 -7 (-15 -2570 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2571 ((-1009) (-536) (-667 (-219)) (-219) (-536))) (-15 -2572 ((-1009) (-536) (-536) (-536) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-536)) (-536) (-536) (-536))) (-15 -2573 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-536) (-536) (-536))) (-15 -2574 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-536))) (-15 -2575 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536))) (-15 -2576 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2577 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536))) (-15 -2578 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536))) (-15 -2579 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2580 ((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536)))) (-15 -2581 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536) (-536) (-536) (-219) (-667 (-219)) (-536))) (-15 -2582 ((-1009) (-1129) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536))) (-15 -2583 ((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2584 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2585 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536))) (-15 -2586 ((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2587 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536))))) (T -731)) -((-2587 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2586 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2585 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2584 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2583 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2582 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *7 (-667 (-536))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2581 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *6 (-219)) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2580 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) (-5 *7 (-667 (-536))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2579 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2578 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2577 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2576 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2575 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2574 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2573 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2572 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) (-5 *3 (-536)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2571 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) (-5 *1 (-731)))) (-2570 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) -(-10 -7 (-15 -2570 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2571 ((-1009) (-536) (-667 (-219)) (-219) (-536))) (-15 -2572 ((-1009) (-536) (-536) (-536) (-219) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-536)) (-536) (-536) (-536))) (-15 -2573 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-536) (-536) (-536))) (-15 -2574 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536) (-536) (-536))) (-15 -2575 ((-1009) (-536) (-219) (-219) (-667 (-219)) (-536) (-536) (-219) (-536))) (-15 -2576 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2577 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536))) (-15 -2578 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536))) (-15 -2579 ((-1009) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2580 ((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536)))) (-15 -2581 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536) (-536) (-536) (-219) (-667 (-219)) (-536))) (-15 -2582 ((-1009) (-1129) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536))) (-15 -2583 ((-1009) (-1129) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2584 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2585 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536))) (-15 -2586 ((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2587 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536) (-667 (-219)) (-667 (-219)) (-536) (-536) (-536)))) -((-2595 (((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-536) (-667 (-219)) (-536)) 63)) (-2594 (((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-112) (-219) (-536) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-536) (-536) (-536) (-536) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2593 (((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-536) (-536) (-667 (-219)) (-667 (-536)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) 58)) (-2592 (((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-536) (-536) (-667 (-219)) (-536)) 51)) (-2591 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2590 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2589 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2588 (((-1009) (-536) (-219) (-219) (-536) (-219) (-112) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-732) (-10 -7 (-15 -2588 ((-1009) (-536) (-219) (-219) (-536) (-219) (-112) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2589 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2590 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2))))) (-15 -2591 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -2592 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-536) (-536) (-667 (-219)) (-536))) (-15 -2593 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-536) (-536) (-667 (-219)) (-667 (-536)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -2594 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-112) (-219) (-536) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-536) (-536) (-536) (-536) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2595 ((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-536) (-667 (-219)) (-536))))) (T -732)) -((-2595 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2594 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-667 (-536))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2593 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-667 (-219))) (-5 *6 (-112)) (-5 *7 (-667 (-536))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-536)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2592 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2591 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2590 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2589 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1009)) (-5 *1 (-732)))) (-2588 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-536)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732))))) -(-10 -7 (-15 -2588 ((-1009) (-536) (-219) (-219) (-536) (-219) (-112) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2589 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1))))) (-15 -2590 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2))))) (-15 -2591 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1))))) (-15 -2592 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-536) (-536) (-667 (-219)) (-536))) (-15 -2593 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-219) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-112) (-112) (-112) (-536) (-536) (-667 (-219)) (-667 (-536)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS))))) (-15 -2594 ((-1009) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-536) (-112) (-219) (-536) (-219) (-219) (-112) (-219) (-219) (-219) (-219) (-112) (-536) (-536) (-536) (-536) (-536) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-536) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN))))) (-15 -2595 ((-1009) (-536) (-536) (-536) (-219) (-667 (-219)) (-536) (-667 (-219)) (-536)))) -((-2605 (((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536)) 47)) (-2604 (((-1009) (-1129) (-1129) (-536) (-536) (-667 (-166 (-219))) (-536) (-667 (-166 (-219))) (-536) (-536) (-667 (-166 (-219))) (-536)) 46)) (-2603 (((-1009) (-536) (-536) (-536) (-667 (-166 (-219))) (-536)) 45)) (-2602 (((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 40)) (-2601 (((-1009) (-1129) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-667 (-219)) (-536)) 39)) (-2600 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-536)) 36)) (-2599 (((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536)) 35)) (-2598 (((-1009) (-536) (-536) (-536) (-536) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-219) (-219) (-536)) 34)) (-2597 (((-1009) (-536) (-536) (-536) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-112) (-219) (-112) (-667 (-536)) (-667 (-219)) (-536)) 33)) (-2596 (((-1009) (-536) (-536) (-536) (-536) (-219) (-112) (-112) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-536)) 32))) -(((-733) (-10 -7 (-15 -2596 ((-1009) (-536) (-536) (-536) (-536) (-219) (-112) (-112) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-536))) (-15 -2597 ((-1009) (-536) (-536) (-536) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-112) (-219) (-112) (-667 (-536)) (-667 (-219)) (-536))) (-15 -2598 ((-1009) (-536) (-536) (-536) (-536) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-219) (-219) (-536))) (-15 -2599 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536))) (-15 -2600 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-536))) (-15 -2601 ((-1009) (-1129) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-667 (-219)) (-536))) (-15 -2602 ((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2603 ((-1009) (-536) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2604 ((-1009) (-1129) (-1129) (-536) (-536) (-667 (-166 (-219))) (-536) (-667 (-166 (-219))) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2605 ((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536))))) (T -733)) -((-2605 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-166 (-219)))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2604 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-166 (-219)))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2603 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-166 (-219)))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2602 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2601 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2600 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2599 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2598 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-620 (-112))) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) (-5 *7 (-219)) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2597 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-667 (-536))) (-5 *5 (-112)) (-5 *7 (-667 (-219))) (-5 *3 (-536)) (-5 *6 (-219)) (-5 *2 (-1009)) (-5 *1 (-733)))) (-2596 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-620 (-112))) (-5 *7 (-667 (-219))) (-5 *8 (-667 (-536))) (-5 *3 (-536)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1009)) (-5 *1 (-733))))) -(-10 -7 (-15 -2596 ((-1009) (-536) (-536) (-536) (-536) (-219) (-112) (-112) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-536))) (-15 -2597 ((-1009) (-536) (-536) (-536) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-667 (-536)) (-112) (-219) (-112) (-667 (-536)) (-667 (-219)) (-536))) (-15 -2598 ((-1009) (-536) (-536) (-536) (-536) (-620 (-112)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-219) (-219) (-536))) (-15 -2599 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536))) (-15 -2600 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-536))) (-15 -2601 ((-1009) (-1129) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-667 (-219)) (-536))) (-15 -2602 ((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2603 ((-1009) (-536) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2604 ((-1009) (-1129) (-1129) (-536) (-536) (-667 (-166 (-219))) (-536) (-667 (-166 (-219))) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2605 ((-1009) (-1129) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536)))) -((-2620 (((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536)) 65)) (-2619 (((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536)) 60)) (-2618 (((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381)) 56) (((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) 55)) (-2617 (((-1009) (-536) (-536) (-536) (-219) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536)) 37)) (-2616 (((-1009) (-536) (-536) (-219) (-219) (-536) (-536) (-667 (-219)) (-536)) 33)) (-2615 (((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536) (-536)) 30)) (-2614 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 29)) (-2613 (((-1009) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 28)) (-2612 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 27)) (-2611 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536)) 26)) (-2610 (((-1009) (-536) (-536) (-667 (-219)) (-536)) 25)) (-2609 (((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 24)) (-2608 (((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536)) 23)) (-2607 (((-1009) (-667 (-219)) (-536) (-536) (-536) (-536)) 22)) (-2606 (((-1009) (-536) (-536) (-667 (-219)) (-536)) 21))) -(((-734) (-10 -7 (-15 -2606 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2607 ((-1009) (-667 (-219)) (-536) (-536) (-536) (-536))) (-15 -2608 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2609 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2610 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2611 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536))) (-15 -2612 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2613 ((-1009) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2614 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2615 ((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536) (-536))) (-15 -2616 ((-1009) (-536) (-536) (-219) (-219) (-536) (-536) (-667 (-219)) (-536))) (-15 -2617 ((-1009) (-536) (-536) (-536) (-219) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2618 ((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2618 ((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2619 ((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2620 ((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536))))) (T -734)) -((-2620 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-112)) (-5 *5 (-667 (-166 (-219)))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2619 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *4 (-112)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2618 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2618 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2617 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-536)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2616 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2615 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2614 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2613 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2612 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2611 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2610 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2609 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2608 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2607 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-734)))) (-2606 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) -(-10 -7 (-15 -2606 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2607 ((-1009) (-667 (-219)) (-536) (-536) (-536) (-536))) (-15 -2608 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2609 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2610 ((-1009) (-536) (-536) (-667 (-219)) (-536))) (-15 -2611 ((-1009) (-536) (-536) (-536) (-536) (-667 (-219)) (-536))) (-15 -2612 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2613 ((-1009) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2614 ((-1009) (-536) (-536) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2615 ((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536) (-536))) (-15 -2616 ((-1009) (-536) (-536) (-219) (-219) (-536) (-536) (-667 (-219)) (-536))) (-15 -2617 ((-1009) (-536) (-536) (-536) (-219) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2618 ((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))))) (-15 -2618 ((-1009) (-536) (-536) (-219) (-536) (-536) (-536) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE))) (-381))) (-15 -2619 ((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2620 ((-1009) (-536) (-536) (-536) (-536) (-536) (-112) (-536) (-112) (-536) (-667 (-166 (-219))) (-667 (-166 (-219))) (-536)))) -((-2631 (((-1009) (-536) (-536) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) 61)) (-2630 (((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536)) 57)) (-2629 (((-1009) (-536) (-667 (-219)) (-112) (-219) (-536) (-536) (-536) (-536) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) 56)) (-2628 (((-1009) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536)) 37)) (-2627 (((-1009) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-536)) 36)) (-2626 (((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536)) 33)) (-2625 (((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219))) 32)) (-2624 (((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536)) 28)) (-2623 (((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536)) 27)) (-2622 (((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536)) 26)) (-2621 (((-1009) (-536) (-667 (-166 (-219))) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-536)) 22))) -(((-735) (-10 -7 (-15 -2621 ((-1009) (-536) (-667 (-166 (-219))) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2622 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2623 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2624 ((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536))) (-15 -2625 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219)))) (-15 -2626 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2627 ((-1009) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2628 ((-1009) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536))) (-15 -2629 ((-1009) (-536) (-667 (-219)) (-112) (-219) (-536) (-536) (-536) (-536) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -2630 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536))) (-15 -2631 ((-1009) (-536) (-536) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD))))))) (T -735)) -((-2631 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2630 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2629 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2628 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2627 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2626 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2625 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2624 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2623 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2622 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735)))) (-2621 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-166 (-219)))) (-5 *2 (-1009)) (-5 *1 (-735))))) -(-10 -7 (-15 -2621 ((-1009) (-536) (-667 (-166 (-219))) (-536) (-536) (-536) (-536) (-667 (-166 (-219))) (-536))) (-15 -2622 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2623 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-536))) (-15 -2624 ((-1009) (-667 (-219)) (-536) (-667 (-219)) (-536) (-536) (-536))) (-15 -2625 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-536)) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219)))) (-15 -2626 ((-1009) (-536) (-536) (-667 (-219)) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2627 ((-1009) (-536) (-536) (-536) (-219) (-536) (-667 (-219)) (-667 (-219)) (-536))) (-15 -2628 ((-1009) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-536)) (-667 (-219)) (-667 (-536)) (-667 (-536)) (-667 (-219)) (-667 (-219)) (-667 (-536)) (-536))) (-15 -2629 ((-1009) (-536) (-667 (-219)) (-112) (-219) (-536) (-536) (-536) (-536) (-219) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE))))) (-15 -2630 ((-1009) (-536) (-667 (-219)) (-536) (-667 (-219)) (-667 (-536)) (-536) (-667 (-219)) (-536) (-536) (-536) (-536))) (-15 -2631 ((-1009) (-536) (-536) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-667 (-219)) (-536) (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))))) -((-2635 (((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-536) (-667 (-219))) 29)) (-2634 (((-1009) (-1129) (-536) (-536) (-667 (-219))) 28)) (-2633 (((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-219))) 27)) (-2632 (((-1009) (-536) (-536) (-536) (-667 (-219))) 21))) -(((-736) (-10 -7 (-15 -2632 ((-1009) (-536) (-536) (-536) (-667 (-219)))) (-15 -2633 ((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-219)))) (-15 -2634 ((-1009) (-1129) (-536) (-536) (-667 (-219)))) (-15 -2635 ((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-536) (-667 (-219)))))) (T -736)) -((-2635 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736)))) (-2634 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736)))) (-2633 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-736)))) (-2632 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736))))) -(-10 -7 (-15 -2632 ((-1009) (-536) (-536) (-536) (-667 (-219)))) (-15 -2633 ((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-667 (-536)) (-536) (-667 (-219)))) (-15 -2634 ((-1009) (-1129) (-536) (-536) (-667 (-219)))) (-15 -2635 ((-1009) (-1129) (-536) (-536) (-667 (-219)) (-536) (-536) (-667 (-219))))) -((-2673 (((-1009) (-219) (-219) (-219) (-219) (-536)) 62)) (-2672 (((-1009) (-219) (-219) (-219) (-536)) 61)) (-2671 (((-1009) (-219) (-219) (-219) (-536)) 60)) (-2670 (((-1009) (-219) (-219) (-536)) 59)) (-2669 (((-1009) (-219) (-536)) 58)) (-2668 (((-1009) (-219) (-536)) 57)) (-2667 (((-1009) (-219) (-536)) 56)) (-2666 (((-1009) (-219) (-536)) 55)) (-2665 (((-1009) (-219) (-536)) 54)) (-2664 (((-1009) (-219) (-536)) 53)) (-2663 (((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536)) 52)) (-2662 (((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536)) 51)) (-2661 (((-1009) (-219) (-536)) 50)) (-2660 (((-1009) (-219) (-536)) 49)) (-2659 (((-1009) (-219) (-536)) 48)) (-2658 (((-1009) (-219) (-536)) 47)) (-2657 (((-1009) (-536) (-219) (-166 (-219)) (-536) (-1129) (-536)) 46)) (-2656 (((-1009) (-1129) (-166 (-219)) (-1129) (-536)) 45)) (-2655 (((-1009) (-1129) (-166 (-219)) (-1129) (-536)) 44)) (-2654 (((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536)) 43)) (-2653 (((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536)) 42)) (-2652 (((-1009) (-219) (-536)) 39)) (-2651 (((-1009) (-219) (-536)) 38)) (-2650 (((-1009) (-219) (-536)) 37)) (-2649 (((-1009) (-219) (-536)) 36)) (-2648 (((-1009) (-219) (-536)) 35)) (-2647 (((-1009) (-219) (-536)) 34)) (-2646 (((-1009) (-219) (-536)) 33)) (-2645 (((-1009) (-219) (-536)) 32)) (-2644 (((-1009) (-219) (-536)) 31)) (-2643 (((-1009) (-219) (-536)) 30)) (-2642 (((-1009) (-219) (-219) (-219) (-536)) 29)) (-2641 (((-1009) (-219) (-536)) 28)) (-2640 (((-1009) (-219) (-536)) 27)) (-2639 (((-1009) (-219) (-536)) 26)) (-2638 (((-1009) (-219) (-536)) 25)) (-2637 (((-1009) (-219) (-536)) 24)) (-2636 (((-1009) (-166 (-219)) (-536)) 21))) -(((-737) (-10 -7 (-15 -2636 ((-1009) (-166 (-219)) (-536))) (-15 -2637 ((-1009) (-219) (-536))) (-15 -2638 ((-1009) (-219) (-536))) (-15 -2639 ((-1009) (-219) (-536))) (-15 -2640 ((-1009) (-219) (-536))) (-15 -2641 ((-1009) (-219) (-536))) (-15 -2642 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2643 ((-1009) (-219) (-536))) (-15 -2644 ((-1009) (-219) (-536))) (-15 -2645 ((-1009) (-219) (-536))) (-15 -2646 ((-1009) (-219) (-536))) (-15 -2647 ((-1009) (-219) (-536))) (-15 -2648 ((-1009) (-219) (-536))) (-15 -2649 ((-1009) (-219) (-536))) (-15 -2650 ((-1009) (-219) (-536))) (-15 -2651 ((-1009) (-219) (-536))) (-15 -2652 ((-1009) (-219) (-536))) (-15 -2653 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2654 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2655 ((-1009) (-1129) (-166 (-219)) (-1129) (-536))) (-15 -2656 ((-1009) (-1129) (-166 (-219)) (-1129) (-536))) (-15 -2657 ((-1009) (-536) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2658 ((-1009) (-219) (-536))) (-15 -2659 ((-1009) (-219) (-536))) (-15 -2660 ((-1009) (-219) (-536))) (-15 -2661 ((-1009) (-219) (-536))) (-15 -2662 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2663 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2664 ((-1009) (-219) (-536))) (-15 -2665 ((-1009) (-219) (-536))) (-15 -2666 ((-1009) (-219) (-536))) (-15 -2667 ((-1009) (-219) (-536))) (-15 -2668 ((-1009) (-219) (-536))) (-15 -2669 ((-1009) (-219) (-536))) (-15 -2670 ((-1009) (-219) (-219) (-536))) (-15 -2671 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2672 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2673 ((-1009) (-219) (-219) (-219) (-219) (-536))))) (T -737)) -((-2673 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2672 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2671 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2670 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2668 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2667 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2663 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2662 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2661 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2657 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-536)) (-5 *5 (-166 (-219))) (-5 *6 (-1129)) (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2656 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1129)) (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2655 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1129)) (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2654 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2653 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2649 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2642 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2637 (*1 *2 *3 *4) (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737)))) (-2636 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) -(-10 -7 (-15 -2636 ((-1009) (-166 (-219)) (-536))) (-15 -2637 ((-1009) (-219) (-536))) (-15 -2638 ((-1009) (-219) (-536))) (-15 -2639 ((-1009) (-219) (-536))) (-15 -2640 ((-1009) (-219) (-536))) (-15 -2641 ((-1009) (-219) (-536))) (-15 -2642 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2643 ((-1009) (-219) (-536))) (-15 -2644 ((-1009) (-219) (-536))) (-15 -2645 ((-1009) (-219) (-536))) (-15 -2646 ((-1009) (-219) (-536))) (-15 -2647 ((-1009) (-219) (-536))) (-15 -2648 ((-1009) (-219) (-536))) (-15 -2649 ((-1009) (-219) (-536))) (-15 -2650 ((-1009) (-219) (-536))) (-15 -2651 ((-1009) (-219) (-536))) (-15 -2652 ((-1009) (-219) (-536))) (-15 -2653 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2654 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2655 ((-1009) (-1129) (-166 (-219)) (-1129) (-536))) (-15 -2656 ((-1009) (-1129) (-166 (-219)) (-1129) (-536))) (-15 -2657 ((-1009) (-536) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2658 ((-1009) (-219) (-536))) (-15 -2659 ((-1009) (-219) (-536))) (-15 -2660 ((-1009) (-219) (-536))) (-15 -2661 ((-1009) (-219) (-536))) (-15 -2662 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2663 ((-1009) (-219) (-166 (-219)) (-536) (-1129) (-536))) (-15 -2664 ((-1009) (-219) (-536))) (-15 -2665 ((-1009) (-219) (-536))) (-15 -2666 ((-1009) (-219) (-536))) (-15 -2667 ((-1009) (-219) (-536))) (-15 -2668 ((-1009) (-219) (-536))) (-15 -2669 ((-1009) (-219) (-536))) (-15 -2670 ((-1009) (-219) (-219) (-536))) (-15 -2671 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2672 ((-1009) (-219) (-219) (-219) (-536))) (-15 -2673 ((-1009) (-219) (-219) (-219) (-219) (-536)))) -((-2679 (((-1235)) 18)) (-2675 (((-1129)) 22)) (-2674 (((-1129)) 21)) (-2677 (((-1074) (-1147) (-667 (-536))) 37) (((-1074) (-1147) (-667 (-219))) 32)) (-2678 (((-112)) 16)) (-2676 (((-1129) (-1129)) 25))) -(((-738) (-10 -7 (-15 -2674 ((-1129))) (-15 -2675 ((-1129))) (-15 -2676 ((-1129) (-1129))) (-15 -2677 ((-1074) (-1147) (-667 (-219)))) (-15 -2677 ((-1074) (-1147) (-667 (-536)))) (-15 -2678 ((-112))) (-15 -2679 ((-1235))))) (T -738)) -((-2679 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-738)))) (-2678 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-738)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-667 (-536))) (-5 *2 (-1074)) (-5 *1 (-738)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-667 (-219))) (-5 *2 (-1074)) (-5 *1 (-738)))) (-2676 (*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738)))) (-2675 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738)))) (-2674 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738))))) -(-10 -7 (-15 -2674 ((-1129))) (-15 -2675 ((-1129))) (-15 -2676 ((-1129) (-1129))) (-15 -2677 ((-1074) (-1147) (-667 (-219)))) (-15 -2677 ((-1074) (-1147) (-667 (-536)))) (-15 -2678 ((-112))) (-15 -2679 ((-1235)))) -((-2681 (($ $ $) 10)) (-2682 (($ $ $ $) 9)) (-2680 (($ $ $) 12))) -(((-739 |#1|) (-10 -8 (-15 -2680 (|#1| |#1| |#1|)) (-15 -2681 (|#1| |#1| |#1|)) (-15 -2682 (|#1| |#1| |#1| |#1|))) (-740)) (T -739)) -NIL -(-10 -8 (-15 -2680 (|#1| |#1| |#1|)) (-15 -2681 (|#1| |#1| |#1|)) (-15 -2682 (|#1| |#1| |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2494 (($ $ (-893)) 28)) (-2493 (($ $ (-893)) 29)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-2681 (($ $ $) 25)) (-4312 (((-838) $) 11)) (-2682 (($ $ $ $) 26)) (-2680 (($ $ $) 24)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 30)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 27))) -(((-740) (-138)) (T -740)) -((-2682 (*1 *1 *1 *1 *1) (-4 *1 (-740))) (-2681 (*1 *1 *1 *1) (-4 *1 (-740))) (-2680 (*1 *1 *1 *1) (-4 *1 (-740)))) -(-13 (-21) (-699) (-10 -8 (-15 -2682 ($ $ $ $)) (-15 -2681 ($ $ $)) (-15 -2680 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-699) . T) ((-1072) . T)) -((-4312 (((-838) $) NIL) (($ (-536)) 10))) -(((-741 |#1|) (-10 -8 (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-742)) (T -741)) -NIL -(-10 -8 (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2491 (((-3 $ #1="failed") $) 40)) (-2494 (($ $ (-893)) 28) (($ $ (-749)) 35)) (-3816 (((-3 $ #1#) $) 38)) (-2497 (((-112) $) 34)) (-2492 (((-3 $ #1#) $) 39)) (-2493 (($ $ (-893)) 29) (($ $ (-749)) 36)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-2681 (($ $ $) 25)) (-4312 (((-838) $) 11) (($ (-536)) 31)) (-3456 (((-749)) 32)) (-2682 (($ $ $ $) 26)) (-2680 (($ $ $) 24)) (-2986 (($) 18 T CONST)) (-2992 (($) 33 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 30) (($ $ (-749)) 37)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 27))) +((* (*1 *1 *1 *1) (-4 *1 (-701))) (-2499 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895)))) (-2498 (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895))))) +(-13 (-1074) (-10 -8 (-15 * ($ $ $)) (-15 -2499 ($ $ (-895))) (-15 -2498 ($ $ (-895))) (-15 ** ($ $ (-895))))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2499 (($ $ (-895)) NIL) (($ $ (-751)) 17)) (-2502 (((-112) $) 10)) (-2498 (($ $ (-895)) NIL) (($ $ (-751)) 18)) (** (($ $ (-895)) NIL) (($ $ (-751)) 15))) +(((-702 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-751))) (-15 -2498 (|#1| |#1| (-751))) (-15 -2499 (|#1| |#1| (-751))) (-15 -2502 ((-112) |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 -2498 (|#1| |#1| (-895))) (-15 -2499 (|#1| |#1| (-895)))) (-703)) (T -702)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-751))) (-15 -2498 (|#1| |#1| (-751))) (-15 -2499 (|#1| |#1| (-751))) (-15 -2502 ((-112) |#1|)) (-15 ** (|#1| |#1| (-895))) (-15 -2498 (|#1| |#1| (-895))) (-15 -2499 (|#1| |#1| (-895)))) +((-2898 (((-112) $ $) 7)) (-2496 (((-3 $ "failed") $) 17)) (-2499 (($ $ (-895)) 15) (($ $ (-751)) 22)) (-3821 (((-3 $ "failed") $) 19)) (-2502 (((-112) $) 23)) (-2497 (((-3 $ "failed") $) 18)) (-2498 (($ $ (-895)) 14) (($ $ (-751)) 21)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2997 (($) 24 T CONST)) (-3387 (((-112) $ $) 6)) (** (($ $ (-895)) 13) (($ $ (-751)) 20)) (* (($ $ $) 16))) +(((-703) (-138)) (T -703)) +((-2997 (*1 *1) (-4 *1 (-703))) (-2502 (*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))) (-2499 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (-2498 (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) (-3821 (*1 *1 *1) (|partial| -4 *1 (-703))) (-2497 (*1 *1 *1) (|partial| -4 *1 (-703))) (-2496 (*1 *1 *1) (|partial| -4 *1 (-703)))) +(-13 (-701) (-10 -8 (-15 (-2997) ($) -4311) (-15 -2502 ((-112) $)) (-15 -2499 ($ $ (-751))) (-15 -2498 ($ $ (-751))) (-15 ** ($ $ (-751))) (-15 -3821 ((-3 $ "failed") $)) (-15 -2497 ((-3 $ "failed") $)) (-15 -2496 ((-3 $ "failed") $)))) +(((-101) . T) ((-597 (-840)) . T) ((-701) . T) ((-1074) . T)) +((-3471 (((-751)) 34)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL) ((|#2| $) 22)) (-4202 (($ |#3|) NIL) (((-3 $ "failed") (-402 |#3|)) 44)) (-3821 (((-3 $ "failed") $) 64)) (-3327 (($) 38)) (-3467 ((|#2| $) 20)) (-2501 (($) 17)) (-4170 (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-2500 (((-669 |#2|) (-1231 $) (-1 |#2| |#2|)) 59)) (-4330 (((-1231 |#2|) $) NIL) (($ (-1231 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2698 ((|#3| $) 32)) (-2128 (((-1231 $)) 29))) +(((-704 |#1| |#2| |#3|) (-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3327 (|#1|)) (-15 -3471 ((-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -2500 ((-669 |#2|) (-1231 |#1|) (-1 |#2| |#2|))) (-15 -4202 ((-3 |#1| "failed") (-402 |#3|))) (-15 -4330 (|#1| |#3|)) (-15 -4202 (|#1| |#3|)) (-15 -2501 (|#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 (|#3| |#1|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -2128 ((-1231 |#1|))) (-15 -2698 (|#3| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|))) (-705 |#2| |#3|) (-170) (-1207 |#2|)) (T -704)) +((-3471 (*1 *2) (-12 (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-751)) (-5 *1 (-704 *3 *4 *5)) (-4 *3 (-705 *4 *5))))) +(-10 -8 (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -3327 (|#1|)) (-15 -3471 ((-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -2500 ((-669 |#2|) (-1231 |#1|) (-1 |#2| |#2|))) (-15 -4202 ((-3 |#1| "failed") (-402 |#3|))) (-15 -4330 (|#1| |#3|)) (-15 -4202 (|#1| |#3|)) (-15 -2501 (|#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4330 (|#3| |#1|)) (-15 -4330 (|#1| (-1231 |#2|))) (-15 -4330 ((-1231 |#2|) |#1|)) (-15 -2128 ((-1231 |#1|))) (-15 -2698 (|#3| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3821 ((-3 |#1| "failed") |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 91 (|has| |#1| (-358)))) (-2178 (($ $) 92 (|has| |#1| (-358)))) (-2176 (((-112) $) 94 (|has| |#1| (-358)))) (-1901 (((-669 |#1|) (-1231 $)) 44) (((-669 |#1|)) 59)) (-3689 ((|#1| $) 50)) (-1791 (((-1158 (-895) (-751)) (-538)) 144 (|has| |#1| (-345)))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 111 (|has| |#1| (-358)))) (-4329 (((-400 $) $) 112 (|has| |#1| (-358)))) (-1705 (((-112) $ $) 102 (|has| |#1| (-358)))) (-3471 (((-751)) 85 (|has| |#1| (-363)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 166 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 164 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 163)) (-3507 (((-538) $) 167 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 165 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 162)) (-1911 (($ (-1231 |#1|) (-1231 $)) 46) (($ (-1231 |#1|)) 62)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-345)))) (-2894 (($ $ $) 106 (|has| |#1| (-358)))) (-1900 (((-669 |#1|) $ (-1231 $)) 51) (((-669 |#1|) $) 57)) (-2362 (((-669 (-538)) (-669 $)) 161 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 160 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 159) (((-669 |#1|) (-669 $)) 158)) (-4202 (($ |#2|) 155) (((-3 $ "failed") (-402 |#2|)) 152 (|has| |#1| (-358)))) (-3821 (((-3 $ "failed") $) 32)) (-3444 (((-895)) 52)) (-3327 (($) 88 (|has| |#1| (-363)))) (-2893 (($ $ $) 105 (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 100 (|has| |#1| (-358)))) (-3166 (($) 146 (|has| |#1| (-345)))) (-1796 (((-112) $) 147 (|has| |#1| (-345)))) (-1886 (($ $ (-751)) 138 (|has| |#1| (-345))) (($ $) 137 (|has| |#1| (-345)))) (-4086 (((-112) $) 113 (|has| |#1| (-358)))) (-4131 (((-895) $) 149 (|has| |#1| (-345))) (((-812 (-895)) $) 135 (|has| |#1| (-345)))) (-2502 (((-112) $) 30)) (-3467 ((|#1| $) 49)) (-3803 (((-3 $ "failed") $) 139 (|has| |#1| (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 109 (|has| |#1| (-358)))) (-2130 ((|#2| $) 42 (|has| |#1| (-358)))) (-2126 (((-895) $) 87 (|has| |#1| (-363)))) (-3413 ((|#2| $) 153)) (-2013 (($ (-622 $)) 98 (|has| |#1| (-358))) (($ $ $) 97 (|has| |#1| (-358)))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 114 (|has| |#1| (-358)))) (-3804 (($) 140 (|has| |#1| (-345)) CONST)) (-2492 (($ (-895)) 86 (|has| |#1| (-363)))) (-3594 (((-1093) $) 10)) (-2501 (($) 157)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 99 (|has| |#1| (-358)))) (-3495 (($ (-622 $)) 96 (|has| |#1| (-358))) (($ $ $) 95 (|has| |#1| (-358)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) 143 (|has| |#1| (-345)))) (-4092 (((-400 $) $) 110 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 108 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 107 (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ $) 90 (|has| |#1| (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 101 (|has| |#1| (-358)))) (-1704 (((-751) $) 103 (|has| |#1| (-358)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 104 (|has| |#1| (-358)))) (-4117 ((|#1| (-1231 $)) 45) ((|#1|) 58)) (-1887 (((-751) $) 148 (|has| |#1| (-345))) (((-3 (-751) "failed") $ $) 136 (|has| |#1| (-345)))) (-4170 (($ $) 134 (-3891 (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-751)) 132 (-3891 (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-1149)) 130 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-622 (-1149))) 129 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1149) (-751)) 128 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-622 (-1149)) (-622 (-751))) 127 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-751)) 120 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-358)))) (-2500 (((-669 |#1|) (-1231 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-358)))) (-3536 ((|#2|) 156)) (-1790 (($) 145 (|has| |#1| (-345)))) (-3575 (((-1231 |#1|) $ (-1231 $)) 48) (((-669 |#1|) (-1231 $) (-1231 $)) 47) (((-1231 |#1|) $) 64) (((-669 |#1|) (-1231 $)) 63)) (-4330 (((-1231 |#1|) $) 61) (($ (-1231 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 142 (|has| |#1| (-345)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-358))) (($ (-402 (-538))) 84 (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538))))))) (-3035 (($ $) 141 (|has| |#1| (-345))) (((-3 $ "failed") $) 41 (|has| |#1| (-143)))) (-2698 ((|#2| $) 43)) (-3461 (((-751)) 28)) (-2128 (((-1231 $)) 65)) (-2177 (((-112) $ $) 93 (|has| |#1| (-358)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $) 133 (-3891 (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-751)) 131 (-3891 (-3191 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-1149)) 126 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-622 (-1149))) 125 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1149) (-751)) 124 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-622 (-1149)) (-622 (-751))) 123 (-3191 (|has| |#1| (-876 (-1149))) (|has| |#1| (-358)))) (($ $ (-1 |#1| |#1|) (-751)) 122 (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-358)))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 118 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 115 (|has| |#1| (-358)))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-402 (-538)) $) 117 (|has| |#1| (-358))) (($ $ (-402 (-538))) 116 (|has| |#1| (-358))))) +(((-705 |#1| |#2|) (-138) (-170) (-1207 |t#1|)) (T -705)) +((-2501 (*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-705 *2 *3)) (-4 *3 (-1207 *2)))) (-3536 (*1 *2) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3)))) (-4202 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1207 *3)))) (-4330 (*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1207 *3)))) (-3413 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3)))) (-4202 (*1 *1 *2) (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-358)) (-4 *3 (-170)) (-4 *1 (-705 *3 *4)))) (-2500 (*1 *2 *3 *4) (-12 (-5 *3 (-1231 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-4 *1 (-705 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1207 *5)) (-5 *2 (-669 *5))))) +(-13 (-405 |t#1| |t#2|) (-170) (-598 |t#2|) (-407 |t#1|) (-372 |t#1|) (-10 -8 (-15 -2501 ($)) (-15 -3536 (|t#2|)) (-15 -4202 ($ |t#2|)) (-15 -4330 ($ |t#2|)) (-15 -3413 (|t#2| $)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-358)) (-6 (-227 |t#1|)) (-15 -4202 ((-3 $ "failed") (-402 |t#2|))) (-15 -2500 ((-669 |t#1|) (-1231 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-345)) (-6 (-345)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-38 |#1|) . T) ((-38 $) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-101) . T) ((-111 #1# #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3891 (|has| |#1| (-345)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-598 |#2|) . T) ((-227 |#1|) |has| |#1| (-358)) ((-229) -3891 (|has| |#1| (-345)) (-12 (|has| |#1| (-229)) (|has| |#1| (-358)))) ((-239) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-285) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-302) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-358) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-397) |has| |#1| (-345)) ((-363) -3891 (|has| |#1| (-345)) (|has| |#1| (-363))) ((-345) |has| |#1| (-345)) ((-365 |#1| |#2|) . T) ((-405 |#1| |#2|) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-545) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-628 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-698 |#1|) . T) ((-698 $) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149)))) ((-897) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 #1#) -3891 (|has| |#1| (-345)) (|has| |#1| (-358))) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| |#1| (-345)) ((-1190) -3891 (|has| |#1| (-345)) (|has| |#1| (-358)))) +((-3896 (($) 11)) (-3821 (((-3 $ "failed") $) 13)) (-2502 (((-112) $) 10)) (** (($ $ (-895)) NIL) (($ $ (-751)) 18))) +(((-706 |#1|) (-10 -8 (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 -2502 ((-112) |#1|)) (-15 -3896 (|#1|)) (-15 ** (|#1| |#1| (-895)))) (-707)) (T -706)) +NIL +(-10 -8 (-15 -3821 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-751))) (-15 -2502 ((-112) |#1|)) (-15 -3896 (|#1|)) (-15 ** (|#1| |#1| (-895)))) +((-2898 (((-112) $ $) 7)) (-3896 (($) 18 T CONST)) (-3821 (((-3 $ "failed") $) 15)) (-2502 (((-112) $) 17)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2997 (($) 19 T CONST)) (-3387 (((-112) $ $) 6)) (** (($ $ (-895)) 13) (($ $ (-751)) 16)) (* (($ $ $) 14))) +(((-707) (-138)) (T -707)) +((-2997 (*1 *1) (-4 *1 (-707))) (-3896 (*1 *1) (-4 *1 (-707))) (-2502 (*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-751)))) (-3821 (*1 *1 *1) (|partial| -4 *1 (-707)))) +(-13 (-1085) (-10 -8 (-15 (-2997) ($) -4311) (-15 -3896 ($) -4311) (-15 -2502 ((-112) $)) (-15 ** ($ $ (-751))) (-15 -3821 ((-3 $ "failed") $)))) +(((-101) . T) ((-597 (-840)) . T) ((-1085) . T) ((-1074) . T)) +((-2503 (((-2 (|:| -3425 (-400 |#2|)) (|:| |special| (-400 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3777 (((-2 (|:| -3425 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2504 ((|#2| (-402 |#2|) (-1 |#2| |#2|)) 13)) (-3794 (((-2 (|:| |poly| |#2|) (|:| -3425 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)) 47))) +(((-708 |#1| |#2|) (-10 -7 (-15 -3777 ((-2 (|:| -3425 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2503 ((-2 (|:| -3425 (-400 |#2|)) (|:| |special| (-400 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2504 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3794 ((-2 (|:| |poly| |#2|) (|:| -3425 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)))) (-358) (-1207 |#1|)) (T -708)) +((-3794 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3425 (-402 *6)) (|:| |special| (-402 *6)))) (-5 *1 (-708 *5 *6)) (-5 *3 (-402 *6)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1207 *5)) (-5 *1 (-708 *5 *2)) (-4 *5 (-358)))) (-2503 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3425 (-400 *3)) (|:| |special| (-400 *3)))) (-5 *1 (-708 *5 *3)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3425 *3) (|:| |special| *3))) (-5 *1 (-708 *5 *3))))) +(-10 -7 (-15 -3777 ((-2 (|:| -3425 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2503 ((-2 (|:| -3425 (-400 |#2|)) (|:| |special| (-400 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2504 (|#2| (-402 |#2|) (-1 |#2| |#2|))) (-15 -3794 ((-2 (|:| |poly| |#2|) (|:| -3425 (-402 |#2|)) (|:| |special| (-402 |#2|))) (-402 |#2|) (-1 |#2| |#2|)))) +((-2505 ((|#7| (-622 |#5|) |#6|) NIL)) (-4318 ((|#7| (-1 |#5| |#4|) |#6|) 26))) +(((-709 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4318 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2505 (|#7| (-622 |#5|) |#6|))) (-827) (-773) (-773) (-1025) (-1025) (-926 |#4| |#2| |#1|) (-926 |#5| |#3| |#1|)) (T -709)) +((-2505 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *9)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *8 (-1025)) (-4 *2 (-926 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773)) (-4 *4 (-926 *8 *6 *5)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1025)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-4 *2 (-926 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-773)) (-4 *4 (-926 *8 *6 *5))))) +(-10 -7 (-15 -4318 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2505 (|#7| (-622 |#5|) |#6|))) +((-4318 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-710 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4318 (|#7| (-1 |#2| |#1|) |#6|))) (-827) (-827) (-773) (-773) (-1025) (-926 |#5| |#3| |#1|) (-926 |#5| |#4| |#2|)) (T -710)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-4 *7 (-773)) (-4 *9 (-1025)) (-4 *2 (-926 *9 *8 *6)) (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-773)) (-4 *4 (-926 *9 *7 *5))))) +(-10 -7 (-15 -4318 (|#7| (-1 |#2| |#1|) |#6|))) +((-4092 (((-400 |#4|) |#4|) 41))) +(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4|))) (-773) (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149))))) (-302) (-926 (-922 |#3|) |#1| |#2|)) (T -711)) +((-4092 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149)))))) (-4 *6 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-926 (-922 *6) *4 *5))))) +(-10 -7 (-15 -4092 ((-400 |#4|) |#4|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-841 |#1|)) $) NIL)) (-3419 (((-1143 $) $ (-841 |#1|)) NIL) (((-1143 |#2|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-2178 (($ $) NIL (|has| |#2| (-545)))) (-2176 (((-112) $) NIL (|has| |#2| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-841 |#1|))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL (|has| |#2| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-841 |#1|) #2#) $) NIL)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-841 |#1|) $) NIL)) (-4116 (($ $ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#2| (-886)))) (-1721 (($ $ |#2| (-524 (-841 |#1|)) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-841 |#1|) (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#2|) (-841 |#1|)) NIL) (($ (-1143 $) (-841 |#1|)) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#2| (-524 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-841 |#1|)) NIL)) (-3153 (((-524 (-841 |#1|)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-1722 (($ (-1 (-524 (-841 |#1|)) (-524 (-841 |#1|))) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-3418 (((-3 (-841 |#1|) #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#2| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-841 |#1|)) (|:| -2493 (-751))) #3#) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#2| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-886)))) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-841 |#1|) |#2|) NIL) (($ $ (-622 (-841 |#1|)) (-622 |#2|)) NIL) (($ $ (-841 |#1|) $) NIL) (($ $ (-622 (-841 |#1|)) (-622 $)) NIL)) (-4117 (($ $ (-841 |#1|)) NIL (|has| |#2| (-170)))) (-4170 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-4307 (((-524 (-841 |#1|)) $) NIL) (((-751) $ (-841 |#1|)) NIL) (((-622 (-751)) $ (-622 (-841 |#1|))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-841 |#1|) (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-841 |#1|) (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-841 |#1|)) NIL (|has| |#2| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-841 |#1|)) NIL) (($ $) NIL (|has| |#2| (-545))) (($ (-402 (-538))) NIL (-3891 (|has| |#2| (-38 (-402 (-538)))) (|has| |#2| (-1014 (-402 (-538))))))) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-524 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-3035 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#2| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-841 |#1|)) NIL) (($ $ (-622 (-841 |#1|))) NIL) (($ $ (-841 |#1|) (-751)) NIL) (($ $ (-622 (-841 |#1|)) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#2| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#2| (-38 (-402 (-538))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-712 |#1| |#2|) (-926 |#2| (-524 (-841 |#1|)) (-841 |#1|)) (-622 (-1149)) (-1025)) (T -712)) +NIL +(-926 |#2| (-524 (-841 |#1|)) (-841 |#1|)) +((-2506 (((-2 (|:| -2733 (-922 |#3|)) (|:| -2173 (-922 |#3|))) |#4|) 14)) (-3319 ((|#4| |#4| |#2|) 33)) (-2509 ((|#4| (-402 (-922 |#3|)) |#2|) 64)) (-2508 ((|#4| (-1143 (-922 |#3|)) |#2|) 77)) (-2507 ((|#4| (-1143 |#4|) |#2|) 51)) (-3318 ((|#4| |#4| |#2|) 54)) (-4092 (((-400 |#4|) |#4|) 40))) +(((-713 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2506 ((-2 (|:| -2733 (-922 |#3|)) (|:| -2173 (-922 |#3|))) |#4|)) (-15 -3318 (|#4| |#4| |#2|)) (-15 -2507 (|#4| (-1143 |#4|) |#2|)) (-15 -3319 (|#4| |#4| |#2|)) (-15 -2508 (|#4| (-1143 (-922 |#3|)) |#2|)) (-15 -2509 (|#4| (-402 (-922 |#3|)) |#2|)) (-15 -4092 ((-400 |#4|) |#4|))) (-773) (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)))) (-545) (-926 (-402 (-922 |#3|)) |#1| |#2|)) (T -713)) +((-4092 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *6 (-545)) (-5 *2 (-400 *3)) (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-926 (-402 (-922 *6)) *4 *5)))) (-2509 (*1 *2 *3 *4) (-12 (-4 *6 (-545)) (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-5 *3 (-402 (-922 *6))) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))))) (-2508 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 (-922 *6))) (-4 *6 (-545)) (-4 *2 (-926 (-402 (-922 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))))) (-3319 (*1 *2 *2 *3) (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *5 (-545)) (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-926 (-402 (-922 *5)) *4 *3)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-1143 *2)) (-4 *2 (-926 (-402 (-922 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *6 (-545)))) (-3318 (*1 *2 *2 *3) (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *5 (-545)) (-5 *1 (-713 *4 *3 *5 *2)) (-4 *2 (-926 (-402 (-922 *5)) *4 *3)))) (-2506 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *6 (-545)) (-5 *2 (-2 (|:| -2733 (-922 *6)) (|:| -2173 (-922 *6)))) (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-926 (-402 (-922 *6)) *4 *5))))) +(-10 -7 (-15 -2506 ((-2 (|:| -2733 (-922 |#3|)) (|:| -2173 (-922 |#3|))) |#4|)) (-15 -3318 (|#4| |#4| |#2|)) (-15 -2507 (|#4| (-1143 |#4|) |#2|)) (-15 -3319 (|#4| |#4| |#2|)) (-15 -2508 (|#4| (-1143 (-922 |#3|)) |#2|)) (-15 -2509 (|#4| (-402 (-922 |#3|)) |#2|)) (-15 -4092 ((-400 |#4|) |#4|))) +((-4092 (((-400 |#4|) |#4|) 52))) +(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4|))) (-773) (-827) (-13 (-302) (-145)) (-926 (-402 |#3|) |#1| |#2|)) (T -714)) +((-4092 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-400 *3)) (-5 *1 (-714 *4 *5 *6 *3)) (-4 *3 (-926 (-402 *6) *4 *5))))) +(-10 -7 (-15 -4092 ((-400 |#4|) |#4|))) +((-4318 (((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|)) 18))) +(((-715 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|)))) (-1025) (-1025) (-707)) (T -715)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-716 *5 *7)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *7 (-707)) (-5 *2 (-716 *6 *7)) (-5 *1 (-715 *5 *6 *7))))) +(-10 -7 (-15 -4318 ((-716 |#2| |#3|) (-1 |#2| |#1|) (-716 |#1| |#3|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 28)) (-4133 (((-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|))) $) 29)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751)) 20 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #1="failed") $) 57) (((-3 |#1| #1#) $) 60)) (-3507 ((|#2| $) NIL) ((|#1| $) NIL)) (-4319 (($ $) 79 (|has| |#2| (-827)))) (-3821 (((-3 $ "failed") $) 65)) (-3327 (($) 35 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) 55)) (-3154 (((-622 $) $) 39)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| |#2|) 16)) (-4318 (($ (-1 |#1| |#1|) $) 54)) (-2126 (((-895) $) 32 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3227 ((|#2| $) 78 (|has| |#2| (-827)))) (-3525 ((|#1| $) 77 (|has| |#2| (-827)))) (-3593 (((-1131) $) NIL)) (-2492 (($ (-895)) 27 (-12 (|has| |#2| (-363)) (|has| |#1| (-363))))) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 76) (($ (-538)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|)))) 11)) (-4177 (((-622 |#1|) $) 41)) (-4040 ((|#1| $ |#2|) 88)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-2991 (($) 12 T CONST)) (-2997 (($) 33 T CONST)) (-3387 (((-112) $ $) 80)) (-4197 (($ $) 47) (($ $ $) NIL)) (-4199 (($ $ $) 26)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-716 |#1| |#2|) (-13 (-1025) (-1014 |#2|) (-1014 |#1|) (-10 -8 (-15 -3226 ($ |#1| |#2|)) (-15 -4040 (|#1| $ |#2|)) (-15 -4317 ($ (-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|))))) (-15 -4133 ((-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|))) $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (-15 -4297 ((-112) $)) (-15 -4177 ((-622 |#1|) $)) (-15 -3154 ((-622 $) $)) (-15 -2510 ((-751) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-827)) (PROGN (-15 -3227 (|#2| $)) (-15 -3525 (|#1| $)) (-15 -4319 ($ $))) |%noBranch|))) (-1025) (-707)) (T -716)) +((-3226 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-707)))) (-4040 (*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-707)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4313 *3) (|:| -4298 *4)))) (-4 *3 (-1025)) (-4 *4 (-707)) (-5 *1 (-716 *3 *4)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| -4313 *3) (|:| -4298 *4)))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-716 *3 *4)) (-4 *4 (-707)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-3154 (*1 *2 *1) (-12 (-5 *2 (-622 (-716 *3 *4))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) (-3227 (*1 *2 *1) (-12 (-4 *2 (-707)) (-4 *2 (-827)) (-5 *1 (-716 *3 *2)) (-4 *3 (-1025)))) (-3525 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *3 (-707)))) (-4319 (*1 *1 *1) (-12 (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1025)) (-4 *3 (-707))))) +(-13 (-1025) (-1014 |#2|) (-1014 |#1|) (-10 -8 (-15 -3226 ($ |#1| |#2|)) (-15 -4040 (|#1| $ |#2|)) (-15 -4317 ($ (-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|))))) (-15 -4133 ((-622 (-2 (|:| -4313 |#1|) (|:| -4298 |#2|))) $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (-15 -4297 ((-112) $)) (-15 -4177 ((-622 |#1|) $)) (-15 -3154 ((-622 $) $)) (-15 -2510 ((-751) $)) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-827)) (PROGN (-15 -3227 (|#2| $)) (-15 -3525 (|#1| $)) (-15 -4319 ($ $))) |%noBranch|))) +((-2898 (((-112) $ $) NIL)) (-3585 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3587 (($ $ $) 79)) (-3586 (((-112) $ $) 83)) (-1271 (((-112) $ (-751)) NIL)) (-3590 (($ (-622 |#1|)) 24) (($) 16)) (-1631 (($ (-1 (-112) |#1|) $) 70 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2455 (($ $) 71)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) 61 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 64 (|has| $ (-6 -4353))) (($ |#1| $ (-538)) 62) (($ (-1 (-112) |#1|) $ (-538)) 65)) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (($ |#1| $ (-538)) 67) (($ (-1 (-112) |#1|) $ (-538)) 68)) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 32 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) 82)) (-2512 (($) 14) (($ |#1|) 26) (($ (-622 |#1|)) 21)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) 38)) (-3596 (((-112) |#1| $) 58 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 75)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3589 (($ $ $) 77)) (-1333 ((|#1| $) 55)) (-3970 (($ |#1| $) 56) (($ |#1| $ (-751)) 72)) (-3594 (((-1093) $) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1334 ((|#1| $) 54)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 50)) (-3928 (($) 13)) (-2454 (((-622 (-2 (|:| -2191 |#1|) (|:| -2069 (-751)))) $) 48)) (-3588 (($ $ |#1|) NIL) (($ $ $) 78)) (-1523 (($) 15) (($ (-622 |#1|)) 23)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) 60 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 66)) (-4330 (((-527) $) 36 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 20)) (-4317 (((-840) $) 44)) (-3591 (($ (-622 |#1|)) 25) (($) 17)) (-1335 (($ (-622 |#1|)) 22)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 81)) (-4316 (((-751) $) 59 (|has| $ (-6 -4353))))) +(((-717 |#1|) (-13 (-718 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2512 ($)) (-15 -2512 ($ |#1|)) (-15 -2512 ($ (-622 |#1|))) (-15 -2511 ((-622 |#1|) $)) (-15 -3765 ($ |#1| $ (-538))) (-15 -3765 ($ (-1 (-112) |#1|) $ (-538))) (-15 -3764 ($ |#1| $ (-538))) (-15 -3764 ($ (-1 (-112) |#1|) $ (-538))))) (-1074)) (T -717)) +((-2512 (*1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-1074)))) (-2512 (*1 *1 *2) (-12 (-5 *1 (-717 *2)) (-4 *2 (-1074)))) (-2512 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-717 *3)))) (-2511 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-717 *3)) (-4 *3 (-1074)))) (-3765 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-717 *2)) (-4 *2 (-1074)))) (-3765 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-538)) (-4 *4 (-1074)) (-5 *1 (-717 *4)))) (-3764 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-717 *2)) (-4 *2 (-1074)))) (-3764 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-538)) (-4 *4 (-1074)) (-5 *1 (-717 *4))))) +(-13 (-718 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -2512 ($)) (-15 -2512 ($ |#1|)) (-15 -2512 ($ (-622 |#1|))) (-15 -2511 ((-622 |#1|) $)) (-15 -3765 ($ |#1| $ (-538))) (-15 -3765 ($ (-1 (-112) |#1|) $ (-538))) (-15 -3764 ($ |#1| $ (-538))) (-15 -3764 ($ (-1 (-112) |#1|) $ (-538))))) +((-2898 (((-112) $ $) 19)) (-3585 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3587 (($ $ $) 72)) (-3586 (((-112) $ $) 73)) (-1271 (((-112) $ (-751)) 8)) (-3590 (($ (-622 |#1|)) 68) (($) 67)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2455 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) 64)) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22)) (-3589 (($ $ $) 69)) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-3594 (((-1093) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2454 (((-622 (-2 (|:| -2191 |#1|) (|:| -2069 (-751)))) $) 61)) (-3588 (($ $ |#1|) 71) (($ $ $) 70)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-4317 (((-840) $) 18)) (-3591 (($ (-622 |#1|)) 66) (($) 65)) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20)) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-718 |#1|) (-138) (-1074)) (T -718)) +NIL +(-13 (-675 |t#1|) (-1072 |t#1|)) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-675 |#1|) . T) ((-1072 |#1|) . T) ((-1074) . T) ((-1185) . T)) +((-2513 (((-1237) (-1131)) 8))) +(((-719) (-10 -7 (-15 -2513 ((-1237) (-1131))))) (T -719)) +((-2513 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-719))))) +(-10 -7 (-15 -2513 ((-1237) (-1131)))) +((-2514 (((-622 |#1|) (-622 |#1|) (-622 |#1|)) 10))) +(((-720 |#1|) (-10 -7 (-15 -2514 ((-622 |#1|) (-622 |#1|) (-622 |#1|)))) (-827)) (T -720)) +((-2514 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-720 *3))))) +(-10 -7 (-15 -2514 ((-622 |#1|) (-622 |#1|) (-622 |#1|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 |#2|) $) 134)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 127 (|has| |#1| (-545)))) (-2178 (($ $) 126 (|has| |#1| (-545)))) (-2176 (((-112) $) 124 (|has| |#1| (-545)))) (-3846 (($ $) 83 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 66 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-3370 (($ $) 65 (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) 82 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 67 (|has| |#1| (-38 (-402 (-538)))))) (-3848 (($ $) 81 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 68 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-4319 (($ $) 118)) (-3821 (((-3 $ "failed") $) 32)) (-4174 (((-922 |#1|) $ (-751)) 96) (((-922 |#1|) $ (-751) (-751)) 95)) (-3225 (((-112) $) 135)) (-3990 (($) 93 (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $ |#2|) 98) (((-751) $ |#2| (-751)) 97)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 64 (|has| |#1| (-38 (-402 (-538)))))) (-4297 (((-112) $) 116)) (-3226 (($ $ (-622 |#2|) (-622 (-524 |#2|))) 133) (($ $ |#2| (-524 |#2|)) 132) (($ |#1| (-524 |#2|)) 117) (($ $ |#2| (-751)) 100) (($ $ (-622 |#2|) (-622 (-751))) 99)) (-4318 (($ (-1 |#1| |#1|) $) 115)) (-4302 (($ $) 90 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 113)) (-3525 ((|#1| $) 112)) (-3593 (((-1131) $) 9)) (-4172 (($ $ |#2|) 94 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) 10)) (-4128 (($ $ (-751)) 101)) (-3820 (((-3 $ "failed") $ $) 128 (|has| |#1| (-545)))) (-4303 (($ $) 91 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (($ $ |#2| $) 109) (($ $ (-622 |#2|) (-622 $)) 108) (($ $ (-622 (-288 $))) 107) (($ $ (-288 $)) 106) (($ $ $ $) 105) (($ $ (-622 $) (-622 $)) 104)) (-4170 (($ $ |#2|) 40) (($ $ (-622 |#2|)) 39) (($ $ |#2| (-751)) 38) (($ $ (-622 |#2|) (-622 (-751))) 37)) (-4307 (((-524 |#2|) $) 114)) (-3849 (($ $) 80 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 69 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 79 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 70 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 78 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 71 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 136)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 131 (|has| |#1| (-170))) (($ $) 129 (|has| |#1| (-545))) (($ (-402 (-538))) 121 (|has| |#1| (-38 (-402 (-538)))))) (-4040 ((|#1| $ (-524 |#2|)) 119) (($ $ |#2| (-751)) 103) (($ $ (-622 |#2|) (-622 (-751))) 102)) (-3035 (((-3 $ "failed") $) 130 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-3852 (($ $) 89 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 77 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 125 (|has| |#1| (-545)))) (-3850 (($ $) 88 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 76 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 87 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 75 (|has| |#1| (-38 (-402 (-538)))))) (-3855 (($ $) 86 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 74 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 85 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 73 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 84 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 72 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ |#2|) 36) (($ $ (-622 |#2|)) 35) (($ $ |#2| (-751)) 34) (($ $ (-622 |#2|) (-622 (-751))) 33)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 120 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ $) 92 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 63 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 123 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 122 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 111) (($ $ |#1|) 110))) +(((-721 |#1| |#2|) (-138) (-1025) (-827)) (T -721)) +((-4040 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827)))) (-4040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *5)) (-5 *3 (-622 (-751))) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-721 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-827)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *5)) (-5 *3 (-622 (-751))) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-4131 (*1 *2 *1 *3) (-12 (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4131 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-751)) (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)))) (-4174 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)) (-5 *2 (-922 *4)))) (-4174 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)) (-5 *2 (-922 *4)))) (-4172 (*1 *1 *1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827)) (-4 *3 (-38 (-402 (-538))))))) +(-13 (-876 |t#2|) (-949 |t#1| (-524 |t#2|) |t#2|) (-507 |t#2| $) (-304 $) (-10 -8 (-15 -4040 ($ $ |t#2| (-751))) (-15 -4040 ($ $ (-622 |t#2|) (-622 (-751)))) (-15 -4128 ($ $ (-751))) (-15 -3226 ($ $ |t#2| (-751))) (-15 -3226 ($ $ (-622 |t#2|) (-622 (-751)))) (-15 -4131 ((-751) $ |t#2|)) (-15 -4131 ((-751) $ |t#2| (-751))) (-15 -4174 ((-922 |t#1|) $ (-751))) (-15 -4174 ((-922 |t#1|) $ (-751) (-751))) (IF (|has| |t#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $ |t#2|)) (-6 (-978)) (-6 (-1171))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-524 |#2|)) . T) ((-25) . T) ((-38 #2=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-285) |has| |#1| (-545)) ((-304 $) . T) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-507 |#2| $) . T) ((-507 $ $) . T) ((-545) |has| |#1| (-545)) ((-628 #2#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #2#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-876 |#2|) . T) ((-949 |#1| #1# |#2|) . T) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-1031 #2#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538))))) +((-4092 (((-400 (-1143 |#4|)) (-1143 |#4|)) 30) (((-400 |#4|) |#4|) 26))) +(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 |#4|) |#4|)) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|)))) (-827) (-773) (-13 (-302) (-145)) (-926 |#3| |#2| |#1|)) (T -722)) +((-4092 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-926 *6 *5 *4)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-722 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-400 *3)) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4))))) +(-10 -7 (-15 -4092 ((-400 |#4|) |#4|)) (-15 -4092 ((-400 (-1143 |#4|)) (-1143 |#4|)))) +((-2517 (((-400 |#4|) |#4| |#2|) 120)) (-2515 (((-400 |#4|) |#4|) NIL)) (-4329 (((-400 (-1143 |#4|)) (-1143 |#4|)) 111) (((-400 |#4|) |#4|) 41)) (-2519 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-622 (-2 (|:| -4092 (-1143 |#4|)) (|:| -2493 (-538)))))) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|))) 69)) (-2523 (((-1143 |#3|) (-1143 |#3|) (-538)) 139)) (-2522 (((-622 (-751)) (-1143 |#4|) (-622 |#2|) (-751)) 61)) (-3413 (((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-1143 |#3|) (-1143 |#3|) |#4| (-622 |#2|) (-622 (-751)) (-622 |#3|)) 65)) (-2520 (((-2 (|:| |upol| (-1143 |#3|)) (|:| |Lval| (-622 |#3|)) (|:| |Lfact| (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538))))) (|:| |ctpol| |#3|)) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|))) 26)) (-2518 (((-2 (|:| -2120 (-1143 |#4|)) (|:| |polval| (-1143 |#3|))) (-1143 |#4|) (-1143 |#3|) (-538)) 57)) (-2516 (((-538) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538))))) 136)) (-2521 ((|#4| (-538) (-400 |#4|)) 58)) (-3716 (((-112) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538))))) NIL))) +(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4329 ((-400 |#4|) |#4|)) (-15 -4329 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -2515 ((-400 |#4|) |#4|)) (-15 -2516 ((-538) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))))) (-15 -2517 ((-400 |#4|) |#4| |#2|)) (-15 -2518 ((-2 (|:| -2120 (-1143 |#4|)) (|:| |polval| (-1143 |#3|))) (-1143 |#4|) (-1143 |#3|) (-538))) (-15 -2519 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-622 (-2 (|:| -4092 (-1143 |#4|)) (|:| -2493 (-538)))))) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|)))) (-15 -2520 ((-2 (|:| |upol| (-1143 |#3|)) (|:| |Lval| (-622 |#3|)) (|:| |Lfact| (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538))))) (|:| |ctpol| |#3|)) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|)))) (-15 -2521 (|#4| (-538) (-400 |#4|))) (-15 -3716 ((-112) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))))) (-15 -3413 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-1143 |#3|) (-1143 |#3|) |#4| (-622 |#2|) (-622 (-751)) (-622 |#3|))) (-15 -2522 ((-622 (-751)) (-1143 |#4|) (-622 |#2|) (-751))) (-15 -2523 ((-1143 |#3|) (-1143 |#3|) (-538)))) (-773) (-827) (-302) (-926 |#3| |#1| |#2|)) (T -723)) +((-2523 (*1 *2 *2 *3) (-12 (-5 *2 (-1143 *6)) (-5 *3 (-538)) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) (-2522 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-4 *7 (-827)) (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-4 *8 (-302)) (-5 *2 (-622 (-751))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *5 (-751)))) (-3413 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1143 *11)) (-5 *6 (-622 *10)) (-5 *7 (-622 (-751))) (-5 *8 (-622 *11)) (-4 *10 (-827)) (-4 *11 (-302)) (-4 *9 (-773)) (-4 *5 (-926 *11 *9 *10)) (-5 *2 (-622 (-1143 *5))) (-5 *1 (-723 *9 *10 *11 *5)) (-5 *3 (-1143 *5)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-2 (|:| -4092 (-1143 *6)) (|:| -2493 (-538))))) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) (-2521 (*1 *2 *3 *4) (-12 (-5 *3 (-538)) (-5 *4 (-400 *2)) (-4 *2 (-926 *7 *5 *6)) (-5 *1 (-723 *5 *6 *7 *2)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-302)))) (-2520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-5 *5 (-622 (-622 *8))) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 (-2 (|:| |upol| (-1143 *8)) (|:| |Lval| (-622 *8)) (|:| |Lfact| (-622 (-2 (|:| -4092 (-1143 *8)) (|:| -2493 (-538))))) (|:| |ctpol| *8))) (-5 *1 (-723 *6 *7 *8 *9)))) (-2519 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-622 *7)) (-5 *5 (-622 (-622 *8))) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *6 (-773)) (-4 *9 (-926 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-622 (-2 (|:| -4092 (-1143 *9)) (|:| -2493 (-538))))))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1143 *9)))) (-2518 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-538)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-926 *8 *6 *7)) (-5 *2 (-2 (|:| -2120 (-1143 *9)) (|:| |polval| (-1143 *8)))) (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1143 *9)) (-5 *4 (-1143 *8)))) (-2517 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-723 *5 *4 *6 *3)) (-4 *3 (-926 *6 *5 *4)))) (-2516 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -4092 (-1143 *6)) (|:| -2493 (-538))))) (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-538)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) (-2515 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-926 *6 *4 *5)))) (-4329 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-723 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-4329 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-926 *6 *4 *5))))) +(-10 -7 (-15 -4329 ((-400 |#4|) |#4|)) (-15 -4329 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -2515 ((-400 |#4|) |#4|)) (-15 -2516 ((-538) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))))) (-15 -2517 ((-400 |#4|) |#4| |#2|)) (-15 -2518 ((-2 (|:| -2120 (-1143 |#4|)) (|:| |polval| (-1143 |#3|))) (-1143 |#4|) (-1143 |#3|) (-538))) (-15 -2519 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-622 (-2 (|:| -4092 (-1143 |#4|)) (|:| -2493 (-538)))))) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|)))) (-15 -2520 ((-2 (|:| |upol| (-1143 |#3|)) (|:| |Lval| (-622 |#3|)) (|:| |Lfact| (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538))))) (|:| |ctpol| |#3|)) (-1143 |#4|) (-622 |#2|) (-622 (-622 |#3|)))) (-15 -2521 (|#4| (-538) (-400 |#4|))) (-15 -3716 ((-112) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))) (-622 (-2 (|:| -4092 (-1143 |#3|)) (|:| -2493 (-538)))))) (-15 -3413 ((-3 (-622 (-1143 |#4|)) "failed") (-1143 |#4|) (-1143 |#3|) (-1143 |#3|) |#4| (-622 |#2|) (-622 (-751)) (-622 |#3|))) (-15 -2522 ((-622 (-751)) (-1143 |#4|) (-622 |#2|) (-751))) (-15 -2523 ((-1143 |#3|) (-1143 |#3|) (-538)))) +((-2524 (($ $ (-895)) 12))) +(((-724 |#1| |#2|) (-10 -8 (-15 -2524 (|#1| |#1| (-895)))) (-725 |#2|) (-170)) (T -724)) +NIL +(-10 -8 (-15 -2524 (|#1| |#1| (-895)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2499 (($ $ (-895)) 28)) (-2524 (($ $ (-895)) 33)) (-2498 (($ $ (-895)) 29)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-2686 (($ $ $) 25)) (-4317 (((-840) $) 11)) (-2687 (($ $ $ $) 26)) (-2685 (($ $ $) 24)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-725 |#1|) (-138) (-170)) (T -725)) +((-2524 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-725 *3)) (-4 *3 (-170))))) +(-13 (-742) (-698 |t#1|) (-10 -8 (-15 -2524 ($ $ (-895))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-701) . T) ((-742) . T) ((-1031 |#1|) . T) ((-1074) . T)) +((-2526 (((-1011) (-669 (-221)) (-538) (-112) (-538)) 25)) (-2525 (((-1011) (-669 (-221)) (-538) (-112) (-538)) 24))) +(((-726) (-10 -7 (-15 -2525 ((-1011) (-669 (-221)) (-538) (-112) (-538))) (-15 -2526 ((-1011) (-669 (-221)) (-538) (-112) (-538))))) (T -726)) +((-2526 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-726)))) (-2525 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-726))))) +(-10 -7 (-15 -2525 ((-1011) (-669 (-221)) (-538) (-112) (-538))) (-15 -2526 ((-1011) (-669 (-221)) (-538) (-112) (-538)))) +((-2529 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) 43)) (-2528 (((-1011) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) 39)) (-2527 (((-1011) (-221) (-221) (-221) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) 32))) +(((-727) (-10 -7 (-15 -2527 ((-1011) (-221) (-221) (-221) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2528 ((-1011) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN))))) (-15 -2529 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN))))))) (T -727)) +((-2529 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1011)) (-5 *1 (-727)))) (-2528 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1011)) (-5 *1 (-727)))) (-2527 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) (-5 *1 (-727))))) +(-10 -7 (-15 -2527 ((-1011) (-221) (-221) (-221) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2528 ((-1011) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN))))) (-15 -2529 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))))) +((-2541 (((-1011) (-538) (-538) (-669 (-221)) (-538)) 34)) (-2540 (((-1011) (-538) (-538) (-669 (-221)) (-538)) 33)) (-2539 (((-1011) (-538) (-669 (-221)) (-538)) 32)) (-2538 (((-1011) (-538) (-669 (-221)) (-538)) 31)) (-2537 (((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 30)) (-2536 (((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 29)) (-2535 (((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538)) 28)) (-2534 (((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538)) 27)) (-2533 (((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 24)) (-2532 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538)) 23)) (-2531 (((-1011) (-538) (-669 (-221)) (-538)) 22)) (-2530 (((-1011) (-538) (-669 (-221)) (-538)) 21))) +(((-728) (-10 -7 (-15 -2530 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2531 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2532 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2533 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2534 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2535 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2536 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2537 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2538 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2539 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2540 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2541 ((-1011) (-538) (-538) (-669 (-221)) (-538))))) (T -728)) +((-2541 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2540 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2539 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2538 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2537 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2536 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2535 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2534 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2533 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2532 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2531 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728)))) (-2530 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728))))) +(-10 -7 (-15 -2530 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2531 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2532 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2533 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2534 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2535 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2536 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2537 ((-1011) (-538) (-538) (-1131) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2538 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2539 ((-1011) (-538) (-669 (-221)) (-538))) (-15 -2540 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2541 ((-1011) (-538) (-538) (-669 (-221)) (-538)))) +((-2553 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) 52)) (-2552 (((-1011) (-669 (-221)) (-669 (-221)) (-538) (-538)) 51)) (-2551 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) 50)) (-2550 (((-1011) (-221) (-221) (-538) (-538) (-538) (-538)) 46)) (-2549 (((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) 45)) (-2548 (((-1011) (-221) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) 44)) (-2547 (((-1011) (-221) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) 43)) (-2546 (((-1011) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) 42)) (-2545 (((-1011) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) 38)) (-2544 (((-1011) (-221) (-221) (-538) (-669 (-221)) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) 37)) (-2543 (((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) 33)) (-2542 (((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) 32))) +(((-729) (-10 -7 (-15 -2542 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2543 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2544 ((-1011) (-221) (-221) (-538) (-669 (-221)) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2545 ((-1011) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2546 ((-1011) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2547 ((-1011) (-221) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2548 ((-1011) (-221) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2549 ((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2550 ((-1011) (-221) (-221) (-538) (-538) (-538) (-538))) (-15 -2551 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN))))) (-15 -2552 ((-1011) (-669 (-221)) (-669 (-221)) (-538) (-538))) (-15 -2553 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN))))))) (T -729)) +((-2553 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2552 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2551 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2550 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2549 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2548 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2547 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2546 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2545 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2544 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2543 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) (-5 *1 (-729)))) (-2542 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) (-5 *1 (-729))))) +(-10 -7 (-15 -2542 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2543 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2544 ((-1011) (-221) (-221) (-538) (-669 (-221)) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2545 ((-1011) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428))))) (-15 -2546 ((-1011) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2547 ((-1011) (-221) (-221) (-221) (-221) (-538) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2548 ((-1011) (-221) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2549 ((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G))))) (-15 -2550 ((-1011) (-221) (-221) (-538) (-538) (-538) (-538))) (-15 -2551 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN))))) (-15 -2552 ((-1011) (-669 (-221)) (-669 (-221)) (-538) (-538))) (-15 -2553 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-221) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))))) +((-2561 (((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2560 (((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383)) 69) (((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2559 (((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) 57)) (-2558 (((-1011) (-669 (-221)) (-669 (-221)) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) 50)) (-2557 (((-1011) (-221) (-538) (-538) (-1131) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2556 (((-1011) (-221) (-538) (-538) (-221) (-1131) (-221) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2555 (((-1011) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) 42)) (-2554 (((-1011) (-221) (-538) (-538) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) 38))) +(((-730) (-10 -7 (-15 -2554 ((-1011) (-221) (-538) (-538) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2555 ((-1011) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -2556 ((-1011) (-221) (-538) (-538) (-221) (-1131) (-221) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2557 ((-1011) (-221) (-538) (-538) (-1131) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2558 ((-1011) (-669 (-221)) (-669 (-221)) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -2559 ((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG))))) (-15 -2560 ((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))))) (-15 -2560 ((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383))) (-15 -2561 ((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -730)) +((-2561 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2560 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-383)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2560 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2559 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2558 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2557 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-538)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2556 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-538)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2555 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730)))) (-2554 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-730))))) +(-10 -7 (-15 -2554 ((-1011) (-221) (-538) (-538) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2555 ((-1011) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -2556 ((-1011) (-221) (-538) (-538) (-221) (-1131) (-221) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2557 ((-1011) (-221) (-538) (-538) (-1131) (-538) (-221) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G))) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV))) (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT))))) (-15 -2558 ((-1011) (-669 (-221)) (-669 (-221)) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN))))) (-15 -2559 ((-1011) (-221) (-221) (-538) (-221) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG))))) (-15 -2560 ((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))))) (-15 -2560 ((-1011) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL))) (-383) (-383))) (-15 -2561 ((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-2564 (((-1011) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-655 (-221)) (-538)) 45)) (-2563 (((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-1131) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) 41)) (-2562 (((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 23))) +(((-731) (-10 -7 (-15 -2562 ((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2563 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-1131) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY))))) (-15 -2564 ((-1011) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-655 (-221)) (-538))))) (T -731)) +((-2564 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-655 (-221))) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-731)))) (-2563 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-1131)) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1011)) (-5 *1 (-731)))) (-2562 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-731))))) +(-10 -7 (-15 -2562 ((-1011) (-538) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2563 ((-1011) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-1131) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY))))) (-15 -2564 ((-1011) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-655 (-221)) (-538)))) +((-2574 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-538)) 35)) (-2573 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-221) (-221) (-538)) 34)) (-2572 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-669 (-221)) (-221) (-221) (-538)) 33)) (-2571 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 29)) (-2570 (((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 28)) (-2569 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538)) 27)) (-2568 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538)) 24)) (-2567 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538)) 23)) (-2566 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538)) 22)) (-2565 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538)) 21))) +(((-732) (-10 -7 (-15 -2565 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))) (-15 -2566 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2567 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2568 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2569 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538))) (-15 -2570 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2571 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2572 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-669 (-221)) (-221) (-221) (-538))) (-15 -2573 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-221) (-221) (-538))) (-15 -2574 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-538))))) (T -732)) +((-2574 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2573 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2572 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *6 (-221)) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2571 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2570 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2569 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2568 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2567 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2566 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732)))) (-2565 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732))))) +(-10 -7 (-15 -2565 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))) (-15 -2566 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2567 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2568 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2569 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-221) (-538))) (-15 -2570 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2571 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2572 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-669 (-221)) (-221) (-221) (-538))) (-15 -2573 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-221) (-221) (-538))) (-15 -2574 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-669 (-221)) (-221) (-221) (-538)))) +((-2592 (((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538)) 45)) (-2591 (((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-538)) 44)) (-2590 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538)) 43)) (-2589 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 42)) (-2588 (((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538)) 41)) (-2587 (((-1011) (-1131) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538)) 40)) (-2586 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538) (-538) (-538) (-221) (-669 (-221)) (-538)) 39)) (-2585 (((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538))) 38)) (-2584 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538)) 35)) (-2583 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538)) 34)) (-2582 (((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538)) 33)) (-2581 (((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 32)) (-2580 (((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538)) 31)) (-2579 (((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-538)) 30)) (-2578 (((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-538) (-538) (-538)) 29)) (-2577 (((-1011) (-538) (-538) (-538) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-538)) (-538) (-538) (-538)) 28)) (-2576 (((-1011) (-538) (-669 (-221)) (-221) (-538)) 24)) (-2575 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 21))) +(((-733) (-10 -7 (-15 -2575 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2576 ((-1011) (-538) (-669 (-221)) (-221) (-538))) (-15 -2577 ((-1011) (-538) (-538) (-538) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-538)) (-538) (-538) (-538))) (-15 -2578 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-538) (-538) (-538))) (-15 -2579 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-538))) (-15 -2580 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538))) (-15 -2581 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2582 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538))) (-15 -2583 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538))) (-15 -2584 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2585 ((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538)))) (-15 -2586 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538) (-538) (-538) (-221) (-669 (-221)) (-538))) (-15 -2587 ((-1011) (-1131) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538))) (-15 -2588 ((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2589 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2590 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))) (-15 -2591 ((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2592 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))))) (T -733)) +((-2592 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2591 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2590 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2589 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2588 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2587 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *7 (-669 (-538))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2586 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *6 (-221)) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2585 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) (-5 *7 (-669 (-538))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2584 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2583 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2582 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2581 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2580 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2579 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2578 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2577 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538))) (-5 *3 (-538)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2576 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) (-5 *1 (-733)))) (-2575 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733))))) +(-10 -7 (-15 -2575 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2576 ((-1011) (-538) (-669 (-221)) (-221) (-538))) (-15 -2577 ((-1011) (-538) (-538) (-538) (-221) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-538)) (-538) (-538) (-538))) (-15 -2578 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-538) (-538) (-538))) (-15 -2579 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538) (-538) (-538))) (-15 -2580 ((-1011) (-538) (-221) (-221) (-669 (-221)) (-538) (-538) (-221) (-538))) (-15 -2581 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2582 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538))) (-15 -2583 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538))) (-15 -2584 ((-1011) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2585 ((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538)))) (-15 -2586 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538) (-538) (-538) (-221) (-669 (-221)) (-538))) (-15 -2587 ((-1011) (-1131) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538))) (-15 -2588 ((-1011) (-1131) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2589 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2590 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538))) (-15 -2591 ((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2592 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538) (-669 (-221)) (-669 (-221)) (-538) (-538) (-538)))) +((-2600 (((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-538) (-669 (-221)) (-538)) 63)) (-2599 (((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-112) (-221) (-538) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-538) (-538) (-538) (-538) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) 62)) (-2598 (((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-538) (-538) (-669 (-221)) (-669 (-538)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) 58)) (-2597 (((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-538) (-538) (-669 (-221)) (-538)) 51)) (-2596 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) 50)) (-2595 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2594 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) 42)) (-2593 (((-1011) (-538) (-221) (-221) (-538) (-221) (-112) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-734) (-10 -7 (-15 -2593 ((-1011) (-538) (-221) (-221) (-538) (-221) (-112) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2594 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1))))) (-15 -2595 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2))))) (-15 -2596 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1))))) (-15 -2597 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-538) (-538) (-669 (-221)) (-538))) (-15 -2598 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-538) (-538) (-669 (-221)) (-669 (-538)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS))))) (-15 -2599 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-112) (-221) (-538) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-538) (-538) (-538) (-538) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2600 ((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-538) (-669 (-221)) (-538))))) (T -734)) +((-2600 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2599 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-669 (-538))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2598 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-669 (-221))) (-5 *6 (-112)) (-5 *7 (-669 (-538))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-538)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2597 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2596 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2595 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2594 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1011)) (-5 *1 (-734)))) (-2593 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-538)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734))))) +(-10 -7 (-15 -2593 ((-1011) (-538) (-221) (-221) (-538) (-221) (-112) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2594 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1))))) (-15 -2595 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2))))) (-15 -2596 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1))))) (-15 -2597 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-538) (-538) (-669 (-221)) (-538))) (-15 -2598 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-221) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-112) (-112) (-112) (-538) (-538) (-669 (-221)) (-669 (-538)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS))))) (-15 -2599 ((-1011) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-538) (-112) (-221) (-538) (-221) (-221) (-112) (-221) (-221) (-221) (-221) (-112) (-538) (-538) (-538) (-538) (-538) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-538) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN))) (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN))))) (-15 -2600 ((-1011) (-538) (-538) (-538) (-221) (-669 (-221)) (-538) (-669 (-221)) (-538)))) +((-2610 (((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538)) 47)) (-2609 (((-1011) (-1131) (-1131) (-538) (-538) (-669 (-166 (-221))) (-538) (-669 (-166 (-221))) (-538) (-538) (-669 (-166 (-221))) (-538)) 46)) (-2608 (((-1011) (-538) (-538) (-538) (-669 (-166 (-221))) (-538)) 45)) (-2607 (((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 40)) (-2606 (((-1011) (-1131) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-669 (-221)) (-538)) 39)) (-2605 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-538)) 36)) (-2604 (((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538)) 35)) (-2603 (((-1011) (-538) (-538) (-538) (-538) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-221) (-221) (-538)) 34)) (-2602 (((-1011) (-538) (-538) (-538) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-112) (-221) (-112) (-669 (-538)) (-669 (-221)) (-538)) 33)) (-2601 (((-1011) (-538) (-538) (-538) (-538) (-221) (-112) (-112) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-538)) 32))) +(((-735) (-10 -7 (-15 -2601 ((-1011) (-538) (-538) (-538) (-538) (-221) (-112) (-112) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-538))) (-15 -2602 ((-1011) (-538) (-538) (-538) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-112) (-221) (-112) (-669 (-538)) (-669 (-221)) (-538))) (-15 -2603 ((-1011) (-538) (-538) (-538) (-538) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-221) (-221) (-538))) (-15 -2604 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538))) (-15 -2605 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-538))) (-15 -2606 ((-1011) (-1131) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-669 (-221)) (-538))) (-15 -2607 ((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2608 ((-1011) (-538) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2609 ((-1011) (-1131) (-1131) (-538) (-538) (-669 (-166 (-221))) (-538) (-669 (-166 (-221))) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2610 ((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538))))) (T -735)) +((-2610 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-166 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2609 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-166 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2608 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-166 (-221)))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2607 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2606 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2605 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2604 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2603 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-622 (-112))) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538))) (-5 *7 (-221)) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2602 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-669 (-538))) (-5 *5 (-112)) (-5 *7 (-669 (-221))) (-5 *3 (-538)) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-735)))) (-2601 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-622 (-112))) (-5 *7 (-669 (-221))) (-5 *8 (-669 (-538))) (-5 *3 (-538)) (-5 *4 (-221)) (-5 *5 (-112)) (-5 *2 (-1011)) (-5 *1 (-735))))) +(-10 -7 (-15 -2601 ((-1011) (-538) (-538) (-538) (-538) (-221) (-112) (-112) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-538))) (-15 -2602 ((-1011) (-538) (-538) (-538) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-669 (-538)) (-112) (-221) (-112) (-669 (-538)) (-669 (-221)) (-538))) (-15 -2603 ((-1011) (-538) (-538) (-538) (-538) (-622 (-112)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-221) (-221) (-538))) (-15 -2604 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538))) (-15 -2605 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-538))) (-15 -2606 ((-1011) (-1131) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-669 (-221)) (-538))) (-15 -2607 ((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2608 ((-1011) (-538) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2609 ((-1011) (-1131) (-1131) (-538) (-538) (-669 (-166 (-221))) (-538) (-669 (-166 (-221))) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2610 ((-1011) (-1131) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538)))) +((-2625 (((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538)) 65)) (-2624 (((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538)) 60)) (-2623 (((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383)) 56) (((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) 55)) (-2622 (((-1011) (-538) (-538) (-538) (-221) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538)) 37)) (-2621 (((-1011) (-538) (-538) (-221) (-221) (-538) (-538) (-669 (-221)) (-538)) 33)) (-2620 (((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538) (-538)) 30)) (-2619 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 29)) (-2618 (((-1011) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 28)) (-2617 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 27)) (-2616 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538)) 26)) (-2615 (((-1011) (-538) (-538) (-669 (-221)) (-538)) 25)) (-2614 (((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 24)) (-2613 (((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538)) 23)) (-2612 (((-1011) (-669 (-221)) (-538) (-538) (-538) (-538)) 22)) (-2611 (((-1011) (-538) (-538) (-669 (-221)) (-538)) 21))) +(((-736) (-10 -7 (-15 -2611 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2612 ((-1011) (-669 (-221)) (-538) (-538) (-538) (-538))) (-15 -2613 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2614 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2615 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2616 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538))) (-15 -2617 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2618 ((-1011) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2619 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2620 ((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538) (-538))) (-15 -2621 ((-1011) (-538) (-538) (-221) (-221) (-538) (-538) (-669 (-221)) (-538))) (-15 -2622 ((-1011) (-538) (-538) (-538) (-221) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2623 ((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))))) (-15 -2623 ((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383))) (-15 -2624 ((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2625 ((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538))))) (T -736)) +((-2625 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-112)) (-5 *5 (-669 (-166 (-221)))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2624 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *4 (-112)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2623 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-383)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2623 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2622 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-538)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2621 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2620 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2619 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2618 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2617 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2616 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2615 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2614 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2613 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2612 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-736)))) (-2611 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736))))) +(-10 -7 (-15 -2611 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2612 ((-1011) (-669 (-221)) (-538) (-538) (-538) (-538))) (-15 -2613 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2614 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2615 ((-1011) (-538) (-538) (-669 (-221)) (-538))) (-15 -2616 ((-1011) (-538) (-538) (-538) (-538) (-669 (-221)) (-538))) (-15 -2617 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2618 ((-1011) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2619 ((-1011) (-538) (-538) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2620 ((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538) (-538))) (-15 -2621 ((-1011) (-538) (-538) (-221) (-221) (-538) (-538) (-669 (-221)) (-538))) (-15 -2622 ((-1011) (-538) (-538) (-538) (-221) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2623 ((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))))) (-15 -2623 ((-1011) (-538) (-538) (-221) (-538) (-538) (-538) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT))) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE))) (-383))) (-15 -2624 ((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2625 ((-1011) (-538) (-538) (-538) (-538) (-538) (-112) (-538) (-112) (-538) (-669 (-166 (-221))) (-669 (-166 (-221))) (-538)))) +((-2636 (((-1011) (-538) (-538) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) 61)) (-2635 (((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538)) 57)) (-2634 (((-1011) (-538) (-669 (-221)) (-112) (-221) (-538) (-538) (-538) (-538) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) 56)) (-2633 (((-1011) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538)) 37)) (-2632 (((-1011) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-538)) 36)) (-2631 (((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538)) 33)) (-2630 (((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221))) 32)) (-2629 (((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538)) 28)) (-2628 (((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538)) 27)) (-2627 (((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538)) 26)) (-2626 (((-1011) (-538) (-669 (-166 (-221))) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-538)) 22))) +(((-737) (-10 -7 (-15 -2626 ((-1011) (-538) (-669 (-166 (-221))) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2627 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2628 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2629 ((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538))) (-15 -2630 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221)))) (-15 -2631 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2632 ((-1011) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2633 ((-1011) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538))) (-15 -2634 ((-1011) (-538) (-669 (-221)) (-112) (-221) (-538) (-538) (-538) (-538) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE))))) (-15 -2635 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538))) (-15 -2636 ((-1011) (-538) (-538) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD))))))) (T -737)) +((-2636 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2635 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2634 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD)))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2633 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2632 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2631 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2630 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2629 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2628 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2627 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737)))) (-2626 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-166 (-221)))) (-5 *2 (-1011)) (-5 *1 (-737))))) +(-10 -7 (-15 -2626 ((-1011) (-538) (-669 (-166 (-221))) (-538) (-538) (-538) (-538) (-669 (-166 (-221))) (-538))) (-15 -2627 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2628 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-538))) (-15 -2629 ((-1011) (-669 (-221)) (-538) (-669 (-221)) (-538) (-538) (-538))) (-15 -2630 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-538)) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221)))) (-15 -2631 ((-1011) (-538) (-538) (-669 (-221)) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2632 ((-1011) (-538) (-538) (-538) (-221) (-538) (-669 (-221)) (-669 (-221)) (-538))) (-15 -2633 ((-1011) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-538)) (-669 (-221)) (-669 (-538)) (-669 (-538)) (-669 (-221)) (-669 (-221)) (-669 (-538)) (-538))) (-15 -2634 ((-1011) (-538) (-669 (-221)) (-112) (-221) (-538) (-538) (-538) (-538) (-221) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD))) (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE))))) (-15 -2635 ((-1011) (-538) (-669 (-221)) (-538) (-669 (-221)) (-669 (-538)) (-538) (-669 (-221)) (-538) (-538) (-538) (-538))) (-15 -2636 ((-1011) (-538) (-538) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-669 (-221)) (-538) (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))))) +((-2640 (((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-538) (-669 (-221))) 29)) (-2639 (((-1011) (-1131) (-538) (-538) (-669 (-221))) 28)) (-2638 (((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-221))) 27)) (-2637 (((-1011) (-538) (-538) (-538) (-669 (-221))) 21))) +(((-738) (-10 -7 (-15 -2637 ((-1011) (-538) (-538) (-538) (-669 (-221)))) (-15 -2638 ((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-221)))) (-15 -2639 ((-1011) (-1131) (-538) (-538) (-669 (-221)))) (-15 -2640 ((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-538) (-669 (-221)))))) (T -738)) +((-2640 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))) (-2639 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738)))) (-2638 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-738)))) (-2637 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738))))) +(-10 -7 (-15 -2637 ((-1011) (-538) (-538) (-538) (-669 (-221)))) (-15 -2638 ((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-669 (-538)) (-538) (-669 (-221)))) (-15 -2639 ((-1011) (-1131) (-538) (-538) (-669 (-221)))) (-15 -2640 ((-1011) (-1131) (-538) (-538) (-669 (-221)) (-538) (-538) (-669 (-221))))) +((-2678 (((-1011) (-221) (-221) (-221) (-221) (-538)) 62)) (-2677 (((-1011) (-221) (-221) (-221) (-538)) 61)) (-2676 (((-1011) (-221) (-221) (-221) (-538)) 60)) (-2675 (((-1011) (-221) (-221) (-538)) 59)) (-2674 (((-1011) (-221) (-538)) 58)) (-2673 (((-1011) (-221) (-538)) 57)) (-2672 (((-1011) (-221) (-538)) 56)) (-2671 (((-1011) (-221) (-538)) 55)) (-2670 (((-1011) (-221) (-538)) 54)) (-2669 (((-1011) (-221) (-538)) 53)) (-2668 (((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538)) 52)) (-2667 (((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538)) 51)) (-2666 (((-1011) (-221) (-538)) 50)) (-2665 (((-1011) (-221) (-538)) 49)) (-2664 (((-1011) (-221) (-538)) 48)) (-2663 (((-1011) (-221) (-538)) 47)) (-2662 (((-1011) (-538) (-221) (-166 (-221)) (-538) (-1131) (-538)) 46)) (-2661 (((-1011) (-1131) (-166 (-221)) (-1131) (-538)) 45)) (-2660 (((-1011) (-1131) (-166 (-221)) (-1131) (-538)) 44)) (-2659 (((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538)) 43)) (-2658 (((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538)) 42)) (-2657 (((-1011) (-221) (-538)) 39)) (-2656 (((-1011) (-221) (-538)) 38)) (-2655 (((-1011) (-221) (-538)) 37)) (-2654 (((-1011) (-221) (-538)) 36)) (-2653 (((-1011) (-221) (-538)) 35)) (-2652 (((-1011) (-221) (-538)) 34)) (-2651 (((-1011) (-221) (-538)) 33)) (-2650 (((-1011) (-221) (-538)) 32)) (-2649 (((-1011) (-221) (-538)) 31)) (-2648 (((-1011) (-221) (-538)) 30)) (-2647 (((-1011) (-221) (-221) (-221) (-538)) 29)) (-2646 (((-1011) (-221) (-538)) 28)) (-2645 (((-1011) (-221) (-538)) 27)) (-2644 (((-1011) (-221) (-538)) 26)) (-2643 (((-1011) (-221) (-538)) 25)) (-2642 (((-1011) (-221) (-538)) 24)) (-2641 (((-1011) (-166 (-221)) (-538)) 21))) +(((-739) (-10 -7 (-15 -2641 ((-1011) (-166 (-221)) (-538))) (-15 -2642 ((-1011) (-221) (-538))) (-15 -2643 ((-1011) (-221) (-538))) (-15 -2644 ((-1011) (-221) (-538))) (-15 -2645 ((-1011) (-221) (-538))) (-15 -2646 ((-1011) (-221) (-538))) (-15 -2647 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2648 ((-1011) (-221) (-538))) (-15 -2649 ((-1011) (-221) (-538))) (-15 -2650 ((-1011) (-221) (-538))) (-15 -2651 ((-1011) (-221) (-538))) (-15 -2652 ((-1011) (-221) (-538))) (-15 -2653 ((-1011) (-221) (-538))) (-15 -2654 ((-1011) (-221) (-538))) (-15 -2655 ((-1011) (-221) (-538))) (-15 -2656 ((-1011) (-221) (-538))) (-15 -2657 ((-1011) (-221) (-538))) (-15 -2658 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2659 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2660 ((-1011) (-1131) (-166 (-221)) (-1131) (-538))) (-15 -2661 ((-1011) (-1131) (-166 (-221)) (-1131) (-538))) (-15 -2662 ((-1011) (-538) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2663 ((-1011) (-221) (-538))) (-15 -2664 ((-1011) (-221) (-538))) (-15 -2665 ((-1011) (-221) (-538))) (-15 -2666 ((-1011) (-221) (-538))) (-15 -2667 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2668 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2669 ((-1011) (-221) (-538))) (-15 -2670 ((-1011) (-221) (-538))) (-15 -2671 ((-1011) (-221) (-538))) (-15 -2672 ((-1011) (-221) (-538))) (-15 -2673 ((-1011) (-221) (-538))) (-15 -2674 ((-1011) (-221) (-538))) (-15 -2675 ((-1011) (-221) (-221) (-538))) (-15 -2676 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2677 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2678 ((-1011) (-221) (-221) (-221) (-221) (-538))))) (T -739)) +((-2678 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2677 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2676 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2675 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2674 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2671 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2670 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2668 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2667 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2666 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2664 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2662 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-538)) (-5 *5 (-166 (-221))) (-5 *6 (-1131)) (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2661 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2660 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1131)) (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2659 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2658 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2654 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2653 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2652 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2651 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2649 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2648 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2647 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-166 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) +(-10 -7 (-15 -2641 ((-1011) (-166 (-221)) (-538))) (-15 -2642 ((-1011) (-221) (-538))) (-15 -2643 ((-1011) (-221) (-538))) (-15 -2644 ((-1011) (-221) (-538))) (-15 -2645 ((-1011) (-221) (-538))) (-15 -2646 ((-1011) (-221) (-538))) (-15 -2647 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2648 ((-1011) (-221) (-538))) (-15 -2649 ((-1011) (-221) (-538))) (-15 -2650 ((-1011) (-221) (-538))) (-15 -2651 ((-1011) (-221) (-538))) (-15 -2652 ((-1011) (-221) (-538))) (-15 -2653 ((-1011) (-221) (-538))) (-15 -2654 ((-1011) (-221) (-538))) (-15 -2655 ((-1011) (-221) (-538))) (-15 -2656 ((-1011) (-221) (-538))) (-15 -2657 ((-1011) (-221) (-538))) (-15 -2658 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2659 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2660 ((-1011) (-1131) (-166 (-221)) (-1131) (-538))) (-15 -2661 ((-1011) (-1131) (-166 (-221)) (-1131) (-538))) (-15 -2662 ((-1011) (-538) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2663 ((-1011) (-221) (-538))) (-15 -2664 ((-1011) (-221) (-538))) (-15 -2665 ((-1011) (-221) (-538))) (-15 -2666 ((-1011) (-221) (-538))) (-15 -2667 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2668 ((-1011) (-221) (-166 (-221)) (-538) (-1131) (-538))) (-15 -2669 ((-1011) (-221) (-538))) (-15 -2670 ((-1011) (-221) (-538))) (-15 -2671 ((-1011) (-221) (-538))) (-15 -2672 ((-1011) (-221) (-538))) (-15 -2673 ((-1011) (-221) (-538))) (-15 -2674 ((-1011) (-221) (-538))) (-15 -2675 ((-1011) (-221) (-221) (-538))) (-15 -2676 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2677 ((-1011) (-221) (-221) (-221) (-538))) (-15 -2678 ((-1011) (-221) (-221) (-221) (-221) (-538)))) +((-2684 (((-1237)) 18)) (-2680 (((-1131)) 22)) (-2679 (((-1131)) 21)) (-2682 (((-1076) (-1149) (-669 (-538))) 37) (((-1076) (-1149) (-669 (-221))) 32)) (-2683 (((-112)) 16)) (-2681 (((-1131) (-1131)) 25))) +(((-740) (-10 -7 (-15 -2679 ((-1131))) (-15 -2680 ((-1131))) (-15 -2681 ((-1131) (-1131))) (-15 -2682 ((-1076) (-1149) (-669 (-221)))) (-15 -2682 ((-1076) (-1149) (-669 (-538)))) (-15 -2683 ((-112))) (-15 -2684 ((-1237))))) (T -740)) +((-2684 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-740)))) (-2683 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-740)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-538))) (-5 *2 (-1076)) (-5 *1 (-740)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-221))) (-5 *2 (-1076)) (-5 *1 (-740)))) (-2681 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))) (-2680 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740)))) (-2679 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740))))) +(-10 -7 (-15 -2679 ((-1131))) (-15 -2680 ((-1131))) (-15 -2681 ((-1131) (-1131))) (-15 -2682 ((-1076) (-1149) (-669 (-221)))) (-15 -2682 ((-1076) (-1149) (-669 (-538)))) (-15 -2683 ((-112))) (-15 -2684 ((-1237)))) +((-2686 (($ $ $) 10)) (-2687 (($ $ $ $) 9)) (-2685 (($ $ $) 12))) +(((-741 |#1|) (-10 -8 (-15 -2685 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#1|)) (-15 -2687 (|#1| |#1| |#1| |#1|))) (-742)) (T -741)) +NIL +(-10 -8 (-15 -2685 (|#1| |#1| |#1|)) (-15 -2686 (|#1| |#1| |#1|)) (-15 -2687 (|#1| |#1| |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2499 (($ $ (-895)) 28)) (-2498 (($ $ (-895)) 29)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-2686 (($ $ $) 25)) (-4317 (((-840) $) 11)) (-2687 (($ $ $ $) 26)) (-2685 (($ $ $) 24)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 30)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 27))) (((-742) (-138)) (T -742)) -((-3456 (*1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-749)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-742))))) -(-13 (-740) (-701) (-10 -8 (-15 -3456 ((-749))) (-15 -4312 ($ (-536))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-699) . T) ((-701) . T) ((-740) . T) ((-1072) . T)) -((-2684 (((-620 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 (-166 |#1|)))))) (-667 (-166 (-400 (-536)))) |#1|) 33)) (-2683 (((-620 (-166 |#1|)) (-667 (-166 (-400 (-536)))) |#1|) 23)) (-2693 (((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536)))) (-1147)) 20) (((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536))))) 19))) -(((-743 |#1|) (-10 -7 (-15 -2693 ((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536)))))) (-15 -2693 ((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536)))) (-1147))) (-15 -2683 ((-620 (-166 |#1|)) (-667 (-166 (-400 (-536)))) |#1|)) (-15 -2684 ((-620 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 (-166 |#1|)))))) (-667 (-166 (-400 (-536)))) |#1|))) (-13 (-356) (-823))) (T -743)) -((-2684 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 (-620 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 (-166 *4))))))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823))))) (-2683 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 (-620 (-166 *4))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823))))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *4 (-1147)) (-5 *2 (-920 (-166 (-400 (-536))))) (-5 *1 (-743 *5)) (-4 *5 (-13 (-356) (-823))))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 (-920 (-166 (-400 (-536))))) (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) -(-10 -7 (-15 -2693 ((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536)))))) (-15 -2693 ((-920 (-166 (-400 (-536)))) (-667 (-166 (-400 (-536)))) (-1147))) (-15 -2683 ((-620 (-166 |#1|)) (-667 (-166 (-400 (-536)))) |#1|)) (-15 -2684 ((-620 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 (-166 |#1|)))))) (-667 (-166 (-400 (-536)))) |#1|))) -((-2940 (((-172 (-536)) |#1|) 25))) -(((-744 |#1|) (-10 -7 (-15 -2940 ((-172 (-536)) |#1|))) (-397)) (T -744)) -((-2940 (*1 *2 *3) (-12 (-5 *2 (-172 (-536))) (-5 *1 (-744 *3)) (-4 *3 (-397))))) -(-10 -7 (-15 -2940 ((-172 (-536)) |#1|))) -((-2872 ((|#1| |#1| |#1|) 24)) (-2873 ((|#1| |#1| |#1|) 23)) (-2862 ((|#1| |#1| |#1|) 32)) (-2870 ((|#1| |#1| |#1|) 28)) (-2871 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2878 (((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|) 22))) -(((-745 |#1| |#2|) (-10 -7 (-15 -2878 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2862 (|#1| |#1| |#1|))) (-687 |#2|) (-356)) (T -745)) -((-2862 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2870 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2871 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2872 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2873 (*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) (-2878 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-745 *3 *4)) (-4 *3 (-687 *4))))) -(-10 -7 (-15 -2878 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2862 (|#1| |#1| |#1|))) -((-4274 (((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536)))) (-536)) 59)) (-4273 (((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536))))) 57)) (-4112 (((-536)) 71))) -(((-746 |#1| |#2|) (-10 -7 (-15 -4112 ((-536))) (-15 -4273 ((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536)))))) (-15 -4274 ((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536)))) (-536)))) (-1205 (-536)) (-403 (-536) |#1|)) (T -746)) -((-4274 (*1 *2 *3) (-12 (-5 *3 (-536)) (-4 *4 (-1205 *3)) (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-746 *4 *5)) (-4 *5 (-403 *3 *4)))) (-4273 (*1 *2) (-12 (-4 *3 (-1205 (-536))) (-5 *2 (-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536))))) (-5 *1 (-746 *3 *4)) (-4 *4 (-403 (-536) *3)))) (-4112 (*1 *2) (-12 (-4 *3 (-1205 *2)) (-5 *2 (-536)) (-5 *1 (-746 *3 *4)) (-4 *4 (-403 *2 *3))))) -(-10 -7 (-15 -4112 ((-536))) (-15 -4273 ((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536)))))) (-15 -4274 ((-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) (|:| |basisInv| (-667 (-536)))) (-536)))) -((-2893 (((-112) $ $) NIL)) (-3502 (((-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $) 21)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20) (($ (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13) (($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) 18)) (-3382 (((-112) $ $) NIL))) -(((-747) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $))))) (T -747)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-747)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-747)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-747)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-747)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-5 *1 (-747))))) -(-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-3 (|:| |nia| (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| |mdnia| (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) $)))) -((-2759 (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|))) 18) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147))) 17)) (-3931 (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|))) 20) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147))) 19))) -(((-748 |#1|) (-10 -7 (-15 -2759 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -2759 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|))))) (-543)) (T -748)) -((-3931 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-748 *4)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-748 *5)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-748 *4)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-748 *5))))) -(-10 -7 (-15 -2759 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -2759 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-920 |#1|))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2728 (($ $ $) 6)) (-1367 (((-3 $ "failed") $ $) 9)) (-2685 (($ $ (-536)) 7)) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($ $) NIL)) (-2888 (($ $ $) NIL)) (-2497 (((-112) $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3490 (($ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4312 (((-838) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ $ $) NIL))) -(((-749) (-13 (-771) (-705) (-10 -8 (-15 -2888 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -3490 ($ $ $)) (-15 -3209 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -3815 ((-3 $ "failed") $ $)) (-15 -2685 ($ $ (-536))) (-15 -3322 ($ $)) (-6 (-4350 "*"))))) (T -749)) -((-2888 (*1 *1 *1 *1) (-5 *1 (-749))) (-2889 (*1 *1 *1 *1) (-5 *1 (-749))) (-3490 (*1 *1 *1 *1) (-5 *1 (-749))) (-3209 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2091 (-749)) (|:| -3230 (-749)))) (-5 *1 (-749)))) (-3815 (*1 *1 *1 *1) (|partial| -5 *1 (-749))) (-2685 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-749)))) (-3322 (*1 *1 *1) (-5 *1 (-749)))) -(-13 (-771) (-705) (-10 -8 (-15 -2888 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -3490 ($ $ $)) (-15 -3209 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -3815 ((-3 $ "failed") $ $)) (-15 -2685 ($ $ (-536))) (-15 -3322 ($ $)) (-6 (-4350 "*")))) -((-3931 (((-3 |#2| "failed") |#2| |#2| (-113) (-1147)) 35))) -(((-750 |#1| |#2|) (-10 -7 (-15 -3931 ((-3 |#2| "failed") |#2| |#2| (-113) (-1147)))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145)) (-13 (-29 |#1|) (-1169) (-934))) (T -750)) -((-3931 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1147)) (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *1 (-750 *5 *2)) (-4 *2 (-13 (-29 *5) (-1169) (-934)))))) -(-10 -7 (-15 -3931 ((-3 |#2| "failed") |#2| |#2| (-113) (-1147)))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 7)) (-3382 (((-112) $ $) 9))) -(((-751) (-1072)) (T -751)) -NIL -(-1072) -((-4312 (((-751) |#1|) 8))) -(((-752 |#1|) (-10 -7 (-15 -4312 ((-751) |#1|))) (-1183)) (T -752)) -((-4312 (*1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-752 *3)) (-4 *3 (-1183))))) -(-10 -7 (-15 -4312 ((-751) |#1|))) -((-3462 ((|#2| |#4|) 35))) -(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3462 (|#2| |#4|))) (-444) (-1205 |#1|) (-703 |#1| |#2|) (-1205 |#3|)) (T -753)) -((-3462 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-703 *4 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-753 *4 *2 *5 *3)) (-4 *3 (-1205 *5))))) -(-10 -7 (-15 -3462 (|#2| |#4|))) -((-3816 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2688 (((-1235) (-1129) (-1129) |#4| |#5|) 33)) (-2686 ((|#4| |#4| |#5|) 73)) (-2687 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 77)) (-2689 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 16))) -(((-754 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3816 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2686 (|#4| |#4| |#5|)) (-15 -2687 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -2688 ((-1235) (-1129) (-1129) |#4| |#5|)) (-15 -2689 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -754)) -((-2689 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-2688 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1129)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *4 (-1037 *6 *7 *8)) (-5 *2 (-1235)) (-5 *1 (-754 *6 *7 *8 *4 *5)) (-4 *5 (-1043 *6 *7 *8 *4)))) (-2687 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-2686 (*1 *2 *2 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *2 (-1037 *4 *5 *6)) (-5 *1 (-754 *4 *5 *6 *2 *3)) (-4 *3 (-1043 *4 *5 *6 *2)))) (-3816 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) -(-10 -7 (-15 -3816 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2686 (|#4| |#4| |#5|)) (-15 -2687 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -2688 ((-1235) (-1129) (-1129) |#4| |#5|)) (-15 -2689 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|))) -((-3503 (((-3 (-1141 (-1141 |#1|)) "failed") |#4|) 43)) (-2690 (((-620 |#4|) |#4|) 15)) (-4283 ((|#4| |#4|) 11))) -(((-755 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2690 ((-620 |#4|) |#4|)) (-15 -3503 ((-3 (-1141 (-1141 |#1|)) "failed") |#4|)) (-15 -4283 (|#4| |#4|))) (-343) (-322 |#1|) (-1205 |#2|) (-1205 |#3|) (-893)) (T -755)) -((-4283 (*1 *2 *2) (-12 (-4 *3 (-343)) (-4 *4 (-322 *3)) (-4 *5 (-1205 *4)) (-5 *1 (-755 *3 *4 *5 *2 *6)) (-4 *2 (-1205 *5)) (-14 *6 (-893)))) (-3503 (*1 *2 *3) (|partial| -12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1205 *5)) (-5 *2 (-1141 (-1141 *4))) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1205 *6)) (-14 *7 (-893)))) (-2690 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1205 *5)) (-5 *2 (-620 *3)) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1205 *6)) (-14 *7 (-893))))) -(-10 -7 (-15 -2690 ((-620 |#4|) |#4|)) (-15 -3503 ((-3 (-1141 (-1141 |#1|)) "failed") |#4|)) (-15 -4283 (|#4| |#4|))) -((-2691 (((-2 (|:| |deter| (-620 (-1141 |#5|))) (|:| |dterm| (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-620 |#1|)) (|:| |nlead| (-620 |#5|))) (-1141 |#5|) (-620 |#1|) (-620 |#5|)) 54)) (-2692 (((-620 (-749)) |#1|) 13))) -(((-756 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2691 ((-2 (|:| |deter| (-620 (-1141 |#5|))) (|:| |dterm| (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-620 |#1|)) (|:| |nlead| (-620 |#5|))) (-1141 |#5|) (-620 |#1|) (-620 |#5|))) (-15 -2692 ((-620 (-749)) |#1|))) (-1205 |#4|) (-771) (-825) (-300) (-924 |#4| |#2| |#3|)) (T -756)) -((-2692 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-620 (-749))) (-5 *1 (-756 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *6)) (-4 *7 (-924 *6 *4 *5)))) (-2691 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1205 *9)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-300)) (-4 *10 (-924 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-620 (-1141 *10))) (|:| |dterm| (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| *10))))) (|:| |nfacts| (-620 *6)) (|:| |nlead| (-620 *10)))) (-5 *1 (-756 *6 *7 *8 *9 *10)) (-5 *3 (-1141 *10)) (-5 *4 (-620 *6)) (-5 *5 (-620 *10))))) -(-10 -7 (-15 -2691 ((-2 (|:| |deter| (-620 (-1141 |#5|))) (|:| |dterm| (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-620 |#1|)) (|:| |nlead| (-620 |#5|))) (-1141 |#5|) (-620 |#1|) (-620 |#5|))) (-15 -2692 ((-620 (-749)) |#1|))) -((-2695 (((-620 (-2 (|:| |outval| |#1|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#1|))))) (-667 (-400 (-536))) |#1|) 31)) (-2694 (((-620 |#1|) (-667 (-400 (-536))) |#1|) 21)) (-2693 (((-920 (-400 (-536))) (-667 (-400 (-536))) (-1147)) 18) (((-920 (-400 (-536))) (-667 (-400 (-536)))) 17))) -(((-757 |#1|) (-10 -7 (-15 -2693 ((-920 (-400 (-536))) (-667 (-400 (-536))))) (-15 -2693 ((-920 (-400 (-536))) (-667 (-400 (-536))) (-1147))) (-15 -2694 ((-620 |#1|) (-667 (-400 (-536))) |#1|)) (-15 -2695 ((-620 (-2 (|:| |outval| |#1|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#1|))))) (-667 (-400 (-536))) |#1|))) (-13 (-356) (-823))) (T -757)) -((-2695 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 (-620 (-2 (|:| |outval| *4) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 *4)))))) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 (-620 *4)) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *4 (-1147)) (-5 *2 (-920 (-400 (-536)))) (-5 *1 (-757 *5)) (-4 *5 (-13 (-356) (-823))))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 (-920 (-400 (-536)))) (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823)))))) -(-10 -7 (-15 -2693 ((-920 (-400 (-536))) (-667 (-400 (-536))))) (-15 -2693 ((-920 (-400 (-536))) (-667 (-400 (-536))) (-1147))) (-15 -2694 ((-620 |#1|) (-667 (-400 (-536))) |#1|)) (-15 -2695 ((-620 (-2 (|:| |outval| |#1|) (|:| |outmult| (-536)) (|:| |outvect| (-620 (-667 |#1|))))) (-667 (-400 (-536))) |#1|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 34)) (-3412 (((-620 |#2|) $) NIL)) (-3414 (((-1141 $) $ |#2|) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 |#2|)) NIL)) (-4151 (($ $) 28)) (-3512 (((-112) $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4110 (($ $ $) 93 (|has| |#1| (-543)))) (-3494 (((-620 $) $ $) 106 (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-920 (-400 (-536)))) NIL (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147))))) (((-3 $ #3#) (-920 (-536))) NIL (-3886 (-12 (|has| |#1| (-38 (-536))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536)))))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147)))))) (((-3 $ #3#) (-920 |#1|)) NIL (-3886 (-12 (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-38 (-536))))) (-12 (|has| |#1| (-38 (-536))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-535)))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-965 (-536))))))) (((-3 (-1096 |#1| |#2|) #2#) $) 18)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) ((|#2| $) NIL) (($ (-920 (-400 (-536)))) NIL (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147))))) (($ (-920 (-536))) NIL (-3886 (-12 (|has| |#1| (-38 (-536))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536)))))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147)))))) (($ (-920 |#1|)) NIL (-3886 (-12 (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-38 (-536))))) (-12 (|has| |#1| (-38 (-536))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-535)))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-965 (-536))))))) (((-1096 |#1| |#2|) $) NIL)) (-4111 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-543)))) (-4314 (($ $) NIL) (($ $ |#2|) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-4052 (((-112) $ $) NIL) (((-112) $ (-620 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3518 (((-112) $) NIL)) (-4107 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 70)) (-3489 (($ $) 119 (|has| |#1| (-444)))) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-3500 (($ $) NIL (|has| |#1| (-543)))) (-3501 (($ $) NIL (|has| |#1| (-543)))) (-3511 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3510 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1716 (($ $ |#1| (-522 |#2|) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| |#1| (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| |#1| (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-4053 (((-112) $ $) NIL) (((-112) $ (-620 $)) NIL)) (-3491 (($ $ $ $ $) 90 (|has| |#1| (-543)))) (-3526 ((|#2| $) 19)) (-3415 (($ (-1141 |#1|) |#2|) NIL) (($ (-1141 $) |#2|) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-522 |#2|)) NIL) (($ $ |#2| (-749)) 36) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-3505 (($ $ $) 60)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#2|) NIL)) (-3519 (((-112) $) NIL)) (-3148 (((-522 |#2|) $) NIL) (((-749) $ |#2|) NIL) (((-620 (-749)) $ (-620 |#2|)) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3525 (((-749) $) 20)) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 |#2|) (-522 |#2|)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3413 (((-3 |#2| #4="failed") $) NIL)) (-3486 (($ $) NIL (|has| |#1| (-444)))) (-3487 (($ $) NIL (|has| |#1| (-444)))) (-3514 (((-620 $) $) NIL)) (-3517 (($ $) 37)) (-3488 (($ $) NIL (|has| |#1| (-444)))) (-3515 (((-620 $) $) 41)) (-3516 (($ $) 39)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3504 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-749))) $ $) 82)) (-3506 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $) 67) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $ |#2|) NIL)) (-3507 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $) NIL) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $ |#2|) NIL)) (-3509 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3508 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3588 (((-1129) $) NIL)) (-3536 (($ $ $) 108 (|has| |#1| (-543)))) (-3522 (((-620 $) $) 30)) (-3151 (((-3 (-620 $) #4#) $) NIL)) (-3150 (((-3 (-620 $) #4#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| |#2|) (|:| -2488 (-749))) #4#) $) NIL)) (-4049 (((-112) $ $) NIL) (((-112) $ (-620 $)) NIL)) (-4044 (($ $ $) NIL)) (-3799 (($ $) 21)) (-4057 (((-112) $ $) NIL)) (-4050 (((-112) $ $) NIL) (((-112) $ (-620 $)) NIL)) (-4045 (($ $ $) NIL)) (-3524 (($ $) 23)) (-3589 (((-1091) $) NIL)) (-3495 (((-2 (|:| -3490 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-543)))) (-3496 (((-2 (|:| -3490 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-543)))) (-1911 (((-112) $) 52)) (-1910 ((|#1| $) 55)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 ((|#1| |#1| $) 116 (|has| |#1| (-444))) (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3497 (((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-543)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-543)))) (-3498 (($ $ |#1|) 112 (|has| |#1| (-543))) (($ $ $) NIL (|has| |#1| (-543)))) (-3499 (($ $ |#1|) 111 (|has| |#1| (-543))) (($ $ $) NIL (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-620 |#2|) (-620 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-620 |#2|) (-620 $)) NIL)) (-4112 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4165 (($ $ |#2|) NIL) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-4302 (((-522 |#2|) $) NIL) (((-749) $ |#2|) 43) (((-620 (-749)) $ (-620 |#2|)) NIL)) (-3523 (($ $) NIL)) (-3521 (($ $) 33)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| |#1| (-596 (-525))) (|has| |#2| (-596 (-525))))) (($ (-920 (-400 (-536)))) NIL (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147))))) (($ (-920 (-536))) NIL (-3886 (-12 (|has| |#1| (-38 (-536))) (|has| |#2| (-596 (-1147))) (-3671 (|has| |#1| (-38 (-400 (-536)))))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#2| (-596 (-1147)))))) (($ (-920 |#1|)) NIL (|has| |#2| (-596 (-1147)))) (((-1129) $) NIL (-12 (|has| |#1| (-1012 (-536))) (|has| |#2| (-596 (-1147))))) (((-920 |#1|) $) NIL (|has| |#2| (-596 (-1147))))) (-3145 ((|#1| $) 115 (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-920 |#1|) $) NIL (|has| |#2| (-596 (-1147)))) (((-1096 |#1| |#2|) $) 15) (($ (-1096 |#1| |#2|)) 16) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-522 |#2|)) NIL) (($ $ |#2| (-749)) 44) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 13 T CONST)) (-3513 (((-3 (-112) #3#) $ $) NIL)) (-2992 (($) 35 T CONST)) (-3492 (($ $ $ $ (-749)) 88 (|has| |#1| (-543)))) (-3493 (($ $ $ (-749)) 87 (|has| |#1| (-543)))) (-2997 (($ $ |#2|) NIL) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 54)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) 64)) (-4194 (($ $ $) 74)) (** (($ $ (-893)) NIL) (($ $ (-749)) 61)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 59) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) -(((-758 |#1| |#2|) (-13 (-1037 |#1| (-522 |#2|) |#2|) (-595 (-1096 |#1| |#2|)) (-1012 (-1096 |#1| |#2|))) (-1023) (-825)) (T -758)) -NIL -(-13 (-1037 |#1| (-522 |#2|) |#2|) (-595 (-1096 |#1| |#2|)) (-1012 (-1096 |#1| |#2|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 12)) (-4121 (((-1229 |#1|) $ (-749)) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4119 (($ (-1141 |#1|)) NIL)) (-3414 (((-1141 $) $ (-1053)) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1053))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2699 (((-620 $) $ $) 39 (|has| |#1| (-543)))) (-4110 (($ $ $) 35 (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4115 (($ $ (-749)) NIL)) (-4114 (($ $ (-749)) NIL)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-1053) #2#) $) NIL) (((-3 (-1141 |#1|) #2#) $) 10)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-1053) $) NIL) (((-1141 |#1|) $) NIL)) (-4111 (($ $ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4113 (($ $ $) NIL)) (-4108 (($ $ $) 71 (|has| |#1| (-543)))) (-4107 (((-2 (|:| -4308 |#1|) (|:| -2091 $) (|:| -3230 $)) $ $) 70 (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-749) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1053) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1053) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ $) NIL (|has| |#1| (-543)))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-1122)))) (-3415 (($ (-1141 |#1|) (-1053)) NIL) (($ (-1141 $) (-1053)) NIL)) (-4131 (($ $ (-749)) NIL)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3505 (($ $ $) 20)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1053)) NIL) (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-3148 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-749) (-749)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (((-1141 |#1|) $) NIL)) (-3413 (((-3 (-1053) #4="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3504 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3830 (-749))) $ $) 26)) (-2701 (($ $ $) 29)) (-2700 (($ $ $) 32)) (-3506 (((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $) 31)) (-3588 (((-1129) $) NIL)) (-3536 (($ $ $) 41 (|has| |#1| (-543)))) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) NIL)) (-3151 (((-3 (-620 $) #4#) $) NIL)) (-3150 (((-3 (-620 $) #4#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1053)) (|:| -2488 (-749))) #4#) $) NIL)) (-4167 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) NIL (|has| |#1| (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3495 (((-2 (|:| -3490 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-543)))) (-3496 (((-2 (|:| -3490 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-543)))) (-2696 (((-2 (|:| -4111 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-543)))) (-2697 (((-2 (|:| -4111 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-543)))) (-1911 (((-112) $) 13)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-4093 (($ $ (-749) |#1| $) 19)) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3497 (((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-543)))) (-2698 (((-2 (|:| -4111 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-543)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1053) |#1|) NIL) (($ $ (-620 (-1053)) (-620 |#1|)) NIL) (($ $ (-1053) $) NIL) (($ $ (-620 (-1053)) (-620 $)) NIL)) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-543))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-543)))) (-4118 (((-3 $ #5="failed") $ (-749)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4112 (($ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4165 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4302 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1053) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4109 (((-3 $ #5#) $ $) NIL (|has| |#1| (-543))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-543)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-1053)) NIL) (((-1141 |#1|) $) 7) (($ (-1141 |#1|)) 8) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 21 T CONST)) (-2992 (($) 24 T CONST)) (-2997 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) 28) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) -(((-759 |#1|) (-13 (-1205 |#1|) (-595 (-1141 |#1|)) (-1012 (-1141 |#1|)) (-10 -8 (-15 -4093 ($ $ (-749) |#1| $)) (-15 -3505 ($ $ $)) (-15 -3504 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3830 (-749))) $ $)) (-15 -2701 ($ $ $)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2700 ($ $ $)) (IF (|has| |#1| (-543)) (PROGN (-15 -2699 ((-620 $) $ $)) (-15 -3536 ($ $ $)) (-15 -3497 ((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3496 ((-2 (|:| -3490 $) (|:| |coef1| $)) $ $)) (-15 -3495 ((-2 (|:| -3490 $) (|:| |coef2| $)) $ $)) (-15 -2698 ((-2 (|:| -4111 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2697 ((-2 (|:| -4111 |#1|) (|:| |coef1| $)) $ $)) (-15 -2696 ((-2 (|:| -4111 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1023)) (T -759)) -((-4093 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-759 *3)) (-4 *3 (-1023)))) (-3505 (*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023)))) (-3504 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-759 *3)) (|:| |polden| *3) (|:| -3830 (-749)))) (-5 *1 (-759 *3)) (-4 *3 (-1023)))) (-2701 (*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023)))) (-3506 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4308 *3) (|:| |gap| (-749)) (|:| -2091 (-759 *3)) (|:| -3230 (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-1023)))) (-2700 (*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023)))) (-2699 (*1 *2 *1 *1) (-12 (-5 *2 (-620 (-759 *3))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-3536 (*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-543)) (-4 *2 (-1023)))) (-3497 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3490 (-759 *3)) (|:| |coef1| (-759 *3)) (|:| |coef2| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-3496 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3490 (-759 *3)) (|:| |coef1| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-3495 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3490 (-759 *3)) (|:| |coef2| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-2698 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4111 *3) (|:| |coef1| (-759 *3)) (|:| |coef2| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-2697 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4111 *3) (|:| |coef1| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) (-2696 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4111 *3) (|:| |coef2| (-759 *3)))) (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023))))) -(-13 (-1205 |#1|) (-595 (-1141 |#1|)) (-1012 (-1141 |#1|)) (-10 -8 (-15 -4093 ($ $ (-749) |#1| $)) (-15 -3505 ($ $ $)) (-15 -3504 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3830 (-749))) $ $)) (-15 -2701 ($ $ $)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2700 ($ $ $)) (IF (|has| |#1| (-543)) (PROGN (-15 -2699 ((-620 $) $ $)) (-15 -3536 ($ $ $)) (-15 -3497 ((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3496 ((-2 (|:| -3490 $) (|:| |coef1| $)) $ $)) (-15 -3495 ((-2 (|:| -3490 $) (|:| |coef2| $)) $ $)) (-15 -2698 ((-2 (|:| -4111 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2697 ((-2 (|:| -4111 |#1|) (|:| |coef1| $)) $ $)) (-15 -2696 ((-2 (|:| -4111 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-4313 (((-759 |#2|) (-1 |#2| |#1|) (-759 |#1|)) 13))) -(((-760 |#1| |#2|) (-10 -7 (-15 -4313 ((-759 |#2|) (-1 |#2| |#1|) (-759 |#1|)))) (-1023) (-1023)) (T -760)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-759 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-759 *6)) (-5 *1 (-760 *5 *6))))) -(-10 -7 (-15 -4313 ((-759 |#2|) (-1 |#2| |#1|) (-759 |#1|)))) -((-2703 ((|#1| (-749) |#1|) 32 (|has| |#1| (-38 (-400 (-536)))))) (-3129 ((|#1| (-749) |#1|) 22)) (-2702 ((|#1| (-749) |#1|) 34 (|has| |#1| (-38 (-400 (-536))))))) -(((-761 |#1|) (-10 -7 (-15 -3129 (|#1| (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -2702 (|#1| (-749) |#1|)) (-15 -2703 (|#1| (-749) |#1|))) |%noBranch|)) (-170)) (T -761)) -((-2703 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-170)))) (-2702 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-170)))) (-3129 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-170))))) -(-10 -7 (-15 -3129 (|#1| (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -2702 (|#1| (-749) |#1|)) (-15 -2703 (|#1| (-749) |#1|))) |%noBranch|)) -((-2893 (((-112) $ $) 7)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) 85)) (-4040 (((-620 $) (-620 |#4|)) 86) (((-620 $) (-620 |#4|) (-112)) 111)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) 101) (((-112) $) 97)) (-4046 ((|#4| |#4| $) 92)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-4153 (((-3 $ #1#) $) 82)) (-4043 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4041 ((|#4| |#4| $) 87)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) 105)) (-3543 (((-112) |#4| $) 136)) (-3541 (((-112) |#4| $) 133)) (-3544 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) 104) (((-112) $) 103)) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) 128)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4152 (((-3 |#4| #1#) $) 83)) (-3538 (((-620 $) |#4| $) 129)) (-3540 (((-3 (-112) (-620 $)) |#4| $) 132)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3584 (((-620 $) |#4| $) 125) (((-620 $) (-620 |#4|) $) 124) (((-620 $) (-620 |#4|) (-620 $)) 123) (((-620 $) |#4| (-620 $)) 122)) (-3794 (($ |#4| $) 117) (($ (-620 |#4|) $) 116)) (-4055 (((-620 |#4|) $) 107)) (-4049 (((-112) |#4| $) 99) (((-112) $) 95)) (-4044 ((|#4| |#4| $) 90)) (-4057 (((-112) $ $) 110)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) 100) (((-112) $) 96)) (-4045 ((|#4| |#4| $) 91)) (-3589 (((-1091) $) 10)) (-4155 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4037 (((-3 $ #1#) $ |#4|) 78)) (-4123 (($ $ |#4|) 77) (((-620 $) |#4| $) 115) (((-620 $) |#4| (-620 $)) 114) (((-620 $) (-620 |#4|) $) 113) (((-620 $) (-620 |#4|) (-620 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-4302 (((-749) $) 106)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-4042 (($ $) 88)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-4036 (((-749) $) 76 (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) 98)) (-3535 (((-620 $) |#4| $) 121) (((-620 $) |#4| (-620 $)) 120) (((-620 $) (-620 |#4|) $) 119) (((-620 $) (-620 |#4|) (-620 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) 81)) (-3542 (((-112) |#4| $) 135)) (-4288 (((-112) |#3| $) 80)) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) -(((-762 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -762)) -NIL -(-13 (-1043 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1043 |#1| |#2| |#3| |#4|) . T) ((-1072) . T) ((-1178 |#1| |#2| |#3| |#4|) . T) ((-1183) . T)) -((-2706 (((-3 (-371) "failed") (-307 |#1|) (-893)) 62 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-371) "failed") (-307 |#1|)) 54 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-371) "failed") (-400 (-920 |#1|)) (-893)) 41 (|has| |#1| (-543))) (((-3 (-371) "failed") (-400 (-920 |#1|))) 40 (|has| |#1| (-543))) (((-3 (-371) "failed") (-920 |#1|) (-893)) 31 (|has| |#1| (-1023))) (((-3 (-371) "failed") (-920 |#1|)) 30 (|has| |#1| (-1023)))) (-2704 (((-371) (-307 |#1|) (-893)) 99 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-371) (-307 |#1|)) 94 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-371) (-400 (-920 |#1|)) (-893)) 91 (|has| |#1| (-543))) (((-371) (-400 (-920 |#1|))) 90 (|has| |#1| (-543))) (((-371) (-920 |#1|) (-893)) 86 (|has| |#1| (-1023))) (((-371) (-920 |#1|)) 85 (|has| |#1| (-1023))) (((-371) |#1| (-893)) 76) (((-371) |#1|) 22)) (-2707 (((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-893)) 71 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-166 (-371)) "failed") (-307 (-166 |#1|))) 70 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-166 (-371)) "failed") (-307 |#1|) (-893)) 63 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-166 (-371)) "failed") (-307 |#1|)) 61 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|))) (-893)) 46 (|has| |#1| (-543))) (((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|)))) 45 (|has| |#1| (-543))) (((-3 (-166 (-371)) "failed") (-400 (-920 |#1|)) (-893)) 39 (|has| |#1| (-543))) (((-3 (-166 (-371)) "failed") (-400 (-920 |#1|))) 38 (|has| |#1| (-543))) (((-3 (-166 (-371)) "failed") (-920 |#1|) (-893)) 28 (|has| |#1| (-1023))) (((-3 (-166 (-371)) "failed") (-920 |#1|)) 26 (|has| |#1| (-1023))) (((-3 (-166 (-371)) "failed") (-920 (-166 |#1|)) (-893)) 18 (|has| |#1| (-170))) (((-3 (-166 (-371)) "failed") (-920 (-166 |#1|))) 15 (|has| |#1| (-170)))) (-2705 (((-166 (-371)) (-307 (-166 |#1|)) (-893)) 102 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-166 (-371)) (-307 (-166 |#1|))) 101 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-166 (-371)) (-307 |#1|) (-893)) 100 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-166 (-371)) (-307 |#1|)) 98 (-12 (|has| |#1| (-543)) (|has| |#1| (-825)))) (((-166 (-371)) (-400 (-920 (-166 |#1|))) (-893)) 93 (|has| |#1| (-543))) (((-166 (-371)) (-400 (-920 (-166 |#1|)))) 92 (|has| |#1| (-543))) (((-166 (-371)) (-400 (-920 |#1|)) (-893)) 89 (|has| |#1| (-543))) (((-166 (-371)) (-400 (-920 |#1|))) 88 (|has| |#1| (-543))) (((-166 (-371)) (-920 |#1|) (-893)) 84 (|has| |#1| (-1023))) (((-166 (-371)) (-920 |#1|)) 83 (|has| |#1| (-1023))) (((-166 (-371)) (-920 (-166 |#1|)) (-893)) 78 (|has| |#1| (-170))) (((-166 (-371)) (-920 (-166 |#1|))) 77 (|has| |#1| (-170))) (((-166 (-371)) (-166 |#1|) (-893)) 80 (|has| |#1| (-170))) (((-166 (-371)) (-166 |#1|)) 79 (|has| |#1| (-170))) (((-166 (-371)) |#1| (-893)) 27) (((-166 (-371)) |#1|) 25))) -(((-763 |#1|) (-10 -7 (-15 -2704 ((-371) |#1|)) (-15 -2704 ((-371) |#1| (-893))) (-15 -2705 ((-166 (-371)) |#1|)) (-15 -2705 ((-166 (-371)) |#1| (-893))) (IF (|has| |#1| (-170)) (PROGN (-15 -2705 ((-166 (-371)) (-166 |#1|))) (-15 -2705 ((-166 (-371)) (-166 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-920 (-166 |#1|)))) (-15 -2705 ((-166 (-371)) (-920 (-166 |#1|)) (-893)))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-15 -2704 ((-371) (-920 |#1|))) (-15 -2704 ((-371) (-920 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-920 |#1|))) (-15 -2705 ((-166 (-371)) (-920 |#1|) (-893)))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2704 ((-371) (-400 (-920 |#1|)))) (-15 -2704 ((-371) (-400 (-920 |#1|)) (-893))) (-15 -2705 ((-166 (-371)) (-400 (-920 |#1|)))) (-15 -2705 ((-166 (-371)) (-400 (-920 |#1|)) (-893))) (-15 -2705 ((-166 (-371)) (-400 (-920 (-166 |#1|))))) (-15 -2705 ((-166 (-371)) (-400 (-920 (-166 |#1|))) (-893))) (IF (|has| |#1| (-825)) (PROGN (-15 -2704 ((-371) (-307 |#1|))) (-15 -2704 ((-371) (-307 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-307 |#1|))) (-15 -2705 ((-166 (-371)) (-307 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-307 (-166 |#1|)))) (-15 -2705 ((-166 (-371)) (-307 (-166 |#1|)) (-893)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 (-166 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 (-166 |#1|)) (-893)))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-920 |#1|))) (-15 -2706 ((-3 (-371) "failed") (-920 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 |#1|))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 |#1|) (-893)))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-400 (-920 |#1|)))) (-15 -2706 ((-3 (-371) "failed") (-400 (-920 |#1|)) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 |#1|)) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|))))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|))) (-893))) (IF (|has| |#1| (-825)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-307 |#1|))) (-15 -2706 ((-3 (-371) "failed") (-307 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 |#1|))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-893)))) |%noBranch|)) |%noBranch|)) (-596 (-371))) (T -763)) -((-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2706 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-920 (-166 *5)))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-920 (-166 *4)))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2706 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2706 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2706 (*1 *2 *3) (|partial| -12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2707 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-920 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-170)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2707 (*1 *2 *3) (|partial| -12 (-5 *3 (-920 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 (-166 *5)))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 (-166 *4)))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-920 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-170)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-920 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-893)) (-4 *5 (-170)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-5 *2 (-166 (-371))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-371))))) (-2705 (*1 *2 *3) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-371))))) (-2704 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-5 *2 (-371)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2)))) (-2704 (*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2))))) -(-10 -7 (-15 -2704 ((-371) |#1|)) (-15 -2704 ((-371) |#1| (-893))) (-15 -2705 ((-166 (-371)) |#1|)) (-15 -2705 ((-166 (-371)) |#1| (-893))) (IF (|has| |#1| (-170)) (PROGN (-15 -2705 ((-166 (-371)) (-166 |#1|))) (-15 -2705 ((-166 (-371)) (-166 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-920 (-166 |#1|)))) (-15 -2705 ((-166 (-371)) (-920 (-166 |#1|)) (-893)))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-15 -2704 ((-371) (-920 |#1|))) (-15 -2704 ((-371) (-920 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-920 |#1|))) (-15 -2705 ((-166 (-371)) (-920 |#1|) (-893)))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2704 ((-371) (-400 (-920 |#1|)))) (-15 -2704 ((-371) (-400 (-920 |#1|)) (-893))) (-15 -2705 ((-166 (-371)) (-400 (-920 |#1|)))) (-15 -2705 ((-166 (-371)) (-400 (-920 |#1|)) (-893))) (-15 -2705 ((-166 (-371)) (-400 (-920 (-166 |#1|))))) (-15 -2705 ((-166 (-371)) (-400 (-920 (-166 |#1|))) (-893))) (IF (|has| |#1| (-825)) (PROGN (-15 -2704 ((-371) (-307 |#1|))) (-15 -2704 ((-371) (-307 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-307 |#1|))) (-15 -2705 ((-166 (-371)) (-307 |#1|) (-893))) (-15 -2705 ((-166 (-371)) (-307 (-166 |#1|)))) (-15 -2705 ((-166 (-371)) (-307 (-166 |#1|)) (-893)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 (-166 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 (-166 |#1|)) (-893)))) |%noBranch|) (IF (|has| |#1| (-1023)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-920 |#1|))) (-15 -2706 ((-3 (-371) "failed") (-920 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 |#1|))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-920 |#1|) (-893)))) |%noBranch|) (IF (|has| |#1| (-543)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-400 (-920 |#1|)))) (-15 -2706 ((-3 (-371) "failed") (-400 (-920 |#1|)) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 |#1|)) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|))))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-400 (-920 (-166 |#1|))) (-893))) (IF (|has| |#1| (-825)) (PROGN (-15 -2706 ((-3 (-371) "failed") (-307 |#1|))) (-15 -2706 ((-3 (-371) "failed") (-307 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 |#1|))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 |#1|) (-893))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)))) (-15 -2707 ((-3 (-166 (-371)) "failed") (-307 (-166 |#1|)) (-893)))) |%noBranch|)) |%noBranch|)) -((-2711 (((-893) (-1129)) 66)) (-2713 (((-3 (-371) "failed") (-1129)) 33)) (-2712 (((-371) (-1129)) 31)) (-2709 (((-893) (-1129)) 54)) (-2710 (((-1129) (-893)) 56)) (-2708 (((-1129) (-893)) 53))) -(((-764) (-10 -7 (-15 -2708 ((-1129) (-893))) (-15 -2709 ((-893) (-1129))) (-15 -2710 ((-1129) (-893))) (-15 -2711 ((-893) (-1129))) (-15 -2712 ((-371) (-1129))) (-15 -2713 ((-3 (-371) "failed") (-1129))))) (T -764)) -((-2713 (*1 *2 *3) (|partial| -12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-764)))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-764)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-893)) (-5 *1 (-764)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1129)) (-5 *1 (-764)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-893)) (-5 *1 (-764)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1129)) (-5 *1 (-764))))) -(-10 -7 (-15 -2708 ((-1129) (-893))) (-15 -2709 ((-893) (-1129))) (-15 -2710 ((-1129) (-893))) (-15 -2711 ((-893) (-1129))) (-15 -2712 ((-371) (-1129))) (-15 -2713 ((-3 (-371) "failed") (-1129)))) -((-2893 (((-112) $ $) 7)) (-2714 (((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 15) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009)) 13)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 16) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) -(((-765) (-138)) (T -765)) -((-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-765)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009)))))) (-2714 (*1 *2 *3 *2) (-12 (-4 *1 (-765)) (-5 *2 (-1009)) (-5 *3 (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) (-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-765)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009)))))) (-2714 (*1 *2 *3 *2) (-12 (-4 *1 (-765)) (-5 *2 (-1009)) (-5 *3 (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) -(-13 (-1072) (-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2714 ((-1009) (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) (|:| |extra| (-1009))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2714 ((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) (-1009))))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2717 (((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371))) 44) (((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371))) 43)) (-2718 (((-1235) (-1229 (-371)) (-536) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371))) 50)) (-2716 (((-1235) (-1229 (-371)) (-536) (-371) (-371) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371))) 41)) (-2715 (((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371))) 52) (((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371))) 51))) -(((-766) (-10 -7 (-15 -2715 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2715 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)))) (-15 -2716 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2717 ((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2717 ((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)))) (-15 -2718 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))))) (T -766)) -((-2718 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) (-2717 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-536)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) (-5 *7 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) (-2717 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-536)) (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) (-5 *7 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) (-2716 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) (-2715 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) (-2715 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766))))) -(-10 -7 (-15 -2715 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2715 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)))) (-15 -2716 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2717 ((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)))) (-15 -2717 ((-1235) (-1229 (-371)) (-536) (-371) (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371))) (-371) (-1229 (-371)) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)) (-1229 (-371)))) (-15 -2718 ((-1235) (-1229 (-371)) (-536) (-371) (-371) (-536) (-1 (-1235) (-1229 (-371)) (-1229 (-371)) (-371))))) -((-2727 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 53)) (-2724 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 31)) (-2726 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 52)) (-2723 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 29)) (-2725 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 51)) (-2722 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)) 19)) (-2721 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536)) 32)) (-2720 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536)) 30)) (-2719 (((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536)) 28))) -(((-767) (-10 -7 (-15 -2719 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2720 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2721 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2722 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2723 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2724 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2725 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2726 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2727 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))))) (T -767)) -((-2727 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2726 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2725 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2724 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2723 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2722 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2721 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2720 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536)))) (-2719 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) (-5 *2 (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) (|:| |success| (-112)))) (-5 *1 (-767)) (-5 *5 (-536))))) -(-10 -7 (-15 -2719 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2720 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2721 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536) (-536))) (-15 -2722 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2723 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2724 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2725 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2726 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536))) (-15 -2727 ((-2 (|:| -3756 (-371)) (|:| -1651 (-371)) (|:| |totalpts| (-536)) (|:| |success| (-112))) (-1 (-371) (-371)) (-371) (-371) (-371) (-371) (-536) (-536)))) -((-4063 (((-1179 |#1|) |#1| (-219) (-536)) 46))) -(((-768 |#1|) (-10 -7 (-15 -4063 ((-1179 |#1|) |#1| (-219) (-536)))) (-948)) (T -768)) -((-4063 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-219)) (-5 *5 (-536)) (-5 *2 (-1179 *3)) (-5 *1 (-768 *3)) (-4 *3 (-948))))) -(-10 -7 (-15 -4063 ((-1179 |#1|) |#1| (-219) (-536)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 24)) (-1367 (((-3 $ "failed") $ $) 26)) (-3891 (($) 23 T CONST)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 22 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4192 (($ $ $) 28) (($ $) 27)) (-4194 (($ $ $) 20)) (* (($ (-893) $) 21) (($ (-749) $) 25) (($ (-536) $) 29))) -(((-769) (-138)) (T -769)) -NIL -(-13 (-775) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-825) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 24)) (-3891 (($) 23 T CONST)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 22 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4194 (($ $ $) 20)) (* (($ (-893) $) 21) (($ (-749) $) 25))) -(((-770) (-138)) (T -770)) -NIL -(-13 (-772) (-23)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-772) . T) ((-825) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 24)) (-2728 (($ $ $) 27)) (-1367 (((-3 $ "failed") $ $) 26)) (-3891 (($) 23 T CONST)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 22 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4194 (($ $ $) 20)) (* (($ (-893) $) 21) (($ (-749) $) 25))) +((-2687 (*1 *1 *1 *1 *1) (-4 *1 (-742))) (-2686 (*1 *1 *1 *1) (-4 *1 (-742))) (-2685 (*1 *1 *1 *1) (-4 *1 (-742)))) +(-13 (-21) (-701) (-10 -8 (-15 -2687 ($ $ $ $)) (-15 -2686 ($ $ $)) (-15 -2685 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-701) . T) ((-1074) . T)) +((-4317 (((-840) $) NIL) (($ (-538)) 10))) +(((-743 |#1|) (-10 -8 (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-744)) (T -743)) +NIL +(-10 -8 (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2496 (((-3 $ #1="failed") $) 40)) (-2499 (($ $ (-895)) 28) (($ $ (-751)) 35)) (-3821 (((-3 $ #1#) $) 38)) (-2502 (((-112) $) 34)) (-2497 (((-3 $ #1#) $) 39)) (-2498 (($ $ (-895)) 29) (($ $ (-751)) 36)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-2686 (($ $ $) 25)) (-4317 (((-840) $) 11) (($ (-538)) 31)) (-3461 (((-751)) 32)) (-2687 (($ $ $ $) 26)) (-2685 (($ $ $) 24)) (-2991 (($) 18 T CONST)) (-2997 (($) 33 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 30) (($ $ (-751)) 37)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 27))) +(((-744) (-138)) (T -744)) +((-3461 (*1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-751)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-744))))) +(-13 (-742) (-703) (-10 -8 (-15 -3461 ((-751))) (-15 -4317 ($ (-538))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-701) . T) ((-703) . T) ((-742) . T) ((-1074) . T)) +((-2689 (((-622 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 (-166 |#1|)))))) (-669 (-166 (-402 (-538)))) |#1|) 33)) (-2688 (((-622 (-166 |#1|)) (-669 (-166 (-402 (-538)))) |#1|) 23)) (-2698 (((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538)))) (-1149)) 20) (((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538))))) 19))) +(((-745 |#1|) (-10 -7 (-15 -2698 ((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538)))))) (-15 -2698 ((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538)))) (-1149))) (-15 -2688 ((-622 (-166 |#1|)) (-669 (-166 (-402 (-538)))) |#1|)) (-15 -2689 ((-622 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 (-166 |#1|)))))) (-669 (-166 (-402 (-538)))) |#1|))) (-13 (-358) (-825))) (T -745)) +((-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 (-622 (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 (-166 *4))))))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 (-622 (-166 *4))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *4 (-1149)) (-5 *2 (-922 (-166 (-402 (-538))))) (-5 *1 (-745 *5)) (-4 *5 (-13 (-358) (-825))))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 (-922 (-166 (-402 (-538))))) (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825)))))) +(-10 -7 (-15 -2698 ((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538)))))) (-15 -2698 ((-922 (-166 (-402 (-538)))) (-669 (-166 (-402 (-538)))) (-1149))) (-15 -2688 ((-622 (-166 |#1|)) (-669 (-166 (-402 (-538)))) |#1|)) (-15 -2689 ((-622 (-2 (|:| |outval| (-166 |#1|)) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 (-166 |#1|)))))) (-669 (-166 (-402 (-538)))) |#1|))) +((-2945 (((-172 (-538)) |#1|) 25))) +(((-746 |#1|) (-10 -7 (-15 -2945 ((-172 (-538)) |#1|))) (-399)) (T -746)) +((-2945 (*1 *2 *3) (-12 (-5 *2 (-172 (-538))) (-5 *1 (-746 *3)) (-4 *3 (-399))))) +(-10 -7 (-15 -2945 ((-172 (-538)) |#1|))) +((-2877 ((|#1| |#1| |#1|) 24)) (-2878 ((|#1| |#1| |#1|) 23)) (-2867 ((|#1| |#1| |#1|) 32)) (-2875 ((|#1| |#1| |#1|) 28)) (-2876 (((-3 |#1| "failed") |#1| |#1|) 27)) (-2883 (((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|) 22))) +(((-747 |#1| |#2|) (-10 -7 (-15 -2883 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -2878 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2875 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|))) (-689 |#2|) (-358)) (T -747)) +((-2867 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2875 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2876 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2877 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2878 (*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) (-2883 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-747 *3 *4)) (-4 *3 (-689 *4))))) +(-10 -7 (-15 -2883 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -2878 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2875 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|))) +((-4279 (((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538)))) (-538)) 59)) (-4278 (((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538))))) 57)) (-4117 (((-538)) 71))) +(((-748 |#1| |#2|) (-10 -7 (-15 -4117 ((-538))) (-15 -4278 ((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538)))))) (-15 -4279 ((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538)))) (-538)))) (-1207 (-538)) (-405 (-538) |#1|)) (T -748)) +((-4279 (*1 *2 *3) (-12 (-5 *3 (-538)) (-4 *4 (-1207 *3)) (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-748 *4 *5)) (-4 *5 (-405 *3 *4)))) (-4278 (*1 *2) (-12 (-4 *3 (-1207 (-538))) (-5 *2 (-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538))))) (-5 *1 (-748 *3 *4)) (-4 *4 (-405 (-538) *3)))) (-4117 (*1 *2) (-12 (-4 *3 (-1207 *2)) (-5 *2 (-538)) (-5 *1 (-748 *3 *4)) (-4 *4 (-405 *2 *3))))) +(-10 -7 (-15 -4117 ((-538))) (-15 -4278 ((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538)))))) (-15 -4279 ((-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) (|:| |basisInv| (-669 (-538)))) (-538)))) +((-2898 (((-112) $ $) NIL)) (-3507 (((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $) 21)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20) (($ (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13) (($ (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) 18)) (-3387 (((-112) $ $) NIL))) +(((-749) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ($ (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $))))) (T -749)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-749)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-749)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-749)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-749)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-5 *1 (-749))))) +(-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ($ (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-3 (|:| |nia| (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| |mdnia| (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) $)))) +((-2764 (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|))) 18) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149))) 17)) (-3936 (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|))) 20) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149))) 19))) +(((-750 |#1|) (-10 -7 (-15 -2764 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -2764 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|))))) (-545)) (T -750)) +((-3936 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-750 *4)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-750 *5)))) (-2764 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-750 *4)))) (-2764 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-750 *5))))) +(-10 -7 (-15 -2764 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -2764 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-922 |#1|))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2733 (($ $ $) 6)) (-1368 (((-3 $ "failed") $ $) 9)) (-2690 (($ $ (-538)) 7)) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($ $) NIL)) (-2893 (($ $ $) NIL)) (-2502 (((-112) $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3495 (($ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4317 (((-840) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ $ $) NIL))) +(((-751) (-13 (-773) (-707) (-10 -8 (-15 -2893 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -3214 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -3820 ((-3 $ "failed") $ $)) (-15 -2690 ($ $ (-538))) (-15 -3327 ($ $)) (-6 (-4355 "*"))))) (T -751)) +((-2893 (*1 *1 *1 *1) (-5 *1 (-751))) (-2894 (*1 *1 *1 *1) (-5 *1 (-751))) (-3495 (*1 *1 *1 *1) (-5 *1 (-751))) (-3214 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2096 (-751)) (|:| -3235 (-751)))) (-5 *1 (-751)))) (-3820 (*1 *1 *1 *1) (|partial| -5 *1 (-751))) (-2690 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-751)))) (-3327 (*1 *1 *1) (-5 *1 (-751)))) +(-13 (-773) (-707) (-10 -8 (-15 -2893 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -3214 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -3820 ((-3 $ "failed") $ $)) (-15 -2690 ($ $ (-538))) (-15 -3327 ($ $)) (-6 (-4355 "*")))) +((-3936 (((-3 |#2| "failed") |#2| |#2| (-113) (-1149)) 35))) +(((-752 |#1| |#2|) (-10 -7 (-15 -3936 ((-3 |#2| "failed") |#2| |#2| (-113) (-1149)))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)) (-13 (-29 |#1|) (-1171) (-936))) (T -752)) +((-3936 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *1 (-752 *5 *2)) (-4 *2 (-13 (-29 *5) (-1171) (-936)))))) +(-10 -7 (-15 -3936 ((-3 |#2| "failed") |#2| |#2| (-113) (-1149)))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 7)) (-3387 (((-112) $ $) 9))) +(((-753) (-1074)) (T -753)) +NIL +(-1074) +((-4317 (((-753) |#1|) 8))) +(((-754 |#1|) (-10 -7 (-15 -4317 ((-753) |#1|))) (-1185)) (T -754)) +((-4317 (*1 *2 *3) (-12 (-5 *2 (-753)) (-5 *1 (-754 *3)) (-4 *3 (-1185))))) +(-10 -7 (-15 -4317 ((-753) |#1|))) +((-3467 ((|#2| |#4|) 35))) +(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3467 (|#2| |#4|))) (-446) (-1207 |#1|) (-705 |#1| |#2|) (-1207 |#3|)) (T -755)) +((-3467 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-705 *4 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-755 *4 *2 *5 *3)) (-4 *3 (-1207 *5))))) +(-10 -7 (-15 -3467 (|#2| |#4|))) +((-3821 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2693 (((-1237) (-1131) (-1131) |#4| |#5|) 33)) (-2691 ((|#4| |#4| |#5|) 73)) (-2692 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|) 77)) (-2694 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|) 16))) +(((-756 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3821 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2691 (|#4| |#4| |#5|)) (-15 -2692 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -2693 ((-1237) (-1131) (-1131) |#4| |#5|)) (-15 -2694 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -756)) +((-2694 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2693 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1131)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *4 (-1039 *6 *7 *8)) (-5 *2 (-1237)) (-5 *1 (-756 *6 *7 *8 *4 *5)) (-4 *5 (-1045 *6 *7 *8 *4)))) (-2692 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-2691 (*1 *2 *2 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *2 (-1039 *4 *5 *6)) (-5 *1 (-756 *4 *5 *6 *2 *3)) (-4 *3 (-1045 *4 *5 *6 *2)))) (-3821 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) +(-10 -7 (-15 -3821 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2691 (|#4| |#4| |#5|)) (-15 -2692 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -2693 ((-1237) (-1131) (-1131) |#4| |#5|)) (-15 -2694 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|))) +((-3508 (((-3 (-1143 (-1143 |#1|)) "failed") |#4|) 43)) (-2695 (((-622 |#4|) |#4|) 15)) (-4288 ((|#4| |#4|) 11))) +(((-757 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2695 ((-622 |#4|) |#4|)) (-15 -3508 ((-3 (-1143 (-1143 |#1|)) "failed") |#4|)) (-15 -4288 (|#4| |#4|))) (-345) (-324 |#1|) (-1207 |#2|) (-1207 |#3|) (-895)) (T -757)) +((-4288 (*1 *2 *2) (-12 (-4 *3 (-345)) (-4 *4 (-324 *3)) (-4 *5 (-1207 *4)) (-5 *1 (-757 *3 *4 *5 *2 *6)) (-4 *2 (-1207 *5)) (-14 *6 (-895)))) (-3508 (*1 *2 *3) (|partial| -12 (-4 *4 (-345)) (-4 *5 (-324 *4)) (-4 *6 (-1207 *5)) (-5 *2 (-1143 (-1143 *4))) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1207 *6)) (-14 *7 (-895)))) (-2695 (*1 *2 *3) (-12 (-4 *4 (-345)) (-4 *5 (-324 *4)) (-4 *6 (-1207 *5)) (-5 *2 (-622 *3)) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1207 *6)) (-14 *7 (-895))))) +(-10 -7 (-15 -2695 ((-622 |#4|) |#4|)) (-15 -3508 ((-3 (-1143 (-1143 |#1|)) "failed") |#4|)) (-15 -4288 (|#4| |#4|))) +((-2696 (((-2 (|:| |deter| (-622 (-1143 |#5|))) (|:| |dterm| (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-622 |#1|)) (|:| |nlead| (-622 |#5|))) (-1143 |#5|) (-622 |#1|) (-622 |#5|)) 54)) (-2697 (((-622 (-751)) |#1|) 13))) +(((-758 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2696 ((-2 (|:| |deter| (-622 (-1143 |#5|))) (|:| |dterm| (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-622 |#1|)) (|:| |nlead| (-622 |#5|))) (-1143 |#5|) (-622 |#1|) (-622 |#5|))) (-15 -2697 ((-622 (-751)) |#1|))) (-1207 |#4|) (-773) (-827) (-302) (-926 |#4| |#2| |#3|)) (T -758)) +((-2697 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-622 (-751))) (-5 *1 (-758 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *6)) (-4 *7 (-926 *6 *4 *5)))) (-2696 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1207 *9)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-302)) (-4 *10 (-926 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-622 (-1143 *10))) (|:| |dterm| (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| *10))))) (|:| |nfacts| (-622 *6)) (|:| |nlead| (-622 *10)))) (-5 *1 (-758 *6 *7 *8 *9 *10)) (-5 *3 (-1143 *10)) (-5 *4 (-622 *6)) (-5 *5 (-622 *10))))) +(-10 -7 (-15 -2696 ((-2 (|:| |deter| (-622 (-1143 |#5|))) (|:| |dterm| (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-622 |#1|)) (|:| |nlead| (-622 |#5|))) (-1143 |#5|) (-622 |#1|) (-622 |#5|))) (-15 -2697 ((-622 (-751)) |#1|))) +((-2700 (((-622 (-2 (|:| |outval| |#1|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#1|))))) (-669 (-402 (-538))) |#1|) 31)) (-2699 (((-622 |#1|) (-669 (-402 (-538))) |#1|) 21)) (-2698 (((-922 (-402 (-538))) (-669 (-402 (-538))) (-1149)) 18) (((-922 (-402 (-538))) (-669 (-402 (-538)))) 17))) +(((-759 |#1|) (-10 -7 (-15 -2698 ((-922 (-402 (-538))) (-669 (-402 (-538))))) (-15 -2698 ((-922 (-402 (-538))) (-669 (-402 (-538))) (-1149))) (-15 -2699 ((-622 |#1|) (-669 (-402 (-538))) |#1|)) (-15 -2700 ((-622 (-2 (|:| |outval| |#1|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#1|))))) (-669 (-402 (-538))) |#1|))) (-13 (-358) (-825))) (T -759)) +((-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 (-622 (-2 (|:| |outval| *4) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 *4)))))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))) (-2699 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 (-622 *4)) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))) (-2698 (*1 *2 *3 *4) (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *4 (-1149)) (-5 *2 (-922 (-402 (-538)))) (-5 *1 (-759 *5)) (-4 *5 (-13 (-358) (-825))))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 (-922 (-402 (-538)))) (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825)))))) +(-10 -7 (-15 -2698 ((-922 (-402 (-538))) (-669 (-402 (-538))))) (-15 -2698 ((-922 (-402 (-538))) (-669 (-402 (-538))) (-1149))) (-15 -2699 ((-622 |#1|) (-669 (-402 (-538))) |#1|)) (-15 -2700 ((-622 (-2 (|:| |outval| |#1|) (|:| |outmult| (-538)) (|:| |outvect| (-622 (-669 |#1|))))) (-669 (-402 (-538))) |#1|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 34)) (-3417 (((-622 |#2|) $) NIL)) (-3419 (((-1143 $) $ |#2|) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 |#2|)) NIL)) (-4156 (($ $) 28)) (-3517 (((-112) $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4115 (($ $ $) 93 (|has| |#1| (-545)))) (-3499 (((-622 $) $ $) 106 (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 |#2| #2#) $) NIL) (((-3 $ #3="failed") (-922 (-402 (-538)))) NIL (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149))))) (((-3 $ #3#) (-922 (-538))) NIL (-3891 (-12 (|has| |#1| (-38 (-538))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538)))))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149)))))) (((-3 $ #3#) (-922 |#1|)) NIL (-3891 (-12 (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-38 (-538))))) (-12 (|has| |#1| (-38 (-538))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-967 (-538))))))) (((-3 (-1098 |#1| |#2|) #2#) $) 18)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) ((|#2| $) NIL) (($ (-922 (-402 (-538)))) NIL (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149))))) (($ (-922 (-538))) NIL (-3891 (-12 (|has| |#1| (-38 (-538))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538)))))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149)))))) (($ (-922 |#1|)) NIL (-3891 (-12 (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-38 (-538))))) (-12 (|has| |#1| (-38 (-538))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-537)))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-967 (-538))))))) (((-1098 |#1| |#2|) $) NIL)) (-4116 (($ $ $ |#2|) NIL (|has| |#1| (-170))) (($ $ $) 104 (|has| |#1| (-545)))) (-4319 (($ $) NIL) (($ $ |#2|) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-4057 (((-112) $ $) NIL) (((-112) $ (-622 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3523 (((-112) $) NIL)) (-4112 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 70)) (-3494 (($ $) 119 (|has| |#1| (-446)))) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-3505 (($ $) NIL (|has| |#1| (-545)))) (-3506 (($ $) NIL (|has| |#1| (-545)))) (-3516 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3515 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-1721 (($ $ |#1| (-524 |#2|) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| |#1| (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| |#1| (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-4058 (((-112) $ $) NIL) (((-112) $ (-622 $)) NIL)) (-3496 (($ $ $ $ $) 90 (|has| |#1| (-545)))) (-3531 ((|#2| $) 19)) (-3420 (($ (-1143 |#1|) |#2|) NIL) (($ (-1143 $) |#2|) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-524 |#2|)) NIL) (($ $ |#2| (-751)) 36) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-3510 (($ $ $) 60)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#2|) NIL)) (-3524 (((-112) $) NIL)) (-3153 (((-524 |#2|) $) NIL) (((-751) $ |#2|) NIL) (((-622 (-751)) $ (-622 |#2|)) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3530 (((-751) $) 20)) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 |#2|) (-524 |#2|)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3418 (((-3 |#2| #4="failed") $) NIL)) (-3491 (($ $) NIL (|has| |#1| (-446)))) (-3492 (($ $) NIL (|has| |#1| (-446)))) (-3519 (((-622 $) $) NIL)) (-3522 (($ $) 37)) (-3493 (($ $) NIL (|has| |#1| (-446)))) (-3520 (((-622 $) $) 41)) (-3521 (($ $) 39)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3509 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3835 (-751))) $ $) 82)) (-3511 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $) 67) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $ |#2|) NIL)) (-3512 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $) NIL) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $ |#2|) NIL)) (-3514 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3513 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3593 (((-1131) $) NIL)) (-3541 (($ $ $) 108 (|has| |#1| (-545)))) (-3527 (((-622 $) $) 30)) (-3156 (((-3 (-622 $) #4#) $) NIL)) (-3155 (((-3 (-622 $) #4#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| |#2|) (|:| -2493 (-751))) #4#) $) NIL)) (-4054 (((-112) $ $) NIL) (((-112) $ (-622 $)) NIL)) (-4049 (($ $ $) NIL)) (-3804 (($ $) 21)) (-4062 (((-112) $ $) NIL)) (-4055 (((-112) $ $) NIL) (((-112) $ (-622 $)) NIL)) (-4050 (($ $ $) NIL)) (-3529 (($ $) 23)) (-3594 (((-1093) $) NIL)) (-3500 (((-2 (|:| -3495 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-545)))) (-3501 (((-2 (|:| -3495 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-545)))) (-1916 (((-112) $) 52)) (-1915 ((|#1| $) 55)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 ((|#1| |#1| $) 116 (|has| |#1| (-446))) (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3502 (((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-545)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-3503 (($ $ |#1|) 112 (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-3504 (($ $ |#1|) 111 (|has| |#1| (-545))) (($ $ $) NIL (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-622 |#2|) (-622 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-622 |#2|) (-622 $)) NIL)) (-4117 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4170 (($ $ |#2|) NIL) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-4307 (((-524 |#2|) $) NIL) (((-751) $ |#2|) 43) (((-622 (-751)) $ (-622 |#2|)) NIL)) (-3528 (($ $) NIL)) (-3526 (($ $) 33)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| |#1| (-598 (-527))) (|has| |#2| (-598 (-527))))) (($ (-922 (-402 (-538)))) NIL (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149))))) (($ (-922 (-538))) NIL (-3891 (-12 (|has| |#1| (-38 (-538))) (|has| |#2| (-598 (-1149))) (-3676 (|has| |#1| (-38 (-402 (-538)))))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#2| (-598 (-1149)))))) (($ (-922 |#1|)) NIL (|has| |#2| (-598 (-1149)))) (((-1131) $) NIL (-12 (|has| |#1| (-1014 (-538))) (|has| |#2| (-598 (-1149))))) (((-922 |#1|) $) NIL (|has| |#2| (-598 (-1149))))) (-3150 ((|#1| $) 115 (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-922 |#1|) $) NIL (|has| |#2| (-598 (-1149)))) (((-1098 |#1| |#2|) $) 15) (($ (-1098 |#1| |#2|)) 16) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-524 |#2|)) NIL) (($ $ |#2| (-751)) 44) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 13 T CONST)) (-3518 (((-3 (-112) #3#) $ $) NIL)) (-2997 (($) 35 T CONST)) (-3497 (($ $ $ $ (-751)) 88 (|has| |#1| (-545)))) (-3498 (($ $ $ (-751)) 87 (|has| |#1| (-545)))) (-3002 (($ $ |#2|) NIL) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 54)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) 64)) (-4199 (($ $ $) 74)) (** (($ $ (-895)) NIL) (($ $ (-751)) 61)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 59) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 58) (($ $ |#1|) NIL))) +(((-760 |#1| |#2|) (-13 (-1039 |#1| (-524 |#2|) |#2|) (-597 (-1098 |#1| |#2|)) (-1014 (-1098 |#1| |#2|))) (-1025) (-827)) (T -760)) +NIL +(-13 (-1039 |#1| (-524 |#2|) |#2|) (-597 (-1098 |#1| |#2|)) (-1014 (-1098 |#1| |#2|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 12)) (-4126 (((-1231 |#1|) $ (-751)) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4124 (($ (-1143 |#1|)) NIL)) (-3419 (((-1143 $) $ (-1055)) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1055))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2704 (((-622 $) $ $) 39 (|has| |#1| (-545)))) (-4115 (($ $ $) 35 (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-4120 (($ $ (-751)) NIL)) (-4119 (($ $ (-751)) NIL)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-1055) #2#) $) NIL) (((-3 (-1143 |#1|) #2#) $) 10)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-1055) $) NIL) (((-1143 |#1|) $) NIL)) (-4116 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) 43 (|has| |#1| (-170)))) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4118 (($ $ $) NIL)) (-4113 (($ $ $) 71 (|has| |#1| (-545)))) (-4112 (((-2 (|:| -4313 |#1|) (|:| -2096 $) (|:| -3235 $)) $ $) 70 (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-751) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1055) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1055) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ $) NIL (|has| |#1| (-545)))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3420 (($ (-1143 |#1|) (-1055)) NIL) (($ (-1143 $) (-1055)) NIL)) (-4136 (($ $ (-751)) NIL)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3510 (($ $ $) 20)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1055)) NIL) (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-3153 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-751) (-751)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4125 (((-1143 |#1|) $) NIL)) (-3418 (((-3 (-1055) #4="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3509 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3835 (-751))) $ $) 26)) (-2706 (($ $ $) 29)) (-2705 (($ $ $) 32)) (-3511 (((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $) 31)) (-3593 (((-1131) $) NIL)) (-3541 (($ $ $) 41 (|has| |#1| (-545)))) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) NIL)) (-3156 (((-3 (-622 $) #4#) $) NIL)) (-3155 (((-3 (-622 $) #4#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1055)) (|:| -2493 (-751))) #4#) $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) NIL (|has| |#1| (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3500 (((-2 (|:| -3495 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-545)))) (-3501 (((-2 (|:| -3495 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-545)))) (-2701 (((-2 (|:| -4116 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-545)))) (-2702 (((-2 (|:| -4116 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-545)))) (-1916 (((-112) $) 13)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-4098 (($ $ (-751) |#1| $) 19)) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3502 (((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-545)))) (-2703 (((-2 (|:| -4116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-545)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-622 (-1055)) (-622 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-622 (-1055)) (-622 $)) NIL)) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-545))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-545)))) (-4123 (((-3 $ #5="failed") $ (-751)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4117 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) NIL (|has| |#1| (-170)))) (-4170 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4307 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1055) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4114 (((-3 $ #5#) $ $) NIL (|has| |#1| (-545))) (((-3 (-402 $) #5#) (-402 $) $) NIL (|has| |#1| (-545)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-1055)) NIL) (((-1143 |#1|) $) 7) (($ (-1143 |#1|)) 8) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 21 T CONST)) (-2997 (($) 24 T CONST)) (-3002 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) 28) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 23) (($ $ |#1|) NIL))) +(((-761 |#1|) (-13 (-1207 |#1|) (-597 (-1143 |#1|)) (-1014 (-1143 |#1|)) (-10 -8 (-15 -4098 ($ $ (-751) |#1| $)) (-15 -3510 ($ $ $)) (-15 -3509 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3835 (-751))) $ $)) (-15 -2706 ($ $ $)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2705 ($ $ $)) (IF (|has| |#1| (-545)) (PROGN (-15 -2704 ((-622 $) $ $)) (-15 -3541 ($ $ $)) (-15 -3502 ((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3501 ((-2 (|:| -3495 $) (|:| |coef1| $)) $ $)) (-15 -3500 ((-2 (|:| -3495 $) (|:| |coef2| $)) $ $)) (-15 -2703 ((-2 (|:| -4116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2702 ((-2 (|:| -4116 |#1|) (|:| |coef1| $)) $ $)) (-15 -2701 ((-2 (|:| -4116 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1025)) (T -761)) +((-4098 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-761 *3)) (-4 *3 (-1025)))) (-3510 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025)))) (-3509 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-761 *3)) (|:| |polden| *3) (|:| -3835 (-751)))) (-5 *1 (-761 *3)) (-4 *3 (-1025)))) (-2706 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025)))) (-3511 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4313 *3) (|:| |gap| (-751)) (|:| -2096 (-761 *3)) (|:| -3235 (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-1025)))) (-2705 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025)))) (-2704 (*1 *2 *1 *1) (-12 (-5 *2 (-622 (-761 *3))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-3541 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-545)) (-4 *2 (-1025)))) (-3502 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3495 (-761 *3)) (|:| |coef1| (-761 *3)) (|:| |coef2| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-3501 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3495 (-761 *3)) (|:| |coef1| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-3500 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3495 (-761 *3)) (|:| |coef2| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-2703 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4116 *3) (|:| |coef1| (-761 *3)) (|:| |coef2| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-2702 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4116 *3) (|:| |coef1| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) (-2701 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4116 *3) (|:| |coef2| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025))))) +(-13 (-1207 |#1|) (-597 (-1143 |#1|)) (-1014 (-1143 |#1|)) (-10 -8 (-15 -4098 ($ $ (-751) |#1| $)) (-15 -3510 ($ $ $)) (-15 -3509 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3835 (-751))) $ $)) (-15 -2706 ($ $ $)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2705 ($ $ $)) (IF (|has| |#1| (-545)) (PROGN (-15 -2704 ((-622 $) $ $)) (-15 -3541 ($ $ $)) (-15 -3502 ((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3501 ((-2 (|:| -3495 $) (|:| |coef1| $)) $ $)) (-15 -3500 ((-2 (|:| -3495 $) (|:| |coef2| $)) $ $)) (-15 -2703 ((-2 (|:| -4116 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2702 ((-2 (|:| -4116 |#1|) (|:| |coef1| $)) $ $)) (-15 -2701 ((-2 (|:| -4116 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-4318 (((-761 |#2|) (-1 |#2| |#1|) (-761 |#1|)) 13))) +(((-762 |#1| |#2|) (-10 -7 (-15 -4318 ((-761 |#2|) (-1 |#2| |#1|) (-761 |#1|)))) (-1025) (-1025)) (T -762)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-761 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-761 *6)) (-5 *1 (-762 *5 *6))))) +(-10 -7 (-15 -4318 ((-761 |#2|) (-1 |#2| |#1|) (-761 |#1|)))) +((-2708 ((|#1| (-751) |#1|) 32 (|has| |#1| (-38 (-402 (-538)))))) (-3134 ((|#1| (-751) |#1|) 22)) (-2707 ((|#1| (-751) |#1|) 34 (|has| |#1| (-38 (-402 (-538))))))) +(((-763 |#1|) (-10 -7 (-15 -3134 (|#1| (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -2707 (|#1| (-751) |#1|)) (-15 -2708 (|#1| (-751) |#1|))) |%noBranch|)) (-170)) (T -763)) +((-2708 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-170)))) (-2707 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-170)))) (-3134 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-170))))) +(-10 -7 (-15 -3134 (|#1| (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -2707 (|#1| (-751) |#1|)) (-15 -2708 (|#1| (-751) |#1|))) |%noBranch|)) +((-2898 (((-112) $ $) 7)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) 85)) (-4045 (((-622 $) (-622 |#4|)) 86) (((-622 $) (-622 |#4|) (-112)) 111)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) 101) (((-112) $) 97)) (-4051 ((|#4| |#4| $) 92)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 126)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-4158 (((-3 $ #1#) $) 82)) (-4048 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4046 ((|#4| |#4| $) 87)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) 105)) (-3548 (((-112) |#4| $) 136)) (-3546 (((-112) |#4| $) 133)) (-3549 (((-112) |#4| $) 137) (((-112) $) 134)) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) 104) (((-112) $) 103)) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) 128)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 127)) (-4157 (((-3 |#4| #1#) $) 83)) (-3543 (((-622 $) |#4| $) 129)) (-3545 (((-3 (-112) (-622 $)) |#4| $) 132)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3589 (((-622 $) |#4| $) 125) (((-622 $) (-622 |#4|) $) 124) (((-622 $) (-622 |#4|) (-622 $)) 123) (((-622 $) |#4| (-622 $)) 122)) (-3799 (($ |#4| $) 117) (($ (-622 |#4|) $) 116)) (-4060 (((-622 |#4|) $) 107)) (-4054 (((-112) |#4| $) 99) (((-112) $) 95)) (-4049 ((|#4| |#4| $) 90)) (-4062 (((-112) $ $) 110)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) 100) (((-112) $) 96)) (-4050 ((|#4| |#4| $) 91)) (-3594 (((-1093) $) 10)) (-4160 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4042 (((-3 $ #1#) $ |#4|) 78)) (-4128 (($ $ |#4|) 77) (((-622 $) |#4| $) 115) (((-622 $) |#4| (-622 $)) 114) (((-622 $) (-622 |#4|) $) 113) (((-622 $) (-622 |#4|) (-622 $)) 112)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-4307 (((-751) $) 106)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-4047 (($ $) 88)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-4041 (((-751) $) 76 (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) 98)) (-3540 (((-622 $) |#4| $) 121) (((-622 $) |#4| (-622 $)) 120) (((-622 $) (-622 |#4|) $) 119) (((-622 $) (-622 |#4|) (-622 $)) 118)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) 81)) (-3547 (((-112) |#4| $) 135)) (-4293 (((-112) |#3| $) 80)) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353))))) +(((-764 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -764)) +NIL +(-13 (-1045 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1074) . T) ((-1180 |#1| |#2| |#3| |#4|) . T) ((-1185) . T)) +((-2711 (((-3 (-373) "failed") (-309 |#1|) (-895)) 62 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-373) "failed") (-309 |#1|)) 54 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-373) "failed") (-402 (-922 |#1|)) (-895)) 41 (|has| |#1| (-545))) (((-3 (-373) "failed") (-402 (-922 |#1|))) 40 (|has| |#1| (-545))) (((-3 (-373) "failed") (-922 |#1|) (-895)) 31 (|has| |#1| (-1025))) (((-3 (-373) "failed") (-922 |#1|)) 30 (|has| |#1| (-1025)))) (-2709 (((-373) (-309 |#1|) (-895)) 99 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-373) (-309 |#1|)) 94 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-373) (-402 (-922 |#1|)) (-895)) 91 (|has| |#1| (-545))) (((-373) (-402 (-922 |#1|))) 90 (|has| |#1| (-545))) (((-373) (-922 |#1|) (-895)) 86 (|has| |#1| (-1025))) (((-373) (-922 |#1|)) 85 (|has| |#1| (-1025))) (((-373) |#1| (-895)) 76) (((-373) |#1|) 22)) (-2712 (((-3 (-166 (-373)) "failed") (-309 (-166 |#1|)) (-895)) 71 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-166 (-373)) "failed") (-309 (-166 |#1|))) 70 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-166 (-373)) "failed") (-309 |#1|) (-895)) 63 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-166 (-373)) "failed") (-309 |#1|)) 61 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|))) (-895)) 46 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|)))) 45 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-402 (-922 |#1|)) (-895)) 39 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-402 (-922 |#1|))) 38 (|has| |#1| (-545))) (((-3 (-166 (-373)) "failed") (-922 |#1|) (-895)) 28 (|has| |#1| (-1025))) (((-3 (-166 (-373)) "failed") (-922 |#1|)) 26 (|has| |#1| (-1025))) (((-3 (-166 (-373)) "failed") (-922 (-166 |#1|)) (-895)) 18 (|has| |#1| (-170))) (((-3 (-166 (-373)) "failed") (-922 (-166 |#1|))) 15 (|has| |#1| (-170)))) (-2710 (((-166 (-373)) (-309 (-166 |#1|)) (-895)) 102 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-166 (-373)) (-309 (-166 |#1|))) 101 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-166 (-373)) (-309 |#1|) (-895)) 100 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-166 (-373)) (-309 |#1|)) 98 (-12 (|has| |#1| (-545)) (|has| |#1| (-827)))) (((-166 (-373)) (-402 (-922 (-166 |#1|))) (-895)) 93 (|has| |#1| (-545))) (((-166 (-373)) (-402 (-922 (-166 |#1|)))) 92 (|has| |#1| (-545))) (((-166 (-373)) (-402 (-922 |#1|)) (-895)) 89 (|has| |#1| (-545))) (((-166 (-373)) (-402 (-922 |#1|))) 88 (|has| |#1| (-545))) (((-166 (-373)) (-922 |#1|) (-895)) 84 (|has| |#1| (-1025))) (((-166 (-373)) (-922 |#1|)) 83 (|has| |#1| (-1025))) (((-166 (-373)) (-922 (-166 |#1|)) (-895)) 78 (|has| |#1| (-170))) (((-166 (-373)) (-922 (-166 |#1|))) 77 (|has| |#1| (-170))) (((-166 (-373)) (-166 |#1|) (-895)) 80 (|has| |#1| (-170))) (((-166 (-373)) (-166 |#1|)) 79 (|has| |#1| (-170))) (((-166 (-373)) |#1| (-895)) 27) (((-166 (-373)) |#1|) 25))) +(((-765 |#1|) (-10 -7 (-15 -2709 ((-373) |#1|)) (-15 -2709 ((-373) |#1| (-895))) (-15 -2710 ((-166 (-373)) |#1|)) (-15 -2710 ((-166 (-373)) |#1| (-895))) (IF (|has| |#1| (-170)) (PROGN (-15 -2710 ((-166 (-373)) (-166 |#1|))) (-15 -2710 ((-166 (-373)) (-166 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-922 (-166 |#1|)))) (-15 -2710 ((-166 (-373)) (-922 (-166 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -2709 ((-373) (-922 |#1|))) (-15 -2709 ((-373) (-922 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-922 |#1|))) (-15 -2710 ((-166 (-373)) (-922 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2709 ((-373) (-402 (-922 |#1|)))) (-15 -2709 ((-373) (-402 (-922 |#1|)) (-895))) (-15 -2710 ((-166 (-373)) (-402 (-922 |#1|)))) (-15 -2710 ((-166 (-373)) (-402 (-922 |#1|)) (-895))) (-15 -2710 ((-166 (-373)) (-402 (-922 (-166 |#1|))))) (-15 -2710 ((-166 (-373)) (-402 (-922 (-166 |#1|))) (-895))) (IF (|has| |#1| (-827)) (PROGN (-15 -2709 ((-373) (-309 |#1|))) (-15 -2709 ((-373) (-309 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-309 |#1|))) (-15 -2710 ((-166 (-373)) (-309 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-309 (-166 |#1|)))) (-15 -2710 ((-166 (-373)) (-309 (-166 |#1|)) (-895)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 (-166 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 (-166 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-922 |#1|))) (-15 -2711 ((-3 (-373) "failed") (-922 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 |#1|))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-402 (-922 |#1|)))) (-15 -2711 ((-3 (-373) "failed") (-402 (-922 |#1|)) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 |#1|)) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|))))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|))) (-895))) (IF (|has| |#1| (-827)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-309 |#1|))) (-15 -2711 ((-3 (-373) "failed") (-309 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 |#1|))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 (-166 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 (-166 |#1|)) (-895)))) |%noBranch|)) |%noBranch|)) (-598 (-373))) (T -765)) +((-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2711 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-922 (-166 *5)))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-922 (-166 *4)))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2711 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2711 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2711 (*1 *2 *3) (|partial| -12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2712 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-922 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2712 (*1 *2 *3) (|partial| -12 (-5 *3 (-922 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-309 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 (-166 *5)))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 (-166 *4)))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2709 (*1 *2 *3 *4) (-12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) (-2709 (*1 *2 *3) (-12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-922 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-922 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *3 (-166 *5)) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) (-2710 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-166 (-373))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-373))))) (-2710 (*1 *2 *3) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-373))))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-373)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2))))) +(-10 -7 (-15 -2709 ((-373) |#1|)) (-15 -2709 ((-373) |#1| (-895))) (-15 -2710 ((-166 (-373)) |#1|)) (-15 -2710 ((-166 (-373)) |#1| (-895))) (IF (|has| |#1| (-170)) (PROGN (-15 -2710 ((-166 (-373)) (-166 |#1|))) (-15 -2710 ((-166 (-373)) (-166 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-922 (-166 |#1|)))) (-15 -2710 ((-166 (-373)) (-922 (-166 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -2709 ((-373) (-922 |#1|))) (-15 -2709 ((-373) (-922 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-922 |#1|))) (-15 -2710 ((-166 (-373)) (-922 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2709 ((-373) (-402 (-922 |#1|)))) (-15 -2709 ((-373) (-402 (-922 |#1|)) (-895))) (-15 -2710 ((-166 (-373)) (-402 (-922 |#1|)))) (-15 -2710 ((-166 (-373)) (-402 (-922 |#1|)) (-895))) (-15 -2710 ((-166 (-373)) (-402 (-922 (-166 |#1|))))) (-15 -2710 ((-166 (-373)) (-402 (-922 (-166 |#1|))) (-895))) (IF (|has| |#1| (-827)) (PROGN (-15 -2709 ((-373) (-309 |#1|))) (-15 -2709 ((-373) (-309 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-309 |#1|))) (-15 -2710 ((-166 (-373)) (-309 |#1|) (-895))) (-15 -2710 ((-166 (-373)) (-309 (-166 |#1|)))) (-15 -2710 ((-166 (-373)) (-309 (-166 |#1|)) (-895)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 (-166 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 (-166 |#1|)) (-895)))) |%noBranch|) (IF (|has| |#1| (-1025)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-922 |#1|))) (-15 -2711 ((-3 (-373) "failed") (-922 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 |#1|))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-922 |#1|) (-895)))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-402 (-922 |#1|)))) (-15 -2711 ((-3 (-373) "failed") (-402 (-922 |#1|)) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 |#1|)) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|))))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-402 (-922 (-166 |#1|))) (-895))) (IF (|has| |#1| (-827)) (PROGN (-15 -2711 ((-3 (-373) "failed") (-309 |#1|))) (-15 -2711 ((-3 (-373) "failed") (-309 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 |#1|))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 |#1|) (-895))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 (-166 |#1|)))) (-15 -2712 ((-3 (-166 (-373)) "failed") (-309 (-166 |#1|)) (-895)))) |%noBranch|)) |%noBranch|)) +((-2716 (((-895) (-1131)) 66)) (-2718 (((-3 (-373) "failed") (-1131)) 33)) (-2717 (((-373) (-1131)) 31)) (-2714 (((-895) (-1131)) 54)) (-2715 (((-1131) (-895)) 56)) (-2713 (((-1131) (-895)) 53))) +(((-766) (-10 -7 (-15 -2713 ((-1131) (-895))) (-15 -2714 ((-895) (-1131))) (-15 -2715 ((-1131) (-895))) (-15 -2716 ((-895) (-1131))) (-15 -2717 ((-373) (-1131))) (-15 -2718 ((-3 (-373) "failed") (-1131))))) (T -766)) +((-2718 (*1 *2 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-766)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-766)))) (-2716 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-895)) (-5 *1 (-766)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1131)) (-5 *1 (-766)))) (-2714 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-895)) (-5 *1 (-766)))) (-2713 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1131)) (-5 *1 (-766))))) +(-10 -7 (-15 -2713 ((-1131) (-895))) (-15 -2714 ((-895) (-1131))) (-15 -2715 ((-1131) (-895))) (-15 -2716 ((-895) (-1131))) (-15 -2717 ((-373) (-1131))) (-15 -2718 ((-3 (-373) "failed") (-1131)))) +((-2898 (((-112) $ $) 7)) (-2719 (((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 15) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011)) 13)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 16) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6))) +(((-767) (-138)) (T -767)) +((-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-767)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011)))))) (-2719 (*1 *2 *3 *2) (-12 (-4 *1 (-767)) (-5 *2 (-1011)) (-5 *3 (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) (-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-767)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011)))))) (-2719 (*1 *2 *3 *2) (-12 (-4 *1 (-767)) (-5 *2 (-1011)) (-5 *3 (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) +(-13 (-1074) (-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2719 ((-1011) (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) (|:| |extra| (-1011))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2719 ((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) (-1011))))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2722 (((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373))) 44) (((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373))) 43)) (-2723 (((-1237) (-1231 (-373)) (-538) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373))) 50)) (-2721 (((-1237) (-1231 (-373)) (-538) (-373) (-373) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373))) 41)) (-2720 (((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373))) 52) (((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373))) 51))) +(((-768) (-10 -7 (-15 -2720 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2720 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)))) (-15 -2721 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2722 ((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2722 ((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)))) (-15 -2723 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))))) (T -768)) +((-2723 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-2722 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-538)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373)))) (-5 *7 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-2722 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-538)) (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373)))) (-5 *7 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-2721 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-2720 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) (-2720 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768))))) +(-10 -7 (-15 -2720 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2720 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)))) (-15 -2721 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2722 ((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)))) (-15 -2722 ((-1237) (-1231 (-373)) (-538) (-373) (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373))) (-373) (-1231 (-373)) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)) (-1231 (-373)))) (-15 -2723 ((-1237) (-1231 (-373)) (-538) (-373) (-373) (-538) (-1 (-1237) (-1231 (-373)) (-1231 (-373)) (-373))))) +((-2732 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 53)) (-2729 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 31)) (-2731 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 52)) (-2728 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 29)) (-2730 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 51)) (-2727 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)) 19)) (-2726 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538)) 32)) (-2725 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538)) 30)) (-2724 (((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538)) 28))) +(((-769) (-10 -7 (-15 -2724 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2725 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2726 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2727 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2728 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2729 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2730 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2731 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2732 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))))) (T -769)) +((-2732 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2731 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2730 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2729 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2728 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2727 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2726 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2725 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538)))) (-2724 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) (-5 *1 (-769)) (-5 *5 (-538))))) +(-10 -7 (-15 -2724 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2725 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2726 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538) (-538))) (-15 -2727 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2728 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2729 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2730 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2731 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538))) (-15 -2732 ((-2 (|:| -3761 (-373)) (|:| -1656 (-373)) (|:| |totalpts| (-538)) (|:| |success| (-112))) (-1 (-373) (-373)) (-373) (-373) (-373) (-373) (-538) (-538)))) +((-4068 (((-1181 |#1|) |#1| (-221) (-538)) 46))) +(((-770 |#1|) (-10 -7 (-15 -4068 ((-1181 |#1|) |#1| (-221) (-538)))) (-950)) (T -770)) +((-4068 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-221)) (-5 *5 (-538)) (-5 *2 (-1181 *3)) (-5 *1 (-770 *3)) (-4 *3 (-950))))) +(-10 -7 (-15 -4068 ((-1181 |#1|) |#1| (-221) (-538)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 24)) (-1368 (((-3 $ "failed") $ $) 26)) (-3896 (($) 23 T CONST)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 22 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4197 (($ $ $) 28) (($ $) 27)) (-4199 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-751) $) 25) (($ (-538) $) 29))) (((-771) (-138)) (T -771)) -((-2728 (*1 *1 *1 *1) (-4 *1 (-771)))) -(-13 (-775) (-10 -8 (-15 -2728 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-825) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 7)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4194 (($ $ $) 20)) (* (($ (-893) $) 21))) +NIL +(-13 (-777) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-827) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 24)) (-3896 (($) 23 T CONST)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 22 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4199 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-751) $) 25))) (((-772) (-138)) (T -772)) NIL -(-13 (-825) (-25)) -(((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-825) . T) ((-1072) . T)) -((-3534 (((-112) $) 41)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL) ((|#2| $) 42)) (-3352 (((-3 (-400 (-536)) "failed") $) 78)) (-3351 (((-112) $) 72)) (-3350 (((-400 (-536)) $) 76)) (-3462 ((|#2| $) 26)) (-4313 (($ (-1 |#2| |#2|) $) 23)) (-2729 (($ $) 61)) (-4325 (((-525) $) 67)) (-3337 (($ $) 21)) (-4312 (((-838) $) 56) (($ (-536)) 39) (($ |#2|) 37) (($ (-400 (-536))) NIL)) (-3456 (((-749)) 10)) (-3737 ((|#2| $) 71)) (-3382 (((-112) $ $) 29)) (-3013 (((-112) $ $) 69)) (-4192 (($ $) 31) (($ $ $) NIL)) (-4194 (($ $ $) 30)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) -(((-773 |#1| |#2|) (-10 -8 (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3737 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3337 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-774 |#2|) (-170)) (T -773)) -((-3456 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-773 *3 *4)) (-4 *3 (-774 *4))))) -(-10 -8 (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -2729 (|#1| |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3737 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3337 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3466 (((-749)) 51 (|has| |#1| (-361)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 92 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 90 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 88)) (-3502 (((-536) $) 93 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 91 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 87)) (-3816 (((-3 $ "failed") $) 32)) (-4001 ((|#1| $) 77)) (-3352 (((-3 (-400 (-536)) "failed") $) 64 (|has| |#1| (-535)))) (-3351 (((-112) $) 66 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 65 (|has| |#1| (-535)))) (-3322 (($) 54 (|has| |#1| (-361)))) (-2497 (((-112) $) 30)) (-2734 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3462 ((|#1| $) 69)) (-3672 (($ $ $) 60 (|has| |#1| (-825)))) (-3673 (($ $ $) 59 (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) 79)) (-2121 (((-893) $) 53 (|has| |#1| (-361)))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 63 (|has| |#1| (-356)))) (-2487 (($ (-893)) 52 (|has| |#1| (-361)))) (-2731 ((|#1| $) 74)) (-2732 ((|#1| $) 75)) (-2733 ((|#1| $) 76)) (-3334 ((|#1| $) 70)) (-3335 ((|#1| $) 71)) (-3336 ((|#1| $) 72)) (-2730 ((|#1| $) 73)) (-3589 (((-1091) $) 10)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) 85 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 83 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) 82 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 81 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) 80 (|has| |#1| (-505 (-1147) |#1|)))) (-4154 (($ $ |#1|) 86 (|has| |#1| (-279 |#1| |#1|)))) (-4325 (((-525) $) 61 (|has| |#1| (-596 (-525))))) (-3337 (($ $) 78)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35) (($ (-400 (-536))) 89 (|has| |#1| (-1012 (-400 (-536)))))) (-3030 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-3737 ((|#1| $) 67 (|has| |#1| (-1032)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 57 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 56 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 58 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 55 (|has| |#1| (-825)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) -(((-774 |#1|) (-138) (-170)) (T -774)) -((-3337 (*1 *1 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-2734 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) (-3352 (*1 *2 *1) (|partial| -12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) (-2729 (*1 *1 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) -(-13 (-38 |t#1|) (-405 |t#1|) (-331 |t#1|) (-10 -8 (-15 -3337 ($ $)) (-15 -4001 (|t#1| $)) (-15 -2733 (|t#1| $)) (-15 -2732 (|t#1| $)) (-15 -2731 (|t#1| $)) (-15 -2730 (|t#1| $)) (-15 -3336 (|t#1| $)) (-15 -3335 (|t#1| $)) (-15 -3334 (|t#1| $)) (-15 -3462 (|t#1| $)) (-15 -2734 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-361)) (-6 (-361)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1032)) (-15 -3737 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-356)) (-15 -2729 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-361) |has| |#1| (-361)) ((-331 |#1|) . T) ((-405 |#1|) . T) ((-505 (-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 24)) (-1367 (((-3 $ "failed") $ $) 26)) (-3891 (($) 23 T CONST)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 22 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4194 (($ $ $) 20)) (* (($ (-893) $) 21) (($ (-749) $) 25))) -(((-775) (-138)) (T -775)) -NIL -(-13 (-770) (-130)) -(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-770) . T) ((-772) . T) ((-825) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #1="failed") $) NIL) (((-3 (-970 |#1|) #1#) $) 35) (((-3 (-536) #1#) $) NIL (-3886 (|has| (-970 |#1|) (-1012 (-536))) (|has| |#1| (-1012 (-536))))) (((-3 (-400 (-536)) #1#) $) NIL (-3886 (|has| (-970 |#1|) (-1012 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-3502 ((|#1| $) NIL) (((-970 |#1|) $) 33) (((-536) $) NIL (-3886 (|has| (-970 |#1|) (-1012 (-536))) (|has| |#1| (-1012 (-536))))) (((-400 (-536)) $) NIL (-3886 (|has| (-970 |#1|) (-1012 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-3816 (((-3 $ "failed") $) NIL)) (-4001 ((|#1| $) 16)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL (|has| |#1| (-535)))) (-3351 (((-112) $) NIL (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) NIL (|has| |#1| (-535)))) (-3322 (($) NIL (|has| |#1| (-361)))) (-2497 (((-112) $) NIL)) (-2734 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-970 |#1|) (-970 |#1|)) 29)) (-3462 ((|#1| $) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-2731 ((|#1| $) 22)) (-2732 ((|#1| $) 20)) (-2733 ((|#1| $) 18)) (-3334 ((|#1| $) 26)) (-3335 ((|#1| $) 25)) (-3336 ((|#1| $) 24)) (-2730 ((|#1| $) 23)) (-3589 (((-1091) $) NIL)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-505 (-1147) |#1|)))) (-4154 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3337 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-970 |#1|)) 30) (($ (-400 (-536))) NIL (-3886 (|has| (-970 |#1|) (-1012 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-3737 ((|#1| $) NIL (|has| |#1| (-1032)))) (-2986 (($) 8 T CONST)) (-2992 (($) 12 T CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-776 |#1|) (-13 (-774 |#1|) (-405 (-970 |#1|)) (-10 -8 (-15 -2734 ($ (-970 |#1|) (-970 |#1|))))) (-170)) (T -776)) -((-2734 (*1 *1 *2 *2) (-12 (-5 *2 (-970 *3)) (-4 *3 (-170)) (-5 *1 (-776 *3))))) -(-13 (-774 |#1|) (-405 (-970 |#1|)) (-10 -8 (-15 -2734 ($ (-970 |#1|) (-970 |#1|))))) -((-4313 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-777 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) (-774 |#2|) (-170) (-774 |#4|) (-170)) (T -777)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-774 *6)) (-5 *1 (-777 *4 *5 *2 *6)) (-4 *4 (-774 *5))))) -(-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) -((-2893 (((-112) $ $) 7)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2735 (((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 13)) (-3382 (((-112) $ $) 6))) -(((-778) (-138)) (T -778)) -((-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) (-2735 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-1009))))) -(-13 (-1072) (-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -2735 ((-1009) (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2736 (((-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#3| |#2| (-1147)) 19))) -(((-779 |#1| |#2| |#3|) (-10 -7 (-15 -2736 ((-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#3| |#2| (-1147)))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145)) (-13 (-29 |#1|) (-1169) (-934)) (-636 |#2|)) (T -779)) -((-2736 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1147)) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-4 *4 (-13 (-29 *6) (-1169) (-934))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-620 *4)))) (-5 *1 (-779 *6 *4 *3)) (-4 *3 (-636 *4))))) -(-10 -7 (-15 -2736 ((-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#3| |#2| (-1147)))) -((-3931 (((-3 |#2| #1="failed") |#2| (-113) (-286 |#2|) (-620 |#2|)) 28) (((-3 |#2| #1#) (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #2="failed") |#2| (-113) (-1147)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #2#) (-286 |#2|) (-113) (-1147)) 18) (((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 |#2|) (-620 (-113)) (-1147)) 24) (((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 (-286 |#2|)) (-620 (-113)) (-1147)) 26) (((-3 (-620 (-1229 |#2|)) "failed") (-667 |#2|) (-1147)) 37) (((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-667 |#2|) (-1229 |#2|) (-1147)) 35))) -(((-780 |#1| |#2|) (-10 -7 (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-667 |#2|) (-1229 |#2|) (-1147))) (-15 -3931 ((-3 (-620 (-1229 |#2|)) "failed") (-667 |#2|) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 (-286 |#2|)) (-620 (-113)) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 |#2|) (-620 (-113)) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #1="failed") (-286 |#2|) (-113) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #1#) |#2| (-113) (-1147))) (-15 -3931 ((-3 |#2| #2="failed") (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|))) (-15 -3931 ((-3 |#2| #2#) |#2| (-113) (-286 |#2|) (-620 |#2|)))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145)) (-13 (-29 |#1|) (-1169) (-934))) (T -780)) -((-3931 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-286 *2)) (-5 *5 (-620 *2)) (-4 *2 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *1 (-780 *6 *2)))) (-3931 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-113)) (-5 *5 (-620 *2)) (-4 *2 (-13 (-29 *6) (-1169) (-934))) (-5 *1 (-780 *6 *2)) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))))) (-3931 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1147)) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2123 (-620 *3))) *3 #1="failed")) (-5 *1 (-780 *6 *3)) (-4 *3 (-13 (-29 *6) (-1169) (-934))))) (-3931 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-1147)) (-4 *7 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2123 (-620 *7))) *7 #1#)) (-5 *1 (-780 *6 *7)))) (-3931 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-620 *7)) (-5 *4 (-620 (-113))) (-5 *5 (-1147)) (-4 *7 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) (-5 *1 (-780 *6 *7)))) (-3931 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-620 (-286 *7))) (-5 *4 (-620 (-113))) (-5 *5 (-1147)) (-4 *7 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) (-5 *1 (-780 *6 *7)))) (-3931 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-667 *6)) (-5 *4 (-1147)) (-4 *6 (-13 (-29 *5) (-1169) (-934))) (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-1229 *6))) (-5 *1 (-780 *5 *6)))) (-3931 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-667 *7)) (-5 *5 (-1147)) (-4 *7 (-13 (-29 *6) (-1169) (-934))) (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) (-5 *1 (-780 *6 *7)) (-5 *4 (-1229 *7))))) -(-10 -7 (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-667 |#2|) (-1229 |#2|) (-1147))) (-15 -3931 ((-3 (-620 (-1229 |#2|)) "failed") (-667 |#2|) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 (-286 |#2|)) (-620 (-113)) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#2|)) (|:| -2123 (-620 (-1229 |#2|)))) "failed") (-620 |#2|) (-620 (-113)) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #1="failed") (-286 |#2|) (-113) (-1147))) (-15 -3931 ((-3 (-2 (|:| |particular| |#2|) (|:| -2123 (-620 |#2|))) |#2| #1#) |#2| (-113) (-1147))) (-15 -3931 ((-3 |#2| #2="failed") (-286 |#2|) (-113) (-286 |#2|) (-620 |#2|))) (-15 -3931 ((-3 |#2| #2#) |#2| (-113) (-286 |#2|) (-620 |#2|)))) -((-2737 (($) 9)) (-2741 (((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 31)) (-2739 (((-620 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $) 28)) (-3965 (($ (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) 25)) (-2740 (($ (-620 (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) 23)) (-2738 (((-1235)) 12))) -(((-781) (-10 -8 (-15 -2737 ($)) (-15 -2738 ((-1235))) (-15 -2739 ((-620 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2740 ($ (-620 (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -3965 ($ (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2741 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))))) (T -781)) -((-2741 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *2 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))) (-5 *1 (-781)))) (-3965 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))) (-5 *1 (-781)))) (-2740 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-5 *1 (-781)))) (-2739 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-5 *1 (-781)))) (-2738 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-781)))) (-2737 (*1 *1) (-5 *1 (-781)))) -(-10 -8 (-15 -2737 ($)) (-15 -2738 ((-1235))) (-15 -2739 ((-620 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) $)) (-15 -2740 ($ (-620 (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371)))))))) (-15 -3965 ($ (-2 (|:| -4215 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (|:| -2186 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))))))) (-15 -2741 ((-3 (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) (|:| |expense| (-371)) (|:| |accuracy| (-371)) (|:| |intermediateResults| (-371))) "failed") (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) -((-3819 ((|#2| |#2| (-1147)) 16)) (-2742 ((|#2| |#2| (-1147)) 51)) (-2743 (((-1 |#2| |#2|) (-1147)) 11))) -(((-782 |#1| |#2|) (-10 -7 (-15 -3819 (|#2| |#2| (-1147))) (-15 -2742 (|#2| |#2| (-1147))) (-15 -2743 ((-1 |#2| |#2|) (-1147)))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145)) (-13 (-29 |#1|) (-1169) (-934))) (T -782)) -((-2743 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-782 *4 *5)) (-4 *5 (-13 (-29 *4) (-1169) (-934))))) (-2742 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1169) (-934))))) (-3819 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1169) (-934)))))) -(-10 -7 (-15 -3819 (|#2| |#2| (-1147))) (-15 -2742 (|#2| |#2| (-1147))) (-15 -2743 ((-1 |#2| |#2|) (-1147)))) -((-3931 (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371) (-371)) 116) (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371)) 117) (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-620 (-371)) (-371)) 119) (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-371)) 120) (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-371)) 121) (((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371))) 122) (((-1009) (-786) (-1035)) 108) (((-1009) (-786)) 109)) (-2996 (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786) (-1035)) 75) (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786)) 77))) -(((-783) (-10 -7 (-15 -3931 ((-1009) (-786))) (-15 -3931 ((-1009) (-786) (-1035))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371) (-371))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786) (-1035))))) (T -783)) -((-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-1035)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-783)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-783)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1009)) (-5 *1 (-783))))) -(-10 -7 (-15 -3931 ((-1009) (-786))) (-15 -3931 ((-1009) (-786) (-1035))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371))) (-15 -3931 ((-1009) (-1229 (-307 (-371))) (-371) (-371) (-620 (-371)) (-307 (-371)) (-620 (-371)) (-371) (-371))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-786) (-1035)))) -((-2744 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-620 |#4|))) (-633 |#4|) |#4|) 35))) -(((-784 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2744 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-620 |#4|))) (-633 |#4|) |#4|))) (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536)))) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|)) (T -784)) -((-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-633 *4)) (-4 *4 (-335 *5 *6 *7)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-620 *4)))) (-5 *1 (-784 *5 *6 *7 *4))))) -(-10 -7 (-15 -2744 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2123 (-620 |#4|))) (-633 |#4|) |#4|))) -((-4096 (((-2 (|:| -3612 |#3|) (|:| |rh| (-620 (-400 |#2|)))) |#4| (-620 (-400 |#2|))) 52)) (-2746 (((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4| |#2|) 60) (((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4|) 59) (((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3| |#2|) 20) (((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3|) 21)) (-2747 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2745 ((|#2| |#3| (-620 (-400 |#2|))) 93) (((-3 |#2| "failed") |#3| (-400 |#2|)) 90))) -(((-785 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2745 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -2745 (|#2| |#3| (-620 (-400 |#2|)))) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3| |#2|)) (-15 -2747 (|#2| |#3| |#1|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4| |#2|)) (-15 -2747 (|#2| |#4| |#1|)) (-15 -4096 ((-2 (|:| -3612 |#3|) (|:| |rh| (-620 (-400 |#2|)))) |#4| (-620 (-400 |#2|))))) (-13 (-356) (-145) (-1012 (-400 (-536)))) (-1205 |#1|) (-636 |#2|) (-636 (-400 |#2|))) (T -785)) -((-4096 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-2 (|:| -3612 *7) (|:| |rh| (-620 (-400 *6))))) (-5 *1 (-785 *5 *6 *7 *3)) (-5 *4 (-620 (-400 *6))) (-4 *7 (-636 *6)) (-4 *3 (-636 (-400 *6))))) (-2747 (*1 *2 *3 *4) (-12 (-4 *2 (-1205 *4)) (-5 *1 (-785 *4 *2 *5 *3)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-636 *2)) (-4 *3 (-636 (-400 *2))))) (-2746 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *4 (-1205 *5)) (-5 *2 (-620 (-2 (|:| -4127 *4) (|:| -3572 *4)))) (-5 *1 (-785 *5 *4 *6 *3)) (-4 *6 (-636 *4)) (-4 *3 (-636 (-400 *4))))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-2 (|:| -4127 *5) (|:| -3572 *5)))) (-5 *1 (-785 *4 *5 *6 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 (-400 *5))))) (-2747 (*1 *2 *3 *4) (-12 (-4 *2 (-1205 *4)) (-5 *1 (-785 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) (-4 *5 (-636 (-400 *2))))) (-2746 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *4 (-1205 *5)) (-5 *2 (-620 (-2 (|:| -4127 *4) (|:| -3572 *4)))) (-5 *1 (-785 *5 *4 *3 *6)) (-4 *3 (-636 *4)) (-4 *6 (-636 (-400 *4))))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-2 (|:| -4127 *5) (|:| -3572 *5)))) (-5 *1 (-785 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-636 (-400 *5))))) (-2745 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-400 *2))) (-4 *2 (-1205 *5)) (-5 *1 (-785 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) (-4 *6 (-636 (-400 *2))))) (-2745 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1205 *5)) (-5 *1 (-785 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) (-4 *6 (-636 *4))))) -(-10 -7 (-15 -2745 ((-3 |#2| "failed") |#3| (-400 |#2|))) (-15 -2745 (|#2| |#3| (-620 (-400 |#2|)))) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#3| |#2|)) (-15 -2747 (|#2| |#3| |#1|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4|)) (-15 -2746 ((-620 (-2 (|:| -4127 |#2|) (|:| -3572 |#2|))) |#4| |#2|)) (-15 -2747 (|#2| |#4| |#1|)) (-15 -4096 ((-2 (|:| -3612 |#3|) (|:| |rh| (-620 (-400 |#2|)))) |#4| (-620 (-400 |#2|))))) -((-2893 (((-112) $ $) NIL)) (-3502 (((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $) 13)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 15) (($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) 12)) (-3382 (((-112) $ $) NIL))) -(((-786) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $))))) (T -786)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-786)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-786)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219)))) (-5 *1 (-786))))) -(-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) (|:| |abserr| (-219)) (|:| |relerr| (-219))) $)))) -((-2755 (((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 |#3|))) |#3| (-1 (-620 |#2|) |#2| (-1141 |#2|)) (-1 (-398 |#2|) |#2|)) 118)) (-2756 (((-620 (-2 (|:| |poly| |#2|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|)) 46)) (-2749 (((-620 (-2 (|:| |deg| (-749)) (|:| -3612 |#2|))) |#3|) 95)) (-2748 ((|#2| |#3|) 37)) (-2750 (((-620 (-2 (|:| -4306 |#1|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|)) 82)) (-2751 ((|#3| |#3| (-400 |#2|)) 63) ((|#3| |#3| |#2|) 79))) -(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2748 (|#2| |#3|)) (-15 -2749 ((-620 (-2 (|:| |deg| (-749)) (|:| -3612 |#2|))) |#3|)) (-15 -2750 ((-620 (-2 (|:| -4306 |#1|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|))) (-15 -2756 ((-620 (-2 (|:| |poly| |#2|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|))) (-15 -2755 ((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 |#3|))) |#3| (-1 (-620 |#2|) |#2| (-1141 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2751 (|#3| |#3| |#2|)) (-15 -2751 (|#3| |#3| (-400 |#2|)))) (-13 (-356) (-145) (-1012 (-400 (-536)))) (-1205 |#1|) (-636 |#2|) (-636 (-400 |#2|))) (T -787)) -((-2751 (*1 *2 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *1 (-787 *4 *5 *2 *6)) (-4 *2 (-636 *5)) (-4 *6 (-636 *3)))) (-2751 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-1205 *4)) (-5 *1 (-787 *4 *3 *2 *5)) (-4 *2 (-636 *3)) (-4 *5 (-636 (-400 *3))))) (-2755 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-620 *7) *7 (-1141 *7))) (-5 *5 (-1 (-398 *7) *7)) (-4 *7 (-1205 *6)) (-4 *6 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-5 *2 (-620 (-2 (|:| |frac| (-400 *7)) (|:| -3612 *3)))) (-5 *1 (-787 *6 *7 *3 *8)) (-4 *3 (-636 *7)) (-4 *8 (-636 (-400 *7))))) (-2756 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-2 (|:| |poly| *6) (|:| -3612 *3)))) (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-636 *6)) (-4 *7 (-636 (-400 *6))))) (-2750 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-2 (|:| -4306 *5) (|:| -3612 *3)))) (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-636 *6)) (-4 *7 (-636 (-400 *6))))) (-2749 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-2 (|:| |deg| (-749)) (|:| -3612 *5)))) (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-636 (-400 *5))))) (-2748 (*1 *2 *3) (-12 (-4 *2 (-1205 *4)) (-5 *1 (-787 *4 *2 *3 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) (-4 *5 (-636 (-400 *2)))))) -(-10 -7 (-15 -2748 (|#2| |#3|)) (-15 -2749 ((-620 (-2 (|:| |deg| (-749)) (|:| -3612 |#2|))) |#3|)) (-15 -2750 ((-620 (-2 (|:| -4306 |#1|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|))) (-15 -2756 ((-620 (-2 (|:| |poly| |#2|) (|:| -3612 |#3|))) |#3| (-1 (-620 |#1|) |#2|))) (-15 -2755 ((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 |#3|))) |#3| (-1 (-620 |#2|) |#2| (-1141 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2751 (|#3| |#3| |#2|)) (-15 -2751 (|#3| |#3| (-400 |#2|)))) -((-2752 (((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-634 |#2| (-400 |#2|)) (-620 (-400 |#2|))) 121) (((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-620 (-400 |#2|)))) (-634 |#2| (-400 |#2|)) (-400 |#2|)) 120) (((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-633 (-400 |#2|)) (-620 (-400 |#2|))) 115) (((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-620 (-400 |#2|)))) (-633 (-400 |#2|)) (-400 |#2|)) 113)) (-2753 ((|#2| (-634 |#2| (-400 |#2|))) 80) ((|#2| (-633 (-400 |#2|))) 83))) -(((-788 |#1| |#2|) (-10 -7 (-15 -2752 ((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-620 (-400 |#2|)))) (-633 (-400 |#2|)) (-400 |#2|))) (-15 -2752 ((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-633 (-400 |#2|)) (-620 (-400 |#2|)))) (-15 -2752 ((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-620 (-400 |#2|)))) (-634 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -2752 ((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-634 |#2| (-400 |#2|)) (-620 (-400 |#2|)))) (-15 -2753 (|#2| (-633 (-400 |#2|)))) (-15 -2753 (|#2| (-634 |#2| (-400 |#2|))))) (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536)))) (-1205 |#1|)) (T -788)) -((-2753 (*1 *2 *3) (-12 (-5 *3 (-634 *2 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-788 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-633 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-788 *4 *2)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-400 *6))) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-2 (|:| -2123 (-620 (-400 *6))) (|:| -1695 (-667 *5)))) (-5 *1 (-788 *5 *6)) (-5 *4 (-620 (-400 *6))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) (-5 *1 (-788 *5 *6)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-400 *6))) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-2 (|:| -2123 (-620 (-400 *6))) (|:| -1695 (-667 *5)))) (-5 *1 (-788 *5 *6)) (-5 *4 (-620 (-400 *6))))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-620 *4)))) (-5 *1 (-788 *5 *6))))) -(-10 -7 (-15 -2752 ((-2 (|:| |particular| (-3 (-400 |#2|) #1="failed")) (|:| -2123 (-620 (-400 |#2|)))) (-633 (-400 |#2|)) (-400 |#2|))) (-15 -2752 ((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-633 (-400 |#2|)) (-620 (-400 |#2|)))) (-15 -2752 ((-2 (|:| |particular| (-3 (-400 |#2|) #1#)) (|:| -2123 (-620 (-400 |#2|)))) (-634 |#2| (-400 |#2|)) (-400 |#2|))) (-15 -2752 ((-2 (|:| -2123 (-620 (-400 |#2|))) (|:| -1695 (-667 |#1|))) (-634 |#2| (-400 |#2|)) (-620 (-400 |#2|)))) (-15 -2753 (|#2| (-633 (-400 |#2|)))) (-15 -2753 (|#2| (-634 |#2| (-400 |#2|))))) -((-2754 (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) |#5| |#4|) 48))) -(((-789 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2754 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) |#5| |#4|))) (-356) (-636 |#1|) (-1205 |#1|) (-703 |#1| |#3|) (-636 |#4|)) (T -789)) -((-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *7 (-1205 *5)) (-4 *4 (-703 *5 *7)) (-5 *2 (-2 (|:| -1695 (-667 *6)) (|:| |vec| (-1229 *5)))) (-5 *1 (-789 *5 *6 *7 *4 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 *4))))) -(-10 -7 (-15 -2754 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) |#5| |#4|))) -((-2755 (((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 47)) (-2757 (((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|))) 138 (|has| |#1| (-27))) (((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-398 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-620 (-400 |#2|)) (-633 (-400 |#2|))) 140 (|has| |#1| (-27))) (((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|)) 38) (((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|)) 39) (((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|)) 36) (((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|)) 37)) (-2756 (((-620 (-2 (|:| |poly| |#2|) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|)) 83))) -(((-790 |#1| |#2|) (-10 -7 (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2755 ((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2756 ((-620 (-2 (|:| |poly| |#2|) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)))) (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)))) |%noBranch|)) (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536)))) (-1205 |#1|)) (T -790)) -((-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-634 *5 (-400 *5))) (-4 *5 (-1205 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-620 (-400 *5))) (-5 *1 (-790 *4 *5)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-633 (-400 *5))) (-4 *5 (-1205 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-620 (-400 *5))) (-5 *1 (-790 *4 *5)))) (-2756 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-2 (|:| |poly| *6) (|:| -3612 (-634 *6 (-400 *6)))))) (-5 *1 (-790 *5 *6)) (-5 *3 (-634 *6 (-400 *6))))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-5 *2 (-620 (-2 (|:| |frac| (-400 *6)) (|:| -3612 (-634 *6 (-400 *6)))))) (-5 *1 (-790 *5 *6)) (-5 *3 (-634 *6 (-400 *6))))) (-2757 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-634 *7 (-400 *7))) (-5 *4 (-1 (-620 *6) *7)) (-5 *5 (-1 (-398 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *7 (-1205 *6)) (-5 *2 (-620 (-400 *7))) (-5 *1 (-790 *6 *7)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) (-2757 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-633 (-400 *7))) (-5 *4 (-1 (-620 *6) *7)) (-5 *5 (-1 (-398 *7) *7)) (-4 *6 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *7 (-1205 *6)) (-5 *2 (-620 (-400 *7))) (-5 *1 (-790 *6 *7)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-1 (-620 *5) *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6))))) -(-10 -7 (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|) (-1 (-398 |#2|) |#2|))) (-15 -2755 ((-620 (-2 (|:| |frac| (-400 |#2|)) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2756 ((-620 (-2 (|:| |poly| |#2|) (|:| -3612 (-634 |#2| (-400 |#2|))))) (-634 |#2| (-400 |#2|)) (-1 (-620 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)))) (-15 -2757 ((-620 (-400 |#2|)) (-633 (-400 |#2|)) (-1 (-398 |#2|) |#2|))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)))) (-15 -2757 ((-620 (-400 |#2|)) (-634 |#2| (-400 |#2|)) (-1 (-398 |#2|) |#2|)))) |%noBranch|)) -((-2758 (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) (-667 |#2|) (-1229 |#1|)) 85) (((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)) (|:| -3612 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1229 |#1|)) 15)) (-2759 (((-2 (|:| |particular| (-3 (-1229 |#1|) "failed")) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#2|) (-1229 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-620 |#1|))) |#2| |#1|)) 92)) (-3931 (((-3 (-2 (|:| |particular| (-1229 |#1|)) (|:| -2123 (-667 |#1|))) "failed") (-667 |#1|) (-1229 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) "failed") |#2| |#1|)) 43))) -(((-791 |#1| |#2|) (-10 -7 (-15 -2758 ((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)) (|:| -3612 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1229 |#1|))) (-15 -2758 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) (-667 |#2|) (-1229 |#1|))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#1|)) (|:| -2123 (-667 |#1|))) "failed") (-667 |#1|) (-1229 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) "failed") |#2| |#1|))) (-15 -2759 ((-2 (|:| |particular| (-3 (-1229 |#1|) "failed")) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#2|) (-1229 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-620 |#1|))) |#2| |#1|)))) (-356) (-636 |#1|)) (T -791)) -((-2759 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2123 (-620 *6))) *7 *6)) (-4 *6 (-356)) (-4 *7 (-636 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1229 *6) "failed")) (|:| -2123 (-620 (-1229 *6))))) (-5 *1 (-791 *6 *7)) (-5 *4 (-1229 *6)))) (-3931 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2123 (-620 *6))) "failed") *7 *6)) (-4 *6 (-356)) (-4 *7 (-636 *6)) (-5 *2 (-2 (|:| |particular| (-1229 *6)) (|:| -2123 (-667 *6)))) (-5 *1 (-791 *6 *7)) (-5 *3 (-667 *6)) (-5 *4 (-1229 *6)))) (-2758 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-4 *6 (-636 *5)) (-5 *2 (-2 (|:| -1695 (-667 *6)) (|:| |vec| (-1229 *5)))) (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *6)) (-5 *4 (-1229 *5)))) (-2758 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| A (-667 *5)) (|:| |eqs| (-620 (-2 (|:| C (-667 *5)) (|:| |g| (-1229 *5)) (|:| -3612 *6) (|:| |rh| *5)))))) (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) (-4 *6 (-636 *5))))) -(-10 -7 (-15 -2758 ((-2 (|:| A (-667 |#1|)) (|:| |eqs| (-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)) (|:| -3612 |#2|) (|:| |rh| |#1|))))) (-667 |#1|) (-1229 |#1|))) (-15 -2758 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#1|))) (-667 |#2|) (-1229 |#1|))) (-15 -3931 ((-3 (-2 (|:| |particular| (-1229 |#1|)) (|:| -2123 (-667 |#1|))) "failed") (-667 |#1|) (-1229 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2123 (-620 |#1|))) "failed") |#2| |#1|))) (-15 -2759 ((-2 (|:| |particular| (-3 (-1229 |#1|) "failed")) (|:| -2123 (-620 (-1229 |#1|)))) (-667 |#2|) (-1229 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2123 (-620 |#1|))) |#2| |#1|)))) -((-2760 (((-667 |#1|) (-620 |#1|) (-749)) 13) (((-667 |#1|) (-620 |#1|)) 14)) (-2761 (((-3 (-1229 |#1|) "failed") |#2| |#1| (-620 |#1|)) 34)) (-3694 (((-3 |#1| "failed") |#2| |#1| (-620 |#1|) (-1 |#1| |#1|)) 42))) -(((-792 |#1| |#2|) (-10 -7 (-15 -2760 ((-667 |#1|) (-620 |#1|))) (-15 -2760 ((-667 |#1|) (-620 |#1|) (-749))) (-15 -2761 ((-3 (-1229 |#1|) "failed") |#2| |#1| (-620 |#1|))) (-15 -3694 ((-3 |#1| "failed") |#2| |#1| (-620 |#1|) (-1 |#1| |#1|)))) (-356) (-636 |#1|)) (T -792)) -((-3694 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-620 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) (-5 *1 (-792 *2 *3)) (-4 *3 (-636 *2)))) (-2761 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-620 *4)) (-4 *4 (-356)) (-5 *2 (-1229 *4)) (-5 *1 (-792 *4 *3)) (-4 *3 (-636 *4)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-749)) (-4 *5 (-356)) (-5 *2 (-667 *5)) (-5 *1 (-792 *5 *6)) (-4 *6 (-636 *5)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)) (-5 *1 (-792 *4 *5)) (-4 *5 (-636 *4))))) -(-10 -7 (-15 -2760 ((-667 |#1|) (-620 |#1|))) (-15 -2760 ((-667 |#1|) (-620 |#1|) (-749))) (-15 -2761 ((-3 (-1229 |#1|) "failed") |#2| |#1| (-620 |#1|))) (-15 -3694 ((-3 |#1| "failed") |#2| |#1| (-620 |#1|) (-1 |#1| |#1|)))) -((-2893 (((-112) $ $) NIL (|has| |#2| (-1072)))) (-3534 (((-112) $) NIL (|has| |#2| (-130)))) (-4065 (($ (-893)) NIL (|has| |#2| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) NIL (|has| |#2| (-771)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#2| (-361)))) (-3981 (((-536) $) NIL (|has| |#2| (-823)))) (-4142 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1072)))) (-3502 (((-536) $) NIL (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) ((|#2| $) NIL (|has| |#2| (-1072)))) (-2357 (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#2| (-619 (-536))) (|has| |#2| (-1023)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL (|has| |#2| (-1023))) (((-667 |#2|) (-667 $)) NIL (|has| |#2| (-1023)))) (-3816 (((-3 $ "failed") $) NIL (|has| |#2| (-705)))) (-3322 (($) NIL (|has| |#2| (-361)))) (-1632 ((|#2| $ (-536) |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ (-536)) NIL)) (-3532 (((-112) $) NIL (|has| |#2| (-823)))) (-2063 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (|has| |#2| (-705)))) (-3533 (((-112) $) NIL (|has| |#2| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2506 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#2| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#2| (-1072)))) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#2| (-361)))) (-3589 (((-1091) $) NIL (|has| |#2| (-1072)))) (-4155 ((|#2| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ (-536) |#2|) NIL) ((|#2| $ (-536)) NIL)) (-4191 ((|#2| $ $) NIL (|has| |#2| (-1023)))) (-1520 (($ (-1229 |#2|)) NIL)) (-4266 (((-133)) NIL (|has| |#2| (-356)))) (-4165 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2064 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#2|) $) NIL) (($ (-536)) NIL (-3886 (-12 (|has| |#2| (-1012 (-536))) (|has| |#2| (-1072))) (|has| |#2| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#2| (-1012 (-400 (-536)))) (|has| |#2| (-1072)))) (($ |#2|) NIL (|has| |#2| (-1072))) (((-838) $) NIL (|has| |#2| (-595 (-838))))) (-3456 (((-749)) NIL (|has| |#2| (-1023)))) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#2| (-823)))) (-2986 (($) NIL (|has| |#2| (-130)) CONST)) (-2992 (($) NIL (|has| |#2| (-705)) CONST)) (-2997 (($ $) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#2| (-227)) (|has| |#2| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#2| (-874 (-1147))) (|has| |#2| (-1023)))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#2| (-1023))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1023)))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3382 (((-112) $ $) NIL (|has| |#2| (-1072)))) (-3012 (((-112) $ $) NIL (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-3013 (((-112) $ $) 11 (-3886 (|has| |#2| (-771)) (|has| |#2| (-823))))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $ $) NIL (|has| |#2| (-1023))) (($ $) NIL (|has| |#2| (-1023)))) (-4194 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-749)) NIL (|has| |#2| (-705))) (($ $ (-893)) NIL (|has| |#2| (-705)))) (* (($ (-536) $) NIL (|has| |#2| (-1023))) (($ $ $) NIL (|has| |#2| (-705))) (($ $ |#2|) NIL (|has| |#2| (-705))) (($ |#2| $) NIL (|has| |#2| (-705))) (($ (-749) $) NIL (|has| |#2| (-130))) (($ (-893) $) NIL (|has| |#2| (-25)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-793 |#1| |#2| |#3|) (-232 |#1| |#2|) (-749) (-771) (-1 (-112) (-1229 |#2|) (-1229 |#2|))) (T -793)) -NIL -(-232 |#1| |#2|) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1538 (((-620 (-749)) $) NIL) (((-620 (-749)) $ (-1147)) NIL)) (-1572 (((-749) $) NIL) (((-749) $ (-1147)) NIL)) (-3412 (((-620 (-796 (-1147))) $) NIL)) (-3414 (((-1141 $) $ (-796 (-1147))) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-796 (-1147)))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1534 (($ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-796 (-1147)) #2#) $) NIL) (((-3 (-1147) #2#) $) NIL) (((-3 (-1096 |#1| (-1147)) #2#) $) NIL)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-796 (-1147)) $) NIL) (((-1147) $) NIL) (((-1096 |#1| (-1147)) $) NIL)) (-4111 (($ $ $ (-796 (-1147))) NIL (|has| |#1| (-170)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ (-796 (-1147))) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-522 (-796 (-1147))) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-796 (-1147)) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-796 (-1147)) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ (-1147)) NIL) (((-749) $) NIL)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#1|) (-796 (-1147))) NIL) (($ (-1141 $) (-796 (-1147))) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-522 (-796 (-1147)))) NIL) (($ $ (-796 (-1147)) (-749)) NIL) (($ $ (-620 (-796 (-1147))) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-796 (-1147))) NIL)) (-3148 (((-522 (-796 (-1147))) $) NIL) (((-749) $ (-796 (-1147))) NIL) (((-620 (-749)) $ (-620 (-796 (-1147)))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 (-796 (-1147))) (-522 (-796 (-1147)))) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-749)) (-1147)) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-3413 (((-3 (-796 (-1147)) #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-1536 (((-796 (-1147)) $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-1537 (((-112) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-796 (-1147))) (|:| -2488 (-749))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-796 (-1147)) |#1|) NIL) (($ $ (-620 (-796 (-1147))) (-620 |#1|)) NIL) (($ $ (-796 (-1147)) $) NIL) (($ $ (-620 (-796 (-1147))) (-620 $)) NIL) (($ $ (-1147) $) NIL (|has| |#1| (-227))) (($ $ (-620 (-1147)) (-620 $)) NIL (|has| |#1| (-227))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-227))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-227)))) (-4112 (($ $ (-796 (-1147))) NIL (|has| |#1| (-170)))) (-4165 (($ $ (-796 (-1147))) NIL) (($ $ (-620 (-796 (-1147)))) NIL) (($ $ (-796 (-1147)) (-749)) NIL) (($ $ (-620 (-796 (-1147))) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-620 (-1147)) $) NIL)) (-4302 (((-522 (-796 (-1147))) $) NIL) (((-749) $ (-796 (-1147))) NIL) (((-620 (-749)) $ (-620 (-796 (-1147)))) NIL) (((-749) $ (-1147)) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-796 (-1147)) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-796 (-1147)) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-796 (-1147)) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-796 (-1147))) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-796 (-1147))) NIL) (($ (-1147)) NIL) (($ (-1096 |#1| (-1147))) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-522 (-796 (-1147)))) NIL) (($ $ (-796 (-1147)) (-749)) NIL) (($ $ (-620 (-796 (-1147))) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-796 (-1147))) NIL) (($ $ (-620 (-796 (-1147)))) NIL) (($ $ (-796 (-1147)) (-749)) NIL) (($ $ (-620 (-796 (-1147))) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-794 |#1|) (-13 (-246 |#1| (-1147) (-796 (-1147)) (-522 (-796 (-1147)))) (-1012 (-1096 |#1| (-1147)))) (-1023)) (T -794)) -NIL -(-13 (-246 |#1| (-1147) (-796 (-1147)) (-522 (-796 (-1147)))) (-1012 (-1096 |#1| (-1147)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-356)))) (-2173 (($ $) NIL (|has| |#2| (-356)))) (-2171 (((-112) $) NIL (|has| |#2| (-356)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#2| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-356)))) (-1700 (((-112) $ $) NIL (|has| |#2| (-356)))) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL (|has| |#2| (-356)))) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#2| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#2| (-356)))) (-4081 (((-112) $) NIL (|has| |#2| (-356)))) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL (|has| |#2| (-356)))) (-2008 (($ (-620 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 20 (|has| |#2| (-356)))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-356))) (($ $ $) NIL (|has| |#2| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#2| (-356)))) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#2| (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#2| (-356)))) (-1699 (((-749) $) NIL (|has| |#2| (-356)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-356)))) (-4165 (($ $ (-749)) NIL) (($ $) 13)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-400 (-536))) NIL (|has| |#2| (-356))) (($ $) NIL (|has| |#2| (-356)))) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL (|has| |#2| (-356)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) 15 (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL) (($ $ (-536)) 18 (|has| |#2| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-400 (-536)) $) NIL (|has| |#2| (-356))) (($ $ (-400 (-536))) NIL (|has| |#2| (-356))))) -(((-795 |#1| |#2| |#3|) (-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -4312 ($ |#2|)) (-15 -4312 (|#2| $)))) (-1072) (-874 |#1|) |#1|) (T -795)) -((-4312 (*1 *1 *2) (-12 (-4 *3 (-1072)) (-14 *4 *3) (-5 *1 (-795 *3 *2 *4)) (-4 *2 (-874 *3)))) (-4312 (*1 *2 *1) (-12 (-4 *2 (-874 *3)) (-5 *1 (-795 *3 *2 *4)) (-4 *3 (-1072)) (-14 *4 *3)))) -(-13 (-111 $ $) (-227) (-10 -8 (IF (|has| |#2| (-356)) (-6 (-356)) |%noBranch|) (-15 -4312 ($ |#2|)) (-15 -4312 (|#2| $)))) -((-2893 (((-112) $ $) NIL)) (-1572 (((-749) $) NIL)) (-4186 ((|#1| $) 10)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-4126 (((-749) $) 11)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-1573 (($ |#1| (-749)) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4165 (($ $) NIL) (($ $ (-749)) NIL)) (-4312 (((-838) $) NIL) (($ |#1|) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL))) -(((-796 |#1|) (-259 |#1|) (-825)) (T -796)) -NIL -(-259 |#1|) -((-2893 (((-112) $ $) NIL)) (-4289 (((-620 |#1|) $) 29)) (-3466 (((-749) $) NIL)) (-3891 (($) NIL T CONST)) (-4294 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-4153 (($ $) 31)) (-3816 (((-3 $ "failed") $) NIL)) (-2765 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2497 (((-112) $) NIL)) (-2763 ((|#1| $ (-536)) NIL)) (-2764 (((-749) $ (-536)) NIL)) (-4291 (($ $) 36)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4295 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2768 (((-112) $ $) 34)) (-4188 (((-749) $) 25)) (-3588 (((-1129) $) NIL)) (-2766 (($ $ $) NIL)) (-2767 (($ $ $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 ((|#1| $) 30)) (-2762 (((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $) NIL)) (-2890 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4312 (((-838) $) NIL) (($ |#1|) NIL)) (-2992 (($) 15 T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 35)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ |#1| (-749)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-797 |#1|) (-13 (-821) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -4155 (|#1| $)) (-15 -4153 ($ $)) (-15 -4291 ($ $)) (-15 -2768 ((-112) $ $)) (-15 -2767 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -4295 ((-3 $ "failed") $ $)) (-15 -4294 ((-3 $ "failed") $ $)) (-15 -4295 ((-3 $ "failed") $ |#1|)) (-15 -4294 ((-3 $ "failed") $ |#1|)) (-15 -2890 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2765 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3466 ((-749) $)) (-15 -2764 ((-749) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $)) (-15 -4188 ((-749) $)) (-15 -4289 ((-620 |#1|) $)))) (-825)) (T -797)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4155 (*1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4153 (*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4291 (*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-2768 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-2767 (*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-2766 (*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4295 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4294 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4295 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-4294 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-2890 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |rm| (-797 *3)))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-2765 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |mm| (-797 *3)) (|:| |rm| (-797 *3)))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-2764 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-749)) (-5 *1 (-797 *4)) (-4 *4 (-825)))) (-2763 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) (-2762 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-749))))) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-797 *3)) (-4 *3 (-825))))) -(-13 (-821) (-1012 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-749))) (-15 -4155 (|#1| $)) (-15 -4153 ($ $)) (-15 -4291 ($ $)) (-15 -2768 ((-112) $ $)) (-15 -2767 ($ $ $)) (-15 -2766 ($ $ $)) (-15 -4295 ((-3 $ "failed") $ $)) (-15 -4294 ((-3 $ "failed") $ $)) (-15 -4295 ((-3 $ "failed") $ |#1|)) (-15 -4294 ((-3 $ "failed") $ |#1|)) (-15 -2890 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2765 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3466 ((-749) $)) (-15 -2764 ((-749) $ (-536))) (-15 -2763 (|#1| $ (-536))) (-15 -2762 ((-620 (-2 (|:| |gen| |#1|) (|:| -4298 (-749)))) $)) (-15 -4188 ((-749) $)) (-15 -4289 ((-620 |#1|) $)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3981 (((-536) $) 51)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-3532 (((-112) $) 49)) (-2497 (((-112) $) 30)) (-3533 (((-112) $) 50)) (-3672 (($ $ $) 48)) (-3673 (($ $ $) 47)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ $) 40)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-3737 (($ $) 52)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 45)) (-2892 (((-112) $ $) 44)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 46)) (-3013 (((-112) $ $) 43)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-798) (-138)) (T -798)) -NIL -(-13 (-543) (-823)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-823) . T) ((-825) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2829 (((-1235) (-801) $ (-112)) 9) (((-1235) (-801) $) 8) (((-1129) $ (-112)) 7) (((-1129) $) 6))) -(((-799) (-138)) (T -799)) -((-2829 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-799)) (-5 *3 (-801)) (-5 *4 (-112)) (-5 *2 (-1235)))) (-2829 (*1 *2 *3 *1) (-12 (-4 *1 (-799)) (-5 *3 (-801)) (-5 *2 (-1235)))) (-2829 (*1 *2 *1 *3) (-12 (-4 *1 (-799)) (-5 *3 (-112)) (-5 *2 (-1129)))) (-2829 (*1 *2 *1) (-12 (-4 *1 (-799)) (-5 *2 (-1129))))) -(-13 (-10 -8 (-15 -2829 ((-1129) $)) (-15 -2829 ((-1129) $ (-112))) (-15 -2829 ((-1235) (-801) $)) (-15 -2829 ((-1235) (-801) $ (-112))))) -((-2769 (($ (-1091)) 7)) (-2773 (((-112) $ (-1129) (-1091)) 15)) (-2772 (((-801) $) 12)) (-2771 (((-801) $) 11)) (-2770 (((-1235) $) 9)) (-2774 (((-112) $ (-1091)) 16))) -(((-800) (-10 -8 (-15 -2769 ($ (-1091))) (-15 -2770 ((-1235) $)) (-15 -2771 ((-801) $)) (-15 -2772 ((-801) $)) (-15 -2773 ((-112) $ (-1129) (-1091))) (-15 -2774 ((-112) $ (-1091))))) (T -800)) -((-2774 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-112)) (-5 *1 (-800)))) (-2773 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-800)))) (-2772 (*1 *2 *1) (-12 (-5 *2 (-801)) (-5 *1 (-800)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-801)) (-5 *1 (-800)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-800)))) (-2769 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-800))))) -(-10 -8 (-15 -2769 ($ (-1091))) (-15 -2770 ((-1235) $)) (-15 -2771 ((-801) $)) (-15 -2772 ((-801) $)) (-15 -2773 ((-112) $ (-1129) (-1091))) (-15 -2774 ((-112) $ (-1091)))) -((-2778 (((-1235) $ (-802)) 12)) (-2795 (((-1235) $ (-1147)) 32)) (-2797 (((-1235) $ (-1129) (-1129)) 34)) (-2796 (((-1235) $ (-1129)) 33)) (-2785 (((-1235) $) 19)) (-2793 (((-1235) $ (-536)) 28)) (-2794 (((-1235) $ (-219)) 30)) (-2784 (((-1235) $) 18)) (-2792 (((-1235) $) 26)) (-2791 (((-1235) $) 25)) (-2789 (((-1235) $) 23)) (-2790 (((-1235) $) 24)) (-2788 (((-1235) $) 22)) (-2787 (((-1235) $) 21)) (-2786 (((-1235) $) 20)) (-2782 (((-1235) $) 16)) (-2783 (((-1235) $) 17)) (-2781 (((-1235) $) 15)) (-2780 (((-1235) $) 14)) (-2779 (((-1235) $) 13)) (-2776 (($ (-1129) (-802)) 9)) (-2775 (($ (-1129) (-1129) (-802)) 8)) (-2814 (((-1147) $) 51)) (-2817 (((-1147) $) 55)) (-2816 (((-2 (|:| |cd| (-1129)) (|:| -3900 (-1129))) $) 54)) (-2815 (((-1129) $) 52)) (-2804 (((-1235) $) 41)) (-2812 (((-536) $) 49)) (-2813 (((-219) $) 50)) (-2803 (((-1235) $) 40)) (-2811 (((-1235) $) 48)) (-2810 (((-1235) $) 47)) (-2808 (((-1235) $) 45)) (-2809 (((-1235) $) 46)) (-2807 (((-1235) $) 44)) (-2806 (((-1235) $) 43)) (-2805 (((-1235) $) 42)) (-2801 (((-1235) $) 38)) (-2802 (((-1235) $) 39)) (-2800 (((-1235) $) 37)) (-2799 (((-1235) $) 36)) (-2798 (((-1235) $) 35)) (-2777 (((-1235) $) 11))) -(((-801) (-10 -8 (-15 -2775 ($ (-1129) (-1129) (-802))) (-15 -2776 ($ (-1129) (-802))) (-15 -2777 ((-1235) $)) (-15 -2778 ((-1235) $ (-802))) (-15 -2779 ((-1235) $)) (-15 -2780 ((-1235) $)) (-15 -2781 ((-1235) $)) (-15 -2782 ((-1235) $)) (-15 -2783 ((-1235) $)) (-15 -2784 ((-1235) $)) (-15 -2785 ((-1235) $)) (-15 -2786 ((-1235) $)) (-15 -2787 ((-1235) $)) (-15 -2788 ((-1235) $)) (-15 -2789 ((-1235) $)) (-15 -2790 ((-1235) $)) (-15 -2791 ((-1235) $)) (-15 -2792 ((-1235) $)) (-15 -2793 ((-1235) $ (-536))) (-15 -2794 ((-1235) $ (-219))) (-15 -2795 ((-1235) $ (-1147))) (-15 -2796 ((-1235) $ (-1129))) (-15 -2797 ((-1235) $ (-1129) (-1129))) (-15 -2798 ((-1235) $)) (-15 -2799 ((-1235) $)) (-15 -2800 ((-1235) $)) (-15 -2801 ((-1235) $)) (-15 -2802 ((-1235) $)) (-15 -2803 ((-1235) $)) (-15 -2804 ((-1235) $)) (-15 -2805 ((-1235) $)) (-15 -2806 ((-1235) $)) (-15 -2807 ((-1235) $)) (-15 -2808 ((-1235) $)) (-15 -2809 ((-1235) $)) (-15 -2810 ((-1235) $)) (-15 -2811 ((-1235) $)) (-15 -2812 ((-536) $)) (-15 -2813 ((-219) $)) (-15 -2814 ((-1147) $)) (-15 -2815 ((-1129) $)) (-15 -2816 ((-2 (|:| |cd| (-1129)) (|:| -3900 (-1129))) $)) (-15 -2817 ((-1147) $)))) (T -801)) -((-2817 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-801)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1129)) (|:| -3900 (-1129)))) (-5 *1 (-801)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-801)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-801)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-801)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-801)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2799 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2797 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2796 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2795 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2794 (*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2793 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2783 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2780 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2778 (*1 *2 *1 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1235)) (-5 *1 (-801)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801)))) (-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-802)) (-5 *1 (-801)))) (-2775 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-802)) (-5 *1 (-801))))) -(-10 -8 (-15 -2775 ($ (-1129) (-1129) (-802))) (-15 -2776 ($ (-1129) (-802))) (-15 -2777 ((-1235) $)) (-15 -2778 ((-1235) $ (-802))) (-15 -2779 ((-1235) $)) (-15 -2780 ((-1235) $)) (-15 -2781 ((-1235) $)) (-15 -2782 ((-1235) $)) (-15 -2783 ((-1235) $)) (-15 -2784 ((-1235) $)) (-15 -2785 ((-1235) $)) (-15 -2786 ((-1235) $)) (-15 -2787 ((-1235) $)) (-15 -2788 ((-1235) $)) (-15 -2789 ((-1235) $)) (-15 -2790 ((-1235) $)) (-15 -2791 ((-1235) $)) (-15 -2792 ((-1235) $)) (-15 -2793 ((-1235) $ (-536))) (-15 -2794 ((-1235) $ (-219))) (-15 -2795 ((-1235) $ (-1147))) (-15 -2796 ((-1235) $ (-1129))) (-15 -2797 ((-1235) $ (-1129) (-1129))) (-15 -2798 ((-1235) $)) (-15 -2799 ((-1235) $)) (-15 -2800 ((-1235) $)) (-15 -2801 ((-1235) $)) (-15 -2802 ((-1235) $)) (-15 -2803 ((-1235) $)) (-15 -2804 ((-1235) $)) (-15 -2805 ((-1235) $)) (-15 -2806 ((-1235) $)) (-15 -2807 ((-1235) $)) (-15 -2808 ((-1235) $)) (-15 -2809 ((-1235) $)) (-15 -2810 ((-1235) $)) (-15 -2811 ((-1235) $)) (-15 -2812 ((-536) $)) (-15 -2813 ((-219) $)) (-15 -2814 ((-1147) $)) (-15 -2815 ((-1129) $)) (-15 -2816 ((-2 (|:| |cd| (-1129)) (|:| -3900 (-1129))) $)) (-15 -2817 ((-1147) $))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 12)) (-2820 (($) 15)) (-2821 (($) 13)) (-2819 (($) 16)) (-2818 (($) 14)) (-3382 (((-112) $ $) 8))) -(((-802) (-13 (-1072) (-10 -8 (-15 -2821 ($)) (-15 -2820 ($)) (-15 -2819 ($)) (-15 -2818 ($))))) (T -802)) -((-2821 (*1 *1) (-5 *1 (-802))) (-2820 (*1 *1) (-5 *1 (-802))) (-2819 (*1 *1) (-5 *1 (-802))) (-2818 (*1 *1) (-5 *1 (-802)))) -(-13 (-1072) (-10 -8 (-15 -2821 ($)) (-15 -2820 ($)) (-15 -2819 ($)) (-15 -2818 ($)))) -((-2893 (((-112) $ $) NIL)) (-2822 (($ (-804) (-620 (-1147))) 24)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2824 (((-804) $) 25)) (-2823 (((-620 (-1147)) $) 26)) (-4312 (((-838) $) 23)) (-3382 (((-112) $ $) NIL))) -(((-803) (-13 (-1072) (-10 -8 (-15 -2824 ((-804) $)) (-15 -2823 ((-620 (-1147)) $)) (-15 -2822 ($ (-804) (-620 (-1147))))))) (T -803)) -((-2824 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-803)))) (-2823 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-803)))) (-2822 (*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-620 (-1147))) (-5 *1 (-803))))) -(-13 (-1072) (-10 -8 (-15 -2824 ((-804) $)) (-15 -2823 ((-620 (-1147)) $)) (-15 -2822 ($ (-804) (-620 (-1147)))))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21) (($ (-1147)) 17)) (-2826 (((-112) $) 10)) (-2827 (((-112) $) 9)) (-2825 (((-112) $) 11)) (-2828 (((-112) $) 8)) (-3382 (((-112) $ $) 19))) -(((-804) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-1147))) (-15 -2828 ((-112) $)) (-15 -2827 ((-112) $)) (-15 -2826 ((-112) $)) (-15 -2825 ((-112) $))))) (T -804)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-804)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2827 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2826 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804)))) (-2825 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) -(-13 (-1072) (-10 -8 (-15 -4312 ($ (-1147))) (-15 -2828 ((-112) $)) (-15 -2827 ((-112) $)) (-15 -2826 ((-112) $)) (-15 -2825 ((-112) $)))) -((-2829 (((-1235) (-801) (-307 |#1|) (-112)) 23) (((-1235) (-801) (-307 |#1|)) 79) (((-1129) (-307 |#1|) (-112)) 78) (((-1129) (-307 |#1|)) 77))) -(((-805 |#1|) (-10 -7 (-15 -2829 ((-1129) (-307 |#1|))) (-15 -2829 ((-1129) (-307 |#1|) (-112))) (-15 -2829 ((-1235) (-801) (-307 |#1|))) (-15 -2829 ((-1235) (-801) (-307 |#1|) (-112)))) (-13 (-799) (-825) (-1023))) (T -805)) -((-2829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-801)) (-5 *4 (-307 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-799) (-825) (-1023))) (-5 *2 (-1235)) (-5 *1 (-805 *6)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-801)) (-5 *4 (-307 *5)) (-4 *5 (-13 (-799) (-825) (-1023))) (-5 *2 (-1235)) (-5 *1 (-805 *5)))) (-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-799) (-825) (-1023))) (-5 *2 (-1129)) (-5 *1 (-805 *5)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-799) (-825) (-1023))) (-5 *2 (-1129)) (-5 *1 (-805 *4))))) -(-10 -7 (-15 -2829 ((-1129) (-307 |#1|))) (-15 -2829 ((-1129) (-307 |#1|) (-112))) (-15 -2829 ((-1235) (-801) (-307 |#1|))) (-15 -2829 ((-1235) (-801) (-307 |#1|) (-112)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2830 ((|#1| $) 10)) (-2831 (($ |#1|) 9)) (-2497 (((-112) $) NIL)) (-3221 (($ |#2| (-749)) NIL)) (-3148 (((-749) $) NIL)) (-3520 ((|#2| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4165 (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-4302 (((-749) $) NIL)) (-4312 (((-838) $) 17) (($ (-536)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-4035 ((|#2| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $) NIL (|has| |#1| (-227)))) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-806 |#1| |#2|) (-13 (-687 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2831 ($ |#1|)) (-15 -2830 (|#1| $)))) (-687 |#2|) (-1023)) (T -806)) -((-2831 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-806 *2 *3)) (-4 *2 (-687 *3)))) (-2830 (*1 *2 *1) (-12 (-4 *2 (-687 *3)) (-5 *1 (-806 *2 *3)) (-4 *3 (-1023))))) -(-13 (-687 |#2|) (-10 -8 (IF (|has| |#1| (-227)) (-6 (-227)) |%noBranch|) (-15 -2831 ($ |#1|)) (-15 -2830 (|#1| $)))) -((-2839 (((-304) (-1129) (-1129)) 12)) (-2838 (((-112) (-1129) (-1129)) 34)) (-2837 (((-112) (-1129)) 33)) (-2834 (((-51) (-1129)) 25)) (-2833 (((-51) (-1129)) 23)) (-2832 (((-51) (-801)) 17)) (-2836 (((-620 (-1129)) (-1129)) 28)) (-2835 (((-620 (-1129))) 27))) -(((-807) (-10 -7 (-15 -2832 ((-51) (-801))) (-15 -2833 ((-51) (-1129))) (-15 -2834 ((-51) (-1129))) (-15 -2835 ((-620 (-1129)))) (-15 -2836 ((-620 (-1129)) (-1129))) (-15 -2837 ((-112) (-1129))) (-15 -2838 ((-112) (-1129) (-1129))) (-15 -2839 ((-304) (-1129) (-1129))))) (T -807)) -((-2839 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-807)))) (-2838 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-807)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-807)))) (-2836 (*1 *2 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-807)) (-5 *3 (-1129)))) (-2835 (*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-807)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-807)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-807)))) (-2832 (*1 *2 *3) (-12 (-5 *3 (-801)) (-5 *2 (-51)) (-5 *1 (-807))))) -(-10 -7 (-15 -2832 ((-51) (-801))) (-15 -2833 ((-51) (-1129))) (-15 -2834 ((-51) (-1129))) (-15 -2835 ((-620 (-1129)))) (-15 -2836 ((-620 (-1129)) (-1129))) (-15 -2837 ((-112) (-1129))) (-15 -2838 ((-112) (-1129) (-1129))) (-15 -2839 ((-304) (-1129) (-1129)))) -((-2893 (((-112) $ $) 19)) (-3580 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3582 (($ $ $) 72)) (-3581 (((-112) $ $) 73)) (-1269 (((-112) $ (-749)) 8)) (-3585 (($ (-620 |#1|)) 68) (($) 67)) (-1626 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2450 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ |#1| $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) 64)) (-4077 (((-112) $ (-749)) 9)) (-3672 ((|#1| $) 78)) (-3187 (($ $ $) 81)) (-3867 (($ $ $) 80)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3673 ((|#1| $) 79)) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22)) (-3584 (($ $ $) 69)) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40) (($ |#1| $ (-749)) 63)) (-3589 (((-1091) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2449 (((-620 (-2 (|:| -2186 |#1|) (|:| -2064 (-749)))) $) 61)) (-3583 (($ $ |#1|) 71) (($ $ $) 70)) (-1518 (($) 49) (($ (-620 |#1|)) 48)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 50)) (-4312 (((-838) $) 18)) (-3586 (($ (-620 |#1|)) 66) (($) 65)) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20)) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-808 |#1|) (-138) (-825)) (T -808)) -((-3672 (*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-825))))) -(-13 (-716 |t#1|) (-942 |t#1|) (-10 -8 (-15 -3672 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-229 |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-673 |#1|) . T) ((-716 |#1|) . T) ((-942 |#1|) . T) ((-1070 |#1|) . T) ((-1072) . T) ((-1183) . T)) -((-2842 (((-1235) (-1091) (-1091)) 47)) (-2841 (((-1235) (-800) (-51)) 44)) (-2840 (((-51) (-800)) 16))) -(((-809) (-10 -7 (-15 -2840 ((-51) (-800))) (-15 -2841 ((-1235) (-800) (-51))) (-15 -2842 ((-1235) (-1091) (-1091))))) (T -809)) -((-2842 (*1 *2 *3 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1235)) (-5 *1 (-809)))) (-2841 (*1 *2 *3 *4) (-12 (-5 *3 (-800)) (-5 *4 (-51)) (-5 *2 (-1235)) (-5 *1 (-809)))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-800)) (-5 *2 (-51)) (-5 *1 (-809))))) -(-10 -7 (-15 -2840 ((-51) (-800))) (-15 -2841 ((-1235) (-800) (-51))) (-15 -2842 ((-1235) (-1091) (-1091)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL (|has| |#1| (-21)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3981 (((-536) $) NIL (|has| |#1| (-823)))) (-3891 (($) NIL (|has| |#1| (-21)) CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 15)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 9)) (-3816 (((-3 $ "failed") $) 40 (|has| |#1| (-823)))) (-3352 (((-3 (-400 (-536)) "failed") $) 49 (|has| |#1| (-535)))) (-3351 (((-112) $) 43 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 46 (|has| |#1| (-535)))) (-3532 (((-112) $) NIL (|has| |#1| (-823)))) (-2497 (((-112) $) NIL (|has| |#1| (-823)))) (-3533 (((-112) $) NIL (|has| |#1| (-823)))) (-3672 (($ $ $) NIL (|has| |#1| (-823)))) (-3673 (($ $ $) NIL (|has| |#1| (-823)))) (-3588 (((-1129) $) NIL)) (-2843 (($) 13)) (-2855 (((-112) $) 12)) (-3589 (((-1091) $) NIL)) (-2856 (((-112) $) 11)) (-4312 (((-838) $) 18) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) 8) (($ (-536)) NIL (-3886 (|has| |#1| (-823)) (|has| |#1| (-1012 (-536)))))) (-3456 (((-749)) 34 (|has| |#1| (-823)))) (-3737 (($ $) NIL (|has| |#1| (-823)))) (-2986 (($) 22 (|has| |#1| (-21)) CONST)) (-2992 (($) 31 (|has| |#1| (-823)) CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3382 (((-112) $ $) 20)) (-3012 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3013 (((-112) $ $) 42 (|has| |#1| (-823)))) (-4192 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4194 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-893)) NIL (|has| |#1| (-823))) (($ $ (-749)) NIL (|has| |#1| (-823)))) (* (($ $ $) 37 (|has| |#1| (-823))) (($ (-536) $) 25 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-893) $) NIL (|has| |#1| (-21))))) -(((-810 |#1|) (-13 (-1072) (-405 |#1|) (-10 -8 (-15 -2843 ($)) (-15 -2856 ((-112) $)) (-15 -2855 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|))) (-1072)) (T -810)) -((-2843 (*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1072)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-1072)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-1072)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-810 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) (-3352 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-810 *3)) (-4 *3 (-535)) (-4 *3 (-1072))))) -(-13 (-1072) (-405 |#1|) (-10 -8 (-15 -2843 ($)) (-15 -2856 ((-112) $)) (-15 -2855 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|))) -((-4313 (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|) (-810 |#2|)) 12) (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)) 13))) -(((-811 |#1| |#2|) (-10 -7 (-15 -4313 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|))) (-15 -4313 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|) (-810 |#2|)))) (-1072) (-1072)) (T -811)) -((-4313 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-810 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *1 (-811 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-810 *6)) (-5 *1 (-811 *5 *6))))) -(-10 -7 (-15 -4313 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|))) (-15 -4313 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|) (-810 |#2|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3502 ((|#1| $) NIL) (((-113) $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2845 ((|#1| (-113) |#1|) NIL)) (-2497 (((-112) $) NIL)) (-2844 (($ |#1| (-354 (-113))) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2846 (($ $ (-1 |#1| |#1|)) NIL)) (-2847 (($ $ (-1 |#1| |#1|)) NIL)) (-4154 ((|#1| $ |#1|) NIL)) (-2848 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-2849 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ (-113) (-536)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-812 |#1|) (-13 (-1023) (-1012 |#1|) (-1012 (-113)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2849 ($ $)) (-15 -2849 ($ $ $)) (-15 -2848 (|#1| |#1|))) |%noBranch|) (-15 -2847 ($ $ (-1 |#1| |#1|))) (-15 -2846 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-536))) (-15 ** ($ $ (-536))) (-15 -2845 (|#1| (-113) |#1|)) (-15 -2844 ($ |#1| (-354 (-113)))))) (-1023)) (T -812)) -((-2849 (*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023)))) (-2849 (*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023)))) (-2848 (*1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023)))) (-2847 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-812 *3)))) (-2846 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-812 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-536)) (-5 *1 (-812 *4)) (-4 *4 (-1023)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-812 *3)) (-4 *3 (-1023)))) (-2845 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-812 *2)) (-4 *2 (-1023)))) (-2844 (*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-5 *1 (-812 *2)) (-4 *2 (-1023))))) -(-13 (-1023) (-1012 |#1|) (-1012 (-113)) (-279 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2849 ($ $)) (-15 -2849 ($ $ $)) (-15 -2848 (|#1| |#1|))) |%noBranch|) (-15 -2847 ($ $ (-1 |#1| |#1|))) (-15 -2846 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-536))) (-15 ** ($ $ (-536))) (-15 -2845 (|#1| (-113) |#1|)) (-15 -2844 ($ |#1| (-354 (-113)))))) -((-2850 (((-208 (-493)) (-1129)) 9))) -(((-813) (-10 -7 (-15 -2850 ((-208 (-493)) (-1129))))) (T -813)) -((-2850 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-208 (-493))) (-5 *1 (-813))))) -(-10 -7 (-15 -2850 ((-208 (-493)) (-1129)))) -((-2893 (((-112) $ $) 7)) (-2851 (((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 14) (((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 13)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 16) (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 15)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) -(((-814) (-138)) (T -814)) -((-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-814)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) (-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-814)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) (-2851 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) (-5 *2 (-1009)))) (-2851 (*1 *2 *3) (-12 (-4 *1 (-814)) (-5 *3 (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (-5 *2 (-1009))))) -(-13 (-1072) (-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -2851 ((-1009) (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -2851 ((-1009) (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2852 (((-1009) (-620 (-307 (-371))) (-620 (-371))) 147) (((-1009) (-307 (-371)) (-620 (-371))) 145) (((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-817 (-371)))) 144) (((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-307 (-371))) (-620 (-817 (-371)))) 143) (((-1009) (-816)) 117) (((-1009) (-816) (-1035)) 116)) (-2996 (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816) (-1035)) 82) (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816)) 84)) (-2853 (((-1009) (-620 (-307 (-371))) (-620 (-371))) 148) (((-1009) (-816)) 133))) -(((-815) (-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816) (-1035))) (-15 -2852 ((-1009) (-816) (-1035))) (-15 -2852 ((-1009) (-816))) (-15 -2853 ((-1009) (-816))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-307 (-371))) (-620 (-817 (-371))))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-817 (-371))))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)))) (-15 -2852 ((-1009) (-620 (-307 (-371))) (-620 (-371)))) (-15 -2853 ((-1009) (-620 (-307 (-371))) (-620 (-371)))))) (T -815)) -((-2853 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-307 (-371)))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-307 (-371)))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-371))) (-5 *5 (-620 (-817 (-371)))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-620 (-371))) (-5 *5 (-620 (-817 (-371)))) (-5 *6 (-620 (-307 (-371)))) (-5 *3 (-307 (-371))) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2852 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-815)))) (-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-816)) (-5 *4 (-1035)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-815)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-815))))) -(-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-816) (-1035))) (-15 -2852 ((-1009) (-816) (-1035))) (-15 -2852 ((-1009) (-816))) (-15 -2853 ((-1009) (-816))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-307 (-371))) (-620 (-817 (-371))))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)) (-620 (-817 (-371))) (-620 (-817 (-371))))) (-15 -2852 ((-1009) (-307 (-371)) (-620 (-371)))) (-15 -2852 ((-1009) (-620 (-307 (-371))) (-620 (-371)))) (-15 -2853 ((-1009) (-620 (-307 (-371))) (-620 (-371))))) -((-2893 (((-112) $ $) NIL)) (-3502 (((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) $) 21)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20) (($ (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) 14) (($ (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) 18)) (-3382 (((-112) $ $) NIL))) -(((-816) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))) (-15 -4312 ($ (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -4312 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) $))))) (T -816)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-816)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (-5 *1 (-816)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) (-5 *1 (-816)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) (-5 *1 (-816)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) (-5 *1 (-816))))) -(-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219))))))) (-15 -4312 ($ (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) (-15 -4312 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-3 (|:| |noa| (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) (|:| |ub| (-620 (-817 (-219)))))) (|:| |lsa| (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219)))))) $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL (|has| |#1| (-21)))) (-2854 (((-1091) $) 24)) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3981 (((-536) $) NIL (|has| |#1| (-823)))) (-3891 (($) NIL (|has| |#1| (-21)) CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 16)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 9)) (-3816 (((-3 $ "failed") $) 47 (|has| |#1| (-823)))) (-3352 (((-3 (-400 (-536)) "failed") $) 54 (|has| |#1| (-535)))) (-3351 (((-112) $) 49 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 52 (|has| |#1| (-535)))) (-3532 (((-112) $) NIL (|has| |#1| (-823)))) (-2858 (($) 13)) (-2497 (((-112) $) NIL (|has| |#1| (-823)))) (-3533 (((-112) $) NIL (|has| |#1| (-823)))) (-2857 (($) 14)) (-3672 (($ $ $) NIL (|has| |#1| (-823)))) (-3673 (($ $ $) NIL (|has| |#1| (-823)))) (-3588 (((-1129) $) NIL)) (-2855 (((-112) $) 12)) (-3589 (((-1091) $) NIL)) (-2856 (((-112) $) 11)) (-4312 (((-838) $) 22) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) 8) (($ (-536)) NIL (-3886 (|has| |#1| (-823)) (|has| |#1| (-1012 (-536)))))) (-3456 (((-749)) 41 (|has| |#1| (-823)))) (-3737 (($ $) NIL (|has| |#1| (-823)))) (-2986 (($) 29 (|has| |#1| (-21)) CONST)) (-2992 (($) 38 (|has| |#1| (-823)) CONST)) (-2891 (((-112) $ $) NIL (|has| |#1| (-823)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3382 (((-112) $ $) 27)) (-3012 (((-112) $ $) NIL (|has| |#1| (-823)))) (-3013 (((-112) $ $) 48 (|has| |#1| (-823)))) (-4192 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4194 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-893)) NIL (|has| |#1| (-823))) (($ $ (-749)) NIL (|has| |#1| (-823)))) (* (($ $ $) 44 (|has| |#1| (-823))) (($ (-536) $) 32 (|has| |#1| (-21))) (($ (-749) $) NIL (|has| |#1| (-21))) (($ (-893) $) NIL (|has| |#1| (-21))))) -(((-817 |#1|) (-13 (-1072) (-405 |#1|) (-10 -8 (-15 -2858 ($)) (-15 -2857 ($)) (-15 -2856 ((-112) $)) (-15 -2855 ((-112) $)) (-15 -2854 ((-1091) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|))) (-1072)) (T -817)) -((-2858 (*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1072)))) (-2857 (*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1072)))) (-2856 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-1072)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-1072)))) (-2854 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-817 *3)) (-4 *3 (-1072)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-817 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) (-3352 (*1 *2 *1) (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-817 *3)) (-4 *3 (-535)) (-4 *3 (-1072))))) -(-13 (-1072) (-405 |#1|) (-10 -8 (-15 -2858 ($)) (-15 -2857 ($)) (-15 -2856 ((-112) $)) (-15 -2855 ((-112) $)) (-15 -2854 ((-1091) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-823)) |%noBranch|) (IF (|has| |#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|))) -((-4313 (((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|) (-817 |#2|) (-817 |#2|)) 13) (((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)) 14))) -(((-818 |#1| |#2|) (-10 -7 (-15 -4313 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|))) (-15 -4313 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|) (-817 |#2|) (-817 |#2|)))) (-1072) (-1072)) (T -818)) -((-4313 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-817 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *1 (-818 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-817 *6)) (-5 *1 (-818 *5 *6))))) -(-10 -7 (-15 -4313 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|))) (-15 -4313 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|) (-817 |#2|) (-817 |#2|)))) -((-2893 (((-112) $ $) 7)) (-3466 (((-749)) 20)) (-3322 (($) 23)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-2121 (((-893) $) 22)) (-3588 (((-1129) $) 9)) (-2487 (($ (-893)) 21)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18))) -(((-819) (-138)) (T -819)) -NIL -(-13 (-825) (-361)) -(((-101) . T) ((-595 (-838)) . T) ((-361) . T) ((-825) . T) ((-1072) . T)) -((-2860 (((-112) (-1229 |#2|) (-1229 |#2|)) 17)) (-2861 (((-112) (-1229 |#2|) (-1229 |#2|)) 18)) (-2859 (((-112) (-1229 |#2|) (-1229 |#2|)) 14))) -(((-820 |#1| |#2|) (-10 -7 (-15 -2859 ((-112) (-1229 |#2|) (-1229 |#2|))) (-15 -2860 ((-112) (-1229 |#2|) (-1229 |#2|))) (-15 -2861 ((-112) (-1229 |#2|) (-1229 |#2|)))) (-749) (-770)) (T -820)) -((-2861 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749)))) (-2860 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749)))) (-2859 (*1 *2 *3 *3) (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) (-14 *4 (-749))))) -(-10 -7 (-15 -2859 ((-112) (-1229 |#2|) (-1229 |#2|))) (-15 -2860 ((-112) (-1229 |#2|) (-1229 |#2|))) (-15 -2861 ((-112) (-1229 |#2|) (-1229 |#2|)))) -((-2893 (((-112) $ $) 7)) (-3891 (($) 23 T CONST)) (-3816 (((-3 $ "failed") $) 26)) (-2497 (((-112) $) 24)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2992 (($) 22 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (** (($ $ (-893)) 21) (($ $ (-749)) 25)) (* (($ $ $) 20))) +(-13 (-774) (-23)) +(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-774) . T) ((-827) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 24)) (-2733 (($ $ $) 27)) (-1368 (((-3 $ "failed") $ $) 26)) (-3896 (($) 23 T CONST)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 22 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4199 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-751) $) 25))) +(((-773) (-138)) (T -773)) +((-2733 (*1 *1 *1 *1) (-4 *1 (-773)))) +(-13 (-777) (-10 -8 (-15 -2733 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-827) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 7)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4199 (($ $ $) 20)) (* (($ (-895) $) 21))) +(((-774) (-138)) (T -774)) +NIL +(-13 (-827) (-25)) +(((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-827) . T) ((-1074) . T)) +((-3539 (((-112) $) 41)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#2| #1#) $) 44)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL) ((|#2| $) 42)) (-3357 (((-3 (-402 (-538)) "failed") $) 78)) (-3356 (((-112) $) 72)) (-3355 (((-402 (-538)) $) 76)) (-3467 ((|#2| $) 26)) (-4318 (($ (-1 |#2| |#2|) $) 23)) (-2734 (($ $) 61)) (-4330 (((-527) $) 67)) (-3342 (($ $) 21)) (-4317 (((-840) $) 56) (($ (-538)) 39) (($ |#2|) 37) (($ (-402 (-538))) NIL)) (-3461 (((-751)) 10)) (-3742 ((|#2| $) 71)) (-3387 (((-112) $ $) 29)) (-3018 (((-112) $ $) 69)) (-4197 (($ $) 31) (($ $ $) NIL)) (-4199 (($ $ $) 30)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32))) +(((-775 |#1| |#2|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3742 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-776 |#2|) (-170)) (T -775)) +((-3461 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-775 *3 *4)) (-4 *3 (-776 *4))))) +(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3742 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3471 (((-751)) 51 (|has| |#1| (-363)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 92 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 90 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 88)) (-3507 (((-538) $) 93 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 91 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 87)) (-3821 (((-3 $ "failed") $) 32)) (-4006 ((|#1| $) 77)) (-3357 (((-3 (-402 (-538)) "failed") $) 64 (|has| |#1| (-537)))) (-3356 (((-112) $) 66 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 65 (|has| |#1| (-537)))) (-3327 (($) 54 (|has| |#1| (-363)))) (-2502 (((-112) $) 30)) (-2739 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-3467 ((|#1| $) 69)) (-3677 (($ $ $) 60 (|has| |#1| (-827)))) (-3678 (($ $ $) 59 (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) 79)) (-2126 (((-895) $) 53 (|has| |#1| (-363)))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 63 (|has| |#1| (-358)))) (-2492 (($ (-895)) 52 (|has| |#1| (-363)))) (-2736 ((|#1| $) 74)) (-2737 ((|#1| $) 75)) (-2738 ((|#1| $) 76)) (-3339 ((|#1| $) 70)) (-3340 ((|#1| $) 71)) (-3341 ((|#1| $) 72)) (-2735 ((|#1| $) 73)) (-3594 (((-1093) $) 10)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) 85 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) 83 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) 82 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 81 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 80 (|has| |#1| (-507 (-1149) |#1|)))) (-4159 (($ $ |#1|) 86 (|has| |#1| (-281 |#1| |#1|)))) (-4330 (((-527) $) 61 (|has| |#1| (-598 (-527))))) (-3342 (($ $) 78)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35) (($ (-402 (-538))) 89 (|has| |#1| (-1014 (-402 (-538)))))) (-3035 (((-3 $ "failed") $) 62 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-3742 ((|#1| $) 67 (|has| |#1| (-1034)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 57 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 56 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 58 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 55 (|has| |#1| (-827)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36))) +(((-776 |#1|) (-138) (-170)) (T -776)) +((-3342 (*1 *1 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-2736 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-2739 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) (-2734 (*1 *1 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)) (-4 *2 (-358))))) +(-13 (-38 |t#1|) (-407 |t#1|) (-333 |t#1|) (-10 -8 (-15 -3342 ($ $)) (-15 -4006 (|t#1| $)) (-15 -2738 (|t#1| $)) (-15 -2737 (|t#1| $)) (-15 -2736 (|t#1| $)) (-15 -2735 (|t#1| $)) (-15 -3341 (|t#1| $)) (-15 -3340 (|t#1| $)) (-15 -3339 (|t#1| $)) (-15 -3467 (|t#1| $)) (-15 -2739 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -3742 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-358)) (-15 -2734 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-363) |has| |#1| (-363)) ((-333 |#1|) . T) ((-407 |#1|) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 24)) (-1368 (((-3 $ "failed") $ $) 26)) (-3896 (($) 23 T CONST)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 22 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4199 (($ $ $) 20)) (* (($ (-895) $) 21) (($ (-751) $) 25))) +(((-777) (-138)) (T -777)) +NIL +(-13 (-772) (-130)) +(((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-772) . T) ((-774) . T) ((-827) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #1="failed") $) NIL) (((-3 (-972 |#1|) #1#) $) 35) (((-3 (-538) #1#) $) NIL (-3891 (|has| (-972 |#1|) (-1014 (-538))) (|has| |#1| (-1014 (-538))))) (((-3 (-402 (-538)) #1#) $) NIL (-3891 (|has| (-972 |#1|) (-1014 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-3507 ((|#1| $) NIL) (((-972 |#1|) $) 33) (((-538) $) NIL (-3891 (|has| (-972 |#1|) (-1014 (-538))) (|has| |#1| (-1014 (-538))))) (((-402 (-538)) $) NIL (-3891 (|has| (-972 |#1|) (-1014 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-3821 (((-3 $ "failed") $) NIL)) (-4006 ((|#1| $) 16)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL (|has| |#1| (-537)))) (-3356 (((-112) $) NIL (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) NIL (|has| |#1| (-537)))) (-3327 (($) NIL (|has| |#1| (-363)))) (-2502 (((-112) $) NIL)) (-2739 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-972 |#1|) (-972 |#1|)) 29)) (-3467 ((|#1| $) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-2736 ((|#1| $) 22)) (-2737 ((|#1| $) 20)) (-2738 ((|#1| $) 18)) (-3339 ((|#1| $) 26)) (-3340 ((|#1| $) 25)) (-3341 ((|#1| $) 24)) (-2735 ((|#1| $) 23)) (-3594 (((-1093) $) NIL)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-4159 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3342 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-972 |#1|)) 30) (($ (-402 (-538))) NIL (-3891 (|has| (-972 |#1|) (-1014 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-3742 ((|#1| $) NIL (|has| |#1| (-1034)))) (-2991 (($) 8 T CONST)) (-2997 (($) 12 T CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-778 |#1|) (-13 (-776 |#1|) (-407 (-972 |#1|)) (-10 -8 (-15 -2739 ($ (-972 |#1|) (-972 |#1|))))) (-170)) (T -778)) +((-2739 (*1 *1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-170)) (-5 *1 (-778 *3))))) +(-13 (-776 |#1|) (-407 (-972 |#1|)) (-10 -8 (-15 -2739 ($ (-972 |#1|) (-972 |#1|))))) +((-4318 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-779 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|))) (-776 |#2|) (-170) (-776 |#4|) (-170)) (T -779)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-776 *6)) (-5 *1 (-779 *4 *5 *2 *6)) (-4 *4 (-776 *5))))) +(-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|))) +((-2898 (((-112) $ $) 7)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2740 (((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 13)) (-3387 (((-112) $ $) 6))) +(((-780) (-138)) (T -780)) +((-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-780)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) (-2740 (*1 *2 *3) (-12 (-4 *1 (-780)) (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-1011))))) +(-13 (-1074) (-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -2740 ((-1011) (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2741 (((-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#3| |#2| (-1149)) 19))) +(((-781 |#1| |#2| |#3|) (-10 -7 (-15 -2741 ((-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#3| |#2| (-1149)))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)) (-13 (-29 |#1|) (-1171) (-936)) (-638 |#2|)) (T -781)) +((-2741 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-4 *4 (-13 (-29 *6) (-1171) (-936))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2128 (-622 *4)))) (-5 *1 (-781 *6 *4 *3)) (-4 *3 (-638 *4))))) +(-10 -7 (-15 -2741 ((-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#3| |#2| (-1149)))) +((-3936 (((-3 |#2| #1="failed") |#2| (-113) (-288 |#2|) (-622 |#2|)) 28) (((-3 |#2| #1#) (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #2="failed") |#2| (-113) (-1149)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #2#) (-288 |#2|) (-113) (-1149)) 18) (((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 |#2|) (-622 (-113)) (-1149)) 24) (((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 (-288 |#2|)) (-622 (-113)) (-1149)) 26) (((-3 (-622 (-1231 |#2|)) "failed") (-669 |#2|) (-1149)) 37) (((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-669 |#2|) (-1231 |#2|) (-1149)) 35))) +(((-782 |#1| |#2|) (-10 -7 (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-669 |#2|) (-1231 |#2|) (-1149))) (-15 -3936 ((-3 (-622 (-1231 |#2|)) "failed") (-669 |#2|) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 (-288 |#2|)) (-622 (-113)) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 |#2|) (-622 (-113)) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #1="failed") (-288 |#2|) (-113) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #1#) |#2| (-113) (-1149))) (-15 -3936 ((-3 |#2| #2="failed") (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|))) (-15 -3936 ((-3 |#2| #2#) |#2| (-113) (-288 |#2|) (-622 |#2|)))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)) (-13 (-29 |#1|) (-1171) (-936))) (T -782)) +((-3936 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-622 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *1 (-782 *6 *2)))) (-3936 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-622 *2)) (-4 *2 (-13 (-29 *6) (-1171) (-936))) (-5 *1 (-782 *6 *2)) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))))) (-3936 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-113)) (-5 *5 (-1149)) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2128 (-622 *3))) *3 #1="failed")) (-5 *1 (-782 *6 *3)) (-4 *3 (-13 (-29 *6) (-1171) (-936))))) (-3936 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2128 (-622 *7))) *7 #1#)) (-5 *1 (-782 *6 *7)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-622 *7)) (-5 *4 (-622 (-113))) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7))))) (-5 *1 (-782 *6 *7)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-622 (-288 *7))) (-5 *4 (-622 (-113))) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7))))) (-5 *1 (-782 *6 *7)))) (-3936 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-669 *6)) (-5 *4 (-1149)) (-4 *6 (-13 (-29 *5) (-1171) (-936))) (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-1231 *6))) (-5 *1 (-782 *5 *6)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-669 *7)) (-5 *5 (-1149)) (-4 *7 (-13 (-29 *6) (-1171) (-936))) (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7))))) (-5 *1 (-782 *6 *7)) (-5 *4 (-1231 *7))))) +(-10 -7 (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-669 |#2|) (-1231 |#2|) (-1149))) (-15 -3936 ((-3 (-622 (-1231 |#2|)) "failed") (-669 |#2|) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 (-288 |#2|)) (-622 (-113)) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#2|)) (|:| -2128 (-622 (-1231 |#2|)))) "failed") (-622 |#2|) (-622 (-113)) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #1="failed") (-288 |#2|) (-113) (-1149))) (-15 -3936 ((-3 (-2 (|:| |particular| |#2|) (|:| -2128 (-622 |#2|))) |#2| #1#) |#2| (-113) (-1149))) (-15 -3936 ((-3 |#2| #2="failed") (-288 |#2|) (-113) (-288 |#2|) (-622 |#2|))) (-15 -3936 ((-3 |#2| #2#) |#2| (-113) (-288 |#2|) (-622 |#2|)))) +((-2742 (($) 9)) (-2746 (((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 31)) (-2744 (((-622 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $) 28)) (-3970 (($ (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) 25)) (-2745 (($ (-622 (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) 23)) (-2743 (((-1237)) 12))) +(((-783) (-10 -8 (-15 -2742 ($)) (-15 -2743 ((-1237))) (-15 -2744 ((-622 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -2745 ($ (-622 (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -3970 ($ (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -2746 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))))) (T -783)) +((-2746 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))) (-5 *1 (-783)))) (-3970 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))) (-5 *1 (-783)))) (-2745 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-5 *1 (-783)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-5 *1 (-783)))) (-2743 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-783)))) (-2742 (*1 *1) (-5 *1 (-783)))) +(-10 -8 (-15 -2742 ($)) (-15 -2743 ((-1237))) (-15 -2744 ((-622 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) $)) (-15 -2745 ($ (-622 (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373)))))))) (-15 -3970 ($ (-2 (|:| -4220 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (|:| -2191 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))))))) (-15 -2746 ((-3 (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) (|:| |expense| (-373)) (|:| |accuracy| (-373)) (|:| |intermediateResults| (-373))) "failed") (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) +((-3824 ((|#2| |#2| (-1149)) 16)) (-2747 ((|#2| |#2| (-1149)) 51)) (-2748 (((-1 |#2| |#2|) (-1149)) 11))) +(((-784 |#1| |#2|) (-10 -7 (-15 -3824 (|#2| |#2| (-1149))) (-15 -2747 (|#2| |#2| (-1149))) (-15 -2748 ((-1 |#2| |#2|) (-1149)))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145)) (-13 (-29 |#1|) (-1171) (-936))) (T -784)) +((-2748 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-1 *5 *5)) (-5 *1 (-784 *4 *5)) (-4 *5 (-13 (-29 *4) (-1171) (-936))))) (-2747 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-936))))) (-3824 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-936)))))) +(-10 -7 (-15 -3824 (|#2| |#2| (-1149))) (-15 -2747 (|#2| |#2| (-1149))) (-15 -2748 ((-1 |#2| |#2|) (-1149)))) +((-3936 (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373) (-373)) 116) (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373)) 117) (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-622 (-373)) (-373)) 119) (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-373)) 120) (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-373)) 121) (((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373))) 122) (((-1011) (-788) (-1037)) 108) (((-1011) (-788)) 109)) (-3001 (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788) (-1037)) 75) (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788)) 77))) +(((-785) (-10 -7 (-15 -3936 ((-1011) (-788))) (-15 -3936 ((-1011) (-788) (-1037))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373) (-373))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788) (-1037))))) (T -785)) +((-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-785)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373))) (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373))) (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373))) (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-785)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1011)) (-5 *1 (-785))))) +(-10 -7 (-15 -3936 ((-1011) (-788))) (-15 -3936 ((-1011) (-788) (-1037))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373))) (-15 -3936 ((-1011) (-1231 (-309 (-373))) (-373) (-373) (-622 (-373)) (-309 (-373)) (-622 (-373)) (-373) (-373))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-788) (-1037)))) +((-2749 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2128 (-622 |#4|))) (-635 |#4|) |#4|) 35))) +(((-786 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2749 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2128 (-622 |#4|))) (-635 |#4|) |#4|))) (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|)) (T -786)) +((-2749 (*1 *2 *3 *4) (-12 (-5 *3 (-635 *4)) (-4 *4 (-337 *5 *6 *7)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2128 (-622 *4)))) (-5 *1 (-786 *5 *6 *7 *4))))) +(-10 -7 (-15 -2749 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2128 (-622 |#4|))) (-635 |#4|) |#4|))) +((-4101 (((-2 (|:| -3617 |#3|) (|:| |rh| (-622 (-402 |#2|)))) |#4| (-622 (-402 |#2|))) 52)) (-2751 (((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4| |#2|) 60) (((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4|) 59) (((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3| |#2|) 20) (((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3|) 21)) (-2752 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-2750 ((|#2| |#3| (-622 (-402 |#2|))) 93) (((-3 |#2| "failed") |#3| (-402 |#2|)) 90))) +(((-787 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2750 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -2750 (|#2| |#3| (-622 (-402 |#2|)))) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3| |#2|)) (-15 -2752 (|#2| |#3| |#1|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4| |#2|)) (-15 -2752 (|#2| |#4| |#1|)) (-15 -4101 ((-2 (|:| -3617 |#3|) (|:| |rh| (-622 (-402 |#2|)))) |#4| (-622 (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-402 (-538)))) (-1207 |#1|) (-638 |#2|) (-638 (-402 |#2|))) (T -787)) +((-4101 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-2 (|:| -3617 *7) (|:| |rh| (-622 (-402 *6))))) (-5 *1 (-787 *5 *6 *7 *3)) (-5 *4 (-622 (-402 *6))) (-4 *7 (-638 *6)) (-4 *3 (-638 (-402 *6))))) (-2752 (*1 *2 *3 *4) (-12 (-4 *2 (-1207 *4)) (-5 *1 (-787 *4 *2 *5 *3)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-638 *2)) (-4 *3 (-638 (-402 *2))))) (-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *4 (-1207 *5)) (-5 *2 (-622 (-2 (|:| -4132 *4) (|:| -3577 *4)))) (-5 *1 (-787 *5 *4 *6 *3)) (-4 *6 (-638 *4)) (-4 *3 (-638 (-402 *4))))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-2 (|:| -4132 *5) (|:| -3577 *5)))) (-5 *1 (-787 *4 *5 *6 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 (-402 *5))))) (-2752 (*1 *2 *3 *4) (-12 (-4 *2 (-1207 *4)) (-5 *1 (-787 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-402 *2))))) (-2751 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *4 (-1207 *5)) (-5 *2 (-622 (-2 (|:| -4132 *4) (|:| -3577 *4)))) (-5 *1 (-787 *5 *4 *3 *6)) (-4 *3 (-638 *4)) (-4 *6 (-638 (-402 *4))))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-2 (|:| -4132 *5) (|:| -3577 *5)))) (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-402 *5))))) (-2750 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-402 *2))) (-4 *2 (-1207 *5)) (-5 *1 (-787 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) (-4 *6 (-638 (-402 *2))))) (-2750 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1207 *5)) (-5 *1 (-787 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) (-4 *6 (-638 *4))))) +(-10 -7 (-15 -2750 ((-3 |#2| "failed") |#3| (-402 |#2|))) (-15 -2750 (|#2| |#3| (-622 (-402 |#2|)))) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#3| |#2|)) (-15 -2752 (|#2| |#3| |#1|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4|)) (-15 -2751 ((-622 (-2 (|:| -4132 |#2|) (|:| -3577 |#2|))) |#4| |#2|)) (-15 -2752 (|#2| |#4| |#1|)) (-15 -4101 ((-2 (|:| -3617 |#3|) (|:| |rh| (-622 (-402 |#2|)))) |#4| (-622 (-402 |#2|))))) +((-2898 (((-112) $ $) NIL)) (-3507 (((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $) 13)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 15) (($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) 12)) (-3387 (((-112) $ $) NIL))) +(((-788) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $))))) (T -788)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-788)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-788)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *1 (-788))))) +(-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) (|:| |abserr| (-221)) (|:| |relerr| (-221))) $)))) +((-2760 (((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 |#3|))) |#3| (-1 (-622 |#2|) |#2| (-1143 |#2|)) (-1 (-400 |#2|) |#2|)) 118)) (-2761 (((-622 (-2 (|:| |poly| |#2|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|)) 46)) (-2754 (((-622 (-2 (|:| |deg| (-751)) (|:| -3617 |#2|))) |#3|) 95)) (-2753 ((|#2| |#3|) 37)) (-2755 (((-622 (-2 (|:| -4311 |#1|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|)) 82)) (-2756 ((|#3| |#3| (-402 |#2|)) 63) ((|#3| |#3| |#2|) 79))) +(((-789 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2753 (|#2| |#3|)) (-15 -2754 ((-622 (-2 (|:| |deg| (-751)) (|:| -3617 |#2|))) |#3|)) (-15 -2755 ((-622 (-2 (|:| -4311 |#1|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|))) (-15 -2761 ((-622 (-2 (|:| |poly| |#2|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|))) (-15 -2760 ((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 |#3|))) |#3| (-1 (-622 |#2|) |#2| (-1143 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2756 (|#3| |#3| |#2|)) (-15 -2756 (|#3| |#3| (-402 |#2|)))) (-13 (-358) (-145) (-1014 (-402 (-538)))) (-1207 |#1|) (-638 |#2|) (-638 (-402 |#2|))) (T -789)) +((-2756 (*1 *2 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *1 (-789 *4 *5 *2 *6)) (-4 *2 (-638 *5)) (-4 *6 (-638 *3)))) (-2756 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-1207 *4)) (-5 *1 (-789 *4 *3 *2 *5)) (-4 *2 (-638 *3)) (-4 *5 (-638 (-402 *3))))) (-2760 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-622 *7) *7 (-1143 *7))) (-5 *5 (-1 (-400 *7) *7)) (-4 *7 (-1207 *6)) (-4 *6 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-5 *2 (-622 (-2 (|:| |frac| (-402 *7)) (|:| -3617 *3)))) (-5 *1 (-789 *6 *7 *3 *8)) (-4 *3 (-638 *7)) (-4 *8 (-638 (-402 *7))))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-2 (|:| |poly| *6) (|:| -3617 *3)))) (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-402 *6))))) (-2755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-2 (|:| -4311 *5) (|:| -3617 *3)))) (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-402 *6))))) (-2754 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-2 (|:| |deg| (-751)) (|:| -3617 *5)))) (-5 *1 (-789 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-402 *5))))) (-2753 (*1 *2 *3) (-12 (-4 *2 (-1207 *4)) (-5 *1 (-789 *4 *2 *3 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) (-4 *5 (-638 (-402 *2)))))) +(-10 -7 (-15 -2753 (|#2| |#3|)) (-15 -2754 ((-622 (-2 (|:| |deg| (-751)) (|:| -3617 |#2|))) |#3|)) (-15 -2755 ((-622 (-2 (|:| -4311 |#1|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|))) (-15 -2761 ((-622 (-2 (|:| |poly| |#2|) (|:| -3617 |#3|))) |#3| (-1 (-622 |#1|) |#2|))) (-15 -2760 ((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 |#3|))) |#3| (-1 (-622 |#2|) |#2| (-1143 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2756 (|#3| |#3| |#2|)) (-15 -2756 (|#3| |#3| (-402 |#2|)))) +((-2757 (((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-636 |#2| (-402 |#2|)) (-622 (-402 |#2|))) 121) (((-2 (|:| |particular| (-3 (-402 |#2|) #1="failed")) (|:| -2128 (-622 (-402 |#2|)))) (-636 |#2| (-402 |#2|)) (-402 |#2|)) 120) (((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-635 (-402 |#2|)) (-622 (-402 |#2|))) 115) (((-2 (|:| |particular| (-3 (-402 |#2|) #1#)) (|:| -2128 (-622 (-402 |#2|)))) (-635 (-402 |#2|)) (-402 |#2|)) 113)) (-2758 ((|#2| (-636 |#2| (-402 |#2|))) 80) ((|#2| (-635 (-402 |#2|))) 83))) +(((-790 |#1| |#2|) (-10 -7 (-15 -2757 ((-2 (|:| |particular| (-3 (-402 |#2|) #1="failed")) (|:| -2128 (-622 (-402 |#2|)))) (-635 (-402 |#2|)) (-402 |#2|))) (-15 -2757 ((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-635 (-402 |#2|)) (-622 (-402 |#2|)))) (-15 -2757 ((-2 (|:| |particular| (-3 (-402 |#2|) #1#)) (|:| -2128 (-622 (-402 |#2|)))) (-636 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -2757 ((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-636 |#2| (-402 |#2|)) (-622 (-402 |#2|)))) (-15 -2758 (|#2| (-635 (-402 |#2|)))) (-15 -2758 (|#2| (-636 |#2| (-402 |#2|))))) (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))) (-1207 |#1|)) (T -790)) +((-2758 (*1 *2 *3) (-12 (-5 *3 (-636 *2 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-790 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-635 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-790 *4 *2)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-402 *6))) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-2 (|:| -2128 (-622 (-402 *6))) (|:| -1700 (-669 *5)))) (-5 *1 (-790 *5 *6)) (-5 *4 (-622 (-402 *6))))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4)))) (-5 *1 (-790 *5 *6)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-402 *6))) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-2 (|:| -2128 (-622 (-402 *6))) (|:| -1700 (-669 *5)))) (-5 *1 (-790 *5 *6)) (-5 *4 (-622 (-402 *6))))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2128 (-622 *4)))) (-5 *1 (-790 *5 *6))))) +(-10 -7 (-15 -2757 ((-2 (|:| |particular| (-3 (-402 |#2|) #1="failed")) (|:| -2128 (-622 (-402 |#2|)))) (-635 (-402 |#2|)) (-402 |#2|))) (-15 -2757 ((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-635 (-402 |#2|)) (-622 (-402 |#2|)))) (-15 -2757 ((-2 (|:| |particular| (-3 (-402 |#2|) #1#)) (|:| -2128 (-622 (-402 |#2|)))) (-636 |#2| (-402 |#2|)) (-402 |#2|))) (-15 -2757 ((-2 (|:| -2128 (-622 (-402 |#2|))) (|:| -1700 (-669 |#1|))) (-636 |#2| (-402 |#2|)) (-622 (-402 |#2|)))) (-15 -2758 (|#2| (-635 (-402 |#2|)))) (-15 -2758 (|#2| (-636 |#2| (-402 |#2|))))) +((-2759 (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) |#5| |#4|) 48))) +(((-791 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2759 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) |#5| |#4|))) (-358) (-638 |#1|) (-1207 |#1|) (-705 |#1| |#3|) (-638 |#4|)) (T -791)) +((-2759 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *7 (-1207 *5)) (-4 *4 (-705 *5 *7)) (-5 *2 (-2 (|:| -1700 (-669 *6)) (|:| |vec| (-1231 *5)))) (-5 *1 (-791 *5 *6 *7 *4 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 *4))))) +(-10 -7 (-15 -2759 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) |#5| |#4|))) +((-2760 (((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|)) 47)) (-2762 (((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|))) 138 (|has| |#1| (-27))) (((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-400 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-622 (-402 |#2|)) (-635 (-402 |#2|))) 140 (|has| |#1| (-27))) (((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|)) 38) (((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|)) 39) (((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|)) 36) (((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|)) 37)) (-2761 (((-622 (-2 (|:| |poly| |#2|) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|)) 83))) +(((-792 |#1| |#2|) (-10 -7 (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|))) (-15 -2760 ((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2761 ((-622 (-2 (|:| |poly| |#2|) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)))) (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|)))) |%noBranch|)) (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))) (-1207 |#1|)) (T -792)) +((-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-636 *5 (-402 *5))) (-4 *5 (-1207 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-622 (-402 *5))) (-5 *1 (-792 *4 *5)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-635 (-402 *5))) (-4 *5 (-1207 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-622 (-402 *5))) (-5 *1 (-792 *4 *5)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-2 (|:| |poly| *6) (|:| -3617 (-636 *6 (-402 *6)))))) (-5 *1 (-792 *5 *6)) (-5 *3 (-636 *6 (-402 *6))))) (-2760 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-5 *2 (-622 (-2 (|:| |frac| (-402 *6)) (|:| -3617 (-636 *6 (-402 *6)))))) (-5 *1 (-792 *5 *6)) (-5 *3 (-636 *6 (-402 *6))))) (-2762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-636 *7 (-402 *7))) (-5 *4 (-1 (-622 *6) *7)) (-5 *5 (-1 (-400 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *7 (-1207 *6)) (-5 *2 (-622 (-402 *7))) (-5 *1 (-792 *6 *7)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))) (-2762 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-635 (-402 *7))) (-5 *4 (-1 (-622 *6) *7)) (-5 *5 (-1 (-400 *7) *7)) (-4 *6 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *7 (-1207 *6)) (-5 *2 (-622 (-402 *7))) (-5 *1 (-792 *6 *7)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-1 (-622 *5) *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6))))) +(-10 -7 (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|) (-1 (-400 |#2|) |#2|))) (-15 -2760 ((-622 (-2 (|:| |frac| (-402 |#2|)) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2761 ((-622 (-2 (|:| |poly| |#2|) (|:| -3617 (-636 |#2| (-402 |#2|))))) (-636 |#2| (-402 |#2|)) (-1 (-622 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)))) (-15 -2762 ((-622 (-402 |#2|)) (-635 (-402 |#2|)) (-1 (-400 |#2|) |#2|))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)))) (-15 -2762 ((-622 (-402 |#2|)) (-636 |#2| (-402 |#2|)) (-1 (-400 |#2|) |#2|)))) |%noBranch|)) +((-2763 (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) (-669 |#2|) (-1231 |#1|)) 85) (((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)) (|:| -3617 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1231 |#1|)) 15)) (-2764 (((-2 (|:| |particular| (-3 (-1231 |#1|) "failed")) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#2|) (-1231 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2128 (-622 |#1|))) |#2| |#1|)) 92)) (-3936 (((-3 (-2 (|:| |particular| (-1231 |#1|)) (|:| -2128 (-669 |#1|))) "failed") (-669 |#1|) (-1231 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) "failed") |#2| |#1|)) 43))) +(((-793 |#1| |#2|) (-10 -7 (-15 -2763 ((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)) (|:| -3617 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1231 |#1|))) (-15 -2763 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) (-669 |#2|) (-1231 |#1|))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#1|)) (|:| -2128 (-669 |#1|))) "failed") (-669 |#1|) (-1231 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) "failed") |#2| |#1|))) (-15 -2764 ((-2 (|:| |particular| (-3 (-1231 |#1|) "failed")) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#2|) (-1231 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2128 (-622 |#1|))) |#2| |#1|)))) (-358) (-638 |#1|)) (T -793)) +((-2764 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2128 (-622 *6))) *7 *6)) (-4 *6 (-358)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1231 *6) "failed")) (|:| -2128 (-622 (-1231 *6))))) (-5 *1 (-793 *6 *7)) (-5 *4 (-1231 *6)))) (-3936 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2128 (-622 *6))) "failed") *7 *6)) (-4 *6 (-358)) (-4 *7 (-638 *6)) (-5 *2 (-2 (|:| |particular| (-1231 *6)) (|:| -2128 (-669 *6)))) (-5 *1 (-793 *6 *7)) (-5 *3 (-669 *6)) (-5 *4 (-1231 *6)))) (-2763 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-4 *6 (-638 *5)) (-5 *2 (-2 (|:| -1700 (-669 *6)) (|:| |vec| (-1231 *5)))) (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *6)) (-5 *4 (-1231 *5)))) (-2763 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| A (-669 *5)) (|:| |eqs| (-622 (-2 (|:| C (-669 *5)) (|:| |g| (-1231 *5)) (|:| -3617 *6) (|:| |rh| *5)))))) (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) (-4 *6 (-638 *5))))) +(-10 -7 (-15 -2763 ((-2 (|:| A (-669 |#1|)) (|:| |eqs| (-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)) (|:| -3617 |#2|) (|:| |rh| |#1|))))) (-669 |#1|) (-1231 |#1|))) (-15 -2763 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#1|))) (-669 |#2|) (-1231 |#1|))) (-15 -3936 ((-3 (-2 (|:| |particular| (-1231 |#1|)) (|:| -2128 (-669 |#1|))) "failed") (-669 |#1|) (-1231 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2128 (-622 |#1|))) "failed") |#2| |#1|))) (-15 -2764 ((-2 (|:| |particular| (-3 (-1231 |#1|) "failed")) (|:| -2128 (-622 (-1231 |#1|)))) (-669 |#2|) (-1231 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2128 (-622 |#1|))) |#2| |#1|)))) +((-2765 (((-669 |#1|) (-622 |#1|) (-751)) 13) (((-669 |#1|) (-622 |#1|)) 14)) (-2766 (((-3 (-1231 |#1|) "failed") |#2| |#1| (-622 |#1|)) 34)) (-3699 (((-3 |#1| "failed") |#2| |#1| (-622 |#1|) (-1 |#1| |#1|)) 42))) +(((-794 |#1| |#2|) (-10 -7 (-15 -2765 ((-669 |#1|) (-622 |#1|))) (-15 -2765 ((-669 |#1|) (-622 |#1|) (-751))) (-15 -2766 ((-3 (-1231 |#1|) "failed") |#2| |#1| (-622 |#1|))) (-15 -3699 ((-3 |#1| "failed") |#2| |#1| (-622 |#1|) (-1 |#1| |#1|)))) (-358) (-638 |#1|)) (T -794)) +((-3699 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-622 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358)) (-5 *1 (-794 *2 *3)) (-4 *3 (-638 *2)))) (-2766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-622 *4)) (-4 *4 (-358)) (-5 *2 (-1231 *4)) (-5 *1 (-794 *4 *3)) (-4 *3 (-638 *4)))) (-2765 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-751)) (-4 *5 (-358)) (-5 *2 (-669 *5)) (-5 *1 (-794 *5 *6)) (-4 *6 (-638 *5)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)) (-5 *1 (-794 *4 *5)) (-4 *5 (-638 *4))))) +(-10 -7 (-15 -2765 ((-669 |#1|) (-622 |#1|))) (-15 -2765 ((-669 |#1|) (-622 |#1|) (-751))) (-15 -2766 ((-3 (-1231 |#1|) "failed") |#2| |#1| (-622 |#1|))) (-15 -3699 ((-3 |#1| "failed") |#2| |#1| (-622 |#1|) (-1 |#1| |#1|)))) +((-2898 (((-112) $ $) NIL (|has| |#2| (-1074)))) (-3539 (((-112) $) NIL (|has| |#2| (-130)))) (-4070 (($ (-895)) NIL (|has| |#2| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) NIL (|has| |#2| (-773)))) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#2| (-130)))) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#2| (-363)))) (-3986 (((-538) $) NIL (|has| |#2| (-825)))) (-4147 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1074)))) (-3507 (((-538) $) NIL (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) ((|#2| $) NIL (|has| |#2| (-1074)))) (-2362 (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#2| (-621 (-538))) (|has| |#2| (-1025)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL (|has| |#2| (-1025))) (((-669 |#2|) (-669 $)) NIL (|has| |#2| (-1025)))) (-3821 (((-3 $ "failed") $) NIL (|has| |#2| (-707)))) (-3327 (($) NIL (|has| |#2| (-363)))) (-1637 ((|#2| $ (-538) |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ (-538)) NIL)) (-3537 (((-112) $) NIL (|has| |#2| (-825)))) (-2068 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (|has| |#2| (-707)))) (-3538 (((-112) $) NIL (|has| |#2| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2511 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2072 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#2| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#2| (-1074)))) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#2| (-363)))) (-3594 (((-1093) $) NIL (|has| |#2| (-1074)))) (-4160 ((|#2| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ (-538) |#2|) NIL) ((|#2| $ (-538)) NIL)) (-4196 ((|#2| $ $) NIL (|has| |#2| (-1025)))) (-1525 (($ (-1231 |#2|)) NIL)) (-4271 (((-133)) NIL (|has| |#2| (-358)))) (-4170 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2069 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#2|) $) NIL) (($ (-538)) NIL (-3891 (-12 (|has| |#2| (-1014 (-538))) (|has| |#2| (-1074))) (|has| |#2| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#2| (-1014 (-402 (-538)))) (|has| |#2| (-1074)))) (($ |#2|) NIL (|has| |#2| (-1074))) (((-840) $) NIL (|has| |#2| (-597 (-840))))) (-3461 (((-751)) NIL (|has| |#2| (-1025)))) (-2071 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#2| (-825)))) (-2991 (($) NIL (|has| |#2| (-130)) CONST)) (-2997 (($) NIL (|has| |#2| (-707)) CONST)) (-3002 (($ $) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#2| (-229)) (|has| |#2| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#2| (-876 (-1149))) (|has| |#2| (-1025)))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#2| (-1025))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1025)))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3387 (((-112) $ $) NIL (|has| |#2| (-1074)))) (-3017 (((-112) $ $) NIL (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-3018 (((-112) $ $) 11 (-3891 (|has| |#2| (-773)) (|has| |#2| (-825))))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $ $) NIL (|has| |#2| (-1025))) (($ $) NIL (|has| |#2| (-1025)))) (-4199 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-751)) NIL (|has| |#2| (-707))) (($ $ (-895)) NIL (|has| |#2| (-707)))) (* (($ (-538) $) NIL (|has| |#2| (-1025))) (($ $ $) NIL (|has| |#2| (-707))) (($ $ |#2|) NIL (|has| |#2| (-707))) (($ |#2| $) NIL (|has| |#2| (-707))) (($ (-751) $) NIL (|has| |#2| (-130))) (($ (-895) $) NIL (|has| |#2| (-25)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-795 |#1| |#2| |#3|) (-234 |#1| |#2|) (-751) (-773) (-1 (-112) (-1231 |#2|) (-1231 |#2|))) (T -795)) +NIL +(-234 |#1| |#2|) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1543 (((-622 (-751)) $) NIL) (((-622 (-751)) $ (-1149)) NIL)) (-1577 (((-751) $) NIL) (((-751) $ (-1149)) NIL)) (-3417 (((-622 (-798 (-1149))) $) NIL)) (-3419 (((-1143 $) $ (-798 (-1149))) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-798 (-1149)))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1539 (($ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-798 (-1149)) #2#) $) NIL) (((-3 (-1149) #2#) $) NIL) (((-3 (-1098 |#1| (-1149)) #2#) $) NIL)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-798 (-1149)) $) NIL) (((-1149) $) NIL) (((-1098 |#1| (-1149)) $) NIL)) (-4116 (($ $ $ (-798 (-1149))) NIL (|has| |#1| (-170)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ (-798 (-1149))) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-524 (-798 (-1149))) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-798 (-1149)) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-798 (-1149)) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ (-1149)) NIL) (((-751) $) NIL)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#1|) (-798 (-1149))) NIL) (($ (-1143 $) (-798 (-1149))) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-524 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-622 (-798 (-1149))) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-798 (-1149))) NIL)) (-3153 (((-524 (-798 (-1149))) $) NIL) (((-751) $ (-798 (-1149))) NIL) (((-622 (-751)) $ (-622 (-798 (-1149)))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 (-798 (-1149))) (-524 (-798 (-1149)))) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1 $ (-751)) (-1149)) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-3418 (((-3 (-798 (-1149)) #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-1541 (((-798 (-1149)) $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-1542 (((-112) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-798 (-1149))) (|:| -2493 (-751))) #3#) $) NIL)) (-1540 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-798 (-1149)) |#1|) NIL) (($ $ (-622 (-798 (-1149))) (-622 |#1|)) NIL) (($ $ (-798 (-1149)) $) NIL) (($ $ (-622 (-798 (-1149))) (-622 $)) NIL) (($ $ (-1149) $) NIL (|has| |#1| (-229))) (($ $ (-622 (-1149)) (-622 $)) NIL (|has| |#1| (-229))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-229))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-229)))) (-4117 (($ $ (-798 (-1149))) NIL (|has| |#1| (-170)))) (-4170 (($ $ (-798 (-1149))) NIL) (($ $ (-622 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-622 (-798 (-1149))) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1544 (((-622 (-1149)) $) NIL)) (-4307 (((-524 (-798 (-1149))) $) NIL) (((-751) $ (-798 (-1149))) NIL) (((-622 (-751)) $ (-622 (-798 (-1149)))) NIL) (((-751) $ (-1149)) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-798 (-1149)) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-798 (-1149))) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-798 (-1149))) NIL) (($ (-1149)) NIL) (($ (-1098 |#1| (-1149))) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-524 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-622 (-798 (-1149))) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-798 (-1149))) NIL) (($ $ (-622 (-798 (-1149)))) NIL) (($ $ (-798 (-1149)) (-751)) NIL) (($ $ (-622 (-798 (-1149))) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-796 |#1|) (-13 (-248 |#1| (-1149) (-798 (-1149)) (-524 (-798 (-1149)))) (-1014 (-1098 |#1| (-1149)))) (-1025)) (T -796)) +NIL +(-13 (-248 |#1| (-1149) (-798 (-1149)) (-524 (-798 (-1149)))) (-1014 (-1098 |#1| (-1149)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-358)))) (-2178 (($ $) NIL (|has| |#2| (-358)))) (-2176 (((-112) $) NIL (|has| |#2| (-358)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#2| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-358)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-358)))) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL (|has| |#2| (-358)))) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#2| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#2| (-358)))) (-4086 (((-112) $) NIL (|has| |#2| (-358)))) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL (|has| |#2| (-358)))) (-2013 (($ (-622 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 20 (|has| |#2| (-358)))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-358))) (($ $ $) NIL (|has| |#2| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#2| (-358)))) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#2| (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#2| (-358)))) (-1704 (((-751) $) NIL (|has| |#2| (-358)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-358)))) (-4170 (($ $ (-751)) NIL) (($ $) 13)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-402 (-538))) NIL (|has| |#2| (-358))) (($ $) NIL (|has| |#2| (-358)))) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL (|has| |#2| (-358)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) 15 (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL) (($ $ (-538)) 18 (|has| |#2| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-402 (-538)) $) NIL (|has| |#2| (-358))) (($ $ (-402 (-538))) NIL (|has| |#2| (-358))))) +(((-797 |#1| |#2| |#3|) (-13 (-111 $ $) (-229) (-10 -8 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|) (-15 -4317 ($ |#2|)) (-15 -4317 (|#2| $)))) (-1074) (-876 |#1|) |#1|) (T -797)) +((-4317 (*1 *1 *2) (-12 (-4 *3 (-1074)) (-14 *4 *3) (-5 *1 (-797 *3 *2 *4)) (-4 *2 (-876 *3)))) (-4317 (*1 *2 *1) (-12 (-4 *2 (-876 *3)) (-5 *1 (-797 *3 *2 *4)) (-4 *3 (-1074)) (-14 *4 *3)))) +(-13 (-111 $ $) (-229) (-10 -8 (IF (|has| |#2| (-358)) (-6 (-358)) |%noBranch|) (-15 -4317 ($ |#2|)) (-15 -4317 (|#2| $)))) +((-2898 (((-112) $ $) NIL)) (-1577 (((-751) $) NIL)) (-4191 ((|#1| $) 10)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-4131 (((-751) $) 11)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-1578 (($ |#1| (-751)) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4170 (($ $) NIL) (($ $ (-751)) NIL)) (-4317 (((-840) $) NIL) (($ |#1|) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL))) +(((-798 |#1|) (-261 |#1|) (-827)) (T -798)) +NIL +(-261 |#1|) +((-2898 (((-112) $ $) NIL)) (-4294 (((-622 |#1|) $) 29)) (-3471 (((-751) $) NIL)) (-3896 (($) NIL T CONST)) (-4299 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-4158 (($ $) 31)) (-3821 (((-3 $ "failed") $) NIL)) (-2770 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2502 (((-112) $) NIL)) (-2768 ((|#1| $ (-538)) NIL)) (-2769 (((-751) $ (-538)) NIL)) (-4296 (($ $) 36)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4300 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2773 (((-112) $ $) 34)) (-4193 (((-751) $) 25)) (-3593 (((-1131) $) NIL)) (-2771 (($ $ $) NIL)) (-2772 (($ $ $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 ((|#1| $) 30)) (-2767 (((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $) NIL)) (-2895 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4317 (((-840) $) NIL) (($ |#1|) NIL)) (-2997 (($) 15 T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 35)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ |#1| (-751)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-799 |#1|) (-13 (-823) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -4160 (|#1| $)) (-15 -4158 ($ $)) (-15 -4296 ($ $)) (-15 -2773 ((-112) $ $)) (-15 -2772 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -4300 ((-3 $ "failed") $ $)) (-15 -4299 ((-3 $ "failed") $ $)) (-15 -4300 ((-3 $ "failed") $ |#1|)) (-15 -4299 ((-3 $ "failed") $ |#1|)) (-15 -2895 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2770 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3471 ((-751) $)) (-15 -2769 ((-751) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $)) (-15 -4193 ((-751) $)) (-15 -4294 ((-622 |#1|) $)))) (-827)) (T -799)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4160 (*1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4158 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4296 (*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2773 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-2772 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2771 (*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4300 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4299 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4300 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-4299 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2895 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |rm| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-2770 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |mm| (-799 *3)) (|:| |rm| (-799 *3)))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-2769 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-751)) (-5 *1 (-799 *4)) (-4 *4 (-827)))) (-2768 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-799 *2)) (-4 *2 (-827)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-751))))) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-799 *3)) (-4 *3 (-827))))) +(-13 (-823) (-1014 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-751))) (-15 -4160 (|#1| $)) (-15 -4158 ($ $)) (-15 -4296 ($ $)) (-15 -2773 ((-112) $ $)) (-15 -2772 ($ $ $)) (-15 -2771 ($ $ $)) (-15 -4300 ((-3 $ "failed") $ $)) (-15 -4299 ((-3 $ "failed") $ $)) (-15 -4300 ((-3 $ "failed") $ |#1|)) (-15 -4299 ((-3 $ "failed") $ |#1|)) (-15 -2895 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2770 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3471 ((-751) $)) (-15 -2769 ((-751) $ (-538))) (-15 -2768 (|#1| $ (-538))) (-15 -2767 ((-622 (-2 (|:| |gen| |#1|) (|:| -4303 (-751)))) $)) (-15 -4193 ((-751) $)) (-15 -4294 ((-622 |#1|) $)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3986 (((-538) $) 51)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-3537 (((-112) $) 49)) (-2502 (((-112) $) 30)) (-3538 (((-112) $) 50)) (-3677 (($ $ $) 48)) (-3678 (($ $ $) 47)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ $) 40)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-3742 (($ $) 52)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 45)) (-2897 (((-112) $ $) 44)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 46)) (-3018 (((-112) $ $) 43)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-800) (-138)) (T -800)) +NIL +(-13 (-545) (-825)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-825) . T) ((-827) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2834 (((-1237) (-803) $ (-112)) 9) (((-1237) (-803) $) 8) (((-1131) $ (-112)) 7) (((-1131) $) 6))) +(((-801) (-138)) (T -801)) +((-2834 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-801)) (-5 *3 (-803)) (-5 *4 (-112)) (-5 *2 (-1237)))) (-2834 (*1 *2 *3 *1) (-12 (-4 *1 (-801)) (-5 *3 (-803)) (-5 *2 (-1237)))) (-2834 (*1 *2 *1 *3) (-12 (-4 *1 (-801)) (-5 *3 (-112)) (-5 *2 (-1131)))) (-2834 (*1 *2 *1) (-12 (-4 *1 (-801)) (-5 *2 (-1131))))) +(-13 (-10 -8 (-15 -2834 ((-1131) $)) (-15 -2834 ((-1131) $ (-112))) (-15 -2834 ((-1237) (-803) $)) (-15 -2834 ((-1237) (-803) $ (-112))))) +((-2774 (($ (-1093)) 7)) (-2778 (((-112) $ (-1131) (-1093)) 15)) (-2777 (((-803) $) 12)) (-2776 (((-803) $) 11)) (-2775 (((-1237) $) 9)) (-2779 (((-112) $ (-1093)) 16))) +(((-802) (-10 -8 (-15 -2774 ($ (-1093))) (-15 -2775 ((-1237) $)) (-15 -2776 ((-803) $)) (-15 -2777 ((-803) $)) (-15 -2778 ((-112) $ (-1131) (-1093))) (-15 -2779 ((-112) $ (-1093))))) (T -802)) +((-2779 (*1 *2 *1 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-802)))) (-2778 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-802)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-803)) (-5 *1 (-802)))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-803)) (-5 *1 (-802)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802)))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-802))))) +(-10 -8 (-15 -2774 ($ (-1093))) (-15 -2775 ((-1237) $)) (-15 -2776 ((-803) $)) (-15 -2777 ((-803) $)) (-15 -2778 ((-112) $ (-1131) (-1093))) (-15 -2779 ((-112) $ (-1093)))) +((-2783 (((-1237) $ (-804)) 12)) (-2800 (((-1237) $ (-1149)) 32)) (-2802 (((-1237) $ (-1131) (-1131)) 34)) (-2801 (((-1237) $ (-1131)) 33)) (-2790 (((-1237) $) 19)) (-2798 (((-1237) $ (-538)) 28)) (-2799 (((-1237) $ (-221)) 30)) (-2789 (((-1237) $) 18)) (-2797 (((-1237) $) 26)) (-2796 (((-1237) $) 25)) (-2794 (((-1237) $) 23)) (-2795 (((-1237) $) 24)) (-2793 (((-1237) $) 22)) (-2792 (((-1237) $) 21)) (-2791 (((-1237) $) 20)) (-2787 (((-1237) $) 16)) (-2788 (((-1237) $) 17)) (-2786 (((-1237) $) 15)) (-2785 (((-1237) $) 14)) (-2784 (((-1237) $) 13)) (-2781 (($ (-1131) (-804)) 9)) (-2780 (($ (-1131) (-1131) (-804)) 8)) (-2819 (((-1149) $) 51)) (-2822 (((-1149) $) 55)) (-2821 (((-2 (|:| |cd| (-1131)) (|:| -3905 (-1131))) $) 54)) (-2820 (((-1131) $) 52)) (-2809 (((-1237) $) 41)) (-2817 (((-538) $) 49)) (-2818 (((-221) $) 50)) (-2808 (((-1237) $) 40)) (-2816 (((-1237) $) 48)) (-2815 (((-1237) $) 47)) (-2813 (((-1237) $) 45)) (-2814 (((-1237) $) 46)) (-2812 (((-1237) $) 44)) (-2811 (((-1237) $) 43)) (-2810 (((-1237) $) 42)) (-2806 (((-1237) $) 38)) (-2807 (((-1237) $) 39)) (-2805 (((-1237) $) 37)) (-2804 (((-1237) $) 36)) (-2803 (((-1237) $) 35)) (-2782 (((-1237) $) 11))) +(((-803) (-10 -8 (-15 -2780 ($ (-1131) (-1131) (-804))) (-15 -2781 ($ (-1131) (-804))) (-15 -2782 ((-1237) $)) (-15 -2783 ((-1237) $ (-804))) (-15 -2784 ((-1237) $)) (-15 -2785 ((-1237) $)) (-15 -2786 ((-1237) $)) (-15 -2787 ((-1237) $)) (-15 -2788 ((-1237) $)) (-15 -2789 ((-1237) $)) (-15 -2790 ((-1237) $)) (-15 -2791 ((-1237) $)) (-15 -2792 ((-1237) $)) (-15 -2793 ((-1237) $)) (-15 -2794 ((-1237) $)) (-15 -2795 ((-1237) $)) (-15 -2796 ((-1237) $)) (-15 -2797 ((-1237) $)) (-15 -2798 ((-1237) $ (-538))) (-15 -2799 ((-1237) $ (-221))) (-15 -2800 ((-1237) $ (-1149))) (-15 -2801 ((-1237) $ (-1131))) (-15 -2802 ((-1237) $ (-1131) (-1131))) (-15 -2803 ((-1237) $)) (-15 -2804 ((-1237) $)) (-15 -2805 ((-1237) $)) (-15 -2806 ((-1237) $)) (-15 -2807 ((-1237) $)) (-15 -2808 ((-1237) $)) (-15 -2809 ((-1237) $)) (-15 -2810 ((-1237) $)) (-15 -2811 ((-1237) $)) (-15 -2812 ((-1237) $)) (-15 -2813 ((-1237) $)) (-15 -2814 ((-1237) $)) (-15 -2815 ((-1237) $)) (-15 -2816 ((-1237) $)) (-15 -2817 ((-538) $)) (-15 -2818 ((-221) $)) (-15 -2819 ((-1149) $)) (-15 -2820 ((-1131) $)) (-15 -2821 ((-2 (|:| |cd| (-1131)) (|:| -3905 (-1131))) $)) (-15 -2822 ((-1149) $)))) (T -803)) +((-2822 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-803)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1131)) (|:| -3905 (-1131)))) (-5 *1 (-803)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-803)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-803)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-803)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-803)))) (-2816 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2815 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2812 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2811 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2805 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2804 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2802 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2801 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2800 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2799 (*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2798 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2797 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2796 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2794 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2793 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2791 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2790 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2784 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2783 (*1 *2 *1 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1237)) (-5 *1 (-803)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803)))) (-2781 (*1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-804)) (-5 *1 (-803)))) (-2780 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-804)) (-5 *1 (-803))))) +(-10 -8 (-15 -2780 ($ (-1131) (-1131) (-804))) (-15 -2781 ($ (-1131) (-804))) (-15 -2782 ((-1237) $)) (-15 -2783 ((-1237) $ (-804))) (-15 -2784 ((-1237) $)) (-15 -2785 ((-1237) $)) (-15 -2786 ((-1237) $)) (-15 -2787 ((-1237) $)) (-15 -2788 ((-1237) $)) (-15 -2789 ((-1237) $)) (-15 -2790 ((-1237) $)) (-15 -2791 ((-1237) $)) (-15 -2792 ((-1237) $)) (-15 -2793 ((-1237) $)) (-15 -2794 ((-1237) $)) (-15 -2795 ((-1237) $)) (-15 -2796 ((-1237) $)) (-15 -2797 ((-1237) $)) (-15 -2798 ((-1237) $ (-538))) (-15 -2799 ((-1237) $ (-221))) (-15 -2800 ((-1237) $ (-1149))) (-15 -2801 ((-1237) $ (-1131))) (-15 -2802 ((-1237) $ (-1131) (-1131))) (-15 -2803 ((-1237) $)) (-15 -2804 ((-1237) $)) (-15 -2805 ((-1237) $)) (-15 -2806 ((-1237) $)) (-15 -2807 ((-1237) $)) (-15 -2808 ((-1237) $)) (-15 -2809 ((-1237) $)) (-15 -2810 ((-1237) $)) (-15 -2811 ((-1237) $)) (-15 -2812 ((-1237) $)) (-15 -2813 ((-1237) $)) (-15 -2814 ((-1237) $)) (-15 -2815 ((-1237) $)) (-15 -2816 ((-1237) $)) (-15 -2817 ((-538) $)) (-15 -2818 ((-221) $)) (-15 -2819 ((-1149) $)) (-15 -2820 ((-1131) $)) (-15 -2821 ((-2 (|:| |cd| (-1131)) (|:| -3905 (-1131))) $)) (-15 -2822 ((-1149) $))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 12)) (-2825 (($) 15)) (-2826 (($) 13)) (-2824 (($) 16)) (-2823 (($) 14)) (-3387 (((-112) $ $) 8))) +(((-804) (-13 (-1074) (-10 -8 (-15 -2826 ($)) (-15 -2825 ($)) (-15 -2824 ($)) (-15 -2823 ($))))) (T -804)) +((-2826 (*1 *1) (-5 *1 (-804))) (-2825 (*1 *1) (-5 *1 (-804))) (-2824 (*1 *1) (-5 *1 (-804))) (-2823 (*1 *1) (-5 *1 (-804)))) +(-13 (-1074) (-10 -8 (-15 -2826 ($)) (-15 -2825 ($)) (-15 -2824 ($)) (-15 -2823 ($)))) +((-2898 (((-112) $ $) NIL)) (-2827 (($ (-806) (-622 (-1149))) 24)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2829 (((-806) $) 25)) (-2828 (((-622 (-1149)) $) 26)) (-4317 (((-840) $) 23)) (-3387 (((-112) $ $) NIL))) +(((-805) (-13 (-1074) (-10 -8 (-15 -2829 ((-806) $)) (-15 -2828 ((-622 (-1149)) $)) (-15 -2827 ($ (-806) (-622 (-1149))))))) (T -805)) +((-2829 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-805)))) (-2828 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-805)))) (-2827 (*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-622 (-1149))) (-5 *1 (-805))))) +(-13 (-1074) (-10 -8 (-15 -2829 ((-806) $)) (-15 -2828 ((-622 (-1149)) $)) (-15 -2827 ($ (-806) (-622 (-1149)))))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21) (($ (-1149)) 17)) (-2831 (((-112) $) 10)) (-2832 (((-112) $) 9)) (-2830 (((-112) $) 11)) (-2833 (((-112) $) 8)) (-3387 (((-112) $ $) 19))) +(((-806) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-1149))) (-15 -2833 ((-112) $)) (-15 -2832 ((-112) $)) (-15 -2831 ((-112) $)) (-15 -2830 ((-112) $))))) (T -806)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-806)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806))))) +(-13 (-1074) (-10 -8 (-15 -4317 ($ (-1149))) (-15 -2833 ((-112) $)) (-15 -2832 ((-112) $)) (-15 -2831 ((-112) $)) (-15 -2830 ((-112) $)))) +((-2834 (((-1237) (-803) (-309 |#1|) (-112)) 23) (((-1237) (-803) (-309 |#1|)) 79) (((-1131) (-309 |#1|) (-112)) 78) (((-1131) (-309 |#1|)) 77))) +(((-807 |#1|) (-10 -7 (-15 -2834 ((-1131) (-309 |#1|))) (-15 -2834 ((-1131) (-309 |#1|) (-112))) (-15 -2834 ((-1237) (-803) (-309 |#1|))) (-15 -2834 ((-1237) (-803) (-309 |#1|) (-112)))) (-13 (-801) (-827) (-1025))) (T -807)) +((-2834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-803)) (-5 *4 (-309 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-801) (-827) (-1025))) (-5 *2 (-1237)) (-5 *1 (-807 *6)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-803)) (-5 *4 (-309 *5)) (-4 *5 (-13 (-801) (-827) (-1025))) (-5 *2 (-1237)) (-5 *1 (-807 *5)))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-309 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-801) (-827) (-1025))) (-5 *2 (-1131)) (-5 *1 (-807 *5)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-801) (-827) (-1025))) (-5 *2 (-1131)) (-5 *1 (-807 *4))))) +(-10 -7 (-15 -2834 ((-1131) (-309 |#1|))) (-15 -2834 ((-1131) (-309 |#1|) (-112))) (-15 -2834 ((-1237) (-803) (-309 |#1|))) (-15 -2834 ((-1237) (-803) (-309 |#1|) (-112)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2835 ((|#1| $) 10)) (-2836 (($ |#1|) 9)) (-2502 (((-112) $) NIL)) (-3226 (($ |#2| (-751)) NIL)) (-3153 (((-751) $) NIL)) (-3525 ((|#2| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4170 (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-4307 (((-751) $) NIL)) (-4317 (((-840) $) 17) (($ (-538)) NIL) (($ |#2|) NIL (|has| |#2| (-170)))) (-4040 ((|#2| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $) NIL (|has| |#1| (-229)))) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-808 |#1| |#2|) (-13 (-689 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -2836 ($ |#1|)) (-15 -2835 (|#1| $)))) (-689 |#2|) (-1025)) (T -808)) +((-2836 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-808 *2 *3)) (-4 *2 (-689 *3)))) (-2835 (*1 *2 *1) (-12 (-4 *2 (-689 *3)) (-5 *1 (-808 *2 *3)) (-4 *3 (-1025))))) +(-13 (-689 |#2|) (-10 -8 (IF (|has| |#1| (-229)) (-6 (-229)) |%noBranch|) (-15 -2836 ($ |#1|)) (-15 -2835 (|#1| $)))) +((-2844 (((-306) (-1131) (-1131)) 12)) (-2843 (((-112) (-1131) (-1131)) 34)) (-2842 (((-112) (-1131)) 33)) (-2839 (((-51) (-1131)) 25)) (-2838 (((-51) (-1131)) 23)) (-2837 (((-51) (-803)) 17)) (-2841 (((-622 (-1131)) (-1131)) 28)) (-2840 (((-622 (-1131))) 27))) +(((-809) (-10 -7 (-15 -2837 ((-51) (-803))) (-15 -2838 ((-51) (-1131))) (-15 -2839 ((-51) (-1131))) (-15 -2840 ((-622 (-1131)))) (-15 -2841 ((-622 (-1131)) (-1131))) (-15 -2842 ((-112) (-1131))) (-15 -2843 ((-112) (-1131) (-1131))) (-15 -2844 ((-306) (-1131) (-1131))))) (T -809)) +((-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-809)))) (-2843 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809)))) (-2841 (*1 *2 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-809)) (-5 *3 (-1131)))) (-2840 (*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-809)))) (-2839 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-809)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-809)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-51)) (-5 *1 (-809))))) +(-10 -7 (-15 -2837 ((-51) (-803))) (-15 -2838 ((-51) (-1131))) (-15 -2839 ((-51) (-1131))) (-15 -2840 ((-622 (-1131)))) (-15 -2841 ((-622 (-1131)) (-1131))) (-15 -2842 ((-112) (-1131))) (-15 -2843 ((-112) (-1131) (-1131))) (-15 -2844 ((-306) (-1131) (-1131)))) +((-2898 (((-112) $ $) 19)) (-3585 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3587 (($ $ $) 72)) (-3586 (((-112) $ $) 73)) (-1271 (((-112) $ (-751)) 8)) (-3590 (($ (-622 |#1|)) 68) (($) 67)) (-1631 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2455 (($ $) 62)) (-1398 (($ $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ |#1| $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) 64)) (-4082 (((-112) $ (-751)) 9)) (-3677 ((|#1| $) 78)) (-3192 (($ $ $) 81)) (-3872 (($ $ $) 80)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3678 ((|#1| $) 79)) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22)) (-3589 (($ $ $) 69)) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40) (($ |#1| $ (-751)) 63)) (-3594 (((-1093) $) 21)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2454 (((-622 (-2 (|:| -2191 |#1|) (|:| -2069 (-751)))) $) 61)) (-3588 (($ $ |#1|) 71) (($ $ $) 70)) (-1523 (($) 49) (($ (-622 |#1|)) 48)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 50)) (-4317 (((-840) $) 18)) (-3591 (($ (-622 |#1|)) 66) (($) 65)) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20)) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-810 |#1|) (-138) (-827)) (T -810)) +((-3677 (*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-827))))) +(-13 (-718 |t#1|) (-944 |t#1|) (-10 -8 (-15 -3677 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-231 |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-675 |#1|) . T) ((-718 |#1|) . T) ((-944 |#1|) . T) ((-1072 |#1|) . T) ((-1074) . T) ((-1185) . T)) +((-2847 (((-1237) (-1093) (-1093)) 47)) (-2846 (((-1237) (-802) (-51)) 44)) (-2845 (((-51) (-802)) 16))) +(((-811) (-10 -7 (-15 -2845 ((-51) (-802))) (-15 -2846 ((-1237) (-802) (-51))) (-15 -2847 ((-1237) (-1093) (-1093))))) (T -811)) +((-2847 (*1 *2 *3 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-1237)) (-5 *1 (-811)))) (-2846 (*1 *2 *3 *4) (-12 (-5 *3 (-802)) (-5 *4 (-51)) (-5 *2 (-1237)) (-5 *1 (-811)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-51)) (-5 *1 (-811))))) +(-10 -7 (-15 -2845 ((-51) (-802))) (-15 -2846 ((-1237) (-802) (-51))) (-15 -2847 ((-1237) (-1093) (-1093)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL (|has| |#1| (-21)))) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3986 (((-538) $) NIL (|has| |#1| (-825)))) (-3896 (($) NIL (|has| |#1| (-21)) CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 15)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 9)) (-3821 (((-3 $ "failed") $) 40 (|has| |#1| (-825)))) (-3357 (((-3 (-402 (-538)) "failed") $) 49 (|has| |#1| (-537)))) (-3356 (((-112) $) 43 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 46 (|has| |#1| (-537)))) (-3537 (((-112) $) NIL (|has| |#1| (-825)))) (-2502 (((-112) $) NIL (|has| |#1| (-825)))) (-3538 (((-112) $) NIL (|has| |#1| (-825)))) (-3677 (($ $ $) NIL (|has| |#1| (-825)))) (-3678 (($ $ $) NIL (|has| |#1| (-825)))) (-3593 (((-1131) $) NIL)) (-2848 (($) 13)) (-2860 (((-112) $) 12)) (-3594 (((-1093) $) NIL)) (-2861 (((-112) $) 11)) (-4317 (((-840) $) 18) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) 8) (($ (-538)) NIL (-3891 (|has| |#1| (-825)) (|has| |#1| (-1014 (-538)))))) (-3461 (((-751)) 34 (|has| |#1| (-825)))) (-3742 (($ $) NIL (|has| |#1| (-825)))) (-2991 (($) 22 (|has| |#1| (-21)) CONST)) (-2997 (($) 31 (|has| |#1| (-825)) CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3387 (((-112) $ $) 20)) (-3017 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3018 (((-112) $ $) 42 (|has| |#1| (-825)))) (-4197 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4199 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-895)) NIL (|has| |#1| (-825))) (($ $ (-751)) NIL (|has| |#1| (-825)))) (* (($ $ $) 37 (|has| |#1| (-825))) (($ (-538) $) 25 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-895) $) NIL (|has| |#1| (-21))))) +(((-812 |#1|) (-13 (-1074) (-407 |#1|) (-10 -8 (-15 -2848 ($)) (-15 -2861 ((-112) $)) (-15 -2860 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|))) (-1074)) (T -812)) +((-2848 (*1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1074)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-1074)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-1074)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-812 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) (-3357 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-812 *3)) (-4 *3 (-537)) (-4 *3 (-1074))))) +(-13 (-1074) (-407 |#1|) (-10 -8 (-15 -2848 ($)) (-15 -2861 ((-112) $)) (-15 -2860 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|))) +((-4318 (((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|) (-812 |#2|)) 12) (((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)) 13))) +(((-813 |#1| |#2|) (-10 -7 (-15 -4318 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|))) (-15 -4318 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|) (-812 |#2|)))) (-1074) (-1074)) (T -813)) +((-4318 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-812 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *1 (-813 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-812 *6)) (-5 *1 (-813 *5 *6))))) +(-10 -7 (-15 -4318 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|))) (-15 -4318 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|) (-812 |#2|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #1="failed") $) NIL) (((-3 (-113) #1#) $) NIL)) (-3507 ((|#1| $) NIL) (((-113) $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2850 ((|#1| (-113) |#1|) NIL)) (-2502 (((-112) $) NIL)) (-2849 (($ |#1| (-356 (-113))) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2851 (($ $ (-1 |#1| |#1|)) NIL)) (-2852 (($ $ (-1 |#1| |#1|)) NIL)) (-4159 ((|#1| $ |#1|) NIL)) (-2853 ((|#1| |#1|) NIL (|has| |#1| (-170)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-113)) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-2854 (($ $) NIL (|has| |#1| (-170))) (($ $ $) NIL (|has| |#1| (-170)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ (-113) (-538)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-814 |#1|) (-13 (-1025) (-1014 |#1|) (-1014 (-113)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2854 ($ $)) (-15 -2854 ($ $ $)) (-15 -2853 (|#1| |#1|))) |%noBranch|) (-15 -2852 ($ $ (-1 |#1| |#1|))) (-15 -2851 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-538))) (-15 ** ($ $ (-538))) (-15 -2850 (|#1| (-113) |#1|)) (-15 -2849 ($ |#1| (-356 (-113)))))) (-1025)) (T -814)) +((-2854 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-2854 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-2853 (*1 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) (-2852 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))) (-2851 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-538)) (-5 *1 (-814 *4)) (-4 *4 (-1025)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-814 *3)) (-4 *3 (-1025)))) (-2850 (*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-814 *2)) (-4 *2 (-1025)))) (-2849 (*1 *1 *2 *3) (-12 (-5 *3 (-356 (-113))) (-5 *1 (-814 *2)) (-4 *2 (-1025))))) +(-13 (-1025) (-1014 |#1|) (-1014 (-113)) (-281 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |#1| (-170)) (PROGN (-6 (-38 |#1|)) (-15 -2854 ($ $)) (-15 -2854 ($ $ $)) (-15 -2853 (|#1| |#1|))) |%noBranch|) (-15 -2852 ($ $ (-1 |#1| |#1|))) (-15 -2851 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-113) (-538))) (-15 ** ($ $ (-538))) (-15 -2850 (|#1| (-113) |#1|)) (-15 -2849 ($ |#1| (-356 (-113)))))) +((-2855 (((-210 (-495)) (-1131)) 9))) +(((-815) (-10 -7 (-15 -2855 ((-210 (-495)) (-1131))))) (T -815)) +((-2855 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-210 (-495))) (-5 *1 (-815))))) +(-10 -7 (-15 -2855 ((-210 (-495)) (-1131)))) +((-2898 (((-112) $ $) 7)) (-2856 (((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 14) (((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 13)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 16) (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 15)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6))) +(((-816) (-138)) (T -816)) +((-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-816)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) (-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-816)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) (-2856 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) (-5 *2 (-1011)))) (-2856 (*1 *2 *3) (-12 (-4 *1 (-816)) (-5 *3 (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (-5 *2 (-1011))))) +(-13 (-1074) (-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -2856 ((-1011) (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -2856 ((-1011) (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2857 (((-1011) (-622 (-309 (-373))) (-622 (-373))) 147) (((-1011) (-309 (-373)) (-622 (-373))) 145) (((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-819 (-373)))) 144) (((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-309 (-373))) (-622 (-819 (-373)))) 143) (((-1011) (-818)) 117) (((-1011) (-818) (-1037)) 116)) (-3001 (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818) (-1037)) 82) (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818)) 84)) (-2858 (((-1011) (-622 (-309 (-373))) (-622 (-373))) 148) (((-1011) (-818)) 133))) +(((-817) (-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818) (-1037))) (-15 -2857 ((-1011) (-818) (-1037))) (-15 -2857 ((-1011) (-818))) (-15 -2858 ((-1011) (-818))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-309 (-373))) (-622 (-819 (-373))))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-819 (-373))))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)))) (-15 -2857 ((-1011) (-622 (-309 (-373))) (-622 (-373)))) (-15 -2858 ((-1011) (-622 (-309 (-373))) (-622 (-373)))))) (T -817)) +((-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-309 (-373)))) (-5 *4 (-622 (-373))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-309 (-373)))) (-5 *4 (-622 (-373))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-373))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-373))) (-5 *5 (-622 (-819 (-373)))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-622 (-373))) (-5 *5 (-622 (-819 (-373)))) (-5 *6 (-622 (-309 (-373)))) (-5 *3 (-309 (-373))) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2858 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-2857 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-817)))) (-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-817)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-817))))) +(-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-818) (-1037))) (-15 -2857 ((-1011) (-818) (-1037))) (-15 -2857 ((-1011) (-818))) (-15 -2858 ((-1011) (-818))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-309 (-373))) (-622 (-819 (-373))))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)) (-622 (-819 (-373))) (-622 (-819 (-373))))) (-15 -2857 ((-1011) (-309 (-373)) (-622 (-373)))) (-15 -2857 ((-1011) (-622 (-309 (-373))) (-622 (-373)))) (-15 -2858 ((-1011) (-622 (-309 (-373))) (-622 (-373))))) +((-2898 (((-112) $ $) NIL)) (-3507 (((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) $) 21)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20) (($ (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) 14) (($ (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) 18)) (-3387 (((-112) $ $) NIL))) +(((-818) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))) (-15 -4317 ($ (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -4317 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) $))))) (T -818)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-818)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (-5 *1 (-818)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) (-5 *1 (-818)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) (-5 *1 (-818)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) (-5 *1 (-818))))) +(-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221))))))) (-15 -4317 ($ (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) (-15 -4317 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-3 (|:| |noa| (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221)))))) $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL (|has| |#1| (-21)))) (-2859 (((-1093) $) 24)) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3986 (((-538) $) NIL (|has| |#1| (-825)))) (-3896 (($) NIL (|has| |#1| (-21)) CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 16)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 9)) (-3821 (((-3 $ "failed") $) 47 (|has| |#1| (-825)))) (-3357 (((-3 (-402 (-538)) "failed") $) 54 (|has| |#1| (-537)))) (-3356 (((-112) $) 49 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 52 (|has| |#1| (-537)))) (-3537 (((-112) $) NIL (|has| |#1| (-825)))) (-2863 (($) 13)) (-2502 (((-112) $) NIL (|has| |#1| (-825)))) (-3538 (((-112) $) NIL (|has| |#1| (-825)))) (-2862 (($) 14)) (-3677 (($ $ $) NIL (|has| |#1| (-825)))) (-3678 (($ $ $) NIL (|has| |#1| (-825)))) (-3593 (((-1131) $) NIL)) (-2860 (((-112) $) 12)) (-3594 (((-1093) $) NIL)) (-2861 (((-112) $) 11)) (-4317 (((-840) $) 22) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) 8) (($ (-538)) NIL (-3891 (|has| |#1| (-825)) (|has| |#1| (-1014 (-538)))))) (-3461 (((-751)) 41 (|has| |#1| (-825)))) (-3742 (($ $) NIL (|has| |#1| (-825)))) (-2991 (($) 29 (|has| |#1| (-21)) CONST)) (-2997 (($) 38 (|has| |#1| (-825)) CONST)) (-2896 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3387 (((-112) $ $) 27)) (-3017 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3018 (((-112) $ $) 48 (|has| |#1| (-825)))) (-4197 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4199 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-895)) NIL (|has| |#1| (-825))) (($ $ (-751)) NIL (|has| |#1| (-825)))) (* (($ $ $) 44 (|has| |#1| (-825))) (($ (-538) $) 32 (|has| |#1| (-21))) (($ (-751) $) NIL (|has| |#1| (-21))) (($ (-895) $) NIL (|has| |#1| (-21))))) +(((-819 |#1|) (-13 (-1074) (-407 |#1|) (-10 -8 (-15 -2863 ($)) (-15 -2862 ($)) (-15 -2861 ((-112) $)) (-15 -2860 ((-112) $)) (-15 -2859 ((-1093) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|))) (-1074)) (T -819)) +((-2863 (*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1074)))) (-2862 (*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1074)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-1074)))) (-2860 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-1074)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-819 *3)) (-4 *3 (-1074)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-819 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) (-3357 (*1 *2 *1) (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-819 *3)) (-4 *3 (-537)) (-4 *3 (-1074))))) +(-13 (-1074) (-407 |#1|) (-10 -8 (-15 -2863 ($)) (-15 -2862 ($)) (-15 -2861 ((-112) $)) (-15 -2860 ((-112) $)) (-15 -2859 ((-1093) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|))) +((-4318 (((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|) (-819 |#2|) (-819 |#2|)) 13) (((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|)) 14))) +(((-820 |#1| |#2|) (-10 -7 (-15 -4318 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|))) (-15 -4318 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|) (-819 |#2|) (-819 |#2|)))) (-1074) (-1074)) (T -820)) +((-4318 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-819 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *1 (-820 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-819 *6)) (-5 *1 (-820 *5 *6))))) +(-10 -7 (-15 -4318 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|))) (-15 -4318 ((-819 |#2|) (-1 |#2| |#1|) (-819 |#1|) (-819 |#2|) (-819 |#2|)))) +((-2898 (((-112) $ $) 7)) (-3471 (((-751)) 20)) (-3327 (($) 23)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-2126 (((-895) $) 22)) (-3593 (((-1131) $) 9)) (-2492 (($ (-895)) 21)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18))) (((-821) (-138)) (T -821)) NIL -(-13 (-832) (-705)) -(((-101) . T) ((-595 (-838)) . T) ((-705) . T) ((-832) . T) ((-825) . T) ((-1083) . T) ((-1072) . T)) -((-3981 (((-536) $) 17)) (-3532 (((-112) $) 10)) (-3533 (((-112) $) 11)) (-3737 (($ $) 19))) -(((-822 |#1|) (-10 -8 (-15 -3737 (|#1| |#1|)) (-15 -3981 ((-536) |#1|)) (-15 -3533 ((-112) |#1|)) (-15 -3532 ((-112) |#1|))) (-823)) (T -822)) -NIL -(-10 -8 (-15 -3737 (|#1| |#1|)) (-15 -3981 ((-536) |#1|)) (-15 -3533 ((-112) |#1|)) (-15 -3532 ((-112) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 24)) (-1367 (((-3 $ "failed") $ $) 26)) (-3981 (((-536) $) 33)) (-3891 (($) 23 T CONST)) (-3816 (((-3 $ "failed") $) 38)) (-3532 (((-112) $) 35)) (-2497 (((-112) $) 40)) (-3533 (((-112) $) 34)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 43)) (-3456 (((-749)) 42)) (-3737 (($ $) 32)) (-2986 (($) 22 T CONST)) (-2992 (($) 41 T CONST)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (-4192 (($ $ $) 28) (($ $) 27)) (-4194 (($ $ $) 20)) (** (($ $ (-749)) 39) (($ $ (-893)) 36)) (* (($ (-893) $) 21) (($ (-749) $) 25) (($ (-536) $) 29) (($ $ $) 37))) +(-13 (-827) (-363)) +(((-101) . T) ((-597 (-840)) . T) ((-363) . T) ((-827) . T) ((-1074) . T)) +((-2865 (((-112) (-1231 |#2|) (-1231 |#2|)) 17)) (-2866 (((-112) (-1231 |#2|) (-1231 |#2|)) 18)) (-2864 (((-112) (-1231 |#2|) (-1231 |#2|)) 14))) +(((-822 |#1| |#2|) (-10 -7 (-15 -2864 ((-112) (-1231 |#2|) (-1231 |#2|))) (-15 -2865 ((-112) (-1231 |#2|) (-1231 |#2|))) (-15 -2866 ((-112) (-1231 |#2|) (-1231 |#2|)))) (-751) (-772)) (T -822)) +((-2866 (*1 *2 *3 *3) (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))) (-2865 (*1 *2 *3 *3) (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751)))) (-2864 (*1 *2 *3 *3) (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) (-14 *4 (-751))))) +(-10 -7 (-15 -2864 ((-112) (-1231 |#2|) (-1231 |#2|))) (-15 -2865 ((-112) (-1231 |#2|) (-1231 |#2|))) (-15 -2866 ((-112) (-1231 |#2|) (-1231 |#2|)))) +((-2898 (((-112) $ $) 7)) (-3896 (($) 23 T CONST)) (-3821 (((-3 $ "failed") $) 26)) (-2502 (((-112) $) 24)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2997 (($) 22 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (** (($ $ (-895)) 21) (($ $ (-751)) 25)) (* (($ $ $) 20))) (((-823) (-138)) (T -823)) -((-3532 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-536)))) (-3737 (*1 *1 *1) (-4 *1 (-823)))) -(-13 (-769) (-1023) (-705) (-10 -8 (-15 -3532 ((-112) $)) (-15 -3533 ((-112) $)) (-15 -3981 ((-536) $)) (-15 -3737 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-825) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-3672 (($ $ $) 10)) (-3673 (($ $ $) 9)) (-2891 (((-112) $ $) 13)) (-2892 (((-112) $ $) 11)) (-3012 (((-112) $ $) 14))) -(((-824 |#1|) (-10 -8 (-15 -3672 (|#1| |#1| |#1|)) (-15 -3673 (|#1| |#1| |#1|)) (-15 -3012 ((-112) |#1| |#1|)) (-15 -2891 ((-112) |#1| |#1|)) (-15 -2892 ((-112) |#1| |#1|))) (-825)) (T -824)) -NIL -(-10 -8 (-15 -3672 (|#1| |#1| |#1|)) (-15 -3673 (|#1| |#1| |#1|)) (-15 -3012 ((-112) |#1| |#1|)) (-15 -2891 ((-112) |#1| |#1|)) (-15 -2892 ((-112) |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18))) +NIL +(-13 (-834) (-707)) +(((-101) . T) ((-597 (-840)) . T) ((-707) . T) ((-834) . T) ((-827) . T) ((-1085) . T) ((-1074) . T)) +((-3986 (((-538) $) 17)) (-3537 (((-112) $) 10)) (-3538 (((-112) $) 11)) (-3742 (($ $) 19))) +(((-824 |#1|) (-10 -8 (-15 -3742 (|#1| |#1|)) (-15 -3986 ((-538) |#1|)) (-15 -3538 ((-112) |#1|)) (-15 -3537 ((-112) |#1|))) (-825)) (T -824)) +NIL +(-10 -8 (-15 -3742 (|#1| |#1|)) (-15 -3986 ((-538) |#1|)) (-15 -3538 ((-112) |#1|)) (-15 -3537 ((-112) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 24)) (-1368 (((-3 $ "failed") $ $) 26)) (-3986 (((-538) $) 33)) (-3896 (($) 23 T CONST)) (-3821 (((-3 $ "failed") $) 38)) (-3537 (((-112) $) 35)) (-2502 (((-112) $) 40)) (-3538 (((-112) $) 34)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 43)) (-3461 (((-751)) 42)) (-3742 (($ $) 32)) (-2991 (($) 22 T CONST)) (-2997 (($) 41 T CONST)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (-4197 (($ $ $) 28) (($ $) 27)) (-4199 (($ $ $) 20)) (** (($ $ (-751)) 39) (($ $ (-895)) 36)) (* (($ (-895) $) 21) (($ (-751) $) 25) (($ (-538) $) 29) (($ $ $) 37))) (((-825) (-138)) (T -825)) -((-3013 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2892 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-2891 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-3012 (*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-3673 (*1 *1 *1 *1) (-4 *1 (-825))) (-3672 (*1 *1 *1 *1) (-4 *1 (-825)))) -(-13 (-1072) (-10 -8 (-15 -3013 ((-112) $ $)) (-15 -2892 ((-112) $ $)) (-15 -2891 ((-112) $ $)) (-15 -3012 ((-112) $ $)) (-15 -3673 ($ $ $)) (-15 -3672 ($ $ $)))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2866 (($ $ $) 45)) (-2867 (($ $ $) 44)) (-2868 (($ $ $) 42)) (-2864 (($ $ $) 51)) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 46)) (-2865 (((-3 $ "failed") $ $) 49)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3852 (($ $) 35)) (-2872 (($ $ $) 39)) (-2873 (($ $ $) 38)) (-2862 (($ $ $) 47)) (-2870 (($ $ $) 53)) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 41)) (-2871 (((-3 $ "failed") $ $) 48)) (-3815 (((-3 $ "failed") $ |#2|) 28)) (-3145 ((|#2| $) 32)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL) (($ |#2|) 12)) (-4172 (((-620 |#2|) $) 18)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) -(((-826 |#1| |#2|) (-10 -8 (-15 -2862 (|#1| |#1| |#1|)) (-15 -2863 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2864 (|#1| |#1| |#1|)) (-15 -2865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2869 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4172 ((-620 |#2|) |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4312 ((-838) |#1|))) (-827 |#2|) (-1023)) (T -826)) -NIL -(-10 -8 (-15 -2862 (|#1| |#1| |#1|)) (-15 -2863 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2864 (|#1| |#1| |#1|)) (-15 -2865 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2866 (|#1| |#1| |#1|)) (-15 -2867 (|#1| |#1| |#1|)) (-15 -2868 (|#1| |#1| |#1|)) (-15 -2869 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2496 |#1|)) |#1| |#1|)) (-15 -2870 (|#1| |#1| |#1|)) (-15 -2871 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3815 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4172 ((-620 |#2|) |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-2866 (($ $ $) 43 (|has| |#1| (-356)))) (-2867 (($ $ $) 44 (|has| |#1| (-356)))) (-2868 (($ $ $) 46 (|has| |#1| (-356)))) (-2864 (($ $ $) 41 (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 40 (|has| |#1| (-356)))) (-2865 (((-3 $ "failed") $ $) 42 (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 45 (|has| |#1| (-356)))) (-3503 (((-3 (-536) #1="failed") $) 72 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 70 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 67)) (-3502 (((-536) $) 73 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 71 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 66)) (-4314 (($ $) 62)) (-3816 (((-3 $ "failed") $) 32)) (-3852 (($ $) 53 (|has| |#1| (-444)))) (-2497 (((-112) $) 30)) (-3221 (($ |#1| (-749)) 60)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55 (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 56 (|has| |#1| (-543)))) (-3148 (((-749) $) 64)) (-2872 (($ $ $) 50 (|has| |#1| (-356)))) (-2873 (($ $ $) 51 (|has| |#1| (-356)))) (-2862 (($ $ $) 39 (|has| |#1| (-356)))) (-2870 (($ $ $) 48 (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 47 (|has| |#1| (-356)))) (-2871 (((-3 $ "failed") $ $) 49 (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 52 (|has| |#1| (-356)))) (-3520 ((|#1| $) 63)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-543)))) (-4302 (((-749) $) 65)) (-3145 ((|#1| $) 54 (|has| |#1| (-444)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 69 (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) 68)) (-4172 (((-620 |#1|) $) 59)) (-4035 ((|#1| $ (-749)) 61)) (-3456 (((-749)) 28)) (-2875 ((|#1| $ |#1| |#1|) 58)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) -(((-827 |#1|) (-138) (-1023)) (T -827)) -((-4302 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) (-4314 (*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) (-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1023)))) (-3221 (*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1023)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-620 *3)))) (-2875 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) (-3815 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-543)))) (-2876 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) (-2877 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-444)))) (-3852 (*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-444)))) (-2878 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) (-2873 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2872 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2871 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2870 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2869 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) (-4 *1 (-827 *3)))) (-2868 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2879 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) (-2867 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2866 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2865 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2864 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-2863 (*1 *2 *1 *1) (-12 (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) (-4 *1 (-827 *3)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) -(-13 (-1023) (-111 |t#1| |t#1|) (-405 |t#1|) (-10 -8 (-15 -4302 ((-749) $)) (-15 -3148 ((-749) $)) (-15 -3520 (|t#1| $)) (-15 -4314 ($ $)) (-15 -4035 (|t#1| $ (-749))) (-15 -3221 ($ |t#1| (-749))) (-15 -4172 ((-620 |t#1|) $)) (-15 -2875 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3815 ((-3 $ "failed") $ |t#1|)) (-15 -2876 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2877 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3145 (|t#1| $)) (-15 -3852 ($ $))) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-15 -2878 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2873 ($ $ $)) (-15 -2872 ($ $ $)) (-15 -2871 ((-3 $ "failed") $ $)) (-15 -2870 ($ $ $)) (-15 -2869 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $)) (-15 -2868 ($ $ $)) (-15 -2879 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -2867 ($ $ $)) (-15 -2866 ($ $ $)) (-15 -2865 ((-3 $ "failed") $ $)) (-15 -2864 ($ $ $)) (-15 -2863 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $)) (-15 -2862 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-405 |#1|) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2874 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2879 (((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-356)))) (-2877 (((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-543)))) (-2878 (((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-356)))) (-2875 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) -(((-828 |#1| |#2|) (-10 -7 (-15 -2874 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2875 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-543)) (PROGN (-15 -2876 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2877 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2878 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2879 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1023) (-827 |#1|)) (T -828)) -((-2879 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-2878 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-2877 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-543)) (-4 *5 (-1023)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-2876 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-543)) (-4 *5 (-1023)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) (-4 *3 (-827 *5)))) (-2875 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1023)) (-5 *1 (-828 *2 *3)) (-4 *3 (-827 *2)))) (-2874 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1023)) (-5 *1 (-828 *5 *2)) (-4 *2 (-827 *5))))) -(-10 -7 (-15 -2874 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2875 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-543)) (PROGN (-15 -2876 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2877 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -2878 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2879 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2866 (($ $ $) NIL (|has| |#1| (-356)))) (-2867 (($ $ $) NIL (|has| |#1| (-356)))) (-2868 (($ $ $) NIL (|has| |#1| (-356)))) (-2864 (($ $ $) NIL (|has| |#1| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2865 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 32 (|has| |#1| (-356)))) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-3882 (((-838) $ (-838)) NIL)) (-2497 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) NIL)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 28 (|has| |#1| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 26 (|has| |#1| (-543)))) (-3148 (((-749) $) NIL)) (-2872 (($ $ $) NIL (|has| |#1| (-356)))) (-2873 (($ $ $) NIL (|has| |#1| (-356)))) (-2862 (($ $ $) NIL (|has| |#1| (-356)))) (-2870 (($ $ $) NIL (|has| |#1| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-2871 (((-3 $ #1#) $ $) NIL (|has| |#1| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 30 (|has| |#1| (-356)))) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-543)))) (-4302 (((-749) $) NIL)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-1012 (-400 (-536))))) (($ |#1|) NIL)) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2875 ((|#1| $ |#1| |#1|) 15)) (-2986 (($) NIL T CONST)) (-2992 (($) 20 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) 19) (($ $ (-749)) 22)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-829 |#1| |#2| |#3|) (-13 (-827 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-838))))) (-1023) (-98 |#1|) (-1 |#1| |#1|)) (T -829)) -((-3882 (*1 *2 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-829 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-827 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-838))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-2866 (($ $ $) NIL (|has| |#2| (-356)))) (-2867 (($ $ $) NIL (|has| |#2| (-356)))) (-2868 (($ $ $) NIL (|has| |#2| (-356)))) (-2864 (($ $ $) NIL (|has| |#2| (-356)))) (-2863 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#2| (-356)))) (-2865 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-356)))) (-2879 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-356)))) (-3503 (((-3 (-536) #2="failed") $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 |#2| #2#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) ((|#2| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#2| (-444)))) (-2497 (((-112) $) NIL)) (-3221 (($ |#2| (-749)) 16)) (-2877 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-543)))) (-2876 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-543)))) (-3148 (((-749) $) NIL)) (-2872 (($ $ $) NIL (|has| |#2| (-356)))) (-2873 (($ $ $) NIL (|has| |#2| (-356)))) (-2862 (($ $ $) NIL (|has| |#2| (-356)))) (-2870 (($ $ $) NIL (|has| |#2| (-356)))) (-2869 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#2| (-356)))) (-2871 (((-3 $ #1#) $ $) NIL (|has| |#2| (-356)))) (-2878 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-356)))) (-3520 ((|#2| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-543)))) (-4302 (((-749) $) NIL)) (-3145 ((|#2| $) NIL (|has| |#2| (-444)))) (-4312 (((-838) $) 23) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#2| (-1012 (-400 (-536))))) (($ |#2|) NIL) (($ (-1226 |#1|)) 18)) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-749)) NIL)) (-3456 (((-749)) NIL)) (-2875 ((|#2| $ |#2| |#2|) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) 13 T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-830 |#1| |#2| |#3| |#4|) (-13 (-827 |#2|) (-10 -8 (-15 -4312 ($ (-1226 |#1|))))) (-1147) (-1023) (-98 |#2|) (-1 |#2| |#2|)) (T -830)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-14 *3 (-1147)) (-5 *1 (-830 *3 *4 *5 *6)) (-4 *4 (-1023)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) -(-13 (-827 |#2|) (-10 -8 (-15 -4312 ($ (-1226 |#1|))))) -((-2882 ((|#1| (-749) |#1|) 35 (|has| |#1| (-38 (-400 (-536)))))) (-2881 ((|#1| (-749) (-749) |#1|) 27) ((|#1| (-749) |#1|) 20)) (-2880 ((|#1| (-749) |#1|) 31)) (-3128 ((|#1| (-749) |#1|) 29)) (-3127 ((|#1| (-749) |#1|) 28))) -(((-831 |#1|) (-10 -7 (-15 -3127 (|#1| (-749) |#1|)) (-15 -3128 (|#1| (-749) |#1|)) (-15 -2880 (|#1| (-749) |#1|)) (-15 -2881 (|#1| (-749) |#1|)) (-15 -2881 (|#1| (-749) (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -2882 (|#1| (-749) |#1|)) |%noBranch|)) (-170)) (T -831)) -((-2882 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-170)))) (-2881 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-2881 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-2880 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-3128 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) (-3127 (*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) -(-10 -7 (-15 -3127 (|#1| (-749) |#1|)) (-15 -3128 (|#1| (-749) |#1|)) (-15 -2880 (|#1| (-749) |#1|)) (-15 -2881 (|#1| (-749) |#1|)) (-15 -2881 (|#1| (-749) (-749) |#1|)) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -2882 (|#1| (-749) |#1|)) |%noBranch|)) -((-2893 (((-112) $ $) 7)) (-3672 (($ $ $) 13)) (-3673 (($ $ $) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2891 (((-112) $ $) 16)) (-2892 (((-112) $ $) 17)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 15)) (-3013 (((-112) $ $) 18)) (** (($ $ (-893)) 21)) (* (($ $ $) 20))) -(((-832) (-138)) (T -832)) -NIL -(-13 (-825) (-1083)) -(((-101) . T) ((-595 (-838)) . T) ((-825) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3756 (((-536) $) 12)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 18) (($ (-536)) 11)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 8)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 9))) -(((-833) (-13 (-825) (-10 -8 (-15 -4312 ($ (-536))) (-15 -3756 ((-536) $))))) (T -833)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-833)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-833))))) -(-13 (-825) (-10 -8 (-15 -4312 ($ (-536))) (-15 -3756 ((-536) $)))) -((-2883 (((-1235) (-620 (-51))) 24)) (-3809 (((-1235) (-1129) (-838)) 14) (((-1235) (-838)) 9) (((-1235) (-1129)) 11))) -(((-834) (-10 -7 (-15 -3809 ((-1235) (-1129))) (-15 -3809 ((-1235) (-838))) (-15 -3809 ((-1235) (-1129) (-838))) (-15 -2883 ((-1235) (-620 (-51)))))) (T -834)) -((-2883 (*1 *2 *3) (-12 (-5 *3 (-620 (-51))) (-5 *2 (-1235)) (-5 *1 (-834)))) (-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-838)) (-5 *2 (-1235)) (-5 *1 (-834)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-834)))) (-3809 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-834))))) -(-10 -7 (-15 -3809 ((-1235) (-1129))) (-15 -3809 ((-1235) (-838))) (-15 -3809 ((-1235) (-1129) (-838))) (-15 -2883 ((-1235) (-620 (-51))))) -((-2884 (((-1091) $ (-129)) 17))) -(((-835 |#1|) (-10 -8 (-15 -2884 ((-1091) |#1| (-129)))) (-836)) (T -835)) -NIL -(-10 -8 (-15 -2884 ((-1091) |#1| (-129)))) -((-2884 (((-1091) $ (-129)) 7)) (-2885 (((-1091) $ (-128)) 8)) (-1811 (($ $) 6))) -(((-836) (-138)) (T -836)) -((-2885 (*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-128)) (-5 *2 (-1091)))) (-2884 (*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-129)) (-5 *2 (-1091))))) -(-13 (-171) (-10 -8 (-15 -2885 ((-1091) $ (-128))) (-15 -2884 ((-1091) $ (-129))))) +((-3537 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-538)))) (-3742 (*1 *1 *1) (-4 *1 (-825)))) +(-13 (-771) (-1025) (-707) (-10 -8 (-15 -3537 ((-112) $)) (-15 -3538 ((-112) $)) (-15 -3986 ((-538) $)) (-15 -3742 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-827) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-3677 (($ $ $) 10)) (-3678 (($ $ $) 9)) (-2896 (((-112) $ $) 13)) (-2897 (((-112) $ $) 11)) (-3017 (((-112) $ $) 14))) +(((-826 |#1|) (-10 -8 (-15 -3677 (|#1| |#1| |#1|)) (-15 -3678 (|#1| |#1| |#1|)) (-15 -3017 ((-112) |#1| |#1|)) (-15 -2896 ((-112) |#1| |#1|)) (-15 -2897 ((-112) |#1| |#1|))) (-827)) (T -826)) +NIL +(-10 -8 (-15 -3677 (|#1| |#1| |#1|)) (-15 -3678 (|#1| |#1| |#1|)) (-15 -3017 ((-112) |#1| |#1|)) (-15 -2896 ((-112) |#1| |#1|)) (-15 -2897 ((-112) |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18))) +(((-827) (-138)) (T -827)) +((-3018 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-2897 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-2896 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-3017 (*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) (-3678 (*1 *1 *1 *1) (-4 *1 (-827))) (-3677 (*1 *1 *1 *1) (-4 *1 (-827)))) +(-13 (-1074) (-10 -8 (-15 -3018 ((-112) $ $)) (-15 -2897 ((-112) $ $)) (-15 -2896 ((-112) $ $)) (-15 -3017 ((-112) $ $)) (-15 -3678 ($ $ $)) (-15 -3677 ($ $ $)))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2871 (($ $ $) 45)) (-2872 (($ $ $) 44)) (-2873 (($ $ $) 42)) (-2869 (($ $ $) 51)) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 46)) (-2870 (((-3 $ "failed") $ $) 49)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#2| #1#) $) 25)) (-3857 (($ $) 35)) (-2877 (($ $ $) 39)) (-2878 (($ $ $) 38)) (-2867 (($ $ $) 47)) (-2875 (($ $ $) 53)) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 41)) (-2876 (((-3 $ "failed") $ $) 48)) (-3820 (((-3 $ "failed") $ |#2|) 28)) (-3150 ((|#2| $) 32)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL) (($ |#2|) 12)) (-4177 (((-622 |#2|) $) 18)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22))) +(((-828 |#1| |#2|) (-10 -8 (-15 -2867 (|#1| |#1| |#1|)) (-15 -2868 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -2870 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2874 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2875 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1|)) (-15 -2878 (|#1| |#1| |#1|)) (-15 -3857 (|#1| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4177 ((-622 |#2|) |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4317 ((-840) |#1|))) (-829 |#2|) (-1025)) (T -828)) +NIL +(-10 -8 (-15 -2867 (|#1| |#1| |#1|)) (-15 -2868 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2869 (|#1| |#1| |#1|)) (-15 -2870 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2871 (|#1| |#1| |#1|)) (-15 -2872 (|#1| |#1| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -2874 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2501 |#1|)) |#1| |#1|)) (-15 -2875 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2877 (|#1| |#1| |#1|)) (-15 -2878 (|#1| |#1| |#1|)) (-15 -3857 (|#1| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3820 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4177 ((-622 |#2|) |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-2871 (($ $ $) 43 (|has| |#1| (-358)))) (-2872 (($ $ $) 44 (|has| |#1| (-358)))) (-2873 (($ $ $) 46 (|has| |#1| (-358)))) (-2869 (($ $ $) 41 (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 40 (|has| |#1| (-358)))) (-2870 (((-3 $ "failed") $ $) 42 (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 45 (|has| |#1| (-358)))) (-3508 (((-3 (-538) #1="failed") $) 72 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 70 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 67)) (-3507 (((-538) $) 73 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 71 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 66)) (-4319 (($ $) 62)) (-3821 (((-3 $ "failed") $) 32)) (-3857 (($ $) 53 (|has| |#1| (-446)))) (-2502 (((-112) $) 30)) (-3226 (($ |#1| (-751)) 60)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55 (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 56 (|has| |#1| (-545)))) (-3153 (((-751) $) 64)) (-2877 (($ $ $) 50 (|has| |#1| (-358)))) (-2878 (($ $ $) 51 (|has| |#1| (-358)))) (-2867 (($ $ $) 39 (|has| |#1| (-358)))) (-2875 (($ $ $) 48 (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 47 (|has| |#1| (-358)))) (-2876 (((-3 $ "failed") $ $) 49 (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 52 (|has| |#1| (-358)))) (-3525 ((|#1| $) 63)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-545)))) (-4307 (((-751) $) 65)) (-3150 ((|#1| $) 54 (|has| |#1| (-446)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 69 (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) 68)) (-4177 (((-622 |#1|) $) 59)) (-4040 ((|#1| $ (-751)) 61)) (-3461 (((-751)) 28)) (-2880 ((|#1| $ |#1| |#1|) 58)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74))) +(((-829 |#1|) (-138) (-1025)) (T -829)) +((-4307 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-4319 (*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-622 *3)))) (-2880 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) (-3820 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))) (-2881 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) (-2882 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) (-3150 (*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-3857 (*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) (-2883 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) (-2878 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2877 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2876 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2875 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2874 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1))) (-4 *1 (-829 *3)))) (-2873 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2884 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) (-2872 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2871 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2870 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2869 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-2868 (*1 *2 *1 *1) (-12 (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1))) (-4 *1 (-829 *3)))) (-2867 (*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) +(-13 (-1025) (-111 |t#1| |t#1|) (-407 |t#1|) (-10 -8 (-15 -4307 ((-751) $)) (-15 -3153 ((-751) $)) (-15 -3525 (|t#1| $)) (-15 -4319 ($ $)) (-15 -4040 (|t#1| $ (-751))) (-15 -3226 ($ |t#1| (-751))) (-15 -4177 ((-622 |t#1|) $)) (-15 -2880 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3820 ((-3 $ "failed") $ |t#1|)) (-15 -2881 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2882 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -3150 (|t#1| $)) (-15 -3857 ($ $))) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-15 -2883 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2878 ($ $ $)) (-15 -2877 ($ $ $)) (-15 -2876 ((-3 $ "failed") $ $)) (-15 -2875 ($ $ $)) (-15 -2874 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $)) (-15 -2873 ($ $ $)) (-15 -2884 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -2872 ($ $ $)) (-15 -2871 ($ $ $)) (-15 -2870 ((-3 $ "failed") $ $)) (-15 -2869 ($ $ $)) (-15 -2868 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $)) (-15 -2867 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-407 |#1|) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2879 ((|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|)) 20)) (-2884 (((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)) 43 (|has| |#1| (-358)))) (-2882 (((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)) 40 (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)) 39 (|has| |#1| (-545)))) (-2883 (((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)) 42 (|has| |#1| (-358)))) (-2880 ((|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|)) 31))) +(((-830 |#1| |#2|) (-10 -7 (-15 -2879 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2880 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-545)) (PROGN (-15 -2881 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2882 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2883 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2884 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) (-1025) (-829 |#1|)) (T -830)) +((-2884 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2883 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2882 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2881 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1025)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) (-4 *3 (-829 *5)))) (-2880 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1025)) (-5 *1 (-830 *2 *3)) (-4 *3 (-829 *2)))) (-2879 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1025)) (-5 *1 (-830 *5 *2)) (-4 *2 (-829 *5))))) +(-10 -7 (-15 -2879 (|#2| |#2| |#2| (-98 |#1|) (-1 |#1| |#1|))) (-15 -2880 (|#1| |#2| |#1| |#1| (-98 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-545)) (PROGN (-15 -2881 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2882 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -2883 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|))) (-15 -2884 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2| (-98 |#1|)))) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2871 (($ $ $) NIL (|has| |#1| (-358)))) (-2872 (($ $ $) NIL (|has| |#1| (-358)))) (-2873 (($ $ $) NIL (|has| |#1| (-358)))) (-2869 (($ $ $) NIL (|has| |#1| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2870 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 32 (|has| |#1| (-358)))) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-3887 (((-840) $ (-840)) NIL)) (-2502 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) NIL)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 28 (|has| |#1| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 26 (|has| |#1| (-545)))) (-3153 (((-751) $) NIL)) (-2877 (($ $ $) NIL (|has| |#1| (-358)))) (-2878 (($ $ $) NIL (|has| |#1| (-358)))) (-2867 (($ $ $) NIL (|has| |#1| (-358)))) (-2875 (($ $ $) NIL (|has| |#1| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-2876 (((-3 $ #1#) $ $) NIL (|has| |#1| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 30 (|has| |#1| (-358)))) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-545)))) (-4307 (((-751) $) NIL)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-1014 (-402 (-538))))) (($ |#1|) NIL)) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2880 ((|#1| $ |#1| |#1|) 15)) (-2991 (($) NIL T CONST)) (-2997 (($) 20 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) 19) (($ $ (-751)) 22)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-831 |#1| |#2| |#3|) (-13 (-829 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-840))))) (-1025) (-98 |#1|) (-1 |#1| |#1|)) (T -831)) +((-3887 (*1 *2 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-831 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-829 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-840))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-2871 (($ $ $) NIL (|has| |#2| (-358)))) (-2872 (($ $ $) NIL (|has| |#2| (-358)))) (-2873 (($ $ $) NIL (|has| |#2| (-358)))) (-2869 (($ $ $) NIL (|has| |#2| (-358)))) (-2868 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#2| (-358)))) (-2870 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-358)))) (-2884 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-358)))) (-3508 (((-3 (-538) #2="failed") $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 |#2| #2#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) ((|#2| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#2| (-446)))) (-2502 (((-112) $) NIL)) (-3226 (($ |#2| (-751)) 16)) (-2882 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-545)))) (-2881 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-545)))) (-3153 (((-751) $) NIL)) (-2877 (($ $ $) NIL (|has| |#2| (-358)))) (-2878 (($ $ $) NIL (|has| |#2| (-358)))) (-2867 (($ $ $) NIL (|has| |#2| (-358)))) (-2875 (($ $ $) NIL (|has| |#2| (-358)))) (-2874 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#2| (-358)))) (-2876 (((-3 $ #1#) $ $) NIL (|has| |#2| (-358)))) (-2883 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-358)))) (-3525 ((|#2| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-545)))) (-4307 (((-751) $) NIL)) (-3150 ((|#2| $) NIL (|has| |#2| (-446)))) (-4317 (((-840) $) 23) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#2| (-1014 (-402 (-538))))) (($ |#2|) NIL) (($ (-1228 |#1|)) 18)) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-751)) NIL)) (-3461 (((-751)) NIL)) (-2880 ((|#2| $ |#2| |#2|) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) 13 T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-832 |#1| |#2| |#3| |#4|) (-13 (-829 |#2|) (-10 -8 (-15 -4317 ($ (-1228 |#1|))))) (-1149) (-1025) (-98 |#2|) (-1 |#2| |#2|)) (T -832)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-832 *3 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4))))) +(-13 (-829 |#2|) (-10 -8 (-15 -4317 ($ (-1228 |#1|))))) +((-2887 ((|#1| (-751) |#1|) 35 (|has| |#1| (-38 (-402 (-538)))))) (-2886 ((|#1| (-751) (-751) |#1|) 27) ((|#1| (-751) |#1|) 20)) (-2885 ((|#1| (-751) |#1|) 31)) (-3133 ((|#1| (-751) |#1|) 29)) (-3132 ((|#1| (-751) |#1|) 28))) +(((-833 |#1|) (-10 -7 (-15 -3132 (|#1| (-751) |#1|)) (-15 -3133 (|#1| (-751) |#1|)) (-15 -2885 (|#1| (-751) |#1|)) (-15 -2886 (|#1| (-751) |#1|)) (-15 -2886 (|#1| (-751) (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -2887 (|#1| (-751) |#1|)) |%noBranch|)) (-170)) (T -833)) +((-2887 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-170)))) (-2886 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-2886 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-2885 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-3133 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) (-3132 (*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))) +(-10 -7 (-15 -3132 (|#1| (-751) |#1|)) (-15 -3133 (|#1| (-751) |#1|)) (-15 -2885 (|#1| (-751) |#1|)) (-15 -2886 (|#1| (-751) |#1|)) (-15 -2886 (|#1| (-751) (-751) |#1|)) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -2887 (|#1| (-751) |#1|)) |%noBranch|)) +((-2898 (((-112) $ $) 7)) (-3677 (($ $ $) 13)) (-3678 (($ $ $) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2896 (((-112) $ $) 16)) (-2897 (((-112) $ $) 17)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 15)) (-3018 (((-112) $ $) 18)) (** (($ $ (-895)) 21)) (* (($ $ $) 20))) +(((-834) (-138)) (T -834)) +NIL +(-13 (-827) (-1085)) +(((-101) . T) ((-597 (-840)) . T) ((-827) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3761 (((-538) $) 12)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 18) (($ (-538)) 11)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 8)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 9))) +(((-835) (-13 (-827) (-10 -8 (-15 -4317 ($ (-538))) (-15 -3761 ((-538) $))))) (T -835)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-835)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-835))))) +(-13 (-827) (-10 -8 (-15 -4317 ($ (-538))) (-15 -3761 ((-538) $)))) +((-2888 (((-1237) (-622 (-51))) 24)) (-3814 (((-1237) (-1131) (-840)) 14) (((-1237) (-840)) 9) (((-1237) (-1131)) 11))) +(((-836) (-10 -7 (-15 -3814 ((-1237) (-1131))) (-15 -3814 ((-1237) (-840))) (-15 -3814 ((-1237) (-1131) (-840))) (-15 -2888 ((-1237) (-622 (-51)))))) (T -836)) +((-2888 (*1 *2 *3) (-12 (-5 *3 (-622 (-51))) (-5 *2 (-1237)) (-5 *1 (-836)))) (-3814 (*1 *2 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-840)) (-5 *2 (-1237)) (-5 *1 (-836)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-836)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-836))))) +(-10 -7 (-15 -3814 ((-1237) (-1131))) (-15 -3814 ((-1237) (-840))) (-15 -3814 ((-1237) (-1131) (-840))) (-15 -2888 ((-1237) (-622 (-51))))) +((-2889 (((-1093) $ (-129)) 17))) +(((-837 |#1|) (-10 -8 (-15 -2889 ((-1093) |#1| (-129)))) (-838)) (T -837)) +NIL +(-10 -8 (-15 -2889 ((-1093) |#1| (-129)))) +((-2889 (((-1093) $ (-129)) 7)) (-2890 (((-1093) $ (-128)) 8)) (-1816 (($ $) 6))) +(((-838) (-138)) (T -838)) +((-2890 (*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-128)) (-5 *2 (-1093)))) (-2889 (*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-129)) (-5 *2 (-1093))))) +(-13 (-171) (-10 -8 (-15 -2890 ((-1093) $ (-128))) (-15 -2889 ((-1093) $ (-129))))) (((-171) . T)) -((-2884 (((-1091) $ (-129)) NIL)) (-2885 (((-1091) $ (-128)) 22)) (-2887 (($ (-381)) 12) (($ (-1129)) 14)) (-2886 (((-112) $) 19)) (-4312 (((-838) $) 26)) (-1811 (($ $) 23))) -(((-837) (-13 (-836) (-595 (-838)) (-10 -8 (-15 -2887 ($ (-381))) (-15 -2887 ($ (-1129))) (-15 -2886 ((-112) $))))) (T -837)) -((-2887 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-837)))) (-2887 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-837)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) -(-13 (-836) (-595 (-838)) (-10 -8 (-15 -2887 ($ (-381))) (-15 -2887 ($ (-1129))) (-15 -2886 ((-112) $)))) -((-2893 (((-112) $ $) NIL) (($ $ $) 77)) (-2914 (($ $ $) 114)) (-2929 (((-536) $) 31) (((-536)) 36)) (-2924 (($ (-536)) 45)) (-2921 (($ $ $) 46) (($ (-620 $)) 76)) (-2905 (($ $ (-620 $)) 74)) (-2926 (((-536) $) 34)) (-2908 (($ $ $) 65)) (-3881 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2927 (((-536) $) 33)) (-2909 (($ $ $) 64)) (-3893 (($ $) 104)) (-2912 (($ $ $) 118)) (-2895 (($ (-620 $)) 53)) (-3898 (($ $ (-620 $)) 71)) (-2923 (($ (-536) (-536)) 47)) (-2935 (($ $) 115) (($ $ $) 116)) (-3467 (($ $ (-536)) 41) (($ $) 44)) (-2889 (($ $ $) 89)) (-2910 (($ $ $) 121)) (-2904 (($ $) 105)) (-2888 (($ $ $) 90)) (-2900 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3165 (((-1235) $) 10)) (-2903 (($ $) 108) (($ $ (-749)) 111)) (-2906 (($ $ $) 67)) (-2907 (($ $ $) 66)) (-2920 (($ $ (-620 $)) 100)) (-2918 (($ $ $) 103)) (-2897 (($ (-620 $)) 51)) (-2898 (($ $) 62) (($ (-620 $)) 63)) (-2901 (($ $ $) 112)) (-2902 (($ $) 106)) (-2913 (($ $ $) 117)) (-3882 (($ (-536)) 21) (($ (-1147)) 23) (($ (-1129)) 30) (($ (-219)) 25)) (-3185 (($ $ $) 93)) (-3671 (($ $) 94)) (-2931 (((-1235) (-1129)) 15)) (-2932 (($ (-1129)) 14)) (-3454 (($ (-620 (-620 $))) 50)) (-3468 (($ $ (-536)) 40) (($ $) 43)) (-3588 (((-1129) $) NIL)) (-2916 (($ $ $) 120)) (-3819 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2917 (((-112) $) 98)) (-2919 (($ $ (-620 $)) 101) (($ $ $ $) 102)) (-2925 (($ (-536)) 37)) (-2928 (((-536) $) 32) (((-536)) 35)) (-2922 (($ $ $) 38) (($ (-620 $)) 75)) (-3589 (((-1091) $) NIL)) (-3815 (($ $ $) 91)) (-3923 (($) 13)) (-4154 (($ $ (-620 $)) 99)) (-2930 (((-1129) (-1129)) 8)) (-4191 (($ $) 107) (($ $ (-749)) 110)) (-2890 (($ $ $) 88)) (-4165 (($ $ (-749)) 126)) (-2896 (($ (-620 $)) 52)) (-4312 (((-838) $) 19)) (-4127 (($ $ (-536)) 39) (($ $) 42)) (-2899 (($ $) 60) (($ (-620 $)) 61)) (-3586 (($ $) 58) (($ (-620 $)) 59)) (-2915 (($ $) 113)) (-2894 (($ (-620 $)) 57)) (-3432 (($ $ $) 97)) (-2911 (($ $ $) 119)) (-3186 (($ $ $) 92)) (-4092 (($ $ $) 95) (($ $) 96)) (-2891 (($ $ $) 81)) (-2892 (($ $ $) 79)) (-3382 (((-112) $ $) 16) (($ $ $) 17)) (-3012 (($ $ $) 80)) (-3013 (($ $ $) 78)) (-4303 (($ $ $) 86)) (-4192 (($ $ $) 83) (($ $) 84)) (-4194 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) -(((-838) (-13 (-1072) (-10 -8 (-15 -3165 ((-1235) $)) (-15 -2932 ($ (-1129))) (-15 -2931 ((-1235) (-1129))) (-15 -3882 ($ (-536))) (-15 -3882 ($ (-1147))) (-15 -3882 ($ (-1129))) (-15 -3882 ($ (-219))) (-15 -3923 ($)) (-15 -2930 ((-1129) (-1129))) (-15 -2929 ((-536) $)) (-15 -2928 ((-536) $)) (-15 -2929 ((-536))) (-15 -2928 ((-536))) (-15 -2927 ((-536) $)) (-15 -2926 ((-536) $)) (-15 -2925 ($ (-536))) (-15 -2924 ($ (-536))) (-15 -2923 ($ (-536) (-536))) (-15 -3468 ($ $ (-536))) (-15 -3467 ($ $ (-536))) (-15 -4127 ($ $ (-536))) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -4127 ($ $)) (-15 -2922 ($ $ $)) (-15 -2921 ($ $ $)) (-15 -2922 ($ (-620 $))) (-15 -2921 ($ (-620 $))) (-15 -2920 ($ $ (-620 $))) (-15 -2919 ($ $ (-620 $))) (-15 -2919 ($ $ $ $)) (-15 -2918 ($ $ $)) (-15 -2917 ((-112) $)) (-15 -4154 ($ $ (-620 $))) (-15 -3893 ($ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $)) (-15 -3454 ($ (-620 (-620 $)))) (-15 -2914 ($ $ $)) (-15 -2935 ($ $)) (-15 -2935 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ($ $ $)) (-15 -2910 ($ $ $)) (-15 -4165 ($ $ (-749))) (-15 -3432 ($ $ $)) (-15 -2909 ($ $ $)) (-15 -2908 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -3898 ($ $ (-620 $))) (-15 -2905 ($ $ (-620 $))) (-15 -2904 ($ $)) (-15 -4191 ($ $)) (-15 -4191 ($ $ (-749))) (-15 -2903 ($ $)) (-15 -2903 ($ $ (-749))) (-15 -2902 ($ $)) (-15 -2901 ($ $ $)) (-15 -3881 ($ $)) (-15 -3881 ($ $ $)) (-15 -3881 ($ $ $ $)) (-15 -2900 ($ $)) (-15 -2900 ($ $ $)) (-15 -2900 ($ $ $ $)) (-15 -3819 ($ $)) (-15 -3819 ($ $ $)) (-15 -3819 ($ $ $ $)) (-15 -3586 ($ $)) (-15 -3586 ($ (-620 $))) (-15 -2899 ($ $)) (-15 -2899 ($ (-620 $))) (-15 -2898 ($ $)) (-15 -2898 ($ (-620 $))) (-15 -2897 ($ (-620 $))) (-15 -2896 ($ (-620 $))) (-15 -2895 ($ (-620 $))) (-15 -2894 ($ (-620 $))) (-15 -3382 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -3013 ($ $ $)) (-15 -2892 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -2891 ($ $ $)) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -4192 ($ $)) (-15 * ($ $ $)) (-15 -4303 ($ $ $)) (-15 ** ($ $ $)) (-15 -2890 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -2888 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -3186 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3671 ($ $)) (-15 -4092 ($ $ $)) (-15 -4092 ($ $))))) (T -838)) -((-3165 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-838)))) (-2932 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-838)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-838)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-838)))) (-3923 (*1 *1) (-5 *1 (-838))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838)))) (-2929 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2929 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2928 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2927 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2924 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-2923 (*1 *1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-3468 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-3467 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-4127 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) (-3468 (*1 *1 *1) (-5 *1 (-838))) (-3467 (*1 *1 *1) (-5 *1 (-838))) (-4127 (*1 *1 *1) (-5 *1 (-838))) (-2922 (*1 *1 *1 *1) (-5 *1 (-838))) (-2921 (*1 *1 *1 *1) (-5 *1 (-838))) (-2922 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2921 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2920 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2919 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2919 (*1 *1 *1 *1 *1) (-5 *1 (-838))) (-2918 (*1 *1 *1 *1) (-5 *1 (-838))) (-2917 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-3893 (*1 *1 *1) (-5 *1 (-838))) (-2916 (*1 *1 *1 *1) (-5 *1 (-838))) (-2915 (*1 *1 *1) (-5 *1 (-838))) (-3454 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-838)))) (-5 *1 (-838)))) (-2914 (*1 *1 *1 *1) (-5 *1 (-838))) (-2935 (*1 *1 *1) (-5 *1 (-838))) (-2935 (*1 *1 *1 *1) (-5 *1 (-838))) (-2913 (*1 *1 *1 *1) (-5 *1 (-838))) (-2912 (*1 *1 *1 *1) (-5 *1 (-838))) (-2911 (*1 *1 *1 *1) (-5 *1 (-838))) (-2910 (*1 *1 *1 *1) (-5 *1 (-838))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) (-3432 (*1 *1 *1 *1) (-5 *1 (-838))) (-2909 (*1 *1 *1 *1) (-5 *1 (-838))) (-2908 (*1 *1 *1 *1) (-5 *1 (-838))) (-2907 (*1 *1 *1 *1) (-5 *1 (-838))) (-2906 (*1 *1 *1 *1) (-5 *1 (-838))) (-3898 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2905 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2904 (*1 *1 *1) (-5 *1 (-838))) (-4191 (*1 *1 *1) (-5 *1 (-838))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) (-2903 (*1 *1 *1) (-5 *1 (-838))) (-2903 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) (-2902 (*1 *1 *1) (-5 *1 (-838))) (-2901 (*1 *1 *1 *1) (-5 *1 (-838))) (-3881 (*1 *1 *1) (-5 *1 (-838))) (-3881 (*1 *1 *1 *1) (-5 *1 (-838))) (-3881 (*1 *1 *1 *1 *1) (-5 *1 (-838))) (-2900 (*1 *1 *1) (-5 *1 (-838))) (-2900 (*1 *1 *1 *1) (-5 *1 (-838))) (-2900 (*1 *1 *1 *1 *1) (-5 *1 (-838))) (-3819 (*1 *1 *1) (-5 *1 (-838))) (-3819 (*1 *1 *1 *1) (-5 *1 (-838))) (-3819 (*1 *1 *1 *1 *1) (-5 *1 (-838))) (-3586 (*1 *1 *1) (-5 *1 (-838))) (-3586 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2899 (*1 *1 *1) (-5 *1 (-838))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2898 (*1 *1 *1) (-5 *1 (-838))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2897 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2896 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2895 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) (-3382 (*1 *1 *1 *1) (-5 *1 (-838))) (-2893 (*1 *1 *1 *1) (-5 *1 (-838))) (-3013 (*1 *1 *1 *1) (-5 *1 (-838))) (-2892 (*1 *1 *1 *1) (-5 *1 (-838))) (-3012 (*1 *1 *1 *1) (-5 *1 (-838))) (-2891 (*1 *1 *1 *1) (-5 *1 (-838))) (-4194 (*1 *1 *1 *1) (-5 *1 (-838))) (-4192 (*1 *1 *1 *1) (-5 *1 (-838))) (-4192 (*1 *1 *1) (-5 *1 (-838))) (* (*1 *1 *1 *1) (-5 *1 (-838))) (-4303 (*1 *1 *1 *1) (-5 *1 (-838))) (** (*1 *1 *1 *1) (-5 *1 (-838))) (-2890 (*1 *1 *1 *1) (-5 *1 (-838))) (-2889 (*1 *1 *1 *1) (-5 *1 (-838))) (-2888 (*1 *1 *1 *1) (-5 *1 (-838))) (-3815 (*1 *1 *1 *1) (-5 *1 (-838))) (-3186 (*1 *1 *1 *1) (-5 *1 (-838))) (-3185 (*1 *1 *1 *1) (-5 *1 (-838))) (-3671 (*1 *1 *1) (-5 *1 (-838))) (-4092 (*1 *1 *1 *1) (-5 *1 (-838))) (-4092 (*1 *1 *1) (-5 *1 (-838)))) -(-13 (-1072) (-10 -8 (-15 -3165 ((-1235) $)) (-15 -2932 ($ (-1129))) (-15 -2931 ((-1235) (-1129))) (-15 -3882 ($ (-536))) (-15 -3882 ($ (-1147))) (-15 -3882 ($ (-1129))) (-15 -3882 ($ (-219))) (-15 -3923 ($)) (-15 -2930 ((-1129) (-1129))) (-15 -2929 ((-536) $)) (-15 -2928 ((-536) $)) (-15 -2929 ((-536))) (-15 -2928 ((-536))) (-15 -2927 ((-536) $)) (-15 -2926 ((-536) $)) (-15 -2925 ($ (-536))) (-15 -2924 ($ (-536))) (-15 -2923 ($ (-536) (-536))) (-15 -3468 ($ $ (-536))) (-15 -3467 ($ $ (-536))) (-15 -4127 ($ $ (-536))) (-15 -3468 ($ $)) (-15 -3467 ($ $)) (-15 -4127 ($ $)) (-15 -2922 ($ $ $)) (-15 -2921 ($ $ $)) (-15 -2922 ($ (-620 $))) (-15 -2921 ($ (-620 $))) (-15 -2920 ($ $ (-620 $))) (-15 -2919 ($ $ (-620 $))) (-15 -2919 ($ $ $ $)) (-15 -2918 ($ $ $)) (-15 -2917 ((-112) $)) (-15 -4154 ($ $ (-620 $))) (-15 -3893 ($ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $)) (-15 -3454 ($ (-620 (-620 $)))) (-15 -2914 ($ $ $)) (-15 -2935 ($ $)) (-15 -2935 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ($ $ $)) (-15 -2910 ($ $ $)) (-15 -4165 ($ $ (-749))) (-15 -3432 ($ $ $)) (-15 -2909 ($ $ $)) (-15 -2908 ($ $ $)) (-15 -2907 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -3898 ($ $ (-620 $))) (-15 -2905 ($ $ (-620 $))) (-15 -2904 ($ $)) (-15 -4191 ($ $)) (-15 -4191 ($ $ (-749))) (-15 -2903 ($ $)) (-15 -2903 ($ $ (-749))) (-15 -2902 ($ $)) (-15 -2901 ($ $ $)) (-15 -3881 ($ $)) (-15 -3881 ($ $ $)) (-15 -3881 ($ $ $ $)) (-15 -2900 ($ $)) (-15 -2900 ($ $ $)) (-15 -2900 ($ $ $ $)) (-15 -3819 ($ $)) (-15 -3819 ($ $ $)) (-15 -3819 ($ $ $ $)) (-15 -3586 ($ $)) (-15 -3586 ($ (-620 $))) (-15 -2899 ($ $)) (-15 -2899 ($ (-620 $))) (-15 -2898 ($ $)) (-15 -2898 ($ (-620 $))) (-15 -2897 ($ (-620 $))) (-15 -2896 ($ (-620 $))) (-15 -2895 ($ (-620 $))) (-15 -2894 ($ (-620 $))) (-15 -3382 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -3013 ($ $ $)) (-15 -2892 ($ $ $)) (-15 -3012 ($ $ $)) (-15 -2891 ($ $ $)) (-15 -4194 ($ $ $)) (-15 -4192 ($ $ $)) (-15 -4192 ($ $)) (-15 * ($ $ $)) (-15 -4303 ($ $ $)) (-15 ** ($ $ $)) (-15 -2890 ($ $ $)) (-15 -2889 ($ $ $)) (-15 -2888 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -3186 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3671 ($ $)) (-15 -4092 ($ $ $)) (-15 -4092 ($ $)))) -((-2893 (((-112) $ $) NIL)) (-4186 (((-3 $ "failed") (-1147)) 33)) (-3466 (((-749)) 31)) (-3322 (($) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-2121 (((-893) $) 29)) (-3588 (((-1129) $) 39)) (-2487 (($ (-893)) 28)) (-3589 (((-1091) $) NIL)) (-4325 (((-1147) $) 13) (((-525) $) 19) (((-864 (-371)) $) 26) (((-864 (-536)) $) 22)) (-4312 (((-838) $) 16)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 36)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 35))) -(((-839 |#1|) (-13 (-819) (-596 (-1147)) (-596 (-525)) (-596 (-864 (-371))) (-596 (-864 (-536))) (-10 -8 (-15 -4186 ((-3 $ "failed") (-1147))))) (-620 (-1147))) (T -839)) -((-4186 (*1 *1 *2) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-839 *3)) (-14 *3 (-620 *2))))) -(-13 (-819) (-596 (-1147)) (-596 (-525)) (-596 (-864 (-371))) (-596 (-864 (-536))) (-10 -8 (-15 -4186 ((-3 $ "failed") (-1147))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (((-920 |#1|) $) NIL) (($ (-920 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-3456 (((-749)) NIL)) (-4278 (((-1235) (-749)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-840 |#1| |#2| |#3| |#4|) (-13 (-1023) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4312 ((-920 |#1|) $)) (-15 -4312 ($ (-920 |#1|))) (IF (|has| |#1| (-356)) (-15 -4303 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4278 ((-1235) (-749))))) (-1023) (-620 (-1147)) (-620 (-749)) (-749)) (T -840)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-920 *3)) (-5 *1 (-840 *3 *4 *5 *6)) (-4 *3 (-1023)) (-14 *4 (-620 (-1147))) (-14 *5 (-620 (-749))) (-14 *6 (-749)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-5 *1 (-840 *3 *4 *5 *6)) (-14 *4 (-620 (-1147))) (-14 *5 (-620 (-749))) (-14 *6 (-749)))) (-4303 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-840 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1023)) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-749))) (-14 *5 (-749)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-840 *4 *5 *6 *7)) (-4 *4 (-1023)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 *3)) (-14 *7 *3)))) -(-13 (-1023) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4312 ((-920 |#1|) $)) (-15 -4312 ($ (-920 |#1|))) (IF (|has| |#1| (-356)) (-15 -4303 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4278 ((-1235) (-749))))) -((-2933 (((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|) 31)) (-2934 (((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|) 24))) -(((-841 |#1| |#2| |#3|) (-10 -7 (-15 -2934 ((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|)) (-15 -2933 ((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|))) (-356) (-1222 |#1|) (-1205 |#1|)) (T -841)) -((-2933 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-172 *6)) (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1222 *5)) (-4 *6 (-1205 *5)))) (-2934 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-400 *6)) (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1222 *5)) (-4 *6 (-1205 *5))))) -(-10 -7 (-15 -2934 ((-3 (-400 |#3|) "failed") (-749) (-749) |#2| |#2|)) (-15 -2933 ((-3 (-172 |#3|) "failed") (-749) (-749) |#2| |#2|))) -((-2934 (((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|)) 28) (((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) 26))) -(((-842 |#1| |#2| |#3|) (-10 -7 (-15 -2934 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) (-15 -2934 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|)))) (-356) (-1147) |#1|) (T -842)) -((-2934 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1147)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5))) (-5 *1 (-842 *5 *6 *7)))) (-2934 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) (-14 *6 (-1147)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5))) (-5 *1 (-842 *5 *6 *7))))) -(-10 -7 (-15 -2934 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) (-15 -2934 ((-3 (-400 (-1198 |#2| |#1|)) "failed") (-749) (-749) (-1219 |#1| |#2| |#3|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $ (-536)) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2935 (($ (-1141 (-536)) (-536)) NIL)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2936 (($ $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4126 (((-749) $) NIL)) (-2497 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2938 (((-536)) NIL)) (-2937 (((-536) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4123 (($ $ (-536)) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-2939 (((-1124 (-536)) $) NIL)) (-3219 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-4124 (((-536) $ (-536)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL))) -(((-843 |#1|) (-844 |#1|) (-536)) (T -843)) -NIL -(-844 |#1|) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3365 (($ $ (-536)) 60)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-2935 (($ (-1141 (-536)) (-536)) 59)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2936 (($ $) 62)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4126 (((-749) $) 67)) (-2497 (((-112) $) 30)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2938 (((-536)) 64)) (-2937 (((-536) $) 63)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-4123 (($ $ (-536)) 66)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-2939 (((-1124 (-536)) $) 68)) (-3219 (($ $) 65)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-4124 (((-536) $ (-536)) 61)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-844 |#1|) (-138) (-536)) (T -844)) -((-2939 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-1124 (-536))))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-749)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) (-3219 (*1 *1 *1) (-4 *1 (-844 *2))) (-2938 (*1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) (-2936 (*1 *1 *1) (-4 *1 (-844 *2))) (-4124 (*1 *2 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) (-2935 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *3 (-536)) (-4 *1 (-844 *4))))) -(-13 (-300) (-145) (-10 -8 (-15 -2939 ((-1124 (-536)) $)) (-15 -4126 ((-749) $)) (-15 -4123 ($ $ (-536))) (-15 -3219 ($ $)) (-15 -2938 ((-536))) (-15 -2937 ((-536) $)) (-15 -2936 ($ $)) (-15 -4124 ((-536) $ (-536))) (-15 -3365 ($ $ (-536))) (-15 -2935 ($ (-1141 (-536)) (-536))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-300) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-843 |#1|) $) NIL (|has| (-843 |#1|) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-843 |#1|) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-843 |#1|) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-843 |#1|) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-843 |#1|) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| (-843 |#1|) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| (-843 |#1|) (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| (-843 |#1|) (-1012 (-536))))) (-3502 (((-843 |#1|) $) NIL) (((-1147) $) NIL (|has| (-843 |#1|) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-843 |#1|) (-1012 (-536)))) (((-536) $) NIL (|has| (-843 |#1|) (-1012 (-536))))) (-4085 (($ $) NIL) (($ (-536) $) NIL)) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-843 |#1|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-843 |#1|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-843 |#1|))) (|:| |vec| (-1229 (-843 |#1|)))) (-667 $) (-1229 $)) NIL) (((-667 (-843 |#1|)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-843 |#1|) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| (-843 |#1|) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-843 |#1|) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-843 |#1|) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-843 |#1|) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| (-843 |#1|) (-1122)))) (-3533 (((-112) $) NIL (|has| (-843 |#1|) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-843 |#1|) (-825)))) (-3673 (($ $ $) NIL (|has| (-843 |#1|) (-825)))) (-4313 (($ (-1 (-843 |#1|) (-843 |#1|)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-843 |#1|) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-843 |#1|) (-300)))) (-3460 (((-843 |#1|) $) NIL (|has| (-843 |#1|) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-843 |#1|) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-843 |#1|) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-843 |#1|)) (-620 (-843 |#1|))) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-843 |#1|) (-843 |#1|)) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-286 (-843 |#1|))) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-620 (-286 (-843 |#1|)))) NIL (|has| (-843 |#1|) (-302 (-843 |#1|)))) (($ $ (-620 (-1147)) (-620 (-843 |#1|))) NIL (|has| (-843 |#1|) (-505 (-1147) (-843 |#1|)))) (($ $ (-1147) (-843 |#1|)) NIL (|has| (-843 |#1|) (-505 (-1147) (-843 |#1|))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-843 |#1|)) NIL (|has| (-843 |#1|) (-279 (-843 |#1|) (-843 |#1|))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| (-843 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-843 |#1|) (-227))) (($ $ (-1147)) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-1 (-843 |#1|) (-843 |#1|)) (-749)) NIL) (($ $ (-1 (-843 |#1|) (-843 |#1|))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-843 |#1|) $) NIL)) (-4325 (((-864 (-536)) $) NIL (|has| (-843 |#1|) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-843 |#1|) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-843 |#1|) (-596 (-525)))) (((-371) $) NIL (|has| (-843 |#1|) (-994))) (((-219) $) NIL (|has| (-843 |#1|) (-994)))) (-2940 (((-172 (-400 (-536))) $) NIL)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-843 |#1|) (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL) (($ (-843 |#1|)) NIL) (($ (-1147)) NIL (|has| (-843 |#1|) (-1012 (-1147))))) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-843 |#1|) (-884))) (|has| (-843 |#1|) (-143))))) (-3456 (((-749)) NIL)) (-3461 (((-843 |#1|) $) NIL (|has| (-843 |#1|) (-535)))) (-2172 (((-112) $ $) NIL)) (-4124 (((-400 (-536)) $ (-536)) NIL)) (-3737 (($ $) NIL (|has| (-843 |#1|) (-798)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $) NIL (|has| (-843 |#1|) (-227))) (($ $ (-749)) NIL (|has| (-843 |#1|) (-227))) (($ $ (-1147)) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-843 |#1|) (-874 (-1147)))) (($ $ (-1 (-843 |#1|) (-843 |#1|)) (-749)) NIL) (($ $ (-1 (-843 |#1|) (-843 |#1|))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-843 |#1|) (-825)))) (-4303 (($ $ $) NIL) (($ (-843 |#1|) (-843 |#1|)) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-843 |#1|) $) NIL) (($ $ (-843 |#1|)) NIL))) -(((-845 |#1|) (-13 (-965 (-843 |#1|)) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) (-536)) (T -845)) -((-4124 (*1 *2 *1 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-845 *4)) (-14 *4 *3) (-5 *3 (-536)))) (-2940 (*1 *2 *1) (-12 (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-845 *3)) (-14 *3 (-536)))) (-4085 (*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-14 *2 (-536)))) (-4085 (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-845 *3)) (-14 *3 *2)))) -(-13 (-965 (-843 |#1|)) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 ((|#2| $) NIL (|has| |#2| (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| |#2| (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (|has| |#2| (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536))))) (-3502 ((|#2| $) NIL) (((-1147) $) NIL (|has| |#2| (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-536)))) (((-536) $) NIL (|has| |#2| (-1012 (-536))))) (-4085 (($ $) 31) (($ (-536) $) 32)) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) 53)) (-3322 (($) NIL (|has| |#2| (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) NIL (|has| |#2| (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| |#2| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| |#2| (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 ((|#2| $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#2| (-1122)))) (-3533 (((-112) $) NIL (|has| |#2| (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 49)) (-3799 (($) NIL (|has| |#2| (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| |#2| (-300)))) (-3460 ((|#2| $) NIL (|has| |#2| (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 |#2|) (-620 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-302 |#2|))) (($ $ (-286 |#2|)) NIL (|has| |#2| (-302 |#2|))) (($ $ (-620 (-286 |#2|))) NIL (|has| |#2| (-302 |#2|))) (($ $ (-620 (-1147)) (-620 |#2|)) NIL (|has| |#2| (-505 (-1147) |#2|))) (($ $ (-1147) |#2|) NIL (|has| |#2| (-505 (-1147) |#2|)))) (-1699 (((-749) $) NIL)) (-4154 (($ $ |#2|) NIL (|has| |#2| (-279 |#2| |#2|)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) NIL (|has| |#2| (-227))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3323 (($ $) NIL)) (-3325 ((|#2| $) NIL)) (-4325 (((-864 (-536)) $) NIL (|has| |#2| (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| |#2| (-596 (-864 (-371))))) (((-525) $) NIL (|has| |#2| (-596 (-525)))) (((-371) $) NIL (|has| |#2| (-994))) (((-219) $) NIL (|has| |#2| (-994)))) (-2940 (((-172 (-400 (-536))) $) 68)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4312 (((-838) $) 87) (($ (-536)) 19) (($ $) NIL) (($ (-400 (-536))) 24) (($ |#2|) 18) (($ (-1147)) NIL (|has| |#2| (-1012 (-1147))))) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-3461 ((|#2| $) NIL (|has| |#2| (-535)))) (-2172 (((-112) $ $) NIL)) (-4124 (((-400 (-536)) $ (-536)) 60)) (-3737 (($ $) NIL (|has| |#2| (-798)))) (-2986 (($) 14 T CONST)) (-2992 (($) 16 T CONST)) (-2997 (($ $) NIL (|has| |#2| (-227))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) 35)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4192 (($ $) 39) (($ $ $) 41)) (-4194 (($ $ $) 37)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) 50)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 42) (($ $ $) 44) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) -(((-846 |#1| |#2|) (-13 (-965 |#2|) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) (-536) (-844 |#1|)) (T -846)) -((-4124 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-400 (-536))) (-5 *1 (-846 *4 *5)) (-5 *3 (-536)) (-4 *5 (-844 *4)))) (-2940 (*1 *2 *1) (-12 (-14 *3 (-536)) (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-846 *3 *4)) (-4 *4 (-844 *3)))) (-4085 (*1 *1 *1) (-12 (-14 *2 (-536)) (-5 *1 (-846 *2 *3)) (-4 *3 (-844 *2)))) (-4085 (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-14 *3 *2) (-5 *1 (-846 *3 *4)) (-4 *4 (-844 *3))))) -(-13 (-965 |#2|) (-10 -8 (-15 -4124 ((-400 (-536)) $ (-536))) (-15 -2940 ((-172 (-400 (-536))) $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)))) -((-2893 (((-112) $ $) NIL (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))))) (-4150 ((|#2| $) 12)) (-2941 (($ |#1| |#2|) 9)) (-3588 (((-1129) $) NIL (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))))) (-3589 (((-1091) $) NIL (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#1| $) 11)) (-3879 (($ |#1| |#2|) 10)) (-4312 (((-838) $) 18 (-3886 (-12 (|has| |#1| (-595 (-838))) (|has| |#2| (-595 (-838)))) (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072)))))) (-3382 (((-112) $ $) 22 (-12 (|has| |#1| (-1072)) (|has| |#2| (-1072)))))) -(((-847 |#1| |#2|) (-13 (-1183) (-10 -8 (IF (|has| |#1| (-595 (-838))) (IF (|has| |#2| (-595 (-838))) (-6 (-595 (-838))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1072)) (IF (|has| |#2| (-1072)) (-6 (-1072)) |%noBranch|) |%noBranch|) (-15 -2941 ($ |#1| |#2|)) (-15 -3879 ($ |#1| |#2|)) (-15 -4155 (|#1| $)) (-15 -4150 (|#2| $)))) (-1183) (-1183)) (T -847)) -((-2941 (*1 *1 *2 *3) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1183)) (-4 *3 (-1183)))) (-3879 (*1 *1 *2 *3) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1183)) (-4 *3 (-1183)))) (-4155 (*1 *2 *1) (-12 (-4 *2 (-1183)) (-5 *1 (-847 *2 *3)) (-4 *3 (-1183)))) (-4150 (*1 *2 *1) (-12 (-4 *2 (-1183)) (-5 *1 (-847 *3 *2)) (-4 *3 (-1183))))) -(-13 (-1183) (-10 -8 (IF (|has| |#1| (-595 (-838))) (IF (|has| |#2| (-595 (-838))) (-6 (-595 (-838))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1072)) (IF (|has| |#2| (-1072)) (-6 (-1072)) |%noBranch|) |%noBranch|) (-15 -2941 ($ |#1| |#2|)) (-15 -3879 ($ |#1| |#2|)) (-15 -4155 (|#1| $)) (-15 -4150 (|#2| $)))) -((-2893 (((-112) $ $) NIL)) (-3285 (((-536) $) 15)) (-2943 (($ (-155)) 11)) (-2942 (($ (-155)) 12)) (-3588 (((-1129) $) NIL)) (-3284 (((-155) $) 13)) (-3589 (((-1091) $) NIL)) (-2945 (($ (-155)) 9)) (-2946 (($ (-155)) 8)) (-4312 (((-838) $) 23) (($ (-155)) 16)) (-2944 (($ (-155)) 10)) (-3382 (((-112) $ $) NIL))) -(((-848) (-13 (-1072) (-10 -8 (-15 -2946 ($ (-155))) (-15 -2945 ($ (-155))) (-15 -2944 ($ (-155))) (-15 -2943 ($ (-155))) (-15 -2942 ($ (-155))) (-15 -3284 ((-155) $)) (-15 -3285 ((-536) $)) (-15 -4312 ($ (-155)))))) (T -848)) -((-2946 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2945 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2944 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2943 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-848)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(-13 (-1072) (-10 -8 (-15 -2946 ($ (-155))) (-15 -2945 ($ (-155))) (-15 -2944 ($ (-155))) (-15 -2943 ($ (-155))) (-15 -2942 ($ (-155))) (-15 -3284 ((-155) $)) (-15 -3285 ((-536) $)) (-15 -4312 ($ (-155))))) -((-4312 (((-307 (-536)) (-400 (-920 (-48)))) 23) (((-307 (-536)) (-920 (-48))) 18))) -(((-849) (-10 -7 (-15 -4312 ((-307 (-536)) (-920 (-48)))) (-15 -4312 ((-307 (-536)) (-400 (-920 (-48))))))) (T -849)) -((-4312 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 (-48)))) (-5 *2 (-307 (-536))) (-5 *1 (-849)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-920 (-48))) (-5 *2 (-307 (-536))) (-5 *1 (-849))))) -(-10 -7 (-15 -4312 ((-307 (-536)) (-920 (-48)))) (-15 -4312 ((-307 (-536)) (-400 (-920 (-48)))))) -((-4313 (((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)) 14))) -(((-850 |#1| |#2|) (-10 -7 (-15 -4313 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) (-1183) (-1183)) (T -850)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6))))) -(-10 -7 (-15 -4313 ((-851 |#2|) (-1 |#2| |#1|) (-851 |#1|)))) -((-3725 (($ |#1| |#1|) 8)) (-2949 ((|#1| $ (-749)) 10))) -(((-851 |#1|) (-10 -8 (-15 -3725 ($ |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) (-1183)) (T -851)) -((-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-851 *2)) (-4 *2 (-1183)))) (-3725 (*1 *1 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1183))))) -(-10 -8 (-15 -3725 ($ |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) -((-4313 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14))) -(((-852 |#1| |#2|) (-10 -7 (-15 -4313 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1183) (-1183)) (T -852)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))) -(-10 -7 (-15 -4313 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) -((-3725 (($ |#1| |#1| |#1|) 8)) (-2949 ((|#1| $ (-749)) 10))) -(((-853 |#1|) (-10 -8 (-15 -3725 ($ |#1| |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) (-1183)) (T -853)) -((-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-853 *2)) (-4 *2 (-1183)))) (-3725 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1183))))) -(-10 -8 (-15 -3725 ($ |#1| |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) -((-2947 (((-620 (-1152)) (-1129)) 9))) -(((-854) (-10 -7 (-15 -2947 ((-620 (-1152)) (-1129))))) (T -854)) -((-2947 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-620 (-1152))) (-5 *1 (-854))))) -(-10 -7 (-15 -2947 ((-620 (-1152)) (-1129)))) -((-4313 (((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)) 14))) -(((-855 |#1| |#2|) (-10 -7 (-15 -4313 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) (-1183) (-1183)) (T -855)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6))))) -(-10 -7 (-15 -4313 ((-856 |#2|) (-1 |#2| |#1|) (-856 |#1|)))) -((-2948 (($ |#1| |#1| |#1|) 8)) (-2949 ((|#1| $ (-749)) 10))) -(((-856 |#1|) (-10 -8 (-15 -2948 ($ |#1| |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) (-1183)) (T -856)) -((-2949 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-856 *2)) (-4 *2 (-1183)))) (-2948 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1183))))) -(-10 -8 (-15 -2948 ($ |#1| |#1| |#1|)) (-15 -2949 (|#1| $ (-749)))) -((-2953 (((-1124 (-620 (-536))) (-620 (-536)) (-1124 (-620 (-536)))) 32)) (-2952 (((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536))) 28)) (-2954 (((-1124 (-620 (-536))) (-620 (-536))) 41) (((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536))) 40)) (-2955 (((-1124 (-620 (-536))) (-536)) 42)) (-2950 (((-1124 (-620 (-536))) (-536) (-536)) 22) (((-1124 (-620 (-536))) (-536)) 16) (((-1124 (-620 (-536))) (-536) (-536) (-536)) 12)) (-2951 (((-1124 (-620 (-536))) (-1124 (-620 (-536)))) 26)) (-3337 (((-620 (-536)) (-620 (-536))) 25))) -(((-857) (-10 -7 (-15 -2950 ((-1124 (-620 (-536))) (-536) (-536) (-536))) (-15 -2950 ((-1124 (-620 (-536))) (-536))) (-15 -2950 ((-1124 (-620 (-536))) (-536) (-536))) (-15 -3337 ((-620 (-536)) (-620 (-536)))) (-15 -2951 ((-1124 (-620 (-536))) (-1124 (-620 (-536))))) (-15 -2952 ((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536)))) (-15 -2953 ((-1124 (-620 (-536))) (-620 (-536)) (-1124 (-620 (-536))))) (-15 -2954 ((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536)))) (-15 -2954 ((-1124 (-620 (-536))) (-620 (-536)))) (-15 -2955 ((-1124 (-620 (-536))) (-536))))) (T -857)) -((-2955 (*1 *2 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536)))) (-2954 (*1 *2 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536))))) (-2954 (*1 *2 *3 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536))))) (-2953 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *3 (-620 (-536))) (-5 *1 (-857)))) (-2952 (*1 *2 *3 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536))))) (-2951 (*1 *2 *2) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-857)))) (-2950 (*1 *2 *3 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536)))) (-2950 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536))))) -(-10 -7 (-15 -2950 ((-1124 (-620 (-536))) (-536) (-536) (-536))) (-15 -2950 ((-1124 (-620 (-536))) (-536))) (-15 -2950 ((-1124 (-620 (-536))) (-536) (-536))) (-15 -3337 ((-620 (-536)) (-620 (-536)))) (-15 -2951 ((-1124 (-620 (-536))) (-1124 (-620 (-536))))) (-15 -2952 ((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536)))) (-15 -2953 ((-1124 (-620 (-536))) (-620 (-536)) (-1124 (-620 (-536))))) (-15 -2954 ((-1124 (-620 (-536))) (-620 (-536)) (-620 (-536)))) (-15 -2954 ((-1124 (-620 (-536))) (-620 (-536)))) (-15 -2955 ((-1124 (-620 (-536))) (-536)))) -((-4325 (((-864 (-371)) $) 9 (|has| |#1| (-596 (-864 (-371))))) (((-864 (-536)) $) 8 (|has| |#1| (-596 (-864 (-536))))))) -(((-858 |#1|) (-138) (-1183)) (T -858)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-596 (-864 (-536)))) (-6 (-596 (-864 (-536)))) |%noBranch|) (IF (|has| |t#1| (-596 (-864 (-371)))) (-6 (-596 (-864 (-371)))) |%noBranch|))) -(((-596 (-864 (-371))) |has| |#1| (-596 (-864 (-371)))) ((-596 (-864 (-536))) |has| |#1| (-596 (-864 (-536))))) -((-2893 (((-112) $ $) NIL)) (-3972 (($) 14)) (-2958 (($ (-862 |#1| |#2|) (-862 |#1| |#3|)) 27)) (-2956 (((-862 |#1| |#3|) $) 16)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-2966 (((-112) $) 22)) (-2965 (($) 19)) (-4312 (((-838) $) 30)) (-2957 (((-862 |#1| |#2|) $) 15)) (-3382 (((-112) $ $) 25))) -(((-859 |#1| |#2| |#3|) (-13 (-1072) (-10 -8 (-15 -2966 ((-112) $)) (-15 -2965 ($)) (-15 -3972 ($)) (-15 -2958 ($ (-862 |#1| |#2|) (-862 |#1| |#3|))) (-15 -2957 ((-862 |#1| |#2|) $)) (-15 -2956 ((-862 |#1| |#3|) $)))) (-1072) (-1072) (-644 |#2|)) (T -859)) -((-2966 (*1 *2 *1) (-12 (-4 *4 (-1072)) (-5 *2 (-112)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1072)) (-4 *5 (-644 *4)))) (-2965 (*1 *1) (-12 (-4 *3 (-1072)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1072)) (-4 *4 (-644 *3)))) (-3972 (*1 *1) (-12 (-4 *3 (-1072)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1072)) (-4 *4 (-644 *3)))) (-2958 (*1 *1 *2 *3) (-12 (-5 *2 (-862 *4 *5)) (-5 *3 (-862 *4 *6)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-644 *5)) (-5 *1 (-859 *4 *5 *6)))) (-2957 (*1 *2 *1) (-12 (-4 *4 (-1072)) (-5 *2 (-862 *3 *4)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1072)) (-4 *5 (-644 *4)))) (-2956 (*1 *2 *1) (-12 (-4 *4 (-1072)) (-5 *2 (-862 *3 *5)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1072)) (-4 *5 (-644 *4))))) -(-13 (-1072) (-10 -8 (-15 -2966 ((-112) $)) (-15 -2965 ($)) (-15 -3972 ($)) (-15 -2958 ($ (-862 |#1| |#2|) (-862 |#1| |#3|))) (-15 -2957 ((-862 |#1| |#2|) $)) (-15 -2956 ((-862 |#1| |#3|) $)))) -((-2893 (((-112) $ $) 7)) (-3124 (((-862 |#1| $) $ (-864 |#1|) (-862 |#1| $)) 13)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) -(((-860 |#1|) (-138) (-1072)) (T -860)) -((-3124 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-862 *4 *1)) (-5 *3 (-864 *4)) (-4 *1 (-860 *4)) (-4 *4 (-1072))))) -(-13 (-1072) (-10 -8 (-15 -3124 ((-862 |t#1| $) $ (-864 |t#1|) (-862 |t#1| $))))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2959 (((-112) (-620 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2960 (((-862 |#1| |#2|) |#2| |#3|) 43 (-12 (-3671 (|has| |#2| (-1012 (-1147)))) (-3671 (|has| |#2| (-1023))))) (((-620 (-286 (-920 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1023)) (-3671 (|has| |#2| (-1012 (-1147)))))) (((-620 (-286 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1012 (-1147)))) (((-859 |#1| |#2| (-620 |#2|)) (-620 |#2|) |#3|) 21))) -(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -2959 ((-112) |#2| |#3|)) (-15 -2959 ((-112) (-620 |#2|) |#3|)) (-15 -2960 ((-859 |#1| |#2| (-620 |#2|)) (-620 |#2|) |#3|)) (IF (|has| |#2| (-1012 (-1147))) (-15 -2960 ((-620 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1023)) (-15 -2960 ((-620 (-286 (-920 |#2|))) |#2| |#3|)) (-15 -2960 ((-862 |#1| |#2|) |#2| |#3|))))) (-1072) (-860 |#1|) (-596 (-864 |#1|))) (T -861)) -((-2960 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-5 *2 (-862 *5 *3)) (-5 *1 (-861 *5 *3 *4)) (-3671 (-4 *3 (-1012 (-1147)))) (-3671 (-4 *3 (-1023))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-864 *5))))) (-2960 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-5 *2 (-620 (-286 (-920 *3)))) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-1023)) (-3671 (-4 *3 (-1012 (-1147)))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-864 *5))))) (-2960 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-5 *2 (-620 (-286 *3))) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-1012 (-1147))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-864 *5))))) (-2960 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-4 *6 (-860 *5)) (-5 *2 (-859 *5 *6 (-620 *6))) (-5 *1 (-861 *5 *6 *4)) (-5 *3 (-620 *6)) (-4 *4 (-596 (-864 *5))))) (-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *6)) (-4 *6 (-860 *5)) (-4 *5 (-1072)) (-5 *2 (-112)) (-5 *1 (-861 *5 *6 *4)) (-4 *4 (-596 (-864 *5))))) (-2959 (*1 *2 *3 *4) (-12 (-4 *5 (-1072)) (-5 *2 (-112)) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-860 *5)) (-4 *4 (-596 (-864 *5)))))) -(-10 -7 (-15 -2959 ((-112) |#2| |#3|)) (-15 -2959 ((-112) (-620 |#2|) |#3|)) (-15 -2960 ((-859 |#1| |#2| (-620 |#2|)) (-620 |#2|) |#3|)) (IF (|has| |#2| (-1012 (-1147))) (-15 -2960 ((-620 (-286 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1023)) (-15 -2960 ((-620 (-286 (-920 |#2|))) |#2| |#3|)) (-15 -2960 ((-862 |#1| |#2|) |#2| |#3|))))) -((-2893 (((-112) $ $) NIL)) (-3580 (($ $ $) 39)) (-2987 (((-3 (-112) "failed") $ (-864 |#1|)) 36)) (-3972 (($) 12)) (-3588 (((-1129) $) NIL)) (-2962 (($ (-864 |#1|) |#2| $) 20)) (-3589 (((-1091) $) NIL)) (-2964 (((-3 |#2| "failed") (-864 |#1|) $) 50)) (-2966 (((-112) $) 15)) (-2965 (($) 13)) (-3603 (((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|))) $) 25)) (-3879 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|)))) 23)) (-4312 (((-838) $) 44)) (-2961 (($ (-864 |#1|) |#2| $ |#2|) 48)) (-2963 (($ (-864 |#1|) |#2| $) 47)) (-3382 (((-112) $ $) 41))) -(((-862 |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -2966 ((-112) $)) (-15 -2965 ($)) (-15 -3972 ($)) (-15 -3580 ($ $ $)) (-15 -2964 ((-3 |#2| "failed") (-864 |#1|) $)) (-15 -2963 ($ (-864 |#1|) |#2| $)) (-15 -2962 ($ (-864 |#1|) |#2| $)) (-15 -2961 ($ (-864 |#1|) |#2| $ |#2|)) (-15 -3603 ((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|))) $)) (-15 -3879 ($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|))))) (-15 -2987 ((-3 (-112) "failed") $ (-864 |#1|))))) (-1072) (-1072)) (T -862)) -((-2966 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-2965 (*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3972 (*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3580 (*1 *1 *1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-2964 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-4 *2 (-1072)) (-5 *1 (-862 *4 *2)))) (-2963 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072)))) (-2962 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072)))) (-2961 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 *4)))) (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 *4)))) (-4 *4 (-1072)) (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)))) (-2987 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-112)) (-5 *1 (-862 *4 *5)) (-4 *5 (-1072))))) -(-13 (-1072) (-10 -8 (-15 -2966 ((-112) $)) (-15 -2965 ($)) (-15 -3972 ($)) (-15 -3580 ($ $ $)) (-15 -2964 ((-3 |#2| "failed") (-864 |#1|) $)) (-15 -2963 ($ (-864 |#1|) |#2| $)) (-15 -2962 ($ (-864 |#1|) |#2| $)) (-15 -2961 ($ (-864 |#1|) |#2| $ |#2|)) (-15 -3603 ((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|))) $)) (-15 -3879 ($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 |#2|))))) (-15 -2987 ((-3 (-112) "failed") $ (-864 |#1|))))) -((-4313 (((-862 |#1| |#3|) (-1 |#3| |#2|) (-862 |#1| |#2|)) 22))) -(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-862 |#1| |#3|) (-1 |#3| |#2|) (-862 |#1| |#2|)))) (-1072) (-1072) (-1072)) (T -863)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-862 *5 *6)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-862 *5 *7)) (-5 *1 (-863 *5 *6 *7))))) -(-10 -7 (-15 -4313 ((-862 |#1| |#3|) (-1 |#3| |#2|) (-862 |#1| |#2|)))) -((-2893 (((-112) $ $) NIL)) (-2974 (($ $ (-620 (-51))) 64)) (-3412 (((-620 $) $) 118)) (-2971 (((-2 (|:| |var| (-620 (-1147))) (|:| |pred| (-51))) $) 24)) (-3606 (((-112) $) 30)) (-2972 (($ $ (-620 (-1147)) (-51)) 25)) (-2975 (($ $ (-620 (-51))) 63)) (-3503 (((-3 |#1| #1="failed") $) 61) (((-3 (-1147) #1#) $) 140)) (-3502 ((|#1| $) 58) (((-1147) $) NIL)) (-2969 (($ $) 108)) (-2981 (((-112) $) 47)) (-2976 (((-620 (-51)) $) 45)) (-2973 (($ (-1147) (-112) (-112) (-112)) 65)) (-2967 (((-3 (-620 $) "failed") (-620 $)) 72)) (-2978 (((-112) $) 50)) (-2979 (((-112) $) 49)) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) "failed") $) 36)) (-2984 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3153 (((-3 (-2 (|:| |val| $) (|:| -2488 $)) "failed") $) 83)) (-3150 (((-3 (-620 $) "failed") $) 33)) (-2985 (((-3 (-620 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -2831 (-113)) (|:| |arg| (-620 $))) "failed") $) 95)) (-2983 (((-3 (-620 $) "failed") $) 37)) (-3152 (((-3 (-2 (|:| |val| $) (|:| -2488 (-749))) "failed") $) 40)) (-2982 (((-112) $) 29)) (-3589 (((-1091) $) NIL)) (-2970 (((-112) $) 21)) (-2977 (((-112) $) 46)) (-2968 (((-620 (-51)) $) 111)) (-2980 (((-112) $) 48)) (-4154 (($ (-113) (-620 $)) 92)) (-3677 (((-749) $) 28)) (-3754 (($ $) 62)) (-4325 (($ (-620 $)) 59)) (-4307 (((-112) $) 26)) (-4312 (((-838) $) 53) (($ |#1|) 18) (($ (-1147)) 66)) (-2988 (($ $ (-51)) 110)) (-2986 (($) 91 T CONST)) (-2992 (($) 73 T CONST)) (-3382 (((-112) $ $) 79)) (-4303 (($ $ $) 100)) (-4194 (($ $ $) 104)) (** (($ $ (-749)) 99) (($ $ $) 54)) (* (($ $ $) 105))) -(((-864 |#1|) (-13 (-1072) (-1012 |#1|) (-1012 (-1147)) (-10 -8 (-15 0 ($) -4306) (-15 1 ($) -4306) (-15 -3150 ((-3 (-620 $) "failed") $)) (-15 -3151 ((-3 (-620 $) "failed") $)) (-15 -2985 ((-3 (-620 $) "failed") $ (-113))) (-15 -2985 ((-3 (-2 (|:| -2831 (-113)) (|:| |arg| (-620 $))) "failed") $)) (-15 -3152 ((-3 (-2 (|:| |val| $) (|:| -2488 (-749))) "failed") $)) (-15 -2984 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2983 ((-3 (-620 $) "failed") $)) (-15 -3153 ((-3 (-2 (|:| |val| $) (|:| -2488 $)) "failed") $)) (-15 -4154 ($ (-113) (-620 $))) (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ $)) (-15 -4303 ($ $ $)) (-15 -3677 ((-749) $)) (-15 -4325 ($ (-620 $))) (-15 -3754 ($ $)) (-15 -2982 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -3606 ((-112) $)) (-15 -4307 ((-112) $)) (-15 -2980 ((-112) $)) (-15 -2979 ((-112) $)) (-15 -2978 ((-112) $)) (-15 -2977 ((-112) $)) (-15 -2976 ((-620 (-51)) $)) (-15 -2975 ($ $ (-620 (-51)))) (-15 -2974 ($ $ (-620 (-51)))) (-15 -2973 ($ (-1147) (-112) (-112) (-112))) (-15 -2972 ($ $ (-620 (-1147)) (-51))) (-15 -2971 ((-2 (|:| |var| (-620 (-1147))) (|:| |pred| (-51))) $)) (-15 -2970 ((-112) $)) (-15 -2969 ($ $)) (-15 -2988 ($ $ (-51))) (-15 -2968 ((-620 (-51)) $)) (-15 -3412 ((-620 $) $)) (-15 -2967 ((-3 (-620 $) "failed") (-620 $))))) (-1072)) (T -864)) -((-2986 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-2992 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-3150 (*1 *2 *1) (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3151 (*1 *2 *1) (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2985 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-620 (-864 *4))) (-5 *1 (-864 *4)) (-4 *4 (-1072)))) (-2985 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2831 (-113)) (|:| |arg| (-620 (-864 *3))))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3152 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-864 *3)) (|:| -2488 (-749)))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2984 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-864 *3)) (|:| |den| (-864 *3)))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2983 (*1 *2 *1) (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3153 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-864 *3)) (|:| -2488 (-864 *3)))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-4154 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 (-864 *4))) (-5 *1 (-864 *4)) (-4 *4 (-1072)))) (-4194 (*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-4303 (*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3754 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2978 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2975 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2973 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-112)) (-5 *1 (-864 *4)) (-4 *4 (-1072)))) (-2972 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-51)) (-5 *1 (-864 *4)) (-4 *4 (-1072)))) (-2971 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-620 (-1147))) (|:| |pred| (-51)))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2970 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2969 (*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) (-2988 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) (-2967 (*1 *2 *2) (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(-13 (-1072) (-1012 |#1|) (-1012 (-1147)) (-10 -8 (-15 (-2986) ($) -4306) (-15 (-2992) ($) -4306) (-15 -3150 ((-3 (-620 $) "failed") $)) (-15 -3151 ((-3 (-620 $) "failed") $)) (-15 -2985 ((-3 (-620 $) "failed") $ (-113))) (-15 -2985 ((-3 (-2 (|:| -2831 (-113)) (|:| |arg| (-620 $))) "failed") $)) (-15 -3152 ((-3 (-2 (|:| |val| $) (|:| -2488 (-749))) "failed") $)) (-15 -2984 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2983 ((-3 (-620 $) "failed") $)) (-15 -3153 ((-3 (-2 (|:| |val| $) (|:| -2488 $)) "failed") $)) (-15 -4154 ($ (-113) (-620 $))) (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749))) (-15 ** ($ $ $)) (-15 -4303 ($ $ $)) (-15 -3677 ((-749) $)) (-15 -4325 ($ (-620 $))) (-15 -3754 ($ $)) (-15 -2982 ((-112) $)) (-15 -2981 ((-112) $)) (-15 -3606 ((-112) $)) (-15 -4307 ((-112) $)) (-15 -2980 ((-112) $)) (-15 -2979 ((-112) $)) (-15 -2978 ((-112) $)) (-15 -2977 ((-112) $)) (-15 -2976 ((-620 (-51)) $)) (-15 -2975 ($ $ (-620 (-51)))) (-15 -2974 ($ $ (-620 (-51)))) (-15 -2973 ($ (-1147) (-112) (-112) (-112))) (-15 -2972 ($ $ (-620 (-1147)) (-51))) (-15 -2971 ((-2 (|:| |var| (-620 (-1147))) (|:| |pred| (-51))) $)) (-15 -2970 ((-112) $)) (-15 -2969 ($ $)) (-15 -2988 ($ $ (-51))) (-15 -2968 ((-620 (-51)) $)) (-15 -3412 ((-620 $) $)) (-15 -2967 ((-3 (-620 $) "failed") (-620 $))))) -((-3555 (((-864 |#1|) (-864 |#1|) (-620 (-1147)) (-1 (-112) (-620 |#2|))) 32) (((-864 |#1|) (-864 |#1|) (-620 (-1 (-112) |#2|))) 43) (((-864 |#1|) (-864 |#1|) (-1 (-112) |#2|)) 35)) (-2987 (((-112) (-620 |#2|) (-864 |#1|)) 40) (((-112) |#2| (-864 |#1|)) 36)) (-3880 (((-1 (-112) |#2|) (-864 |#1|)) 16)) (-2989 (((-620 |#2|) (-864 |#1|)) 24)) (-2988 (((-864 |#1|) (-864 |#1|) |#2|) 20))) -(((-865 |#1| |#2|) (-10 -7 (-15 -3555 ((-864 |#1|) (-864 |#1|) (-1 (-112) |#2|))) (-15 -3555 ((-864 |#1|) (-864 |#1|) (-620 (-1 (-112) |#2|)))) (-15 -3555 ((-864 |#1|) (-864 |#1|) (-620 (-1147)) (-1 (-112) (-620 |#2|)))) (-15 -3880 ((-1 (-112) |#2|) (-864 |#1|))) (-15 -2987 ((-112) |#2| (-864 |#1|))) (-15 -2987 ((-112) (-620 |#2|) (-864 |#1|))) (-15 -2988 ((-864 |#1|) (-864 |#1|) |#2|)) (-15 -2989 ((-620 |#2|) (-864 |#1|)))) (-1072) (-1183)) (T -865)) -((-2989 (*1 *2 *3) (-12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-620 *5)) (-5 *1 (-865 *4 *5)) (-4 *5 (-1183)))) (-2988 (*1 *2 *2 *3) (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1183)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-1183)) (-5 *2 (-112)) (-5 *1 (-865 *5 *6)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-5 *2 (-112)) (-5 *1 (-865 *5 *3)) (-4 *3 (-1183)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-865 *4 *5)) (-4 *5 (-1183)))) (-3555 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-864 *5)) (-5 *3 (-620 (-1147))) (-5 *4 (-1 (-112) (-620 *6))) (-4 *5 (-1072)) (-4 *6 (-1183)) (-5 *1 (-865 *5 *6)))) (-3555 (*1 *2 *2 *3) (-12 (-5 *2 (-864 *4)) (-5 *3 (-620 (-1 (-112) *5))) (-4 *4 (-1072)) (-4 *5 (-1183)) (-5 *1 (-865 *4 *5)))) (-3555 (*1 *2 *2 *3) (-12 (-5 *2 (-864 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1072)) (-4 *5 (-1183)) (-5 *1 (-865 *4 *5))))) -(-10 -7 (-15 -3555 ((-864 |#1|) (-864 |#1|) (-1 (-112) |#2|))) (-15 -3555 ((-864 |#1|) (-864 |#1|) (-620 (-1 (-112) |#2|)))) (-15 -3555 ((-864 |#1|) (-864 |#1|) (-620 (-1147)) (-1 (-112) (-620 |#2|)))) (-15 -3880 ((-1 (-112) |#2|) (-864 |#1|))) (-15 -2987 ((-112) |#2| (-864 |#1|))) (-15 -2987 ((-112) (-620 |#2|) (-864 |#1|))) (-15 -2988 ((-864 |#1|) (-864 |#1|) |#2|)) (-15 -2989 ((-620 |#2|) (-864 |#1|)))) -((-4313 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 19))) -(((-866 |#1| |#2|) (-10 -7 (-15 -4313 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)))) (-1072) (-1072)) (T -866)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-864 *6)) (-5 *1 (-866 *5 *6))))) -(-10 -7 (-15 -4313 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)))) -((-2893 (((-112) $ $) NIL)) (-4289 (((-620 |#1|) $) 16)) (-2990 (((-112) $) 38)) (-3503 (((-3 (-650 |#1|) "failed") $) 43)) (-3502 (((-650 |#1|) $) 41)) (-4153 (($ $) 18)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-4188 (((-749) $) 46)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-650 |#1|) $) 17)) (-4312 (((-838) $) 37) (($ (-650 |#1|)) 21) (((-797 |#1|) $) 27) (($ |#1|) 20)) (-2992 (($) 8 T CONST)) (-2991 (((-620 (-650 |#1|)) $) 23)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 11)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 49))) -(((-867 |#1|) (-13 (-825) (-1012 (-650 |#1|)) (-10 -8 (-15 1 ($) -4306) (-15 -4312 ((-797 |#1|) $)) (-15 -4312 ($ |#1|)) (-15 -4155 ((-650 |#1|) $)) (-15 -4188 ((-749) $)) (-15 -2991 ((-620 (-650 |#1|)) $)) (-15 -4153 ($ $)) (-15 -2990 ((-112) $)) (-15 -4289 ((-620 |#1|) $)))) (-825)) (T -867)) -((-2992 (*1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-4312 (*1 *1 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-620 (-650 *3))) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-4153 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825))))) -(-13 (-825) (-1012 (-650 |#1|)) (-10 -8 (-15 (-2992) ($) -4306) (-15 -4312 ((-797 |#1|) $)) (-15 -4312 ($ |#1|)) (-15 -4155 ((-650 |#1|) $)) (-15 -4188 ((-749) $)) (-15 -2991 ((-620 (-650 |#1|)) $)) (-15 -4153 ($ $)) (-15 -2990 ((-112) $)) (-15 -4289 ((-620 |#1|) $)))) -((-3823 ((|#1| |#1| |#1|) 19))) -(((-868 |#1| |#2|) (-10 -7 (-15 -3823 (|#1| |#1| |#1|))) (-1205 |#2|) (-1023)) (T -868)) -((-3823 (*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-868 *2 *3)) (-4 *2 (-1205 *3))))) -(-10 -7 (-15 -3823 (|#1| |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-2996 (((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 14)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2993 (((-1009) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 13)) (-3382 (((-112) $ $) 6))) -(((-869) (-138)) (T -869)) -((-2996 (*1 *2 *3 *4) (-12 (-4 *1 (-869)) (-5 *3 (-1035)) (-5 *4 (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) (-2993 (*1 *2 *3) (-12 (-4 *1 (-869)) (-5 *3 (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) (-5 *2 (-1009))))) -(-13 (-1072) (-10 -7 (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| |explanations| (-1129))) (-1035) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))))) (-15 -2993 ((-1009) (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))))))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2995 ((|#1| |#1| (-749)) 24)) (-2994 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3789 (((-3 (-2 (|:| -3468 |#1|) (|:| -3467 |#1|)) "failed") |#1| (-749) (-749)) 27) (((-620 |#1|) |#1|) 29))) -(((-870 |#1| |#2|) (-10 -7 (-15 -3789 ((-620 |#1|) |#1|)) (-15 -3789 ((-3 (-2 (|:| -3468 |#1|) (|:| -3467 |#1|)) "failed") |#1| (-749) (-749))) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2995 (|#1| |#1| (-749)))) (-1205 |#2|) (-356)) (T -870)) -((-2995 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-5 *1 (-870 *2 *4)) (-4 *2 (-1205 *4)))) (-2994 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-356)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1205 *3)))) (-3789 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-749)) (-4 *5 (-356)) (-5 *2 (-2 (|:| -3468 *3) (|:| -3467 *3))) (-5 *1 (-870 *3 *5)) (-4 *3 (-1205 *5)))) (-3789 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-870 *3 *4)) (-4 *3 (-1205 *4))))) -(-10 -7 (-15 -3789 ((-620 |#1|) |#1|)) (-15 -3789 ((-3 (-2 (|:| -3468 |#1|) (|:| -3467 |#1|)) "failed") |#1| (-749) (-749))) (-15 -2994 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2995 (|#1| |#1| (-749)))) -((-3931 (((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129)) 96) (((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129) (-219)) 91) (((-1009) (-872) (-1035)) 83) (((-1009) (-872)) 84)) (-2996 (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872) (-1035)) 59) (((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872)) 61))) -(((-871) (-10 -7 (-15 -3931 ((-1009) (-872))) (-15 -3931 ((-1009) (-872) (-1035))) (-15 -3931 ((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129) (-219))) (-15 -3931 ((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872) (-1035))))) (T -871)) -((-2996 (*1 *2 *3 *4) (-12 (-5 *3 (-872)) (-5 *4 (-1035)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-871)))) (-2996 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129))))) (-5 *1 (-871)))) (-3931 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-749)) (-5 *6 (-620 (-620 (-307 *3)))) (-5 *7 (-1129)) (-5 *5 (-620 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1009)) (-5 *1 (-871)))) (-3931 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-749)) (-5 *6 (-620 (-620 (-307 *3)))) (-5 *7 (-1129)) (-5 *8 (-219)) (-5 *5 (-620 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1009)) (-5 *1 (-871)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-872)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-871)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1009)) (-5 *1 (-871))))) -(-10 -7 (-15 -3931 ((-1009) (-872))) (-15 -3931 ((-1009) (-872) (-1035))) (-15 -3931 ((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129) (-219))) (-15 -3931 ((-1009) (-371) (-371) (-371) (-371) (-749) (-749) (-620 (-307 (-371))) (-620 (-620 (-307 (-371)))) (-1129))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872))) (-15 -2996 ((-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) (|:| |explanations| (-620 (-1129)))) (-872) (-1035)))) -((-2893 (((-112) $ $) NIL)) (-3502 (((-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))) $) 19)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 21) (($ (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) 18)) (-3382 (((-112) $ $) NIL))) -(((-872) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))) $))))) (T -872)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-872)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) (-5 *1 (-872)))) (-3502 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219)))) (-5 *1 (-872))))) -(-13 (-1072) (-10 -8 (-15 -4312 ($ (-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))))) (-15 -4312 ((-838) $)) (-15 -3502 ((-2 (|:| |pde| (-620 (-307 (-219)))) (|:| |constraints| (-620 (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) (|:| |dFinish| (-667 (-219)))))) (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) (|:| |tol| (-219))) $)))) -((-4165 (($ $ |#2|) NIL) (($ $ (-620 |#2|)) 10) (($ $ |#2| (-749)) 12) (($ $ (-620 |#2|) (-620 (-749))) 15)) (-2997 (($ $ |#2|) 16) (($ $ (-620 |#2|)) 18) (($ $ |#2| (-749)) 19) (($ $ (-620 |#2|) (-620 (-749))) 21))) -(((-873 |#1| |#2|) (-10 -8 (-15 -2997 (|#1| |#1| (-620 |#2|) (-620 (-749)))) (-15 -2997 (|#1| |#1| |#2| (-749))) (-15 -2997 (|#1| |#1| (-620 |#2|))) (-15 -2997 (|#1| |#1| |#2|)) (-15 -4165 (|#1| |#1| (-620 |#2|) (-620 (-749)))) (-15 -4165 (|#1| |#1| |#2| (-749))) (-15 -4165 (|#1| |#1| (-620 |#2|))) (-15 -4165 (|#1| |#1| |#2|))) (-874 |#2|) (-1072)) (T -873)) -NIL -(-10 -8 (-15 -2997 (|#1| |#1| (-620 |#2|) (-620 (-749)))) (-15 -2997 (|#1| |#1| |#2| (-749))) (-15 -2997 (|#1| |#1| (-620 |#2|))) (-15 -2997 (|#1| |#1| |#2|)) (-15 -4165 (|#1| |#1| (-620 |#2|) (-620 (-749)))) (-15 -4165 (|#1| |#1| |#2| (-749))) (-15 -4165 (|#1| |#1| (-620 |#2|))) (-15 -4165 (|#1| |#1| |#2|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4165 (($ $ |#1|) 40) (($ $ (-620 |#1|)) 39) (($ $ |#1| (-749)) 38) (($ $ (-620 |#1|) (-620 (-749))) 37)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ |#1|) 36) (($ $ (-620 |#1|)) 35) (($ $ |#1| (-749)) 34) (($ $ (-620 |#1|) (-620 (-749))) 33)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-874 |#1|) (-138) (-1072)) (T -874)) -((-4165 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1072)))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1072)))) (-4165 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1072)))) (-4165 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 (-749))) (-4 *1 (-874 *4)) (-4 *4 (-1072)))) (-2997 (*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1072)))) (-2997 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1072)))) (-2997 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1072)))) (-2997 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 (-749))) (-4 *1 (-874 *4)) (-4 *4 (-1072))))) -(-13 (-1023) (-10 -8 (-15 -4165 ($ $ |t#1|)) (-15 -4165 ($ $ (-620 |t#1|))) (-15 -4165 ($ $ |t#1| (-749))) (-15 -4165 ($ $ (-620 |t#1|) (-620 (-749)))) (-15 -2997 ($ $ |t#1|)) (-15 -2997 ($ $ (-620 |t#1|))) (-15 -2997 ($ $ |t#1| (-749))) (-15 -2997 ($ $ (-620 |t#1|) (-620 (-749)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) 26)) (-1269 (((-112) $ (-749)) NIL)) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-1352 (($ $ $) NIL (|has| $ (-6 -4349)))) (-1353 (($ $ $) NIL (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) (($ $ #2="left" $) NIL (|has| $ (-6 -4349))) (($ $ #3="right" $) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3467 (($ $) 25)) (-2998 (($ |#1|) 12) (($ $ $) 17)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3468 (($ $) 23)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) 20)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1170 |#1|) $) 9) (((-838) $) 29 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 21 (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-875 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -2998 ($ |#1|)) (-15 -2998 ($ $ $)) (-15 -4312 ((-1170 |#1|) $)))) (-1072)) (T -875)) -((-2998 (*1 *1 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1072)))) (-2998 (*1 *1 *1 *1) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1072)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1072))))) -(-13 (-119 |#1|) (-10 -8 (-15 -2998 ($ |#1|)) (-15 -2998 ($ $ $)) (-15 -4312 ((-1170 |#1|) $)))) -((-2893 (((-112) $ $) NIL)) (-3237 (((-620 $) (-620 $)) 77)) (-3981 (((-536) $) 60)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-4126 (((-749) $) 58)) (-3018 (((-1068 |#1|) $ |#1|) 49)) (-2497 (((-112) $) NIL)) (-3001 (((-112) $) 63)) (-3003 (((-749) $) 61)) (-3014 (((-1068 |#1|) $) 42)) (-3672 (($ $ $) NIL (-3886 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-3673 (($ $ $) NIL (-3886 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-3007 (((-2 (|:| |preimage| (-620 |#1|)) (|:| |image| (-620 |#1|))) $) 37)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 93)) (-3589 (((-1091) $) NIL)) (-3000 (((-1068 |#1|) $) 100 (|has| |#1| (-361)))) (-3002 (((-112) $) 59)) (-4122 ((|#1| $ |#1|) 47)) (-4154 ((|#1| $ |#1|) 94)) (-4302 (((-749) $) 44)) (-3009 (($ (-620 (-620 |#1|))) 85)) (-3004 (((-945) $) 53)) (-3010 (($ (-620 |#1|)) 21)) (-3337 (($ $ $) NIL)) (-2681 (($ $ $) NIL)) (-3006 (($ (-620 (-620 |#1|))) 39)) (-3005 (($ (-620 (-620 |#1|))) 88)) (-2999 (($ (-620 |#1|)) 96)) (-4312 (((-838) $) 84) (($ (-620 (-620 |#1|))) 66) (($ (-620 |#1|)) 67)) (-2992 (($) 16 T CONST)) (-2891 (((-112) $ $) NIL (-3886 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-3382 (((-112) $ $) 45)) (-3012 (((-112) $ $) NIL (-3886 (|has| |#1| (-361)) (|has| |#1| (-825))))) (-3013 (((-112) $ $) 65)) (-4303 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ $ $) 22))) -(((-876 |#1|) (-13 (-878 |#1|) (-10 -8 (-15 -3007 ((-2 (|:| |preimage| (-620 |#1|)) (|:| |image| (-620 |#1|))) $)) (-15 -3006 ($ (-620 (-620 |#1|)))) (-15 -4312 ($ (-620 (-620 |#1|)))) (-15 -4312 ($ (-620 |#1|))) (-15 -3005 ($ (-620 (-620 |#1|)))) (-15 -4302 ((-749) $)) (-15 -3014 ((-1068 |#1|) $)) (-15 -3004 ((-945) $)) (-15 -4126 ((-749) $)) (-15 -3003 ((-749) $)) (-15 -3981 ((-536) $)) (-15 -3002 ((-112) $)) (-15 -3001 ((-112) $)) (-15 -3237 ((-620 $) (-620 $))) (IF (|has| |#1| (-361)) (-15 -3000 ((-1068 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-535)) (-15 -2999 ($ (-620 |#1|))) (IF (|has| |#1| (-361)) (-15 -2999 ($ (-620 |#1|))) |%noBranch|)))) (-1072)) (T -876)) -((-3007 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-620 *3)) (|:| |image| (-620 *3)))) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) (-3005 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-945)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3237 (*1 *2 *2) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-361)) (-4 *3 (-1072)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-876 *3))))) -(-13 (-878 |#1|) (-10 -8 (-15 -3007 ((-2 (|:| |preimage| (-620 |#1|)) (|:| |image| (-620 |#1|))) $)) (-15 -3006 ($ (-620 (-620 |#1|)))) (-15 -4312 ($ (-620 (-620 |#1|)))) (-15 -4312 ($ (-620 |#1|))) (-15 -3005 ($ (-620 (-620 |#1|)))) (-15 -4302 ((-749) $)) (-15 -3014 ((-1068 |#1|) $)) (-15 -3004 ((-945) $)) (-15 -4126 ((-749) $)) (-15 -3003 ((-749) $)) (-15 -3981 ((-536) $)) (-15 -3002 ((-112) $)) (-15 -3001 ((-112) $)) (-15 -3237 ((-620 $) (-620 $))) (IF (|has| |#1| (-361)) (-15 -3000 ((-1068 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-535)) (-15 -2999 ($ (-620 |#1|))) (IF (|has| |#1| (-361)) (-15 -2999 ($ (-620 |#1|))) |%noBranch|)))) -((-3008 ((|#2| (-1113 |#1| |#2|)) 40))) -(((-877 |#1| |#2|) (-10 -7 (-15 -3008 (|#2| (-1113 |#1| |#2|)))) (-893) (-13 (-1023) (-10 -7 (-6 (-4350 "*"))))) (T -877)) -((-3008 (*1 *2 *3) (-12 (-5 *3 (-1113 *4 *2)) (-14 *4 (-893)) (-4 *2 (-13 (-1023) (-10 -7 (-6 (-4350 "*"))))) (-5 *1 (-877 *4 *2))))) -(-10 -7 (-15 -3008 (|#2| (-1113 |#1| |#2|)))) -((-2893 (((-112) $ $) 7)) (-3891 (($) 18 T CONST)) (-3816 (((-3 $ "failed") $) 15)) (-3018 (((-1068 |#1|) $ |#1|) 32)) (-2497 (((-112) $) 17)) (-3672 (($ $ $) 30 (-3886 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-3673 (($ $ $) 29 (-3886 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 24)) (-3589 (((-1091) $) 10)) (-4122 ((|#1| $ |#1|) 34)) (-4154 ((|#1| $ |#1|) 33)) (-3009 (($ (-620 (-620 |#1|))) 35)) (-3010 (($ (-620 |#1|)) 36)) (-3337 (($ $ $) 21)) (-2681 (($ $ $) 20)) (-4312 (((-838) $) 11)) (-2992 (($) 19 T CONST)) (-2891 (((-112) $ $) 27 (-3886 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-2892 (((-112) $ $) 26 (-3886 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 28 (-3886 (|has| |#1| (-825)) (|has| |#1| (-361))))) (-3013 (((-112) $ $) 31)) (-4303 (($ $ $) 23)) (** (($ $ (-893)) 13) (($ $ (-749)) 16) (($ $ (-536)) 22)) (* (($ $ $) 14))) -(((-878 |#1|) (-138) (-1072)) (T -878)) -((-3010 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-878 *3)))) (-3009 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-4 *1 (-878 *3)))) (-4122 (*1 *2 *1 *2) (-12 (-4 *1 (-878 *2)) (-4 *2 (-1072)))) (-4154 (*1 *2 *1 *2) (-12 (-4 *1 (-878 *2)) (-4 *2 (-1072)))) (-3018 (*1 *2 *1 *3) (-12 (-4 *1 (-878 *3)) (-4 *3 (-1072)) (-5 *2 (-1068 *3)))) (-3013 (*1 *2 *1 *1) (-12 (-4 *1 (-878 *3)) (-4 *3 (-1072)) (-5 *2 (-112))))) -(-13 (-465) (-10 -8 (-15 -3010 ($ (-620 |t#1|))) (-15 -3009 ($ (-620 (-620 |t#1|)))) (-15 -4122 (|t#1| $ |t#1|)) (-15 -4154 (|t#1| $ |t#1|)) (-15 -3018 ((-1068 |t#1|) $ |t#1|)) (-15 -3013 ((-112) $ $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-361)) (-6 (-825)) |%noBranch|))) -(((-101) . T) ((-595 (-838)) . T) ((-465) . T) ((-705) . T) ((-825) -3886 (|has| |#1| (-825)) (|has| |#1| (-361))) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3020 (((-620 (-620 (-749))) $) 108)) (-3016 (((-620 (-749)) (-876 |#1|) $) 130)) (-3015 (((-620 (-749)) (-876 |#1|) $) 131)) (-3021 (((-620 (-876 |#1|)) $) 98)) (-3322 (((-876 |#1|) $ (-536)) 103) (((-876 |#1|) $) 104)) (-3019 (($ (-620 (-876 |#1|))) 110)) (-4126 (((-749) $) 105)) (-3017 (((-1068 (-1068 |#1|)) $) 128)) (-3018 (((-1068 |#1|) $ |#1|) 121) (((-1068 (-1068 |#1|)) $ (-1068 |#1|)) 139) (((-1068 (-620 |#1|)) $ (-620 |#1|)) 142)) (-3014 (((-1068 |#1|) $) 101)) (-3591 (((-112) (-876 |#1|) $) 92)) (-3588 (((-1129) $) NIL)) (-3011 (((-1235) $) 95) (((-1235) $ (-536) (-536)) 143)) (-3589 (((-1091) $) NIL)) (-3023 (((-620 (-876 |#1|)) $) 96)) (-4154 (((-876 |#1|) $ (-749)) 99)) (-4302 (((-749) $) 106)) (-4312 (((-838) $) 119) (((-620 (-876 |#1|)) $) 23) (($ (-620 (-876 |#1|))) 109)) (-3022 (((-620 |#1|) $) 107)) (-3382 (((-112) $ $) 136)) (-3012 (((-112) $ $) 134)) (-3013 (((-112) $ $) 133))) -(((-879 |#1|) (-13 (-1072) (-10 -8 (-15 -4312 ((-620 (-876 |#1|)) $)) (-15 -3023 ((-620 (-876 |#1|)) $)) (-15 -4154 ((-876 |#1|) $ (-749))) (-15 -3322 ((-876 |#1|) $ (-536))) (-15 -3322 ((-876 |#1|) $)) (-15 -4126 ((-749) $)) (-15 -4302 ((-749) $)) (-15 -3022 ((-620 |#1|) $)) (-15 -3021 ((-620 (-876 |#1|)) $)) (-15 -3020 ((-620 (-620 (-749))) $)) (-15 -4312 ($ (-620 (-876 |#1|)))) (-15 -3019 ($ (-620 (-876 |#1|)))) (-15 -3018 ((-1068 |#1|) $ |#1|)) (-15 -3017 ((-1068 (-1068 |#1|)) $)) (-15 -3018 ((-1068 (-1068 |#1|)) $ (-1068 |#1|))) (-15 -3018 ((-1068 (-620 |#1|)) $ (-620 |#1|))) (-15 -3591 ((-112) (-876 |#1|) $)) (-15 -3016 ((-620 (-749)) (-876 |#1|) $)) (-15 -3015 ((-620 (-749)) (-876 |#1|) $)) (-15 -3014 ((-1068 |#1|) $)) (-15 -3013 ((-112) $ $)) (-15 -3012 ((-112) $ $)) (-15 -3011 ((-1235) $)) (-15 -3011 ((-1235) $ (-536) (-536))))) (-1072)) (T -879)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-876 *4)) (-5 *1 (-879 *4)) (-4 *4 (-1072)))) (-3322 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-876 *4)) (-5 *1 (-879 *4)) (-4 *4 (-1072)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-876 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-4302 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3021 (*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3020 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-749)))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-620 (-876 *3))) (-4 *3 (-1072)) (-5 *1 (-879 *3)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-620 (-876 *3))) (-4 *3 (-1072)) (-5 *1 (-879 *3)))) (-3018 (*1 *2 *1 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-1068 (-1068 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3018 (*1 *2 *1 *3) (-12 (-4 *4 (-1072)) (-5 *2 (-1068 (-1068 *4))) (-5 *1 (-879 *4)) (-5 *3 (-1068 *4)))) (-3018 (*1 *2 *1 *3) (-12 (-4 *4 (-1072)) (-5 *2 (-1068 (-620 *4))) (-5 *1 (-879 *4)) (-5 *3 (-620 *4)))) (-3591 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-112)) (-5 *1 (-879 *4)))) (-3016 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-620 (-749))) (-5 *1 (-879 *4)))) (-3015 (*1 *2 *3 *1) (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-620 (-749))) (-5 *1 (-879 *4)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3013 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3012 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3011 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) (-3011 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-879 *4)) (-4 *4 (-1072))))) -(-13 (-1072) (-10 -8 (-15 -4312 ((-620 (-876 |#1|)) $)) (-15 -3023 ((-620 (-876 |#1|)) $)) (-15 -4154 ((-876 |#1|) $ (-749))) (-15 -3322 ((-876 |#1|) $ (-536))) (-15 -3322 ((-876 |#1|) $)) (-15 -4126 ((-749) $)) (-15 -4302 ((-749) $)) (-15 -3022 ((-620 |#1|) $)) (-15 -3021 ((-620 (-876 |#1|)) $)) (-15 -3020 ((-620 (-620 (-749))) $)) (-15 -4312 ($ (-620 (-876 |#1|)))) (-15 -3019 ($ (-620 (-876 |#1|)))) (-15 -3018 ((-1068 |#1|) $ |#1|)) (-15 -3017 ((-1068 (-1068 |#1|)) $)) (-15 -3018 ((-1068 (-1068 |#1|)) $ (-1068 |#1|))) (-15 -3018 ((-1068 (-620 |#1|)) $ (-620 |#1|))) (-15 -3591 ((-112) (-876 |#1|) $)) (-15 -3016 ((-620 (-749)) (-876 |#1|) $)) (-15 -3015 ((-620 (-749)) (-876 |#1|) $)) (-15 -3014 ((-1068 |#1|) $)) (-15 -3013 ((-112) $ $)) (-15 -3012 ((-112) $ $)) (-15 -3011 ((-1235) $)) (-15 -3011 ((-1235) $ (-536) (-536))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-4287 (((-112) $) NIL)) (-4284 (((-749)) NIL)) (-3684 (($ $ (-893)) NIL (|has| $ (-361))) (($ $) NIL)) (-1786 (((-1156 (-893) (-749)) (-536)) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3466 (((-749)) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 $ "failed") $) NIL)) (-3502 (($ $) NIL)) (-1906 (($ (-1229 $)) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-3161 (($) NIL)) (-1791 (((-112) $) NIL)) (-1881 (($ $) NIL) (($ $ (-749)) NIL)) (-4081 (((-112) $) NIL)) (-4126 (((-810 (-893)) $) NIL) (((-893) $) NIL)) (-2497 (((-112) $) NIL)) (-2124 (($) NIL (|has| $ (-361)))) (-2122 (((-112) $) NIL (|has| $ (-361)))) (-3462 (($ $ (-893)) NIL (|has| $ (-361))) (($ $) NIL)) (-3798 (((-3 $ "failed") $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2125 (((-1141 $) $ (-893)) NIL (|has| $ (-361))) (((-1141 $) $) NIL)) (-2121 (((-893) $) NIL)) (-1719 (((-1141 $) $) NIL (|has| $ (-361)))) (-1718 (((-3 (-1141 $) "failed") $ $) NIL (|has| $ (-361))) (((-1141 $) $) NIL (|has| $ (-361)))) (-1720 (($ $ (-1141 $)) NIL (|has| $ (-361)))) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL T CONST)) (-2487 (($ (-893)) NIL)) (-4286 (((-112) $) NIL)) (-3589 (((-1091) $) NIL)) (-2496 (($) NIL (|has| $ (-361)))) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL)) (-4087 (((-398 $) $) NIL)) (-4285 (((-893)) NIL) (((-810 (-893))) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-1882 (((-3 (-749) "failed") $ $) NIL) (((-749) $) NIL)) (-4266 (((-133)) NIL)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-4302 (((-893) $) NIL) (((-810 (-893)) $) NIL)) (-3531 (((-1141 $)) NIL)) (-1785 (($) NIL)) (-1721 (($) NIL (|has| $ (-361)))) (-3570 (((-667 $) (-1229 $)) NIL) (((-1229 $) $) NIL)) (-4325 (((-536) $) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL)) (-3030 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3456 (((-749)) NIL)) (-2123 (((-1229 $) (-893)) NIL) (((-1229 $)) NIL)) (-2172 (((-112) $ $) NIL)) (-4288 (((-112) $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-4283 (($ $ (-749)) NIL (|has| $ (-361))) (($ $) NIL (|has| $ (-361)))) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) -(((-880 |#1|) (-13 (-343) (-322 $) (-596 (-536))) (-893)) (T -880)) -NIL -(-13 (-343) (-322 $) (-596 (-536))) -((-3025 (((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|)) 128)) (-3028 ((|#1|) 77)) (-3027 (((-398 (-1141 |#4|)) (-1141 |#4|)) 137)) (-3029 (((-398 (-1141 |#4|)) (-620 |#3|) (-1141 |#4|)) 69)) (-3026 (((-398 (-1141 |#4|)) (-1141 |#4|)) 147)) (-3024 (((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|) |#3|) 92))) -(((-881 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3025 ((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|))) (-15 -3026 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -3027 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -3028 (|#1|)) (-15 -3024 ((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|) |#3|)) (-15 -3029 ((-398 (-1141 |#4|)) (-620 |#3|) (-1141 |#4|)))) (-884) (-771) (-825) (-924 |#1| |#2| |#3|)) (T -881)) -((-3029 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *7)) (-4 *7 (-825)) (-4 *5 (-884)) (-4 *6 (-771)) (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-398 (-1141 *8))) (-5 *1 (-881 *5 *6 *7 *8)) (-5 *4 (-1141 *8)))) (-3024 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-620 (-1141 *7))) (-5 *3 (-1141 *7)) (-4 *7 (-924 *5 *6 *4)) (-4 *5 (-884)) (-4 *6 (-771)) (-4 *4 (-825)) (-5 *1 (-881 *5 *6 *4 *7)))) (-3028 (*1 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-884)) (-5 *1 (-881 *2 *3 *4 *5)) (-4 *5 (-924 *2 *3 *4)))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-881 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-3026 (*1 *2 *3) (-12 (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-881 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) (-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 *7))) (-5 *3 (-1141 *7)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-881 *4 *5 *6 *7))))) -(-10 -7 (-15 -3025 ((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|))) (-15 -3026 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -3027 ((-398 (-1141 |#4|)) (-1141 |#4|))) (-15 -3028 (|#1|)) (-15 -3024 ((-3 (-620 (-1141 |#4|)) "failed") (-620 (-1141 |#4|)) (-1141 |#4|) |#3|)) (-15 -3029 ((-398 (-1141 |#4|)) (-620 |#3|) (-1141 |#4|)))) -((-3025 (((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|)) 36)) (-3028 ((|#1|) 54)) (-3027 (((-398 (-1141 |#2|)) (-1141 |#2|)) 102)) (-3029 (((-398 (-1141 |#2|)) (-1141 |#2|)) 90)) (-3026 (((-398 (-1141 |#2|)) (-1141 |#2|)) 113))) -(((-882 |#1| |#2|) (-10 -7 (-15 -3025 ((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|))) (-15 -3026 ((-398 (-1141 |#2|)) (-1141 |#2|))) (-15 -3027 ((-398 (-1141 |#2|)) (-1141 |#2|))) (-15 -3028 (|#1|)) (-15 -3029 ((-398 (-1141 |#2|)) (-1141 |#2|)))) (-884) (-1205 |#1|)) (T -882)) -((-3029 (*1 *2 *3) (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5)))) (-3028 (*1 *2) (-12 (-4 *2 (-884)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1205 *2)))) (-3027 (*1 *2 *3) (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5)))) (-3026 (*1 *2 *3) (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5)))) (-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 *5))) (-5 *3 (-1141 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-884)) (-5 *1 (-882 *4 *5))))) -(-10 -7 (-15 -3025 ((-3 (-620 (-1141 |#2|)) "failed") (-620 (-1141 |#2|)) (-1141 |#2|))) (-15 -3026 ((-398 (-1141 |#2|)) (-1141 |#2|))) (-15 -3027 ((-398 (-1141 |#2|)) (-1141 |#2|))) (-15 -3028 (|#1|)) (-15 -3029 ((-398 (-1141 |#2|)) (-1141 |#2|)))) -((-3032 (((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $)) 41)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 18)) (-3030 (((-3 $ "failed") $) 35))) -(((-883 |#1|) (-10 -8 (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) (-884)) (T -883)) -NIL -(-10 -8 (-15 -3030 ((-3 |#1| "failed") |#1|)) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 58)) (-4129 (($ $) 49)) (-4324 (((-398 $) $) 50)) (-3032 (((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $)) 55)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-4081 (((-112) $) 51)) (-2497 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3033 (((-398 (-1141 $)) (-1141 $)) 56)) (-3034 (((-398 (-1141 $)) (-1141 $)) 57)) (-4087 (((-398 $) $) 48)) (-3815 (((-3 $ "failed") $ $) 40)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) 54 (|has| $ (-143)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3030 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-884) (-138)) (T -884)) -((-3036 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-884)))) (-3035 (*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1)))) (-3034 (*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1)))) (-3033 (*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1)))) (-3032 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 (-1141 *1))) (-5 *3 (-1141 *1)) (-4 *1 (-884)))) (-3031 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-143)) (-4 *1 (-884)) (-5 *2 (-1229 *1)))) (-3030 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-884))))) -(-13 (-1188) (-10 -8 (-15 -3035 ((-398 (-1141 $)) (-1141 $))) (-15 -3034 ((-398 (-1141 $)) (-1141 $))) (-15 -3033 ((-398 (-1141 $)) (-1141 $))) (-15 -3036 ((-1141 $) (-1141 $) (-1141 $))) (-15 -3032 ((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $))) (IF (|has| $ (-143)) (PROGN (-15 -3031 ((-3 (-1229 $) "failed") (-667 $))) (-15 -3030 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) -((-3038 (((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)) 79)) (-3037 (((-112) (-326 |#2| |#3| |#4| |#5|)) 17)) (-4126 (((-3 (-749) "failed") (-326 |#2| |#3| |#4| |#5|)) 15))) -(((-885 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4126 ((-3 (-749) "failed") (-326 |#2| |#3| |#4| |#5|))) (-15 -3037 ((-112) (-326 |#2| |#3| |#4| |#5|))) (-15 -3038 ((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)))) (-13 (-825) (-543) (-1012 (-536))) (-414 |#1|) (-1205 |#2|) (-1205 (-400 |#3|)) (-335 |#2| |#3| |#4|)) (T -885)) -((-3038 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-2 (|:| -4126 (-749)) (|:| -2470 *8))) (-5 *1 (-885 *4 *5 *6 *7 *8)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-112)) (-5 *1 (-885 *4 *5 *6 *7 *8)))) (-4126 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-749)) (-5 *1 (-885 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -4126 ((-3 (-749) "failed") (-326 |#2| |#3| |#4| |#5|))) (-15 -3037 ((-112) (-326 |#2| |#3| |#4| |#5|))) (-15 -3038 ((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#5|)) "failed") (-326 |#2| |#3| |#4| |#5|)))) -((-3038 (((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#3|)) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|)) 56)) (-3037 (((-112) (-326 (-400 (-536)) |#1| |#2| |#3|)) 16)) (-4126 (((-3 (-749) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|)) 14))) -(((-886 |#1| |#2| |#3|) (-10 -7 (-15 -4126 ((-3 (-749) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|))) (-15 -3037 ((-112) (-326 (-400 (-536)) |#1| |#2| |#3|))) (-15 -3038 ((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#3|)) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|)))) (-1205 (-400 (-536))) (-1205 (-400 |#1|)) (-335 (-400 (-536)) |#1| |#2|)) (T -886)) -((-3038 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 (-400 (-536)) *4 *5)) (-5 *2 (-2 (|:| -4126 (-749)) (|:| -2470 *6))) (-5 *1 (-886 *4 *5 *6)))) (-3037 (*1 *2 *3) (-12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 (-400 (-536)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-886 *4 *5 *6)))) (-4126 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 (-400 (-536)) *4 *5)) (-5 *2 (-749)) (-5 *1 (-886 *4 *5 *6))))) -(-10 -7 (-15 -4126 ((-3 (-749) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|))) (-15 -3037 ((-112) (-326 (-400 (-536)) |#1| |#2| |#3|))) (-15 -3038 ((-3 (-2 (|:| -4126 (-749)) (|:| -2470 |#3|)) "failed") (-326 (-400 (-536)) |#1| |#2| |#3|)))) -((-3043 ((|#2| |#2|) 26)) (-3041 (((-536) (-620 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))))) 15)) (-3039 (((-893) (-536)) 35)) (-3042 (((-536) |#2|) 42)) (-3040 (((-536) |#2|) 21) (((-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))) |#1|) 20))) -(((-887 |#1| |#2|) (-10 -7 (-15 -3039 ((-893) (-536))) (-15 -3040 ((-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))) |#1|)) (-15 -3040 ((-536) |#2|)) (-15 -3041 ((-536) (-620 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536)))))) (-15 -3042 ((-536) |#2|)) (-15 -3043 (|#2| |#2|))) (-1205 (-400 (-536))) (-1205 (-400 |#1|))) (T -887)) -((-3043 (*1 *2 *2) (-12 (-4 *3 (-1205 (-400 (-536)))) (-5 *1 (-887 *3 *2)) (-4 *2 (-1205 (-400 *3))))) (-3042 (*1 *2 *3) (-12 (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1205 (-400 *4))))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))))) (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1205 (-400 *4))))) (-3040 (*1 *2 *3) (-12 (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1205 (-400 *4))))) (-3040 (*1 *2 *3) (-12 (-4 *3 (-1205 (-400 (-536)))) (-5 *2 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536)))) (-5 *1 (-887 *3 *4)) (-4 *4 (-1205 (-400 *3))))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-536)) (-4 *4 (-1205 (-400 *3))) (-5 *2 (-893)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1205 (-400 *4)))))) -(-10 -7 (-15 -3039 ((-893) (-536))) (-15 -3040 ((-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))) |#1|)) (-15 -3040 ((-536) |#2|)) (-15 -3041 ((-536) (-620 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536)))))) (-15 -3042 ((-536) |#2|)) (-15 -3043 (|#2| |#2|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 ((|#1| $) 81)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-2889 (($ $ $) NIL)) (-3816 (((-3 $ "failed") $) 75)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3051 (($ |#1| (-398 |#1|)) 73)) (-3045 (((-1141 |#1|) |#1| |#1|) 41)) (-3044 (($ $) 49)) (-2497 (((-112) $) NIL)) (-3046 (((-536) $) 78)) (-3047 (($ $ (-536)) 80)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3048 ((|#1| $) 77)) (-3049 (((-398 |#1|) $) 76)) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) 74)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-3050 (($ $) 39)) (-4312 (((-838) $) 99) (($ (-536)) 54) (($ $) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 31) (((-400 |#1|) $) 59) (($ (-400 (-398 |#1|))) 67)) (-3456 (((-749)) 52)) (-2172 (((-112) $ $) NIL)) (-2986 (($) 23 T CONST)) (-2992 (($) 12 T CONST)) (-3382 (((-112) $ $) 68)) (-4303 (($ $ $) NIL)) (-4192 (($ $) 88) (($ $ $) NIL)) (-4194 (($ $ $) 38)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 90) (($ $ $) 37) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) -(((-888 |#1|) (-13 (-356) (-38 |#1|) (-10 -8 (-15 -4312 ((-400 |#1|) $)) (-15 -4312 ($ (-400 (-398 |#1|)))) (-15 -3050 ($ $)) (-15 -3049 ((-398 |#1|) $)) (-15 -3048 (|#1| $)) (-15 -3047 ($ $ (-536))) (-15 -3046 ((-536) $)) (-15 -3045 ((-1141 |#1|) |#1| |#1|)) (-15 -3044 ($ $)) (-15 -3051 ($ |#1| (-398 |#1|))) (-15 -3459 (|#1| $)))) (-300)) (T -888)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-400 (-398 *3))) (-4 *3 (-300)) (-5 *1 (-888 *3)))) (-3050 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-3048 (*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) (-3047 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-3045 (*1 *2 *3 *3) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) (-3044 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) (-3051 (*1 *1 *2 *3) (-12 (-5 *3 (-398 *2)) (-4 *2 (-300)) (-5 *1 (-888 *2)))) (-3459 (*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) -(-13 (-356) (-38 |#1|) (-10 -8 (-15 -4312 ((-400 |#1|) $)) (-15 -4312 ($ (-400 (-398 |#1|)))) (-15 -3050 ($ $)) (-15 -3049 ((-398 |#1|) $)) (-15 -3048 (|#1| $)) (-15 -3047 ($ $ (-536))) (-15 -3046 ((-536) $)) (-15 -3045 ((-1141 |#1|) |#1| |#1|)) (-15 -3044 ($ $)) (-15 -3051 ($ |#1| (-398 |#1|))) (-15 -3459 (|#1| $)))) -((-3051 (((-51) (-920 |#1|) (-398 (-920 |#1|)) (-1147)) 17) (((-51) (-400 (-920 |#1|)) (-1147)) 18))) -(((-889 |#1|) (-10 -7 (-15 -3051 ((-51) (-400 (-920 |#1|)) (-1147))) (-15 -3051 ((-51) (-920 |#1|) (-398 (-920 |#1|)) (-1147)))) (-13 (-300) (-145))) (T -889)) -((-3051 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-398 (-920 *6))) (-5 *5 (-1147)) (-5 *3 (-920 *6)) (-4 *6 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-889 *6)))) (-3051 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-889 *5))))) -(-10 -7 (-15 -3051 ((-51) (-400 (-920 |#1|)) (-1147))) (-15 -3051 ((-51) (-920 |#1|) (-398 (-920 |#1|)) (-1147)))) -((-3052 ((|#4| (-620 |#4|)) 121) (((-1141 |#4|) (-1141 |#4|) (-1141 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3490 (((-1141 |#4|) (-620 (-1141 |#4|))) 114) (((-1141 |#4|) (-1141 |#4|) (-1141 |#4|)) 50) ((|#4| (-620 |#4|)) 55) ((|#4| |#4| |#4|) 84))) -(((-890 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3490 (|#4| |#4| |#4|)) (-15 -3490 (|#4| (-620 |#4|))) (-15 -3490 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3490 ((-1141 |#4|) (-620 (-1141 |#4|)))) (-15 -3052 (|#4| |#4| |#4|)) (-15 -3052 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3052 (|#4| (-620 |#4|)))) (-771) (-825) (-300) (-924 |#3| |#1| |#2|)) (T -890)) -((-3052 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *6 *4 *5)) (-5 *1 (-890 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)))) (-3052 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) (-3052 (*1 *2 *2 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *2)) (-4 *2 (-924 *5 *3 *4)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-620 (-1141 *7))) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-1141 *7)) (-5 *1 (-890 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) (-3490 (*1 *2 *2 *2) (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *6 *4 *5)) (-5 *1 (-890 *4 *5 *6 *2)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)))) (-3490 (*1 *2 *2 *2) (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *2)) (-4 *2 (-924 *5 *3 *4))))) -(-10 -7 (-15 -3490 (|#4| |#4| |#4|)) (-15 -3490 (|#4| (-620 |#4|))) (-15 -3490 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3490 ((-1141 |#4|) (-620 (-1141 |#4|)))) (-15 -3052 (|#4| |#4| |#4|)) (-15 -3052 ((-1141 |#4|) (-1141 |#4|) (-1141 |#4|))) (-15 -3052 (|#4| (-620 |#4|)))) -((-3065 (((-879 (-536)) (-945)) 23) (((-879 (-536)) (-620 (-536))) 20)) (-3053 (((-879 (-536)) (-620 (-536))) 48) (((-879 (-536)) (-893)) 49)) (-3064 (((-879 (-536))) 24)) (-3062 (((-879 (-536))) 38) (((-879 (-536)) (-620 (-536))) 37)) (-3061 (((-879 (-536))) 36) (((-879 (-536)) (-620 (-536))) 35)) (-3060 (((-879 (-536))) 34) (((-879 (-536)) (-620 (-536))) 33)) (-3059 (((-879 (-536))) 32) (((-879 (-536)) (-620 (-536))) 31)) (-3058 (((-879 (-536))) 30) (((-879 (-536)) (-620 (-536))) 29)) (-3063 (((-879 (-536))) 40) (((-879 (-536)) (-620 (-536))) 39)) (-3057 (((-879 (-536)) (-620 (-536))) 52) (((-879 (-536)) (-893)) 53)) (-3056 (((-879 (-536)) (-620 (-536))) 50) (((-879 (-536)) (-893)) 51)) (-3054 (((-879 (-536)) (-620 (-536))) 46) (((-879 (-536)) (-893)) 47)) (-3055 (((-879 (-536)) (-620 (-893))) 43))) -(((-891) (-10 -7 (-15 -3053 ((-879 (-536)) (-893))) (-15 -3053 ((-879 (-536)) (-620 (-536)))) (-15 -3054 ((-879 (-536)) (-893))) (-15 -3054 ((-879 (-536)) (-620 (-536)))) (-15 -3055 ((-879 (-536)) (-620 (-893)))) (-15 -3056 ((-879 (-536)) (-893))) (-15 -3056 ((-879 (-536)) (-620 (-536)))) (-15 -3057 ((-879 (-536)) (-893))) (-15 -3057 ((-879 (-536)) (-620 (-536)))) (-15 -3058 ((-879 (-536)) (-620 (-536)))) (-15 -3058 ((-879 (-536)))) (-15 -3059 ((-879 (-536)) (-620 (-536)))) (-15 -3059 ((-879 (-536)))) (-15 -3060 ((-879 (-536)) (-620 (-536)))) (-15 -3060 ((-879 (-536)))) (-15 -3061 ((-879 (-536)) (-620 (-536)))) (-15 -3061 ((-879 (-536)))) (-15 -3062 ((-879 (-536)) (-620 (-536)))) (-15 -3062 ((-879 (-536)))) (-15 -3063 ((-879 (-536)) (-620 (-536)))) (-15 -3063 ((-879 (-536)))) (-15 -3064 ((-879 (-536)))) (-15 -3065 ((-879 (-536)) (-620 (-536)))) (-15 -3065 ((-879 (-536)) (-945))))) (T -891)) -((-3065 (*1 *2 *3) (-12 (-5 *3 (-945)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3064 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3063 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3062 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3061 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3060 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3059 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3058 (*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-620 (-893))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(-10 -7 (-15 -3053 ((-879 (-536)) (-893))) (-15 -3053 ((-879 (-536)) (-620 (-536)))) (-15 -3054 ((-879 (-536)) (-893))) (-15 -3054 ((-879 (-536)) (-620 (-536)))) (-15 -3055 ((-879 (-536)) (-620 (-893)))) (-15 -3056 ((-879 (-536)) (-893))) (-15 -3056 ((-879 (-536)) (-620 (-536)))) (-15 -3057 ((-879 (-536)) (-893))) (-15 -3057 ((-879 (-536)) (-620 (-536)))) (-15 -3058 ((-879 (-536)) (-620 (-536)))) (-15 -3058 ((-879 (-536)))) (-15 -3059 ((-879 (-536)) (-620 (-536)))) (-15 -3059 ((-879 (-536)))) (-15 -3060 ((-879 (-536)) (-620 (-536)))) (-15 -3060 ((-879 (-536)))) (-15 -3061 ((-879 (-536)) (-620 (-536)))) (-15 -3061 ((-879 (-536)))) (-15 -3062 ((-879 (-536)) (-620 (-536)))) (-15 -3062 ((-879 (-536)))) (-15 -3063 ((-879 (-536)) (-620 (-536)))) (-15 -3063 ((-879 (-536)))) (-15 -3064 ((-879 (-536)))) (-15 -3065 ((-879 (-536)) (-620 (-536)))) (-15 -3065 ((-879 (-536)) (-945)))) -((-3067 (((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147))) 12)) (-3066 (((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147))) 11))) -(((-892 |#1|) (-10 -7 (-15 -3066 ((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3067 ((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147))))) (-444)) (T -892)) -((-3067 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-920 *4))) (-5 *3 (-620 (-1147))) (-4 *4 (-444)) (-5 *1 (-892 *4)))) (-3066 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-920 *4))) (-5 *3 (-620 (-1147))) (-4 *4 (-444)) (-5 *1 (-892 *4))))) -(-10 -7 (-15 -3066 ((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3067 ((-620 (-920 |#1|)) (-620 (-920 |#1|)) (-620 (-1147))))) -((-2893 (((-112) $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3490 (($ $ $) NIL)) (-4312 (((-838) $) NIL)) (-2992 (($) NIL T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ $ $) NIL))) -(((-893) (-13 (-772) (-705) (-10 -8 (-15 -3490 ($ $ $)) (-6 (-4350 "*"))))) (T -893)) -((-3490 (*1 *1 *1 *1) (-5 *1 (-893)))) -(-13 (-772) (-705) (-10 -8 (-15 -3490 ($ $ $)) (-6 (-4350 "*")))) -((-4312 (((-307 |#1|) (-469)) 16))) -(((-894 |#1|) (-10 -7 (-15 -4312 ((-307 |#1|) (-469)))) (-13 (-825) (-543))) (T -894)) -((-4312 (*1 *2 *3) (-12 (-5 *3 (-469)) (-5 *2 (-307 *4)) (-5 *1 (-894 *4)) (-4 *4 (-13 (-825) (-543)))))) -(-10 -7 (-15 -4312 ((-307 |#1|) (-469)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-2497 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-895) (-138)) (T -895)) -((-3069 (*1 *2 *3) (-12 (-4 *1 (-895)) (-5 *2 (-2 (|:| -4308 (-620 *1)) (|:| -2496 *1))) (-5 *3 (-620 *1)))) (-3068 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-895))))) -(-13 (-444) (-10 -8 (-15 -3069 ((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $))) (-15 -3068 ((-3 (-620 $) "failed") (-620 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-3436 (((-1141 |#2|) (-620 |#2|) (-620 |#2|)) 17) (((-1198 |#1| |#2|) (-1198 |#1| |#2|) (-620 |#2|) (-620 |#2|)) 13))) -(((-896 |#1| |#2|) (-10 -7 (-15 -3436 ((-1198 |#1| |#2|) (-1198 |#1| |#2|) (-620 |#2|) (-620 |#2|))) (-15 -3436 ((-1141 |#2|) (-620 |#2|) (-620 |#2|)))) (-1147) (-356)) (T -896)) -((-3436 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *5)) (-4 *5 (-356)) (-5 *2 (-1141 *5)) (-5 *1 (-896 *4 *5)) (-14 *4 (-1147)))) (-3436 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1198 *4 *5)) (-5 *3 (-620 *5)) (-14 *4 (-1147)) (-4 *5 (-356)) (-5 *1 (-896 *4 *5))))) -(-10 -7 (-15 -3436 ((-1198 |#1| |#2|) (-1198 |#1| |#2|) (-620 |#2|) (-620 |#2|))) (-15 -3436 ((-1141 |#2|) (-620 |#2|) (-620 |#2|)))) -((-3070 ((|#2| (-620 |#1|) (-620 |#1|)) 24))) -(((-897 |#1| |#2|) (-10 -7 (-15 -3070 (|#2| (-620 |#1|) (-620 |#1|)))) (-356) (-1205 |#1|)) (T -897)) -((-3070 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-356)) (-4 *2 (-1205 *4)) (-5 *1 (-897 *4 *2))))) -(-10 -7 (-15 -3070 (|#2| (-620 |#1|) (-620 |#1|)))) -((-3072 (((-536) (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129)) 139)) (-3091 ((|#4| |#4|) 155)) (-3076 (((-620 (-400 (-920 |#1|))) (-620 (-1147))) 118)) (-3090 (((-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-620 (-620 |#4|)) (-749) (-749) (-536)) 75)) (-3080 (((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-620 |#4|)) 59)) (-3089 (((-667 |#4|) (-667 |#4|) (-620 |#4|)) 55)) (-3073 (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129)) 151)) (-3071 (((-536) (-667 |#4|) (-893) (-1129)) 132) (((-536) (-667 |#4|) (-620 (-1147)) (-893) (-1129)) 131) (((-536) (-667 |#4|) (-620 |#4|) (-893) (-1129)) 130) (((-536) (-667 |#4|) (-1129)) 127) (((-536) (-667 |#4|) (-620 (-1147)) (-1129)) 126) (((-536) (-667 |#4|) (-620 |#4|) (-1129)) 125) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-893)) 124) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147)) (-893)) 123) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|) (-893)) 122) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|)) 120) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147))) 119) (((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|)) 115)) (-3077 ((|#4| (-920 |#1|)) 68)) (-3087 (((-112) (-620 |#4|) (-620 (-620 |#4|))) 152)) (-3086 (((-620 (-620 (-536))) (-536) (-536)) 129)) (-3085 (((-620 (-620 |#4|)) (-620 (-620 |#4|))) 88)) (-3084 (((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|))))) 86)) (-3083 (((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|))))) 85)) (-3092 (((-112) (-620 (-920 |#1|))) 17) (((-112) (-620 |#4|)) 13)) (-3078 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-620 |#4|)) (|:| |n0| (-620 |#4|))) (-620 |#4|) (-620 |#4|)) 71)) (-3082 (((-620 |#4|) |#4|) 49)) (-3075 (((-620 (-400 (-920 |#1|))) (-620 |#4|)) 114) (((-667 (-400 (-920 |#1|))) (-667 |#4|)) 56) (((-400 (-920 |#1|)) |#4|) 111)) (-3074 (((-2 (|:| |rgl| (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))))) (|:| |rgsz| (-536))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-749) (-1129) (-536)) 93)) (-3079 (((-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))) (-667 |#4|) (-749)) 84)) (-3088 (((-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) (-667 |#4|) (-749)) 101)) (-3081 (((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| -1695 (-667 (-400 (-920 |#1|)))) (|:| |vec| (-620 (-400 (-920 |#1|)))) (|:| -3439 (-749)) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) 48))) -(((-898 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147)))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|) (-893))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147)) (-893))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-893))) (-15 -3071 ((-536) (-667 |#4|) (-620 |#4|) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 (-1147)) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 |#4|) (-893) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 (-1147)) (-893) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-893) (-1129))) (-15 -3072 ((-536) (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129))) (-15 -3073 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129))) (-15 -3074 ((-2 (|:| |rgl| (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))))) (|:| |rgsz| (-536))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-749) (-1129) (-536))) (-15 -3075 ((-400 (-920 |#1|)) |#4|)) (-15 -3075 ((-667 (-400 (-920 |#1|))) (-667 |#4|))) (-15 -3075 ((-620 (-400 (-920 |#1|))) (-620 |#4|))) (-15 -3076 ((-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3077 (|#4| (-920 |#1|))) (-15 -3078 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-620 |#4|)) (|:| |n0| (-620 |#4|))) (-620 |#4|) (-620 |#4|))) (-15 -3079 ((-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))) (-667 |#4|) (-749))) (-15 -3080 ((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-620 |#4|))) (-15 -3081 ((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| -1695 (-667 (-400 (-920 |#1|)))) (|:| |vec| (-620 (-400 (-920 |#1|)))) (|:| -3439 (-749)) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (-15 -3082 ((-620 |#4|) |#4|)) (-15 -3083 ((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))))) (-15 -3084 ((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))))) (-15 -3085 ((-620 (-620 |#4|)) (-620 (-620 |#4|)))) (-15 -3086 ((-620 (-620 (-536))) (-536) (-536))) (-15 -3087 ((-112) (-620 |#4|) (-620 (-620 |#4|)))) (-15 -3088 ((-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) (-667 |#4|) (-749))) (-15 -3089 ((-667 |#4|) (-667 |#4|) (-620 |#4|))) (-15 -3090 ((-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-620 (-620 |#4|)) (-749) (-749) (-536))) (-15 -3091 (|#4| |#4|)) (-15 -3092 ((-112) (-620 |#4|))) (-15 -3092 ((-112) (-620 (-920 |#1|))))) (-13 (-300) (-145)) (-13 (-825) (-596 (-1147))) (-771) (-924 |#1| |#3| |#2|)) (T -898)) -((-3092 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3091 (*1 *2 *2) (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1147)))) (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *2)) (-4 *2 (-924 *3 *5 *4)))) (-3090 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) (-5 *4 (-667 *12)) (-5 *5 (-620 (-400 (-920 *9)))) (-5 *6 (-620 (-620 *12))) (-5 *7 (-749)) (-5 *8 (-536)) (-4 *9 (-13 (-300) (-145))) (-4 *12 (-924 *9 *11 *10)) (-4 *10 (-13 (-825) (-596 (-1147)))) (-4 *11 (-771)) (-5 *2 (-2 (|:| |eqzro| (-620 *12)) (|:| |neqzro| (-620 *12)) (|:| |wcond| (-620 (-920 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *9)))) (|:| -2123 (-620 (-1229 (-400 (-920 *9))))))))) (-5 *1 (-898 *9 *10 *11 *12)))) (-3089 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *7)) (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3088 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-749)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-620 (-2 (|:| |det| *8) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (-5 *1 (-898 *5 *6 *7 *8)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-620 *8))) (-5 *3 (-620 *8)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *7 *8)))) (-3086 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 (-620 (-536)))) (-5 *1 (-898 *4 *5 *6 *7)) (-5 *3 (-536)) (-4 *7 (-924 *4 *6 *5)))) (-3085 (*1 *2 *2) (-12 (-5 *2 (-620 (-620 *6))) (-4 *6 (-924 *3 *5 *4)) (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1147)))) (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *6)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| *7) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 *7))))) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-749)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| *7) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 *7))))) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-749)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3082 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 *3)) (-5 *1 (-898 *4 *5 *6 *3)) (-4 *3 (-924 *4 *6 *5)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1695 (-667 (-400 (-920 *4)))) (|:| |vec| (-620 (-400 (-920 *4)))) (|:| -3439 (-749)) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) (|:| -2123 (-620 (-1229 (-400 (-920 *4))))))) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5)))) (-3080 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) (|:| -2123 (-620 (-1229 (-400 (-920 *4))))))) (-5 *3 (-620 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-924 *4 *6 *5)) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *1 (-898 *4 *5 *6 *7)))) (-3079 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| *8) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 *8))))) (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-749)))) (-3078 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-4 *7 (-924 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-620 *7)) (|:| |n0| (-620 *7)))) (-5 *1 (-898 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-920 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-924 *4 *6 *5)) (-5 *1 (-898 *4 *5 *6 *2)) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7)))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-667 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-667 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7)))) (-3075 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-400 (-920 *4))) (-5 *1 (-898 *4 *5 *6 *3)) (-4 *3 (-924 *4 *6 *5)))) (-3074 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-667 *11)) (-5 *4 (-620 (-400 (-920 *8)))) (-5 *5 (-749)) (-5 *6 (-1129)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-924 *8 *10 *9)) (-4 *9 (-13 (-825) (-596 (-1147)))) (-4 *10 (-771)) (-5 *2 (-2 (|:| |rgl| (-620 (-2 (|:| |eqzro| (-620 *11)) (|:| |neqzro| (-620 *11)) (|:| |wcond| (-620 (-920 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *8)))) (|:| -2123 (-620 (-1229 (-400 (-920 *8)))))))))) (|:| |rgsz| (-536)))) (-5 *1 (-898 *8 *9 *10 *11)) (-5 *7 (-536)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *7)) (|:| |neqzro| (-620 *7)) (|:| |wcond| (-620 (-920 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) (|:| -2123 (-620 (-1229 (-400 (-920 *4)))))))))) (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5)))) (-3072 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) (-5 *4 (-1129)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-924 *5 *7 *6)) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *5 *6 *7 *8)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-893)) (-5 *5 (-1129)) (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *6 *7 *8 *9)))) (-3071 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-667 *10)) (-5 *4 (-620 (-1147))) (-5 *5 (-893)) (-5 *6 (-1129)) (-4 *10 (-924 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-825) (-596 (-1147)))) (-4 *9 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *7 *8 *9 *10)))) (-3071 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-667 *10)) (-5 *4 (-620 *10)) (-5 *5 (-893)) (-5 *6 (-1129)) (-4 *10 (-924 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) (-4 *8 (-13 (-825) (-596 (-1147)))) (-4 *9 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *7 *8 *9 *10)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-1129)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *5 *6 *7 *8)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 (-1147))) (-5 *5 (-1129)) (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *6 *7 *8 *9)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 *9)) (-5 *5 (-1129)) (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *6 *7 *8 *9)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-893)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 (-1147))) (-5 *5 (-893)) (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *9)) (|:| |neqzro| (-620 *9)) (|:| |wcond| (-620 (-920 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *6)))) (|:| -2123 (-620 (-1229 (-400 (-920 *6)))))))))) (-5 *1 (-898 *6 *7 *8 *9)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-667 *9)) (-5 *5 (-893)) (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *9)) (|:| |neqzro| (-620 *9)) (|:| |wcond| (-620 (-920 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *6)))) (|:| -2123 (-620 (-1229 (-400 (-920 *6)))))))))) (-5 *1 (-898 *6 *7 *8 *9)) (-5 *4 (-620 *9)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-667 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *7)) (|:| |neqzro| (-620 *7)) (|:| |wcond| (-620 (-920 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) (|:| -2123 (-620 (-1229 (-400 (-920 *4)))))))))) (-5 *1 (-898 *4 *5 *6 *7)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-5 *4 (-620 (-1147))) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-667 *8)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-620 (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) (|:| |wcond| (-620 (-920 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-620 *8))))) -(-10 -7 (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147)))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 |#4|) (-893))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-620 (-1147)) (-893))) (-15 -3071 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-667 |#4|) (-893))) (-15 -3071 ((-536) (-667 |#4|) (-620 |#4|) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 (-1147)) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 |#4|) (-893) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-620 (-1147)) (-893) (-1129))) (-15 -3071 ((-536) (-667 |#4|) (-893) (-1129))) (-15 -3072 ((-536) (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129))) (-15 -3073 ((-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|))))))))) (-1129))) (-15 -3074 ((-2 (|:| |rgl| (-620 (-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))))) (|:| |rgsz| (-536))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-749) (-1129) (-536))) (-15 -3075 ((-400 (-920 |#1|)) |#4|)) (-15 -3075 ((-667 (-400 (-920 |#1|))) (-667 |#4|))) (-15 -3075 ((-620 (-400 (-920 |#1|))) (-620 |#4|))) (-15 -3076 ((-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3077 (|#4| (-920 |#1|))) (-15 -3078 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-620 |#4|)) (|:| |n0| (-620 |#4|))) (-620 |#4|) (-620 |#4|))) (-15 -3079 ((-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))) (-667 |#4|) (-749))) (-15 -3080 ((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-620 |#4|))) (-15 -3081 ((-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))) (-2 (|:| -1695 (-667 (-400 (-920 |#1|)))) (|:| |vec| (-620 (-400 (-920 |#1|)))) (|:| -3439 (-749)) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (-15 -3082 ((-620 |#4|) |#4|)) (-15 -3083 ((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))))) (-15 -3084 ((-749) (-620 (-2 (|:| -3439 (-749)) (|:| |eqns| (-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))))) (|:| |fgb| (-620 |#4|)))))) (-15 -3085 ((-620 (-620 |#4|)) (-620 (-620 |#4|)))) (-15 -3086 ((-620 (-620 (-536))) (-536) (-536))) (-15 -3087 ((-112) (-620 |#4|) (-620 (-620 |#4|)))) (-15 -3088 ((-620 (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) (-667 |#4|) (-749))) (-15 -3089 ((-667 |#4|) (-667 |#4|) (-620 |#4|))) (-15 -3090 ((-2 (|:| |eqzro| (-620 |#4|)) (|:| |neqzro| (-620 |#4|)) (|:| |wcond| (-620 (-920 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1229 (-400 (-920 |#1|)))) (|:| -2123 (-620 (-1229 (-400 (-920 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536)))) (-667 |#4|) (-620 (-400 (-920 |#1|))) (-620 (-620 |#4|)) (-749) (-749) (-536))) (-15 -3091 (|#4| |#4|)) (-15 -3092 ((-112) (-620 |#4|))) (-15 -3092 ((-112) (-620 (-920 |#1|))))) -((-4229 (($ $ (-1060 (-219))) 70) (($ $ (-1060 (-219)) (-1060 (-219))) 71)) (-3224 (((-1060 (-219)) $) 44)) (-3225 (((-1060 (-219)) $) 43)) (-3116 (((-1060 (-219)) $) 45)) (-3097 (((-536) (-536)) 37)) (-3101 (((-536) (-536)) 33)) (-3099 (((-536) (-536)) 35)) (-3095 (((-112) (-112)) 39)) (-3098 (((-536)) 36)) (-3464 (($ $ (-1060 (-219))) 74) (($ $) 75)) (-3118 (($ (-1 (-917 (-219)) (-219)) (-1060 (-219))) 84) (($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 85)) (-3104 (($ (-1 (-219) (-219)) (-1060 (-219))) 92) (($ (-1 (-219) (-219))) 95)) (-3117 (($ (-1 (-219) (-219)) (-1060 (-219))) 79) (($ (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219))) 80) (($ (-620 (-1 (-219) (-219))) (-1060 (-219))) 87) (($ (-620 (-1 (-219) (-219))) (-1060 (-219)) (-1060 (-219))) 88) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 82) (($ $ (-1060 (-219))) 76)) (-3103 (((-112) $) 40)) (-3094 (((-536)) 41)) (-3102 (((-536)) 32)) (-3100 (((-536)) 34)) (-3226 (((-620 (-620 (-917 (-219)))) $) 23)) (-3093 (((-112) (-112)) 42)) (-4312 (((-838) $) 106)) (-3096 (((-112)) 38))) -(((-899) (-13 (-929) (-10 -8 (-15 -3117 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-620 (-1 (-219) (-219))) (-1060 (-219)))) (-15 -3117 ($ (-620 (-1 (-219) (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3104 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3104 ($ (-1 (-219) (-219)))) (-15 -3117 ($ $ (-1060 (-219)))) (-15 -3103 ((-112) $)) (-15 -4229 ($ $ (-1060 (-219)))) (-15 -4229 ($ $ (-1060 (-219)) (-1060 (-219)))) (-15 -3464 ($ $ (-1060 (-219)))) (-15 -3464 ($ $)) (-15 -3116 ((-1060 (-219)) $)) (-15 -3102 ((-536))) (-15 -3101 ((-536) (-536))) (-15 -3100 ((-536))) (-15 -3099 ((-536) (-536))) (-15 -3098 ((-536))) (-15 -3097 ((-536) (-536))) (-15 -3096 ((-112))) (-15 -3095 ((-112) (-112))) (-15 -3094 ((-536))) (-15 -3093 ((-112) (-112)))))) (T -899)) -((-3117 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *2 *3) (-12 (-5 *2 (-620 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-620 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3118 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3118 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3104 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-899)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) (-4229 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) (-3464 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) (-3464 (*1 *1 *1) (-5 *1 (-899))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) (-3102 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3100 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3099 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3098 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3096 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899)))) (-3094 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899)))) (-3093 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) -(-13 (-929) (-10 -8 (-15 -3117 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-620 (-1 (-219) (-219))) (-1060 (-219)))) (-15 -3117 ($ (-620 (-1 (-219) (-219))) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3104 ($ (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3104 ($ (-1 (-219) (-219)))) (-15 -3117 ($ $ (-1060 (-219)))) (-15 -3103 ((-112) $)) (-15 -4229 ($ $ (-1060 (-219)))) (-15 -4229 ($ $ (-1060 (-219)) (-1060 (-219)))) (-15 -3464 ($ $ (-1060 (-219)))) (-15 -3464 ($ $)) (-15 -3116 ((-1060 (-219)) $)) (-15 -3102 ((-536))) (-15 -3101 ((-536) (-536))) (-15 -3100 ((-536))) (-15 -3099 ((-536) (-536))) (-15 -3098 ((-536))) (-15 -3097 ((-536) (-536))) (-15 -3096 ((-112))) (-15 -3095 ((-112) (-112))) (-15 -3094 ((-536))) (-15 -3093 ((-112) (-112))))) -((-3104 (((-899) |#1| (-1147)) 17) (((-899) |#1| (-1147) (-1060 (-219))) 21)) (-3117 (((-899) |#1| |#1| (-1147) (-1060 (-219))) 19) (((-899) |#1| (-1147) (-1060 (-219))) 15))) -(((-900 |#1|) (-10 -7 (-15 -3117 ((-899) |#1| (-1147) (-1060 (-219)))) (-15 -3117 ((-899) |#1| |#1| (-1147) (-1060 (-219)))) (-15 -3104 ((-899) |#1| (-1147) (-1060 (-219)))) (-15 -3104 ((-899) |#1| (-1147)))) (-596 (-525))) (T -900)) -((-3104 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-5 *2 (-899)) (-5 *1 (-900 *3)) (-4 *3 (-596 (-525))))) (-3104 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) (-4 *3 (-596 (-525))))) (-3117 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) (-4 *3 (-596 (-525))))) (-3117 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) (-4 *3 (-596 (-525)))))) -(-10 -7 (-15 -3117 ((-899) |#1| (-1147) (-1060 (-219)))) (-15 -3117 ((-899) |#1| |#1| (-1147) (-1060 (-219)))) (-15 -3104 ((-899) |#1| (-1147) (-1060 (-219)))) (-15 -3104 ((-899) |#1| (-1147)))) -((-4229 (($ $ (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 70)) (-3223 (((-1060 (-219)) $) 40)) (-3224 (((-1060 (-219)) $) 39)) (-3225 (((-1060 (-219)) $) 38)) (-3115 (((-620 (-620 (-219))) $) 43)) (-3116 (((-1060 (-219)) $) 41)) (-3109 (((-536) (-536)) 32)) (-3113 (((-536) (-536)) 28)) (-3111 (((-536) (-536)) 30)) (-3107 (((-112) (-112)) 35)) (-3110 (((-536)) 31)) (-3464 (($ $ (-1060 (-219))) 73) (($ $) 74)) (-3118 (($ (-1 (-917 (-219)) (-219)) (-1060 (-219))) 78) (($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 79)) (-3117 (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219))) 81) (($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219))) 82) (($ $ (-1060 (-219))) 76)) (-3106 (((-536)) 36)) (-3114 (((-536)) 27)) (-3112 (((-536)) 29)) (-3226 (((-620 (-620 (-917 (-219)))) $) 95)) (-3105 (((-112) (-112)) 37)) (-4312 (((-838) $) 94)) (-3108 (((-112)) 34))) -(((-901) (-13 (-948) (-10 -8 (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ $ (-1060 (-219)))) (-15 -4229 ($ $ (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3464 ($ $ (-1060 (-219)))) (-15 -3464 ($ $)) (-15 -3116 ((-1060 (-219)) $)) (-15 -3115 ((-620 (-620 (-219))) $)) (-15 -3114 ((-536))) (-15 -3113 ((-536) (-536))) (-15 -3112 ((-536))) (-15 -3111 ((-536) (-536))) (-15 -3110 ((-536))) (-15 -3109 ((-536) (-536))) (-15 -3108 ((-112))) (-15 -3107 ((-112) (-112))) (-15 -3106 ((-536))) (-15 -3105 ((-112) (-112)))))) (T -901)) -((-3118 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901)))) (-3118 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901)))) (-3117 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901)))) (-3117 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901)))) (-3117 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) (-4229 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) (-3464 (*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) (-3464 (*1 *1 *1) (-5 *1 (-901))) (-3116 (*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-219)))) (-5 *1 (-901)))) (-3114 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3113 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3112 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3111 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3110 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3109 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3108 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-3107 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-3106 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901)))) (-3105 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) -(-13 (-948) (-10 -8 (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)))) (-15 -3118 ($ (-1 (-917 (-219)) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)))) (-15 -3117 ($ (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1 (-219) (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3117 ($ $ (-1060 (-219)))) (-15 -4229 ($ $ (-1060 (-219)) (-1060 (-219)) (-1060 (-219)))) (-15 -3464 ($ $ (-1060 (-219)))) (-15 -3464 ($ $)) (-15 -3116 ((-1060 (-219)) $)) (-15 -3115 ((-620 (-620 (-219))) $)) (-15 -3114 ((-536))) (-15 -3113 ((-536) (-536))) (-15 -3112 ((-536))) (-15 -3111 ((-536) (-536))) (-15 -3110 ((-536))) (-15 -3109 ((-536) (-536))) (-15 -3108 ((-112))) (-15 -3107 ((-112) (-112))) (-15 -3106 ((-536))) (-15 -3105 ((-112) (-112))))) -((-3119 (((-620 (-1060 (-219))) (-620 (-620 (-917 (-219))))) 24))) -(((-902) (-10 -7 (-15 -3119 ((-620 (-1060 (-219))) (-620 (-620 (-917 (-219)))))))) (T -902)) -((-3119 (*1 *2 *3) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-620 (-1060 (-219)))) (-5 *1 (-902))))) -(-10 -7 (-15 -3119 ((-620 (-1060 (-219))) (-620 (-620 (-917 (-219))))))) -((-3121 (((-307 (-536)) (-1147)) 16)) (-3122 (((-307 (-536)) (-1147)) 14)) (-4306 (((-307 (-536)) (-1147)) 12)) (-3120 (((-307 (-536)) (-1147) (-1129)) 19))) -(((-903) (-10 -7 (-15 -3120 ((-307 (-536)) (-1147) (-1129))) (-15 -4306 ((-307 (-536)) (-1147))) (-15 -3121 ((-307 (-536)) (-1147))) (-15 -3122 ((-307 (-536)) (-1147))))) (T -903)) -((-3122 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) (-3120 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-1129)) (-5 *2 (-307 (-536))) (-5 *1 (-903))))) -(-10 -7 (-15 -3120 ((-307 (-536)) (-1147) (-1129))) (-15 -4306 ((-307 (-536)) (-1147))) (-15 -3121 ((-307 (-536)) (-1147))) (-15 -3122 ((-307 (-536)) (-1147)))) -((-3121 ((|#2| |#2|) 26)) (-3122 ((|#2| |#2|) 27)) (-4306 ((|#2| |#2|) 25)) (-3120 ((|#2| |#2| (-1129)) 24))) -(((-904 |#1| |#2|) (-10 -7 (-15 -3120 (|#2| |#2| (-1129))) (-15 -4306 (|#2| |#2|)) (-15 -3121 (|#2| |#2|)) (-15 -3122 (|#2| |#2|))) (-825) (-414 |#1|)) (T -904)) -((-3122 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3)))) (-3121 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3)))) (-4306 (*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3)))) (-3120 (*1 *2 *2 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-825)) (-5 *1 (-904 *4 *2)) (-4 *2 (-414 *4))))) -(-10 -7 (-15 -3120 (|#2| |#2| (-1129))) (-15 -4306 (|#2| |#2|)) (-15 -3121 (|#2| |#2|)) (-15 -3122 (|#2| |#2|))) -((-3124 (((-862 |#1| |#3|) |#2| (-864 |#1|) (-862 |#1| |#3|)) 25)) (-3123 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-905 |#1| |#2| |#3|) (-10 -7 (-15 -3123 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3124 ((-862 |#1| |#3|) |#2| (-864 |#1|) (-862 |#1| |#3|)))) (-1072) (-860 |#1|) (-13 (-1072) (-1012 |#2|))) (T -905)) -((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *6)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-13 (-1072) (-1012 *3))) (-4 *3 (-860 *5)) (-5 *1 (-905 *5 *3 *6)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1072) (-1012 *5))) (-4 *5 (-860 *4)) (-4 *4 (-1072)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-905 *4 *5 *6))))) -(-10 -7 (-15 -3123 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3124 ((-862 |#1| |#3|) |#2| (-864 |#1|) (-862 |#1| |#3|)))) -((-3124 (((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)) 30))) -(((-906 |#1| |#2| |#3|) (-10 -7 (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) (-1072) (-13 (-543) (-825) (-860 |#1|)) (-13 (-414 |#2|) (-596 (-864 |#1|)) (-860 |#1|) (-1012 (-593 $)))) (T -906)) -((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) (-4 *3 (-13 (-414 *6) (-596 *4) (-860 *5) (-1012 (-593 $)))) (-5 *4 (-864 *5)) (-4 *6 (-13 (-543) (-825) (-860 *5))) (-5 *1 (-906 *5 *6 *3))))) -(-10 -7 (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) -((-3124 (((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|)) 13))) -(((-907 |#1|) (-10 -7 (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|)))) (-535)) (T -907)) -((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 (-536) *3)) (-5 *4 (-864 (-536))) (-4 *3 (-535)) (-5 *1 (-907 *3))))) -(-10 -7 (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|)))) -((-3124 (((-862 |#1| |#2|) (-593 |#2|) (-864 |#1|) (-862 |#1| |#2|)) 54))) -(((-908 |#1| |#2|) (-10 -7 (-15 -3124 ((-862 |#1| |#2|) (-593 |#2|) (-864 |#1|) (-862 |#1| |#2|)))) (-1072) (-13 (-825) (-1012 (-593 $)) (-596 (-864 |#1|)) (-860 |#1|))) (T -908)) -((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *6)) (-5 *3 (-593 *6)) (-4 *5 (-1072)) (-4 *6 (-13 (-825) (-1012 (-593 $)) (-596 *4) (-860 *5))) (-5 *4 (-864 *5)) (-5 *1 (-908 *5 *6))))) -(-10 -7 (-15 -3124 ((-862 |#1| |#2|) (-593 |#2|) (-864 |#1|) (-862 |#1| |#2|)))) -((-3124 (((-859 |#1| |#2| |#3|) |#3| (-864 |#1|) (-859 |#1| |#2| |#3|)) 15))) -(((-909 |#1| |#2| |#3|) (-10 -7 (-15 -3124 ((-859 |#1| |#2| |#3|) |#3| (-864 |#1|) (-859 |#1| |#2| |#3|)))) (-1072) (-860 |#1|) (-644 |#2|)) (T -909)) -((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-859 *5 *6 *3)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-860 *5)) (-4 *3 (-644 *6)) (-5 *1 (-909 *5 *6 *3))))) -(-10 -7 (-15 -3124 ((-859 |#1| |#2| |#3|) |#3| (-864 |#1|) (-859 |#1| |#2| |#3|)))) -((-3124 (((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|)) 17 (|has| |#3| (-860 |#1|))) (((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|) (-1 (-862 |#1| |#5|) |#3| (-864 |#1|) (-862 |#1| |#5|))) 16))) -(((-910 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3124 ((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|) (-1 (-862 |#1| |#5|) |#3| (-864 |#1|) (-862 |#1| |#5|)))) (IF (|has| |#3| (-860 |#1|)) (-15 -3124 ((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|))) |%noBranch|)) (-1072) (-771) (-825) (-13 (-1023) (-825) (-860 |#1|)) (-13 (-924 |#4| |#2| |#3|) (-596 (-864 |#1|)))) (T -910)) -((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) (-4 *3 (-13 (-924 *8 *6 *7) (-596 *4))) (-5 *4 (-864 *5)) (-4 *7 (-860 *5)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-13 (-1023) (-825) (-860 *5))) (-5 *1 (-910 *5 *6 *7 *8 *3)))) (-3124 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-862 *6 *3) *8 (-864 *6) (-862 *6 *3))) (-4 *8 (-825)) (-5 *2 (-862 *6 *3)) (-5 *4 (-864 *6)) (-4 *6 (-1072)) (-4 *3 (-13 (-924 *9 *7 *8) (-596 *4))) (-4 *7 (-771)) (-4 *9 (-13 (-1023) (-825) (-860 *6))) (-5 *1 (-910 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -3124 ((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|) (-1 (-862 |#1| |#5|) |#3| (-864 |#1|) (-862 |#1| |#5|)))) (IF (|has| |#3| (-860 |#1|)) (-15 -3124 ((-862 |#1| |#5|) |#5| (-864 |#1|) (-862 |#1| |#5|))) |%noBranch|)) -((-3555 (((-307 (-536)) (-1147) (-620 (-1 (-112) |#1|))) 18) (((-307 (-536)) (-1147) (-1 (-112) |#1|)) 15))) -(((-911 |#1|) (-10 -7 (-15 -3555 ((-307 (-536)) (-1147) (-1 (-112) |#1|))) (-15 -3555 ((-307 (-536)) (-1147) (-620 (-1 (-112) |#1|))))) (-1183)) (T -911)) -((-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-620 (-1 (-112) *5))) (-4 *5 (-1183)) (-5 *2 (-307 (-536))) (-5 *1 (-911 *5)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1183)) (-5 *2 (-307 (-536))) (-5 *1 (-911 *5))))) -(-10 -7 (-15 -3555 ((-307 (-536)) (-1147) (-1 (-112) |#1|))) (-15 -3555 ((-307 (-536)) (-1147) (-620 (-1 (-112) |#1|))))) -((-3555 ((|#2| |#2| (-620 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -3555 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3555 (|#2| |#2| (-620 (-1 (-112) |#3|))))) (-825) (-414 |#1|) (-1183)) (T -912)) -((-3555 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-1 (-112) *5))) (-4 *5 (-1183)) (-4 *4 (-825)) (-5 *1 (-912 *4 *2 *5)) (-4 *2 (-414 *4)))) (-3555 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1183)) (-4 *4 (-825)) (-5 *1 (-912 *4 *2 *5)) (-4 *2 (-414 *4))))) -(-10 -7 (-15 -3555 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3555 (|#2| |#2| (-620 (-1 (-112) |#3|))))) -((-3124 (((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)) 25))) -(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) (-1072) (-13 (-543) (-860 |#1|) (-596 (-864 |#1|))) (-965 |#2|)) (T -913)) -((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) (-4 *3 (-965 *6)) (-4 *6 (-13 (-543) (-860 *5) (-596 *4))) (-5 *4 (-864 *5)) (-5 *1 (-913 *5 *6 *3))))) -(-10 -7 (-15 -3124 ((-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) -((-3124 (((-862 |#1| (-1147)) (-1147) (-864 |#1|) (-862 |#1| (-1147))) 17))) -(((-914 |#1|) (-10 -7 (-15 -3124 ((-862 |#1| (-1147)) (-1147) (-864 |#1|) (-862 |#1| (-1147))))) (-1072)) (T -914)) -((-3124 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-862 *5 (-1147))) (-5 *3 (-1147)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-5 *1 (-914 *5))))) -(-10 -7 (-15 -3124 ((-862 |#1| (-1147)) (-1147) (-864 |#1|) (-862 |#1| (-1147))))) -((-3125 (((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))) 33)) (-3124 (((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-1 |#3| (-620 |#3|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))) 32))) -(((-915 |#1| |#2| |#3|) (-10 -7 (-15 -3124 ((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-1 |#3| (-620 |#3|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) (-15 -3125 ((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))))) (-1072) (-13 (-1023) (-825)) (-13 (-1023) (-596 (-864 |#1|)) (-1012 |#2|))) (T -915)) -((-3125 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 (-864 *6))) (-5 *5 (-1 (-862 *6 *8) *8 (-864 *6) (-862 *6 *8))) (-4 *6 (-1072)) (-4 *8 (-13 (-1023) (-596 (-864 *6)) (-1012 *7))) (-5 *2 (-862 *6 *8)) (-4 *7 (-13 (-1023) (-825))) (-5 *1 (-915 *6 *7 *8)))) (-3124 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-620 (-864 *7))) (-5 *5 (-1 *9 (-620 *9))) (-5 *6 (-1 (-862 *7 *9) *9 (-864 *7) (-862 *7 *9))) (-4 *7 (-1072)) (-4 *9 (-13 (-1023) (-596 (-864 *7)) (-1012 *8))) (-5 *2 (-862 *7 *9)) (-5 *3 (-620 *9)) (-4 *8 (-13 (-1023) (-825))) (-5 *1 (-915 *7 *8 *9))))) -(-10 -7 (-15 -3124 ((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-1 |#3| (-620 |#3|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|)))) (-15 -3125 ((-862 |#1| |#3|) (-620 |#3|) (-620 (-864 |#1|)) (-862 |#1| |#3|) (-1 (-862 |#1| |#3|) |#3| (-864 |#1|) (-862 |#1| |#3|))))) -((-3133 (((-1141 (-400 (-536))) (-536)) 63)) (-3132 (((-1141 (-536)) (-536)) 66)) (-3688 (((-1141 (-536)) (-536)) 60)) (-3131 (((-536) (-1141 (-536))) 55)) (-3130 (((-1141 (-400 (-536))) (-536)) 49)) (-3129 (((-1141 (-536)) (-536)) 38)) (-3128 (((-1141 (-536)) (-536)) 68)) (-3127 (((-1141 (-536)) (-536)) 67)) (-3126 (((-1141 (-400 (-536))) (-536)) 51))) -(((-916) (-10 -7 (-15 -3126 ((-1141 (-400 (-536))) (-536))) (-15 -3127 ((-1141 (-536)) (-536))) (-15 -3128 ((-1141 (-536)) (-536))) (-15 -3129 ((-1141 (-536)) (-536))) (-15 -3130 ((-1141 (-400 (-536))) (-536))) (-15 -3131 ((-536) (-1141 (-536)))) (-15 -3688 ((-1141 (-536)) (-536))) (-15 -3132 ((-1141 (-536)) (-536))) (-15 -3133 ((-1141 (-400 (-536))) (-536))))) (T -916)) -((-3133 (*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3688 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-1141 (-536))) (-5 *2 (-536)) (-5 *1 (-916)))) (-3130 (*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3129 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3128 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3127 (*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) (-3126 (*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536))))) -(-10 -7 (-15 -3126 ((-1141 (-400 (-536))) (-536))) (-15 -3127 ((-1141 (-536)) (-536))) (-15 -3128 ((-1141 (-536)) (-536))) (-15 -3129 ((-1141 (-536)) (-536))) (-15 -3130 ((-1141 (-400 (-536))) (-536))) (-15 -3131 ((-536) (-1141 (-536)))) (-15 -3688 ((-1141 (-536)) (-536))) (-15 -3132 ((-1141 (-536)) (-536))) (-15 -3133 ((-1141 (-400 (-536))) (-536)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749)) NIL (|has| |#1| (-23)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) 11 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-4064 (($ (-620 |#1|)) 13)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4190 (((-667 |#1|) $ $) NIL (|has| |#1| (-1023)))) (-3972 (($ (-749) |#1|) 8)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 10 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4187 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-4074 (((-112) $ (-749)) NIL)) (-4188 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-4123 (($ $ (-620 |#1|)) 26)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) 20) (($ $ (-1196 (-536))) NIL)) (-4191 ((|#1| $ $) NIL (|has| |#1| (-1023)))) (-4266 (((-893) $) 16)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-4189 (($ $ $) 24)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525)))) (($ (-620 |#1|)) 17)) (-3879 (($ (-620 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4192 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4194 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-536) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-4311 (((-749) $) 14 (|has| $ (-6 -4348))))) -(((-917 |#1|) (-954 |#1|) (-1023)) (T -917)) -NIL -(-954 |#1|) -((-3136 (((-473 |#1| |#2|) (-920 |#2|)) 20)) (-3139 (((-241 |#1| |#2|) (-920 |#2|)) 33)) (-3137 (((-920 |#2|) (-473 |#1| |#2|)) 25)) (-3135 (((-241 |#1| |#2|) (-473 |#1| |#2|)) 55)) (-3138 (((-920 |#2|) (-241 |#1| |#2|)) 30)) (-3134 (((-473 |#1| |#2|) (-241 |#1| |#2|)) 46))) -(((-918 |#1| |#2|) (-10 -7 (-15 -3134 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -3135 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -3136 ((-473 |#1| |#2|) (-920 |#2|))) (-15 -3137 ((-920 |#2|) (-473 |#1| |#2|))) (-15 -3138 ((-920 |#2|) (-241 |#1| |#2|))) (-15 -3139 ((-241 |#1| |#2|) (-920 |#2|)))) (-620 (-1147)) (-1023)) (T -918)) -((-3139 (*1 *2 *3) (-12 (-5 *3 (-920 *5)) (-4 *5 (-1023)) (-5 *2 (-241 *4 *5)) (-5 *1 (-918 *4 *5)) (-14 *4 (-620 (-1147))))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) (-5 *2 (-920 *5)) (-5 *1 (-918 *4 *5)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) (-5 *2 (-920 *5)) (-5 *1 (-918 *4 *5)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-920 *5)) (-4 *5 (-1023)) (-5 *2 (-473 *4 *5)) (-5 *1 (-918 *4 *5)) (-14 *4 (-620 (-1147))))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) (-5 *2 (-241 *4 *5)) (-5 *1 (-918 *4 *5)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) (-5 *2 (-473 *4 *5)) (-5 *1 (-918 *4 *5))))) -(-10 -7 (-15 -3134 ((-473 |#1| |#2|) (-241 |#1| |#2|))) (-15 -3135 ((-241 |#1| |#2|) (-473 |#1| |#2|))) (-15 -3136 ((-473 |#1| |#2|) (-920 |#2|))) (-15 -3137 ((-920 |#2|) (-473 |#1| |#2|))) (-15 -3138 ((-920 |#2|) (-241 |#1| |#2|))) (-15 -3139 ((-241 |#1| |#2|) (-920 |#2|)))) -((-3140 (((-620 |#2|) |#2| |#2|) 10)) (-3143 (((-749) (-620 |#1|)) 37 (|has| |#1| (-823)))) (-3141 (((-620 |#2|) |#2|) 11)) (-3144 (((-749) (-620 |#1|) (-536) (-536)) 39 (|has| |#1| (-823)))) (-3142 ((|#1| |#2|) 32 (|has| |#1| (-823))))) -(((-919 |#1| |#2|) (-10 -7 (-15 -3140 ((-620 |#2|) |#2| |#2|)) (-15 -3141 ((-620 |#2|) |#2|)) (IF (|has| |#1| (-823)) (PROGN (-15 -3142 (|#1| |#2|)) (-15 -3143 ((-749) (-620 |#1|))) (-15 -3144 ((-749) (-620 |#1|) (-536) (-536)))) |%noBranch|)) (-356) (-1205 |#1|)) (T -919)) -((-3144 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-536)) (-4 *5 (-823)) (-4 *5 (-356)) (-5 *2 (-749)) (-5 *1 (-919 *5 *6)) (-4 *6 (-1205 *5)))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-823)) (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-919 *4 *5)) (-4 *5 (-1205 *4)))) (-3142 (*1 *2 *3) (-12 (-4 *2 (-356)) (-4 *2 (-823)) (-5 *1 (-919 *2 *3)) (-4 *3 (-1205 *2)))) (-3141 (*1 *2 *3) (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1205 *4)))) (-3140 (*1 *2 *3 *3) (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-919 *4 *3)) (-4 *3 (-1205 *4))))) -(-10 -7 (-15 -3140 ((-620 |#2|) |#2| |#2|)) (-15 -3141 ((-620 |#2|) |#2|)) (IF (|has| |#1| (-823)) (PROGN (-15 -3142 (|#1| |#2|)) (-15 -3143 ((-749) (-620 |#1|))) (-15 -3144 ((-749) (-620 |#1|) (-536) (-536)))) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1147)) $) 16)) (-3414 (((-1141 $) $ (-1147)) 21) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1147))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) 8) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-1147) #2#) $) NIL)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-1147) $) NIL)) (-4111 (($ $ $ (-1147)) NIL (|has| |#1| (-170)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1147)) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-522 (-1147)) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1147) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1147) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#1|) (-1147)) NIL) (($ (-1141 $) (-1147)) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-522 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1147)) NIL)) (-3148 (((-522 (-1147)) $) NIL) (((-749) $ (-1147)) NIL) (((-620 (-749)) $ (-620 (-1147))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 (-1147)) (-522 (-1147))) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3413 (((-3 (-1147) #3="failed") $) 19)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1147)) (|:| -2488 (-749))) #3#) $) NIL)) (-4167 (($ $ (-1147)) 29 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1147) |#1|) NIL) (($ $ (-620 (-1147)) (-620 |#1|)) NIL) (($ $ (-1147) $) NIL) (($ $ (-620 (-1147)) (-620 $)) NIL)) (-4112 (($ $ (-1147)) NIL (|has| |#1| (-170)))) (-4165 (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-4302 (((-522 (-1147)) $) NIL) (((-749) $ (-1147)) NIL) (((-620 (-749)) $ (-620 (-1147))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1147) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1147) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1147) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1147)) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 25) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-1147)) 27) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-522 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-920 |#1|) (-13 (-924 |#1| (-522 (-1147)) (-1147)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1147))) |%noBranch|))) (-1023)) (T -920)) -((-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-920 *3)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023))))) -(-13 (-924 |#1| (-522 (-1147)) (-1147)) (-10 -8 (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1147))) |%noBranch|))) -((-4313 (((-920 |#2|) (-1 |#2| |#1|) (-920 |#1|)) 19))) -(((-921 |#1| |#2|) (-10 -7 (-15 -4313 ((-920 |#2|) (-1 |#2| |#1|) (-920 |#1|)))) (-1023) (-1023)) (T -921)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-920 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-920 *6)) (-5 *1 (-921 *5 *6))))) -(-10 -7 (-15 -4313 ((-920 |#2|) (-1 |#2| |#1|) (-920 |#1|)))) -((-3414 (((-1198 |#1| (-920 |#2|)) (-920 |#2|) (-1226 |#1|)) 18))) -(((-922 |#1| |#2|) (-10 -7 (-15 -3414 ((-1198 |#1| (-920 |#2|)) (-920 |#2|) (-1226 |#1|)))) (-1147) (-1023)) (T -922)) -((-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-1226 *5)) (-14 *5 (-1147)) (-4 *6 (-1023)) (-5 *2 (-1198 *5 (-920 *6))) (-5 *1 (-922 *5 *6)) (-5 *3 (-920 *6))))) -(-10 -7 (-15 -3414 ((-1198 |#1| (-920 |#2|)) (-920 |#2|) (-1226 |#1|)))) -((-3147 (((-749) $) 71) (((-749) $ (-620 |#4|)) 74)) (-4129 (($ $) 173)) (-4324 (((-398 $) $) 165)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 116)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL) (((-3 (-536) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL) (((-536) $) NIL) ((|#4| $) 59)) (-4111 (($ $ $ |#4|) 76)) (-2357 (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 106) (((-667 |#2|) (-667 $)) 99)) (-3852 (($ $) 180) (($ $ |#4|) 183)) (-3146 (((-620 $) $) 63)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 199) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 192)) (-3149 (((-620 $) $) 28)) (-3221 (($ |#2| |#3|) NIL) (($ $ |#4| (-749)) NIL) (($ $ (-620 |#4|) (-620 (-749))) 57)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#4|) 162)) (-3151 (((-3 (-620 $) "failed") $) 42)) (-3150 (((-3 (-620 $) "failed") $) 31)) (-3152 (((-3 (-2 (|:| |var| |#4|) (|:| -2488 (-749))) "failed") $) 47)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 109)) (-3033 (((-398 (-1141 $)) (-1141 $)) 122)) (-3034 (((-398 (-1141 $)) (-1141 $)) 120)) (-4087 (((-398 $) $) 140)) (-4122 (($ $ (-620 (-286 $))) 21) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-620 |#4|) (-620 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-620 |#4|) (-620 $)) NIL)) (-4112 (($ $ |#4|) 78)) (-4325 (((-864 (-371)) $) 213) (((-864 (-536)) $) 206) (((-525) $) 221)) (-3145 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 154)) (-4035 ((|#2| $ |#3|) NIL) (($ $ |#4| (-749)) 52) (($ $ (-620 |#4|) (-620 (-749))) 55)) (-3030 (((-3 $ #1#) $) 156)) (-3013 (((-112) $ $) 186))) -(((-923 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -3030 ((-3 |#1| #1="failed") |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) #1#) (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3031 ((-3 (-1229 |#1|) #1#) (-667 |#1|))) (-15 -3852 (|#1| |#1| |#4|)) (-15 -3145 (|#1| |#1| |#4|)) (-15 -4112 (|#1| |#1| |#4|)) (-15 -4111 (|#1| |#1| |#1| |#4|)) (-15 -3146 ((-620 |#1|) |#1|)) (-15 -3147 ((-749) |#1| (-620 |#4|))) (-15 -3147 ((-749) |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| |#4|) (|:| -2488 (-749))) "failed") |#1|)) (-15 -3151 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3150 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3221 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -3221 (|#1| |#1| |#4| (-749))) (-15 -4117 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3149 ((-620 |#1|) |#1|)) (-15 -4035 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -4035 (|#1| |#1| |#4| (-749))) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#4| |#1|)) (-15 -3503 ((-3 |#4| #2="failed") |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#4| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#4| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -3221 (|#1| |#2| |#3|)) (-15 -4035 (|#2| |#1| |#3|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #2#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #2#) |#1|)) (-15 -3503 ((-3 |#2| #2#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3852 (|#1| |#1|))) (-924 |#2| |#3| |#4|) (-1023) (-771) (-825)) (T -923)) -NIL -(-10 -8 (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -3030 ((-3 |#1| #1="failed") |#1|)) (-15 -3013 ((-112) |#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) #1#) (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3031 ((-3 (-1229 |#1|) #1#) (-667 |#1|))) (-15 -3852 (|#1| |#1| |#4|)) (-15 -3145 (|#1| |#1| |#4|)) (-15 -4112 (|#1| |#1| |#4|)) (-15 -4111 (|#1| |#1| |#1| |#4|)) (-15 -3146 ((-620 |#1|) |#1|)) (-15 -3147 ((-749) |#1| (-620 |#4|))) (-15 -3147 ((-749) |#1|)) (-15 -3152 ((-3 (-2 (|:| |var| |#4|) (|:| -2488 (-749))) "failed") |#1|)) (-15 -3151 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3150 ((-3 (-620 |#1|) "failed") |#1|)) (-15 -3221 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -3221 (|#1| |#1| |#4| (-749))) (-15 -4117 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3149 ((-620 |#1|) |#1|)) (-15 -4035 (|#1| |#1| (-620 |#4|) (-620 (-749)))) (-15 -4035 (|#1| |#1| |#4| (-749))) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#4| |#1|)) (-15 -3503 ((-3 |#4| #2="failed") |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#4| |#1|)) (-15 -4122 (|#1| |#1| (-620 |#4|) (-620 |#2|))) (-15 -4122 (|#1| |#1| |#4| |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -3221 (|#1| |#2| |#3|)) (-15 -4035 (|#2| |#1| |#3|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #2#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #2#) |#1|)) (-15 -3503 ((-3 |#2| #2#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -3852 (|#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 |#3|) $) 108)) (-3414 (((-1141 $) $ |#3|) 123) (((-1141 |#1|) $) 122)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 85 (|has| |#1| (-543)))) (-2173 (($ $) 86 (|has| |#1| (-543)))) (-2171 (((-112) $) 88 (|has| |#1| (-543)))) (-3147 (((-749) $) 110) (((-749) $ (-620 |#3|)) 109)) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-884)))) (-4129 (($ $) 96 (|has| |#1| (-444)))) (-4324 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-884)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-536)) #2#) $) 160 (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) 158 (|has| |#1| (-1012 (-536)))) (((-3 |#3| #2#) $) 134)) (-3502 ((|#1| $) 163) (((-400 (-536)) $) 159 (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) 157 (|has| |#1| (-1012 (-536)))) ((|#3| $) 133)) (-4111 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4314 (($ $) 152)) (-2357 (((-667 (-536)) (-667 $)) 132 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 131 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-3816 (((-3 $ "failed") $) 32)) (-3852 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3146 (((-620 $) $) 107)) (-4081 (((-112) $) 94 (|has| |#1| (-884)))) (-1716 (($ $ |#1| |#2| $) 170)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 82 (-12 (|has| |#3| (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 81 (-12 (|has| |#3| (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-2497 (((-112) $) 30)) (-2505 (((-749) $) 167)) (-3415 (($ (-1141 |#1|) |#3|) 115) (($ (-1141 $) |#3|) 114)) (-3149 (((-620 $) $) 124)) (-4292 (((-112) $) 150)) (-3221 (($ |#1| |#2|) 151) (($ $ |#3| (-749)) 117) (($ $ (-620 |#3|) (-620 (-749))) 116)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#3|) 118)) (-3148 ((|#2| $) 168) (((-749) $ |#3|) 120) (((-620 (-749)) $ (-620 |#3|)) 119)) (-3672 (($ $ $) 77 (|has| |#1| (-825)))) (-3673 (($ $ $) 76 (|has| |#1| (-825)))) (-1717 (($ (-1 |#2| |#2|) $) 169)) (-4313 (($ (-1 |#1| |#1|) $) 149)) (-3413 (((-3 |#3| "failed") $) 121)) (-3222 (($ $) 147)) (-3520 ((|#1| $) 146)) (-2008 (($ (-620 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3588 (((-1129) $) 9)) (-3151 (((-3 (-620 $) "failed") $) 112)) (-3150 (((-3 (-620 $) "failed") $) 113)) (-3152 (((-3 (-2 (|:| |var| |#3|) (|:| -2488 (-749))) "failed") $) 111)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3490 (($ (-620 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 97 (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-620 $) (-620 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-620 |#3|) (-620 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-620 |#3|) (-620 $)) 136)) (-4112 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4165 (($ $ |#3|) 40) (($ $ (-620 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-620 |#3|) (-620 (-749))) 37)) (-4302 ((|#2| $) 148) (((-749) $ |#3|) 128) (((-620 (-749)) $ (-620 |#3|)) 127)) (-4325 (((-864 (-371)) $) 80 (-12 (|has| |#3| (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) 79 (-12 (|has| |#3| (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) 78 (-12 (|has| |#3| (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 102 (-3186 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-543))) (($ (-400 (-536))) 70 (-3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| |#1| (-38 (-400 (-536))))))) (-4172 (((-620 |#1|) $) 166)) (-4035 ((|#1| $ |#2|) 153) (($ $ |#3| (-749)) 126) (($ $ (-620 |#3|) (-620 (-749))) 125)) (-3030 (((-3 $ "failed") $) 71 (-3886 (-3186 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 28)) (-1715 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 87 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ |#3|) 36) (($ $ (-620 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-620 |#3|) (-620 (-749))) 33)) (-2891 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 73 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 75 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 72 (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 156 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 155 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-924 |#1| |#2| |#3|) (-138) (-1023) (-771) (-825)) (T -924)) -((-3852 (*1 *1 *1) (-12 (-4 *1 (-924 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-4302 (*1 *2 *1 *3) (-12 (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-749)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 (-749))))) (-4035 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-924 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *2 (-825)))) (-4035 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 (-749))) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)))) (-3149 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) (-3414 (*1 *2 *1 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-1141 *1)) (-4 *1 (-924 *4 *5 *3)))) (-3414 (*1 *2 *1) (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-1141 *3)))) (-3413 (*1 *2 *1) (|partial| -12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3148 (*1 *2 *1 *3) (-12 (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-749)))) (-3148 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 (-749))))) (-4117 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-924 *4 *5 *3)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-924 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *2 (-825)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 (-749))) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)))) (-3415 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *4)) (-4 *4 (-1023)) (-4 *1 (-924 *4 *5 *3)) (-4 *5 (-771)) (-4 *3 (-825)))) (-3415 (*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)))) (-3150 (*1 *2 *1) (|partial| -12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) (-3151 (*1 *2 *1) (|partial| -12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) (-3152 (*1 *2 *1) (|partial| -12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| |var| *5) (|:| -2488 (-749)))))) (-3147 (*1 *2 *1) (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-749)))) (-3147 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *5)))) (-3146 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) (-4111 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-170)))) (-4112 (*1 *1 *1 *2) (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-170)))) (-3145 (*1 *1 *1 *2) (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-444)))) (-3852 (*1 *1 *1 *2) (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *3 (-444)))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-924 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-4324 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-398 *1)) (-4 *1 (-924 *3 *4 *5))))) -(-13 (-874 |t#3|) (-319 |t#1| |t#2|) (-302 $) (-505 |t#3| |t#1|) (-505 |t#3| $) (-1012 |t#3|) (-370 |t#1|) (-10 -8 (-15 -4302 ((-749) $ |t#3|)) (-15 -4302 ((-620 (-749)) $ (-620 |t#3|))) (-15 -4035 ($ $ |t#3| (-749))) (-15 -4035 ($ $ (-620 |t#3|) (-620 (-749)))) (-15 -3149 ((-620 $) $)) (-15 -3414 ((-1141 $) $ |t#3|)) (-15 -3414 ((-1141 |t#1|) $)) (-15 -3413 ((-3 |t#3| "failed") $)) (-15 -3148 ((-749) $ |t#3|)) (-15 -3148 ((-620 (-749)) $ (-620 |t#3|))) (-15 -4117 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |t#3|)) (-15 -3221 ($ $ |t#3| (-749))) (-15 -3221 ($ $ (-620 |t#3|) (-620 (-749)))) (-15 -3415 ($ (-1141 |t#1|) |t#3|)) (-15 -3415 ($ (-1141 $) |t#3|)) (-15 -3150 ((-3 (-620 $) "failed") $)) (-15 -3151 ((-3 (-620 $) "failed") $)) (-15 -3152 ((-3 (-2 (|:| |var| |t#3|) (|:| -2488 (-749))) "failed") $)) (-15 -3147 ((-749) $)) (-15 -3147 ((-749) $ (-620 |t#3|))) (-15 -3412 ((-620 |t#3|) $)) (-15 -3146 ((-620 $) $)) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (IF (|has| |t#3| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-596 (-864 (-536)))) (IF (|has| |t#3| (-596 (-864 (-536)))) (-6 (-596 (-864 (-536)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-596 (-864 (-371)))) (IF (|has| |t#3| (-596 (-864 (-371)))) (-6 (-596 (-864 (-371)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860 (-536))) (IF (|has| |t#3| (-860 (-536))) (-6 (-860 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860 (-371))) (IF (|has| |t#3| (-860 (-371))) (-6 (-860 (-371))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4111 ($ $ $ |t#3|)) (-15 -4112 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-6 (-444)) (-15 -3145 ($ $ |t#3|)) (-15 -3852 ($ $)) (-15 -3852 ($ $ |t#3|)) (-15 -4324 ((-398 $) $)) (-15 -4129 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4346)) (-6 -4346) |%noBranch|) (IF (|has| |t#1| (-884)) (-6 (-884)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#3| (-596 (-525)))) ((-596 (-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#3| (-596 (-864 (-371))))) ((-596 (-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#3| (-596 (-864 (-536))))) ((-283) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-884)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-543) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 |#3|) . T) ((-860 (-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#3| (-860 (-371)))) ((-860 (-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#3| (-860 (-536)))) ((-884) |has| |#1| (-884)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1012 |#3|) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) |has| |#1| (-884))) -((-3412 (((-620 |#2|) |#5|) 36)) (-3414 (((-1141 |#5|) |#5| |#2| (-1141 |#5|)) 23) (((-400 (-1141 |#5|)) |#5| |#2|) 16)) (-3415 ((|#5| (-400 (-1141 |#5|)) |#2|) 30)) (-3413 (((-3 |#2| "failed") |#5|) 65)) (-3151 (((-3 (-620 |#5|) "failed") |#5|) 59)) (-3153 (((-3 (-2 (|:| |val| |#5|) (|:| -2488 (-536))) "failed") |#5|) 47)) (-3150 (((-3 (-620 |#5|) "failed") |#5|) 61)) (-3152 (((-3 (-2 (|:| |var| |#2|) (|:| -2488 (-536))) "failed") |#5|) 51))) -(((-925 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3412 ((-620 |#2|) |#5|)) (-15 -3413 ((-3 |#2| "failed") |#5|)) (-15 -3414 ((-400 (-1141 |#5|)) |#5| |#2|)) (-15 -3415 (|#5| (-400 (-1141 |#5|)) |#2|)) (-15 -3414 ((-1141 |#5|) |#5| |#2| (-1141 |#5|))) (-15 -3150 ((-3 (-620 |#5|) "failed") |#5|)) (-15 -3151 ((-3 (-620 |#5|) "failed") |#5|)) (-15 -3152 ((-3 (-2 (|:| |var| |#2|) (|:| -2488 (-536))) "failed") |#5|)) (-15 -3153 ((-3 (-2 (|:| |val| |#5|) (|:| -2488 (-536))) "failed") |#5|))) (-771) (-825) (-1023) (-924 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -4312 ($ |#4|)) (-15 -3326 (|#4| $)) (-15 -3325 (|#4| $))))) (T -925)) -((-3153 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2488 (-536)))) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) (-3152 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2488 (-536)))) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) (-3151 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-620 *3)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) (-3150 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-620 *3)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) (-3414 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))) (-4 *7 (-924 *6 *5 *4)) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) (-5 *1 (-925 *5 *4 *6 *7 *3)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1141 *2))) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) (-4 *2 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))) (-5 *1 (-925 *5 *4 *6 *7 *2)) (-4 *7 (-924 *6 *5 *4)))) (-3414 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *5 *4)) (-5 *2 (-400 (-1141 *3))) (-5 *1 (-925 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) (-3413 (*1 *2 *3) (|partial| -12 (-4 *4 (-771)) (-4 *5 (-1023)) (-4 *6 (-924 *5 *4 *2)) (-4 *2 (-825)) (-5 *1 (-925 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *6)) (-15 -3326 (*6 $)) (-15 -3325 (*6 $))))))) (-3412 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-620 *5)) (-5 *1 (-925 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-356) (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) -(-10 -7 (-15 -3412 ((-620 |#2|) |#5|)) (-15 -3413 ((-3 |#2| "failed") |#5|)) (-15 -3414 ((-400 (-1141 |#5|)) |#5| |#2|)) (-15 -3415 (|#5| (-400 (-1141 |#5|)) |#2|)) (-15 -3414 ((-1141 |#5|) |#5| |#2| (-1141 |#5|))) (-15 -3150 ((-3 (-620 |#5|) "failed") |#5|)) (-15 -3151 ((-3 (-620 |#5|) "failed") |#5|)) (-15 -3152 ((-3 (-2 (|:| |var| |#2|) (|:| -2488 (-536))) "failed") |#5|)) (-15 -3153 ((-3 (-2 (|:| |val| |#5|) (|:| -2488 (-536))) "failed") |#5|))) -((-4313 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) -(((-926 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4313 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-771) (-825) (-1023) (-924 |#3| |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) (T -926)) -((-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-825)) (-4 *8 (-1023)) (-4 *6 (-771)) (-4 *2 (-13 (-1072) (-10 -8 (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) (-5 *1 (-926 *6 *7 *8 *5 *2)) (-4 *5 (-924 *8 *6 *7))))) -(-10 -7 (-15 -4313 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-3154 (((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#3| (-749)) 38)) (-3155 (((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) (-400 (-536)) (-749)) 34)) (-3157 (((-2 (|:| -2488 (-749)) (|:| -4308 |#4|) (|:| |radicand| (-620 |#4|))) |#4| (-749)) 54)) (-3156 (((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#5| (-749)) 64 (|has| |#3| (-444))))) -(((-927 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3154 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#3| (-749))) (-15 -3155 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) (-400 (-536)) (-749))) (IF (|has| |#3| (-444)) (-15 -3156 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#5| (-749))) |%noBranch|) (-15 -3157 ((-2 (|:| -2488 (-749)) (|:| -4308 |#4|) (|:| |radicand| (-620 |#4|))) |#4| (-749)))) (-771) (-825) (-543) (-924 |#3| |#1| |#2|) (-13 (-356) (-10 -8 (-15 -3326 (|#4| $)) (-15 -3325 (|#4| $)) (-15 -4312 ($ |#4|))))) (T -927)) -((-3157 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) (-4 *3 (-924 *7 *5 *6)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| (-620 *3)))) (-5 *1 (-927 *5 *6 *7 *3 *8)) (-5 *4 (-749)) (-4 *8 (-13 (-356) (-10 -8 (-15 -3326 (*3 $)) (-15 -3325 (*3 $)) (-15 -4312 ($ *3))))))) (-3156 (*1 *2 *3 *4) (-12 (-4 *7 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) (-4 *8 (-924 *7 *5 *6)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| *3))) (-5 *1 (-927 *5 *6 *7 *8 *3)) (-5 *4 (-749)) (-4 *3 (-13 (-356) (-10 -8 (-15 -3326 (*8 $)) (-15 -3325 (*8 $)) (-15 -4312 ($ *8))))))) (-3155 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-536))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) (-4 *8 (-924 *7 *5 *6)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *9) (|:| |radicand| *9))) (-5 *1 (-927 *5 *6 *7 *8 *9)) (-5 *4 (-749)) (-4 *9 (-13 (-356) (-10 -8 (-15 -3326 (*8 $)) (-15 -3325 (*8 $)) (-15 -4312 ($ *8))))))) (-3154 (*1 *2 *3 *4) (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-543)) (-4 *7 (-924 *3 *5 *6)) (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *8) (|:| |radicand| *8))) (-5 *1 (-927 *5 *6 *3 *7 *8)) (-5 *4 (-749)) (-4 *8 (-13 (-356) (-10 -8 (-15 -3326 (*7 $)) (-15 -3325 (*7 $)) (-15 -4312 ($ *7)))))))) -(-10 -7 (-15 -3154 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#3| (-749))) (-15 -3155 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) (-400 (-536)) (-749))) (IF (|has| |#3| (-444)) (-15 -3156 ((-2 (|:| -2488 (-749)) (|:| -4308 |#5|) (|:| |radicand| |#5|)) |#5| (-749))) |%noBranch|) (-15 -3157 ((-2 (|:| -2488 (-749)) (|:| -4308 |#4|) (|:| |radicand| (-620 |#4|))) |#4| (-749)))) -((-2893 (((-112) $ $) NIL)) (-3158 (($ (-1091)) 8)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 14) (((-1091) $) 11)) (-3382 (((-112) $ $) 10))) -(((-928) (-13 (-1072) (-595 (-1091)) (-10 -8 (-15 -3158 ($ (-1091)))))) (T -928)) -((-3158 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-928))))) -(-13 (-1072) (-595 (-1091)) (-10 -8 (-15 -3158 ($ (-1091))))) -((-3224 (((-1060 (-219)) $) 8)) (-3225 (((-1060 (-219)) $) 9)) (-3226 (((-620 (-620 (-917 (-219)))) $) 10)) (-4312 (((-838) $) 6))) -(((-929) (-138)) (T -929)) -((-3226 (*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-620 (-620 (-917 (-219))))))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1060 (-219))))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1060 (-219)))))) -(-13 (-595 (-838)) (-10 -8 (-15 -3226 ((-620 (-620 (-917 (-219)))) $)) (-15 -3225 ((-1060 (-219)) $)) (-15 -3224 ((-1060 (-219)) $)))) -(((-595 (-838)) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 61 (|has| |#1| (-543)))) (-2173 (($ $) 62 (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 28)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) 24)) (-3816 (((-3 $ "failed") $) 35)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-1716 (($ $ |#1| |#2| $) 48)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) 16)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| |#2|) NIL)) (-3148 ((|#2| $) 19)) (-1717 (($ (-1 |#2| |#2|) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3222 (($ $) 23)) (-3520 ((|#1| $) 21)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) 40)) (-1910 ((|#1| $) NIL)) (-4093 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-543))))) (-3815 (((-3 $ "failed") $ $) 74 (|has| |#1| (-543))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-543)))) (-4302 ((|#2| $) 17)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) 39) (($ $) NIL (|has| |#1| (-543))) (($ |#1|) 34) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ |#2|) 31)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) 15)) (-1715 (($ $ $ (-749)) 57 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 67 (|has| |#1| (-543)))) (-2986 (($) 22 T CONST)) (-2992 (($) 12 T CONST)) (-3382 (((-112) $ $) 66)) (-4303 (($ $ |#1|) 75 (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) 54) (($ $ (-749)) 52)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-930 |#1| |#2|) (-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-543)) (IF (|has| |#2| (-130)) (-15 -4093 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) (-1023) (-770)) (T -930)) -((-4093 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-930 *3 *2)) (-4 *2 (-130)) (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *2 (-770))))) -(-13 (-319 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-543)) (IF (|has| |#2| (-130)) (-15 -4093 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) -((-3159 (((-3 (-667 |#1|) "failed") |#2| (-893)) 15))) -(((-931 |#1| |#2|) (-10 -7 (-15 -3159 ((-3 (-667 |#1|) "failed") |#2| (-893)))) (-543) (-636 |#1|)) (T -931)) -((-3159 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-893)) (-4 *5 (-543)) (-5 *2 (-667 *5)) (-5 *1 (-931 *5 *3)) (-4 *3 (-636 *5))))) -(-10 -7 (-15 -3159 ((-3 (-667 |#1|) "failed") |#2| (-893)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) 16 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 15 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 13)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) |#1|) 12)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) 10 (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) 17 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) 11)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) 14) (($ $ (-1196 (-536))) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) NIL)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4311 (((-749) $) 8 (|has| $ (-6 -4348))))) -(((-932 |#1|) (-19 |#1|) (-1183)) (T -932)) +((-2889 (((-1093) $ (-129)) NIL)) (-2890 (((-1093) $ (-128)) 22)) (-2892 (($ (-383)) 12) (($ (-1131)) 14)) (-2891 (((-112) $) 19)) (-4317 (((-840) $) 26)) (-1816 (($ $) 23))) +(((-839) (-13 (-838) (-597 (-840)) (-10 -8 (-15 -2892 ($ (-383))) (-15 -2892 ($ (-1131))) (-15 -2891 ((-112) $))))) (T -839)) +((-2892 (*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-839)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))) (-2891 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839))))) +(-13 (-838) (-597 (-840)) (-10 -8 (-15 -2892 ($ (-383))) (-15 -2892 ($ (-1131))) (-15 -2891 ((-112) $)))) +((-2898 (((-112) $ $) NIL) (($ $ $) 77)) (-2919 (($ $ $) 114)) (-2934 (((-538) $) 31) (((-538)) 36)) (-2929 (($ (-538)) 45)) (-2926 (($ $ $) 46) (($ (-622 $)) 76)) (-2910 (($ $ (-622 $)) 74)) (-2931 (((-538) $) 34)) (-2913 (($ $ $) 65)) (-3886 (($ $) 127) (($ $ $) 128) (($ $ $ $) 129)) (-2932 (((-538) $) 33)) (-2914 (($ $ $) 64)) (-3898 (($ $) 104)) (-2917 (($ $ $) 118)) (-2900 (($ (-622 $)) 53)) (-3903 (($ $ (-622 $)) 71)) (-2928 (($ (-538) (-538)) 47)) (-2940 (($ $) 115) (($ $ $) 116)) (-3472 (($ $ (-538)) 41) (($ $) 44)) (-2894 (($ $ $) 89)) (-2915 (($ $ $) 121)) (-2909 (($ $) 105)) (-2893 (($ $ $) 90)) (-2905 (($ $) 130) (($ $ $) 131) (($ $ $ $) 132)) (-3170 (((-1237) $) 10)) (-2908 (($ $) 108) (($ $ (-751)) 111)) (-2911 (($ $ $) 67)) (-2912 (($ $ $) 66)) (-2925 (($ $ (-622 $)) 100)) (-2923 (($ $ $) 103)) (-2902 (($ (-622 $)) 51)) (-2903 (($ $) 62) (($ (-622 $)) 63)) (-2906 (($ $ $) 112)) (-2907 (($ $) 106)) (-2918 (($ $ $) 117)) (-3887 (($ (-538)) 21) (($ (-1149)) 23) (($ (-1131)) 30) (($ (-221)) 25)) (-3190 (($ $ $) 93)) (-3676 (($ $) 94)) (-2936 (((-1237) (-1131)) 15)) (-2937 (($ (-1131)) 14)) (-3459 (($ (-622 (-622 $))) 50)) (-3473 (($ $ (-538)) 40) (($ $) 43)) (-3593 (((-1131) $) NIL)) (-2921 (($ $ $) 120)) (-3824 (($ $) 133) (($ $ $) 134) (($ $ $ $) 135)) (-2922 (((-112) $) 98)) (-2924 (($ $ (-622 $)) 101) (($ $ $ $) 102)) (-2930 (($ (-538)) 37)) (-2933 (((-538) $) 32) (((-538)) 35)) (-2927 (($ $ $) 38) (($ (-622 $)) 75)) (-3594 (((-1093) $) NIL)) (-3820 (($ $ $) 91)) (-3928 (($) 13)) (-4159 (($ $ (-622 $)) 99)) (-2935 (((-1131) (-1131)) 8)) (-4196 (($ $) 107) (($ $ (-751)) 110)) (-2895 (($ $ $) 88)) (-4170 (($ $ (-751)) 126)) (-2901 (($ (-622 $)) 52)) (-4317 (((-840) $) 19)) (-4132 (($ $ (-538)) 39) (($ $) 42)) (-2904 (($ $) 60) (($ (-622 $)) 61)) (-3591 (($ $) 58) (($ (-622 $)) 59)) (-2920 (($ $) 113)) (-2899 (($ (-622 $)) 57)) (-3437 (($ $ $) 97)) (-2916 (($ $ $) 119)) (-3191 (($ $ $) 92)) (-4097 (($ $ $) 95) (($ $) 96)) (-2896 (($ $ $) 81)) (-2897 (($ $ $) 79)) (-3387 (((-112) $ $) 16) (($ $ $) 17)) (-3017 (($ $ $) 80)) (-3018 (($ $ $) 78)) (-4308 (($ $ $) 86)) (-4197 (($ $ $) 83) (($ $) 84)) (-4199 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85))) +(((-840) (-13 (-1074) (-10 -8 (-15 -3170 ((-1237) $)) (-15 -2937 ($ (-1131))) (-15 -2936 ((-1237) (-1131))) (-15 -3887 ($ (-538))) (-15 -3887 ($ (-1149))) (-15 -3887 ($ (-1131))) (-15 -3887 ($ (-221))) (-15 -3928 ($)) (-15 -2935 ((-1131) (-1131))) (-15 -2934 ((-538) $)) (-15 -2933 ((-538) $)) (-15 -2934 ((-538))) (-15 -2933 ((-538))) (-15 -2932 ((-538) $)) (-15 -2931 ((-538) $)) (-15 -2930 ($ (-538))) (-15 -2929 ($ (-538))) (-15 -2928 ($ (-538) (-538))) (-15 -3473 ($ $ (-538))) (-15 -3472 ($ $ (-538))) (-15 -4132 ($ $ (-538))) (-15 -3473 ($ $)) (-15 -3472 ($ $)) (-15 -4132 ($ $)) (-15 -2927 ($ $ $)) (-15 -2926 ($ $ $)) (-15 -2927 ($ (-622 $))) (-15 -2926 ($ (-622 $))) (-15 -2925 ($ $ (-622 $))) (-15 -2924 ($ $ (-622 $))) (-15 -2924 ($ $ $ $)) (-15 -2923 ($ $ $)) (-15 -2922 ((-112) $)) (-15 -4159 ($ $ (-622 $))) (-15 -3898 ($ $)) (-15 -2921 ($ $ $)) (-15 -2920 ($ $)) (-15 -3459 ($ (-622 (-622 $)))) (-15 -2919 ($ $ $)) (-15 -2940 ($ $)) (-15 -2940 ($ $ $)) (-15 -2918 ($ $ $)) (-15 -2917 ($ $ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -4170 ($ $ (-751))) (-15 -3437 ($ $ $)) (-15 -2914 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ($ $ $)) (-15 -3903 ($ $ (-622 $))) (-15 -2910 ($ $ (-622 $))) (-15 -2909 ($ $)) (-15 -4196 ($ $)) (-15 -4196 ($ $ (-751))) (-15 -2908 ($ $)) (-15 -2908 ($ $ (-751))) (-15 -2907 ($ $)) (-15 -2906 ($ $ $)) (-15 -3886 ($ $)) (-15 -3886 ($ $ $)) (-15 -3886 ($ $ $ $)) (-15 -2905 ($ $)) (-15 -2905 ($ $ $)) (-15 -2905 ($ $ $ $)) (-15 -3824 ($ $)) (-15 -3824 ($ $ $)) (-15 -3824 ($ $ $ $)) (-15 -3591 ($ $)) (-15 -3591 ($ (-622 $))) (-15 -2904 ($ $)) (-15 -2904 ($ (-622 $))) (-15 -2903 ($ $)) (-15 -2903 ($ (-622 $))) (-15 -2902 ($ (-622 $))) (-15 -2901 ($ (-622 $))) (-15 -2900 ($ (-622 $))) (-15 -2899 ($ (-622 $))) (-15 -3387 ($ $ $)) (-15 -2898 ($ $ $)) (-15 -3018 ($ $ $)) (-15 -2897 ($ $ $)) (-15 -3017 ($ $ $)) (-15 -2896 ($ $ $)) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -4197 ($ $)) (-15 * ($ $ $)) (-15 -4308 ($ $ $)) (-15 ** ($ $ $)) (-15 -2895 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -3191 ($ $ $)) (-15 -3190 ($ $ $)) (-15 -3676 ($ $)) (-15 -4097 ($ $ $)) (-15 -4097 ($ $))))) (T -840)) +((-3170 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-840)))) (-2937 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-840)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-840)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-840)))) (-3928 (*1 *1) (-5 *1 (-840))) (-2935 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840)))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2933 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2934 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2933 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2930 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-2928 (*1 *1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-3473 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-3472 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-4132 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) (-3473 (*1 *1 *1) (-5 *1 (-840))) (-3472 (*1 *1 *1) (-5 *1 (-840))) (-4132 (*1 *1 *1) (-5 *1 (-840))) (-2927 (*1 *1 *1 *1) (-5 *1 (-840))) (-2926 (*1 *1 *1 *1) (-5 *1 (-840))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2926 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2925 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2924 (*1 *1 *1 *1 *1) (-5 *1 (-840))) (-2923 (*1 *1 *1 *1) (-5 *1 (-840))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-3898 (*1 *1 *1) (-5 *1 (-840))) (-2921 (*1 *1 *1 *1) (-5 *1 (-840))) (-2920 (*1 *1 *1) (-5 *1 (-840))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-840)))) (-5 *1 (-840)))) (-2919 (*1 *1 *1 *1) (-5 *1 (-840))) (-2940 (*1 *1 *1) (-5 *1 (-840))) (-2940 (*1 *1 *1 *1) (-5 *1 (-840))) (-2918 (*1 *1 *1 *1) (-5 *1 (-840))) (-2917 (*1 *1 *1 *1) (-5 *1 (-840))) (-2916 (*1 *1 *1 *1) (-5 *1 (-840))) (-2915 (*1 *1 *1 *1) (-5 *1 (-840))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840)))) (-3437 (*1 *1 *1 *1) (-5 *1 (-840))) (-2914 (*1 *1 *1 *1) (-5 *1 (-840))) (-2913 (*1 *1 *1 *1) (-5 *1 (-840))) (-2912 (*1 *1 *1 *1) (-5 *1 (-840))) (-2911 (*1 *1 *1 *1) (-5 *1 (-840))) (-3903 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2910 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2909 (*1 *1 *1) (-5 *1 (-840))) (-4196 (*1 *1 *1) (-5 *1 (-840))) (-4196 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840)))) (-2908 (*1 *1 *1) (-5 *1 (-840))) (-2908 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840)))) (-2907 (*1 *1 *1) (-5 *1 (-840))) (-2906 (*1 *1 *1 *1) (-5 *1 (-840))) (-3886 (*1 *1 *1) (-5 *1 (-840))) (-3886 (*1 *1 *1 *1) (-5 *1 (-840))) (-3886 (*1 *1 *1 *1 *1) (-5 *1 (-840))) (-2905 (*1 *1 *1) (-5 *1 (-840))) (-2905 (*1 *1 *1 *1) (-5 *1 (-840))) (-2905 (*1 *1 *1 *1 *1) (-5 *1 (-840))) (-3824 (*1 *1 *1) (-5 *1 (-840))) (-3824 (*1 *1 *1 *1) (-5 *1 (-840))) (-3824 (*1 *1 *1 *1 *1) (-5 *1 (-840))) (-3591 (*1 *1 *1) (-5 *1 (-840))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2904 (*1 *1 *1) (-5 *1 (-840))) (-2904 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2903 (*1 *1 *1) (-5 *1 (-840))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2901 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2900 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) (-3387 (*1 *1 *1 *1) (-5 *1 (-840))) (-2898 (*1 *1 *1 *1) (-5 *1 (-840))) (-3018 (*1 *1 *1 *1) (-5 *1 (-840))) (-2897 (*1 *1 *1 *1) (-5 *1 (-840))) (-3017 (*1 *1 *1 *1) (-5 *1 (-840))) (-2896 (*1 *1 *1 *1) (-5 *1 (-840))) (-4199 (*1 *1 *1 *1) (-5 *1 (-840))) (-4197 (*1 *1 *1 *1) (-5 *1 (-840))) (-4197 (*1 *1 *1) (-5 *1 (-840))) (* (*1 *1 *1 *1) (-5 *1 (-840))) (-4308 (*1 *1 *1 *1) (-5 *1 (-840))) (** (*1 *1 *1 *1) (-5 *1 (-840))) (-2895 (*1 *1 *1 *1) (-5 *1 (-840))) (-2894 (*1 *1 *1 *1) (-5 *1 (-840))) (-2893 (*1 *1 *1 *1) (-5 *1 (-840))) (-3820 (*1 *1 *1 *1) (-5 *1 (-840))) (-3191 (*1 *1 *1 *1) (-5 *1 (-840))) (-3190 (*1 *1 *1 *1) (-5 *1 (-840))) (-3676 (*1 *1 *1) (-5 *1 (-840))) (-4097 (*1 *1 *1 *1) (-5 *1 (-840))) (-4097 (*1 *1 *1) (-5 *1 (-840)))) +(-13 (-1074) (-10 -8 (-15 -3170 ((-1237) $)) (-15 -2937 ($ (-1131))) (-15 -2936 ((-1237) (-1131))) (-15 -3887 ($ (-538))) (-15 -3887 ($ (-1149))) (-15 -3887 ($ (-1131))) (-15 -3887 ($ (-221))) (-15 -3928 ($)) (-15 -2935 ((-1131) (-1131))) (-15 -2934 ((-538) $)) (-15 -2933 ((-538) $)) (-15 -2934 ((-538))) (-15 -2933 ((-538))) (-15 -2932 ((-538) $)) (-15 -2931 ((-538) $)) (-15 -2930 ($ (-538))) (-15 -2929 ($ (-538))) (-15 -2928 ($ (-538) (-538))) (-15 -3473 ($ $ (-538))) (-15 -3472 ($ $ (-538))) (-15 -4132 ($ $ (-538))) (-15 -3473 ($ $)) (-15 -3472 ($ $)) (-15 -4132 ($ $)) (-15 -2927 ($ $ $)) (-15 -2926 ($ $ $)) (-15 -2927 ($ (-622 $))) (-15 -2926 ($ (-622 $))) (-15 -2925 ($ $ (-622 $))) (-15 -2924 ($ $ (-622 $))) (-15 -2924 ($ $ $ $)) (-15 -2923 ($ $ $)) (-15 -2922 ((-112) $)) (-15 -4159 ($ $ (-622 $))) (-15 -3898 ($ $)) (-15 -2921 ($ $ $)) (-15 -2920 ($ $)) (-15 -3459 ($ (-622 (-622 $)))) (-15 -2919 ($ $ $)) (-15 -2940 ($ $)) (-15 -2940 ($ $ $)) (-15 -2918 ($ $ $)) (-15 -2917 ($ $ $)) (-15 -2916 ($ $ $)) (-15 -2915 ($ $ $)) (-15 -4170 ($ $ (-751))) (-15 -3437 ($ $ $)) (-15 -2914 ($ $ $)) (-15 -2913 ($ $ $)) (-15 -2912 ($ $ $)) (-15 -2911 ($ $ $)) (-15 -3903 ($ $ (-622 $))) (-15 -2910 ($ $ (-622 $))) (-15 -2909 ($ $)) (-15 -4196 ($ $)) (-15 -4196 ($ $ (-751))) (-15 -2908 ($ $)) (-15 -2908 ($ $ (-751))) (-15 -2907 ($ $)) (-15 -2906 ($ $ $)) (-15 -3886 ($ $)) (-15 -3886 ($ $ $)) (-15 -3886 ($ $ $ $)) (-15 -2905 ($ $)) (-15 -2905 ($ $ $)) (-15 -2905 ($ $ $ $)) (-15 -3824 ($ $)) (-15 -3824 ($ $ $)) (-15 -3824 ($ $ $ $)) (-15 -3591 ($ $)) (-15 -3591 ($ (-622 $))) (-15 -2904 ($ $)) (-15 -2904 ($ (-622 $))) (-15 -2903 ($ $)) (-15 -2903 ($ (-622 $))) (-15 -2902 ($ (-622 $))) (-15 -2901 ($ (-622 $))) (-15 -2900 ($ (-622 $))) (-15 -2899 ($ (-622 $))) (-15 -3387 ($ $ $)) (-15 -2898 ($ $ $)) (-15 -3018 ($ $ $)) (-15 -2897 ($ $ $)) (-15 -3017 ($ $ $)) (-15 -2896 ($ $ $)) (-15 -4199 ($ $ $)) (-15 -4197 ($ $ $)) (-15 -4197 ($ $)) (-15 * ($ $ $)) (-15 -4308 ($ $ $)) (-15 ** ($ $ $)) (-15 -2895 ($ $ $)) (-15 -2894 ($ $ $)) (-15 -2893 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -3191 ($ $ $)) (-15 -3190 ($ $ $)) (-15 -3676 ($ $)) (-15 -4097 ($ $ $)) (-15 -4097 ($ $)))) +((-2898 (((-112) $ $) NIL)) (-4191 (((-3 $ "failed") (-1149)) 33)) (-3471 (((-751)) 31)) (-3327 (($) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-2126 (((-895) $) 29)) (-3593 (((-1131) $) 39)) (-2492 (($ (-895)) 28)) (-3594 (((-1093) $) NIL)) (-4330 (((-1149) $) 13) (((-527) $) 19) (((-866 (-373)) $) 26) (((-866 (-538)) $) 22)) (-4317 (((-840) $) 16)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 36)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 35))) +(((-841 |#1|) (-13 (-821) (-598 (-1149)) (-598 (-527)) (-598 (-866 (-373))) (-598 (-866 (-538))) (-10 -8 (-15 -4191 ((-3 $ "failed") (-1149))))) (-622 (-1149))) (T -841)) +((-4191 (*1 *1 *2) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-841 *3)) (-14 *3 (-622 *2))))) +(-13 (-821) (-598 (-1149)) (-598 (-527)) (-598 (-866 (-373))) (-598 (-866 (-538))) (-10 -8 (-15 -4191 ((-3 $ "failed") (-1149))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (((-922 |#1|) $) NIL) (($ (-922 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-170)))) (-3461 (((-751)) NIL)) (-4283 (((-1237) (-751)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-842 |#1| |#2| |#3| |#4|) (-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4317 ((-922 |#1|) $)) (-15 -4317 ($ (-922 |#1|))) (IF (|has| |#1| (-358)) (-15 -4308 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4283 ((-1237) (-751))))) (-1025) (-622 (-1149)) (-622 (-751)) (-751)) (T -842)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-922 *3)) (-5 *1 (-842 *3 *4 *5 *6)) (-4 *3 (-1025)) (-14 *4 (-622 (-1149))) (-14 *5 (-622 (-751))) (-14 *6 (-751)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-5 *1 (-842 *3 *4 *5 *6)) (-14 *4 (-622 (-1149))) (-14 *5 (-622 (-751))) (-14 *6 (-751)))) (-4308 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-842 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *2 (-1025)) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-751))) (-14 *5 (-751)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-842 *4 *5 *6 *7)) (-4 *4 (-1025)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 *3)) (-14 *7 *3)))) +(-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4317 ((-922 |#1|) $)) (-15 -4317 ($ (-922 |#1|))) (IF (|has| |#1| (-358)) (-15 -4308 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4283 ((-1237) (-751))))) +((-2938 (((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|) 31)) (-2939 (((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|) 24))) +(((-843 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|)) (-15 -2938 ((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|))) (-358) (-1224 |#1|) (-1207 |#1|)) (T -843)) +((-2938 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-172 *6)) (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1224 *5)) (-4 *6 (-1207 *5)))) (-2939 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-402 *6)) (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1224 *5)) (-4 *6 (-1207 *5))))) +(-10 -7 (-15 -2939 ((-3 (-402 |#3|) "failed") (-751) (-751) |#2| |#2|)) (-15 -2938 ((-3 (-172 |#3|) "failed") (-751) (-751) |#2| |#2|))) +((-2939 (((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|)) 28) (((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) 26))) +(((-844 |#1| |#2| |#3|) (-10 -7 (-15 -2939 ((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|))) (-15 -2939 ((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|)))) (-358) (-1149) |#1|) (T -844)) +((-2939 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1221 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1200 *6 *5))) (-5 *1 (-844 *5 *6 *7)))) (-2939 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1221 *5 *6 *7)) (-4 *5 (-358)) (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1200 *6 *5))) (-5 *1 (-844 *5 *6 *7))))) +(-10 -7 (-15 -2939 ((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|))) (-15 -2939 ((-3 (-402 (-1200 |#2| |#1|)) "failed") (-751) (-751) (-1221 |#1| |#2| |#3|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $ (-538)) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2940 (($ (-1143 (-538)) (-538)) NIL)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2941 (($ $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4131 (((-751) $) NIL)) (-2502 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2943 (((-538)) NIL)) (-2942 (((-538) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-4128 (($ $ (-538)) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-2944 (((-1126 (-538)) $) NIL)) (-3224 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-4129 (((-538) $ (-538)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL))) +(((-845 |#1|) (-846 |#1|) (-538)) (T -845)) +NIL +(-846 |#1|) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3370 (($ $ (-538)) 60)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-2940 (($ (-1143 (-538)) (-538)) 59)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2941 (($ $) 62)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4131 (((-751) $) 67)) (-2502 (((-112) $) 30)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2943 (((-538)) 64)) (-2942 (((-538) $) 63)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-4128 (($ $ (-538)) 66)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-2944 (((-1126 (-538)) $) 68)) (-3224 (($ $) 65)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-4129 (((-538) $ (-538)) 61)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-846 |#1|) (-138) (-538)) (T -846)) +((-2944 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-1126 (-538))))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-751)))) (-4128 (*1 *1 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) (-3224 (*1 *1 *1) (-4 *1 (-846 *2))) (-2943 (*1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) (-2941 (*1 *1 *1) (-4 *1 (-846 *2))) (-4129 (*1 *2 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) (-3370 (*1 *1 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) (-2940 (*1 *1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *3 (-538)) (-4 *1 (-846 *4))))) +(-13 (-302) (-145) (-10 -8 (-15 -2944 ((-1126 (-538)) $)) (-15 -4131 ((-751) $)) (-15 -4128 ($ $ (-538))) (-15 -3224 ($ $)) (-15 -2943 ((-538))) (-15 -2942 ((-538) $)) (-15 -2941 ($ $)) (-15 -4129 ((-538) $ (-538))) (-15 -3370 ($ $ (-538))) (-15 -2940 ($ (-1143 (-538)) (-538))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-302) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-845 |#1|) $) NIL (|has| (-845 |#1|) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-845 |#1|) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-845 |#1|) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-845 |#1|) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-845 |#1|) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| (-845 |#1|) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| (-845 |#1|) (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| (-845 |#1|) (-1014 (-538))))) (-3507 (((-845 |#1|) $) NIL) (((-1149) $) NIL (|has| (-845 |#1|) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-845 |#1|) (-1014 (-538)))) (((-538) $) NIL (|has| (-845 |#1|) (-1014 (-538))))) (-4090 (($ $) NIL) (($ (-538) $) NIL)) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-845 |#1|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-845 |#1|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-845 |#1|))) (|:| |vec| (-1231 (-845 |#1|)))) (-669 $) (-1231 $)) NIL) (((-669 (-845 |#1|)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-845 |#1|) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| (-845 |#1|) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-845 |#1|) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-845 |#1|) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-845 |#1|) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-1124)))) (-3538 (((-112) $) NIL (|has| (-845 |#1|) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-845 |#1|) (-827)))) (-3678 (($ $ $) NIL (|has| (-845 |#1|) (-827)))) (-4318 (($ (-1 (-845 |#1|) (-845 |#1|)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-845 |#1|) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-845 |#1|) (-302)))) (-3465 (((-845 |#1|) $) NIL (|has| (-845 |#1|) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-845 |#1|) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-845 |#1|) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-845 |#1|)) (-622 (-845 |#1|))) NIL (|has| (-845 |#1|) (-304 (-845 |#1|)))) (($ $ (-845 |#1|) (-845 |#1|)) NIL (|has| (-845 |#1|) (-304 (-845 |#1|)))) (($ $ (-288 (-845 |#1|))) NIL (|has| (-845 |#1|) (-304 (-845 |#1|)))) (($ $ (-622 (-288 (-845 |#1|)))) NIL (|has| (-845 |#1|) (-304 (-845 |#1|)))) (($ $ (-622 (-1149)) (-622 (-845 |#1|))) NIL (|has| (-845 |#1|) (-507 (-1149) (-845 |#1|)))) (($ $ (-1149) (-845 |#1|)) NIL (|has| (-845 |#1|) (-507 (-1149) (-845 |#1|))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-845 |#1|)) NIL (|has| (-845 |#1|) (-281 (-845 |#1|) (-845 |#1|))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| (-845 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-845 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-1 (-845 |#1|) (-845 |#1|)) (-751)) NIL) (($ $ (-1 (-845 |#1|) (-845 |#1|))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-845 |#1|) $) NIL)) (-4330 (((-866 (-538)) $) NIL (|has| (-845 |#1|) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-845 |#1|) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-845 |#1|) (-598 (-527)))) (((-373) $) NIL (|has| (-845 |#1|) (-996))) (((-221) $) NIL (|has| (-845 |#1|) (-996)))) (-2945 (((-172 (-402 (-538))) $) NIL)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-845 |#1|) (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL) (($ (-845 |#1|)) NIL) (($ (-1149)) NIL (|has| (-845 |#1|) (-1014 (-1149))))) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-845 |#1|) (-886))) (|has| (-845 |#1|) (-143))))) (-3461 (((-751)) NIL)) (-3466 (((-845 |#1|) $) NIL (|has| (-845 |#1|) (-537)))) (-2177 (((-112) $ $) NIL)) (-4129 (((-402 (-538)) $ (-538)) NIL)) (-3742 (($ $) NIL (|has| (-845 |#1|) (-800)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $) NIL (|has| (-845 |#1|) (-229))) (($ $ (-751)) NIL (|has| (-845 |#1|) (-229))) (($ $ (-1149)) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-845 |#1|) (-876 (-1149)))) (($ $ (-1 (-845 |#1|) (-845 |#1|)) (-751)) NIL) (($ $ (-1 (-845 |#1|) (-845 |#1|))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-845 |#1|) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-845 |#1|) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-845 |#1|) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-845 |#1|) (-827)))) (-4308 (($ $ $) NIL) (($ (-845 |#1|) (-845 |#1|)) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-845 |#1|) $) NIL) (($ $ (-845 |#1|)) NIL))) +(((-847 |#1|) (-13 (-967 (-845 |#1|)) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)))) (-538)) (T -847)) +((-4129 (*1 *2 *1 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-847 *4)) (-14 *4 *3) (-5 *3 (-538)))) (-2945 (*1 *2 *1) (-12 (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-847 *3)) (-14 *3 (-538)))) (-4090 (*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-14 *2 (-538)))) (-4090 (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-847 *3)) (-14 *3 *2)))) +(-13 (-967 (-845 |#1|)) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 ((|#2| $) NIL (|has| |#2| (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| |#2| (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (|has| |#2| (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538))))) (-3507 ((|#2| $) NIL) (((-1149) $) NIL (|has| |#2| (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-538)))) (((-538) $) NIL (|has| |#2| (-1014 (-538))))) (-4090 (($ $) 31) (($ (-538) $) 32)) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) 53)) (-3327 (($) NIL (|has| |#2| (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) NIL (|has| |#2| (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| |#2| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| |#2| (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 ((|#2| $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#2| (-1124)))) (-3538 (((-112) $) NIL (|has| |#2| (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 49)) (-3804 (($) NIL (|has| |#2| (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| |#2| (-302)))) (-3465 ((|#2| $) NIL (|has| |#2| (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 |#2|) (-622 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-304 |#2|))) (($ $ (-288 |#2|)) NIL (|has| |#2| (-304 |#2|))) (($ $ (-622 (-288 |#2|))) NIL (|has| |#2| (-304 |#2|))) (($ $ (-622 (-1149)) (-622 |#2|)) NIL (|has| |#2| (-507 (-1149) |#2|))) (($ $ (-1149) |#2|) NIL (|has| |#2| (-507 (-1149) |#2|)))) (-1704 (((-751) $) NIL)) (-4159 (($ $ |#2|) NIL (|has| |#2| (-281 |#2| |#2|)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) NIL (|has| |#2| (-229))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3328 (($ $) NIL)) (-3330 ((|#2| $) NIL)) (-4330 (((-866 (-538)) $) NIL (|has| |#2| (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| |#2| (-598 (-866 (-373))))) (((-527) $) NIL (|has| |#2| (-598 (-527)))) (((-373) $) NIL (|has| |#2| (-996))) (((-221) $) NIL (|has| |#2| (-996)))) (-2945 (((-172 (-402 (-538))) $) 68)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4317 (((-840) $) 87) (($ (-538)) 19) (($ $) NIL) (($ (-402 (-538))) 24) (($ |#2|) 18) (($ (-1149)) NIL (|has| |#2| (-1014 (-1149))))) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-3466 ((|#2| $) NIL (|has| |#2| (-537)))) (-2177 (((-112) $ $) NIL)) (-4129 (((-402 (-538)) $ (-538)) 60)) (-3742 (($ $) NIL (|has| |#2| (-800)))) (-2991 (($) 14 T CONST)) (-2997 (($) 16 T CONST)) (-3002 (($ $) NIL (|has| |#2| (-229))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) 35)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4197 (($ $) 39) (($ $ $) 41)) (-4199 (($ $ $) 37)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) 50)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 42) (($ $ $) 44) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL))) +(((-848 |#1| |#2|) (-13 (-967 |#2|) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)))) (-538) (-846 |#1|)) (T -848)) +((-4129 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-402 (-538))) (-5 *1 (-848 *4 *5)) (-5 *3 (-538)) (-4 *5 (-846 *4)))) (-2945 (*1 *2 *1) (-12 (-14 *3 (-538)) (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-848 *3 *4)) (-4 *4 (-846 *3)))) (-4090 (*1 *1 *1) (-12 (-14 *2 (-538)) (-5 *1 (-848 *2 *3)) (-4 *3 (-846 *2)))) (-4090 (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-14 *3 *2) (-5 *1 (-848 *3 *4)) (-4 *4 (-846 *3))))) +(-13 (-967 |#2|) (-10 -8 (-15 -4129 ((-402 (-538)) $ (-538))) (-15 -2945 ((-172 (-402 (-538))) $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)))) +((-2898 (((-112) $ $) NIL (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074))))) (-4155 ((|#2| $) 12)) (-2946 (($ |#1| |#2|) 9)) (-3593 (((-1131) $) NIL (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074))))) (-3594 (((-1093) $) NIL (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#1| $) 11)) (-3884 (($ |#1| |#2|) 10)) (-4317 (((-840) $) 18 (-3891 (-12 (|has| |#1| (-597 (-840))) (|has| |#2| (-597 (-840)))) (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074)))))) (-3387 (((-112) $ $) 22 (-12 (|has| |#1| (-1074)) (|has| |#2| (-1074)))))) +(((-849 |#1| |#2|) (-13 (-1185) (-10 -8 (IF (|has| |#1| (-597 (-840))) (IF (|has| |#2| (-597 (-840))) (-6 (-597 (-840))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1074)) (IF (|has| |#2| (-1074)) (-6 (-1074)) |%noBranch|) |%noBranch|) (-15 -2946 ($ |#1| |#2|)) (-15 -3884 ($ |#1| |#2|)) (-15 -4160 (|#1| $)) (-15 -4155 (|#2| $)))) (-1185) (-1185)) (T -849)) +((-2946 (*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1185)) (-4 *3 (-1185)))) (-3884 (*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1185)) (-4 *3 (-1185)))) (-4160 (*1 *2 *1) (-12 (-4 *2 (-1185)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1185)))) (-4155 (*1 *2 *1) (-12 (-4 *2 (-1185)) (-5 *1 (-849 *3 *2)) (-4 *3 (-1185))))) +(-13 (-1185) (-10 -8 (IF (|has| |#1| (-597 (-840))) (IF (|has| |#2| (-597 (-840))) (-6 (-597 (-840))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1074)) (IF (|has| |#2| (-1074)) (-6 (-1074)) |%noBranch|) |%noBranch|) (-15 -2946 ($ |#1| |#2|)) (-15 -3884 ($ |#1| |#2|)) (-15 -4160 (|#1| $)) (-15 -4155 (|#2| $)))) +((-2898 (((-112) $ $) NIL)) (-3290 (((-538) $) 15)) (-2948 (($ (-155)) 11)) (-2947 (($ (-155)) 12)) (-3593 (((-1131) $) NIL)) (-3289 (((-155) $) 13)) (-3594 (((-1093) $) NIL)) (-2950 (($ (-155)) 9)) (-2951 (($ (-155)) 8)) (-4317 (((-840) $) 23) (($ (-155)) 16)) (-2949 (($ (-155)) 10)) (-3387 (((-112) $ $) NIL))) +(((-850) (-13 (-1074) (-10 -8 (-15 -2951 ($ (-155))) (-15 -2950 ($ (-155))) (-15 -2949 ($ (-155))) (-15 -2948 ($ (-155))) (-15 -2947 ($ (-155))) (-15 -3289 ((-155) $)) (-15 -3290 ((-538) $)) (-15 -4317 ($ (-155)))))) (T -850)) +((-2951 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-2949 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-2948 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-2947 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-850)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) +(-13 (-1074) (-10 -8 (-15 -2951 ($ (-155))) (-15 -2950 ($ (-155))) (-15 -2949 ($ (-155))) (-15 -2948 ($ (-155))) (-15 -2947 ($ (-155))) (-15 -3289 ((-155) $)) (-15 -3290 ((-538) $)) (-15 -4317 ($ (-155))))) +((-4317 (((-309 (-538)) (-402 (-922 (-48)))) 23) (((-309 (-538)) (-922 (-48))) 18))) +(((-851) (-10 -7 (-15 -4317 ((-309 (-538)) (-922 (-48)))) (-15 -4317 ((-309 (-538)) (-402 (-922 (-48))))))) (T -851)) +((-4317 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 (-48)))) (-5 *2 (-309 (-538))) (-5 *1 (-851)))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-922 (-48))) (-5 *2 (-309 (-538))) (-5 *1 (-851))))) +(-10 -7 (-15 -4317 ((-309 (-538)) (-922 (-48)))) (-15 -4317 ((-309 (-538)) (-402 (-922 (-48)))))) +((-4318 (((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)) 14))) +(((-852 |#1| |#2|) (-10 -7 (-15 -4318 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) (-1185) (-1185)) (T -852)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6))))) +(-10 -7 (-15 -4318 ((-853 |#2|) (-1 |#2| |#1|) (-853 |#1|)))) +((-3730 (($ |#1| |#1|) 8)) (-2954 ((|#1| $ (-751)) 10))) +(((-853 |#1|) (-10 -8 (-15 -3730 ($ |#1| |#1|)) (-15 -2954 (|#1| $ (-751)))) (-1185)) (T -853)) +((-2954 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-853 *2)) (-4 *2 (-1185)))) (-3730 (*1 *1 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1185))))) +(-10 -8 (-15 -3730 ($ |#1| |#1|)) (-15 -2954 (|#1| $ (-751)))) +((-4318 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14))) +(((-854 |#1| |#2|) (-10 -7 (-15 -4318 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) (-1185) (-1185)) (T -854)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6))))) +(-10 -7 (-15 -4318 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)))) +((-3730 (($ |#1| |#1| |#1|) 8)) (-2954 ((|#1| $ (-751)) 10))) +(((-855 |#1|) (-10 -8 (-15 -3730 ($ |#1| |#1| |#1|)) (-15 -2954 (|#1| $ (-751)))) (-1185)) (T -855)) +((-2954 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-855 *2)) (-4 *2 (-1185)))) (-3730 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1185))))) +(-10 -8 (-15 -3730 ($ |#1| |#1| |#1|)) (-15 -2954 (|#1| $ (-751)))) +((-2952 (((-622 (-1154)) (-1131)) 9))) +(((-856) (-10 -7 (-15 -2952 ((-622 (-1154)) (-1131))))) (T -856)) +((-2952 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-622 (-1154))) (-5 *1 (-856))))) +(-10 -7 (-15 -2952 ((-622 (-1154)) (-1131)))) +((-4318 (((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)) 14))) +(((-857 |#1| |#2|) (-10 -7 (-15 -4318 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) (-1185) (-1185)) (T -857)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6))))) +(-10 -7 (-15 -4318 ((-858 |#2|) (-1 |#2| |#1|) (-858 |#1|)))) +((-2953 (($ |#1| |#1| |#1|) 8)) (-2954 ((|#1| $ (-751)) 10))) +(((-858 |#1|) (-10 -8 (-15 -2953 ($ |#1| |#1| |#1|)) (-15 -2954 (|#1| $ (-751)))) (-1185)) (T -858)) +((-2954 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-858 *2)) (-4 *2 (-1185)))) (-2953 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1185))))) +(-10 -8 (-15 -2953 ($ |#1| |#1| |#1|)) (-15 -2954 (|#1| $ (-751)))) +((-2958 (((-1126 (-622 (-538))) (-622 (-538)) (-1126 (-622 (-538)))) 32)) (-2957 (((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538))) 28)) (-2959 (((-1126 (-622 (-538))) (-622 (-538))) 41) (((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538))) 40)) (-2960 (((-1126 (-622 (-538))) (-538)) 42)) (-2955 (((-1126 (-622 (-538))) (-538) (-538)) 22) (((-1126 (-622 (-538))) (-538)) 16) (((-1126 (-622 (-538))) (-538) (-538) (-538)) 12)) (-2956 (((-1126 (-622 (-538))) (-1126 (-622 (-538)))) 26)) (-3342 (((-622 (-538)) (-622 (-538))) 25))) +(((-859) (-10 -7 (-15 -2955 ((-1126 (-622 (-538))) (-538) (-538) (-538))) (-15 -2955 ((-1126 (-622 (-538))) (-538))) (-15 -2955 ((-1126 (-622 (-538))) (-538) (-538))) (-15 -3342 ((-622 (-538)) (-622 (-538)))) (-15 -2956 ((-1126 (-622 (-538))) (-1126 (-622 (-538))))) (-15 -2957 ((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538)))) (-15 -2958 ((-1126 (-622 (-538))) (-622 (-538)) (-1126 (-622 (-538))))) (-15 -2959 ((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538)))) (-15 -2959 ((-1126 (-622 (-538))) (-622 (-538)))) (-15 -2960 ((-1126 (-622 (-538))) (-538))))) (T -859)) +((-2960 (*1 *2 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))) (-2959 (*1 *2 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538))))) (-2959 (*1 *2 *3 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538))))) (-2958 (*1 *2 *3 *2) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *3 (-622 (-538))) (-5 *1 (-859)))) (-2957 (*1 *2 *3 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538))))) (-2956 (*1 *2 *2) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)))) (-3342 (*1 *2 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-859)))) (-2955 (*1 *2 *3 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))) (-2955 (*1 *2 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))) (-2955 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538))))) +(-10 -7 (-15 -2955 ((-1126 (-622 (-538))) (-538) (-538) (-538))) (-15 -2955 ((-1126 (-622 (-538))) (-538))) (-15 -2955 ((-1126 (-622 (-538))) (-538) (-538))) (-15 -3342 ((-622 (-538)) (-622 (-538)))) (-15 -2956 ((-1126 (-622 (-538))) (-1126 (-622 (-538))))) (-15 -2957 ((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538)))) (-15 -2958 ((-1126 (-622 (-538))) (-622 (-538)) (-1126 (-622 (-538))))) (-15 -2959 ((-1126 (-622 (-538))) (-622 (-538)) (-622 (-538)))) (-15 -2959 ((-1126 (-622 (-538))) (-622 (-538)))) (-15 -2960 ((-1126 (-622 (-538))) (-538)))) +((-4330 (((-866 (-373)) $) 9 (|has| |#1| (-598 (-866 (-373))))) (((-866 (-538)) $) 8 (|has| |#1| (-598 (-866 (-538))))))) +(((-860 |#1|) (-138) (-1185)) (T -860)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-598 (-866 (-538)))) (-6 (-598 (-866 (-538)))) |%noBranch|) (IF (|has| |t#1| (-598 (-866 (-373)))) (-6 (-598 (-866 (-373)))) |%noBranch|))) +(((-598 (-866 (-373))) |has| |#1| (-598 (-866 (-373)))) ((-598 (-866 (-538))) |has| |#1| (-598 (-866 (-538))))) +((-2898 (((-112) $ $) NIL)) (-3977 (($) 14)) (-2963 (($ (-864 |#1| |#2|) (-864 |#1| |#3|)) 27)) (-2961 (((-864 |#1| |#3|) $) 16)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-2971 (((-112) $) 22)) (-2970 (($) 19)) (-4317 (((-840) $) 30)) (-2962 (((-864 |#1| |#2|) $) 15)) (-3387 (((-112) $ $) 25))) +(((-861 |#1| |#2| |#3|) (-13 (-1074) (-10 -8 (-15 -2971 ((-112) $)) (-15 -2970 ($)) (-15 -3977 ($)) (-15 -2963 ($ (-864 |#1| |#2|) (-864 |#1| |#3|))) (-15 -2962 ((-864 |#1| |#2|) $)) (-15 -2961 ((-864 |#1| |#3|) $)))) (-1074) (-1074) (-646 |#2|)) (T -861)) +((-2971 (*1 *2 *1) (-12 (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1074)) (-4 *5 (-646 *4)))) (-2970 (*1 *1) (-12 (-4 *3 (-1074)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1074)) (-4 *4 (-646 *3)))) (-3977 (*1 *1) (-12 (-4 *3 (-1074)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1074)) (-4 *4 (-646 *3)))) (-2963 (*1 *1 *2 *3) (-12 (-5 *2 (-864 *4 *5)) (-5 *3 (-864 *4 *6)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-646 *5)) (-5 *1 (-861 *4 *5 *6)))) (-2962 (*1 *2 *1) (-12 (-4 *4 (-1074)) (-5 *2 (-864 *3 *4)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1074)) (-4 *5 (-646 *4)))) (-2961 (*1 *2 *1) (-12 (-4 *4 (-1074)) (-5 *2 (-864 *3 *5)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1074)) (-4 *5 (-646 *4))))) +(-13 (-1074) (-10 -8 (-15 -2971 ((-112) $)) (-15 -2970 ($)) (-15 -3977 ($)) (-15 -2963 ($ (-864 |#1| |#2|) (-864 |#1| |#3|))) (-15 -2962 ((-864 |#1| |#2|) $)) (-15 -2961 ((-864 |#1| |#3|) $)))) +((-2898 (((-112) $ $) 7)) (-3129 (((-864 |#1| $) $ (-866 |#1|) (-864 |#1| $)) 13)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6))) +(((-862 |#1|) (-138) (-1074)) (T -862)) +((-3129 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-864 *4 *1)) (-5 *3 (-866 *4)) (-4 *1 (-862 *4)) (-4 *4 (-1074))))) +(-13 (-1074) (-10 -8 (-15 -3129 ((-864 |t#1| $) $ (-866 |t#1|) (-864 |t#1| $))))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2964 (((-112) (-622 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-2965 (((-864 |#1| |#2|) |#2| |#3|) 43 (-12 (-3676 (|has| |#2| (-1014 (-1149)))) (-3676 (|has| |#2| (-1025))))) (((-622 (-288 (-922 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-1025)) (-3676 (|has| |#2| (-1014 (-1149)))))) (((-622 (-288 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1014 (-1149)))) (((-861 |#1| |#2| (-622 |#2|)) (-622 |#2|) |#3|) 21))) +(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -2964 ((-112) |#2| |#3|)) (-15 -2964 ((-112) (-622 |#2|) |#3|)) (-15 -2965 ((-861 |#1| |#2| (-622 |#2|)) (-622 |#2|) |#3|)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2965 ((-622 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1025)) (-15 -2965 ((-622 (-288 (-922 |#2|))) |#2| |#3|)) (-15 -2965 ((-864 |#1| |#2|) |#2| |#3|))))) (-1074) (-862 |#1|) (-598 (-866 |#1|))) (T -863)) +((-2965 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-5 *2 (-864 *5 *3)) (-5 *1 (-863 *5 *3 *4)) (-3676 (-4 *3 (-1014 (-1149)))) (-3676 (-4 *3 (-1025))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-866 *5))))) (-2965 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-5 *2 (-622 (-288 (-922 *3)))) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-1025)) (-3676 (-4 *3 (-1014 (-1149)))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-866 *5))))) (-2965 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-5 *2 (-622 (-288 *3))) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-1014 (-1149))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-866 *5))))) (-2965 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-4 *6 (-862 *5)) (-5 *2 (-861 *5 *6 (-622 *6))) (-5 *1 (-863 *5 *6 *4)) (-5 *3 (-622 *6)) (-4 *4 (-598 (-866 *5))))) (-2964 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *6)) (-4 *6 (-862 *5)) (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-863 *5 *6 *4)) (-4 *4 (-598 (-866 *5))))) (-2964 (*1 *2 *3 *4) (-12 (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-862 *5)) (-4 *4 (-598 (-866 *5)))))) +(-10 -7 (-15 -2964 ((-112) |#2| |#3|)) (-15 -2964 ((-112) (-622 |#2|) |#3|)) (-15 -2965 ((-861 |#1| |#2| (-622 |#2|)) (-622 |#2|) |#3|)) (IF (|has| |#2| (-1014 (-1149))) (-15 -2965 ((-622 (-288 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1025)) (-15 -2965 ((-622 (-288 (-922 |#2|))) |#2| |#3|)) (-15 -2965 ((-864 |#1| |#2|) |#2| |#3|))))) +((-2898 (((-112) $ $) NIL)) (-3585 (($ $ $) 39)) (-2992 (((-3 (-112) "failed") $ (-866 |#1|)) 36)) (-3977 (($) 12)) (-3593 (((-1131) $) NIL)) (-2967 (($ (-866 |#1|) |#2| $) 20)) (-3594 (((-1093) $) NIL)) (-2969 (((-3 |#2| "failed") (-866 |#1|) $) 50)) (-2971 (((-112) $) 15)) (-2970 (($) 13)) (-3608 (((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|))) $) 25)) (-3884 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|)))) 23)) (-4317 (((-840) $) 44)) (-2966 (($ (-866 |#1|) |#2| $ |#2|) 48)) (-2968 (($ (-866 |#1|) |#2| $) 47)) (-3387 (((-112) $ $) 41))) +(((-864 |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -2971 ((-112) $)) (-15 -2970 ($)) (-15 -3977 ($)) (-15 -3585 ($ $ $)) (-15 -2969 ((-3 |#2| "failed") (-866 |#1|) $)) (-15 -2968 ($ (-866 |#1|) |#2| $)) (-15 -2967 ($ (-866 |#1|) |#2| $)) (-15 -2966 ($ (-866 |#1|) |#2| $ |#2|)) (-15 -3608 ((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|))) $)) (-15 -3884 ($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|))))) (-15 -2992 ((-3 (-112) "failed") $ (-866 |#1|))))) (-1074) (-1074)) (T -864)) +((-2971 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-2970 (*1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3977 (*1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3585 (*1 *1 *1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-2969 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-4 *2 (-1074)) (-5 *1 (-864 *4 *2)))) (-2968 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074)))) (-2967 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074)))) (-2966 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074)))) (-3608 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 *4)))) (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 *4)))) (-4 *4 (-1074)) (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)))) (-2992 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-864 *4 *5)) (-4 *5 (-1074))))) +(-13 (-1074) (-10 -8 (-15 -2971 ((-112) $)) (-15 -2970 ($)) (-15 -3977 ($)) (-15 -3585 ($ $ $)) (-15 -2969 ((-3 |#2| "failed") (-866 |#1|) $)) (-15 -2968 ($ (-866 |#1|) |#2| $)) (-15 -2967 ($ (-866 |#1|) |#2| $)) (-15 -2966 ($ (-866 |#1|) |#2| $ |#2|)) (-15 -3608 ((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|))) $)) (-15 -3884 ($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 |#2|))))) (-15 -2992 ((-3 (-112) "failed") $ (-866 |#1|))))) +((-4318 (((-864 |#1| |#3|) (-1 |#3| |#2|) (-864 |#1| |#2|)) 22))) +(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-864 |#1| |#3|) (-1 |#3| |#2|) (-864 |#1| |#2|)))) (-1074) (-1074) (-1074)) (T -865)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-864 *5 *6)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-864 *5 *7)) (-5 *1 (-865 *5 *6 *7))))) +(-10 -7 (-15 -4318 ((-864 |#1| |#3|) (-1 |#3| |#2|) (-864 |#1| |#2|)))) +((-2898 (((-112) $ $) NIL)) (-2979 (($ $ (-622 (-51))) 64)) (-3417 (((-622 $) $) 118)) (-2976 (((-2 (|:| |var| (-622 (-1149))) (|:| |pred| (-51))) $) 24)) (-3611 (((-112) $) 30)) (-2977 (($ $ (-622 (-1149)) (-51)) 25)) (-2980 (($ $ (-622 (-51))) 63)) (-3508 (((-3 |#1| #1="failed") $) 61) (((-3 (-1149) #1#) $) 140)) (-3507 ((|#1| $) 58) (((-1149) $) NIL)) (-2974 (($ $) 108)) (-2986 (((-112) $) 47)) (-2981 (((-622 (-51)) $) 45)) (-2978 (($ (-1149) (-112) (-112) (-112)) 65)) (-2972 (((-3 (-622 $) "failed") (-622 $)) 72)) (-2983 (((-112) $) 50)) (-2984 (((-112) $) 49)) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) "failed") $) 36)) (-2989 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3158 (((-3 (-2 (|:| |val| $) (|:| -2493 $)) "failed") $) 83)) (-3155 (((-3 (-622 $) "failed") $) 33)) (-2990 (((-3 (-622 $) "failed") $ (-113)) 107) (((-3 (-2 (|:| -2836 (-113)) (|:| |arg| (-622 $))) "failed") $) 95)) (-2988 (((-3 (-622 $) "failed") $) 37)) (-3157 (((-3 (-2 (|:| |val| $) (|:| -2493 (-751))) "failed") $) 40)) (-2987 (((-112) $) 29)) (-3594 (((-1093) $) NIL)) (-2975 (((-112) $) 21)) (-2982 (((-112) $) 46)) (-2973 (((-622 (-51)) $) 111)) (-2985 (((-112) $) 48)) (-4159 (($ (-113) (-622 $)) 92)) (-3682 (((-751) $) 28)) (-3759 (($ $) 62)) (-4330 (($ (-622 $)) 59)) (-4312 (((-112) $) 26)) (-4317 (((-840) $) 53) (($ |#1|) 18) (($ (-1149)) 66)) (-2993 (($ $ (-51)) 110)) (-2991 (($) 91 T CONST)) (-2997 (($) 73 T CONST)) (-3387 (((-112) $ $) 79)) (-4308 (($ $ $) 100)) (-4199 (($ $ $) 104)) (** (($ $ (-751)) 99) (($ $ $) 54)) (* (($ $ $) 105))) +(((-866 |#1|) (-13 (-1074) (-1014 |#1|) (-1014 (-1149)) (-10 -8 (-15 0 ($) -4311) (-15 1 ($) -4311) (-15 -3155 ((-3 (-622 $) "failed") $)) (-15 -3156 ((-3 (-622 $) "failed") $)) (-15 -2990 ((-3 (-622 $) "failed") $ (-113))) (-15 -2990 ((-3 (-2 (|:| -2836 (-113)) (|:| |arg| (-622 $))) "failed") $)) (-15 -3157 ((-3 (-2 (|:| |val| $) (|:| -2493 (-751))) "failed") $)) (-15 -2989 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2988 ((-3 (-622 $) "failed") $)) (-15 -3158 ((-3 (-2 (|:| |val| $) (|:| -2493 $)) "failed") $)) (-15 -4159 ($ (-113) (-622 $))) (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ $)) (-15 -4308 ($ $ $)) (-15 -3682 ((-751) $)) (-15 -4330 ($ (-622 $))) (-15 -3759 ($ $)) (-15 -2987 ((-112) $)) (-15 -2986 ((-112) $)) (-15 -3611 ((-112) $)) (-15 -4312 ((-112) $)) (-15 -2985 ((-112) $)) (-15 -2984 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -2982 ((-112) $)) (-15 -2981 ((-622 (-51)) $)) (-15 -2980 ($ $ (-622 (-51)))) (-15 -2979 ($ $ (-622 (-51)))) (-15 -2978 ($ (-1149) (-112) (-112) (-112))) (-15 -2977 ($ $ (-622 (-1149)) (-51))) (-15 -2976 ((-2 (|:| |var| (-622 (-1149))) (|:| |pred| (-51))) $)) (-15 -2975 ((-112) $)) (-15 -2974 ($ $)) (-15 -2993 ($ $ (-51))) (-15 -2973 ((-622 (-51)) $)) (-15 -3417 ((-622 $) $)) (-15 -2972 ((-3 (-622 $) "failed") (-622 $))))) (-1074)) (T -866)) +((-2991 (*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-2997 (*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-3155 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3156 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2990 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-113)) (-5 *2 (-622 (-866 *4))) (-5 *1 (-866 *4)) (-4 *4 (-1074)))) (-2990 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2836 (-113)) (|:| |arg| (-622 (-866 *3))))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3157 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -2493 (-751)))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2989 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-866 *3)) (|:| |den| (-866 *3)))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2988 (*1 *2 *1) (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3158 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -2493 (-866 *3)))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-4159 (*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 (-866 *4))) (-5 *1 (-866 *4)) (-4 *4 (-1074)))) (-4199 (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-4308 (*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3759 (*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-2987 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2985 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2980 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2979 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2978 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-112)) (-5 *1 (-866 *4)) (-4 *4 (-1074)))) (-2977 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-51)) (-5 *1 (-866 *4)) (-4 *4 (-1074)))) (-2976 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-622 (-1149))) (|:| |pred| (-51)))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2974 (*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) (-2993 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) (-2972 (*1 *2 *2) (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(-13 (-1074) (-1014 |#1|) (-1014 (-1149)) (-10 -8 (-15 (-2991) ($) -4311) (-15 (-2997) ($) -4311) (-15 -3155 ((-3 (-622 $) "failed") $)) (-15 -3156 ((-3 (-622 $) "failed") $)) (-15 -2990 ((-3 (-622 $) "failed") $ (-113))) (-15 -2990 ((-3 (-2 (|:| -2836 (-113)) (|:| |arg| (-622 $))) "failed") $)) (-15 -3157 ((-3 (-2 (|:| |val| $) (|:| -2493 (-751))) "failed") $)) (-15 -2989 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2988 ((-3 (-622 $) "failed") $)) (-15 -3158 ((-3 (-2 (|:| |val| $) (|:| -2493 $)) "failed") $)) (-15 -4159 ($ (-113) (-622 $))) (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751))) (-15 ** ($ $ $)) (-15 -4308 ($ $ $)) (-15 -3682 ((-751) $)) (-15 -4330 ($ (-622 $))) (-15 -3759 ($ $)) (-15 -2987 ((-112) $)) (-15 -2986 ((-112) $)) (-15 -3611 ((-112) $)) (-15 -4312 ((-112) $)) (-15 -2985 ((-112) $)) (-15 -2984 ((-112) $)) (-15 -2983 ((-112) $)) (-15 -2982 ((-112) $)) (-15 -2981 ((-622 (-51)) $)) (-15 -2980 ($ $ (-622 (-51)))) (-15 -2979 ($ $ (-622 (-51)))) (-15 -2978 ($ (-1149) (-112) (-112) (-112))) (-15 -2977 ($ $ (-622 (-1149)) (-51))) (-15 -2976 ((-2 (|:| |var| (-622 (-1149))) (|:| |pred| (-51))) $)) (-15 -2975 ((-112) $)) (-15 -2974 ($ $)) (-15 -2993 ($ $ (-51))) (-15 -2973 ((-622 (-51)) $)) (-15 -3417 ((-622 $) $)) (-15 -2972 ((-3 (-622 $) "failed") (-622 $))))) +((-3560 (((-866 |#1|) (-866 |#1|) (-622 (-1149)) (-1 (-112) (-622 |#2|))) 32) (((-866 |#1|) (-866 |#1|) (-622 (-1 (-112) |#2|))) 43) (((-866 |#1|) (-866 |#1|) (-1 (-112) |#2|)) 35)) (-2992 (((-112) (-622 |#2|) (-866 |#1|)) 40) (((-112) |#2| (-866 |#1|)) 36)) (-3885 (((-1 (-112) |#2|) (-866 |#1|)) 16)) (-2994 (((-622 |#2|) (-866 |#1|)) 24)) (-2993 (((-866 |#1|) (-866 |#1|) |#2|) 20))) +(((-867 |#1| |#2|) (-10 -7 (-15 -3560 ((-866 |#1|) (-866 |#1|) (-1 (-112) |#2|))) (-15 -3560 ((-866 |#1|) (-866 |#1|) (-622 (-1 (-112) |#2|)))) (-15 -3560 ((-866 |#1|) (-866 |#1|) (-622 (-1149)) (-1 (-112) (-622 |#2|)))) (-15 -3885 ((-1 (-112) |#2|) (-866 |#1|))) (-15 -2992 ((-112) |#2| (-866 |#1|))) (-15 -2992 ((-112) (-622 |#2|) (-866 |#1|))) (-15 -2993 ((-866 |#1|) (-866 |#1|) |#2|)) (-15 -2994 ((-622 |#2|) (-866 |#1|)))) (-1074) (-1185)) (T -867)) +((-2994 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-622 *5)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1185)))) (-2993 (*1 *2 *2 *3) (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1185)))) (-2992 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-1185)) (-5 *2 (-112)) (-5 *1 (-867 *5 *6)))) (-2992 (*1 *2 *3 *4) (-12 (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-867 *5 *3)) (-4 *3 (-1185)))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1185)))) (-3560 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-866 *5)) (-5 *3 (-622 (-1149))) (-5 *4 (-1 (-112) (-622 *6))) (-4 *5 (-1074)) (-4 *6 (-1185)) (-5 *1 (-867 *5 *6)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-866 *4)) (-5 *3 (-622 (-1 (-112) *5))) (-4 *4 (-1074)) (-4 *5 (-1185)) (-5 *1 (-867 *4 *5)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *2 (-866 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1074)) (-4 *5 (-1185)) (-5 *1 (-867 *4 *5))))) +(-10 -7 (-15 -3560 ((-866 |#1|) (-866 |#1|) (-1 (-112) |#2|))) (-15 -3560 ((-866 |#1|) (-866 |#1|) (-622 (-1 (-112) |#2|)))) (-15 -3560 ((-866 |#1|) (-866 |#1|) (-622 (-1149)) (-1 (-112) (-622 |#2|)))) (-15 -3885 ((-1 (-112) |#2|) (-866 |#1|))) (-15 -2992 ((-112) |#2| (-866 |#1|))) (-15 -2992 ((-112) (-622 |#2|) (-866 |#1|))) (-15 -2993 ((-866 |#1|) (-866 |#1|) |#2|)) (-15 -2994 ((-622 |#2|) (-866 |#1|)))) +((-4318 (((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)) 19))) +(((-868 |#1| |#2|) (-10 -7 (-15 -4318 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)))) (-1074) (-1074)) (T -868)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-866 *6)) (-5 *1 (-868 *5 *6))))) +(-10 -7 (-15 -4318 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)))) +((-2898 (((-112) $ $) NIL)) (-4294 (((-622 |#1|) $) 16)) (-2995 (((-112) $) 38)) (-3508 (((-3 (-652 |#1|) "failed") $) 43)) (-3507 (((-652 |#1|) $) 41)) (-4158 (($ $) 18)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-4193 (((-751) $) 46)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-652 |#1|) $) 17)) (-4317 (((-840) $) 37) (($ (-652 |#1|)) 21) (((-799 |#1|) $) 27) (($ |#1|) 20)) (-2997 (($) 8 T CONST)) (-2996 (((-622 (-652 |#1|)) $) 23)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 11)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 49))) +(((-869 |#1|) (-13 (-827) (-1014 (-652 |#1|)) (-10 -8 (-15 1 ($) -4311) (-15 -4317 ((-799 |#1|) $)) (-15 -4317 ($ |#1|)) (-15 -4160 ((-652 |#1|) $)) (-15 -4193 ((-751) $)) (-15 -2996 ((-622 (-652 |#1|)) $)) (-15 -4158 ($ $)) (-15 -2995 ((-112) $)) (-15 -4294 ((-622 |#1|) $)))) (-827)) (T -869)) +((-2997 (*1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-4317 (*1 *1 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-622 (-652 *3))) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-4158 (*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) (-2995 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827))))) +(-13 (-827) (-1014 (-652 |#1|)) (-10 -8 (-15 (-2997) ($) -4311) (-15 -4317 ((-799 |#1|) $)) (-15 -4317 ($ |#1|)) (-15 -4160 ((-652 |#1|) $)) (-15 -4193 ((-751) $)) (-15 -2996 ((-622 (-652 |#1|)) $)) (-15 -4158 ($ $)) (-15 -2995 ((-112) $)) (-15 -4294 ((-622 |#1|) $)))) +((-3828 ((|#1| |#1| |#1|) 19))) +(((-870 |#1| |#2|) (-10 -7 (-15 -3828 (|#1| |#1| |#1|))) (-1207 |#2|) (-1025)) (T -870)) +((-3828 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1207 *3))))) +(-10 -7 (-15 -3828 (|#1| |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3001 (((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 14)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2998 (((-1011) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 13)) (-3387 (((-112) $ $) 6))) +(((-871) (-138)) (T -871)) +((-3001 (*1 *2 *3 *4) (-12 (-4 *1 (-871)) (-5 *3 (-1037)) (-5 *4 (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) (-2998 (*1 *2 *3) (-12 (-4 *1 (-871)) (-5 *3 (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *2 (-1011))))) +(-13 (-1074) (-10 -7 (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| |explanations| (-1131))) (-1037) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -2998 ((-1011) (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-3000 ((|#1| |#1| (-751)) 24)) (-2999 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3794 (((-3 (-2 (|:| -3473 |#1|) (|:| -3472 |#1|)) "failed") |#1| (-751) (-751)) 27) (((-622 |#1|) |#1|) 29))) +(((-872 |#1| |#2|) (-10 -7 (-15 -3794 ((-622 |#1|) |#1|)) (-15 -3794 ((-3 (-2 (|:| -3473 |#1|) (|:| -3472 |#1|)) "failed") |#1| (-751) (-751))) (-15 -2999 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3000 (|#1| |#1| (-751)))) (-1207 |#2|) (-358)) (T -872)) +((-3000 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-5 *1 (-872 *2 *4)) (-4 *2 (-1207 *4)))) (-2999 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-358)) (-5 *1 (-872 *2 *3)) (-4 *2 (-1207 *3)))) (-3794 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-751)) (-4 *5 (-358)) (-5 *2 (-2 (|:| -3473 *3) (|:| -3472 *3))) (-5 *1 (-872 *3 *5)) (-4 *3 (-1207 *5)))) (-3794 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-872 *3 *4)) (-4 *3 (-1207 *4))))) +(-10 -7 (-15 -3794 ((-622 |#1|) |#1|)) (-15 -3794 ((-3 (-2 (|:| -3473 |#1|) (|:| -3472 |#1|)) "failed") |#1| (-751) (-751))) (-15 -2999 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3000 (|#1| |#1| (-751)))) +((-3936 (((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131)) 96) (((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131) (-221)) 91) (((-1011) (-874) (-1037)) 83) (((-1011) (-874)) 84)) (-3001 (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874) (-1037)) 59) (((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874)) 61))) +(((-873) (-10 -7 (-15 -3936 ((-1011) (-874))) (-15 -3936 ((-1011) (-874) (-1037))) (-15 -3936 ((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131) (-221))) (-15 -3936 ((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874) (-1037))))) (T -873)) +((-3001 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-873)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131))))) (-5 *1 (-873)))) (-3936 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-751)) (-5 *6 (-622 (-622 (-309 *3)))) (-5 *7 (-1131)) (-5 *5 (-622 (-309 (-373)))) (-5 *3 (-373)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-3936 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-751)) (-5 *6 (-622 (-622 (-309 *3)))) (-5 *7 (-1131)) (-5 *8 (-221)) (-5 *5 (-622 (-309 (-373)))) (-5 *3 (-373)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-873)))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1011)) (-5 *1 (-873))))) +(-10 -7 (-15 -3936 ((-1011) (-874))) (-15 -3936 ((-1011) (-874) (-1037))) (-15 -3936 ((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131) (-221))) (-15 -3936 ((-1011) (-373) (-373) (-373) (-373) (-751) (-751) (-622 (-309 (-373))) (-622 (-622 (-309 (-373)))) (-1131))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874))) (-15 -3001 ((-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) (|:| |explanations| (-622 (-1131)))) (-874) (-1037)))) +((-2898 (((-112) $ $) NIL)) (-3507 (((-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $) 19)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 21) (($ (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) 18)) (-3387 (((-112) $ $) NIL))) +(((-874) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $))))) (T -874)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-874)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *1 (-874)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221)))) (-5 *1 (-874))))) +(-13 (-1074) (-10 -8 (-15 -4317 ($ (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))))) (-15 -4317 ((-840) $)) (-15 -3507 ((-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| (-622 (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) (|:| |dFinish| (-669 (-221)))))) (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) (|:| |tol| (-221))) $)))) +((-4170 (($ $ |#2|) NIL) (($ $ (-622 |#2|)) 10) (($ $ |#2| (-751)) 12) (($ $ (-622 |#2|) (-622 (-751))) 15)) (-3002 (($ $ |#2|) 16) (($ $ (-622 |#2|)) 18) (($ $ |#2| (-751)) 19) (($ $ (-622 |#2|) (-622 (-751))) 21))) +(((-875 |#1| |#2|) (-10 -8 (-15 -3002 (|#1| |#1| (-622 |#2|) (-622 (-751)))) (-15 -3002 (|#1| |#1| |#2| (-751))) (-15 -3002 (|#1| |#1| (-622 |#2|))) (-15 -3002 (|#1| |#1| |#2|)) (-15 -4170 (|#1| |#1| (-622 |#2|) (-622 (-751)))) (-15 -4170 (|#1| |#1| |#2| (-751))) (-15 -4170 (|#1| |#1| (-622 |#2|))) (-15 -4170 (|#1| |#1| |#2|))) (-876 |#2|) (-1074)) (T -875)) +NIL +(-10 -8 (-15 -3002 (|#1| |#1| (-622 |#2|) (-622 (-751)))) (-15 -3002 (|#1| |#1| |#2| (-751))) (-15 -3002 (|#1| |#1| (-622 |#2|))) (-15 -3002 (|#1| |#1| |#2|)) (-15 -4170 (|#1| |#1| (-622 |#2|) (-622 (-751)))) (-15 -4170 (|#1| |#1| |#2| (-751))) (-15 -4170 (|#1| |#1| (-622 |#2|))) (-15 -4170 (|#1| |#1| |#2|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4170 (($ $ |#1|) 40) (($ $ (-622 |#1|)) 39) (($ $ |#1| (-751)) 38) (($ $ (-622 |#1|) (-622 (-751))) 37)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ |#1|) 36) (($ $ (-622 |#1|)) 35) (($ $ |#1| (-751)) 34) (($ $ (-622 |#1|) (-622 (-751))) 33)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-876 |#1|) (-138) (-1074)) (T -876)) +((-4170 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1074)))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1074)))) (-4170 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1074)))) (-4170 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 (-751))) (-4 *1 (-876 *4)) (-4 *4 (-1074)))) (-3002 (*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1074)))) (-3002 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1074)))) (-3002 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1074)))) (-3002 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 (-751))) (-4 *1 (-876 *4)) (-4 *4 (-1074))))) +(-13 (-1025) (-10 -8 (-15 -4170 ($ $ |t#1|)) (-15 -4170 ($ $ (-622 |t#1|))) (-15 -4170 ($ $ |t#1| (-751))) (-15 -4170 ($ $ (-622 |t#1|) (-622 (-751)))) (-15 -3002 ($ $ |t#1|)) (-15 -3002 ($ $ (-622 |t#1|))) (-15 -3002 ($ $ |t#1| (-751))) (-15 -3002 ($ $ (-622 |t#1|) (-622 (-751)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) 26)) (-1271 (((-112) $ (-751)) NIL)) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-1353 (($ $ $) NIL (|has| $ (-6 -4354)))) (-1354 (($ $ $) NIL (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) (($ $ #2="left" $) NIL (|has| $ (-6 -4354))) (($ $ #3="right" $) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3472 (($ $) 25)) (-3003 (($ |#1|) 12) (($ $ $) 17)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3473 (($ $) 23)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) 20)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ #1#) NIL) (($ $ #2#) NIL) (($ $ #3#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1172 |#1|) $) 9) (((-840) $) 29 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 21 (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-877 |#1|) (-13 (-119 |#1|) (-10 -8 (-15 -3003 ($ |#1|)) (-15 -3003 ($ $ $)) (-15 -4317 ((-1172 |#1|) $)))) (-1074)) (T -877)) +((-3003 (*1 *1 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1074)))) (-3003 (*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1074)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1074))))) +(-13 (-119 |#1|) (-10 -8 (-15 -3003 ($ |#1|)) (-15 -3003 ($ $ $)) (-15 -4317 ((-1172 |#1|) $)))) +((-2898 (((-112) $ $) NIL)) (-3242 (((-622 $) (-622 $)) 77)) (-3986 (((-538) $) 60)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-4131 (((-751) $) 58)) (-3023 (((-1070 |#1|) $ |#1|) 49)) (-2502 (((-112) $) NIL)) (-3006 (((-112) $) 63)) (-3008 (((-751) $) 61)) (-3019 (((-1070 |#1|) $) 42)) (-3677 (($ $ $) NIL (-3891 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-3678 (($ $ $) NIL (-3891 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-3012 (((-2 (|:| |preimage| (-622 |#1|)) (|:| |image| (-622 |#1|))) $) 37)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 93)) (-3594 (((-1093) $) NIL)) (-3005 (((-1070 |#1|) $) 100 (|has| |#1| (-363)))) (-3007 (((-112) $) 59)) (-4127 ((|#1| $ |#1|) 47)) (-4159 ((|#1| $ |#1|) 94)) (-4307 (((-751) $) 44)) (-3014 (($ (-622 (-622 |#1|))) 85)) (-3009 (((-947) $) 53)) (-3015 (($ (-622 |#1|)) 21)) (-3342 (($ $ $) NIL)) (-2686 (($ $ $) NIL)) (-3011 (($ (-622 (-622 |#1|))) 39)) (-3010 (($ (-622 (-622 |#1|))) 88)) (-3004 (($ (-622 |#1|)) 96)) (-4317 (((-840) $) 84) (($ (-622 (-622 |#1|))) 66) (($ (-622 |#1|)) 67)) (-2997 (($) 16 T CONST)) (-2896 (((-112) $ $) NIL (-3891 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-3387 (((-112) $ $) 45)) (-3017 (((-112) $ $) NIL (-3891 (|has| |#1| (-363)) (|has| |#1| (-827))))) (-3018 (((-112) $ $) 65)) (-4308 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ $ $) 22))) +(((-878 |#1|) (-13 (-880 |#1|) (-10 -8 (-15 -3012 ((-2 (|:| |preimage| (-622 |#1|)) (|:| |image| (-622 |#1|))) $)) (-15 -3011 ($ (-622 (-622 |#1|)))) (-15 -4317 ($ (-622 (-622 |#1|)))) (-15 -4317 ($ (-622 |#1|))) (-15 -3010 ($ (-622 (-622 |#1|)))) (-15 -4307 ((-751) $)) (-15 -3019 ((-1070 |#1|) $)) (-15 -3009 ((-947) $)) (-15 -4131 ((-751) $)) (-15 -3008 ((-751) $)) (-15 -3986 ((-538) $)) (-15 -3007 ((-112) $)) (-15 -3006 ((-112) $)) (-15 -3242 ((-622 $) (-622 $))) (IF (|has| |#1| (-363)) (-15 -3005 ((-1070 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3004 ($ (-622 |#1|))) (IF (|has| |#1| (-363)) (-15 -3004 ($ (-622 |#1|))) |%noBranch|)))) (-1074)) (T -878)) +((-3012 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-622 *3)) (|:| |image| (-622 *3)))) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3011 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-878 *3)))) (-3010 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3009 (*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3242 (*1 *2 *2) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) (-3005 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-363)) (-4 *3 (-1074)))) (-3004 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-878 *3))))) +(-13 (-880 |#1|) (-10 -8 (-15 -3012 ((-2 (|:| |preimage| (-622 |#1|)) (|:| |image| (-622 |#1|))) $)) (-15 -3011 ($ (-622 (-622 |#1|)))) (-15 -4317 ($ (-622 (-622 |#1|)))) (-15 -4317 ($ (-622 |#1|))) (-15 -3010 ($ (-622 (-622 |#1|)))) (-15 -4307 ((-751) $)) (-15 -3019 ((-1070 |#1|) $)) (-15 -3009 ((-947) $)) (-15 -4131 ((-751) $)) (-15 -3008 ((-751) $)) (-15 -3986 ((-538) $)) (-15 -3007 ((-112) $)) (-15 -3006 ((-112) $)) (-15 -3242 ((-622 $) (-622 $))) (IF (|has| |#1| (-363)) (-15 -3005 ((-1070 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-537)) (-15 -3004 ($ (-622 |#1|))) (IF (|has| |#1| (-363)) (-15 -3004 ($ (-622 |#1|))) |%noBranch|)))) +((-3013 ((|#2| (-1115 |#1| |#2|)) 40))) +(((-879 |#1| |#2|) (-10 -7 (-15 -3013 (|#2| (-1115 |#1| |#2|)))) (-895) (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) (T -879)) +((-3013 (*1 *2 *3) (-12 (-5 *3 (-1115 *4 *2)) (-14 *4 (-895)) (-4 *2 (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) (-5 *1 (-879 *4 *2))))) +(-10 -7 (-15 -3013 (|#2| (-1115 |#1| |#2|)))) +((-2898 (((-112) $ $) 7)) (-3896 (($) 18 T CONST)) (-3821 (((-3 $ "failed") $) 15)) (-3023 (((-1070 |#1|) $ |#1|) 32)) (-2502 (((-112) $) 17)) (-3677 (($ $ $) 30 (-3891 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-3678 (($ $ $) 29 (-3891 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 24)) (-3594 (((-1093) $) 10)) (-4127 ((|#1| $ |#1|) 34)) (-4159 ((|#1| $ |#1|) 33)) (-3014 (($ (-622 (-622 |#1|))) 35)) (-3015 (($ (-622 |#1|)) 36)) (-3342 (($ $ $) 21)) (-2686 (($ $ $) 20)) (-4317 (((-840) $) 11)) (-2997 (($) 19 T CONST)) (-2896 (((-112) $ $) 27 (-3891 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-2897 (((-112) $ $) 26 (-3891 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 28 (-3891 (|has| |#1| (-827)) (|has| |#1| (-363))))) (-3018 (((-112) $ $) 31)) (-4308 (($ $ $) 23)) (** (($ $ (-895)) 13) (($ $ (-751)) 16) (($ $ (-538)) 22)) (* (($ $ $) 14))) +(((-880 |#1|) (-138) (-1074)) (T -880)) +((-3015 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-880 *3)))) (-3014 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-4 *1 (-880 *3)))) (-4127 (*1 *2 *1 *2) (-12 (-4 *1 (-880 *2)) (-4 *2 (-1074)))) (-4159 (*1 *2 *1 *2) (-12 (-4 *1 (-880 *2)) (-4 *2 (-1074)))) (-3023 (*1 *2 *1 *3) (-12 (-4 *1 (-880 *3)) (-4 *3 (-1074)) (-5 *2 (-1070 *3)))) (-3018 (*1 *2 *1 *1) (-12 (-4 *1 (-880 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) +(-13 (-467) (-10 -8 (-15 -3015 ($ (-622 |t#1|))) (-15 -3014 ($ (-622 (-622 |t#1|)))) (-15 -4127 (|t#1| $ |t#1|)) (-15 -4159 (|t#1| $ |t#1|)) (-15 -3023 ((-1070 |t#1|) $ |t#1|)) (-15 -3018 ((-112) $ $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-827)) |%noBranch|))) +(((-101) . T) ((-597 (-840)) . T) ((-467) . T) ((-707) . T) ((-827) -3891 (|has| |#1| (-827)) (|has| |#1| (-363))) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3025 (((-622 (-622 (-751))) $) 108)) (-3021 (((-622 (-751)) (-878 |#1|) $) 130)) (-3020 (((-622 (-751)) (-878 |#1|) $) 131)) (-3026 (((-622 (-878 |#1|)) $) 98)) (-3327 (((-878 |#1|) $ (-538)) 103) (((-878 |#1|) $) 104)) (-3024 (($ (-622 (-878 |#1|))) 110)) (-4131 (((-751) $) 105)) (-3022 (((-1070 (-1070 |#1|)) $) 128)) (-3023 (((-1070 |#1|) $ |#1|) 121) (((-1070 (-1070 |#1|)) $ (-1070 |#1|)) 139) (((-1070 (-622 |#1|)) $ (-622 |#1|)) 142)) (-3019 (((-1070 |#1|) $) 101)) (-3596 (((-112) (-878 |#1|) $) 92)) (-3593 (((-1131) $) NIL)) (-3016 (((-1237) $) 95) (((-1237) $ (-538) (-538)) 143)) (-3594 (((-1093) $) NIL)) (-3028 (((-622 (-878 |#1|)) $) 96)) (-4159 (((-878 |#1|) $ (-751)) 99)) (-4307 (((-751) $) 106)) (-4317 (((-840) $) 119) (((-622 (-878 |#1|)) $) 23) (($ (-622 (-878 |#1|))) 109)) (-3027 (((-622 |#1|) $) 107)) (-3387 (((-112) $ $) 136)) (-3017 (((-112) $ $) 134)) (-3018 (((-112) $ $) 133))) +(((-881 |#1|) (-13 (-1074) (-10 -8 (-15 -4317 ((-622 (-878 |#1|)) $)) (-15 -3028 ((-622 (-878 |#1|)) $)) (-15 -4159 ((-878 |#1|) $ (-751))) (-15 -3327 ((-878 |#1|) $ (-538))) (-15 -3327 ((-878 |#1|) $)) (-15 -4131 ((-751) $)) (-15 -4307 ((-751) $)) (-15 -3027 ((-622 |#1|) $)) (-15 -3026 ((-622 (-878 |#1|)) $)) (-15 -3025 ((-622 (-622 (-751))) $)) (-15 -4317 ($ (-622 (-878 |#1|)))) (-15 -3024 ($ (-622 (-878 |#1|)))) (-15 -3023 ((-1070 |#1|) $ |#1|)) (-15 -3022 ((-1070 (-1070 |#1|)) $)) (-15 -3023 ((-1070 (-1070 |#1|)) $ (-1070 |#1|))) (-15 -3023 ((-1070 (-622 |#1|)) $ (-622 |#1|))) (-15 -3596 ((-112) (-878 |#1|) $)) (-15 -3021 ((-622 (-751)) (-878 |#1|) $)) (-15 -3020 ((-622 (-751)) (-878 |#1|) $)) (-15 -3019 ((-1070 |#1|) $)) (-15 -3018 ((-112) $ $)) (-15 -3017 ((-112) $ $)) (-15 -3016 ((-1237) $)) (-15 -3016 ((-1237) $ (-538) (-538))))) (-1074)) (T -881)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-878 *4)) (-5 *1 (-881 *4)) (-4 *4 (-1074)))) (-3327 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-878 *4)) (-5 *1 (-881 *4)) (-4 *4 (-1074)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-878 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-751)))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-622 (-878 *3))) (-4 *3 (-1074)) (-5 *1 (-881 *3)))) (-3024 (*1 *1 *2) (-12 (-5 *2 (-622 (-878 *3))) (-4 *3 (-1074)) (-5 *1 (-881 *3)))) (-3023 (*1 *2 *1 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-1070 (-1070 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3023 (*1 *2 *1 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-881 *4)) (-5 *3 (-1070 *4)))) (-3023 (*1 *2 *1 *3) (-12 (-4 *4 (-1074)) (-5 *2 (-1070 (-622 *4))) (-5 *1 (-881 *4)) (-5 *3 (-622 *4)))) (-3596 (*1 *2 *3 *1) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-881 *4)))) (-3021 (*1 *2 *3 *1) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-622 (-751))) (-5 *1 (-881 *4)))) (-3020 (*1 *2 *3 *1) (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-622 (-751))) (-5 *1 (-881 *4)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3018 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3017 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) (-3016 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-881 *4)) (-4 *4 (-1074))))) +(-13 (-1074) (-10 -8 (-15 -4317 ((-622 (-878 |#1|)) $)) (-15 -3028 ((-622 (-878 |#1|)) $)) (-15 -4159 ((-878 |#1|) $ (-751))) (-15 -3327 ((-878 |#1|) $ (-538))) (-15 -3327 ((-878 |#1|) $)) (-15 -4131 ((-751) $)) (-15 -4307 ((-751) $)) (-15 -3027 ((-622 |#1|) $)) (-15 -3026 ((-622 (-878 |#1|)) $)) (-15 -3025 ((-622 (-622 (-751))) $)) (-15 -4317 ($ (-622 (-878 |#1|)))) (-15 -3024 ($ (-622 (-878 |#1|)))) (-15 -3023 ((-1070 |#1|) $ |#1|)) (-15 -3022 ((-1070 (-1070 |#1|)) $)) (-15 -3023 ((-1070 (-1070 |#1|)) $ (-1070 |#1|))) (-15 -3023 ((-1070 (-622 |#1|)) $ (-622 |#1|))) (-15 -3596 ((-112) (-878 |#1|) $)) (-15 -3021 ((-622 (-751)) (-878 |#1|) $)) (-15 -3020 ((-622 (-751)) (-878 |#1|) $)) (-15 -3019 ((-1070 |#1|) $)) (-15 -3018 ((-112) $ $)) (-15 -3017 ((-112) $ $)) (-15 -3016 ((-1237) $)) (-15 -3016 ((-1237) $ (-538) (-538))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4289 (((-751)) NIL)) (-3689 (($ $ (-895)) NIL (|has| $ (-363))) (($ $) NIL)) (-1791 (((-1158 (-895) (-751)) (-538)) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3471 (((-751)) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 $ "failed") $) NIL)) (-3507 (($ $) NIL)) (-1911 (($ (-1231 $)) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-3166 (($) NIL)) (-1796 (((-112) $) NIL)) (-1886 (($ $) NIL) (($ $ (-751)) NIL)) (-4086 (((-112) $) NIL)) (-4131 (((-812 (-895)) $) NIL) (((-895) $) NIL)) (-2502 (((-112) $) NIL)) (-2129 (($) NIL (|has| $ (-363)))) (-2127 (((-112) $) NIL (|has| $ (-363)))) (-3467 (($ $ (-895)) NIL (|has| $ (-363))) (($ $) NIL)) (-3803 (((-3 $ "failed") $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2130 (((-1143 $) $ (-895)) NIL (|has| $ (-363))) (((-1143 $) $) NIL)) (-2126 (((-895) $) NIL)) (-1724 (((-1143 $) $) NIL (|has| $ (-363)))) (-1723 (((-3 (-1143 $) "failed") $ $) NIL (|has| $ (-363))) (((-1143 $) $) NIL (|has| $ (-363)))) (-1725 (($ $ (-1143 $)) NIL (|has| $ (-363)))) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL T CONST)) (-2492 (($ (-895)) NIL)) (-4291 (((-112) $) NIL)) (-3594 (((-1093) $) NIL)) (-2501 (($) NIL (|has| $ (-363)))) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL)) (-4092 (((-400 $) $) NIL)) (-4290 (((-895)) NIL) (((-812 (-895))) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-1887 (((-3 (-751) "failed") $ $) NIL) (((-751) $) NIL)) (-4271 (((-133)) NIL)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-4307 (((-895) $) NIL) (((-812 (-895)) $) NIL)) (-3536 (((-1143 $)) NIL)) (-1790 (($) NIL)) (-1726 (($) NIL (|has| $ (-363)))) (-3575 (((-669 $) (-1231 $)) NIL) (((-1231 $) $) NIL)) (-4330 (((-538) $) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL)) (-3035 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3461 (((-751)) NIL)) (-2128 (((-1231 $) (-895)) NIL) (((-1231 $)) NIL)) (-2177 (((-112) $ $) NIL)) (-4293 (((-112) $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-4288 (($ $ (-751)) NIL (|has| $ (-363))) (($ $) NIL (|has| $ (-363)))) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL))) +(((-882 |#1|) (-13 (-345) (-324 $) (-598 (-538))) (-895)) (T -882)) +NIL +(-13 (-345) (-324 $) (-598 (-538))) +((-3030 (((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|)) 128)) (-3033 ((|#1|) 77)) (-3032 (((-400 (-1143 |#4|)) (-1143 |#4|)) 137)) (-3034 (((-400 (-1143 |#4|)) (-622 |#3|) (-1143 |#4|)) 69)) (-3031 (((-400 (-1143 |#4|)) (-1143 |#4|)) 147)) (-3029 (((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|) |#3|) 92))) +(((-883 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3030 ((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|))) (-15 -3031 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -3032 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -3033 (|#1|)) (-15 -3029 ((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|) |#3|)) (-15 -3034 ((-400 (-1143 |#4|)) (-622 |#3|) (-1143 |#4|)))) (-886) (-773) (-827) (-926 |#1| |#2| |#3|)) (T -883)) +((-3034 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *7)) (-4 *7 (-827)) (-4 *5 (-886)) (-4 *6 (-773)) (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-400 (-1143 *8))) (-5 *1 (-883 *5 *6 *7 *8)) (-5 *4 (-1143 *8)))) (-3029 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-622 (-1143 *7))) (-5 *3 (-1143 *7)) (-4 *7 (-926 *5 *6 *4)) (-4 *5 (-886)) (-4 *6 (-773)) (-4 *4 (-827)) (-5 *1 (-883 *5 *6 *4 *7)))) (-3033 (*1 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-886)) (-5 *1 (-883 *2 *3 *4 *5)) (-4 *5 (-926 *2 *3 *4)))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-3031 (*1 *2 *3) (-12 (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) (-3030 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 *7))) (-5 *3 (-1143 *7)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-883 *4 *5 *6 *7))))) +(-10 -7 (-15 -3030 ((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|))) (-15 -3031 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -3032 ((-400 (-1143 |#4|)) (-1143 |#4|))) (-15 -3033 (|#1|)) (-15 -3029 ((-3 (-622 (-1143 |#4|)) "failed") (-622 (-1143 |#4|)) (-1143 |#4|) |#3|)) (-15 -3034 ((-400 (-1143 |#4|)) (-622 |#3|) (-1143 |#4|)))) +((-3030 (((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|)) 36)) (-3033 ((|#1|) 54)) (-3032 (((-400 (-1143 |#2|)) (-1143 |#2|)) 102)) (-3034 (((-400 (-1143 |#2|)) (-1143 |#2|)) 90)) (-3031 (((-400 (-1143 |#2|)) (-1143 |#2|)) 113))) +(((-884 |#1| |#2|) (-10 -7 (-15 -3030 ((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|))) (-15 -3031 ((-400 (-1143 |#2|)) (-1143 |#2|))) (-15 -3032 ((-400 (-1143 |#2|)) (-1143 |#2|))) (-15 -3033 (|#1|)) (-15 -3034 ((-400 (-1143 |#2|)) (-1143 |#2|)))) (-886) (-1207 |#1|)) (T -884)) +((-3034 (*1 *2 *3) (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5))) (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5)))) (-3033 (*1 *2) (-12 (-4 *2 (-886)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1207 *2)))) (-3032 (*1 *2 *3) (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5))) (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5)))) (-3031 (*1 *2 *3) (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5))) (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5)))) (-3030 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 *5))) (-5 *3 (-1143 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-886)) (-5 *1 (-884 *4 *5))))) +(-10 -7 (-15 -3030 ((-3 (-622 (-1143 |#2|)) "failed") (-622 (-1143 |#2|)) (-1143 |#2|))) (-15 -3031 ((-400 (-1143 |#2|)) (-1143 |#2|))) (-15 -3032 ((-400 (-1143 |#2|)) (-1143 |#2|))) (-15 -3033 (|#1|)) (-15 -3034 ((-400 (-1143 |#2|)) (-1143 |#2|)))) +((-3037 (((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $)) 41)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 18)) (-3035 (((-3 $ "failed") $) 35))) +(((-885 |#1|) (-10 -8 (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)))) (-886)) (T -885)) +NIL +(-10 -8 (-15 -3035 ((-3 |#1| "failed") |#1|)) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 58)) (-4134 (($ $) 49)) (-4329 (((-400 $) $) 50)) (-3037 (((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $)) 55)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-4086 (((-112) $) 51)) (-2502 (((-112) $) 30)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3038 (((-400 (-1143 $)) (-1143 $)) 56)) (-3039 (((-400 (-1143 $)) (-1143 $)) 57)) (-4092 (((-400 $) $) 48)) (-3820 (((-3 $ "failed") $ $) 40)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) 54 (|has| $ (-143)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3035 (((-3 $ "failed") $) 53 (|has| $ (-143)))) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-886) (-138)) (T -886)) +((-3041 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-886)))) (-3040 (*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1)))) (-3039 (*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1)))) (-3038 (*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1)))) (-3037 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-622 (-1143 *1))) (-5 *3 (-1143 *1)) (-4 *1 (-886)))) (-3036 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-143)) (-4 *1 (-886)) (-5 *2 (-1231 *1)))) (-3035 (*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-886))))) +(-13 (-1190) (-10 -8 (-15 -3040 ((-400 (-1143 $)) (-1143 $))) (-15 -3039 ((-400 (-1143 $)) (-1143 $))) (-15 -3038 ((-400 (-1143 $)) (-1143 $))) (-15 -3041 ((-1143 $) (-1143 $) (-1143 $))) (-15 -3037 ((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $))) (IF (|has| $ (-143)) (PROGN (-15 -3036 ((-3 (-1231 $) "failed") (-669 $))) (-15 -3035 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T)) +((-3043 (((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)) 79)) (-3042 (((-112) (-328 |#2| |#3| |#4| |#5|)) 17)) (-4131 (((-3 (-751) "failed") (-328 |#2| |#3| |#4| |#5|)) 15))) +(((-887 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4131 ((-3 (-751) "failed") (-328 |#2| |#3| |#4| |#5|))) (-15 -3042 ((-112) (-328 |#2| |#3| |#4| |#5|))) (-15 -3043 ((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)))) (-13 (-827) (-545) (-1014 (-538))) (-416 |#1|) (-1207 |#2|) (-1207 (-402 |#3|)) (-337 |#2| |#3| |#4|)) (T -887)) +((-3043 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-2 (|:| -4131 (-751)) (|:| -2475 *8))) (-5 *1 (-887 *4 *5 *6 *7 *8)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-112)) (-5 *1 (-887 *4 *5 *6 *7 *8)))) (-4131 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4)) (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-751)) (-5 *1 (-887 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -4131 ((-3 (-751) "failed") (-328 |#2| |#3| |#4| |#5|))) (-15 -3042 ((-112) (-328 |#2| |#3| |#4| |#5|))) (-15 -3043 ((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#5|)) "failed") (-328 |#2| |#3| |#4| |#5|)))) +((-3043 (((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#3|)) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|)) 56)) (-3042 (((-112) (-328 (-402 (-538)) |#1| |#2| |#3|)) 16)) (-4131 (((-3 (-751) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|)) 14))) +(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -4131 ((-3 (-751) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|))) (-15 -3042 ((-112) (-328 (-402 (-538)) |#1| |#2| |#3|))) (-15 -3043 ((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#3|)) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|)))) (-1207 (-402 (-538))) (-1207 (-402 |#1|)) (-337 (-402 (-538)) |#1| |#2|)) (T -888)) +((-3043 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6)) (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 (-402 (-538)) *4 *5)) (-5 *2 (-2 (|:| -4131 (-751)) (|:| -2475 *6))) (-5 *1 (-888 *4 *5 *6)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6)) (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 (-402 (-538)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-888 *4 *5 *6)))) (-4131 (*1 *2 *3) (|partial| -12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6)) (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 (-402 (-538)) *4 *5)) (-5 *2 (-751)) (-5 *1 (-888 *4 *5 *6))))) +(-10 -7 (-15 -4131 ((-3 (-751) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|))) (-15 -3042 ((-112) (-328 (-402 (-538)) |#1| |#2| |#3|))) (-15 -3043 ((-3 (-2 (|:| -4131 (-751)) (|:| -2475 |#3|)) "failed") (-328 (-402 (-538)) |#1| |#2| |#3|)))) +((-3048 ((|#2| |#2|) 26)) (-3046 (((-538) (-622 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))))) 15)) (-3044 (((-895) (-538)) 35)) (-3047 (((-538) |#2|) 42)) (-3045 (((-538) |#2|) 21) (((-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))) |#1|) 20))) +(((-889 |#1| |#2|) (-10 -7 (-15 -3044 ((-895) (-538))) (-15 -3045 ((-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))) |#1|)) (-15 -3045 ((-538) |#2|)) (-15 -3046 ((-538) (-622 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538)))))) (-15 -3047 ((-538) |#2|)) (-15 -3048 (|#2| |#2|))) (-1207 (-402 (-538))) (-1207 (-402 |#1|))) (T -889)) +((-3048 (*1 *2 *2) (-12 (-4 *3 (-1207 (-402 (-538)))) (-5 *1 (-889 *3 *2)) (-4 *2 (-1207 (-402 *3))))) (-3047 (*1 *2 *3) (-12 (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1207 (-402 *4))))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))))) (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1207 (-402 *4))))) (-3045 (*1 *2 *3) (-12 (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1207 (-402 *4))))) (-3045 (*1 *2 *3) (-12 (-4 *3 (-1207 (-402 (-538)))) (-5 *2 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538)))) (-5 *1 (-889 *3 *4)) (-4 *4 (-1207 (-402 *3))))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-538)) (-4 *4 (-1207 (-402 *3))) (-5 *2 (-895)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1207 (-402 *4)))))) +(-10 -7 (-15 -3044 ((-895) (-538))) (-15 -3045 ((-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))) |#1|)) (-15 -3045 ((-538) |#2|)) (-15 -3046 ((-538) (-622 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538)))))) (-15 -3047 ((-538) |#2|)) (-15 -3048 (|#2| |#2|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 ((|#1| $) 81)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-2894 (($ $ $) NIL)) (-3821 (((-3 $ "failed") $) 75)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3056 (($ |#1| (-400 |#1|)) 73)) (-3050 (((-1143 |#1|) |#1| |#1|) 41)) (-3049 (($ $) 49)) (-2502 (((-112) $) NIL)) (-3051 (((-538) $) 78)) (-3052 (($ $ (-538)) 80)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3053 ((|#1| $) 77)) (-3054 (((-400 |#1|) $) 76)) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) 74)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-3055 (($ $) 39)) (-4317 (((-840) $) 99) (($ (-538)) 54) (($ $) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 31) (((-402 |#1|) $) 59) (($ (-402 (-400 |#1|))) 67)) (-3461 (((-751)) 52)) (-2177 (((-112) $ $) NIL)) (-2991 (($) 23 T CONST)) (-2997 (($) 12 T CONST)) (-3387 (((-112) $ $) 68)) (-4308 (($ $ $) NIL)) (-4197 (($ $) 88) (($ $ $) NIL)) (-4199 (($ $ $) 38)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 90) (($ $ $) 37) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL))) +(((-890 |#1|) (-13 (-358) (-38 |#1|) (-10 -8 (-15 -4317 ((-402 |#1|) $)) (-15 -4317 ($ (-402 (-400 |#1|)))) (-15 -3055 ($ $)) (-15 -3054 ((-400 |#1|) $)) (-15 -3053 (|#1| $)) (-15 -3052 ($ $ (-538))) (-15 -3051 ((-538) $)) (-15 -3050 ((-1143 |#1|) |#1| |#1|)) (-15 -3049 ($ $)) (-15 -3056 ($ |#1| (-400 |#1|))) (-15 -3464 (|#1| $)))) (-302)) (T -890)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-402 (-400 *3))) (-4 *3 (-302)) (-5 *1 (-890 *3)))) (-3055 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-3053 (*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-3052 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-3050 (*1 *2 *3 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) (-3049 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) (-3056 (*1 *1 *2 *3) (-12 (-5 *3 (-400 *2)) (-4 *2 (-302)) (-5 *1 (-890 *2)))) (-3464 (*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302))))) +(-13 (-358) (-38 |#1|) (-10 -8 (-15 -4317 ((-402 |#1|) $)) (-15 -4317 ($ (-402 (-400 |#1|)))) (-15 -3055 ($ $)) (-15 -3054 ((-400 |#1|) $)) (-15 -3053 (|#1| $)) (-15 -3052 ($ $ (-538))) (-15 -3051 ((-538) $)) (-15 -3050 ((-1143 |#1|) |#1| |#1|)) (-15 -3049 ($ $)) (-15 -3056 ($ |#1| (-400 |#1|))) (-15 -3464 (|#1| $)))) +((-3056 (((-51) (-922 |#1|) (-400 (-922 |#1|)) (-1149)) 17) (((-51) (-402 (-922 |#1|)) (-1149)) 18))) +(((-891 |#1|) (-10 -7 (-15 -3056 ((-51) (-402 (-922 |#1|)) (-1149))) (-15 -3056 ((-51) (-922 |#1|) (-400 (-922 |#1|)) (-1149)))) (-13 (-302) (-145))) (T -891)) +((-3056 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-400 (-922 *6))) (-5 *5 (-1149)) (-5 *3 (-922 *6)) (-4 *6 (-13 (-302) (-145))) (-5 *2 (-51)) (-5 *1 (-891 *6)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-51)) (-5 *1 (-891 *5))))) +(-10 -7 (-15 -3056 ((-51) (-402 (-922 |#1|)) (-1149))) (-15 -3056 ((-51) (-922 |#1|) (-400 (-922 |#1|)) (-1149)))) +((-3057 ((|#4| (-622 |#4|)) 121) (((-1143 |#4|) (-1143 |#4|) (-1143 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3495 (((-1143 |#4|) (-622 (-1143 |#4|))) 114) (((-1143 |#4|) (-1143 |#4|) (-1143 |#4|)) 50) ((|#4| (-622 |#4|)) 55) ((|#4| |#4| |#4|) 84))) +(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3495 (|#4| |#4| |#4|)) (-15 -3495 (|#4| (-622 |#4|))) (-15 -3495 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3495 ((-1143 |#4|) (-622 (-1143 |#4|)))) (-15 -3057 (|#4| |#4| |#4|)) (-15 -3057 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3057 (|#4| (-622 |#4|)))) (-773) (-827) (-302) (-926 |#3| |#1| |#2|)) (T -892)) +((-3057 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)))) (-3057 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) (-3057 (*1 *2 *2 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-926 *5 *3 *4)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-622 (-1143 *7))) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-1143 *7)) (-5 *1 (-892 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) (-3495 (*1 *2 *2 *2) (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)))) (-3495 (*1 *2 *2 *2) (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2)) (-4 *2 (-926 *5 *3 *4))))) +(-10 -7 (-15 -3495 (|#4| |#4| |#4|)) (-15 -3495 (|#4| (-622 |#4|))) (-15 -3495 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3495 ((-1143 |#4|) (-622 (-1143 |#4|)))) (-15 -3057 (|#4| |#4| |#4|)) (-15 -3057 ((-1143 |#4|) (-1143 |#4|) (-1143 |#4|))) (-15 -3057 (|#4| (-622 |#4|)))) +((-3070 (((-881 (-538)) (-947)) 23) (((-881 (-538)) (-622 (-538))) 20)) (-3058 (((-881 (-538)) (-622 (-538))) 48) (((-881 (-538)) (-895)) 49)) (-3069 (((-881 (-538))) 24)) (-3067 (((-881 (-538))) 38) (((-881 (-538)) (-622 (-538))) 37)) (-3066 (((-881 (-538))) 36) (((-881 (-538)) (-622 (-538))) 35)) (-3065 (((-881 (-538))) 34) (((-881 (-538)) (-622 (-538))) 33)) (-3064 (((-881 (-538))) 32) (((-881 (-538)) (-622 (-538))) 31)) (-3063 (((-881 (-538))) 30) (((-881 (-538)) (-622 (-538))) 29)) (-3068 (((-881 (-538))) 40) (((-881 (-538)) (-622 (-538))) 39)) (-3062 (((-881 (-538)) (-622 (-538))) 52) (((-881 (-538)) (-895)) 53)) (-3061 (((-881 (-538)) (-622 (-538))) 50) (((-881 (-538)) (-895)) 51)) (-3059 (((-881 (-538)) (-622 (-538))) 46) (((-881 (-538)) (-895)) 47)) (-3060 (((-881 (-538)) (-622 (-895))) 43))) +(((-893) (-10 -7 (-15 -3058 ((-881 (-538)) (-895))) (-15 -3058 ((-881 (-538)) (-622 (-538)))) (-15 -3059 ((-881 (-538)) (-895))) (-15 -3059 ((-881 (-538)) (-622 (-538)))) (-15 -3060 ((-881 (-538)) (-622 (-895)))) (-15 -3061 ((-881 (-538)) (-895))) (-15 -3061 ((-881 (-538)) (-622 (-538)))) (-15 -3062 ((-881 (-538)) (-895))) (-15 -3062 ((-881 (-538)) (-622 (-538)))) (-15 -3063 ((-881 (-538)) (-622 (-538)))) (-15 -3063 ((-881 (-538)))) (-15 -3064 ((-881 (-538)) (-622 (-538)))) (-15 -3064 ((-881 (-538)))) (-15 -3065 ((-881 (-538)) (-622 (-538)))) (-15 -3065 ((-881 (-538)))) (-15 -3066 ((-881 (-538)) (-622 (-538)))) (-15 -3066 ((-881 (-538)))) (-15 -3067 ((-881 (-538)) (-622 (-538)))) (-15 -3067 ((-881 (-538)))) (-15 -3068 ((-881 (-538)) (-622 (-538)))) (-15 -3068 ((-881 (-538)))) (-15 -3069 ((-881 (-538)))) (-15 -3070 ((-881 (-538)) (-622 (-538)))) (-15 -3070 ((-881 (-538)) (-947))))) (T -893)) +((-3070 (*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3070 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3069 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3068 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3067 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3067 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3066 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3066 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3065 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3064 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3064 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3063 (*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-622 (-895))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(-10 -7 (-15 -3058 ((-881 (-538)) (-895))) (-15 -3058 ((-881 (-538)) (-622 (-538)))) (-15 -3059 ((-881 (-538)) (-895))) (-15 -3059 ((-881 (-538)) (-622 (-538)))) (-15 -3060 ((-881 (-538)) (-622 (-895)))) (-15 -3061 ((-881 (-538)) (-895))) (-15 -3061 ((-881 (-538)) (-622 (-538)))) (-15 -3062 ((-881 (-538)) (-895))) (-15 -3062 ((-881 (-538)) (-622 (-538)))) (-15 -3063 ((-881 (-538)) (-622 (-538)))) (-15 -3063 ((-881 (-538)))) (-15 -3064 ((-881 (-538)) (-622 (-538)))) (-15 -3064 ((-881 (-538)))) (-15 -3065 ((-881 (-538)) (-622 (-538)))) (-15 -3065 ((-881 (-538)))) (-15 -3066 ((-881 (-538)) (-622 (-538)))) (-15 -3066 ((-881 (-538)))) (-15 -3067 ((-881 (-538)) (-622 (-538)))) (-15 -3067 ((-881 (-538)))) (-15 -3068 ((-881 (-538)) (-622 (-538)))) (-15 -3068 ((-881 (-538)))) (-15 -3069 ((-881 (-538)))) (-15 -3070 ((-881 (-538)) (-622 (-538)))) (-15 -3070 ((-881 (-538)) (-947)))) +((-3072 (((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149))) 12)) (-3071 (((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149))) 11))) +(((-894 |#1|) (-10 -7 (-15 -3071 ((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3072 ((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149))))) (-446)) (T -894)) +((-3072 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-922 *4))) (-5 *3 (-622 (-1149))) (-4 *4 (-446)) (-5 *1 (-894 *4)))) (-3071 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-922 *4))) (-5 *3 (-622 (-1149))) (-4 *4 (-446)) (-5 *1 (-894 *4))))) +(-10 -7 (-15 -3071 ((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3072 ((-622 (-922 |#1|)) (-622 (-922 |#1|)) (-622 (-1149))))) +((-2898 (((-112) $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3495 (($ $ $) NIL)) (-4317 (((-840) $) NIL)) (-2997 (($) NIL T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ $ $) NIL))) +(((-895) (-13 (-774) (-707) (-10 -8 (-15 -3495 ($ $ $)) (-6 (-4355 "*"))))) (T -895)) +((-3495 (*1 *1 *1 *1) (-5 *1 (-895)))) +(-13 (-774) (-707) (-10 -8 (-15 -3495 ($ $ $)) (-6 (-4355 "*")))) +((-4317 (((-309 |#1|) (-471)) 16))) +(((-896 |#1|) (-10 -7 (-15 -4317 ((-309 |#1|) (-471)))) (-13 (-827) (-545))) (T -896)) +((-4317 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-309 *4)) (-5 *1 (-896 *4)) (-4 *4 (-13 (-827) (-545)))))) +(-10 -7 (-15 -4317 ((-309 |#1|) (-471)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-2502 (((-112) $) 30)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-897) (-138)) (T -897)) +((-3074 (*1 *2 *3) (-12 (-4 *1 (-897)) (-5 *2 (-2 (|:| -4313 (-622 *1)) (|:| -2501 *1))) (-5 *3 (-622 *1)))) (-3073 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-897))))) +(-13 (-446) (-10 -8 (-15 -3074 ((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $))) (-15 -3073 ((-3 (-622 $) "failed") (-622 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-3441 (((-1143 |#2|) (-622 |#2|) (-622 |#2|)) 17) (((-1200 |#1| |#2|) (-1200 |#1| |#2|) (-622 |#2|) (-622 |#2|)) 13))) +(((-898 |#1| |#2|) (-10 -7 (-15 -3441 ((-1200 |#1| |#2|) (-1200 |#1| |#2|) (-622 |#2|) (-622 |#2|))) (-15 -3441 ((-1143 |#2|) (-622 |#2|) (-622 |#2|)))) (-1149) (-358)) (T -898)) +((-3441 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *5)) (-4 *5 (-358)) (-5 *2 (-1143 *5)) (-5 *1 (-898 *4 *5)) (-14 *4 (-1149)))) (-3441 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1200 *4 *5)) (-5 *3 (-622 *5)) (-14 *4 (-1149)) (-4 *5 (-358)) (-5 *1 (-898 *4 *5))))) +(-10 -7 (-15 -3441 ((-1200 |#1| |#2|) (-1200 |#1| |#2|) (-622 |#2|) (-622 |#2|))) (-15 -3441 ((-1143 |#2|) (-622 |#2|) (-622 |#2|)))) +((-3075 ((|#2| (-622 |#1|) (-622 |#1|)) 24))) +(((-899 |#1| |#2|) (-10 -7 (-15 -3075 (|#2| (-622 |#1|) (-622 |#1|)))) (-358) (-1207 |#1|)) (T -899)) +((-3075 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-358)) (-4 *2 (-1207 *4)) (-5 *1 (-899 *4 *2))))) +(-10 -7 (-15 -3075 (|#2| (-622 |#1|) (-622 |#1|)))) +((-3077 (((-538) (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131)) 139)) (-3096 ((|#4| |#4|) 155)) (-3081 (((-622 (-402 (-922 |#1|))) (-622 (-1149))) 118)) (-3095 (((-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-622 (-622 |#4|)) (-751) (-751) (-538)) 75)) (-3085 (((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-622 |#4|)) 59)) (-3094 (((-669 |#4|) (-669 |#4|) (-622 |#4|)) 55)) (-3078 (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131)) 151)) (-3076 (((-538) (-669 |#4|) (-895) (-1131)) 132) (((-538) (-669 |#4|) (-622 (-1149)) (-895) (-1131)) 131) (((-538) (-669 |#4|) (-622 |#4|) (-895) (-1131)) 130) (((-538) (-669 |#4|) (-1131)) 127) (((-538) (-669 |#4|) (-622 (-1149)) (-1131)) 126) (((-538) (-669 |#4|) (-622 |#4|) (-1131)) 125) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-895)) 124) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149)) (-895)) 123) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|) (-895)) 122) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|)) 120) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149))) 119) (((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|)) 115)) (-3082 ((|#4| (-922 |#1|)) 68)) (-3092 (((-112) (-622 |#4|) (-622 (-622 |#4|))) 152)) (-3091 (((-622 (-622 (-538))) (-538) (-538)) 129)) (-3090 (((-622 (-622 |#4|)) (-622 (-622 |#4|))) 88)) (-3089 (((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|))))) 86)) (-3088 (((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|))))) 85)) (-3097 (((-112) (-622 (-922 |#1|))) 17) (((-112) (-622 |#4|)) 13)) (-3083 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-622 |#4|)) (|:| |n0| (-622 |#4|))) (-622 |#4|) (-622 |#4|)) 71)) (-3087 (((-622 |#4|) |#4|) 49)) (-3080 (((-622 (-402 (-922 |#1|))) (-622 |#4|)) 114) (((-669 (-402 (-922 |#1|))) (-669 |#4|)) 56) (((-402 (-922 |#1|)) |#4|) 111)) (-3079 (((-2 (|:| |rgl| (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))))) (|:| |rgsz| (-538))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-751) (-1131) (-538)) 93)) (-3084 (((-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))) (-669 |#4|) (-751)) 84)) (-3093 (((-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) (-669 |#4|) (-751)) 101)) (-3086 (((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| -1700 (-669 (-402 (-922 |#1|)))) (|:| |vec| (-622 (-402 (-922 |#1|)))) (|:| -3444 (-751)) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) 48))) +(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149)))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|) (-895))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149)) (-895))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-895))) (-15 -3076 ((-538) (-669 |#4|) (-622 |#4|) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 (-1149)) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 |#4|) (-895) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 (-1149)) (-895) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-895) (-1131))) (-15 -3077 ((-538) (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131))) (-15 -3078 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131))) (-15 -3079 ((-2 (|:| |rgl| (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))))) (|:| |rgsz| (-538))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-751) (-1131) (-538))) (-15 -3080 ((-402 (-922 |#1|)) |#4|)) (-15 -3080 ((-669 (-402 (-922 |#1|))) (-669 |#4|))) (-15 -3080 ((-622 (-402 (-922 |#1|))) (-622 |#4|))) (-15 -3081 ((-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3082 (|#4| (-922 |#1|))) (-15 -3083 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-622 |#4|)) (|:| |n0| (-622 |#4|))) (-622 |#4|) (-622 |#4|))) (-15 -3084 ((-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))) (-669 |#4|) (-751))) (-15 -3085 ((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-622 |#4|))) (-15 -3086 ((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| -1700 (-669 (-402 (-922 |#1|)))) (|:| |vec| (-622 (-402 (-922 |#1|)))) (|:| -3444 (-751)) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (-15 -3087 ((-622 |#4|) |#4|)) (-15 -3088 ((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))))) (-15 -3089 ((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))))) (-15 -3090 ((-622 (-622 |#4|)) (-622 (-622 |#4|)))) (-15 -3091 ((-622 (-622 (-538))) (-538) (-538))) (-15 -3092 ((-112) (-622 |#4|) (-622 (-622 |#4|)))) (-15 -3093 ((-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) (-669 |#4|) (-751))) (-15 -3094 ((-669 |#4|) (-669 |#4|) (-622 |#4|))) (-15 -3095 ((-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-622 (-622 |#4|)) (-751) (-751) (-538))) (-15 -3096 (|#4| |#4|)) (-15 -3097 ((-112) (-622 |#4|))) (-15 -3097 ((-112) (-622 (-922 |#1|))))) (-13 (-302) (-145)) (-13 (-827) (-598 (-1149))) (-773) (-926 |#1| |#3| |#2|)) (T -900)) +((-3097 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))) (-3097 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *4 *5 *6 *7)))) (-3096 (*1 *2 *2) (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *2 (-926 *3 *5 *4)))) (-3095 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) (-5 *4 (-669 *12)) (-5 *5 (-622 (-402 (-922 *9)))) (-5 *6 (-622 (-622 *12))) (-5 *7 (-751)) (-5 *8 (-538)) (-4 *9 (-13 (-302) (-145))) (-4 *12 (-926 *9 *11 *10)) (-4 *10 (-13 (-827) (-598 (-1149)))) (-4 *11 (-773)) (-5 *2 (-2 (|:| |eqzro| (-622 *12)) (|:| |neqzro| (-622 *12)) (|:| |wcond| (-622 (-922 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *9)))) (|:| -2128 (-622 (-1231 (-402 (-922 *9))))))))) (-5 *1 (-900 *9 *10 *11 *12)))) (-3094 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *7)) (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-751)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-622 (-2 (|:| |det| *8) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-3092 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-622 *8))) (-5 *3 (-622 *8)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *7 *8)))) (-3091 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 (-622 (-538)))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-538)) (-4 *7 (-926 *4 *6 *5)))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-622 (-622 *6))) (-4 *6 (-926 *3 *5 *4)) (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *6)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| *7) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 *7))))) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) (-5 *1 (-900 *4 *5 *6 *7)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| *7) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 *7))))) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) (-5 *1 (-900 *4 *5 *6 *7)))) (-3087 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 *3)) (-5 *1 (-900 *4 *5 *6 *3)) (-4 *3 (-926 *4 *6 *5)))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1700 (-669 (-402 (-922 *4)))) (|:| |vec| (-622 (-402 (-922 *4)))) (|:| -3444 (-751)) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) (|:| -2128 (-622 (-1231 (-402 (-922 *4))))))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))) (-3085 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) (|:| -2128 (-622 (-1231 (-402 (-922 *4))))))) (-5 *3 (-622 *7)) (-4 *4 (-13 (-302) (-145))) (-4 *7 (-926 *4 *6 *5)) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| *8) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 *8))))) (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-751)))) (-3083 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-4 *7 (-926 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-622 *7)) (|:| |n0| (-622 *7)))) (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3082 (*1 *2 *3) (-12 (-5 *3 (-922 *4)) (-4 *4 (-13 (-302) (-145))) (-4 *2 (-926 *4 *6 *5)) (-5 *1 (-900 *4 *5 *6 *2)) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-669 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-669 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7)))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-402 (-922 *4))) (-5 *1 (-900 *4 *5 *6 *3)) (-4 *3 (-926 *4 *6 *5)))) (-3079 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-669 *11)) (-5 *4 (-622 (-402 (-922 *8)))) (-5 *5 (-751)) (-5 *6 (-1131)) (-4 *8 (-13 (-302) (-145))) (-4 *11 (-926 *8 *10 *9)) (-4 *9 (-13 (-827) (-598 (-1149)))) (-4 *10 (-773)) (-5 *2 (-2 (|:| |rgl| (-622 (-2 (|:| |eqzro| (-622 *11)) (|:| |neqzro| (-622 *11)) (|:| |wcond| (-622 (-922 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *8)))) (|:| -2128 (-622 (-1231 (-402 (-922 *8)))))))))) (|:| |rgsz| (-538)))) (-5 *1 (-900 *8 *9 *10 *11)) (-5 *7 (-538)))) (-3078 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *7)) (|:| |neqzro| (-622 *7)) (|:| |wcond| (-622 (-922 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) (|:| -2128 (-622 (-1231 (-402 (-922 *4)))))))))) (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5)))) (-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) (-5 *4 (-1131)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-926 *5 *7 *6)) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *5 *6 *7 *8)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-895)) (-5 *5 (-1131)) (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *6 *7 *8 *9)))) (-3076 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-669 *10)) (-5 *4 (-622 (-1149))) (-5 *5 (-895)) (-5 *6 (-1131)) (-4 *10 (-926 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *7 *8 *9 *10)))) (-3076 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-669 *10)) (-5 *4 (-622 *10)) (-5 *5 (-895)) (-5 *6 (-1131)) (-4 *10 (-926 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *7 *8 *9 *10)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-1131)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *5 *6 *7 *8)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 (-1149))) (-5 *5 (-1131)) (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *6 *7 *8 *9)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 *9)) (-5 *5 (-1131)) (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *6 *7 *8 *9)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-895)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 (-1149))) (-5 *5 (-895)) (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *9)) (|:| |neqzro| (-622 *9)) (|:| |wcond| (-622 (-922 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *6)))) (|:| -2128 (-622 (-1231 (-402 (-922 *6)))))))))) (-5 *1 (-900 *6 *7 *8 *9)))) (-3076 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-669 *9)) (-5 *5 (-895)) (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *9)) (|:| |neqzro| (-622 *9)) (|:| |wcond| (-622 (-922 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *6)))) (|:| -2128 (-622 (-1231 (-402 (-922 *6)))))))))) (-5 *1 (-900 *6 *7 *8 *9)) (-5 *4 (-622 *9)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-669 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *7)) (|:| |neqzro| (-622 *7)) (|:| |wcond| (-622 (-922 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) (|:| -2128 (-622 (-1231 (-402 (-922 *4)))))))))) (-5 *1 (-900 *4 *5 *6 *7)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-5 *4 (-622 (-1149))) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-669 *8)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-622 (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-622 *8))))) +(-10 -7 (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149)))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 |#4|) (-895))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-622 (-1149)) (-895))) (-15 -3076 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-669 |#4|) (-895))) (-15 -3076 ((-538) (-669 |#4|) (-622 |#4|) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 (-1149)) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 |#4|) (-895) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-622 (-1149)) (-895) (-1131))) (-15 -3076 ((-538) (-669 |#4|) (-895) (-1131))) (-15 -3077 ((-538) (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131))) (-15 -3078 ((-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|))))))))) (-1131))) (-15 -3079 ((-2 (|:| |rgl| (-622 (-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))))) (|:| |rgsz| (-538))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-751) (-1131) (-538))) (-15 -3080 ((-402 (-922 |#1|)) |#4|)) (-15 -3080 ((-669 (-402 (-922 |#1|))) (-669 |#4|))) (-15 -3080 ((-622 (-402 (-922 |#1|))) (-622 |#4|))) (-15 -3081 ((-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3082 (|#4| (-922 |#1|))) (-15 -3083 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-622 |#4|)) (|:| |n0| (-622 |#4|))) (-622 |#4|) (-622 |#4|))) (-15 -3084 ((-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))) (-669 |#4|) (-751))) (-15 -3085 ((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-622 |#4|))) (-15 -3086 ((-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))) (-2 (|:| -1700 (-669 (-402 (-922 |#1|)))) (|:| |vec| (-622 (-402 (-922 |#1|)))) (|:| -3444 (-751)) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (-15 -3087 ((-622 |#4|) |#4|)) (-15 -3088 ((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))))) (-15 -3089 ((-751) (-622 (-2 (|:| -3444 (-751)) (|:| |eqns| (-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))))) (|:| |fgb| (-622 |#4|)))))) (-15 -3090 ((-622 (-622 |#4|)) (-622 (-622 |#4|)))) (-15 -3091 ((-622 (-622 (-538))) (-538) (-538))) (-15 -3092 ((-112) (-622 |#4|) (-622 (-622 |#4|)))) (-15 -3093 ((-622 (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) (-669 |#4|) (-751))) (-15 -3094 ((-669 |#4|) (-669 |#4|) (-622 |#4|))) (-15 -3095 ((-2 (|:| |eqzro| (-622 |#4|)) (|:| |neqzro| (-622 |#4|)) (|:| |wcond| (-622 (-922 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1231 (-402 (-922 |#1|)))) (|:| -2128 (-622 (-1231 (-402 (-922 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538)))) (-669 |#4|) (-622 (-402 (-922 |#1|))) (-622 (-622 |#4|)) (-751) (-751) (-538))) (-15 -3096 (|#4| |#4|)) (-15 -3097 ((-112) (-622 |#4|))) (-15 -3097 ((-112) (-622 (-922 |#1|))))) +((-4234 (($ $ (-1062 (-221))) 70) (($ $ (-1062 (-221)) (-1062 (-221))) 71)) (-3229 (((-1062 (-221)) $) 44)) (-3230 (((-1062 (-221)) $) 43)) (-3121 (((-1062 (-221)) $) 45)) (-3102 (((-538) (-538)) 37)) (-3106 (((-538) (-538)) 33)) (-3104 (((-538) (-538)) 35)) (-3100 (((-112) (-112)) 39)) (-3103 (((-538)) 36)) (-3469 (($ $ (-1062 (-221))) 74) (($ $) 75)) (-3123 (($ (-1 (-919 (-221)) (-221)) (-1062 (-221))) 84) (($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221))) 85)) (-3109 (($ (-1 (-221) (-221)) (-1062 (-221))) 92) (($ (-1 (-221) (-221))) 95)) (-3122 (($ (-1 (-221) (-221)) (-1062 (-221))) 79) (($ (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221))) 80) (($ (-622 (-1 (-221) (-221))) (-1062 (-221))) 87) (($ (-622 (-1 (-221) (-221))) (-1062 (-221)) (-1062 (-221))) 88) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221))) 82) (($ $ (-1062 (-221))) 76)) (-3108 (((-112) $) 40)) (-3099 (((-538)) 41)) (-3107 (((-538)) 32)) (-3105 (((-538)) 34)) (-3231 (((-622 (-622 (-919 (-221)))) $) 23)) (-3098 (((-112) (-112)) 42)) (-4317 (((-840) $) 106)) (-3101 (((-112)) 38))) +(((-901) (-13 (-931) (-10 -8 (-15 -3122 ($ (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-622 (-1 (-221) (-221))) (-1062 (-221)))) (-15 -3122 ($ (-622 (-1 (-221) (-221))) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3109 ($ (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3109 ($ (-1 (-221) (-221)))) (-15 -3122 ($ $ (-1062 (-221)))) (-15 -3108 ((-112) $)) (-15 -4234 ($ $ (-1062 (-221)))) (-15 -4234 ($ $ (-1062 (-221)) (-1062 (-221)))) (-15 -3469 ($ $ (-1062 (-221)))) (-15 -3469 ($ $)) (-15 -3121 ((-1062 (-221)) $)) (-15 -3107 ((-538))) (-15 -3106 ((-538) (-538))) (-15 -3105 ((-538))) (-15 -3104 ((-538) (-538))) (-15 -3103 ((-538))) (-15 -3102 ((-538) (-538))) (-15 -3101 ((-112))) (-15 -3100 ((-112) (-112))) (-15 -3099 ((-538))) (-15 -3098 ((-112) (-112)))))) (T -901)) +((-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-622 (-1 (-221) (-221)))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-622 (-1 (-221) (-221)))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3123 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3123 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3109 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) (-3109 (*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-901)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-4234 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) (-4234 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) (-3469 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) (-3469 (*1 *1 *1) (-5 *1 (-901))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) (-3107 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3106 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3105 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3104 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3103 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3102 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3101 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-3100 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901)))) (-3099 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) +(-13 (-931) (-10 -8 (-15 -3122 ($ (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-622 (-1 (-221) (-221))) (-1062 (-221)))) (-15 -3122 ($ (-622 (-1 (-221) (-221))) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3109 ($ (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3109 ($ (-1 (-221) (-221)))) (-15 -3122 ($ $ (-1062 (-221)))) (-15 -3108 ((-112) $)) (-15 -4234 ($ $ (-1062 (-221)))) (-15 -4234 ($ $ (-1062 (-221)) (-1062 (-221)))) (-15 -3469 ($ $ (-1062 (-221)))) (-15 -3469 ($ $)) (-15 -3121 ((-1062 (-221)) $)) (-15 -3107 ((-538))) (-15 -3106 ((-538) (-538))) (-15 -3105 ((-538))) (-15 -3104 ((-538) (-538))) (-15 -3103 ((-538))) (-15 -3102 ((-538) (-538))) (-15 -3101 ((-112))) (-15 -3100 ((-112) (-112))) (-15 -3099 ((-538))) (-15 -3098 ((-112) (-112))))) +((-3109 (((-901) |#1| (-1149)) 17) (((-901) |#1| (-1149) (-1062 (-221))) 21)) (-3122 (((-901) |#1| |#1| (-1149) (-1062 (-221))) 19) (((-901) |#1| (-1149) (-1062 (-221))) 15))) +(((-902 |#1|) (-10 -7 (-15 -3122 ((-901) |#1| (-1149) (-1062 (-221)))) (-15 -3122 ((-901) |#1| |#1| (-1149) (-1062 (-221)))) (-15 -3109 ((-901) |#1| (-1149) (-1062 (-221)))) (-15 -3109 ((-901) |#1| (-1149)))) (-598 (-527))) (T -902)) +((-3109 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-5 *2 (-901)) (-5 *1 (-902 *3)) (-4 *3 (-598 (-527))))) (-3109 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3)) (-4 *3 (-598 (-527))))) (-3122 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3)) (-4 *3 (-598 (-527))))) (-3122 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3)) (-4 *3 (-598 (-527)))))) +(-10 -7 (-15 -3122 ((-901) |#1| (-1149) (-1062 (-221)))) (-15 -3122 ((-901) |#1| |#1| (-1149) (-1062 (-221)))) (-15 -3109 ((-901) |#1| (-1149) (-1062 (-221)))) (-15 -3109 ((-901) |#1| (-1149)))) +((-4234 (($ $ (-1062 (-221)) (-1062 (-221)) (-1062 (-221))) 70)) (-3228 (((-1062 (-221)) $) 40)) (-3229 (((-1062 (-221)) $) 39)) (-3230 (((-1062 (-221)) $) 38)) (-3120 (((-622 (-622 (-221))) $) 43)) (-3121 (((-1062 (-221)) $) 41)) (-3114 (((-538) (-538)) 32)) (-3118 (((-538) (-538)) 28)) (-3116 (((-538) (-538)) 30)) (-3112 (((-112) (-112)) 35)) (-3115 (((-538)) 31)) (-3469 (($ $ (-1062 (-221))) 73) (($ $) 74)) (-3123 (($ (-1 (-919 (-221)) (-221)) (-1062 (-221))) 78) (($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221))) 79)) (-3122 (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221))) 81) (($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221))) 82) (($ $ (-1062 (-221))) 76)) (-3111 (((-538)) 36)) (-3119 (((-538)) 27)) (-3117 (((-538)) 29)) (-3231 (((-622 (-622 (-919 (-221)))) $) 95)) (-3110 (((-112) (-112)) 37)) (-4317 (((-840) $) 94)) (-3113 (((-112)) 34))) +(((-903) (-13 (-950) (-10 -8 (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ $ (-1062 (-221)))) (-15 -4234 ($ $ (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3469 ($ $ (-1062 (-221)))) (-15 -3469 ($ $)) (-15 -3121 ((-1062 (-221)) $)) (-15 -3120 ((-622 (-622 (-221))) $)) (-15 -3119 ((-538))) (-15 -3118 ((-538) (-538))) (-15 -3117 ((-538))) (-15 -3116 ((-538) (-538))) (-15 -3115 ((-538))) (-15 -3114 ((-538) (-538))) (-15 -3113 ((-112))) (-15 -3112 ((-112) (-112))) (-15 -3111 ((-538))) (-15 -3110 ((-112) (-112)))))) (T -903)) +((-3123 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903)))) (-3123 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903)))) (-3122 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903)))) (-3122 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903)))) (-3122 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) (-4234 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) (-3469 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) (-3469 (*1 *1 *1) (-5 *1 (-903))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) (-3120 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-221)))) (-5 *1 (-903)))) (-3119 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3118 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3117 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3116 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3115 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3114 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3113 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))) (-3112 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903)))) (-3111 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903)))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903))))) +(-13 (-950) (-10 -8 (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)))) (-15 -3123 ($ (-1 (-919 (-221)) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)))) (-15 -3122 ($ (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1 (-221) (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3122 ($ $ (-1062 (-221)))) (-15 -4234 ($ $ (-1062 (-221)) (-1062 (-221)) (-1062 (-221)))) (-15 -3469 ($ $ (-1062 (-221)))) (-15 -3469 ($ $)) (-15 -3121 ((-1062 (-221)) $)) (-15 -3120 ((-622 (-622 (-221))) $)) (-15 -3119 ((-538))) (-15 -3118 ((-538) (-538))) (-15 -3117 ((-538))) (-15 -3116 ((-538) (-538))) (-15 -3115 ((-538))) (-15 -3114 ((-538) (-538))) (-15 -3113 ((-112))) (-15 -3112 ((-112) (-112))) (-15 -3111 ((-538))) (-15 -3110 ((-112) (-112))))) +((-3124 (((-622 (-1062 (-221))) (-622 (-622 (-919 (-221))))) 24))) +(((-904) (-10 -7 (-15 -3124 ((-622 (-1062 (-221))) (-622 (-622 (-919 (-221)))))))) (T -904)) +((-3124 (*1 *2 *3) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-622 (-1062 (-221)))) (-5 *1 (-904))))) +(-10 -7 (-15 -3124 ((-622 (-1062 (-221))) (-622 (-622 (-919 (-221))))))) +((-3126 (((-309 (-538)) (-1149)) 16)) (-3127 (((-309 (-538)) (-1149)) 14)) (-4311 (((-309 (-538)) (-1149)) 12)) (-3125 (((-309 (-538)) (-1149) (-1131)) 19))) +(((-905) (-10 -7 (-15 -3125 ((-309 (-538)) (-1149) (-1131))) (-15 -4311 ((-309 (-538)) (-1149))) (-15 -3126 ((-309 (-538)) (-1149))) (-15 -3127 ((-309 (-538)) (-1149))))) (T -905)) +((-3127 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))) (-4311 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))) (-3125 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1131)) (-5 *2 (-309 (-538))) (-5 *1 (-905))))) +(-10 -7 (-15 -3125 ((-309 (-538)) (-1149) (-1131))) (-15 -4311 ((-309 (-538)) (-1149))) (-15 -3126 ((-309 (-538)) (-1149))) (-15 -3127 ((-309 (-538)) (-1149)))) +((-3126 ((|#2| |#2|) 26)) (-3127 ((|#2| |#2|) 27)) (-4311 ((|#2| |#2|) 25)) (-3125 ((|#2| |#2| (-1131)) 24))) +(((-906 |#1| |#2|) (-10 -7 (-15 -3125 (|#2| |#2| (-1131))) (-15 -4311 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -3127 (|#2| |#2|))) (-827) (-416 |#1|)) (T -906)) +((-3127 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3)))) (-3126 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3)))) (-4311 (*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3)))) (-3125 (*1 *2 *2 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-827)) (-5 *1 (-906 *4 *2)) (-4 *2 (-416 *4))))) +(-10 -7 (-15 -3125 (|#2| |#2| (-1131))) (-15 -4311 (|#2| |#2|)) (-15 -3126 (|#2| |#2|)) (-15 -3127 (|#2| |#2|))) +((-3129 (((-864 |#1| |#3|) |#2| (-866 |#1|) (-864 |#1| |#3|)) 25)) (-3128 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-907 |#1| |#2| |#3|) (-10 -7 (-15 -3128 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3129 ((-864 |#1| |#3|) |#2| (-866 |#1|) (-864 |#1| |#3|)))) (-1074) (-862 |#1|) (-13 (-1074) (-1014 |#2|))) (T -907)) +((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-13 (-1074) (-1014 *3))) (-4 *3 (-862 *5)) (-5 *1 (-907 *5 *3 *6)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1074) (-1014 *5))) (-4 *5 (-862 *4)) (-4 *4 (-1074)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-907 *4 *5 *6))))) +(-10 -7 (-15 -3128 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3129 ((-864 |#1| |#3|) |#2| (-866 |#1|) (-864 |#1| |#3|)))) +((-3129 (((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)) 30))) +(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))) (-1074) (-13 (-545) (-827) (-862 |#1|)) (-13 (-416 |#2|) (-598 (-866 |#1|)) (-862 |#1|) (-1014 (-595 $)))) (T -908)) +((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074)) (-4 *3 (-13 (-416 *6) (-598 *4) (-862 *5) (-1014 (-595 $)))) (-5 *4 (-866 *5)) (-4 *6 (-13 (-545) (-827) (-862 *5))) (-5 *1 (-908 *5 *6 *3))))) +(-10 -7 (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))) +((-3129 (((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|)) 13))) +(((-909 |#1|) (-10 -7 (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|)))) (-537)) (T -909)) +((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 (-538) *3)) (-5 *4 (-866 (-538))) (-4 *3 (-537)) (-5 *1 (-909 *3))))) +(-10 -7 (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|)))) +((-3129 (((-864 |#1| |#2|) (-595 |#2|) (-866 |#1|) (-864 |#1| |#2|)) 54))) +(((-910 |#1| |#2|) (-10 -7 (-15 -3129 ((-864 |#1| |#2|) (-595 |#2|) (-866 |#1|) (-864 |#1| |#2|)))) (-1074) (-13 (-827) (-1014 (-595 $)) (-598 (-866 |#1|)) (-862 |#1|))) (T -910)) +((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *6)) (-5 *3 (-595 *6)) (-4 *5 (-1074)) (-4 *6 (-13 (-827) (-1014 (-595 $)) (-598 *4) (-862 *5))) (-5 *4 (-866 *5)) (-5 *1 (-910 *5 *6))))) +(-10 -7 (-15 -3129 ((-864 |#1| |#2|) (-595 |#2|) (-866 |#1|) (-864 |#1| |#2|)))) +((-3129 (((-861 |#1| |#2| |#3|) |#3| (-866 |#1|) (-861 |#1| |#2| |#3|)) 15))) +(((-911 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-861 |#1| |#2| |#3|) |#3| (-866 |#1|) (-861 |#1| |#2| |#3|)))) (-1074) (-862 |#1|) (-646 |#2|)) (T -911)) +((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-861 *5 *6 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-862 *5)) (-4 *3 (-646 *6)) (-5 *1 (-911 *5 *6 *3))))) +(-10 -7 (-15 -3129 ((-861 |#1| |#2| |#3|) |#3| (-866 |#1|) (-861 |#1| |#2| |#3|)))) +((-3129 (((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|)) 17 (|has| |#3| (-862 |#1|))) (((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|) (-1 (-864 |#1| |#5|) |#3| (-866 |#1|) (-864 |#1| |#5|))) 16))) +(((-912 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3129 ((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|) (-1 (-864 |#1| |#5|) |#3| (-866 |#1|) (-864 |#1| |#5|)))) (IF (|has| |#3| (-862 |#1|)) (-15 -3129 ((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|))) |%noBranch|)) (-1074) (-773) (-827) (-13 (-1025) (-827) (-862 |#1|)) (-13 (-926 |#4| |#2| |#3|) (-598 (-866 |#1|)))) (T -912)) +((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074)) (-4 *3 (-13 (-926 *8 *6 *7) (-598 *4))) (-5 *4 (-866 *5)) (-4 *7 (-862 *5)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-13 (-1025) (-827) (-862 *5))) (-5 *1 (-912 *5 *6 *7 *8 *3)))) (-3129 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-864 *6 *3) *8 (-866 *6) (-864 *6 *3))) (-4 *8 (-827)) (-5 *2 (-864 *6 *3)) (-5 *4 (-866 *6)) (-4 *6 (-1074)) (-4 *3 (-13 (-926 *9 *7 *8) (-598 *4))) (-4 *7 (-773)) (-4 *9 (-13 (-1025) (-827) (-862 *6))) (-5 *1 (-912 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3129 ((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|) (-1 (-864 |#1| |#5|) |#3| (-866 |#1|) (-864 |#1| |#5|)))) (IF (|has| |#3| (-862 |#1|)) (-15 -3129 ((-864 |#1| |#5|) |#5| (-866 |#1|) (-864 |#1| |#5|))) |%noBranch|)) +((-3560 (((-309 (-538)) (-1149) (-622 (-1 (-112) |#1|))) 18) (((-309 (-538)) (-1149) (-1 (-112) |#1|)) 15))) +(((-913 |#1|) (-10 -7 (-15 -3560 ((-309 (-538)) (-1149) (-1 (-112) |#1|))) (-15 -3560 ((-309 (-538)) (-1149) (-622 (-1 (-112) |#1|))))) (-1185)) (T -913)) +((-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-622 (-1 (-112) *5))) (-4 *5 (-1185)) (-5 *2 (-309 (-538))) (-5 *1 (-913 *5)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1185)) (-5 *2 (-309 (-538))) (-5 *1 (-913 *5))))) +(-10 -7 (-15 -3560 ((-309 (-538)) (-1149) (-1 (-112) |#1|))) (-15 -3560 ((-309 (-538)) (-1149) (-622 (-1 (-112) |#1|))))) +((-3560 ((|#2| |#2| (-622 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -3560 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3560 (|#2| |#2| (-622 (-1 (-112) |#3|))))) (-827) (-416 |#1|) (-1185)) (T -914)) +((-3560 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-1 (-112) *5))) (-4 *5 (-1185)) (-4 *4 (-827)) (-5 *1 (-914 *4 *2 *5)) (-4 *2 (-416 *4)))) (-3560 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1185)) (-4 *4 (-827)) (-5 *1 (-914 *4 *2 *5)) (-4 *2 (-416 *4))))) +(-10 -7 (-15 -3560 (|#2| |#2| (-1 (-112) |#3|))) (-15 -3560 (|#2| |#2| (-622 (-1 (-112) |#3|))))) +((-3129 (((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)) 25))) +(((-915 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))) (-1074) (-13 (-545) (-862 |#1|) (-598 (-866 |#1|))) (-967 |#2|)) (T -915)) +((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074)) (-4 *3 (-967 *6)) (-4 *6 (-13 (-545) (-862 *5) (-598 *4))) (-5 *4 (-866 *5)) (-5 *1 (-915 *5 *6 *3))))) +(-10 -7 (-15 -3129 ((-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))) +((-3129 (((-864 |#1| (-1149)) (-1149) (-866 |#1|) (-864 |#1| (-1149))) 17))) +(((-916 |#1|) (-10 -7 (-15 -3129 ((-864 |#1| (-1149)) (-1149) (-866 |#1|) (-864 |#1| (-1149))))) (-1074)) (T -916)) +((-3129 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-864 *5 (-1149))) (-5 *3 (-1149)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-5 *1 (-916 *5))))) +(-10 -7 (-15 -3129 ((-864 |#1| (-1149)) (-1149) (-866 |#1|) (-864 |#1| (-1149))))) +((-3130 (((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))) 33)) (-3129 (((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-1 |#3| (-622 |#3|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))) 32))) +(((-917 |#1| |#2| |#3|) (-10 -7 (-15 -3129 ((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-1 |#3| (-622 |#3|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))) (-15 -3130 ((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))))) (-1074) (-13 (-1025) (-827)) (-13 (-1025) (-598 (-866 |#1|)) (-1014 |#2|))) (T -917)) +((-3130 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 (-866 *6))) (-5 *5 (-1 (-864 *6 *8) *8 (-866 *6) (-864 *6 *8))) (-4 *6 (-1074)) (-4 *8 (-13 (-1025) (-598 (-866 *6)) (-1014 *7))) (-5 *2 (-864 *6 *8)) (-4 *7 (-13 (-1025) (-827))) (-5 *1 (-917 *6 *7 *8)))) (-3129 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-622 (-866 *7))) (-5 *5 (-1 *9 (-622 *9))) (-5 *6 (-1 (-864 *7 *9) *9 (-866 *7) (-864 *7 *9))) (-4 *7 (-1074)) (-4 *9 (-13 (-1025) (-598 (-866 *7)) (-1014 *8))) (-5 *2 (-864 *7 *9)) (-5 *3 (-622 *9)) (-4 *8 (-13 (-1025) (-827))) (-5 *1 (-917 *7 *8 *9))))) +(-10 -7 (-15 -3129 ((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-1 |#3| (-622 |#3|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|)))) (-15 -3130 ((-864 |#1| |#3|) (-622 |#3|) (-622 (-866 |#1|)) (-864 |#1| |#3|) (-1 (-864 |#1| |#3|) |#3| (-866 |#1|) (-864 |#1| |#3|))))) +((-3138 (((-1143 (-402 (-538))) (-538)) 63)) (-3137 (((-1143 (-538)) (-538)) 66)) (-3693 (((-1143 (-538)) (-538)) 60)) (-3136 (((-538) (-1143 (-538))) 55)) (-3135 (((-1143 (-402 (-538))) (-538)) 49)) (-3134 (((-1143 (-538)) (-538)) 38)) (-3133 (((-1143 (-538)) (-538)) 68)) (-3132 (((-1143 (-538)) (-538)) 67)) (-3131 (((-1143 (-402 (-538))) (-538)) 51))) +(((-918) (-10 -7 (-15 -3131 ((-1143 (-402 (-538))) (-538))) (-15 -3132 ((-1143 (-538)) (-538))) (-15 -3133 ((-1143 (-538)) (-538))) (-15 -3134 ((-1143 (-538)) (-538))) (-15 -3135 ((-1143 (-402 (-538))) (-538))) (-15 -3136 ((-538) (-1143 (-538)))) (-15 -3693 ((-1143 (-538)) (-538))) (-15 -3137 ((-1143 (-538)) (-538))) (-15 -3138 ((-1143 (-402 (-538))) (-538))))) (T -918)) +((-3138 (*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3137 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3693 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-1143 (-538))) (-5 *2 (-538)) (-5 *1 (-918)))) (-3135 (*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3134 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3133 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3132 (*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) (-3131 (*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538))))) +(-10 -7 (-15 -3131 ((-1143 (-402 (-538))) (-538))) (-15 -3132 ((-1143 (-538)) (-538))) (-15 -3133 ((-1143 (-538)) (-538))) (-15 -3134 ((-1143 (-538)) (-538))) (-15 -3135 ((-1143 (-402 (-538))) (-538))) (-15 -3136 ((-538) (-1143 (-538)))) (-15 -3693 ((-1143 (-538)) (-538))) (-15 -3137 ((-1143 (-538)) (-538))) (-15 -3138 ((-1143 (-402 (-538))) (-538)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751)) NIL (|has| |#1| (-23)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) 11 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-4069 (($ (-622 |#1|)) 13)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4195 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-3977 (($ (-751) |#1|) 8)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 10 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4192 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-4079 (((-112) $ (-751)) NIL)) (-4193 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-4128 (($ $ (-622 |#1|)) 26)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) 20) (($ $ (-1198 (-538))) NIL)) (-4196 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-4271 (((-895) $) 16)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-4194 (($ $ $) 24)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527)))) (($ (-622 |#1|)) 17)) (-3884 (($ (-622 |#1|)) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4197 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4199 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-538) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-4316 (((-751) $) 14 (|has| $ (-6 -4353))))) +(((-919 |#1|) (-956 |#1|) (-1025)) (T -919)) +NIL +(-956 |#1|) +((-3141 (((-475 |#1| |#2|) (-922 |#2|)) 20)) (-3144 (((-243 |#1| |#2|) (-922 |#2|)) 33)) (-3142 (((-922 |#2|) (-475 |#1| |#2|)) 25)) (-3140 (((-243 |#1| |#2|) (-475 |#1| |#2|)) 55)) (-3143 (((-922 |#2|) (-243 |#1| |#2|)) 30)) (-3139 (((-475 |#1| |#2|) (-243 |#1| |#2|)) 46))) +(((-920 |#1| |#2|) (-10 -7 (-15 -3139 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3140 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -3141 ((-475 |#1| |#2|) (-922 |#2|))) (-15 -3142 ((-922 |#2|) (-475 |#1| |#2|))) (-15 -3143 ((-922 |#2|) (-243 |#1| |#2|))) (-15 -3144 ((-243 |#1| |#2|) (-922 |#2|)))) (-622 (-1149)) (-1025)) (T -920)) +((-3144 (*1 *2 *3) (-12 (-5 *3 (-922 *5)) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-622 (-1149))))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) (-5 *2 (-922 *5)) (-5 *1 (-920 *4 *5)))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) (-5 *2 (-922 *5)) (-5 *1 (-920 *4 *5)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-922 *5)) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-622 (-1149))))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5)))) (-3139 (*1 *2 *3) (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5))))) +(-10 -7 (-15 -3139 ((-475 |#1| |#2|) (-243 |#1| |#2|))) (-15 -3140 ((-243 |#1| |#2|) (-475 |#1| |#2|))) (-15 -3141 ((-475 |#1| |#2|) (-922 |#2|))) (-15 -3142 ((-922 |#2|) (-475 |#1| |#2|))) (-15 -3143 ((-922 |#2|) (-243 |#1| |#2|))) (-15 -3144 ((-243 |#1| |#2|) (-922 |#2|)))) +((-3145 (((-622 |#2|) |#2| |#2|) 10)) (-3148 (((-751) (-622 |#1|)) 37 (|has| |#1| (-825)))) (-3146 (((-622 |#2|) |#2|) 11)) (-3149 (((-751) (-622 |#1|) (-538) (-538)) 39 (|has| |#1| (-825)))) (-3147 ((|#1| |#2|) 32 (|has| |#1| (-825))))) +(((-921 |#1| |#2|) (-10 -7 (-15 -3145 ((-622 |#2|) |#2| |#2|)) (-15 -3146 ((-622 |#2|) |#2|)) (IF (|has| |#1| (-825)) (PROGN (-15 -3147 (|#1| |#2|)) (-15 -3148 ((-751) (-622 |#1|))) (-15 -3149 ((-751) (-622 |#1|) (-538) (-538)))) |%noBranch|)) (-358) (-1207 |#1|)) (T -921)) +((-3149 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-538)) (-4 *5 (-825)) (-4 *5 (-358)) (-5 *2 (-751)) (-5 *1 (-921 *5 *6)) (-4 *6 (-1207 *5)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-825)) (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-921 *4 *5)) (-4 *5 (-1207 *4)))) (-3147 (*1 *2 *3) (-12 (-4 *2 (-358)) (-4 *2 (-825)) (-5 *1 (-921 *2 *3)) (-4 *3 (-1207 *2)))) (-3146 (*1 *2 *3) (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-921 *4 *3)) (-4 *3 (-1207 *4)))) (-3145 (*1 *2 *3 *3) (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-921 *4 *3)) (-4 *3 (-1207 *4))))) +(-10 -7 (-15 -3145 ((-622 |#2|) |#2| |#2|)) (-15 -3146 ((-622 |#2|) |#2|)) (IF (|has| |#1| (-825)) (PROGN (-15 -3147 (|#1| |#2|)) (-15 -3148 ((-751) (-622 |#1|))) (-15 -3149 ((-751) (-622 |#1|) (-538) (-538)))) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1149)) $) 16)) (-3419 (((-1143 $) $ (-1149)) 21) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1149))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) 8) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-1149) #2#) $) NIL)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-1149) $) NIL)) (-4116 (($ $ $ (-1149)) NIL (|has| |#1| (-170)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1149)) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-524 (-1149)) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1149) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1149) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#1|) (-1149)) NIL) (($ (-1143 $) (-1149)) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1149)) NIL)) (-3153 (((-524 (-1149)) $) NIL) (((-751) $ (-1149)) NIL) (((-622 (-751)) $ (-622 (-1149))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 (-1149)) (-524 (-1149))) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3418 (((-3 (-1149) #3="failed") $) 19)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1149)) (|:| -2493 (-751))) #3#) $) NIL)) (-4172 (($ $ (-1149)) 29 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1149) |#1|) NIL) (($ $ (-622 (-1149)) (-622 |#1|)) NIL) (($ $ (-1149) $) NIL) (($ $ (-622 (-1149)) (-622 $)) NIL)) (-4117 (($ $ (-1149)) NIL (|has| |#1| (-170)))) (-4170 (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-4307 (((-524 (-1149)) $) NIL) (((-751) $ (-1149)) NIL) (((-622 (-751)) $ (-622 (-1149))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1149) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1149) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1149) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1149)) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 25) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-1149)) 27) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-922 |#1|) (-13 (-926 |#1| (-524 (-1149)) (-1149)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1149))) |%noBranch|))) (-1025)) (T -922)) +((-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-922 *3)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025))))) +(-13 (-926 |#1| (-524 (-1149)) (-1149)) (-10 -8 (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1149))) |%noBranch|))) +((-4318 (((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)) 19))) +(((-923 |#1| |#2|) (-10 -7 (-15 -4318 ((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)))) (-1025) (-1025)) (T -923)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-922 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-922 *6)) (-5 *1 (-923 *5 *6))))) +(-10 -7 (-15 -4318 ((-922 |#2|) (-1 |#2| |#1|) (-922 |#1|)))) +((-3419 (((-1200 |#1| (-922 |#2|)) (-922 |#2|) (-1228 |#1|)) 18))) +(((-924 |#1| |#2|) (-10 -7 (-15 -3419 ((-1200 |#1| (-922 |#2|)) (-922 |#2|) (-1228 |#1|)))) (-1149) (-1025)) (T -924)) +((-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1228 *5)) (-14 *5 (-1149)) (-4 *6 (-1025)) (-5 *2 (-1200 *5 (-922 *6))) (-5 *1 (-924 *5 *6)) (-5 *3 (-922 *6))))) +(-10 -7 (-15 -3419 ((-1200 |#1| (-922 |#2|)) (-922 |#2|) (-1228 |#1|)))) +((-3152 (((-751) $) 71) (((-751) $ (-622 |#4|)) 74)) (-4134 (($ $) 173)) (-4329 (((-400 $) $) 165)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 116)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL) (((-3 (-538) #2#) $) NIL) (((-3 |#4| #2#) $) 60)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL) (((-538) $) NIL) ((|#4| $) 59)) (-4116 (($ $ $ |#4|) 76)) (-2362 (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 106) (((-669 |#2|) (-669 $)) 99)) (-3857 (($ $) 180) (($ $ |#4|) 183)) (-3151 (((-622 $) $) 63)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 199) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 192)) (-3154 (((-622 $) $) 28)) (-3226 (($ |#2| |#3|) NIL) (($ $ |#4| (-751)) NIL) (($ $ (-622 |#4|) (-622 (-751))) 57)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#4|) 162)) (-3156 (((-3 (-622 $) "failed") $) 42)) (-3155 (((-3 (-622 $) "failed") $) 31)) (-3157 (((-3 (-2 (|:| |var| |#4|) (|:| -2493 (-751))) "failed") $) 47)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 109)) (-3038 (((-400 (-1143 $)) (-1143 $)) 122)) (-3039 (((-400 (-1143 $)) (-1143 $)) 120)) (-4092 (((-400 $) $) 140)) (-4127 (($ $ (-622 (-288 $))) 21) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-622 |#4|) (-622 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-622 |#4|) (-622 $)) NIL)) (-4117 (($ $ |#4|) 78)) (-4330 (((-866 (-373)) $) 213) (((-866 (-538)) $) 206) (((-527) $) 221)) (-3150 ((|#2| $) NIL) (($ $ |#4|) 175)) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 154)) (-4040 ((|#2| $ |#3|) NIL) (($ $ |#4| (-751)) 52) (($ $ (-622 |#4|) (-622 (-751))) 55)) (-3035 (((-3 $ #1#) $) 156)) (-3018 (((-112) $ $) 186))) +(((-925 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -3035 ((-3 |#1| #1="failed") |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) #1#) (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3036 ((-3 (-1231 |#1|) #1#) (-669 |#1|))) (-15 -3857 (|#1| |#1| |#4|)) (-15 -3150 (|#1| |#1| |#4|)) (-15 -4117 (|#1| |#1| |#4|)) (-15 -4116 (|#1| |#1| |#1| |#4|)) (-15 -3151 ((-622 |#1|) |#1|)) (-15 -3152 ((-751) |#1| (-622 |#4|))) (-15 -3152 ((-751) |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| |#4|) (|:| -2493 (-751))) "failed") |#1|)) (-15 -3156 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3155 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3226 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -3226 (|#1| |#1| |#4| (-751))) (-15 -4122 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3154 ((-622 |#1|) |#1|)) (-15 -4040 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -4040 (|#1| |#1| |#4| (-751))) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#4| |#1|)) (-15 -3508 ((-3 |#4| #2="failed") |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#4| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#4| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -3226 (|#1| |#2| |#3|)) (-15 -4040 (|#2| |#1| |#3|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #2#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #2#) |#1|)) (-15 -3508 ((-3 |#2| #2#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3857 (|#1| |#1|))) (-926 |#2| |#3| |#4|) (-1025) (-773) (-827)) (T -925)) +NIL +(-10 -8 (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -3035 ((-3 |#1| #1="failed") |#1|)) (-15 -3018 ((-112) |#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) #1#) (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3036 ((-3 (-1231 |#1|) #1#) (-669 |#1|))) (-15 -3857 (|#1| |#1| |#4|)) (-15 -3150 (|#1| |#1| |#4|)) (-15 -4117 (|#1| |#1| |#4|)) (-15 -4116 (|#1| |#1| |#1| |#4|)) (-15 -3151 ((-622 |#1|) |#1|)) (-15 -3152 ((-751) |#1| (-622 |#4|))) (-15 -3152 ((-751) |#1|)) (-15 -3157 ((-3 (-2 (|:| |var| |#4|) (|:| -2493 (-751))) "failed") |#1|)) (-15 -3156 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3155 ((-3 (-622 |#1|) "failed") |#1|)) (-15 -3226 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -3226 (|#1| |#1| |#4| (-751))) (-15 -4122 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3154 ((-622 |#1|) |#1|)) (-15 -4040 (|#1| |#1| (-622 |#4|) (-622 (-751)))) (-15 -4040 (|#1| |#1| |#4| (-751))) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#4| |#1|)) (-15 -3508 ((-3 |#4| #2="failed") |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#4| |#1|)) (-15 -4127 (|#1| |#1| (-622 |#4|) (-622 |#2|))) (-15 -4127 (|#1| |#1| |#4| |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -3226 (|#1| |#2| |#3|)) (-15 -4040 (|#2| |#1| |#3|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #2#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #2#) |#1|)) (-15 -3508 ((-3 |#2| #2#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -3857 (|#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 |#3|) $) 108)) (-3419 (((-1143 $) $ |#3|) 123) (((-1143 |#1|) $) 122)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-545)))) (-2178 (($ $) 86 (|has| |#1| (-545)))) (-2176 (((-112) $) 88 (|has| |#1| (-545)))) (-3152 (((-751) $) 110) (((-751) $ (-622 |#3|)) 109)) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 98 (|has| |#1| (-886)))) (-4134 (($ $) 96 (|has| |#1| (-446)))) (-4329 (((-400 $) $) 95 (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 101 (|has| |#1| (-886)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| #2="failed") $) 162) (((-3 (-402 (-538)) #2#) $) 160 (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) 158 (|has| |#1| (-1014 (-538)))) (((-3 |#3| #2#) $) 134)) (-3507 ((|#1| $) 163) (((-402 (-538)) $) 159 (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) 157 (|has| |#1| (-1014 (-538)))) ((|#3| $) 133)) (-4116 (($ $ $ |#3|) 106 (|has| |#1| (-170)))) (-4319 (($ $) 152)) (-2362 (((-669 (-538)) (-669 $)) 132 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 131 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-3821 (((-3 $ "failed") $) 32)) (-3857 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-3151 (((-622 $) $) 107)) (-4086 (((-112) $) 94 (|has| |#1| (-886)))) (-1721 (($ $ |#1| |#2| $) 170)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 82 (-12 (|has| |#3| (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 81 (-12 (|has| |#3| (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-2502 (((-112) $) 30)) (-2510 (((-751) $) 167)) (-3420 (($ (-1143 |#1|) |#3|) 115) (($ (-1143 $) |#3|) 114)) (-3154 (((-622 $) $) 124)) (-4297 (((-112) $) 150)) (-3226 (($ |#1| |#2|) 151) (($ $ |#3| (-751)) 117) (($ $ (-622 |#3|) (-622 (-751))) 116)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#3|) 118)) (-3153 ((|#2| $) 168) (((-751) $ |#3|) 120) (((-622 (-751)) $ (-622 |#3|)) 119)) (-3677 (($ $ $) 77 (|has| |#1| (-827)))) (-3678 (($ $ $) 76 (|has| |#1| (-827)))) (-1722 (($ (-1 |#2| |#2|) $) 169)) (-4318 (($ (-1 |#1| |#1|) $) 149)) (-3418 (((-3 |#3| "failed") $) 121)) (-3227 (($ $) 147)) (-3525 ((|#1| $) 146)) (-2013 (($ (-622 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-3593 (((-1131) $) 9)) (-3156 (((-3 (-622 $) "failed") $) 112)) (-3155 (((-3 (-622 $) "failed") $) 113)) (-3157 (((-3 (-2 (|:| |var| |#3|) (|:| -2493 (-751))) "failed") $) 111)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 164)) (-1915 ((|#1| $) 165)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 93 (|has| |#1| (-446)))) (-3495 (($ (-622 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 100 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 99 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 97 (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-622 $) (-622 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-622 |#3|) (-622 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-622 |#3|) (-622 $)) 136)) (-4117 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4170 (($ $ |#3|) 40) (($ $ (-622 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-622 |#3|) (-622 (-751))) 37)) (-4307 ((|#2| $) 148) (((-751) $ |#3|) 128) (((-622 (-751)) $ (-622 |#3|)) 127)) (-4330 (((-866 (-373)) $) 80 (-12 (|has| |#3| (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) 79 (-12 (|has| |#3| (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) 78 (-12 (|has| |#3| (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 102 (-3191 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-545))) (($ (-402 (-538))) 70 (-3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| |#1| (-38 (-402 (-538))))))) (-4177 (((-622 |#1|) $) 166)) (-4040 ((|#1| $ |#2|) 153) (($ $ |#3| (-751)) 126) (($ $ (-622 |#3|) (-622 (-751))) 125)) (-3035 (((-3 $ "failed") $) 71 (-3891 (-3191 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 28)) (-1720 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 87 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ |#3|) 36) (($ $ (-622 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-622 |#3|) (-622 (-751))) 33)) (-2896 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 73 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 75 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 72 (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 156 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 155 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-926 |#1| |#2| |#3|) (-138) (-1025) (-773) (-827)) (T -926)) +((-3857 (*1 *1 *1) (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-4307 (*1 *2 *1 *3) (-12 (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-751)))) (-4307 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 (-751))))) (-4040 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-926 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *2 (-827)))) (-4040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 (-751))) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) (-3154 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5)))) (-3419 (*1 *2 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-1143 *1)) (-4 *1 (-926 *4 *5 *3)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-1143 *3)))) (-3418 (*1 *2 *1) (|partial| -12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3153 (*1 *2 *1 *3) (-12 (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-751)))) (-3153 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 (-751))))) (-4122 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-926 *4 *5 *3)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-926 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *2 (-827)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 (-751))) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) (-3420 (*1 *1 *2 *3) (-12 (-5 *2 (-1143 *4)) (-4 *4 (-1025)) (-4 *1 (-926 *4 *5 *3)) (-4 *5 (-773)) (-4 *3 (-827)))) (-3420 (*1 *1 *2 *3) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)))) (-3155 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5)))) (-3156 (*1 *2 *1) (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5)))) (-3157 (*1 *2 *1) (|partial| -12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| |var| *5) (|:| -2493 (-751)))))) (-3152 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-751)))) (-3152 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *5)))) (-3151 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5)))) (-4116 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-170)))) (-4117 (*1 *1 *1 *2) (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-170)))) (-3150 (*1 *1 *1 *2) (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-446)))) (-3857 (*1 *1 *1 *2) (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-446)))) (-4134 (*1 *1 *1) (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-4329 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-400 *1)) (-4 *1 (-926 *3 *4 *5))))) +(-13 (-876 |t#3|) (-321 |t#1| |t#2|) (-304 $) (-507 |t#3| |t#1|) (-507 |t#3| $) (-1014 |t#3|) (-372 |t#1|) (-10 -8 (-15 -4307 ((-751) $ |t#3|)) (-15 -4307 ((-622 (-751)) $ (-622 |t#3|))) (-15 -4040 ($ $ |t#3| (-751))) (-15 -4040 ($ $ (-622 |t#3|) (-622 (-751)))) (-15 -3154 ((-622 $) $)) (-15 -3419 ((-1143 $) $ |t#3|)) (-15 -3419 ((-1143 |t#1|) $)) (-15 -3418 ((-3 |t#3| "failed") $)) (-15 -3153 ((-751) $ |t#3|)) (-15 -3153 ((-622 (-751)) $ (-622 |t#3|))) (-15 -4122 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |t#3|)) (-15 -3226 ($ $ |t#3| (-751))) (-15 -3226 ($ $ (-622 |t#3|) (-622 (-751)))) (-15 -3420 ($ (-1143 |t#1|) |t#3|)) (-15 -3420 ($ (-1143 $) |t#3|)) (-15 -3155 ((-3 (-622 $) "failed") $)) (-15 -3156 ((-3 (-622 $) "failed") $)) (-15 -3157 ((-3 (-2 (|:| |var| |t#3|) (|:| -2493 (-751))) "failed") $)) (-15 -3152 ((-751) $)) (-15 -3152 ((-751) $ (-622 |t#3|))) (-15 -3417 ((-622 |t#3|) $)) (-15 -3151 ((-622 $) $)) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (IF (|has| |t#3| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-598 (-866 (-538)))) (IF (|has| |t#3| (-598 (-866 (-538)))) (-6 (-598 (-866 (-538)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-598 (-866 (-373)))) (IF (|has| |t#3| (-598 (-866 (-373)))) (-6 (-598 (-866 (-373)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862 (-538))) (IF (|has| |t#3| (-862 (-538))) (-6 (-862 (-538))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-862 (-373))) (IF (|has| |t#3| (-862 (-373))) (-6 (-862 (-373))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4116 ($ $ $ |t#3|)) (-15 -4117 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-6 (-446)) (-15 -3150 ($ $ |t#3|)) (-15 -3857 ($ $)) (-15 -3857 ($ $ |t#3|)) (-15 -4329 ((-400 $) $)) (-15 -4134 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4351)) (-6 -4351) |%noBranch|) (IF (|has| |t#1| (-886)) (-6 (-886)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#3| (-598 (-527)))) ((-598 (-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#3| (-598 (-866 (-373))))) ((-598 (-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#3| (-598 (-866 (-538))))) ((-285) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-886)) (|has| |#1| (-446))) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-545) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 |#3|) . T) ((-862 (-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#3| (-862 (-373)))) ((-862 (-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#3| (-862 (-538)))) ((-886) |has| |#1| (-886)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1014 |#3|) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) |has| |#1| (-886))) +((-3417 (((-622 |#2|) |#5|) 36)) (-3419 (((-1143 |#5|) |#5| |#2| (-1143 |#5|)) 23) (((-402 (-1143 |#5|)) |#5| |#2|) 16)) (-3420 ((|#5| (-402 (-1143 |#5|)) |#2|) 30)) (-3418 (((-3 |#2| "failed") |#5|) 65)) (-3156 (((-3 (-622 |#5|) "failed") |#5|) 59)) (-3158 (((-3 (-2 (|:| |val| |#5|) (|:| -2493 (-538))) "failed") |#5|) 47)) (-3155 (((-3 (-622 |#5|) "failed") |#5|) 61)) (-3157 (((-3 (-2 (|:| |var| |#2|) (|:| -2493 (-538))) "failed") |#5|) 51))) +(((-927 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3417 ((-622 |#2|) |#5|)) (-15 -3418 ((-3 |#2| "failed") |#5|)) (-15 -3419 ((-402 (-1143 |#5|)) |#5| |#2|)) (-15 -3420 (|#5| (-402 (-1143 |#5|)) |#2|)) (-15 -3419 ((-1143 |#5|) |#5| |#2| (-1143 |#5|))) (-15 -3155 ((-3 (-622 |#5|) "failed") |#5|)) (-15 -3156 ((-3 (-622 |#5|) "failed") |#5|)) (-15 -3157 ((-3 (-2 (|:| |var| |#2|) (|:| -2493 (-538))) "failed") |#5|)) (-15 -3158 ((-3 (-2 (|:| |val| |#5|) (|:| -2493 (-538))) "failed") |#5|))) (-773) (-827) (-1025) (-926 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -4317 ($ |#4|)) (-15 -3331 (|#4| $)) (-15 -3330 (|#4| $))))) (T -927)) +((-3158 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2493 (-538)))) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) (-3157 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2493 (-538)))) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) (-3156 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-622 *3)) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) (-3155 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-622 *3)) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) (-3419 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))) (-4 *7 (-926 *6 *5 *4)) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-5 *1 (-927 *5 *4 *6 *7 *3)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1143 *2))) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *2 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))) (-5 *1 (-927 *5 *4 *6 *7 *2)) (-4 *7 (-926 *6 *5 *4)))) (-3419 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *5 *4)) (-5 *2 (-402 (-1143 *3))) (-5 *1 (-927 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) (-3418 (*1 *2 *3) (|partial| -12 (-4 *4 (-773)) (-4 *5 (-1025)) (-4 *6 (-926 *5 *4 *2)) (-4 *2 (-827)) (-5 *1 (-927 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *6)) (-15 -3331 (*6 $)) (-15 -3330 (*6 $))))))) (-3417 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-622 *5)) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-358) (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))))) +(-10 -7 (-15 -3417 ((-622 |#2|) |#5|)) (-15 -3418 ((-3 |#2| "failed") |#5|)) (-15 -3419 ((-402 (-1143 |#5|)) |#5| |#2|)) (-15 -3420 (|#5| (-402 (-1143 |#5|)) |#2|)) (-15 -3419 ((-1143 |#5|) |#5| |#2| (-1143 |#5|))) (-15 -3155 ((-3 (-622 |#5|) "failed") |#5|)) (-15 -3156 ((-3 (-622 |#5|) "failed") |#5|)) (-15 -3157 ((-3 (-2 (|:| |var| |#2|) (|:| -2493 (-538))) "failed") |#5|)) (-15 -3158 ((-3 (-2 (|:| |val| |#5|) (|:| -2493 (-538))) "failed") |#5|))) +((-4318 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24))) +(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4318 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-773) (-827) (-1025) (-926 |#3| |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751)))))) (T -928)) +((-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-827)) (-4 *8 (-1025)) (-4 *6 (-773)) (-4 *2 (-13 (-1074) (-10 -8 (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751)))))) (-5 *1 (-928 *6 *7 *8 *5 *2)) (-4 *5 (-926 *8 *6 *7))))) +(-10 -7 (-15 -4318 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3159 (((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#3| (-751)) 38)) (-3160 (((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) (-402 (-538)) (-751)) 34)) (-3162 (((-2 (|:| -2493 (-751)) (|:| -4313 |#4|) (|:| |radicand| (-622 |#4|))) |#4| (-751)) 54)) (-3161 (((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#5| (-751)) 64 (|has| |#3| (-446))))) +(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3159 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#3| (-751))) (-15 -3160 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) (-402 (-538)) (-751))) (IF (|has| |#3| (-446)) (-15 -3161 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#5| (-751))) |%noBranch|) (-15 -3162 ((-2 (|:| -2493 (-751)) (|:| -4313 |#4|) (|:| |radicand| (-622 |#4|))) |#4| (-751)))) (-773) (-827) (-545) (-926 |#3| |#1| |#2|) (-13 (-358) (-10 -8 (-15 -3331 (|#4| $)) (-15 -3330 (|#4| $)) (-15 -4317 ($ |#4|))))) (T -929)) +((-3162 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545)) (-4 *3 (-926 *7 *5 *6)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| (-622 *3)))) (-5 *1 (-929 *5 *6 *7 *3 *8)) (-5 *4 (-751)) (-4 *8 (-13 (-358) (-10 -8 (-15 -3331 (*3 $)) (-15 -3330 (*3 $)) (-15 -4317 ($ *3))))))) (-3161 (*1 *2 *3 *4) (-12 (-4 *7 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545)) (-4 *8 (-926 *7 *5 *6)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| *3))) (-5 *1 (-929 *5 *6 *7 *8 *3)) (-5 *4 (-751)) (-4 *3 (-13 (-358) (-10 -8 (-15 -3331 (*8 $)) (-15 -3330 (*8 $)) (-15 -4317 ($ *8))))))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-538))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545)) (-4 *8 (-926 *7 *5 *6)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *9) (|:| |radicand| *9))) (-5 *1 (-929 *5 *6 *7 *8 *9)) (-5 *4 (-751)) (-4 *9 (-13 (-358) (-10 -8 (-15 -3331 (*8 $)) (-15 -3330 (*8 $)) (-15 -4317 ($ *8))))))) (-3159 (*1 *2 *3 *4) (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-545)) (-4 *7 (-926 *3 *5 *6)) (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *8) (|:| |radicand| *8))) (-5 *1 (-929 *5 *6 *3 *7 *8)) (-5 *4 (-751)) (-4 *8 (-13 (-358) (-10 -8 (-15 -3331 (*7 $)) (-15 -3330 (*7 $)) (-15 -4317 ($ *7)))))))) +(-10 -7 (-15 -3159 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#3| (-751))) (-15 -3160 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) (-402 (-538)) (-751))) (IF (|has| |#3| (-446)) (-15 -3161 ((-2 (|:| -2493 (-751)) (|:| -4313 |#5|) (|:| |radicand| |#5|)) |#5| (-751))) |%noBranch|) (-15 -3162 ((-2 (|:| -2493 (-751)) (|:| -4313 |#4|) (|:| |radicand| (-622 |#4|))) |#4| (-751)))) +((-2898 (((-112) $ $) NIL)) (-3163 (($ (-1093)) 8)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 14) (((-1093) $) 11)) (-3387 (((-112) $ $) 10))) +(((-930) (-13 (-1074) (-597 (-1093)) (-10 -8 (-15 -3163 ($ (-1093)))))) (T -930)) +((-3163 (*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-930))))) +(-13 (-1074) (-597 (-1093)) (-10 -8 (-15 -3163 ($ (-1093))))) +((-3229 (((-1062 (-221)) $) 8)) (-3230 (((-1062 (-221)) $) 9)) (-3231 (((-622 (-622 (-919 (-221)))) $) 10)) (-4317 (((-840) $) 6))) +(((-931) (-138)) (T -931)) +((-3231 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-622 (-622 (-919 (-221))))))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1062 (-221))))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1062 (-221)))))) +(-13 (-597 (-840)) (-10 -8 (-15 -3231 ((-622 (-622 (-919 (-221)))) $)) (-15 -3230 ((-1062 (-221)) $)) (-15 -3229 ((-1062 (-221)) $)))) +(((-597 (-840)) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 61 (|has| |#1| (-545)))) (-2178 (($ $) 62 (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 28)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) 24)) (-3821 (((-3 $ "failed") $) 35)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-1721 (($ $ |#1| |#2| $) 48)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) 16)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| |#2|) NIL)) (-3153 ((|#2| $) 19)) (-1722 (($ (-1 |#2| |#2|) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3227 (($ $) 23)) (-3525 ((|#1| $) 21)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) 40)) (-1915 ((|#1| $) NIL)) (-4098 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-130)) (|has| |#1| (-545))))) (-3820 (((-3 $ "failed") $ $) 74 (|has| |#1| (-545))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-545)))) (-4307 ((|#2| $) 17)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) 39) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 34) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ |#2|) 31)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) 15)) (-1720 (($ $ $ (-751)) 57 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 67 (|has| |#1| (-545)))) (-2991 (($) 22 T CONST)) (-2997 (($) 12 T CONST)) (-3387 (((-112) $ $) 66)) (-4308 (($ $ |#1|) 75 (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) 54) (($ $ (-751)) 52)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-932 |#1| |#2|) (-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| |#2| (-130)) (-15 -4098 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025) (-772)) (T -932)) +((-4098 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *2 (-772))))) +(-13 (-321 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| |#2| (-130)) (-15 -4098 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) +((-3164 (((-3 (-669 |#1|) "failed") |#2| (-895)) 15))) +(((-933 |#1| |#2|) (-10 -7 (-15 -3164 ((-3 (-669 |#1|) "failed") |#2| (-895)))) (-545) (-638 |#1|)) (T -933)) +((-3164 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-895)) (-4 *5 (-545)) (-5 *2 (-669 *5)) (-5 *1 (-933 *5 *3)) (-4 *3 (-638 *5))))) +(-10 -7 (-15 -3164 ((-3 (-669 |#1|) "failed") |#2| (-895)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) 16 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 15 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 13)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) |#1|) 12)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) 10 (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) 17 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) 11)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) 14) (($ $ (-1198 (-538))) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) NIL)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4316 (((-751) $) 8 (|has| $ (-6 -4353))))) +(((-934 |#1|) (-19 |#1|) (-1185)) (T -934)) NIL (-19 |#1|) -((-4196 (((-932 |#2|) (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|) 16)) (-4197 ((|#2| (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|) 18)) (-4313 (((-932 |#2|) (-1 |#2| |#1|) (-932 |#1|)) 13))) -(((-933 |#1| |#2|) (-10 -7 (-15 -4196 ((-932 |#2|) (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -4313 ((-932 |#2|) (-1 |#2| |#1|) (-932 |#1|)))) (-1183) (-1183)) (T -933)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-932 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-932 *6)) (-5 *1 (-933 *5 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-932 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-933 *5 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-932 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-5 *2 (-932 *5)) (-5 *1 (-933 *6 *5))))) -(-10 -7 (-15 -4196 ((-932 |#2|) (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-932 |#1|) |#2|)) (-15 -4313 ((-932 |#2|) (-1 |#2| |#1|) (-932 |#1|)))) -((-3160 (($ $ (-1063 $)) 7) (($ $ (-1147)) 6))) -(((-934) (-138)) (T -934)) -((-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-934)))) (-3160 (*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-1147))))) -(-13 (-10 -8 (-15 -3160 ($ $ (-1147))) (-15 -3160 ($ $ (-1063 $))))) -((-3161 (((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147)) (-1147)) 25) (((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147))) 26) (((-2 (|:| |coef1| (-536)) (|:| |coef2| (-536)) (|:| |prim| (-1141 |#1|))) (-920 |#1|) (-1147) (-920 |#1|) (-1147)) 43))) -(((-935 |#1|) (-10 -7 (-15 -3161 ((-2 (|:| |coef1| (-536)) (|:| |coef2| (-536)) (|:| |prim| (-1141 |#1|))) (-920 |#1|) (-1147) (-920 |#1|) (-1147))) (-15 -3161 ((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3161 ((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147)) (-1147)))) (-13 (-356) (-145))) (T -935)) -((-3161 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) (-5 *5 (-1147)) (-4 *6 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 *6))) (|:| |prim| (-1141 *6)))) (-5 *1 (-935 *6)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 *5))) (|:| |prim| (-1141 *5)))) (-5 *1 (-935 *5)))) (-3161 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-920 *5)) (-5 *4 (-1147)) (-4 *5 (-13 (-356) (-145))) (-5 *2 (-2 (|:| |coef1| (-536)) (|:| |coef2| (-536)) (|:| |prim| (-1141 *5)))) (-5 *1 (-935 *5))))) -(-10 -7 (-15 -3161 ((-2 (|:| |coef1| (-536)) (|:| |coef2| (-536)) (|:| |prim| (-1141 |#1|))) (-920 |#1|) (-1147) (-920 |#1|) (-1147))) (-15 -3161 ((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147)))) (-15 -3161 ((-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 |#1|))) (|:| |prim| (-1141 |#1|))) (-620 (-920 |#1|)) (-620 (-1147)) (-1147)))) -((-3164 (((-620 |#1|) |#1| |#1|) 42)) (-4081 (((-112) |#1|) 39)) (-3163 ((|#1| |#1|) 65)) (-3162 ((|#1| |#1|) 64))) -(((-936 |#1|) (-10 -7 (-15 -4081 ((-112) |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -3163 (|#1| |#1|)) (-15 -3164 ((-620 |#1|) |#1| |#1|))) (-535)) (T -936)) -((-3164 (*1 *2 *3 *3) (-12 (-5 *2 (-620 *3)) (-5 *1 (-936 *3)) (-4 *3 (-535)))) (-3163 (*1 *2 *2) (-12 (-5 *1 (-936 *2)) (-4 *2 (-535)))) (-3162 (*1 *2 *2) (-12 (-5 *1 (-936 *2)) (-4 *2 (-535)))) (-4081 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-936 *3)) (-4 *3 (-535))))) -(-10 -7 (-15 -4081 ((-112) |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -3163 (|#1| |#1|)) (-15 -3164 ((-620 |#1|) |#1| |#1|))) -((-3165 (((-1235) (-838)) 9))) -(((-937) (-10 -7 (-15 -3165 ((-1235) (-838))))) (T -937)) -((-3165 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-937))))) -(-10 -7 (-15 -3165 ((-1235) (-838)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (-2728 (($ $ $) 63 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (-1367 (((-3 $ "failed") $ $) 50 (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (-3466 (((-749)) 34 (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3166 ((|#2| $) 21)) (-3167 ((|#1| $) 20)) (-3891 (($) NIL (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) CONST)) (-3816 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (-3322 (($) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-2497 (((-112) $) NIL (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (-3672 (($ $ $) NIL (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-3673 (($ $ $) NIL (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-3168 (($ |#1| |#2|) 19)) (-2121 (((-893) $) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 37 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2487 (($ (-893)) NIL (-12 (|has| |#1| (-361)) (|has| |#2| (-361))))) (-3589 (((-1091) $) NIL)) (-3337 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-2681 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-4312 (((-838) $) 14)) (-2986 (($) 40 (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))) CONST)) (-2992 (($) 24 (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))) CONST)) (-2891 (((-112) $ $) NIL (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-2892 (((-112) $ $) NIL (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-3382 (((-112) $ $) 18)) (-3012 (((-112) $ $) NIL (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-3013 (((-112) $ $) 66 (-3886 (-12 (|has| |#1| (-771)) (|has| |#2| (-771))) (-12 (|has| |#1| (-825)) (|has| |#2| (-825)))))) (-4303 (($ $ $) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465))))) (-4192 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4194 (($ $ $) 43 (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771)))))) (** (($ $ (-536)) NIL (-12 (|has| |#1| (-465)) (|has| |#2| (-465)))) (($ $ (-749)) 31 (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))))) (($ $ (-893)) NIL (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705)))))) (* (($ (-536) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-749) $) 46 (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (($ (-893) $) NIL (-3886 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-771)) (|has| |#2| (-771))))) (($ $ $) 27 (-3886 (-12 (|has| |#1| (-465)) (|has| |#2| (-465))) (-12 (|has| |#1| (-705)) (|has| |#2| (-705))))))) -(((-938 |#1| |#2|) (-13 (-1072) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-705)) (IF (|has| |#2| (-705)) (-6 (-705)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-771)) (IF (|has| |#2| (-771)) (-6 (-771)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-825)) (IF (|has| |#2| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (-15 -3168 ($ |#1| |#2|)) (-15 -3167 (|#1| $)) (-15 -3166 (|#2| $)))) (-1072) (-1072)) (T -938)) -((-3168 (*1 *1 *2 *3) (-12 (-5 *1 (-938 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3167 (*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1072)))) (-3166 (*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-938 *3 *2)) (-4 *3 (-1072))))) -(-13 (-1072) (-10 -8 (IF (|has| |#1| (-361)) (IF (|has| |#2| (-361)) (-6 (-361)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-705)) (IF (|has| |#2| (-705)) (-6 (-705)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-465)) (IF (|has| |#2| (-465)) (-6 (-465)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-771)) (IF (|has| |#2| (-771)) (-6 (-771)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-825)) (IF (|has| |#2| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (-15 -3168 ($ |#1| |#2|)) (-15 -3167 (|#1| $)) (-15 -3166 (|#2| $)))) -((-3756 (((-1074) $) 12)) (-3169 (($ (-1147) (-1074)) 13)) (-3900 (((-1147) $) 10)) (-4312 (((-838) $) 22))) -(((-939) (-13 (-595 (-838)) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -3756 ((-1074) $)) (-15 -3169 ($ (-1147) (-1074)))))) (T -939)) -((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-939)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-939)))) (-3169 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1074)) (-5 *1 (-939))))) -(-13 (-595 (-838)) (-10 -8 (-15 -3900 ((-1147) $)) (-15 -3756 ((-1074) $)) (-15 -3169 ($ (-1147) (-1074))))) -((-2893 (((-112) $ $) NIL)) (-3412 (((-1068 (-1147)) $) 19)) (-3180 (((-112) $) 26)) (-4186 (((-1147) $) 27)) (-3182 (((-112) $) 24)) (-3181 ((|#1| $) 25)) (-3174 (((-847 $ $) $) 34)) (-3175 (((-112) $) 33)) (-3185 (($ $ $) 12)) (-3178 (($ $) 29)) (-3179 (((-112) $) 28)) (-3671 (($ $) 10)) (-3588 (((-1129) $) NIL)) (-3172 (((-847 $ $) $) 36)) (-3173 (((-112) $) 35)) (-3184 (($ $ $) 13)) (-3589 (((-1091) $) NIL)) (-3170 (((-847 $ $) $) 38)) (-3171 (((-112) $) 37)) (-3183 (($ $ $) 14)) (-4312 (((-838) $) 40) (($ |#1|) 7) (($ (-1147)) 9)) (-3176 (((-847 $ $) $) 32)) (-3177 (((-112) $) 30)) (-3186 (($ $ $) 11)) (-3382 (((-112) $ $) NIL))) -(((-940 |#1|) (-13 (-941) (-10 -8 (-15 -4312 ($ |#1|)) (-15 -4312 ($ (-1147))) (-15 -3412 ((-1068 (-1147)) $)) (-15 -3182 ((-112) $)) (-15 -3181 (|#1| $)) (-15 -3180 ((-112) $)) (-15 -4186 ((-1147) $)) (-15 -3179 ((-112) $)) (-15 -3178 ($ $)) (-15 -3177 ((-112) $)) (-15 -3176 ((-847 $ $) $)) (-15 -3175 ((-112) $)) (-15 -3174 ((-847 $ $) $)) (-15 -3173 ((-112) $)) (-15 -3172 ((-847 $ $) $)) (-15 -3171 ((-112) $)) (-15 -3170 ((-847 $ $) $)))) (-941)) (T -940)) -((-4312 (*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-1068 (-1147))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3181 (*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3178 (*1 *1 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(-13 (-941) (-10 -8 (-15 -4312 ($ |#1|)) (-15 -4312 ($ (-1147))) (-15 -3412 ((-1068 (-1147)) $)) (-15 -3182 ((-112) $)) (-15 -3181 (|#1| $)) (-15 -3180 ((-112) $)) (-15 -4186 ((-1147) $)) (-15 -3179 ((-112) $)) (-15 -3178 ($ $)) (-15 -3177 ((-112) $)) (-15 -3176 ((-847 $ $) $)) (-15 -3175 ((-112) $)) (-15 -3174 ((-847 $ $) $)) (-15 -3173 ((-112) $)) (-15 -3172 ((-847 $ $) $)) (-15 -3171 ((-112) $)) (-15 -3170 ((-847 $ $) $)))) -((-2893 (((-112) $ $) 7)) (-3185 (($ $ $) 15)) (-3671 (($ $) 17)) (-3588 (((-1129) $) 9)) (-3184 (($ $ $) 14)) (-3589 (((-1091) $) 10)) (-3183 (($ $ $) 13)) (-4312 (((-838) $) 11)) (-3186 (($ $ $) 16)) (-3382 (((-112) $ $) 6))) -(((-941) (-138)) (T -941)) -((-3671 (*1 *1 *1) (-4 *1 (-941))) (-3186 (*1 *1 *1 *1) (-4 *1 (-941))) (-3185 (*1 *1 *1 *1) (-4 *1 (-941))) (-3184 (*1 *1 *1 *1) (-4 *1 (-941))) (-3183 (*1 *1 *1 *1) (-4 *1 (-941)))) -(-13 (-1072) (-10 -8 (-15 -3671 ($ $)) (-15 -3186 ($ $ $)) (-15 -3185 ($ $ $)) (-15 -3184 ($ $ $)) (-15 -3183 ($ $ $)))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-3187 (($ $ $) 43)) (-3867 (($ $ $) 44)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3673 ((|#1| $) 45)) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-942 |#1|) (-138) (-825)) (T -942)) -((-3673 (*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) (-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) (-3187 (*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4348) (-15 -3673 (|t#1| $)) (-15 -3867 ($ $ $)) (-15 -3187 ($ $ $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-3199 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|) 85)) (-4110 ((|#2| |#2| |#2|) 83)) (-3200 (((-2 (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|) 87)) (-3201 (((-2 (|:| |coef1| |#2|) (|:| -3490 |#2|)) |#2| |#2|) 89)) (-3208 (((-2 (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|) 107 (|has| |#1| (-444)))) (-3215 (((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|) 46)) (-3189 (((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|) 64)) (-3190 (((-2 (|:| |coef1| |#2|) (|:| -4111 |#1|)) |#2| |#2|) 66)) (-3198 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3193 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 71)) (-3203 (((-2 (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|) 97)) (-3196 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 74)) (-3205 (((-620 (-749)) |#2| |#2|) 82)) (-3213 ((|#1| |#2| |#2|) 42)) (-3207 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|) 105 (|has| |#1| (-444)))) (-3206 ((|#1| |#2| |#2|) 103 (|has| |#1| (-444)))) (-3214 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|) 44)) (-3188 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|) 63)) (-4111 ((|#1| |#2| |#2|) 61)) (-4107 (((-2 (|:| -4308 |#1|) (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|) 35)) (-3212 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3197 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3536 ((|#2| |#2| |#2|) 75)) (-3192 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 69)) (-3191 ((|#2| |#2| |#2| (-749)) 67)) (-3490 ((|#2| |#2| |#2|) 111 (|has| |#1| (-444)))) (-3815 (((-1229 |#2|) (-1229 |#2|) |#1|) 21)) (-3209 (((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|) 39)) (-3202 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|) 95)) (-4112 ((|#1| |#2|) 92)) (-3195 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749)) 73)) (-3194 ((|#2| |#2| |#2| (-749)) 72)) (-3204 (((-620 |#2|) |#2| |#2|) 80)) (-3211 ((|#2| |#2| |#1| |#1| (-749)) 50)) (-3210 ((|#1| |#1| |#1| (-749)) 49)) (* (((-1229 |#2|) |#1| (-1229 |#2|)) 16))) -(((-943 |#1| |#2|) (-10 -7 (-15 -4111 (|#1| |#2| |#2|)) (-15 -3188 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3189 ((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3190 ((-2 (|:| |coef1| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3191 (|#2| |#2| |#2| (-749))) (-15 -3192 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3193 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3194 (|#2| |#2| |#2| (-749))) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3536 (|#2| |#2| |#2|)) (-15 -3197 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3198 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4110 (|#2| |#2| |#2|)) (-15 -3199 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -3200 ((-2 (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -3201 ((-2 (|:| |coef1| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -4112 (|#1| |#2|)) (-15 -3202 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|)) (-15 -3203 ((-2 (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|)) (-15 -3204 ((-620 |#2|) |#2| |#2|)) (-15 -3205 ((-620 (-749)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -3206 (|#1| |#2| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|)) (-15 -3490 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1229 |#2|) |#1| (-1229 |#2|))) (-15 -3815 ((-1229 |#2|) (-1229 |#2|) |#1|)) (-15 -4107 ((-2 (|:| -4308 |#1|) (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|)) (-15 -3209 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|)) (-15 -3210 (|#1| |#1| |#1| (-749))) (-15 -3211 (|#2| |#2| |#1| |#1| (-749))) (-15 -3212 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3213 (|#1| |#2| |#2|)) (-15 -3214 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3215 ((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|))) (-543) (-1205 |#1|)) (T -943)) -((-3215 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4111 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3214 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4111 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3213 (*1 *2 *3 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2)))) (-3212 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) (-3211 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) (-3210 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *2 (-543)) (-5 *1 (-943 *2 *4)) (-4 *4 (-1205 *2)))) (-3209 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-4107 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -4308 *4) (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3815 (*1 *2 *2 *3) (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-543)) (-5 *1 (-943 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-543)) (-5 *1 (-943 *3 *4)))) (-3490 (*1 *2 *2 *2) (-12 (-4 *3 (-444)) (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) (-3208 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3206 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3207 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3206 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3206 (*1 *2 *3 *3) (-12 (-4 *2 (-543)) (-4 *2 (-444)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2)))) (-3205 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 (-749))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3204 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3203 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4112 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3202 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4112 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-4112 (*1 *2 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2)))) (-3201 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3490 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3200 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3490 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3199 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3490 *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-4110 (*1 *2 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) (-3198 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3197 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3536 (*1 *2 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) (-3196 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5)))) (-3195 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5)))) (-3194 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-543)) (-5 *1 (-943 *4 *2)) (-4 *2 (-1205 *4)))) (-3193 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5)))) (-3192 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5)))) (-3191 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-543)) (-5 *1 (-943 *4 *2)) (-4 *2 (-1205 *4)))) (-3190 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4111 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3189 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4111 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-3188 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4111 *4))) (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) (-4111 (*1 *2 *3 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2))))) -(-10 -7 (-15 -4111 (|#1| |#2| |#2|)) (-15 -3188 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3189 ((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3190 ((-2 (|:| |coef1| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3191 (|#2| |#2| |#2| (-749))) (-15 -3192 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3193 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3194 (|#2| |#2| |#2| (-749))) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3196 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-749))) (-15 -3536 (|#2| |#2| |#2|)) (-15 -3197 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3198 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4110 (|#2| |#2| |#2|)) (-15 -3199 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -3200 ((-2 (|:| |coef2| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -3201 ((-2 (|:| |coef1| |#2|) (|:| -3490 |#2|)) |#2| |#2|)) (-15 -4112 (|#1| |#2|)) (-15 -3202 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|)) (-15 -3203 ((-2 (|:| |coef2| |#2|) (|:| -4112 |#1|)) |#2|)) (-15 -3204 ((-620 |#2|) |#2| |#2|)) (-15 -3205 ((-620 (-749)) |#2| |#2|)) (IF (|has| |#1| (-444)) (PROGN (-15 -3206 (|#1| |#2| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -3206 |#1|)) |#2| |#2|)) (-15 -3490 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1229 |#2|) |#1| (-1229 |#2|))) (-15 -3815 ((-1229 |#2|) (-1229 |#2|) |#1|)) (-15 -4107 ((-2 (|:| -4308 |#1|) (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|)) (-15 -3209 ((-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) |#2| |#2|)) (-15 -3210 (|#1| |#1| |#1| (-749))) (-15 -3211 (|#2| |#2| |#1| |#1| (-749))) (-15 -3212 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3213 (|#1| |#2| |#2|)) (-15 -3214 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|)) (-15 -3215 ((-2 (|:| |coef2| |#2|) (|:| -4111 |#1|)) |#2| |#2|))) -((-2893 (((-112) $ $) NIL)) (-3664 (((-1184) $) 13)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 10)) (-4312 (((-838) $) 22) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-944) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $))))) (T -944)) -((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-944)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-944))))) -(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) 27)) (-3891 (($) NIL T CONST)) (-3217 (((-620 (-620 (-536))) (-620 (-536))) 29)) (-3216 (((-536) $) 45)) (-3218 (($ (-620 (-536))) 17)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4325 (((-620 (-536)) $) 12)) (-3337 (($ $) 32)) (-4312 (((-838) $) 43) (((-620 (-536)) $) 10)) (-2986 (($) 7 T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 20)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 19)) (-4194 (($ $ $) 21)) (* (($ (-893) $) NIL) (($ (-749) $) 25))) -(((-945) (-13 (-775) (-596 (-620 (-536))) (-10 -8 (-15 -3218 ($ (-620 (-536)))) (-15 -3217 ((-620 (-620 (-536))) (-620 (-536)))) (-15 -3216 ((-536) $)) (-15 -3337 ($ $)) (-15 -4312 ((-620 (-536)) $))))) (T -945)) -((-3218 (*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-945)))) (-3217 (*1 *2 *3) (-12 (-5 *2 (-620 (-620 (-536)))) (-5 *1 (-945)) (-5 *3 (-620 (-536))))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-945)))) (-3337 (*1 *1 *1) (-5 *1 (-945))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-945))))) -(-13 (-775) (-596 (-620 (-536))) (-10 -8 (-15 -3218 ($ (-620 (-536)))) (-15 -3217 ((-620 (-620 (-536))) (-620 (-536)))) (-15 -3216 ((-536) $)) (-15 -3337 ($ $)) (-15 -4312 ((-620 (-536)) $)))) -((-4303 (($ $ |#2|) 30)) (-4192 (($ $) 22) (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-400 (-536)) $) 26) (($ $ (-400 (-536))) 28))) -(((-946 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4303 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) (-947 |#2| |#3| |#4|) (-1023) (-770) (-825)) (T -946)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-400 (-536)))) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 -4303 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 * (|#1| (-893) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 |#3|) $) 72)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-3220 (((-112) $) 71)) (-2497 (((-112) $) 30)) (-4292 (((-112) $) 60)) (-3221 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-620 |#3|) (-620 |#2|)) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-4302 ((|#2| $) 62)) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4035 ((|#1| $ |#2|) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) -(((-947 |#1| |#2| |#3|) (-138) (-1023) (-770) (-825)) (T -947)) -((-3520 (*1 *2 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *3 (-770)) (-4 *4 (-825)) (-4 *2 (-1023)))) (-3222 (*1 *1 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *4 (-825)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *2 *4)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *2 (-770)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-947 *4 *3 *2)) (-4 *4 (-1023)) (-4 *3 (-770)) (-4 *2 (-825)))) (-3221 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 *5)) (-4 *1 (-947 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-770)) (-4 *6 (-825)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-770)) (-4 *5 (-825)) (-5 *2 (-620 *5)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-770)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3219 (*1 *1 *1) (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *4 (-825))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3221 ($ $ |t#3| |t#2|)) (-15 -3221 ($ $ (-620 |t#3|) (-620 |t#2|))) (-15 -3222 ($ $)) (-15 -3520 (|t#1| $)) (-15 -4302 (|t#2| $)) (-15 -3412 ((-620 |t#3|) $)) (-15 -3220 ((-112) $)) (-15 -3219 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-283) |has| |#1| (-543)) ((-543) |has| |#1| (-543)) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-3223 (((-1060 (-219)) $) 8)) (-3224 (((-1060 (-219)) $) 9)) (-3225 (((-1060 (-219)) $) 10)) (-3226 (((-620 (-620 (-917 (-219)))) $) 11)) (-4312 (((-838) $) 6))) -(((-948) (-138)) (T -948)) -((-3226 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-620 (-620 (-917 (-219))))))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219))))) (-3224 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219))))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219)))))) -(-13 (-595 (-838)) (-10 -8 (-15 -3226 ((-620 (-620 (-917 (-219)))) $)) (-15 -3225 ((-1060 (-219)) $)) (-15 -3224 ((-1060 (-219)) $)) (-15 -3223 ((-1060 (-219)) $)))) -(((-595 (-838)) . T)) -((-3412 (((-620 |#4|) $) 23)) (-3236 (((-112) $) 48)) (-3227 (((-112) $) 47)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#4|) 36)) (-3232 (((-112) $) 49)) (-3234 (((-112) $ $) 55)) (-3233 (((-112) $ $) 58)) (-3235 (((-112) $) 53)) (-3228 (((-620 |#5|) (-620 |#5|) $) 90)) (-3229 (((-620 |#5|) (-620 |#5|) $) 87)) (-3230 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3242 (((-620 |#4|) $) 27)) (-3241 (((-112) |#4| $) 30)) (-3231 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3238 (($ $ |#4|) 33)) (-3240 (($ $ |#4|) 32)) (-3239 (($ $ |#4|) 34)) (-3382 (((-112) $ $) 40))) -(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3227 ((-112) |#1|)) (-15 -3228 ((-620 |#5|) (-620 |#5|) |#1|)) (-15 -3229 ((-620 |#5|) (-620 |#5|) |#1|)) (-15 -3230 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3231 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3232 ((-112) |#1|)) (-15 -3233 ((-112) |#1| |#1|)) (-15 -3234 ((-112) |#1| |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -3236 ((-112) |#1|)) (-15 -3237 ((-2 (|:| |under| |#1|) (|:| -3460 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3238 (|#1| |#1| |#4|)) (-15 -3239 (|#1| |#1| |#4|)) (-15 -3240 (|#1| |#1| |#4|)) (-15 -3241 ((-112) |#4| |#1|)) (-15 -3242 ((-620 |#4|) |#1|)) (-15 -3412 ((-620 |#4|) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-950 |#2| |#3| |#4| |#5|) (-1023) (-771) (-825) (-1037 |#2| |#3| |#4|)) (T -949)) -NIL -(-10 -8 (-15 -3227 ((-112) |#1|)) (-15 -3228 ((-620 |#5|) (-620 |#5|) |#1|)) (-15 -3229 ((-620 |#5|) (-620 |#5|) |#1|)) (-15 -3230 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3231 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3232 ((-112) |#1|)) (-15 -3233 ((-112) |#1| |#1|)) (-15 -3234 ((-112) |#1| |#1|)) (-15 -3235 ((-112) |#1|)) (-15 -3236 ((-112) |#1|)) (-15 -3237 ((-2 (|:| |under| |#1|) (|:| -3460 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3238 (|#1| |#1| |#4|)) (-15 -3239 (|#1| |#1| |#4|)) (-15 -3240 (|#1| |#1| |#4|)) (-15 -3241 ((-112) |#4| |#1|)) (-15 -3242 ((-620 |#4|) |#1|)) (-15 -3412 ((-620 |#4|) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348)))) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348)))) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-3589 (((-1091) $) 10)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) -(((-950 |#1| |#2| |#3| |#4|) (-138) (-1023) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -950)) -((-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-1037 *3 *4 *2)) (-4 *2 (-825)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5)))) (-3241 (*1 *2 *3 *1) (-12 (-4 *1 (-950 *4 *5 *3 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1037 *4 *5 *3)) (-5 *2 (-112)))) (-3240 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1037 *3 *4 *2)))) (-3239 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1037 *3 *4 *2)))) (-3238 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) (-4 *5 (-1037 *3 *4 *2)))) (-3237 (*1 *2 *1 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1037 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3460 *1) (|:| |upper| *1))) (-4 *1 (-950 *4 *5 *3 *6)))) (-3236 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-3235 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3234 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3233 (*1 *2 *1 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112)))) (-3231 (*1 *2 *3 *1) (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3230 (*1 *2 *3 *1) (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3229 (*1 *2 *2 *1) (-12 (-5 *2 (-620 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)))) (-3228 (*1 *2 *2 *1) (-12 (-5 *2 (-620 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)))) (-3227 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) -(-13 (-1072) (-149 |t#4|) (-595 (-620 |t#4|)) (-10 -8 (-6 -4348) (-15 -3503 ((-3 $ "failed") (-620 |t#4|))) (-15 -3502 ($ (-620 |t#4|))) (-15 -3526 (|t#3| $)) (-15 -3412 ((-620 |t#3|) $)) (-15 -3242 ((-620 |t#3|) $)) (-15 -3241 ((-112) |t#3| $)) (-15 -3240 ($ $ |t#3|)) (-15 -3239 ($ $ |t#3|)) (-15 -3238 ($ $ |t#3|)) (-15 -3237 ((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |t#3|)) (-15 -3236 ((-112) $)) (IF (|has| |t#1| (-543)) (PROGN (-15 -3235 ((-112) $)) (-15 -3234 ((-112) $ $)) (-15 -3233 ((-112) $ $)) (-15 -3232 ((-112) $)) (-15 -3231 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3230 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3229 ((-620 |t#4|) (-620 |t#4|) $)) (-15 -3228 ((-620 |t#4|) (-620 |t#4|) $)) (-15 -3227 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-1072) . T) ((-1183) . T)) -((-3244 (((-620 |#4|) |#4| |#4|) 118)) (-3267 (((-620 |#4|) (-620 |#4|) (-112)) 107 (|has| |#1| (-444))) (((-620 |#4|) (-620 |#4|)) 108 (|has| |#1| (-444)))) (-3254 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|)) 35)) (-3253 (((-112) |#4|) 34)) (-3266 (((-620 |#4|) |#4|) 103 (|has| |#1| (-444)))) (-3249 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-1 (-112) |#4|) (-620 |#4|)) 20)) (-3250 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|)) 22)) (-3251 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|)) 23)) (-3262 (((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3678 (-620 |#4|))) "failed") (-620 |#4|)) 73)) (-3264 (((-620 |#4|) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3265 (((-620 |#4|) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3243 (((-620 |#4|) (-620 |#4|)) 110)) (-3259 (((-620 |#4|) (-620 |#4|) (-620 |#4|) (-112)) 48) (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 50)) (-3260 ((|#4| |#4| (-620 |#4|)) 49)) (-3268 (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 114 (|has| |#1| (-444)))) (-3270 (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 117 (|has| |#1| (-444)))) (-3269 (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 116 (|has| |#1| (-444)))) (-3245 (((-620 |#4|) (-620 |#4|) (-620 |#4|) (-1 (-620 |#4|) (-620 |#4|))) 87) (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 89) (((-620 |#4|) (-620 |#4|) |#4|) 121) (((-620 |#4|) |#4| |#4|) 119) (((-620 |#4|) (-620 |#4|)) 88)) (-3273 (((-620 |#4|) (-620 |#4|) (-620 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3252 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|)) 41)) (-3248 (((-112) (-620 |#4|)) 62)) (-3247 (((-112) (-620 |#4|) (-620 (-620 |#4|))) 53)) (-3256 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|)) 29)) (-3255 (((-112) |#4|) 28)) (-3272 (((-620 |#4|) (-620 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3271 (((-620 |#4|) (-620 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3261 (((-620 |#4|) (-620 |#4|)) 66)) (-3263 (((-620 |#4|) (-620 |#4|)) 79)) (-3246 (((-112) (-620 |#4|) (-620 |#4|)) 51)) (-3258 (((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|)) 39)) (-3257 (((-112) |#4|) 36))) -(((-951 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3245 ((-620 |#4|) (-620 |#4|))) (-15 -3245 ((-620 |#4|) |#4| |#4|)) (-15 -3243 ((-620 |#4|) (-620 |#4|))) (-15 -3244 ((-620 |#4|) |#4| |#4|)) (-15 -3245 ((-620 |#4|) (-620 |#4|) |#4|)) (-15 -3245 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3245 ((-620 |#4|) (-620 |#4|) (-620 |#4|) (-1 (-620 |#4|) (-620 |#4|)))) (-15 -3246 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3247 ((-112) (-620 |#4|) (-620 (-620 |#4|)))) (-15 -3248 ((-112) (-620 |#4|))) (-15 -3249 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-1 (-112) |#4|) (-620 |#4|))) (-15 -3250 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|))) (-15 -3251 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|))) (-15 -3252 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3253 ((-112) |#4|)) (-15 -3254 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3255 ((-112) |#4|)) (-15 -3256 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3257 ((-112) |#4|)) (-15 -3258 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3259 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3259 ((-620 |#4|) (-620 |#4|) (-620 |#4|) (-112))) (-15 -3260 (|#4| |#4| (-620 |#4|))) (-15 -3261 ((-620 |#4|) (-620 |#4|))) (-15 -3262 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3678 (-620 |#4|))) "failed") (-620 |#4|))) (-15 -3263 ((-620 |#4|) (-620 |#4|))) (-15 -3264 ((-620 |#4|) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3265 ((-620 |#4|) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3266 ((-620 |#4|) |#4|)) (-15 -3267 ((-620 |#4|) (-620 |#4|))) (-15 -3267 ((-620 |#4|) (-620 |#4|) (-112))) (-15 -3268 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3269 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3270 ((-620 |#4|) (-620 |#4|) (-620 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -3271 ((-620 |#4|) (-620 |#4|))) (-15 -3272 ((-620 |#4|) (-620 |#4|))) (-15 -3273 ((-620 |#4|) (-620 |#4|) (-620 |#4|)))) |%noBranch|) |%noBranch|)) (-543) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -951)) -((-3273 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3271 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3270 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3269 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3268 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3267 (*1 *2 *2 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-112)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3267 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3266 (*1 *2 *3) (-12 (-4 *4 (-444)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3265 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-951 *5 *6 *7 *8)))) (-3264 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-620 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *1 (-951 *6 *7 *8 *9)))) (-3263 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3262 (*1 *2 *3) (|partial| -12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -3678 (-620 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3260 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *2)))) (-3259 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-620 *7)) (-5 *3 (-112)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3259 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3258 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3257 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3256 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3255 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3254 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3252 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7)))) (-3251 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-1 (-112) *8))) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8)))) (-3250 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-1 (-112) *8))) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8)))) (-3249 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3247 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-620 *8))) (-5 *3 (-620 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *5 *6 *7 *8)))) (-3246 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3245 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-620 *7) (-620 *7))) (-5 *2 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7)))) (-3245 (*1 *2 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3245 (*1 *2 *2 *3) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *3)))) (-3244 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3243 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) (-3245 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) (-3245 (*1 *2 *2) (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) -(-10 -7 (-15 -3245 ((-620 |#4|) (-620 |#4|))) (-15 -3245 ((-620 |#4|) |#4| |#4|)) (-15 -3243 ((-620 |#4|) (-620 |#4|))) (-15 -3244 ((-620 |#4|) |#4| |#4|)) (-15 -3245 ((-620 |#4|) (-620 |#4|) |#4|)) (-15 -3245 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3245 ((-620 |#4|) (-620 |#4|) (-620 |#4|) (-1 (-620 |#4|) (-620 |#4|)))) (-15 -3246 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3247 ((-112) (-620 |#4|) (-620 (-620 |#4|)))) (-15 -3248 ((-112) (-620 |#4|))) (-15 -3249 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-1 (-112) |#4|) (-620 |#4|))) (-15 -3250 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|))) (-15 -3251 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 (-1 (-112) |#4|)) (-620 |#4|))) (-15 -3252 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3253 ((-112) |#4|)) (-15 -3254 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3255 ((-112) |#4|)) (-15 -3256 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3257 ((-112) |#4|)) (-15 -3258 ((-2 (|:| |goodPols| (-620 |#4|)) (|:| |badPols| (-620 |#4|))) (-620 |#4|))) (-15 -3259 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3259 ((-620 |#4|) (-620 |#4|) (-620 |#4|) (-112))) (-15 -3260 (|#4| |#4| (-620 |#4|))) (-15 -3261 ((-620 |#4|) (-620 |#4|))) (-15 -3262 ((-3 (-2 (|:| |bas| (-468 |#1| |#2| |#3| |#4|)) (|:| -3678 (-620 |#4|))) "failed") (-620 |#4|))) (-15 -3263 ((-620 |#4|) (-620 |#4|))) (-15 -3264 ((-620 |#4|) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3265 ((-620 |#4|) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3266 ((-620 |#4|) |#4|)) (-15 -3267 ((-620 |#4|) (-620 |#4|))) (-15 -3267 ((-620 |#4|) (-620 |#4|) (-112))) (-15 -3268 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3269 ((-620 |#4|) (-620 |#4|) (-620 |#4|))) (-15 -3270 ((-620 |#4|) (-620 |#4|) (-620 |#4|)))) |%noBranch|) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (PROGN (-15 -3271 ((-620 |#4|) (-620 |#4|))) (-15 -3272 ((-620 |#4|) (-620 |#4|))) (-15 -3273 ((-620 |#4|) (-620 |#4|) (-620 |#4|)))) |%noBranch|) |%noBranch|)) -((-3274 (((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-3276 (((-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|)) 36)) (-3275 (((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) -(((-952 |#1|) (-10 -7 (-15 -3274 ((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3275 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3276 ((-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|)))) (-356)) (T -952)) -((-3276 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-620 (-2 (|:| C (-667 *5)) (|:| |g| (-1229 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)))) (-3275 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-667 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-952 *5)))) (-3274 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) (-5 *2 (-2 (|:| R (-667 *6)) (|:| A (-667 *6)) (|:| |Ainv| (-667 *6)))) (-5 *1 (-952 *6)) (-5 *3 (-667 *6))))) -(-10 -7 (-15 -3274 ((-2 (|:| R (-667 |#1|)) (|:| A (-667 |#1|)) (|:| |Ainv| (-667 |#1|))) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3275 ((-667 |#1|) (-667 |#1|) (-667 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3276 ((-620 (-2 (|:| C (-667 |#1|)) (|:| |g| (-1229 |#1|)))) (-667 |#1|) (-1229 |#1|)))) -((-4324 (((-398 |#4|) |#4|) 48))) -(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4324 ((-398 |#4|) |#4|))) (-825) (-771) (-444) (-924 |#3| |#2| |#1|)) (T -953)) -((-4324 (*1 *2 *3) (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-444)) (-5 *2 (-398 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4))))) -(-10 -7 (-15 -4324 ((-398 |#4|) |#4|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-4193 (($ (-749)) 112 (|has| |#1| (-23)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-3773 (((-536) (-1 (-112) |#1|) $) 97) (((-536) |#1| $) 96 (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) 95 (|has| |#1| (-1072)))) (-4064 (($ (-620 |#1|)) 118)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4190 (((-667 |#1|) $ $) 105 (|has| |#1| (-1023)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4187 ((|#1| $) 102 (-12 (|has| |#1| (-1023)) (|has| |#1| (-976))))) (-4074 (((-112) $ (-749)) 10)) (-4188 ((|#1| $) 103 (-12 (|has| |#1| (-1023)) (|has| |#1| (-976))))) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-4123 (($ $ (-620 |#1|)) 115)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-4191 ((|#1| $ $) 106 (|has| |#1| (-1023)))) (-4266 (((-893) $) 117)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-4189 (($ $ $) 104)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525)))) (($ (-620 |#1|)) 116)) (-3879 (($ (-620 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 83 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) 85 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 82 (|has| |#1| (-825)))) (-4192 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4194 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-536) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-705))) (($ $ |#1|) 107 (|has| |#1| (-705)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-954 |#1|) (-138) (-1023)) (T -954)) -((-4064 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-954 *3)))) (-4266 (*1 *2 *1) (-12 (-4 *1 (-954 *3)) (-4 *3 (-1023)) (-5 *2 (-893)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-954 *3)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1023)))) (-4123 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-954 *3)) (-4 *3 (-1023))))) -(-13 (-1228 |t#1|) (-10 -8 (-15 -4064 ($ (-620 |t#1|))) (-15 -4266 ((-893) $)) (-15 -4325 ($ (-620 |t#1|))) (-15 -4189 ($ $ $)) (-15 -4123 ($ $ (-620 |t#1|))))) -(((-34) . T) ((-101) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-19 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1072) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-1183) . T) ((-1228 |#1|) . T)) -((-4313 (((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)) 17))) -(((-955 |#1| |#2|) (-10 -7 (-15 -4313 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) (-1023) (-1023)) (T -955)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-917 *6)) (-5 *1 (-955 *5 *6))))) -(-10 -7 (-15 -4313 ((-917 |#2|) (-1 |#2| |#1|) (-917 |#1|)))) -((-3279 ((|#1| (-917 |#1|)) 13)) (-3278 ((|#1| (-917 |#1|)) 12)) (-3277 ((|#1| (-917 |#1|)) 11)) (-3281 ((|#1| (-917 |#1|)) 15)) (-3285 ((|#1| (-917 |#1|)) 21)) (-3280 ((|#1| (-917 |#1|)) 14)) (-3282 ((|#1| (-917 |#1|)) 16)) (-3284 ((|#1| (-917 |#1|)) 20)) (-3283 ((|#1| (-917 |#1|)) 19))) -(((-956 |#1|) (-10 -7 (-15 -3277 (|#1| (-917 |#1|))) (-15 -3278 (|#1| (-917 |#1|))) (-15 -3279 (|#1| (-917 |#1|))) (-15 -3280 (|#1| (-917 |#1|))) (-15 -3281 (|#1| (-917 |#1|))) (-15 -3282 (|#1| (-917 |#1|))) (-15 -3283 (|#1| (-917 |#1|))) (-15 -3284 (|#1| (-917 |#1|))) (-15 -3285 (|#1| (-917 |#1|)))) (-1023)) (T -956)) -((-3285 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3281 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3280 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3279 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3278 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) -(-10 -7 (-15 -3277 (|#1| (-917 |#1|))) (-15 -3278 (|#1| (-917 |#1|))) (-15 -3279 (|#1| (-917 |#1|))) (-15 -3280 (|#1| (-917 |#1|))) (-15 -3281 (|#1| (-917 |#1|))) (-15 -3282 (|#1| (-917 |#1|))) (-15 -3283 (|#1| (-917 |#1|))) (-15 -3284 (|#1| (-917 |#1|))) (-15 -3285 (|#1| (-917 |#1|)))) -((-3303 (((-3 |#1| "failed") |#1|) 18)) (-3291 (((-3 |#1| "failed") |#1|) 6)) (-3301 (((-3 |#1| "failed") |#1|) 16)) (-3289 (((-3 |#1| "failed") |#1|) 4)) (-3305 (((-3 |#1| "failed") |#1|) 20)) (-3293 (((-3 |#1| "failed") |#1|) 8)) (-3286 (((-3 |#1| "failed") |#1| (-749)) 1)) (-3288 (((-3 |#1| "failed") |#1|) 3)) (-3287 (((-3 |#1| "failed") |#1|) 2)) (-3306 (((-3 |#1| "failed") |#1|) 21)) (-3294 (((-3 |#1| "failed") |#1|) 9)) (-3304 (((-3 |#1| "failed") |#1|) 19)) (-3292 (((-3 |#1| "failed") |#1|) 7)) (-3302 (((-3 |#1| "failed") |#1|) 17)) (-3290 (((-3 |#1| "failed") |#1|) 5)) (-3309 (((-3 |#1| "failed") |#1|) 24)) (-3297 (((-3 |#1| "failed") |#1|) 12)) (-3307 (((-3 |#1| "failed") |#1|) 22)) (-3295 (((-3 |#1| "failed") |#1|) 10)) (-3311 (((-3 |#1| "failed") |#1|) 26)) (-3299 (((-3 |#1| "failed") |#1|) 14)) (-3312 (((-3 |#1| "failed") |#1|) 27)) (-3300 (((-3 |#1| "failed") |#1|) 15)) (-3310 (((-3 |#1| "failed") |#1|) 25)) (-3298 (((-3 |#1| "failed") |#1|) 13)) (-3308 (((-3 |#1| "failed") |#1|) 23)) (-3296 (((-3 |#1| "failed") |#1|) 11))) -(((-957 |#1|) (-138) (-1169)) (T -957)) -((-3312 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3311 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3310 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3309 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3308 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3307 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3306 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3305 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3304 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3303 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3302 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3301 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3300 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3299 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3298 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3297 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3296 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3295 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3294 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3293 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3292 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3291 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3290 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3289 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3288 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3287 (*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169)))) (-3286 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(-13 (-10 -7 (-15 -3286 ((-3 |t#1| "failed") |t#1| (-749))) (-15 -3287 ((-3 |t#1| "failed") |t#1|)) (-15 -3288 ((-3 |t#1| "failed") |t#1|)) (-15 -3289 ((-3 |t#1| "failed") |t#1|)) (-15 -3290 ((-3 |t#1| "failed") |t#1|)) (-15 -3291 ((-3 |t#1| "failed") |t#1|)) (-15 -3292 ((-3 |t#1| "failed") |t#1|)) (-15 -3293 ((-3 |t#1| "failed") |t#1|)) (-15 -3294 ((-3 |t#1| "failed") |t#1|)) (-15 -3295 ((-3 |t#1| "failed") |t#1|)) (-15 -3296 ((-3 |t#1| "failed") |t#1|)) (-15 -3297 ((-3 |t#1| "failed") |t#1|)) (-15 -3298 ((-3 |t#1| "failed") |t#1|)) (-15 -3299 ((-3 |t#1| "failed") |t#1|)) (-15 -3300 ((-3 |t#1| "failed") |t#1|)) (-15 -3301 ((-3 |t#1| "failed") |t#1|)) (-15 -3302 ((-3 |t#1| "failed") |t#1|)) (-15 -3303 ((-3 |t#1| "failed") |t#1|)) (-15 -3304 ((-3 |t#1| "failed") |t#1|)) (-15 -3305 ((-3 |t#1| "failed") |t#1|)) (-15 -3306 ((-3 |t#1| "failed") |t#1|)) (-15 -3307 ((-3 |t#1| "failed") |t#1|)) (-15 -3308 ((-3 |t#1| "failed") |t#1|)) (-15 -3309 ((-3 |t#1| "failed") |t#1|)) (-15 -3310 ((-3 |t#1| "failed") |t#1|)) (-15 -3311 ((-3 |t#1| "failed") |t#1|)) (-15 -3312 ((-3 |t#1| "failed") |t#1|)))) -((-3314 ((|#4| |#4| (-620 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3313 ((|#4| |#4| (-620 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4313 ((|#4| (-1 |#4| (-920 |#1|)) |#4|) 30))) -(((-958 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3313 (|#4| |#4| |#3|)) (-15 -3313 (|#4| |#4| (-620 |#3|))) (-15 -3314 (|#4| |#4| |#3|)) (-15 -3314 (|#4| |#4| (-620 |#3|))) (-15 -4313 (|#4| (-1 |#4| (-920 |#1|)) |#4|))) (-1023) (-771) (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147))))) (-924 (-920 |#1|) |#2| |#3|)) (T -958)) -((-4313 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-920 *4))) (-4 *4 (-1023)) (-4 *2 (-924 (-920 *4) *5 *6)) (-4 *5 (-771)) (-4 *6 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1="failed") (-1147)))))) (-5 *1 (-958 *4 *5 *6 *2)))) (-3314 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) (-4 *4 (-1023)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) (-4 *2 (-924 (-920 *4) *5 *6)))) (-3314 (*1 *2 *2 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-924 (-920 *4) *5 *3)))) (-3313 (*1 *2 *2 *3) (-12 (-5 *3 (-620 *6)) (-4 *6 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) (-4 *4 (-1023)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) (-4 *2 (-924 (-920 *4) *5 *6)))) (-3313 (*1 *2 *2 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-924 (-920 *4) *5 *3))))) -(-10 -7 (-15 -3313 (|#4| |#4| |#3|)) (-15 -3313 (|#4| |#4| (-620 |#3|))) (-15 -3314 (|#4| |#4| |#3|)) (-15 -3314 (|#4| |#4| (-620 |#3|))) (-15 -4313 (|#4| (-1 |#4| (-920 |#1|)) |#4|))) -((-3315 ((|#2| |#3|) 35)) (-4274 (((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|) 73)) (-4273 (((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) 89))) -(((-959 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|)) (-15 -3315 (|#2| |#3|))) (-343) (-1205 |#1|) (-1205 |#2|) (-703 |#2| |#3|)) (T -959)) -((-3315 (*1 *2 *3) (-12 (-4 *3 (-1205 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-959 *4 *2 *3 *5)) (-4 *4 (-343)) (-4 *5 (-703 *2 *3)))) (-4274 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 *3)) (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-959 *4 *3 *5 *6)) (-4 *6 (-703 *3 *5)))) (-4273 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| -2123 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) (-5 *1 (-959 *3 *4 *5 *6)) (-4 *6 (-703 *4 *5))))) -(-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|)) (-15 -3315 (|#2| |#3|))) -((-2893 (((-112) $ $) NIL)) (-3755 (((-3 (-112) #1="failed") $) 69)) (-4007 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-300))))) (-3319 (($ $ (-3 (-112) #1#)) 70)) (-3320 (($ (-620 |#4|) |#4|) 25)) (-3588 (((-1129) $) NIL)) (-3316 (($ $) 67)) (-3589 (((-1091) $) NIL)) (-3757 (((-112) $) 68)) (-3923 (($) 30)) (-3317 ((|#4| $) 72)) (-3318 (((-620 |#4|) $) 71)) (-4312 (((-838) $) 66)) (-3382 (((-112) $ $) NIL))) -(((-960 |#1| |#2| |#3| |#4|) (-13 (-1072) (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -3320 ($ (-620 |#4|) |#4|)) (-15 -3755 ((-3 (-112) #1="failed") $)) (-15 -3319 ($ $ (-3 (-112) #1#))) (-15 -3757 ((-112) $)) (-15 -3318 ((-620 |#4|) $)) (-15 -3317 (|#4| $)) (-15 -3316 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -4007 ($ $)) |%noBranch|) |%noBranch|))) (-444) (-825) (-771) (-924 |#1| |#3| |#2|)) (T -960)) -((-3923 (*1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-924 *2 *4 *3)))) (-3320 (*1 *1 *2 *3) (-12 (-5 *2 (-620 *3)) (-4 *3 (-924 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *1 (-960 *4 *5 *6 *3)))) (-3755 (*1 *2 *1) (|partial| -12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) (-3319 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) (-3757 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) (-3318 (*1 *2 *1) (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-620 *6)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) (-3317 (*1 *2 *1) (-12 (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-960 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)))) (-3316 (*1 *1 *1) (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-924 *2 *4 *3)))) (-4007 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-924 *2 *4 *3))))) -(-13 (-1072) (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -3320 ($ (-620 |#4|) |#4|)) (-15 -3755 ((-3 (-112) #1="failed") $)) (-15 -3319 ($ $ (-3 (-112) #1#))) (-15 -3757 ((-112) $)) (-15 -3318 ((-620 |#4|) $)) (-15 -3317 (|#4| $)) (-15 -3316 ($ $)) (IF (|has| |#1| (-300)) (IF (|has| |#1| (-145)) (-15 -4007 ($ $)) |%noBranch|) |%noBranch|))) -((-3321 (((-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536)))) (-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536))))) 69))) -(((-961 |#1| |#2|) (-10 -7 (-15 -3321 ((-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536)))) (-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536))))))) (-620 (-1147)) (-749)) (T -961)) -((-3321 (*1 *2 *2) (-12 (-5 *2 (-960 (-400 (-536)) (-839 *3) (-233 *4 (-749)) (-241 *3 (-400 (-536))))) (-14 *3 (-620 (-1147))) (-14 *4 (-749)) (-5 *1 (-961 *3 *4))))) -(-10 -7 (-15 -3321 ((-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536)))) (-960 (-400 (-536)) (-839 |#1|) (-233 |#2| (-749)) (-241 |#1| (-400 (-536))))))) -((-3616 (((-112) |#5| |#5|) 38)) (-3619 (((-112) |#5| |#5|) 52)) (-3624 (((-112) |#5| (-620 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3620 (((-112) (-620 |#4|) (-620 |#4|)) 58)) (-3626 (((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) 63)) (-3615 (((-1235)) 33)) (-3614 (((-1235) (-1129) (-1129) (-1129)) 29)) (-3625 (((-620 |#5|) (-620 |#5|)) 81)) (-3627 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) 79)) (-3628 (((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112)) 101)) (-3618 (((-112) |#5| |#5|) 47)) (-3623 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3621 (((-112) (-620 |#4|) (-620 |#4|)) 57)) (-3622 (((-112) (-620 |#4|) (-620 |#4|)) 59)) (-4057 (((-112) (-620 |#4|) (-620 |#4|)) 60)) (-3629 (((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3617 (((-620 |#5|) (-620 |#5|)) 43))) -(((-962 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3614 ((-1235) (-1129) (-1129) (-1129))) (-15 -3615 ((-1235))) (-15 -3616 ((-112) |#5| |#5|)) (-15 -3617 ((-620 |#5|) (-620 |#5|))) (-15 -3618 ((-112) |#5| |#5|)) (-15 -3619 ((-112) |#5| |#5|)) (-15 -3620 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3621 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3622 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -4057 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3623 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| (-620 |#5|))) (-15 -3625 ((-620 |#5|) (-620 |#5|))) (-15 -3626 ((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3627 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-15 -3628 ((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3629 ((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -962)) -((-3629 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *4) (|:| |ineq| (-620 *9)))) (-5 *1 (-962 *6 *7 *8 *9 *4)) (-5 *3 (-620 *9)) (-4 *4 (-1043 *6 *7 *8 *9)))) (-3628 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-620 *10)) (-5 *5 (-112)) (-4 *10 (-1043 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *10) (|:| |ineq| (-620 *9))))) (-5 *1 (-962 *6 *7 *8 *9 *10)) (-5 *3 (-620 *9)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-620 (-2 (|:| |val| (-620 *6)) (|:| -1655 *7)))) (-4 *6 (-1037 *3 *4 *5)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) (-3626 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-962 *5 *6 *7 *8 *3)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3623 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-4057 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3622 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3620 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3619 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3618 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) (-3616 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3615 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-962 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3614 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-962 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7))))) -(-10 -7 (-15 -3614 ((-1235) (-1129) (-1129) (-1129))) (-15 -3615 ((-1235))) (-15 -3616 ((-112) |#5| |#5|)) (-15 -3617 ((-620 |#5|) (-620 |#5|))) (-15 -3618 ((-112) |#5| |#5|)) (-15 -3619 ((-112) |#5| |#5|)) (-15 -3620 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3621 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3622 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -4057 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3623 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| (-620 |#5|))) (-15 -3625 ((-620 |#5|) (-620 |#5|))) (-15 -3626 ((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3627 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-15 -3628 ((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3629 ((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-4186 (((-1147) $) 15)) (-3756 (((-1129) $) 16)) (-3572 (($ (-1147) (-1129)) 14)) (-4312 (((-838) $) 13))) -(((-963) (-13 (-595 (-838)) (-10 -8 (-15 -3572 ($ (-1147) (-1129))) (-15 -4186 ((-1147) $)) (-15 -3756 ((-1129) $))))) (T -963)) -((-3572 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1129)) (-5 *1 (-963)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-963)))) (-3756 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-963))))) -(-13 (-595 (-838)) (-10 -8 (-15 -3572 ($ (-1147) (-1129))) (-15 -4186 ((-1147) $)) (-15 -3756 ((-1129) $)))) -((-3503 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1147) #1#) $) 65) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 (-536) #1#) $) 95)) (-3502 ((|#2| $) NIL) (((-1147) $) 60) (((-400 (-536)) $) NIL) (((-536) $) 92)) (-2357 (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 112) (((-667 |#2|) (-667 $)) 28)) (-3322 (($) 98)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 75) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 84)) (-3324 (($ $) 10)) (-3798 (((-3 $ "failed") $) 20)) (-4313 (($ (-1 |#2| |#2|) $) 22)) (-3799 (($) 16)) (-3458 (($ $) 54)) (-4165 (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3323 (($ $) 12)) (-4325 (((-864 (-536)) $) 70) (((-864 (-371)) $) 79) (((-525) $) 40) (((-371) $) 44) (((-219) $) 47)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) 90) (($ |#2|) NIL) (($ (-1147)) 57)) (-3456 (((-749)) 31)) (-3013 (((-112) $ $) 50))) -(((-964 |#1| |#2|) (-10 -8 (-15 -3013 ((-112) |#1| |#1|)) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -4312 (|#1| (-1147))) (-15 -3322 (|#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -3324 (|#1| |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -4312 ((-838) |#1|))) (-965 |#2|) (-543)) (T -964)) -((-3456 (*1 *2) (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-964 *3 *4)) (-4 *3 (-965 *4))))) -(-10 -8 (-15 -3013 ((-112) |#1| |#1|)) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -4312 (|#1| (-1147))) (-15 -3322 (|#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3323 (|#1| |#1|)) (-15 -3324 (|#1| |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -3124 ((-862 (-536) |#1|) |#1| (-864 (-536)) (-862 (-536) |#1|))) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -2357 ((-667 |#2|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3459 ((|#1| $) 136 (|has| |#1| (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 127 (|has| |#1| (-884)))) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 130 (|has| |#1| (-884)))) (-1700 (((-112) $ $) 57)) (-3981 (((-536) $) 117 (|has| |#1| (-798)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| #2="failed") $) 175) (((-3 (-1147) #2#) $) 125 (|has| |#1| (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) 109 (|has| |#1| (-1012 (-536)))) (((-3 (-536) #2#) $) 107 (|has| |#1| (-1012 (-536))))) (-3502 ((|#1| $) 174) (((-1147) $) 124 (|has| |#1| (-1012 (-1147)))) (((-400 (-536)) $) 108 (|has| |#1| (-1012 (-536)))) (((-536) $) 106 (|has| |#1| (-1012 (-536))))) (-2889 (($ $ $) 53)) (-2357 (((-667 (-536)) (-667 $)) 149 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 148 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 147) (((-667 |#1|) (-667 $)) 146)) (-3816 (((-3 $ "failed") $) 32)) (-3322 (($) 134 (|has| |#1| (-535)))) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-3532 (((-112) $) 119 (|has| |#1| (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 143 (|has| |#1| (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 142 (|has| |#1| (-860 (-371))))) (-2497 (((-112) $) 30)) (-3324 (($ $) 138)) (-3326 ((|#1| $) 140)) (-3798 (((-3 $ "failed") $) 105 (|has| |#1| (-1122)))) (-3533 (((-112) $) 118 (|has| |#1| (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) 50)) (-3672 (($ $ $) 115 (|has| |#1| (-825)))) (-3673 (($ $ $) 114 (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) 166)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3799 (($) 104 (|has| |#1| (-1122)) CONST)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3458 (($ $) 135 (|has| |#1| (-300)))) (-3460 ((|#1| $) 132 (|has| |#1| (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 129 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 128 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) 172 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 170 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) 169 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 168 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) 167 (|has| |#1| (-505 (-1147) |#1|)))) (-1699 (((-749) $) 56)) (-4154 (($ $ |#1|) 173 (|has| |#1| (-279 |#1| |#1|)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-4165 (($ $) 165 (|has| |#1| (-227))) (($ $ (-749)) 163 (|has| |#1| (-227))) (($ $ (-1147)) 161 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 160 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 159 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 158 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3323 (($ $) 137)) (-3325 ((|#1| $) 139)) (-4325 (((-864 (-536)) $) 145 (|has| |#1| (-596 (-864 (-536))))) (((-864 (-371)) $) 144 (|has| |#1| (-596 (-864 (-371))))) (((-525) $) 122 (|has| |#1| (-596 (-525)))) (((-371) $) 121 (|has| |#1| (-994))) (((-219) $) 120 (|has| |#1| (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 131 (-3186 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ |#1|) 178) (($ (-1147)) 126 (|has| |#1| (-1012 (-1147))))) (-3030 (((-3 $ "failed") $) 123 (-3886 (|has| |#1| (-143)) (-3186 (|has| $ (-143)) (|has| |#1| (-884)))))) (-3456 (((-749)) 28)) (-3461 ((|#1| $) 133 (|has| |#1| (-535)))) (-2172 (((-112) $ $) 37)) (-3737 (($ $) 116 (|has| |#1| (-798)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $) 164 (|has| |#1| (-227))) (($ $ (-749)) 162 (|has| |#1| (-227))) (($ $ (-1147)) 157 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 156 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 155 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 154 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2891 (((-112) $ $) 112 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 111 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 113 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 110 (|has| |#1| (-825)))) (-4303 (($ $ $) 62) (($ |#1| |#1|) 141)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) -(((-965 |#1|) (-138) (-543)) (T -965)) -((-4303 (*1 *1 *2 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) (-3326 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) (-3324 (*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) (-3323 (*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-300)))) (-3458 (*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-300)))) (-3322 (*1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-535)) (-4 *2 (-543)))) (-3461 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-535)))) (-3460 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-535))))) -(-13 (-356) (-38 |t#1|) (-1012 |t#1|) (-331 |t#1|) (-225 |t#1|) (-370 |t#1|) (-858 |t#1|) (-393 |t#1|) (-10 -8 (-15 -4303 ($ |t#1| |t#1|)) (-15 -3326 (|t#1| $)) (-15 -3325 (|t#1| $)) (-15 -3324 ($ $)) (-15 -3323 ($ $)) (IF (|has| |t#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |t#1| (-1012 (-536))) (PROGN (-6 (-1012 (-536))) (-6 (-1012 (-400 (-536))))) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-798)) (-6 (-798)) |%noBranch|) (IF (|has| |t#1| (-994)) (-6 (-994)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1012 (-1147))) (-6 (-1012 (-1147))) |%noBranch|) (IF (|has| |t#1| (-300)) (PROGN (-15 -3459 (|t#1| $)) (-15 -3458 ($ $))) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3322 ($)) (-15 -3461 (|t#1| $)) (-15 -3460 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-884)) (-6 (-884)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-596 (-219)) |has| |#1| (-994)) ((-596 (-371)) |has| |#1| (-994)) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-596 (-864 (-371))) |has| |#1| (-596 (-864 (-371)))) ((-596 (-864 (-536))) |has| |#1| (-596 (-864 (-536)))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) . T) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) . T) ((-300) . T) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-356) . T) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-393 |#1|) . T) ((-444) . T) ((-505 (-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-543) . T) ((-626 #1#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-769) |has| |#1| (-798)) ((-770) |has| |#1| (-798)) ((-772) |has| |#1| (-798)) ((-775) |has| |#1| (-798)) ((-798) |has| |#1| (-798)) ((-823) |has| |#1| (-798)) ((-825) -3886 (|has| |#1| (-825)) (|has| |#1| (-798))) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-860 (-371)) |has| |#1| (-860 (-371))) ((-860 (-536)) |has| |#1| (-860 (-536))) ((-858 |#1|) . T) ((-884) |has| |#1| (-884)) ((-895) . T) ((-994) |has| |#1| (-994)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-536))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 (-1147)) |has| |#1| (-1012 (-1147))) ((-1012 |#1|) . T) ((-1029 #1#) . T) ((-1029 |#1|) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| |#1| (-1122)) ((-1183) . T) ((-1188) . T)) -((-4313 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-966 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#2| |#1|) |#3|))) (-543) (-543) (-965 |#1|) (-965 |#2|)) (T -966)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-543)) (-4 *6 (-543)) (-4 *2 (-965 *6)) (-5 *1 (-966 *5 *6 *4 *2)) (-4 *4 (-965 *5))))) -(-10 -7 (-15 -4313 (|#4| (-1 |#2| |#1|) |#3|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3327 (($ (-1113 |#1| |#2|)) 11)) (-3454 (((-1113 |#1| |#2|) $) 12)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4154 ((|#2| $ (-233 |#1| |#2|)) 16)) (-4312 (((-838) $) NIL)) (-2986 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL))) -(((-967 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3327 ($ (-1113 |#1| |#2|))) (-15 -3454 ((-1113 |#1| |#2|) $)) (-15 -4154 (|#2| $ (-233 |#1| |#2|))))) (-893) (-356)) (T -967)) -((-3327 (*1 *1 *2) (-12 (-5 *2 (-1113 *3 *4)) (-14 *3 (-893)) (-4 *4 (-356)) (-5 *1 (-967 *3 *4)))) (-3454 (*1 *2 *1) (-12 (-5 *2 (-1113 *3 *4)) (-5 *1 (-967 *3 *4)) (-14 *3 (-893)) (-4 *4 (-356)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-893)) (-4 *2 (-356)) (-5 *1 (-967 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -3327 ($ (-1113 |#1| |#2|))) (-15 -3454 ((-1113 |#1| |#2|) $)) (-15 -4154 (|#2| $ (-233 |#1| |#2|))))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 9)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-968) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $))))) (T -968)) -((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-968))))) -(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-3330 (($ $) 46)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-4188 (((-749) $) 45)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-3329 ((|#1| $) 44)) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3332 ((|#1| |#1| $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-3331 ((|#1| $) 47)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-3328 ((|#1| $) 43)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-969 |#1|) (-138) (-1183)) (T -969)) -((-3332 (*1 *2 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183)))) (-3330 (*1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-969 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) (-3329 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4348) (-15 -3332 (|t#1| |t#1| $)) (-15 -3331 (|t#1| $)) (-15 -3330 ($ $)) (-15 -4188 ((-749) $)) (-15 -3329 (|t#1| $)) (-15 -3328 (|t#1| $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4001 ((|#1| $) 12)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL (|has| |#1| (-535)))) (-3351 (((-112) $) NIL (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) NIL (|has| |#1| (-535)))) (-3333 (($ |#1| |#1| |#1| |#1|) 16)) (-2497 (((-112) $) NIL)) (-3462 ((|#1| $) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-3334 ((|#1| $) 15)) (-3335 ((|#1| $) 14)) (-3336 ((|#1| $) 13)) (-3589 (((-1091) $) NIL)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) NIL (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-505 (-1147) |#1|)))) (-4154 (($ $ |#1|) NIL (|has| |#1| (-279 |#1| |#1|)))) (-4165 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3337 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536))))))) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-3737 ((|#1| $) NIL (|has| |#1| (-1032)))) (-2986 (($) 8 T CONST)) (-2992 (($) 10 T CONST)) (-2997 (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-356))) (($ (-400 (-536)) $) NIL (|has| |#1| (-356))))) -(((-970 |#1|) (-972 |#1|) (-170)) (T -970)) -NIL -(-972 |#1|) -((-3534 (((-112) $) 42)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL) ((|#2| $) 43)) (-3352 (((-3 (-400 (-536)) "failed") $) 78)) (-3351 (((-112) $) 72)) (-3350 (((-400 (-536)) $) 76)) (-2497 (((-112) $) 41)) (-3462 ((|#2| $) 22)) (-4313 (($ (-1 |#2| |#2|) $) 19)) (-2729 (($ $) 61)) (-4165 (($ $) NIL) (($ $ (-749)) NIL) (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4325 (((-525) $) 67)) (-3337 (($ $) 17)) (-4312 (((-838) $) 56) (($ (-536)) 38) (($ |#2|) 36) (($ (-400 (-536))) NIL)) (-3456 (((-749)) 10)) (-3737 ((|#2| $) 71)) (-3382 (((-112) $ $) 25)) (-3013 (((-112) $ $) 69)) (-4192 (($ $) 29) (($ $ $) 28)) (-4194 (($ $ $) 26)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL))) -(((-971 |#1| |#2|) (-10 -8 (-15 -4312 (|#1| (-400 (-536)))) (-15 -3013 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 * (|#1| |#1| (-400 (-536)))) (-15 -2729 (|#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3737 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3337 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -2497 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-972 |#2|) (-170)) (T -971)) -((-3456 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-971 *3 *4)) (-4 *3 (-972 *4))))) -(-10 -8 (-15 -4312 (|#1| (-400 (-536)))) (-15 -3013 ((-112) |#1| |#1|)) (-15 * (|#1| (-400 (-536)) |#1|)) (-15 * (|#1| |#1| (-400 (-536)))) (-15 -2729 (|#1| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|)) (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3737 (|#2| |#1|)) (-15 -3462 (|#2| |#1|)) (-15 -3337 (|#1| |#1|)) (-15 -4313 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3503 ((-3 |#2| #1="failed") |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -2497 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 * (|#1| (-749) |#1|)) (-15 -3534 ((-112) |#1|)) (-15 * (|#1| (-893) |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3503 (((-3 (-536) #1="failed") $) 116 (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 114 (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) 113)) (-3502 (((-536) $) 117 (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) 115 (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) 112)) (-2357 (((-667 (-536)) (-667 $)) 87 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 86 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 85) (((-667 |#1|) (-667 $)) 84)) (-3816 (((-3 $ "failed") $) 32)) (-4001 ((|#1| $) 77)) (-3352 (((-3 (-400 (-536)) "failed") $) 73 (|has| |#1| (-535)))) (-3351 (((-112) $) 75 (|has| |#1| (-535)))) (-3350 (((-400 (-536)) $) 74 (|has| |#1| (-535)))) (-3333 (($ |#1| |#1| |#1| |#1|) 78)) (-2497 (((-112) $) 30)) (-3462 ((|#1| $) 79)) (-3672 (($ $ $) 66 (|has| |#1| (-825)))) (-3673 (($ $ $) 65 (|has| |#1| (-825)))) (-4313 (($ (-1 |#1| |#1|) $) 88)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 70 (|has| |#1| (-356)))) (-3334 ((|#1| $) 80)) (-3335 ((|#1| $) 81)) (-3336 ((|#1| $) 82)) (-3589 (((-1091) $) 10)) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) 94 (|has| |#1| (-302 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-302 |#1|))) (($ $ (-286 |#1|)) 92 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-286 |#1|))) 91 (|has| |#1| (-302 |#1|))) (($ $ (-620 (-1147)) (-620 |#1|)) 90 (|has| |#1| (-505 (-1147) |#1|))) (($ $ (-1147) |#1|) 89 (|has| |#1| (-505 (-1147) |#1|)))) (-4154 (($ $ |#1|) 95 (|has| |#1| (-279 |#1| |#1|)))) (-4165 (($ $) 111 (|has| |#1| (-227))) (($ $ (-749)) 109 (|has| |#1| (-227))) (($ $ (-1147)) 107 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 106 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 105 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 104 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-4325 (((-525) $) 71 (|has| |#1| (-596 (-525))))) (-3337 (($ $) 83)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 35) (($ (-400 (-536))) 60 (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536))))))) (-3030 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-3737 ((|#1| $) 76 (|has| |#1| (-1032)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $) 110 (|has| |#1| (-227))) (($ $ (-749)) 108 (|has| |#1| (-227))) (($ $ (-1147)) 103 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 102 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 101 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 100 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2891 (((-112) $ $) 63 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 62 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 64 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 61 (|has| |#1| (-825)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 69 (|has| |#1| (-356)))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-400 (-536))) 68 (|has| |#1| (-356))) (($ (-400 (-536)) $) 67 (|has| |#1| (-356))))) -(((-972 |#1|) (-138) (-170)) (T -972)) -((-3337 (*1 *1 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3335 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3462 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3333 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) (-3351 (*1 *2 *1) (-12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) (-3352 (*1 *2 *1) (|partial| -12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536)))))) -(-13 (-38 |t#1|) (-405 |t#1|) (-225 |t#1|) (-331 |t#1|) (-370 |t#1|) (-10 -8 (-15 -3337 ($ $)) (-15 -3336 (|t#1| $)) (-15 -3335 (|t#1| $)) (-15 -3334 (|t#1| $)) (-15 -3462 (|t#1| $)) (-15 -3333 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4001 (|t#1| $)) (IF (|has| |t#1| (-283)) (-6 (-283)) |%noBranch|) (IF (|has| |t#1| (-825)) (-6 (-825)) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-237)) |%noBranch|) (IF (|has| |t#1| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1032)) (-15 -3737 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-535)) (PROGN (-15 -3351 ((-112) $)) (-15 -3350 ((-400 (-536)) $)) (-15 -3352 ((-3 (-400 (-536)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-356)) ((-38 |#1|) . T) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-356)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-225 |#1|) . T) ((-227) |has| |#1| (-227)) ((-237) |has| |#1| (-356)) ((-279 |#1| $) |has| |#1| (-279 |#1| |#1|)) ((-283) -3886 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-302 |#1|) |has| |#1| (-302 |#1|)) ((-331 |#1|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-505 (-1147) |#1|) |has| |#1| (-505 (-1147) |#1|)) ((-505 |#1| |#1|) |has| |#1| (-302 |#1|)) ((-626 #1#) |has| |#1| (-356)) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) |has| |#1| (-356)) ((-696 |#1|) . T) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1029 #1#) |has| |#1| (-356)) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-356)) (|has| |#1| (-283))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-4313 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-973 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) (-972 |#2|) (-170) (-972 |#4|) (-170)) (T -973)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-972 *6)) (-5 *1 (-973 *4 *5 *2 *6)) (-4 *4 (-972 *5))))) -(-10 -7 (-15 -4313 (|#3| (-1 |#4| |#2|) |#1|))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-3330 (($ $) 20)) (-3338 (($ (-620 |#1|)) 29)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-4188 (((-749) $) 22)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) 24)) (-3965 (($ |#1| $) 15)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-3329 ((|#1| $) 23)) (-1332 ((|#1| $) 19)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3332 ((|#1| |#1| $) 14)) (-3757 (((-112) $) 17)) (-3923 (($) NIL)) (-3331 ((|#1| $) 18)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) NIL)) (-3328 ((|#1| $) 26)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-974 |#1|) (-13 (-969 |#1|) (-10 -8 (-15 -3338 ($ (-620 |#1|))))) (-1072)) (T -974)) -((-3338 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-974 *3))))) -(-13 (-969 |#1|) (-10 -8 (-15 -3338 ($ (-620 |#1|))))) -((-3365 (($ $) 12)) (-3339 (($ $ (-536)) 13))) -(((-975 |#1|) (-10 -8 (-15 -3365 (|#1| |#1|)) (-15 -3339 (|#1| |#1| (-536)))) (-976)) (T -975)) -NIL -(-10 -8 (-15 -3365 (|#1| |#1|)) (-15 -3339 (|#1| |#1| (-536)))) -((-3365 (($ $) 6)) (-3339 (($ $ (-536)) 7)) (** (($ $ (-400 (-536))) 8))) -(((-976) (-138)) (T -976)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-400 (-536))))) (-3339 (*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-536)))) (-3365 (*1 *1 *1) (-4 *1 (-976)))) -(-13 (-10 -8 (-15 -3365 ($ $)) (-15 -3339 ($ $ (-536))) (-15 ** ($ $ (-400 (-536)))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1758 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| (-400 |#2|) (-356)))) (-2173 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-2171 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-1896 (((-667 (-400 |#2|)) (-1229 $)) NIL) (((-667 (-400 |#2|))) NIL)) (-3684 (((-400 |#2|) $) NIL)) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| (-400 |#2|) (-343)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-4324 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1700 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3466 (((-749)) NIL (|has| (-400 |#2|) (-361)))) (-1772 (((-112)) NIL)) (-1771 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| (-400 |#2|) (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-3 (-400 |#2|) #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| (-400 |#2|) (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| (-400 |#2|) (-1012 (-400 (-536))))) (((-400 |#2|) $) NIL)) (-1906 (($ (-1229 (-400 |#2|)) (-1229 $)) NIL) (($ (-1229 (-400 |#2|))) 70) (($ (-1229 |#2|) |#2|) NIL)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-400 |#2|) (-343)))) (-2889 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1895 (((-667 (-400 |#2|)) $ (-1229 $)) NIL) (((-667 (-400 |#2|)) $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-400 |#2|) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-400 |#2|))) (|:| |vec| (-1229 (-400 |#2|)))) (-667 $) (-1229 $)) NIL) (((-667 (-400 |#2|)) (-667 $)) NIL)) (-1763 (((-1229 $) (-1229 $)) NIL)) (-4197 (($ |#3|) 65) (((-3 $ "failed") (-400 |#3|)) NIL (|has| (-400 |#2|) (-356)))) (-3816 (((-3 $ "failed") $) NIL)) (-1750 (((-620 (-620 |#1|))) NIL (|has| |#1| (-361)))) (-1775 (((-112) |#1| |#1|) NIL)) (-3439 (((-893)) NIL)) (-3322 (($) NIL (|has| (-400 |#2|) (-361)))) (-1770 (((-112)) NIL)) (-1769 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2888 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| (-400 |#2|) (-356)))) (-3852 (($ $) NIL)) (-3161 (($) NIL (|has| (-400 |#2|) (-343)))) (-1791 (((-112) $) NIL (|has| (-400 |#2|) (-343)))) (-1881 (($ $ (-749)) NIL (|has| (-400 |#2|) (-343))) (($ $) NIL (|has| (-400 |#2|) (-343)))) (-4081 (((-112) $) NIL (|has| (-400 |#2|) (-356)))) (-4126 (((-893) $) NIL (|has| (-400 |#2|) (-343))) (((-810 (-893)) $) NIL (|has| (-400 |#2|) (-343)))) (-2497 (((-112) $) NIL)) (-3731 (((-749)) NIL)) (-1764 (((-1229 $) (-1229 $)) NIL)) (-3462 (((-400 |#2|) $) NIL)) (-1751 (((-620 (-920 |#1|)) (-1147)) NIL (|has| |#1| (-356)))) (-3798 (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| (-400 |#2|) (-356)))) (-2125 ((|#3| $) NIL (|has| (-400 |#2|) (-356)))) (-2121 (((-893) $) NIL (|has| (-400 |#2|) (-361)))) (-3408 ((|#3| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-3588 (((-1129) $) NIL)) (-1759 (((-667 (-400 |#2|))) 52)) (-1761 (((-667 (-400 |#2|))) 51)) (-2729 (($ $) NIL (|has| (-400 |#2|) (-356)))) (-1756 (($ (-1229 |#2|) |#2|) 71)) (-1760 (((-667 (-400 |#2|))) 50)) (-1762 (((-667 (-400 |#2|))) 49)) (-1755 (((-2 (|:| |num| (-667 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1757 (((-2 (|:| |num| (-1229 |#2|)) (|:| |den| |#2|)) $) 77)) (-1768 (((-1229 $)) 46)) (-4273 (((-1229 $)) 45)) (-1767 (((-112) $) NIL)) (-1766 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3799 (($) NIL (|has| (-400 |#2|) (-343)) CONST)) (-2487 (($ (-893)) NIL (|has| (-400 |#2|) (-361)))) (-1753 (((-3 |#2| #3="failed")) 63)) (-3589 (((-1091) $) NIL)) (-1777 (((-749)) NIL)) (-2496 (($) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| (-400 |#2|) (-356)))) (-3490 (($ (-620 $)) NIL (|has| (-400 |#2|) (-356))) (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| (-400 |#2|) (-343)))) (-4087 (((-398 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-400 |#2|) (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-3815 (((-3 $ "failed") $ $) NIL (|has| (-400 |#2|) (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| (-400 |#2|) (-356)))) (-1699 (((-749) $) NIL (|has| (-400 |#2|) (-356)))) (-4154 ((|#1| $ |#1| |#1|) NIL)) (-1754 (((-3 |#2| #3#)) 62)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| (-400 |#2|) (-356)))) (-4112 (((-400 |#2|) (-1229 $)) NIL) (((-400 |#2|)) 42)) (-1882 (((-749) $) NIL (|has| (-400 |#2|) (-343))) (((-3 (-749) "failed") $ $) NIL (|has| (-400 |#2|) (-343)))) (-4165 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-2495 (((-667 (-400 |#2|)) (-1229 $) (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356)))) (-3531 ((|#3|) 53)) (-1785 (($) NIL (|has| (-400 |#2|) (-343)))) (-3570 (((-1229 (-400 |#2|)) $ (-1229 $)) NIL) (((-667 (-400 |#2|)) (-1229 $) (-1229 $)) NIL) (((-1229 (-400 |#2|)) $) 72) (((-667 (-400 |#2|)) (-1229 $)) NIL)) (-4325 (((-1229 (-400 |#2|)) $) NIL) (($ (-1229 (-400 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| (-400 |#2|) (-343)))) (-1765 (((-1229 $) (-1229 $)) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 |#2|)) NIL) (($ (-400 (-536))) NIL (-3886 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-1012 (-400 (-536)))))) (($ $) NIL (|has| (-400 |#2|) (-356)))) (-3030 (($ $) NIL (|has| (-400 |#2|) (-343))) (((-3 $ "failed") $) NIL (|has| (-400 |#2|) (-143)))) (-2693 ((|#3| $) NIL)) (-3456 (((-749)) NIL)) (-1774 (((-112)) 60)) (-1773 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-2123 (((-1229 $)) 121)) (-2172 (((-112) $ $) NIL (|has| (-400 |#2|) (-356)))) (-1752 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1776 (((-112)) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1 (-400 |#2|) (-400 |#2|)) (-749)) NIL (|has| (-400 |#2|) (-356))) (($ $ (-1 (-400 |#2|) (-400 |#2|))) NIL (|has| (-400 |#2|) (-356))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-1147)) NIL (-12 (|has| (-400 |#2|) (-356)) (|has| (-400 |#2|) (-874 (-1147))))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343)))) (($ $) NIL (-3886 (-12 (|has| (-400 |#2|) (-227)) (|has| (-400 |#2|) (-356))) (|has| (-400 |#2|) (-343))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ $) NIL (|has| (-400 |#2|) (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| (-400 |#2|) (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 |#2|)) NIL) (($ (-400 |#2|) $) NIL) (($ (-400 (-536)) $) NIL (|has| (-400 |#2|) (-356))) (($ $ (-400 (-536))) NIL (|has| (-400 |#2|) (-356))))) -(((-977 |#1| |#2| |#3| |#4| |#5|) (-335 |#1| |#2| |#3|) (-1188) (-1205 |#1|) (-1205 (-400 |#2|)) (-400 |#2|) (-749)) (T -977)) -NIL -(-335 |#1| |#2| |#3|) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3345 (((-620 (-536)) $) 54)) (-3341 (($ (-620 (-536))) 62)) (-3459 (((-536) $) 40 (|has| (-536) (-300)))) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL (|has| (-536) (-798)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #2="failed") $) 49) (((-3 (-1147) #2#) $) NIL (|has| (-536) (-1012 (-1147)))) (((-3 (-400 (-536)) #2#) $) 47 (|has| (-536) (-1012 (-536)))) (((-3 (-536) #2#) $) 49 (|has| (-536) (-1012 (-536))))) (-3502 (((-536) $) NIL) (((-1147) $) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) NIL (|has| (-536) (-1012 (-536)))) (((-536) $) NIL (|has| (-536) (-1012 (-536))))) (-2889 (($ $ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| (-536) (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3322 (($) NIL (|has| (-536) (-535)))) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3343 (((-620 (-536)) $) 60)) (-3532 (((-112) $) NIL (|has| (-536) (-798)))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (|has| (-536) (-860 (-536)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (|has| (-536) (-860 (-371))))) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL)) (-3326 (((-536) $) 37)) (-3798 (((-3 $ "failed") $) NIL (|has| (-536) (-1122)))) (-3533 (((-112) $) NIL (|has| (-536) (-798)))) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-536) (-825)))) (-4313 (($ (-1 (-536) (-536)) $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL)) (-3799 (($) NIL (|has| (-536) (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3458 (($ $) NIL (|has| (-536) (-300))) (((-400 (-536)) $) 42)) (-3344 (((-1124 (-536)) $) 59)) (-3340 (($ (-620 (-536)) (-620 (-536))) 63)) (-3460 (((-536) $) 53 (|has| (-536) (-535)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| (-536) (-884)))) (-4087 (((-398 $) $) NIL)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-4122 (($ $ (-620 (-536)) (-620 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-536) (-536)) NIL (|has| (-536) (-302 (-536)))) (($ $ (-286 (-536))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-286 (-536)))) NIL (|has| (-536) (-302 (-536)))) (($ $ (-620 (-1147)) (-620 (-536))) NIL (|has| (-536) (-505 (-1147) (-536)))) (($ $ (-1147) (-536)) NIL (|has| (-536) (-505 (-1147) (-536))))) (-1699 (((-749) $) NIL)) (-4154 (($ $ (-536)) NIL (|has| (-536) (-279 (-536) (-536))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $) 11 (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-3323 (($ $) NIL)) (-3325 (((-536) $) 39)) (-3342 (((-620 (-536)) $) 61)) (-4325 (((-864 (-536)) $) NIL (|has| (-536) (-596 (-864 (-536))))) (((-864 (-371)) $) NIL (|has| (-536) (-596 (-864 (-371))))) (((-525) $) NIL (|has| (-536) (-596 (-525)))) (((-371) $) NIL (|has| (-536) (-994))) (((-219) $) NIL (|has| (-536) (-994)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-536) (-884))))) (-4312 (((-838) $) 77) (($ (-536)) 43) (($ $) NIL) (($ (-400 (-536))) 20) (($ (-536)) 43) (($ (-1147)) NIL (|has| (-536) (-1012 (-1147)))) (((-400 (-536)) $) 18)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-536) (-884))) (|has| (-536) (-143))))) (-3456 (((-749)) 9)) (-3461 (((-536) $) 51 (|has| (-536) (-535)))) (-2172 (((-112) $ $) NIL)) (-3737 (($ $) NIL (|has| (-536) (-798)))) (-2986 (($) 10 T CONST)) (-2992 (($) 12 T CONST)) (-2997 (($ $) NIL (|has| (-536) (-227))) (($ $ (-749)) NIL (|has| (-536) (-227))) (($ $ (-1147)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| (-536) (-874 (-1147)))) (($ $ (-1 (-536) (-536)) (-749)) NIL) (($ $ (-1 (-536) (-536))) NIL)) (-2891 (((-112) $ $) NIL (|has| (-536) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3382 (((-112) $ $) 14)) (-3012 (((-112) $ $) NIL (|has| (-536) (-825)))) (-3013 (((-112) $ $) 33 (|has| (-536) (-825)))) (-4303 (($ $ $) 29) (($ (-536) (-536)) 31)) (-4192 (($ $) 15) (($ $ $) 23)) (-4194 (($ $ $) 21)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 25) (($ $ $) 27) (($ $ (-400 (-536))) NIL) (($ (-400 (-536)) $) NIL) (($ (-536) $) 25) (($ $ (-536)) NIL))) -(((-978 |#1|) (-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -3345 ((-620 (-536)) $)) (-15 -3344 ((-1124 (-536)) $)) (-15 -3343 ((-620 (-536)) $)) (-15 -3342 ((-620 (-536)) $)) (-15 -3341 ($ (-620 (-536)))) (-15 -3340 ($ (-620 (-536)) (-620 (-536)))))) (-536)) (T -978)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3344 (*1 *2 *1) (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) (-3340 (*1 *1 *2 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) -(-13 (-965 (-536)) (-10 -8 (-15 -4312 ((-400 (-536)) $)) (-15 -3458 ((-400 (-536)) $)) (-15 -3345 ((-620 (-536)) $)) (-15 -3344 ((-1124 (-536)) $)) (-15 -3343 ((-620 (-536)) $)) (-15 -3342 ((-620 (-536)) $)) (-15 -3341 ($ (-620 (-536)))) (-15 -3340 ($ (-620 (-536)) (-620 (-536)))))) -((-3346 (((-51) (-400 (-536)) (-536)) 9))) -(((-979) (-10 -7 (-15 -3346 ((-51) (-400 (-536)) (-536))))) (T -979)) -((-3346 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-536))) (-5 *4 (-536)) (-5 *2 (-51)) (-5 *1 (-979))))) -(-10 -7 (-15 -3346 ((-51) (-400 (-536)) (-536)))) -((-3466 (((-536)) 13)) (-3349 (((-536)) 16)) (-3348 (((-1235) (-536)) 15)) (-3347 (((-536) (-536)) 17) (((-536)) 12))) -(((-980) (-10 -7 (-15 -3347 ((-536))) (-15 -3466 ((-536))) (-15 -3347 ((-536) (-536))) (-15 -3348 ((-1235) (-536))) (-15 -3349 ((-536))))) (T -980)) -((-3349 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-980)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980)))) (-3466 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980)))) (-3347 (*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980))))) -(-10 -7 (-15 -3347 ((-536))) (-15 -3466 ((-536))) (-15 -3347 ((-536) (-536))) (-15 -3348 ((-1235) (-536))) (-15 -3349 ((-536)))) -((-4088 (((-398 |#1|) |#1|) 41)) (-4087 (((-398 |#1|) |#1|) 40))) -(((-981 |#1|) (-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1|))) (-1205 (-400 (-536)))) (T -981)) -((-4088 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1205 (-400 (-536)))))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1205 (-400 (-536))))))) -(-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1|))) -((-3352 (((-3 (-400 (-536)) "failed") |#1|) 15)) (-3351 (((-112) |#1|) 14)) (-3350 (((-400 (-536)) |#1|) 10))) -(((-982 |#1|) (-10 -7 (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|))) (-1012 (-400 (-536)))) (T -982)) -((-3352 (*1 *2 *3) (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2)))) (-3351 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-982 *3)) (-4 *3 (-1012 (-400 (-536)))))) (-3350 (*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2))))) -(-10 -7 (-15 -3350 ((-400 (-536)) |#1|)) (-15 -3351 ((-112) |#1|)) (-15 -3352 ((-3 (-400 (-536)) "failed") |#1|))) -((-4142 ((|#2| $ "value" |#2|) 12)) (-4154 ((|#2| $ "value") 10)) (-3356 (((-112) $ $) 18))) -(((-983 |#1| |#2|) (-10 -8 (-15 -4142 (|#2| |#1| "value" |#2|)) (-15 -3356 ((-112) |#1| |#1|)) (-15 -4154 (|#2| |#1| "value"))) (-984 |#2|) (-1183)) (T -983)) -NIL -(-10 -8 (-15 -4142 (|#2| |#1| "value" |#2|)) (-15 -3356 ((-112) |#1| |#1|)) (-15 -4154 (|#2| |#1| "value"))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-3891 (($) 7 T CONST)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ "value") 47)) (-3357 (((-536) $ $) 44)) (-3991 (((-112) $) 46)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-984 |#1|) (-138) (-1183)) (T -984)) -((-3871 (*1 *2 *1) (-12 (-4 *3 (-1183)) (-5 *2 (-620 *1)) (-4 *1 (-984 *3)))) (-3359 (*1 *2 *1) (-12 (-4 *3 (-1183)) (-5 *2 (-620 *1)) (-4 *1 (-984 *3)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-1183)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-984 *2)) (-4 *2 (-1183)))) (-3991 (*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-620 *3)))) (-3357 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-536)))) (-3356 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112)))) (-3355 (*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112)))) (-3354 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *1)) (|has| *1 (-6 -4349)) (-4 *1 (-984 *3)) (-4 *3 (-1183)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4349)) (-4 *1 (-984 *2)) (-4 *2 (-1183)))) (-3353 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-984 *2)) (-4 *2 (-1183))))) -(-13 (-481 |t#1|) (-10 -8 (-15 -3871 ((-620 $) $)) (-15 -3359 ((-620 $) $)) (-15 -3876 ((-112) $)) (-15 -3756 (|t#1| $)) (-15 -4154 (|t#1| $ "value")) (-15 -3991 ((-112) $)) (-15 -3358 ((-620 |t#1|) $)) (-15 -3357 ((-536) $ $)) (IF (|has| |t#1| (-1072)) (PROGN (-15 -3356 ((-112) $ $)) (-15 -3355 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4349)) (PROGN (-15 -3354 ($ $ (-620 $))) (-15 -4142 (|t#1| $ "value" |t#1|)) (-15 -3353 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-3365 (($ $) 9) (($ $ (-893)) 43) (($ (-400 (-536))) 13) (($ (-536)) 15)) (-3529 (((-3 $ "failed") (-1141 $) (-893) (-838)) 23) (((-3 $ "failed") (-1141 $) (-893)) 28)) (-3339 (($ $ (-536)) 49)) (-3456 (((-749)) 17)) (-3530 (((-620 $) (-1141 $)) NIL) (((-620 $) (-1141 (-400 (-536)))) 54) (((-620 $) (-1141 (-536))) 59) (((-620 $) (-920 $)) 63) (((-620 $) (-920 (-400 (-536)))) 67) (((-620 $) (-920 (-536))) 71)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL) (($ $ (-400 (-536))) 47))) -(((-985 |#1|) (-10 -8 (-15 -3365 (|#1| (-536))) (-15 -3365 (|#1| (-400 (-536)))) (-15 -3365 (|#1| |#1| (-893))) (-15 -3530 ((-620 |#1|) (-920 (-536)))) (-15 -3530 ((-620 |#1|) (-920 (-400 (-536))))) (-15 -3530 ((-620 |#1|) (-920 |#1|))) (-15 -3530 ((-620 |#1|) (-1141 (-536)))) (-15 -3530 ((-620 |#1|) (-1141 (-400 (-536))))) (-15 -3530 ((-620 |#1|) (-1141 |#1|))) (-15 -3529 ((-3 |#1| "failed") (-1141 |#1|) (-893))) (-15 -3529 ((-3 |#1| "failed") (-1141 |#1|) (-893) (-838))) (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3339 (|#1| |#1| (-536))) (-15 -3365 (|#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -3456 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893)))) (-986)) (T -985)) -((-3456 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-985 *3)) (-4 *3 (-986))))) -(-10 -8 (-15 -3365 (|#1| (-536))) (-15 -3365 (|#1| (-400 (-536)))) (-15 -3365 (|#1| |#1| (-893))) (-15 -3530 ((-620 |#1|) (-920 (-536)))) (-15 -3530 ((-620 |#1|) (-920 (-400 (-536))))) (-15 -3530 ((-620 |#1|) (-920 |#1|))) (-15 -3530 ((-620 |#1|) (-1141 (-536)))) (-15 -3530 ((-620 |#1|) (-1141 (-400 (-536))))) (-15 -3530 ((-620 |#1|) (-1141 |#1|))) (-15 -3529 ((-3 |#1| "failed") (-1141 |#1|) (-893))) (-15 -3529 ((-3 |#1| "failed") (-1141 |#1|) (-893) (-838))) (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3339 (|#1| |#1| (-536))) (-15 -3365 (|#1| |#1|)) (-15 ** (|#1| |#1| (-536))) (-15 -3456 ((-749))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 87)) (-2173 (($ $) 88)) (-2171 (((-112) $) 90)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 107)) (-4324 (((-398 $) $) 108)) (-3365 (($ $) 71) (($ $ (-893)) 57) (($ (-400 (-536))) 56) (($ (-536)) 55)) (-1700 (((-112) $ $) 98)) (-3981 (((-536) $) 124)) (-3891 (($) 17 T CONST)) (-3529 (((-3 $ "failed") (-1141 $) (-893) (-838)) 65) (((-3 $ "failed") (-1141 $) (-893)) 64)) (-3503 (((-3 (-536) #1="failed") $) 83 (|has| (-400 (-536)) (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 81 (|has| (-400 (-536)) (-1012 (-400 (-536))))) (((-3 (-400 (-536)) #1#) $) 79)) (-3502 (((-536) $) 84 (|has| (-400 (-536)) (-1012 (-536)))) (((-400 (-536)) $) 82 (|has| (-400 (-536)) (-1012 (-400 (-536))))) (((-400 (-536)) $) 78)) (-3361 (($ $ (-838)) 54)) (-3360 (($ $ (-838)) 53)) (-2889 (($ $ $) 102)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 101)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 96)) (-4081 (((-112) $) 109)) (-3532 (((-112) $) 122)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 70)) (-3533 (((-112) $) 123)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 105)) (-3672 (($ $ $) 121)) (-3673 (($ $ $) 120)) (-3362 (((-3 (-1141 $) "failed") $) 66)) (-3364 (((-3 (-838) "failed") $) 68)) (-3363 (((-3 (-1141 $) "failed") $) 67)) (-2008 (($ (-620 $)) 94) (($ $ $) 93)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 110)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 95)) (-3490 (($ (-620 $)) 92) (($ $ $) 91)) (-4087 (((-398 $) $) 106)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 103)) (-3815 (((-3 $ "failed") $ $) 86)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 97)) (-1699 (((-749) $) 99)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 100)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 114) (($ $) 85) (($ (-400 (-536))) 80) (($ (-536)) 77) (($ (-400 (-536))) 74)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 89)) (-4124 (((-400 (-536)) $ $) 52)) (-3530 (((-620 $) (-1141 $)) 63) (((-620 $) (-1141 (-400 (-536)))) 62) (((-620 $) (-1141 (-536))) 61) (((-620 $) (-920 $)) 60) (((-620 $) (-920 (-400 (-536)))) 59) (((-620 $) (-920 (-536))) 58)) (-3737 (($ $) 125)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 118)) (-2892 (((-112) $ $) 117)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 119)) (-3013 (((-112) $ $) 116)) (-4303 (($ $ $) 115)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 111) (($ $ (-400 (-536))) 69)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ (-400 (-536)) $) 113) (($ $ (-400 (-536))) 112) (($ (-536) $) 76) (($ $ (-536)) 75) (($ (-400 (-536)) $) 73) (($ $ (-400 (-536))) 72))) -(((-986) (-138)) (T -986)) -((-3365 (*1 *1 *1) (-4 *1 (-986))) (-3364 (*1 *2 *1) (|partial| -12 (-4 *1 (-986)) (-5 *2 (-838)))) (-3363 (*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986)))) (-3362 (*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986)))) (-3529 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-893)) (-5 *4 (-838)) (-4 *1 (-986)))) (-3529 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-893)) (-4 *1 (-986)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-986)) (-5 *2 (-620 *1)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-1141 (-400 (-536)))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-1141 (-536))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-986)) (-5 *2 (-620 *1)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-920 (-536))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-893)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-4 *1 (-986)))) (-3365 (*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-986)))) (-3361 (*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-838)))) (-3360 (*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-838)))) (-4124 (*1 *2 *1 *1) (-12 (-4 *1 (-986)) (-5 *2 (-400 (-536)))))) -(-13 (-145) (-823) (-170) (-356) (-405 (-400 (-536))) (-38 (-536)) (-38 (-400 (-536))) (-976) (-10 -8 (-15 -3364 ((-3 (-838) "failed") $)) (-15 -3363 ((-3 (-1141 $) "failed") $)) (-15 -3362 ((-3 (-1141 $) "failed") $)) (-15 -3529 ((-3 $ "failed") (-1141 $) (-893) (-838))) (-15 -3529 ((-3 $ "failed") (-1141 $) (-893))) (-15 -3530 ((-620 $) (-1141 $))) (-15 -3530 ((-620 $) (-1141 (-400 (-536))))) (-15 -3530 ((-620 $) (-1141 (-536)))) (-15 -3530 ((-620 $) (-920 $))) (-15 -3530 ((-620 $) (-920 (-400 (-536))))) (-15 -3530 ((-620 $) (-920 (-536)))) (-15 -3365 ($ $ (-893))) (-15 -3365 ($ $)) (-15 -3365 ($ (-400 (-536)))) (-15 -3365 ($ (-536))) (-15 -3361 ($ $ (-838))) (-15 -3360 ($ $ (-838))) (-15 -4124 ((-400 (-536)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 #2=(-536)) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-838)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-405 (-400 (-536))) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 #2#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 #2#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-823) . T) ((-825) . T) ((-895) . T) ((-976) . T) ((-1012 (-400 (-536))) . T) ((-1012 (-536)) |has| (-400 (-536)) (-1012 (-536))) ((-1029 #1#) . T) ((-1029 #2#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) -((-3366 (((-2 (|:| |ans| |#2|) (|:| -3467 |#2|) (|:| |sol?| (-112))) (-536) |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) -(((-987 |#1| |#2|) (-10 -7 (-15 -3366 ((-2 (|:| |ans| |#2|) (|:| -3467 |#2|) (|:| |sol?| (-112))) (-536) |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-27) (-414 |#1|))) (T -987)) -((-3366 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1147)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-620 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1169) (-27) (-414 *8))) (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) (-5 *3 (-536)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3467 *4) (|:| |sol?| (-112)))) (-5 *1 (-987 *8 *4))))) -(-10 -7 (-15 -3366 ((-2 (|:| |ans| |#2|) (|:| -3467 |#2|) (|:| |sol?| (-112))) (-536) |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3367 (((-3 (-620 |#2|) "failed") (-536) |#2| |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) -(((-988 |#1| |#2|) (-10 -7 (-15 -3367 ((-3 (-620 |#2|) "failed") (-536) |#2| |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536))) (-13 (-1169) (-27) (-414 |#1|))) (T -988)) -((-3367 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1147)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-620 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1169) (-27) (-414 *8))) (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) (-5 *3 (-536)) (-5 *2 (-620 *4)) (-5 *1 (-988 *8 *4))))) -(-10 -7 (-15 -3367 ((-3 (-620 |#2|) "failed") (-536) |#2| |#2| |#2| (-1147) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-620 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-620 |#2|)) (-1 (-3 (-2 (|:| -2246 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3370 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3612 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-536)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-536) (-1 |#2| |#2|)) 30)) (-3368 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 58)) (-3369 (((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|)) 63))) -(((-989 |#1| |#2|) (-10 -7 (-15 -3368 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3369 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3370 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3612 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-536)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-536) (-1 |#2| |#2|)))) (-13 (-356) (-145) (-1012 (-536))) (-1205 |#1|)) (T -989)) -((-3370 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1205 *6)) (-4 *6 (-13 (-356) (-145) (-1012 *4))) (-5 *4 (-536)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3612 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-989 *6 *3)))) (-3369 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-989 *4 *5)) (-5 *3 (-400 *5)))) (-3368 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -3424 *6))) (-5 *1 (-989 *5 *6)) (-5 *3 (-400 *6))))) -(-10 -7 (-15 -3368 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |c| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3369 ((-2 (|:| |ans| (-400 |#2|)) (|:| |nosol| (-112))) (-400 |#2|) (-400 |#2|))) (-15 -3370 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3612 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-536)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-536) (-1 |#2| |#2|)))) -((-3371 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|)) 22)) (-3372 (((-3 (-620 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)) 33))) -(((-990 |#1| |#2|) (-10 -7 (-15 -3371 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3372 ((-3 (-620 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) (-13 (-356) (-145) (-1012 (-536))) (-1205 |#1|)) (T -990)) -((-3372 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) (-5 *2 (-620 (-400 *5))) (-5 *1 (-990 *4 *5)) (-5 *3 (-400 *5)))) (-3371 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) (|:| |c2| (-400 *6)) (|:| -3424 *6))) (-5 *1 (-990 *5 *6)) (-5 *3 (-400 *6))))) -(-10 -7 (-15 -3371 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-400 |#2|)) (|:| |h| |#2|) (|:| |c1| (-400 |#2|)) (|:| |c2| (-400 |#2|)) (|:| -3424 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|) (-1 |#2| |#2|))) (-15 -3372 ((-3 (-620 (-400 |#2|)) "failed") (-400 |#2|) (-400 |#2|) (-400 |#2|)))) -((-3373 (((-1 |#1|) (-620 (-2 (|:| -3756 |#1|) (|:| -1572 (-536))))) 37)) (-3431 (((-1 |#1|) (-1068 |#1|)) 45)) (-3374 (((-1 |#1|) (-1229 |#1|) (-1229 (-536)) (-536)) 34))) -(((-991 |#1|) (-10 -7 (-15 -3431 ((-1 |#1|) (-1068 |#1|))) (-15 -3373 ((-1 |#1|) (-620 (-2 (|:| -3756 |#1|) (|:| -1572 (-536)))))) (-15 -3374 ((-1 |#1|) (-1229 |#1|) (-1229 (-536)) (-536)))) (-1072)) (T -991)) -((-3374 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1229 *6)) (-5 *4 (-1229 (-536))) (-5 *5 (-536)) (-4 *6 (-1072)) (-5 *2 (-1 *6)) (-5 *1 (-991 *6)))) (-3373 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -3756 *4) (|:| -1572 (-536))))) (-4 *4 (-1072)) (-5 *2 (-1 *4)) (-5 *1 (-991 *4)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-1068 *4)) (-4 *4 (-1072)) (-5 *2 (-1 *4)) (-5 *1 (-991 *4))))) -(-10 -7 (-15 -3431 ((-1 |#1|) (-1068 |#1|))) (-15 -3373 ((-1 |#1|) (-620 (-2 (|:| -3756 |#1|) (|:| -1572 (-536)))))) (-15 -3374 ((-1 |#1|) (-1229 |#1|) (-1229 (-536)) (-536)))) -((-4126 (((-749) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-992 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4126 ((-749) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-356) (-1205 |#1|) (-1205 (-400 |#2|)) (-335 |#1| |#2| |#3|) (-13 (-361) (-356))) (T -992)) -((-4126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) (-4 *7 (-1205 *6)) (-4 *4 (-1205 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) (-4 *9 (-13 (-361) (-356))) (-5 *2 (-749)) (-5 *1 (-992 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -4126 ((-749) (-326 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2893 (((-112) $ $) NIL)) (-3375 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) NIL) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 11)) (-3382 (((-112) $ $) NIL))) -(((-993) (-13 (-1054) (-10 -8 (-15 -3375 ((-1106) $)) (-15 -3579 ((-1106) $))))) (T -993)) -((-3375 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-993)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-993))))) -(-13 (-1054) (-10 -8 (-15 -3375 ((-1106) $)) (-15 -3579 ((-1106) $)))) -((-4325 (((-219) $) 6) (((-371) $) 9))) -(((-994) (-138)) (T -994)) -NIL -(-13 (-596 (-219)) (-596 (-371))) -(((-596 (-219)) . T) ((-596 (-371)) . T)) -((-3464 (((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) 31) (((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536))) 28)) (-3378 (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536))) 33) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536))) 29) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) 32) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|) 27)) (-3377 (((-620 (-400 (-536))) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) 19)) (-3376 (((-400 (-536)) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) 16))) -(((-995 |#1|) (-10 -7 (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|)) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536)))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3376 ((-400 (-536)) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3377 ((-620 (-400 (-536))) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))))) (-1205 (-536))) (T -995)) -((-3377 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *2 (-620 (-400 (-536)))) (-5 *1 (-995 *4)) (-4 *4 (-1205 (-536))))) (-3376 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) (-5 *2 (-400 (-536))) (-5 *1 (-995 *4)) (-4 *4 (-1205 (-536))))) (-3464 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))))) (-3464 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) (-5 *4 (-400 (-536))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))))) (-3378 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *5) (|:| -3467 *5)))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) (-5 *4 (-2 (|:| -3468 *5) (|:| -3467 *5))))) (-3378 (*1 *2 *3 *4) (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) (-5 *4 (-400 (-536))))) (-3378 (*1 *2 *3 *4) (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) (-5 *4 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) (-3378 (*1 *2 *3) (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536)))))) -(-10 -7 (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|)) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536)))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3376 ((-400 (-536)) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3377 ((-620 (-400 (-536))) (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))))) -((-3464 (((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) 35) (((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536))) 32)) (-3378 (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536))) 30) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536))) 26) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) 28) (((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|) 24))) -(((-996 |#1|) (-10 -7 (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|)) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536)))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) (-1205 (-400 (-536)))) (T -996)) -((-3464 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536)))))) (-3464 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) (-5 *4 (-400 (-536))) (-5 *1 (-996 *3)) (-4 *3 (-1205 *4)))) (-3378 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *5) (|:| -3467 *5)))) (-5 *1 (-996 *3)) (-4 *3 (-1205 *5)) (-5 *4 (-2 (|:| -3468 *5) (|:| -3467 *5))))) (-3378 (*1 *2 *3 *4) (-12 (-5 *4 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *4) (|:| -3467 *4)))) (-5 *1 (-996 *3)) (-4 *3 (-1205 *4)))) (-3378 (*1 *2 *3 *4) (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536)))) (-5 *4 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) (-3378 (*1 *2 *3) (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536))))))) -(-10 -7 (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1|)) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-400 (-536)))) (-15 -3378 ((-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-400 (-536)))) (-15 -3464 ((-3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) "failed") |#1| (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))) (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) -((-3931 (((-620 (-371)) (-920 (-536)) (-371)) 28) (((-620 (-371)) (-920 (-400 (-536))) (-371)) 27)) (-4322 (((-620 (-620 (-371))) (-620 (-920 (-536))) (-620 (-1147)) (-371)) 37))) -(((-997) (-10 -7 (-15 -3931 ((-620 (-371)) (-920 (-400 (-536))) (-371))) (-15 -3931 ((-620 (-371)) (-920 (-536)) (-371))) (-15 -4322 ((-620 (-620 (-371))) (-620 (-920 (-536))) (-620 (-1147)) (-371))))) (T -997)) -((-4322 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-620 (-1147))) (-5 *2 (-620 (-620 (-371)))) (-5 *1 (-997)) (-5 *5 (-371)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-920 (-536))) (-5 *2 (-620 (-371))) (-5 *1 (-997)) (-5 *4 (-371)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *2 (-620 (-371))) (-5 *1 (-997)) (-5 *4 (-371))))) -(-10 -7 (-15 -3931 ((-620 (-371)) (-920 (-400 (-536))) (-371))) (-15 -3931 ((-620 (-371)) (-920 (-536)) (-371))) (-15 -4322 ((-620 (-620 (-371))) (-620 (-920 (-536))) (-620 (-1147)) (-371)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 70)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-3365 (($ $) NIL) (($ $ (-893)) NIL) (($ (-400 (-536))) NIL) (($ (-536)) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) 65)) (-3891 (($) NIL T CONST)) (-3529 (((-3 $ #1="failed") (-1141 $) (-893) (-838)) NIL) (((-3 $ #1#) (-1141 $) (-893)) 50)) (-3503 (((-3 (-400 (-536)) #2="failed") $) NIL (|has| (-400 (-536)) (-1012 (-400 (-536))))) (((-3 (-400 (-536)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-536) #2#) $) NIL (-3886 (|has| (-400 (-536)) (-1012 (-536))) (|has| |#1| (-1012 (-536)))))) (-3502 (((-400 (-536)) $) 15 (|has| (-400 (-536)) (-1012 (-400 (-536))))) (((-400 (-536)) $) 15) ((|#1| $) 108) (((-536) $) NIL (-3886 (|has| (-400 (-536)) (-1012 (-536))) (|has| |#1| (-1012 (-536)))))) (-3361 (($ $ (-838)) 42)) (-3360 (($ $ (-838)) 43)) (-2889 (($ $ $) NIL)) (-3528 (((-400 (-536)) $ $) 19)) (-3816 (((-3 $ "failed") $) 83)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-3532 (((-112) $) 61)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL)) (-3533 (((-112) $) 64)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3362 (((-3 (-1141 $) #1#) $) 78)) (-3364 (((-3 (-838) #1#) $) 77)) (-3363 (((-3 (-1141 $) #1#) $) 75)) (-3379 (((-3 (-1033 $ (-1141 $)) "failed") $) 73)) (-2008 (($ (-620 $)) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 84)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ (-620 $)) NIL) (($ $ $) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4312 (((-838) $) 82) (($ (-536)) NIL) (($ (-400 (-536))) NIL) (($ $) 58) (($ (-400 (-536))) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL) (($ |#1|) 110)) (-3456 (((-749)) NIL)) (-2172 (((-112) $ $) NIL)) (-4124 (((-400 (-536)) $ $) 25)) (-3530 (((-620 $) (-1141 $)) 56) (((-620 $) (-1141 (-400 (-536)))) NIL) (((-620 $) (-1141 (-536))) NIL) (((-620 $) (-920 $)) NIL) (((-620 $) (-920 (-400 (-536)))) NIL) (((-620 $) (-920 (-536))) NIL)) (-3380 (($ (-1033 $ (-1141 $)) (-838)) 41)) (-3737 (($ $) 20)) (-2986 (($) 29 T CONST)) (-2992 (($) 35 T CONST)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 71)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 22)) (-4303 (($ $ $) 33)) (-4192 (($ $) 34) (($ $ $) 69)) (-4194 (($ $ $) 103)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL) (($ $ (-400 (-536))) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 91) (($ $ $) 96) (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL) (($ (-536) $) 91) (($ $ (-536)) NIL) (($ (-400 (-536)) $) NIL) (($ $ (-400 (-536))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) -(((-998 |#1|) (-13 (-986) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -3380 ($ (-1033 $ (-1141 $)) (-838))) (-15 -3379 ((-3 (-1033 $ (-1141 $)) "failed") $)) (-15 -3528 ((-400 (-536)) $ $)))) (-13 (-823) (-356) (-994))) (T -998)) -((-3380 (*1 *1 *2 *3) (-12 (-5 *2 (-1033 (-998 *4) (-1141 (-998 *4)))) (-5 *3 (-838)) (-5 *1 (-998 *4)) (-4 *4 (-13 (-823) (-356) (-994))))) (-3379 (*1 *2 *1) (|partial| -12 (-5 *2 (-1033 (-998 *3) (-1141 (-998 *3)))) (-5 *1 (-998 *3)) (-4 *3 (-13 (-823) (-356) (-994))))) (-3528 (*1 *2 *1 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-998 *3)) (-4 *3 (-13 (-823) (-356) (-994)))))) -(-13 (-986) (-405 |#1|) (-38 |#1|) (-10 -8 (-15 -3380 ($ (-1033 $ (-1141 $)) (-838))) (-15 -3379 ((-3 (-1033 $ (-1141 $)) "failed") $)) (-15 -3528 ((-400 (-536)) $ $)))) -((-3381 (((-2 (|:| -3612 |#2|) (|:| -2831 (-620 |#1|))) |#2| (-620 |#1|)) 20) ((|#2| |#2| |#1|) 15))) -(((-999 |#1| |#2|) (-10 -7 (-15 -3381 (|#2| |#2| |#1|)) (-15 -3381 ((-2 (|:| -3612 |#2|) (|:| -2831 (-620 |#1|))) |#2| (-620 |#1|)))) (-356) (-636 |#1|)) (T -999)) -((-3381 (*1 *2 *3 *4) (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -3612 *3) (|:| -2831 (-620 *5)))) (-5 *1 (-999 *5 *3)) (-5 *4 (-620 *5)) (-4 *3 (-636 *5)))) (-3381 (*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-999 *3 *2)) (-4 *2 (-636 *3))))) -(-10 -7 (-15 -3381 (|#2| |#2| |#1|)) (-15 -3381 ((-2 (|:| -3612 |#2|) (|:| -2831 (-620 |#1|))) |#2| (-620 |#1|)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3383 ((|#1| $ |#1|) 14)) (-4142 ((|#1| $ |#1|) 12)) (-3385 (($ |#1|) 10)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4154 ((|#1| $) 11)) (-3384 ((|#1| $) 13)) (-4312 (((-838) $) 21 (|has| |#1| (-1072)))) (-3382 (((-112) $ $) 9))) -(((-1000 |#1|) (-13 (-1183) (-10 -8 (-15 -3385 ($ |#1|)) (-15 -4154 (|#1| $)) (-15 -4142 (|#1| $ |#1|)) (-15 -3384 (|#1| $)) (-15 -3383 (|#1| $ |#1|)) (-15 -3382 ((-112) $ $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) (-1183)) (T -1000)) -((-3385 (*1 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) (-4154 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) (-4142 (*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) (-3384 (*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) (-3383 (*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) (-3382 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1000 *3)) (-4 *3 (-1183))))) -(-13 (-1183) (-10 -8 (-15 -3385 ($ |#1|)) (-15 -4154 (|#1| $)) (-15 -4142 (|#1| $ |#1|)) (-15 -3384 (|#1| $)) (-15 -3383 (|#1| $ |#1|)) (-15 -3382 ((-112) $ $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) -((-2893 (((-112) $ $) NIL)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) NIL)) (-4040 (((-620 $) (-620 |#4|)) 105) (((-620 $) (-620 |#4|) (-112)) 106) (((-620 $) (-620 |#4|) (-112) (-112)) 104) (((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3412 (((-620 |#3|) $) NIL)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 99)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) 26 (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3228 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) NIL)) (-3502 (($ (-620 |#4|)) NIL)) (-4153 (((-3 $ #1#) $) 39)) (-4043 ((|#4| |#4| $) 57)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3760 (($ |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4041 ((|#4| |#4| $) NIL)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) NIL)) (-3543 (((-112) |#4| $) NIL)) (-3541 (((-112) |#4| $) NIL)) (-3544 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3792 (((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112)) 119)) (-2063 (((-620 |#4|) $) 16 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3526 ((|#3| $) 33)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#4|) $) 17 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 21)) (-3242 (((-620 |#3|) $) NIL)) (-3241 (((-112) |#3| $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) NIL)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 97)) (-4152 (((-3 |#4| #1#) $) 37)) (-3538 (((-620 $) |#4| $) 80)) (-3540 (((-3 (-112) (-620 $)) |#4| $) NIL)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3584 (((-620 $) |#4| $) 102) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) 103) (((-620 $) |#4| (-620 $)) NIL)) (-3793 (((-620 $) (-620 |#4|) (-112) (-112) (-112)) 114)) (-3794 (($ |#4| $) 70) (($ (-620 |#4|) $) 71) (((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-4055 (((-620 |#4|) $) NIL)) (-4049 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4044 ((|#4| |#4| $) NIL)) (-4057 (((-112) $ $) NIL)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4045 ((|#4| |#4| $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4037 (((-3 $ #1#) $ |#4|) 48)) (-4123 (($ $ |#4|) NIL) (((-620 $) |#4| $) 82) (((-620 $) |#4| (-620 $)) NIL) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) 77)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 15)) (-3923 (($) 13)) (-4302 (((-749) $) NIL)) (-2064 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) 12)) (-4325 (((-525) $) NIL (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 20)) (-3238 (($ $ |#3|) 42)) (-3240 (($ $ |#3|) 44)) (-4042 (($ $) NIL)) (-3239 (($ $ |#3|) NIL)) (-4312 (((-838) $) 31) (((-620 |#4|) $) 40)) (-4036 (((-749) $) NIL (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) NIL)) (-3535 (((-620 $) |#4| $) 79) (((-620 $) |#4| (-620 $)) NIL) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) NIL)) (-3542 (((-112) |#4| $) NIL)) (-4288 (((-112) |#3| $) 53)) (-3382 (((-112) $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1001 |#1| |#2| |#3| |#4|) (-13 (-1043 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3794 ((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112))) (-15 -3793 ((-620 $) (-620 |#4|) (-112) (-112) (-112))) (-15 -3792 ((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112))))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -1001)) -((-3794 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *3))) (-5 *1 (-1001 *5 *6 *7 *3)) (-4 *3 (-1037 *5 *6 *7)))) (-4040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) (-4040 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) (-3793 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) (-5 *1 (-1001 *5 *6 *7 *8)))) (-3792 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-620 *8)) (|:| |towers| (-620 (-1001 *5 *6 *7 *8))))) (-5 *1 (-1001 *5 *6 *7 *8)) (-5 *3 (-620 *8))))) -(-13 (-1043 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3794 ((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112))) (-15 -3793 ((-620 $) (-620 |#4|) (-112) (-112) (-112))) (-15 -3792 ((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112))))) -((-3386 (((-620 (-2 (|:| |radval| (-307 (-536))) (|:| |radmult| (-536)) (|:| |radvect| (-620 (-667 (-307 (-536))))))) (-667 (-400 (-920 (-536))))) 59)) (-3387 (((-620 (-667 (-307 (-536)))) (-307 (-536)) (-667 (-400 (-920 (-536))))) 48)) (-3388 (((-620 (-307 (-536))) (-667 (-400 (-920 (-536))))) 41)) (-3392 (((-620 (-667 (-307 (-536)))) (-667 (-400 (-920 (-536))))) 68)) (-3390 (((-667 (-307 (-536))) (-667 (-307 (-536)))) 34)) (-3391 (((-620 (-667 (-307 (-536)))) (-620 (-667 (-307 (-536))))) 62)) (-3389 (((-3 (-667 (-307 (-536))) "failed") (-667 (-400 (-920 (-536))))) 66))) -(((-1002) (-10 -7 (-15 -3386 ((-620 (-2 (|:| |radval| (-307 (-536))) (|:| |radmult| (-536)) (|:| |radvect| (-620 (-667 (-307 (-536))))))) (-667 (-400 (-920 (-536)))))) (-15 -3387 ((-620 (-667 (-307 (-536)))) (-307 (-536)) (-667 (-400 (-920 (-536)))))) (-15 -3388 ((-620 (-307 (-536))) (-667 (-400 (-920 (-536)))))) (-15 -3389 ((-3 (-667 (-307 (-536))) "failed") (-667 (-400 (-920 (-536)))))) (-15 -3390 ((-667 (-307 (-536))) (-667 (-307 (-536))))) (-15 -3391 ((-620 (-667 (-307 (-536)))) (-620 (-667 (-307 (-536)))))) (-15 -3392 ((-620 (-667 (-307 (-536)))) (-667 (-400 (-920 (-536)))))))) (T -1002)) -((-3392 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-667 (-307 (-536))))) (-5 *1 (-1002)))) (-3391 (*1 *2 *2) (-12 (-5 *2 (-620 (-667 (-307 (-536))))) (-5 *1 (-1002)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-667 (-307 (-536)))) (-5 *1 (-1002)))) (-3389 (*1 *2 *3) (|partial| -12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-667 (-307 (-536)))) (-5 *1 (-1002)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-307 (-536)))) (-5 *1 (-1002)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *4 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-667 (-307 (-536))))) (-5 *1 (-1002)) (-5 *3 (-307 (-536))))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-2 (|:| |radval| (-307 (-536))) (|:| |radmult| (-536)) (|:| |radvect| (-620 (-667 (-307 (-536)))))))) (-5 *1 (-1002))))) -(-10 -7 (-15 -3386 ((-620 (-2 (|:| |radval| (-307 (-536))) (|:| |radmult| (-536)) (|:| |radvect| (-620 (-667 (-307 (-536))))))) (-667 (-400 (-920 (-536)))))) (-15 -3387 ((-620 (-667 (-307 (-536)))) (-307 (-536)) (-667 (-400 (-920 (-536)))))) (-15 -3388 ((-620 (-307 (-536))) (-667 (-400 (-920 (-536)))))) (-15 -3389 ((-3 (-667 (-307 (-536))) "failed") (-667 (-400 (-920 (-536)))))) (-15 -3390 ((-667 (-307 (-536))) (-667 (-307 (-536))))) (-15 -3391 ((-620 (-667 (-307 (-536)))) (-620 (-667 (-307 (-536)))))) (-15 -3392 ((-620 (-667 (-307 (-536)))) (-667 (-400 (-920 (-536))))))) -((-3396 (((-620 (-667 |#1|)) (-620 (-667 |#1|))) 58) (((-667 |#1|) (-667 |#1|)) 57) (((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-620 (-667 |#1|))) 56) (((-667 |#1|) (-667 |#1|) (-667 |#1|)) 53)) (-3395 (((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893)) 52) (((-667 |#1|) (-667 |#1|) (-893)) 51)) (-3397 (((-620 (-667 (-536))) (-620 (-620 (-536)))) 68) (((-620 (-667 (-536))) (-620 (-876 (-536))) (-536)) 67) (((-667 (-536)) (-620 (-536))) 64) (((-667 (-536)) (-876 (-536)) (-536)) 63)) (-3394 (((-667 (-920 |#1|)) (-749)) 81)) (-3393 (((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893)) 37 (|has| |#1| (-6 (-4350 "*")))) (((-667 |#1|) (-667 |#1|) (-893)) 35 (|has| |#1| (-6 (-4350 "*")))))) -(((-1003 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4350 "*"))) (-15 -3393 ((-667 |#1|) (-667 |#1|) (-893))) |%noBranch|) (IF (|has| |#1| (-6 (-4350 "*"))) (-15 -3393 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893))) |%noBranch|) (-15 -3394 ((-667 (-920 |#1|)) (-749))) (-15 -3395 ((-667 |#1|) (-667 |#1|) (-893))) (-15 -3395 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893))) (-15 -3396 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3396 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3396 ((-667 |#1|) (-667 |#1|))) (-15 -3396 ((-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3397 ((-667 (-536)) (-876 (-536)) (-536))) (-15 -3397 ((-667 (-536)) (-620 (-536)))) (-15 -3397 ((-620 (-667 (-536))) (-620 (-876 (-536))) (-536))) (-15 -3397 ((-620 (-667 (-536))) (-620 (-620 (-536)))))) (-1023)) (T -1003)) -((-3397 (*1 *2 *3) (-12 (-5 *3 (-620 (-620 (-536)))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-1003 *4)) (-4 *4 (-1023)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-876 (-536)))) (-5 *4 (-536)) (-5 *2 (-620 (-667 *4))) (-5 *1 (-1003 *5)) (-4 *5 (-1023)))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1003 *4)) (-4 *4 (-1023)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-536))) (-5 *4 (-536)) (-5 *2 (-667 *4)) (-5 *1 (-1003 *5)) (-4 *5 (-1023)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-620 (-667 *3))) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-620 (-667 *3))) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) (-3396 (*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) (-3395 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-667 *4))) (-5 *3 (-893)) (-4 *4 (-1023)) (-5 *1 (-1003 *4)))) (-3395 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-893)) (-4 *4 (-1023)) (-5 *1 (-1003 *4)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-667 (-920 *4))) (-5 *1 (-1003 *4)) (-4 *4 (-1023)))) (-3393 (*1 *2 *2 *3) (-12 (-5 *2 (-620 (-667 *4))) (-5 *3 (-893)) (|has| *4 (-6 (-4350 "*"))) (-4 *4 (-1023)) (-5 *1 (-1003 *4)))) (-3393 (*1 *2 *2 *3) (-12 (-5 *2 (-667 *4)) (-5 *3 (-893)) (|has| *4 (-6 (-4350 "*"))) (-4 *4 (-1023)) (-5 *1 (-1003 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4350 "*"))) (-15 -3393 ((-667 |#1|) (-667 |#1|) (-893))) |%noBranch|) (IF (|has| |#1| (-6 (-4350 "*"))) (-15 -3393 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893))) |%noBranch|) (-15 -3394 ((-667 (-920 |#1|)) (-749))) (-15 -3395 ((-667 |#1|) (-667 |#1|) (-893))) (-15 -3395 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-893))) (-15 -3396 ((-667 |#1|) (-667 |#1|) (-667 |#1|))) (-15 -3396 ((-620 (-667 |#1|)) (-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3396 ((-667 |#1|) (-667 |#1|))) (-15 -3396 ((-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3397 ((-667 (-536)) (-876 (-536)) (-536))) (-15 -3397 ((-667 (-536)) (-620 (-536)))) (-15 -3397 ((-620 (-667 (-536))) (-620 (-876 (-536))) (-536))) (-15 -3397 ((-620 (-667 (-536))) (-620 (-620 (-536)))))) -((-3401 (((-667 |#1|) (-620 (-667 |#1|)) (-1229 |#1|)) 50 (|has| |#1| (-300)))) (-3772 (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 (-1229 |#1|))) 76 (|has| |#1| (-356))) (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 |#1|)) 79 (|has| |#1| (-356)))) (-3405 (((-1229 |#1|) (-620 (-1229 |#1|)) (-536)) 93 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3404 (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-893)) 85 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112)) 83 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|))) 82 (-12 (|has| |#1| (-356)) (|has| |#1| (-361)))) (((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112) (-536) (-536)) 81 (-12 (|has| |#1| (-356)) (|has| |#1| (-361))))) (-3403 (((-112) (-620 (-667 |#1|))) 71 (|has| |#1| (-356))) (((-112) (-620 (-667 |#1|)) (-536)) 73 (|has| |#1| (-356)))) (-3400 (((-1229 (-1229 |#1|)) (-620 (-667 |#1|)) (-1229 |#1|)) 48 (|has| |#1| (-300)))) (-3399 (((-667 |#1|) (-620 (-667 |#1|)) (-667 |#1|)) 34)) (-3398 (((-667 |#1|) (-1229 (-1229 |#1|))) 31)) (-3402 (((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-536)) 65 (|has| |#1| (-356))) (((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|))) 64 (|has| |#1| (-356))) (((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-112) (-536)) 69 (|has| |#1| (-356))))) -(((-1004 |#1|) (-10 -7 (-15 -3398 ((-667 |#1|) (-1229 (-1229 |#1|)))) (-15 -3399 ((-667 |#1|) (-620 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3400 ((-1229 (-1229 |#1|)) (-620 (-667 |#1|)) (-1229 |#1|))) (-15 -3401 ((-667 |#1|) (-620 (-667 |#1|)) (-1229 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-112) (-536))) (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-536))) (-15 -3403 ((-112) (-620 (-667 |#1|)) (-536))) (-15 -3403 ((-112) (-620 (-667 |#1|)))) (-15 -3772 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 |#1|))) (-15 -3772 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 (-1229 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112) (-536) (-536))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-893))) (-15 -3405 ((-1229 |#1|) (-620 (-1229 |#1|)) (-536)))) |%noBranch|) |%noBranch|)) (-1023)) (T -1004)) -((-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-1229 *5))) (-5 *4 (-536)) (-5 *2 (-1229 *5)) (-5 *1 (-1004 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023)))) (-3404 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023)) (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) (-5 *3 (-620 (-667 *5))))) (-3404 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023)) (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) (-5 *3 (-620 (-667 *5))))) (-3404 (*1 *2 *3) (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1023)) (-5 *2 (-620 (-620 (-667 *4)))) (-5 *1 (-1004 *4)) (-5 *3 (-620 (-667 *4))))) (-3404 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-536)) (-4 *6 (-356)) (-4 *6 (-361)) (-4 *6 (-1023)) (-5 *2 (-620 (-620 (-667 *6)))) (-5 *1 (-1004 *6)) (-5 *3 (-620 (-667 *6))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *4 (-1229 (-1229 *5))) (-4 *5 (-356)) (-4 *5 (-1023)) (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) (-5 *3 (-620 (-667 *5))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) (-5 *3 (-620 (-667 *5))))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-620 (-667 *4))) (-4 *4 (-356)) (-4 *4 (-1023)) (-5 *2 (-112)) (-5 *1 (-1004 *4)))) (-3403 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-536)) (-4 *5 (-356)) (-4 *5 (-1023)) (-5 *2 (-112)) (-5 *1 (-1004 *5)))) (-3402 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-536)) (-5 *2 (-667 *5)) (-5 *1 (-1004 *5)) (-4 *5 (-356)) (-4 *5 (-1023)))) (-3402 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-667 *4))) (-5 *2 (-667 *4)) (-5 *1 (-1004 *4)) (-4 *4 (-356)) (-4 *4 (-1023)))) (-3402 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-620 (-667 *6))) (-5 *4 (-112)) (-5 *5 (-536)) (-5 *2 (-667 *6)) (-5 *1 (-1004 *6)) (-4 *6 (-356)) (-4 *6 (-1023)))) (-3401 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-1229 *5)) (-4 *5 (-300)) (-4 *5 (-1023)) (-5 *2 (-667 *5)) (-5 *1 (-1004 *5)))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-667 *5))) (-4 *5 (-300)) (-4 *5 (-1023)) (-5 *2 (-1229 (-1229 *5))) (-5 *1 (-1004 *5)) (-5 *4 (-1229 *5)))) (-3399 (*1 *2 *3 *2) (-12 (-5 *3 (-620 (-667 *4))) (-5 *2 (-667 *4)) (-4 *4 (-1023)) (-5 *1 (-1004 *4)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-1229 (-1229 *4))) (-4 *4 (-1023)) (-5 *2 (-667 *4)) (-5 *1 (-1004 *4))))) -(-10 -7 (-15 -3398 ((-667 |#1|) (-1229 (-1229 |#1|)))) (-15 -3399 ((-667 |#1|) (-620 (-667 |#1|)) (-667 |#1|))) (IF (|has| |#1| (-300)) (PROGN (-15 -3400 ((-1229 (-1229 |#1|)) (-620 (-667 |#1|)) (-1229 |#1|))) (-15 -3401 ((-667 |#1|) (-620 (-667 |#1|)) (-1229 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-112) (-536))) (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3402 ((-667 |#1|) (-620 (-667 |#1|)) (-620 (-667 |#1|)) (-536))) (-15 -3403 ((-112) (-620 (-667 |#1|)) (-536))) (-15 -3403 ((-112) (-620 (-667 |#1|)))) (-15 -3772 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 |#1|))) (-15 -3772 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-1229 (-1229 |#1|))))) |%noBranch|) (IF (|has| |#1| (-361)) (IF (|has| |#1| (-356)) (PROGN (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112) (-536) (-536))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-112))) (-15 -3404 ((-620 (-620 (-667 |#1|))) (-620 (-667 |#1|)) (-893))) (-15 -3405 ((-1229 |#1|) (-620 (-1229 |#1|)) (-536)))) |%noBranch|) |%noBranch|)) -((-3406 ((|#1| (-893) |#1|) 9))) -(((-1005 |#1|) (-10 -7 (-15 -3406 (|#1| (-893) |#1|))) (-13 (-1072) (-10 -8 (-15 -4194 ($ $ $))))) (T -1005)) -((-3406 (*1 *2 *3 *2) (-12 (-5 *3 (-893)) (-5 *1 (-1005 *2)) (-4 *2 (-13 (-1072) (-10 -8 (-15 -4194 ($ $ $)))))))) -(-10 -7 (-15 -3406 (|#1| (-893) |#1|))) -((-3407 ((|#1| |#1| (-893)) 9))) -(((-1006 |#1|) (-10 -7 (-15 -3407 (|#1| |#1| (-893)))) (-13 (-1072) (-10 -8 (-15 * ($ $ $))))) (T -1006)) -((-3407 (*1 *2 *2 *3) (-12 (-5 *3 (-893)) (-5 *1 (-1006 *2)) (-4 *2 (-13 (-1072) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -3407 (|#1| |#1| (-893)))) -((-4312 ((|#1| (-304)) 11) (((-1235) |#1|) 9))) -(((-1007 |#1|) (-10 -7 (-15 -4312 ((-1235) |#1|)) (-15 -4312 (|#1| (-304)))) (-1183)) (T -1007)) -((-4312 (*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1007 *2)) (-4 *2 (-1183)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-1235)) (-5 *1 (-1007 *3)) (-4 *3 (-1183))))) -(-10 -7 (-15 -4312 ((-1235) |#1|)) (-15 -4312 (|#1| (-304)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-4197 (($ |#4|) 25)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3408 ((|#4| $) 27)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 46) (($ (-536)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3456 (((-749)) 43)) (-2986 (($) 21 T CONST)) (-2992 (($) 23 T CONST)) (-3382 (((-112) $ $) 40)) (-4192 (($ $) 31) (($ $ $) NIL)) (-4194 (($ $ $) 29)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1008 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -4197 ($ |#4|)) (-15 -4312 ($ |#4|)) (-15 -3408 (|#4| $)))) (-356) (-771) (-825) (-924 |#1| |#2| |#3|) (-620 |#4|)) (T -1008)) -((-4197 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-924 *3 *4 *5)) (-14 *6 (-620 *2)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-924 *3 *4 *5)) (-14 *6 (-620 *2)))) (-3408 (*1 *2 *1) (-12 (-4 *2 (-924 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-14 *6 (-620 *2))))) -(-13 (-170) (-38 |#1|) (-10 -8 (-15 -4197 ($ |#4|)) (-15 -4312 ($ |#4|)) (-15 -3408 (|#4| $)))) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-2300 (((-1235) $ (-1147) (-1147)) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-3410 (((-112) (-112)) 39)) (-3409 (((-112) (-112)) 38)) (-4142 (((-51) $ (-1147) (-51)) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 (-51) #1="failed") (-1147) $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-3759 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-3 (-51) #1#) (-1147) $) NIL)) (-3760 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-1632 (((-51) $ (-1147) (-51)) NIL (|has| $ (-6 -4349)))) (-3443 (((-51) $ (-1147)) NIL)) (-2063 (((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-1147) $) NIL (|has| (-1147) (-825)))) (-2506 (((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2303 (((-1147) $) NIL (|has| (-1147) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4349))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-2739 (((-620 (-1147)) $) 34)) (-2310 (((-112) (-1147) $) NIL)) (-1331 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL)) (-3965 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL)) (-2305 (((-620 (-1147)) $) NIL)) (-2306 (((-112) (-1147) $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-4155 (((-51) $) NIL (|has| (-1147) (-825)))) (-1399 (((-3 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) "failed") (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL)) (-2301 (($ $ (-51)) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-286 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-51)) (-620 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-620 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2307 (((-620 (-51)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (((-51) $ (-1147)) 35) (((-51) $ (-1147) (-51)) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-749) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072)))) (((-749) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-4312 (((-838) $) 37 (-3886 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-595 (-838))) (|has| (-51) (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1009) (-13 (-1160 (-1147) (-51)) (-10 -7 (-15 -3410 ((-112) (-112))) (-15 -3409 ((-112) (-112))) (-6 -4348)))) (T -1009)) -((-3410 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009)))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009))))) -(-13 (-1160 (-1147) (-51)) (-10 -7 (-15 -3410 ((-112) (-112))) (-15 -3409 ((-112) (-112))) (-6 -4348))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 9)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-1010) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $))))) (T -1010)) -((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1010))))) -(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)))) -((-3502 ((|#2| $) 10))) -(((-1011 |#1| |#2|) (-10 -8 (-15 -3502 (|#2| |#1|))) (-1012 |#2|) (-1183)) (T -1011)) -NIL -(-10 -8 (-15 -3502 (|#2| |#1|))) -((-3503 (((-3 |#1| "failed") $) 7)) (-3502 ((|#1| $) 8)) (-4312 (($ |#1|) 6))) -(((-1012 |#1|) (-138) (-1183)) (T -1012)) -((-3502 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1183)))) (-3503 (*1 *2 *1) (|partial| -12 (-4 *1 (-1012 *2)) (-4 *2 (-1183)))) (-4312 (*1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1183))))) -(-13 (-10 -8 (-15 -4312 ($ |t#1|)) (-15 -3503 ((-3 |t#1| "failed") $)) (-15 -3502 (|t#1| $)))) -((-3411 (((-620 (-620 (-286 (-400 (-920 |#2|))))) (-620 (-920 |#2|)) (-620 (-1147))) 38))) -(((-1013 |#1| |#2|) (-10 -7 (-15 -3411 ((-620 (-620 (-286 (-400 (-920 |#2|))))) (-620 (-920 |#2|)) (-620 (-1147))))) (-543) (-13 (-543) (-1012 |#1|))) (T -1013)) -((-3411 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) (-4 *6 (-13 (-543) (-1012 *5))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *6)))))) (-5 *1 (-1013 *5 *6))))) -(-10 -7 (-15 -3411 ((-620 (-620 (-286 (-400 (-920 |#2|))))) (-620 (-920 |#2|)) (-620 (-1147))))) -((-3412 (((-620 (-1147)) (-400 (-920 |#1|))) 17)) (-3414 (((-400 (-1141 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147)) 24)) (-3415 (((-400 (-920 |#1|)) (-400 (-1141 (-400 (-920 |#1|)))) (-1147)) 26)) (-3413 (((-3 (-1147) "failed") (-400 (-920 |#1|))) 20)) (-4122 (((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-286 (-400 (-920 |#1|))))) 32) (((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|)))) 33) (((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-1147)) (-620 (-400 (-920 |#1|)))) 28) (((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|))) 29)) (-4312 (((-400 (-920 |#1|)) |#1|) 11))) -(((-1014 |#1|) (-10 -7 (-15 -3412 ((-620 (-1147)) (-400 (-920 |#1|)))) (-15 -3413 ((-3 (-1147) "failed") (-400 (-920 |#1|)))) (-15 -3414 ((-400 (-1141 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147))) (-15 -3415 ((-400 (-920 |#1|)) (-400 (-1141 (-400 (-920 |#1|)))) (-1147))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|)))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-1147)) (-620 (-400 (-920 |#1|))))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -4312 ((-400 (-920 |#1|)) |#1|))) (-543)) (T -1014)) -((-4312 (*1 *2 *3) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-1014 *3)) (-4 *3 (-543)))) (-4122 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-286 (-400 (-920 *4))))) (-5 *2 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *1 (-1014 *4)))) (-4122 (*1 *2 *2 *3) (-12 (-5 *3 (-286 (-400 (-920 *4)))) (-5 *2 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *1 (-1014 *4)))) (-4122 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-620 (-1147))) (-5 *4 (-620 (-400 (-920 *5)))) (-5 *2 (-400 (-920 *5))) (-4 *5 (-543)) (-5 *1 (-1014 *5)))) (-4122 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-400 (-920 *4))) (-5 *3 (-1147)) (-4 *4 (-543)) (-5 *1 (-1014 *4)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-1141 (-400 (-920 *5))))) (-5 *4 (-1147)) (-5 *2 (-400 (-920 *5))) (-5 *1 (-1014 *5)) (-4 *5 (-543)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-400 (-1141 (-400 (-920 *5))))) (-5 *1 (-1014 *5)) (-5 *3 (-400 (-920 *5))))) (-3413 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-1147)) (-5 *1 (-1014 *4)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-620 (-1147))) (-5 *1 (-1014 *4))))) -(-10 -7 (-15 -3412 ((-620 (-1147)) (-400 (-920 |#1|)))) (-15 -3413 ((-3 (-1147) "failed") (-400 (-920 |#1|)))) (-15 -3414 ((-400 (-1141 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147))) (-15 -3415 ((-400 (-920 |#1|)) (-400 (-1141 (-400 (-920 |#1|)))) (-1147))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|)))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-1147)) (-620 (-400 (-920 |#1|))))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-286 (-400 (-920 |#1|))))) (-15 -4122 ((-400 (-920 |#1|)) (-400 (-920 |#1|)) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -4312 ((-400 (-920 |#1|)) |#1|))) -((-3416 (((-371)) 15)) (-3431 (((-1 (-371)) (-371) (-371)) 20)) (-3424 (((-1 (-371)) (-749)) 43)) (-3417 (((-371)) 34)) (-3420 (((-1 (-371)) (-371) (-371)) 35)) (-3418 (((-371)) 26)) (-3421 (((-1 (-371)) (-371)) 27)) (-3419 (((-371) (-749)) 38)) (-3422 (((-1 (-371)) (-749)) 39)) (-3423 (((-1 (-371)) (-749) (-749)) 42)) (-3738 (((-1 (-371)) (-749) (-749)) 40))) -(((-1015) (-10 -7 (-15 -3416 ((-371))) (-15 -3417 ((-371))) (-15 -3418 ((-371))) (-15 -3419 ((-371) (-749))) (-15 -3431 ((-1 (-371)) (-371) (-371))) (-15 -3420 ((-1 (-371)) (-371) (-371))) (-15 -3421 ((-1 (-371)) (-371))) (-15 -3422 ((-1 (-371)) (-749))) (-15 -3738 ((-1 (-371)) (-749) (-749))) (-15 -3423 ((-1 (-371)) (-749) (-749))) (-15 -3424 ((-1 (-371)) (-749))))) (T -1015)) -((-3424 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015)))) (-3423 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015)))) (-3738 (*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015)))) (-3422 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015)))) (-3421 (*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371)))) (-3420 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371)))) (-3431 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-371)) (-5 *1 (-1015)))) (-3418 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015)))) (-3417 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015)))) (-3416 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015))))) -(-10 -7 (-15 -3416 ((-371))) (-15 -3417 ((-371))) (-15 -3418 ((-371))) (-15 -3419 ((-371) (-749))) (-15 -3431 ((-1 (-371)) (-371) (-371))) (-15 -3420 ((-1 (-371)) (-371) (-371))) (-15 -3421 ((-1 (-371)) (-371))) (-15 -3422 ((-1 (-371)) (-749))) (-15 -3738 ((-1 (-371)) (-749) (-749))) (-15 -3423 ((-1 (-371)) (-749) (-749))) (-15 -3424 ((-1 (-371)) (-749)))) -((-4087 (((-398 |#1|) |#1|) 33))) -(((-1016 |#1|) (-10 -7 (-15 -4087 ((-398 |#1|) |#1|))) (-1205 (-400 (-920 (-536))))) (T -1016)) -((-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-1205 (-400 (-920 (-536)))))))) -(-10 -7 (-15 -4087 ((-398 |#1|) |#1|))) -((-3425 (((-400 (-398 (-920 |#1|))) (-400 (-920 |#1|))) 14))) -(((-1017 |#1|) (-10 -7 (-15 -3425 ((-400 (-398 (-920 |#1|))) (-400 (-920 |#1|))))) (-300)) (T -1017)) -((-3425 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-398 (-920 *4)))) (-5 *1 (-1017 *4))))) -(-10 -7 (-15 -3425 ((-400 (-398 (-920 |#1|))) (-400 (-920 |#1|))))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3891 (($) 17 T CONST)) (-3429 ((|#1| $) 22)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3428 ((|#1| $) 21)) (-3426 ((|#1|) 19 T CONST)) (-4312 (((-838) $) 11)) (-3427 ((|#1| $) 20)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15))) -(((-1018 |#1|) (-138) (-23)) (T -1018)) -((-3429 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23)))) (-3428 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23)))) (-3427 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23)))) (-3426 (*1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3429 (|t#1| $)) (-15 -3428 (|t#1| $)) (-15 -3427 (|t#1| $)) (-15 -3426 (|t#1|) -4306))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3430 (($) 24 T CONST)) (-3891 (($) 17 T CONST)) (-3429 ((|#1| $) 22)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3428 ((|#1| $) 21)) (-3426 ((|#1|) 19 T CONST)) (-4312 (((-838) $) 11)) (-3427 ((|#1| $) 20)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15))) -(((-1019 |#1|) (-138) (-23)) (T -1019)) -((-3430 (*1 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-23))))) -(-13 (-1018 |t#1|) (-10 -8 (-15 -3430 ($) -4306))) -(((-23) . T) ((-25) . T) ((-101) . T) ((-595 (-838)) . T) ((-1018 |#1|) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 (-758 |#1| (-839 |#2|)))))) (-620 (-758 |#1| (-839 |#2|)))) NIL)) (-4040 (((-620 $) (-620 (-758 |#1| (-839 |#2|)))) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-112)) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-112) (-112)) NIL)) (-3412 (((-620 (-839 |#2|)) $) NIL)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-4051 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-4046 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-4129 (((-620 (-2 (|:| |val| (-758 |#1| (-839 |#2|))) (|:| -1655 $))) (-758 |#1| (-839 |#2|)) $) NIL)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ (-839 |#2|)) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 (-758 |#1| (-839 |#2|)) #1="failed") $ (-839 |#2|)) NIL)) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) NIL (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-4047 (((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|))) $ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-3228 (((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|))) $) NIL (|has| |#1| (-543)))) (-3229 (((-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|))) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 (-758 |#1| (-839 |#2|)))) NIL)) (-3502 (($ (-620 (-758 |#1| (-839 |#2|)))) NIL)) (-4153 (((-3 $ #1#) $) NIL)) (-4043 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-758 |#1| (-839 |#2|)) (-1072))))) (-3760 (($ (-758 |#1| (-839 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (($ (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-758 |#1| (-839 |#2|))) (|:| |den| |#1|)) (-758 |#1| (-839 |#2|)) $) NIL (|has| |#1| (-543)))) (-4052 (((-112) (-758 |#1| (-839 |#2|)) $ (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-4041 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-4197 (((-758 |#1| (-839 |#2|)) (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $ (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (((-758 |#1| (-839 |#2|)) (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $ (-758 |#1| (-839 |#2|))) NIL (|has| $ (-6 -4348))) (((-758 |#1| (-839 |#2|)) (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-4054 (((-2 (|:| -4216 (-620 (-758 |#1| (-839 |#2|)))) (|:| -1813 (-620 (-758 |#1| (-839 |#2|))))) $) NIL)) (-3543 (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-3541 (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-3544 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-2063 (((-620 (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4053 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-3526 (((-839 |#2|) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-758 |#1| (-839 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-758 |#1| (-839 |#2|)) (-1072))))) (-2067 (($ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) $) NIL)) (-3242 (((-620 (-839 |#2|)) $) NIL)) (-3241 (((-112) (-839 |#2|) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3537 (((-3 (-758 |#1| (-839 |#2|)) (-620 $)) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-3536 (((-620 (-2 (|:| |val| (-758 |#1| (-839 |#2|))) (|:| -1655 $))) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-4152 (((-3 (-758 |#1| (-839 |#2|)) #1#) $) NIL)) (-3538 (((-620 $) (-758 |#1| (-839 |#2|)) $) NIL)) (-3540 (((-3 (-112) (-620 $)) (-758 |#1| (-839 |#2|)) $) NIL)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-3584 (((-620 $) (-758 |#1| (-839 |#2|)) $) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) $) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-620 $)) NIL) (((-620 $) (-758 |#1| (-839 |#2|)) (-620 $)) NIL)) (-3794 (($ (-758 |#1| (-839 |#2|)) $) NIL) (($ (-620 (-758 |#1| (-839 |#2|))) $) NIL)) (-4055 (((-620 (-758 |#1| (-839 |#2|))) $) NIL)) (-4049 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-4044 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-4057 (((-112) $ $) NIL)) (-3231 (((-2 (|:| |num| (-758 |#1| (-839 |#2|))) (|:| |den| |#1|)) (-758 |#1| (-839 |#2|)) $) NIL (|has| |#1| (-543)))) (-4050 (((-112) (-758 |#1| (-839 |#2|)) $) NIL) (((-112) $) NIL)) (-4045 (((-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-3 (-758 |#1| (-839 |#2|)) #1#) $) NIL)) (-1399 (((-3 (-758 |#1| (-839 |#2|)) "failed") (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL)) (-4037 (((-3 $ #1#) $ (-758 |#1| (-839 |#2|))) NIL)) (-4123 (($ $ (-758 |#1| (-839 |#2|))) NIL) (((-620 $) (-758 |#1| (-839 |#2|)) $) NIL) (((-620 $) (-758 |#1| (-839 |#2|)) (-620 $)) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) $) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-620 $)) NIL)) (-2065 (((-112) (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-758 |#1| (-839 |#2|))) (-620 (-758 |#1| (-839 |#2|)))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (($ $ (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (($ $ (-286 (-758 |#1| (-839 |#2|)))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (($ $ (-620 (-286 (-758 |#1| (-839 |#2|))))) NIL (-12 (|has| (-758 |#1| (-839 |#2|)) (-302 (-758 |#1| (-839 |#2|)))) (|has| (-758 |#1| (-839 |#2|)) (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4302 (((-749) $) NIL)) (-2064 (((-749) (-758 |#1| (-839 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-758 |#1| (-839 |#2|)) (-1072)))) (((-749) (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-758 |#1| (-839 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-758 |#1| (-839 |#2|)))) NIL)) (-3238 (($ $ (-839 |#2|)) NIL)) (-3240 (($ $ (-839 |#2|)) NIL)) (-4042 (($ $) NIL)) (-3239 (($ $ (-839 |#2|)) NIL)) (-4312 (((-838) $) NIL) (((-620 (-758 |#1| (-839 |#2|))) $) NIL)) (-4036 (((-749) $) NIL (|has| (-839 |#2|) (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 (-758 |#1| (-839 |#2|))))) #1#) (-620 (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 (-758 |#1| (-839 |#2|))))) #1#) (-620 (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|))) (-1 (-112) (-758 |#1| (-839 |#2|)) (-758 |#1| (-839 |#2|)))) NIL)) (-4048 (((-112) $ (-1 (-112) (-758 |#1| (-839 |#2|)) (-620 (-758 |#1| (-839 |#2|))))) NIL)) (-3535 (((-620 $) (-758 |#1| (-839 |#2|)) $) NIL) (((-620 $) (-758 |#1| (-839 |#2|)) (-620 $)) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) $) NIL) (((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-620 $)) NIL)) (-2066 (((-112) (-1 (-112) (-758 |#1| (-839 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4038 (((-620 (-839 |#2|)) $) NIL)) (-3542 (((-112) (-758 |#1| (-839 |#2|)) $) NIL)) (-4288 (((-112) (-839 |#2|) $) NIL)) (-3382 (((-112) $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1020 |#1| |#2|) (-13 (-1043 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) (-10 -8 (-15 -4040 ((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-112) (-112))))) (-444) (-620 (-1147))) (T -1020)) -((-4040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-1020 *5 *6))))) -(-13 (-1043 |#1| (-522 (-839 |#2|)) (-839 |#2|) (-758 |#1| (-839 |#2|))) (-10 -8 (-15 -4040 ((-620 $) (-620 (-758 |#1| (-839 |#2|))) (-112) (-112))))) -((-3431 (((-1 (-536)) (-1060 (-536))) 33)) (-3435 (((-536) (-536) (-536) (-536) (-536)) 30)) (-3433 (((-1 (-536)) |RationalNumber|) NIL)) (-3434 (((-1 (-536)) |RationalNumber|) NIL)) (-3432 (((-1 (-536)) (-536) |RationalNumber|) NIL))) -(((-1021) (-10 -7 (-15 -3431 ((-1 (-536)) (-1060 (-536)))) (-15 -3432 ((-1 (-536)) (-536) |RationalNumber|)) (-15 -3433 ((-1 (-536)) |RationalNumber|)) (-15 -3434 ((-1 (-536)) |RationalNumber|)) (-15 -3435 ((-536) (-536) (-536) (-536) (-536))))) (T -1021)) -((-3435 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1021)))) (-3434 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021)))) (-3433 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021)) (-5 *3 (-536)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-1060 (-536))) (-5 *2 (-1 (-536))) (-5 *1 (-1021))))) -(-10 -7 (-15 -3431 ((-1 (-536)) (-1060 (-536)))) (-15 -3432 ((-1 (-536)) (-536) |RationalNumber|)) (-15 -3433 ((-1 (-536)) |RationalNumber|)) (-15 -3434 ((-1 (-536)) |RationalNumber|)) (-15 -3435 ((-536) (-536) (-536) (-536) (-536)))) -((-4312 (((-838) $) NIL) (($ (-536)) 10))) -(((-1022 |#1|) (-10 -8 (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-1023)) (T -1022)) -NIL -(-10 -8 (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-1023) (-138)) (T -1023)) -((-3456 (*1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-749)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1023))))) -(-13 (-1030) (-705) (-626 $) (-10 -8 (-15 -3456 ((-749))) (-15 -4312 ($ (-536))) (-6 -4345))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 $) . T) ((-705) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-3436 (((-400 (-920 |#2|)) (-620 |#2|) (-620 |#2|) (-749) (-749)) 46))) -(((-1024 |#1| |#2|) (-10 -7 (-15 -3436 ((-400 (-920 |#2|)) (-620 |#2|) (-620 |#2|) (-749) (-749)))) (-1147) (-356)) (T -1024)) -((-3436 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-749)) (-4 *6 (-356)) (-5 *2 (-400 (-920 *6))) (-5 *1 (-1024 *5 *6)) (-14 *5 (-1147))))) -(-10 -7 (-15 -3436 ((-400 (-920 |#2|)) (-620 |#2|) (-620 |#2|) (-749) (-749)))) -((-3451 (((-112) $) 29)) (-3453 (((-112) $) 16)) (-3445 (((-749) $) 13)) (-3444 (((-749) $) 14)) (-3452 (((-112) $) 26)) (-3450 (((-112) $) 31))) -(((-1025 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3444 ((-749) |#1|)) (-15 -3445 ((-749) |#1|)) (-15 -3450 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3452 ((-112) |#1|)) (-15 -3453 ((-112) |#1|))) (-1026 |#2| |#3| |#4| |#5| |#6|) (-749) (-749) (-1023) (-232 |#3| |#4|) (-232 |#2| |#4|)) (T -1025)) -NIL -(-10 -8 (-15 -3444 ((-749) |#1|)) (-15 -3445 ((-749) |#1|)) (-15 -3450 ((-112) |#1|)) (-15 -3451 ((-112) |#1|)) (-15 -3452 ((-112) |#1|)) (-15 -3453 ((-112) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3451 (((-112) $) 51)) (-1367 (((-3 $ "failed") $ $) 19)) (-3453 (((-112) $) 53)) (-1269 (((-112) $ (-749)) 61)) (-3891 (($) 17 T CONST)) (-3440 (($ $) 34 (|has| |#3| (-300)))) (-3442 ((|#4| $ (-536)) 39)) (-3439 (((-749) $) 33 (|has| |#3| (-543)))) (-3443 ((|#3| $ (-536) (-536)) 41)) (-2063 (((-620 |#3|) $) 68 (|has| $ (-6 -4348)))) (-3438 (((-749) $) 32 (|has| |#3| (-543)))) (-3437 (((-620 |#5|) $) 31 (|has| |#3| (-543)))) (-3445 (((-749) $) 45)) (-3444 (((-749) $) 44)) (-4077 (((-112) $ (-749)) 60)) (-3449 (((-536) $) 49)) (-3447 (((-536) $) 47)) (-2506 (((-620 |#3|) $) 69 (|has| $ (-6 -4348)))) (-3591 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1072)) (|has| $ (-6 -4348))))) (-3448 (((-536) $) 48)) (-3446 (((-536) $) 46)) (-3454 (($ (-620 (-620 |#3|))) 54)) (-2067 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3951 (((-620 (-620 |#3|)) $) 43)) (-4074 (((-112) $ (-749)) 59)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-543)))) (-2065 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#3|) (-620 |#3|)) 75 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-286 |#3|)) 73 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-620 (-286 |#3|))) 72 (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))))) (-1270 (((-112) $ $) 55)) (-3757 (((-112) $) 58)) (-3923 (($) 57)) (-4154 ((|#3| $ (-536) (-536)) 42) ((|#3| $ (-536) (-536) |#3|) 40)) (-3452 (((-112) $) 52)) (-2064 (((-749) |#3| $) 70 (-12 (|has| |#3| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4348)))) (-3754 (($ $) 56)) (-3441 ((|#5| $ (-536)) 38)) (-4312 (((-838) $) 11)) (-2066 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4348)))) (-3450 (((-112) $) 50)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#3|) 35 (|has| |#3| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4311 (((-749) $) 62 (|has| $ (-6 -4348))))) -(((-1026 |#1| |#2| |#3| |#4| |#5|) (-138) (-749) (-749) (-1023) (-232 |t#2| |t#3|) (-232 |t#1| |t#3|)) (T -1026)) -((-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3454 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *5))) (-4 *5 (-1023)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-112)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-536)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-536)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-536)))) (-3446 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-536)))) (-3445 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-749)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-5 *2 (-620 (-620 *5))))) (-4154 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1023)))) (-3443 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)) (-4 *2 (-1023)))) (-4154 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *2 (-1023)) (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *6 *2 *7)) (-4 *6 (-1023)) (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6)))) (-3441 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *6 *7 *2)) (-4 *6 (-1023)) (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6)))) (-4313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) (-3815 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *2 (-1023)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-543)))) (-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *2 (-1023)) (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) (-3440 (*1 *1 *1) (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *2 *4)) (-4 *4 (-300)))) (-3439 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-749)))) (-3438 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-749)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-620 *7))))) -(-13 (-111 |t#3| |t#3|) (-481 |t#3|) (-10 -8 (-6 -4348) (IF (|has| |t#3| (-170)) (-6 (-696 |t#3|)) |%noBranch|) (-15 -3454 ($ (-620 (-620 |t#3|)))) (-15 -3453 ((-112) $)) (-15 -3452 ((-112) $)) (-15 -3451 ((-112) $)) (-15 -3450 ((-112) $)) (-15 -3449 ((-536) $)) (-15 -3448 ((-536) $)) (-15 -3447 ((-536) $)) (-15 -3446 ((-536) $)) (-15 -3445 ((-749) $)) (-15 -3444 ((-749) $)) (-15 -3951 ((-620 (-620 |t#3|)) $)) (-15 -4154 (|t#3| $ (-536) (-536))) (-15 -3443 (|t#3| $ (-536) (-536))) (-15 -4154 (|t#3| $ (-536) (-536) |t#3|)) (-15 -3442 (|t#4| $ (-536))) (-15 -3441 (|t#5| $ (-536))) (-15 -4313 ($ (-1 |t#3| |t#3|) $)) (-15 -4313 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-543)) (-15 -3815 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-356)) (-15 -4303 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-300)) (-15 -3440 ($ $)) |%noBranch|) (IF (|has| |t#3| (-543)) (PROGN (-15 -3439 ((-749) $)) (-15 -3438 ((-749) $)) (-15 -3437 ((-620 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-595 (-838)) . T) ((-302 |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))) ((-481 |#3|) . T) ((-505 |#3| |#3|) -12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))) ((-626 |#3|) . T) ((-696 |#3|) |has| |#3| (-170)) ((-1029 |#3|) . T) ((-1072) . T) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3451 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3453 (((-112) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-3440 (($ $) 43 (|has| |#3| (-300)))) (-3442 (((-233 |#2| |#3|) $ (-536)) 32)) (-3455 (($ (-667 |#3|)) 41)) (-3439 (((-749) $) 45 (|has| |#3| (-543)))) (-3443 ((|#3| $ (-536) (-536)) NIL)) (-2063 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-3438 (((-749) $) 47 (|has| |#3| (-543)))) (-3437 (((-620 (-233 |#1| |#3|)) $) 51 (|has| |#3| (-543)))) (-3445 (((-749) $) NIL)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-3454 (($ (-620 (-620 |#3|))) 27)) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3951 (((-620 (-620 |#3|)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-543)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#3|) (-620 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-620 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#3| $ (-536) (-536)) NIL) ((|#3| $ (-536) (-536) |#3|) NIL)) (-4266 (((-133)) 54 (|has| |#3| (-356)))) (-3452 (((-112) $) NIL)) (-2064 (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072)))) (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) 63 (|has| |#3| (-596 (-525))))) (-3441 (((-233 |#1| |#3|) $ (-536)) 36)) (-4312 (((-838) $) 16) (((-667 |#3|) $) 38)) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-2986 (($) 13 T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1027 |#1| |#2| |#3|) (-13 (-1026 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-595 (-667 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1237 |#3|)) |%noBranch|) (IF (|has| |#3| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (-15 -3455 ($ (-667 |#3|))) (-15 -4312 ((-667 |#3|) $)))) (-749) (-749) (-1023)) (T -1027)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-667 *5)) (-5 *1 (-1027 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) (-4 *5 (-1023)))) (-3455 (*1 *1 *2) (-12 (-5 *2 (-667 *5)) (-4 *5 (-1023)) (-5 *1 (-1027 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749))))) -(-13 (-1026 |#1| |#2| |#3| (-233 |#2| |#3|) (-233 |#1| |#3|)) (-595 (-667 |#3|)) (-10 -8 (IF (|has| |#3| (-356)) (-6 (-1237 |#3|)) |%noBranch|) (IF (|has| |#3| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|) (-15 -3455 ($ (-667 |#3|))) (-15 -4312 ((-667 |#3|) $)))) -((-4197 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4313 ((|#10| (-1 |#7| |#3|) |#6|) 32))) -(((-1028 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4313 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4197 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-749) (-749) (-1023) (-232 |#2| |#3|) (-232 |#1| |#3|) (-1026 |#1| |#2| |#3| |#4| |#5|) (-1023) (-232 |#2| |#7|) (-232 |#1| |#7|) (-1026 |#1| |#2| |#7| |#8| |#9|)) (T -1028)) -((-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1023)) (-4 *2 (-1023)) (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) (-5 *1 (-1028 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1026 *5 *6 *7 *8 *9)) (-4 *12 (-1026 *5 *6 *2 *10 *11)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1023)) (-4 *10 (-1023)) (-14 *5 (-749)) (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) (-4 *2 (-1026 *5 *6 *10 *11 *12)) (-5 *1 (-1028 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1026 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) (-4 *12 (-232 *5 *10))))) -(-10 -7 (-15 -4313 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4197 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ |#1|) 23))) -(((-1029 |#1|) (-138) (-1030)) (T -1029)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1030))))) +((-4201 (((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|) 16)) (-4202 ((|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|) 18)) (-4318 (((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)) 13))) +(((-935 |#1| |#2|) (-10 -7 (-15 -4201 ((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -4318 ((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)))) (-1185) (-1185)) (T -935)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-934 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-934 *6)) (-5 *1 (-935 *5 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-934 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-935 *5 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-934 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-5 *2 (-934 *5)) (-5 *1 (-935 *6 *5))))) +(-10 -7 (-15 -4201 ((-934 |#2|) (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-934 |#1|) |#2|)) (-15 -4318 ((-934 |#2|) (-1 |#2| |#1|) (-934 |#1|)))) +((-3165 (($ $ (-1065 $)) 7) (($ $ (-1149)) 6))) +(((-936) (-138)) (T -936)) +((-3165 (*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-936)))) (-3165 (*1 *1 *1 *2) (-12 (-4 *1 (-936)) (-5 *2 (-1149))))) +(-13 (-10 -8 (-15 -3165 ($ $ (-1149))) (-15 -3165 ($ $ (-1065 $))))) +((-3166 (((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149)) (-1149)) 25) (((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149))) 26) (((-2 (|:| |coef1| (-538)) (|:| |coef2| (-538)) (|:| |prim| (-1143 |#1|))) (-922 |#1|) (-1149) (-922 |#1|) (-1149)) 43))) +(((-937 |#1|) (-10 -7 (-15 -3166 ((-2 (|:| |coef1| (-538)) (|:| |coef2| (-538)) (|:| |prim| (-1143 |#1|))) (-922 |#1|) (-1149) (-922 |#1|) (-1149))) (-15 -3166 ((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3166 ((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149)) (-1149)))) (-13 (-358) (-145))) (T -937)) +((-3166 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) (-5 *5 (-1149)) (-4 *6 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 *6))) (|:| |prim| (-1143 *6)))) (-5 *1 (-937 *6)))) (-3166 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 *5))) (|:| |prim| (-1143 *5)))) (-5 *1 (-937 *5)))) (-3166 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-922 *5)) (-5 *4 (-1149)) (-4 *5 (-13 (-358) (-145))) (-5 *2 (-2 (|:| |coef1| (-538)) (|:| |coef2| (-538)) (|:| |prim| (-1143 *5)))) (-5 *1 (-937 *5))))) +(-10 -7 (-15 -3166 ((-2 (|:| |coef1| (-538)) (|:| |coef2| (-538)) (|:| |prim| (-1143 |#1|))) (-922 |#1|) (-1149) (-922 |#1|) (-1149))) (-15 -3166 ((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149)))) (-15 -3166 ((-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 |#1|))) (|:| |prim| (-1143 |#1|))) (-622 (-922 |#1|)) (-622 (-1149)) (-1149)))) +((-3169 (((-622 |#1|) |#1| |#1|) 42)) (-4086 (((-112) |#1|) 39)) (-3168 ((|#1| |#1|) 65)) (-3167 ((|#1| |#1|) 64))) +(((-938 |#1|) (-10 -7 (-15 -4086 ((-112) |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3169 ((-622 |#1|) |#1| |#1|))) (-537)) (T -938)) +((-3169 (*1 *2 *3 *3) (-12 (-5 *2 (-622 *3)) (-5 *1 (-938 *3)) (-4 *3 (-537)))) (-3168 (*1 *2 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-537)))) (-3167 (*1 *2 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-537)))) (-4086 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-938 *3)) (-4 *3 (-537))))) +(-10 -7 (-15 -4086 ((-112) |#1|)) (-15 -3167 (|#1| |#1|)) (-15 -3168 (|#1| |#1|)) (-15 -3169 ((-622 |#1|) |#1| |#1|))) +((-3170 (((-1237) (-840)) 9))) +(((-939) (-10 -7 (-15 -3170 ((-1237) (-840))))) (T -939)) +((-3170 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-939))))) +(-10 -7 (-15 -3170 ((-1237) (-840)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (-2733 (($ $ $) 63 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (-1368 (((-3 $ "failed") $ $) 50 (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (-3471 (((-751)) 34 (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3171 ((|#2| $) 21)) (-3172 ((|#1| $) 20)) (-3896 (($) NIL (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) CONST)) (-3821 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (-3327 (($) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-2502 (((-112) $) NIL (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (-3677 (($ $ $) NIL (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-3678 (($ $ $) NIL (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-3173 (($ |#1| |#2|) 19)) (-2126 (((-895) $) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 37 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-2492 (($ (-895)) NIL (-12 (|has| |#1| (-363)) (|has| |#2| (-363))))) (-3594 (((-1093) $) NIL)) (-3342 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-2686 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-4317 (((-840) $) 14)) (-2991 (($) 40 (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))) CONST)) (-2997 (($) 24 (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))) CONST)) (-2896 (((-112) $ $) NIL (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-2897 (((-112) $ $) NIL (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-3387 (((-112) $ $) 18)) (-3017 (((-112) $ $) NIL (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-3018 (((-112) $ $) 66 (-3891 (-12 (|has| |#1| (-773)) (|has| |#2| (-773))) (-12 (|has| |#1| (-827)) (|has| |#2| (-827)))))) (-4308 (($ $ $) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467))))) (-4197 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4199 (($ $ $) 43 (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773)))))) (** (($ $ (-538)) NIL (-12 (|has| |#1| (-467)) (|has| |#2| (-467)))) (($ $ (-751)) 31 (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))))) (($ $ (-895)) NIL (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707)))))) (* (($ (-538) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-751) $) 46 (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (($ (-895) $) NIL (-3891 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-130)) (|has| |#2| (-130))) (-12 (|has| |#1| (-773)) (|has| |#2| (-773))))) (($ $ $) 27 (-3891 (-12 (|has| |#1| (-467)) (|has| |#2| (-467))) (-12 (|has| |#1| (-707)) (|has| |#2| (-707))))))) +(((-940 |#1| |#2|) (-13 (-1074) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-707)) (IF (|has| |#2| (-707)) (-6 (-707)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-773)) (IF (|has| |#2| (-773)) (-6 (-773)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-827)) (IF (|has| |#2| (-827)) (-6 (-827)) |%noBranch|) |%noBranch|) (-15 -3173 ($ |#1| |#2|)) (-15 -3172 (|#1| $)) (-15 -3171 (|#2| $)))) (-1074) (-1074)) (T -940)) +((-3173 (*1 *1 *2 *3) (-12 (-5 *1 (-940 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3172 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1074)))) (-3171 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-940 *3 *2)) (-4 *3 (-1074))))) +(-13 (-1074) (-10 -8 (IF (|has| |#1| (-363)) (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-707)) (IF (|has| |#2| (-707)) (-6 (-707)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-130)) (IF (|has| |#2| (-130)) (-6 (-130)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-467)) (IF (|has| |#2| (-467)) (-6 (-467)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-773)) (IF (|has| |#2| (-773)) (-6 (-773)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-827)) (IF (|has| |#2| (-827)) (-6 (-827)) |%noBranch|) |%noBranch|) (-15 -3173 ($ |#1| |#2|)) (-15 -3172 (|#1| $)) (-15 -3171 (|#2| $)))) +((-3761 (((-1076) $) 12)) (-3174 (($ (-1149) (-1076)) 13)) (-3905 (((-1149) $) 10)) (-4317 (((-840) $) 22))) +(((-941) (-13 (-597 (-840)) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -3761 ((-1076) $)) (-15 -3174 ($ (-1149) (-1076)))))) (T -941)) +((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-941)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-941)))) (-3174 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1076)) (-5 *1 (-941))))) +(-13 (-597 (-840)) (-10 -8 (-15 -3905 ((-1149) $)) (-15 -3761 ((-1076) $)) (-15 -3174 ($ (-1149) (-1076))))) +((-2898 (((-112) $ $) NIL)) (-3417 (((-1070 (-1149)) $) 19)) (-3185 (((-112) $) 26)) (-4191 (((-1149) $) 27)) (-3187 (((-112) $) 24)) (-3186 ((|#1| $) 25)) (-3179 (((-849 $ $) $) 34)) (-3180 (((-112) $) 33)) (-3190 (($ $ $) 12)) (-3183 (($ $) 29)) (-3184 (((-112) $) 28)) (-3676 (($ $) 10)) (-3593 (((-1131) $) NIL)) (-3177 (((-849 $ $) $) 36)) (-3178 (((-112) $) 35)) (-3189 (($ $ $) 13)) (-3594 (((-1093) $) NIL)) (-3175 (((-849 $ $) $) 38)) (-3176 (((-112) $) 37)) (-3188 (($ $ $) 14)) (-4317 (((-840) $) 40) (($ |#1|) 7) (($ (-1149)) 9)) (-3181 (((-849 $ $) $) 32)) (-3182 (((-112) $) 30)) (-3191 (($ $ $) 11)) (-3387 (((-112) $ $) NIL))) +(((-942 |#1|) (-13 (-943) (-10 -8 (-15 -4317 ($ |#1|)) (-15 -4317 ($ (-1149))) (-15 -3417 ((-1070 (-1149)) $)) (-15 -3187 ((-112) $)) (-15 -3186 (|#1| $)) (-15 -3185 ((-112) $)) (-15 -4191 ((-1149) $)) (-15 -3184 ((-112) $)) (-15 -3183 ($ $)) (-15 -3182 ((-112) $)) (-15 -3181 ((-849 $ $) $)) (-15 -3180 ((-112) $)) (-15 -3179 ((-849 $ $) $)) (-15 -3178 ((-112) $)) (-15 -3177 ((-849 $ $) $)) (-15 -3176 ((-112) $)) (-15 -3175 ((-849 $ $) $)))) (-943)) (T -942)) +((-4317 (*1 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1070 (-1149))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3186 (*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3183 (*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) (-3182 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3181 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3178 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943))))) +(-13 (-943) (-10 -8 (-15 -4317 ($ |#1|)) (-15 -4317 ($ (-1149))) (-15 -3417 ((-1070 (-1149)) $)) (-15 -3187 ((-112) $)) (-15 -3186 (|#1| $)) (-15 -3185 ((-112) $)) (-15 -4191 ((-1149) $)) (-15 -3184 ((-112) $)) (-15 -3183 ($ $)) (-15 -3182 ((-112) $)) (-15 -3181 ((-849 $ $) $)) (-15 -3180 ((-112) $)) (-15 -3179 ((-849 $ $) $)) (-15 -3178 ((-112) $)) (-15 -3177 ((-849 $ $) $)) (-15 -3176 ((-112) $)) (-15 -3175 ((-849 $ $) $)))) +((-2898 (((-112) $ $) 7)) (-3190 (($ $ $) 15)) (-3676 (($ $) 17)) (-3593 (((-1131) $) 9)) (-3189 (($ $ $) 14)) (-3594 (((-1093) $) 10)) (-3188 (($ $ $) 13)) (-4317 (((-840) $) 11)) (-3191 (($ $ $) 16)) (-3387 (((-112) $ $) 6))) +(((-943) (-138)) (T -943)) +((-3676 (*1 *1 *1) (-4 *1 (-943))) (-3191 (*1 *1 *1 *1) (-4 *1 (-943))) (-3190 (*1 *1 *1 *1) (-4 *1 (-943))) (-3189 (*1 *1 *1 *1) (-4 *1 (-943))) (-3188 (*1 *1 *1 *1) (-4 *1 (-943)))) +(-13 (-1074) (-10 -8 (-15 -3676 ($ $)) (-15 -3191 ($ $ $)) (-15 -3190 ($ $ $)) (-15 -3189 ($ $ $)) (-15 -3188 ($ $ $)))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-3192 (($ $ $) 43)) (-3872 (($ $ $) 44)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3678 ((|#1| $) 45)) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-944 |#1|) (-138) (-827)) (T -944)) +((-3678 (*1 *2 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) (-3872 (*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) (-3192 (*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -3678 (|t#1| $)) (-15 -3872 ($ $ $)) (-15 -3192 ($ $ $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-3204 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|) 85)) (-4115 ((|#2| |#2| |#2|) 83)) (-3205 (((-2 (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|) 87)) (-3206 (((-2 (|:| |coef1| |#2|) (|:| -3495 |#2|)) |#2| |#2|) 89)) (-3213 (((-2 (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|) 107 (|has| |#1| (-446)))) (-3220 (((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 46)) (-3194 (((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 64)) (-3195 (((-2 (|:| |coef1| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 66)) (-3203 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3198 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 71)) (-3208 (((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|) 97)) (-3201 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 74)) (-3210 (((-622 (-751)) |#2| |#2|) 82)) (-3218 ((|#1| |#2| |#2|) 42)) (-3212 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|) 105 (|has| |#1| (-446)))) (-3211 ((|#1| |#2| |#2|) 103 (|has| |#1| (-446)))) (-3219 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 44)) (-3193 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|) 63)) (-4116 ((|#1| |#2| |#2|) 61)) (-4112 (((-2 (|:| -4313 |#1|) (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|) 35)) (-3217 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3202 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3541 ((|#2| |#2| |#2|) 75)) (-3197 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 69)) (-3196 ((|#2| |#2| |#2| (-751)) 67)) (-3495 ((|#2| |#2| |#2|) 111 (|has| |#1| (-446)))) (-3820 (((-1231 |#2|) (-1231 |#2|) |#1|) 21)) (-3214 (((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|) 39)) (-3207 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|) 95)) (-4117 ((|#1| |#2|) 92)) (-3200 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751)) 73)) (-3199 ((|#2| |#2| |#2| (-751)) 72)) (-3209 (((-622 |#2|) |#2| |#2|) 80)) (-3216 ((|#2| |#2| |#1| |#1| (-751)) 50)) (-3215 ((|#1| |#1| |#1| (-751)) 49)) (* (((-1231 |#2|) |#1| (-1231 |#2|)) 16))) +(((-945 |#1| |#2|) (-10 -7 (-15 -4116 (|#1| |#2| |#2|)) (-15 -3193 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3194 ((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3196 (|#2| |#2| |#2| (-751))) (-15 -3197 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3198 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3199 (|#2| |#2| |#2| (-751))) (-15 -3200 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3201 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3541 (|#2| |#2| |#2|)) (-15 -3202 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3203 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4115 (|#2| |#2| |#2|)) (-15 -3204 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -3205 ((-2 (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -3206 ((-2 (|:| |coef1| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -4117 (|#1| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|)) (-15 -3209 ((-622 |#2|) |#2| |#2|)) (-15 -3210 ((-622 (-751)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -3211 (|#1| |#2| |#2|)) (-15 -3212 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|)) (-15 -3213 ((-2 (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|)) (-15 -3495 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1231 |#2|) |#1| (-1231 |#2|))) (-15 -3820 ((-1231 |#2|) (-1231 |#2|) |#1|)) (-15 -4112 ((-2 (|:| -4313 |#1|) (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -3214 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -3215 (|#1| |#1| |#1| (-751))) (-15 -3216 (|#2| |#2| |#1| |#1| (-751))) (-15 -3217 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3218 (|#1| |#2| |#2|)) (-15 -3219 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3220 ((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|))) (-545) (-1207 |#1|)) (T -945)) +((-3220 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3219 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3218 (*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))) (-3217 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) (-3216 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) (-3215 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *2 (-545)) (-5 *1 (-945 *2 *4)) (-4 *4 (-1207 *2)))) (-3214 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-4112 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -4313 *4) (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-545)) (-5 *1 (-945 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-545)) (-5 *1 (-945 *3 *4)))) (-3495 (*1 *2 *2 *2) (-12 (-4 *3 (-446)) (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) (-3213 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3211 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3212 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3211 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3211 (*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-4 *2 (-446)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))) (-3210 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 (-751))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3209 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3208 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4117 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3207 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4117 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-4117 (*1 *2 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))) (-3206 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3495 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3205 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3495 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3204 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3495 *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-4115 (*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) (-3203 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3202 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3541 (*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) (-3201 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5)))) (-3200 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5)))) (-3199 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-545)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1207 *4)))) (-3198 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5)))) (-3197 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5)))) (-3196 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-545)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1207 *4)))) (-3195 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4116 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3194 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-3193 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4116 *4))) (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) (-4116 (*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2))))) +(-10 -7 (-15 -4116 (|#1| |#2| |#2|)) (-15 -3193 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3194 ((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3195 ((-2 (|:| |coef1| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3196 (|#2| |#2| |#2| (-751))) (-15 -3197 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3198 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3199 (|#2| |#2| |#2| (-751))) (-15 -3200 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3201 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-751))) (-15 -3541 (|#2| |#2| |#2|)) (-15 -3202 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3203 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4115 (|#2| |#2| |#2|)) (-15 -3204 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -3205 ((-2 (|:| |coef2| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -3206 ((-2 (|:| |coef1| |#2|) (|:| -3495 |#2|)) |#2| |#2|)) (-15 -4117 (|#1| |#2|)) (-15 -3207 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|)) (-15 -3208 ((-2 (|:| |coef2| |#2|) (|:| -4117 |#1|)) |#2|)) (-15 -3209 ((-622 |#2|) |#2| |#2|)) (-15 -3210 ((-622 (-751)) |#2| |#2|)) (IF (|has| |#1| (-446)) (PROGN (-15 -3211 (|#1| |#2| |#2|)) (-15 -3212 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|)) (-15 -3213 ((-2 (|:| |coef2| |#2|) (|:| -3211 |#1|)) |#2| |#2|)) (-15 -3495 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1231 |#2|) |#1| (-1231 |#2|))) (-15 -3820 ((-1231 |#2|) (-1231 |#2|) |#1|)) (-15 -4112 ((-2 (|:| -4313 |#1|) (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -3214 ((-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) |#2| |#2|)) (-15 -3215 (|#1| |#1| |#1| (-751))) (-15 -3216 (|#2| |#2| |#1| |#1| (-751))) (-15 -3217 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3218 (|#1| |#2| |#2|)) (-15 -3219 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|)) (-15 -3220 ((-2 (|:| |coef2| |#2|) (|:| -4116 |#1|)) |#2| |#2|))) +((-2898 (((-112) $ $) NIL)) (-3669 (((-1186) $) 13)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 10)) (-4317 (((-840) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-946) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $))))) (T -946)) +((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-946)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-946))))) +(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) 27)) (-3896 (($) NIL T CONST)) (-3222 (((-622 (-622 (-538))) (-622 (-538))) 29)) (-3221 (((-538) $) 45)) (-3223 (($ (-622 (-538))) 17)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4330 (((-622 (-538)) $) 12)) (-3342 (($ $) 32)) (-4317 (((-840) $) 43) (((-622 (-538)) $) 10)) (-2991 (($) 7 T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 20)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 19)) (-4199 (($ $ $) 21)) (* (($ (-895) $) NIL) (($ (-751) $) 25))) +(((-947) (-13 (-777) (-598 (-622 (-538))) (-10 -8 (-15 -3223 ($ (-622 (-538)))) (-15 -3222 ((-622 (-622 (-538))) (-622 (-538)))) (-15 -3221 ((-538) $)) (-15 -3342 ($ $)) (-15 -4317 ((-622 (-538)) $))))) (T -947)) +((-3223 (*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-947)))) (-3222 (*1 *2 *3) (-12 (-5 *2 (-622 (-622 (-538)))) (-5 *1 (-947)) (-5 *3 (-622 (-538))))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-947)))) (-3342 (*1 *1 *1) (-5 *1 (-947))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-947))))) +(-13 (-777) (-598 (-622 (-538))) (-10 -8 (-15 -3223 ($ (-622 (-538)))) (-15 -3222 ((-622 (-622 (-538))) (-622 (-538)))) (-15 -3221 ((-538) $)) (-15 -3342 ($ $)) (-15 -4317 ((-622 (-538)) $)))) +((-4308 (($ $ |#2|) 30)) (-4197 (($ $) 22) (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-402 (-538)) $) 26) (($ $ (-402 (-538))) 28))) +(((-948 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4308 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) (-949 |#2| |#3| |#4|) (-1025) (-772) (-827)) (T -948)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-402 (-538)))) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 -4308 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 * (|#1| (-895) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 |#3|) $) 72)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-3225 (((-112) $) 71)) (-2502 (((-112) $) 30)) (-4297 (((-112) $) 60)) (-3226 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-622 |#3|) (-622 |#2|)) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-4307 ((|#2| $) 62)) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4040 ((|#1| $ |#2|) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538))))))) +(((-949 |#1| |#2| |#3|) (-138) (-1025) (-772) (-827)) (T -949)) +((-3525 (*1 *2 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *3 (-772)) (-4 *4 (-827)) (-4 *2 (-1025)))) (-3227 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *2 *4)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *2 (-772)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-949 *4 *3 *2)) (-4 *4 (-1025)) (-4 *3 (-772)) (-4 *2 (-827)))) (-3226 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 *5)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-772)) (-4 *6 (-827)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827)) (-5 *2 (-622 *5)))) (-3225 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3224 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3226 ($ $ |t#3| |t#2|)) (-15 -3226 ($ $ (-622 |t#3|) (-622 |t#2|))) (-15 -3227 ($ $)) (-15 -3525 (|t#1| $)) (-15 -4307 (|t#2| $)) (-15 -3417 ((-622 |t#3|) $)) (-15 -3225 ((-112) $)) (-15 -3224 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-285) |has| |#1| (-545)) ((-545) |has| |#1| (-545)) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-3228 (((-1062 (-221)) $) 8)) (-3229 (((-1062 (-221)) $) 9)) (-3230 (((-1062 (-221)) $) 10)) (-3231 (((-622 (-622 (-919 (-221)))) $) 11)) (-4317 (((-840) $) 6))) +(((-950) (-138)) (T -950)) +((-3231 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-622 (-622 (-919 (-221))))))) (-3230 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221))))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221))))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221)))))) +(-13 (-597 (-840)) (-10 -8 (-15 -3231 ((-622 (-622 (-919 (-221)))) $)) (-15 -3230 ((-1062 (-221)) $)) (-15 -3229 ((-1062 (-221)) $)) (-15 -3228 ((-1062 (-221)) $)))) +(((-597 (-840)) . T)) +((-3417 (((-622 |#4|) $) 23)) (-3241 (((-112) $) 48)) (-3232 (((-112) $) 47)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#4|) 36)) (-3237 (((-112) $) 49)) (-3239 (((-112) $ $) 55)) (-3238 (((-112) $ $) 58)) (-3240 (((-112) $) 53)) (-3233 (((-622 |#5|) (-622 |#5|) $) 90)) (-3234 (((-622 |#5|) (-622 |#5|) $) 87)) (-3235 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3247 (((-622 |#4|) $) 27)) (-3246 (((-112) |#4| $) 30)) (-3236 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3243 (($ $ |#4|) 33)) (-3245 (($ $ |#4|) 32)) (-3244 (($ $ |#4|) 34)) (-3387 (((-112) $ $) 40))) +(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3232 ((-112) |#1|)) (-15 -3233 ((-622 |#5|) (-622 |#5|) |#1|)) (-15 -3234 ((-622 |#5|) (-622 |#5|) |#1|)) (-15 -3235 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3236 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -3238 ((-112) |#1| |#1|)) (-15 -3239 ((-112) |#1| |#1|)) (-15 -3240 ((-112) |#1|)) (-15 -3241 ((-112) |#1|)) (-15 -3242 ((-2 (|:| |under| |#1|) (|:| -3465 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3243 (|#1| |#1| |#4|)) (-15 -3244 (|#1| |#1| |#4|)) (-15 -3245 (|#1| |#1| |#4|)) (-15 -3246 ((-112) |#4| |#1|)) (-15 -3247 ((-622 |#4|) |#1|)) (-15 -3417 ((-622 |#4|) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-952 |#2| |#3| |#4| |#5|) (-1025) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -951)) +NIL +(-10 -8 (-15 -3232 ((-112) |#1|)) (-15 -3233 ((-622 |#5|) (-622 |#5|) |#1|)) (-15 -3234 ((-622 |#5|) (-622 |#5|) |#1|)) (-15 -3235 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3236 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3237 ((-112) |#1|)) (-15 -3238 ((-112) |#1| |#1|)) (-15 -3239 ((-112) |#1| |#1|)) (-15 -3240 ((-112) |#1|)) (-15 -3241 ((-112) |#1|)) (-15 -3242 ((-2 (|:| |under| |#1|) (|:| -3465 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3243 (|#1| |#1| |#4|)) (-15 -3244 (|#1| |#1| |#4|)) (-15 -3245 (|#1| |#1| |#4|)) (-15 -3246 ((-112) |#4| |#1|)) (-15 -3247 ((-622 |#4|) |#1|)) (-15 -3417 ((-622 |#4|) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353)))) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353)))) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-3594 (((-1093) $) 10)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353))))) +(((-952 |#1| |#2| |#3| |#4|) (-138) (-1025) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -952)) +((-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-1039 *3 *4 *2)) (-4 *2 (-827)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5)))) (-3247 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5)))) (-3246 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *3 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))) (-3245 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-3244 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-3243 (*1 *1 *1 *2) (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *5 (-1039 *3 *4 *2)))) (-3242 (*1 *2 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3465 *1) (|:| |upper| *1))) (-4 *1 (-952 *4 *5 *3 *6)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3239 (*1 *2 *1 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3238 (*1 *2 *1 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3237 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3236 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3235 (*1 *2 *3 *1) (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3234 (*1 *2 *2 *1) (-12 (-5 *2 (-622 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)))) (-3233 (*1 *2 *2 *1) (-12 (-5 *2 (-622 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)))) (-3232 (*1 *2 *1) (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112))))) +(-13 (-1074) (-149 |t#4|) (-597 (-622 |t#4|)) (-10 -8 (-6 -4353) (-15 -3508 ((-3 $ "failed") (-622 |t#4|))) (-15 -3507 ($ (-622 |t#4|))) (-15 -3531 (|t#3| $)) (-15 -3417 ((-622 |t#3|) $)) (-15 -3247 ((-622 |t#3|) $)) (-15 -3246 ((-112) |t#3| $)) (-15 -3245 ($ $ |t#3|)) (-15 -3244 ($ $ |t#3|)) (-15 -3243 ($ $ |t#3|)) (-15 -3242 ((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |t#3|)) (-15 -3241 ((-112) $)) (IF (|has| |t#1| (-545)) (PROGN (-15 -3240 ((-112) $)) (-15 -3239 ((-112) $ $)) (-15 -3238 ((-112) $ $)) (-15 -3237 ((-112) $)) (-15 -3236 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3235 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3234 ((-622 |t#4|) (-622 |t#4|) $)) (-15 -3233 ((-622 |t#4|) (-622 |t#4|) $)) (-15 -3232 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-1074) . T) ((-1185) . T)) +((-3249 (((-622 |#4|) |#4| |#4|) 118)) (-3272 (((-622 |#4|) (-622 |#4|) (-112)) 107 (|has| |#1| (-446))) (((-622 |#4|) (-622 |#4|)) 108 (|has| |#1| (-446)))) (-3259 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|)) 35)) (-3258 (((-112) |#4|) 34)) (-3271 (((-622 |#4|) |#4|) 103 (|has| |#1| (-446)))) (-3254 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-1 (-112) |#4|) (-622 |#4|)) 20)) (-3255 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|)) 22)) (-3256 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|)) 23)) (-3267 (((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -3683 (-622 |#4|))) "failed") (-622 |#4|)) 73)) (-3269 (((-622 |#4|) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3270 (((-622 |#4|) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-3248 (((-622 |#4|) (-622 |#4|)) 110)) (-3264 (((-622 |#4|) (-622 |#4|) (-622 |#4|) (-112)) 48) (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 50)) (-3265 ((|#4| |#4| (-622 |#4|)) 49)) (-3273 (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 114 (|has| |#1| (-446)))) (-3275 (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 117 (|has| |#1| (-446)))) (-3274 (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 116 (|has| |#1| (-446)))) (-3250 (((-622 |#4|) (-622 |#4|) (-622 |#4|) (-1 (-622 |#4|) (-622 |#4|))) 87) (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 89) (((-622 |#4|) (-622 |#4|) |#4|) 121) (((-622 |#4|) |#4| |#4|) 119) (((-622 |#4|) (-622 |#4|)) 88)) (-3278 (((-622 |#4|) (-622 |#4|) (-622 |#4|)) 100 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3257 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|)) 41)) (-3253 (((-112) (-622 |#4|)) 62)) (-3252 (((-112) (-622 |#4|) (-622 (-622 |#4|))) 53)) (-3261 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|)) 29)) (-3260 (((-112) |#4|) 28)) (-3277 (((-622 |#4|) (-622 |#4|)) 98 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3276 (((-622 |#4|) (-622 |#4|)) 99 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3266 (((-622 |#4|) (-622 |#4|)) 66)) (-3268 (((-622 |#4|) (-622 |#4|)) 79)) (-3251 (((-112) (-622 |#4|) (-622 |#4|)) 51)) (-3263 (((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|)) 39)) (-3262 (((-112) |#4|) 36))) +(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3250 ((-622 |#4|) (-622 |#4|))) (-15 -3250 ((-622 |#4|) |#4| |#4|)) (-15 -3248 ((-622 |#4|) (-622 |#4|))) (-15 -3249 ((-622 |#4|) |#4| |#4|)) (-15 -3250 ((-622 |#4|) (-622 |#4|) |#4|)) (-15 -3250 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3250 ((-622 |#4|) (-622 |#4|) (-622 |#4|) (-1 (-622 |#4|) (-622 |#4|)))) (-15 -3251 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3252 ((-112) (-622 |#4|) (-622 (-622 |#4|)))) (-15 -3253 ((-112) (-622 |#4|))) (-15 -3254 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-1 (-112) |#4|) (-622 |#4|))) (-15 -3255 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|))) (-15 -3256 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|))) (-15 -3257 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3258 ((-112) |#4|)) (-15 -3259 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3260 ((-112) |#4|)) (-15 -3261 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3262 ((-112) |#4|)) (-15 -3263 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3264 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3264 ((-622 |#4|) (-622 |#4|) (-622 |#4|) (-112))) (-15 -3265 (|#4| |#4| (-622 |#4|))) (-15 -3266 ((-622 |#4|) (-622 |#4|))) (-15 -3267 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -3683 (-622 |#4|))) "failed") (-622 |#4|))) (-15 -3268 ((-622 |#4|) (-622 |#4|))) (-15 -3269 ((-622 |#4|) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3270 ((-622 |#4|) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3271 ((-622 |#4|) |#4|)) (-15 -3272 ((-622 |#4|) (-622 |#4|))) (-15 -3272 ((-622 |#4|) (-622 |#4|) (-112))) (-15 -3273 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3274 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3275 ((-622 |#4|) (-622 |#4|) (-622 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -3276 ((-622 |#4|) (-622 |#4|))) (-15 -3277 ((-622 |#4|) (-622 |#4|))) (-15 -3278 ((-622 |#4|) (-622 |#4|) (-622 |#4|)))) |%noBranch|) |%noBranch|)) (-545) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -953)) +((-3278 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3277 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3275 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3274 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3273 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3272 (*1 *2 *2 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3272 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3271 (*1 *2 *3) (-12 (-4 *4 (-446)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3270 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-953 *5 *6 *7 *8)))) (-3269 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-622 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *1 (-953 *6 *7 *8 *9)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3267 (*1 *2 *3) (|partial| -12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -3683 (-622 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3265 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *2)))) (-3264 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-622 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3264 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3263 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3262 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3261 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3260 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3259 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3258 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3257 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7)))) (-3256 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8)))) (-3255 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8)))) (-3254 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8)))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3252 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-622 *8))) (-5 *3 (-622 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *5 *6 *7 *8)))) (-3251 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3250 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-622 *7) (-622 *7))) (-5 *2 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3250 (*1 *2 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3250 (*1 *2 *2 *3) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *3)))) (-3249 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3248 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3250 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) (-3250 (*1 *2 *2) (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) +(-10 -7 (-15 -3250 ((-622 |#4|) (-622 |#4|))) (-15 -3250 ((-622 |#4|) |#4| |#4|)) (-15 -3248 ((-622 |#4|) (-622 |#4|))) (-15 -3249 ((-622 |#4|) |#4| |#4|)) (-15 -3250 ((-622 |#4|) (-622 |#4|) |#4|)) (-15 -3250 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3250 ((-622 |#4|) (-622 |#4|) (-622 |#4|) (-1 (-622 |#4|) (-622 |#4|)))) (-15 -3251 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3252 ((-112) (-622 |#4|) (-622 (-622 |#4|)))) (-15 -3253 ((-112) (-622 |#4|))) (-15 -3254 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-1 (-112) |#4|) (-622 |#4|))) (-15 -3255 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|))) (-15 -3256 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 (-1 (-112) |#4|)) (-622 |#4|))) (-15 -3257 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3258 ((-112) |#4|)) (-15 -3259 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3260 ((-112) |#4|)) (-15 -3261 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3262 ((-112) |#4|)) (-15 -3263 ((-2 (|:| |goodPols| (-622 |#4|)) (|:| |badPols| (-622 |#4|))) (-622 |#4|))) (-15 -3264 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3264 ((-622 |#4|) (-622 |#4|) (-622 |#4|) (-112))) (-15 -3265 (|#4| |#4| (-622 |#4|))) (-15 -3266 ((-622 |#4|) (-622 |#4|))) (-15 -3267 ((-3 (-2 (|:| |bas| (-470 |#1| |#2| |#3| |#4|)) (|:| -3683 (-622 |#4|))) "failed") (-622 |#4|))) (-15 -3268 ((-622 |#4|) (-622 |#4|))) (-15 -3269 ((-622 |#4|) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3270 ((-622 |#4|) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3271 ((-622 |#4|) |#4|)) (-15 -3272 ((-622 |#4|) (-622 |#4|))) (-15 -3272 ((-622 |#4|) (-622 |#4|) (-112))) (-15 -3273 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3274 ((-622 |#4|) (-622 |#4|) (-622 |#4|))) (-15 -3275 ((-622 |#4|) (-622 |#4|) (-622 |#4|)))) |%noBranch|) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (PROGN (-15 -3276 ((-622 |#4|) (-622 |#4|))) (-15 -3277 ((-622 |#4|) (-622 |#4|))) (-15 -3278 ((-622 |#4|) (-622 |#4|) (-622 |#4|)))) |%noBranch|) |%noBranch|)) +((-3279 (((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 19)) (-3281 (((-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|)) 36)) (-3280 (((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|)) 16))) +(((-954 |#1|) (-10 -7 (-15 -3279 ((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3280 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3281 ((-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|)))) (-358)) (T -954)) +((-3281 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-622 (-2 (|:| C (-669 *5)) (|:| |g| (-1231 *5))))) (-5 *1 (-954 *5)) (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)))) (-3280 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-669 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-954 *5)))) (-3279 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358)) (-5 *2 (-2 (|:| R (-669 *6)) (|:| A (-669 *6)) (|:| |Ainv| (-669 *6)))) (-5 *1 (-954 *6)) (-5 *3 (-669 *6))))) +(-10 -7 (-15 -3279 ((-2 (|:| R (-669 |#1|)) (|:| A (-669 |#1|)) (|:| |Ainv| (-669 |#1|))) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3280 ((-669 |#1|) (-669 |#1|) (-669 |#1|) (-98 |#1|) (-1 |#1| |#1|))) (-15 -3281 ((-622 (-2 (|:| C (-669 |#1|)) (|:| |g| (-1231 |#1|)))) (-669 |#1|) (-1231 |#1|)))) +((-4329 (((-400 |#4|) |#4|) 48))) +(((-955 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4329 ((-400 |#4|) |#4|))) (-827) (-773) (-446) (-926 |#3| |#2| |#1|)) (T -955)) +((-4329 (*1 *2 *3) (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-446)) (-5 *2 (-400 *3)) (-5 *1 (-955 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4))))) +(-10 -7 (-15 -4329 ((-400 |#4|) |#4|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-4198 (($ (-751)) 112 (|has| |#1| (-23)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-3778 (((-538) (-1 (-112) |#1|) $) 97) (((-538) |#1| $) 96 (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) 95 (|has| |#1| (-1074)))) (-4069 (($ (-622 |#1|)) 118)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4195 (((-669 |#1|) $ $) 105 (|has| |#1| (-1025)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4192 ((|#1| $) 102 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-4079 (((-112) $ (-751)) 10)) (-4193 ((|#1| $) 103 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-4128 (($ $ (-622 |#1|)) 115)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-4196 ((|#1| $ $) 106 (|has| |#1| (-1025)))) (-4271 (((-895) $) 117)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-4194 (($ $ $) 104)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527)))) (($ (-622 |#1|)) 116)) (-3884 (($ (-622 |#1|)) 70)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) 85 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 82 (|has| |#1| (-827)))) (-4197 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4199 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-538) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-707))) (($ $ |#1|) 107 (|has| |#1| (-707)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-956 |#1|) (-138) (-1025)) (T -956)) +((-4069 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) (-4271 (*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-1025)) (-5 *2 (-895)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) (-4194 (*1 *1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1025)))) (-4128 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-956 *3)) (-4 *3 (-1025))))) +(-13 (-1230 |t#1|) (-10 -8 (-15 -4069 ($ (-622 |t#1|))) (-15 -4271 ((-895) $)) (-15 -4330 ($ (-622 |t#1|))) (-15 -4194 ($ $ $)) (-15 -4128 ($ $ (-622 |t#1|))))) +(((-34) . T) ((-101) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-367 |#1|) . T) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-19 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1074) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-1185) . T) ((-1230 |#1|) . T)) +((-4318 (((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|)) 17))) +(((-957 |#1| |#2|) (-10 -7 (-15 -4318 ((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|)))) (-1025) (-1025)) (T -957)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-919 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-919 *6)) (-5 *1 (-957 *5 *6))))) +(-10 -7 (-15 -4318 ((-919 |#2|) (-1 |#2| |#1|) (-919 |#1|)))) +((-3284 ((|#1| (-919 |#1|)) 13)) (-3283 ((|#1| (-919 |#1|)) 12)) (-3282 ((|#1| (-919 |#1|)) 11)) (-3286 ((|#1| (-919 |#1|)) 15)) (-3290 ((|#1| (-919 |#1|)) 21)) (-3285 ((|#1| (-919 |#1|)) 14)) (-3287 ((|#1| (-919 |#1|)) 16)) (-3289 ((|#1| (-919 |#1|)) 20)) (-3288 ((|#1| (-919 |#1|)) 19))) +(((-958 |#1|) (-10 -7 (-15 -3282 (|#1| (-919 |#1|))) (-15 -3283 (|#1| (-919 |#1|))) (-15 -3284 (|#1| (-919 |#1|))) (-15 -3285 (|#1| (-919 |#1|))) (-15 -3286 (|#1| (-919 |#1|))) (-15 -3287 (|#1| (-919 |#1|))) (-15 -3288 (|#1| (-919 |#1|))) (-15 -3289 (|#1| (-919 |#1|))) (-15 -3290 (|#1| (-919 |#1|)))) (-1025)) (T -958)) +((-3290 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3287 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3286 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025)))) (-3282 (*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) +(-10 -7 (-15 -3282 (|#1| (-919 |#1|))) (-15 -3283 (|#1| (-919 |#1|))) (-15 -3284 (|#1| (-919 |#1|))) (-15 -3285 (|#1| (-919 |#1|))) (-15 -3286 (|#1| (-919 |#1|))) (-15 -3287 (|#1| (-919 |#1|))) (-15 -3288 (|#1| (-919 |#1|))) (-15 -3289 (|#1| (-919 |#1|))) (-15 -3290 (|#1| (-919 |#1|)))) +((-3308 (((-3 |#1| "failed") |#1|) 18)) (-3296 (((-3 |#1| "failed") |#1|) 6)) (-3306 (((-3 |#1| "failed") |#1|) 16)) (-3294 (((-3 |#1| "failed") |#1|) 4)) (-3310 (((-3 |#1| "failed") |#1|) 20)) (-3298 (((-3 |#1| "failed") |#1|) 8)) (-3291 (((-3 |#1| "failed") |#1| (-751)) 1)) (-3293 (((-3 |#1| "failed") |#1|) 3)) (-3292 (((-3 |#1| "failed") |#1|) 2)) (-3311 (((-3 |#1| "failed") |#1|) 21)) (-3299 (((-3 |#1| "failed") |#1|) 9)) (-3309 (((-3 |#1| "failed") |#1|) 19)) (-3297 (((-3 |#1| "failed") |#1|) 7)) (-3307 (((-3 |#1| "failed") |#1|) 17)) (-3295 (((-3 |#1| "failed") |#1|) 5)) (-3314 (((-3 |#1| "failed") |#1|) 24)) (-3302 (((-3 |#1| "failed") |#1|) 12)) (-3312 (((-3 |#1| "failed") |#1|) 22)) (-3300 (((-3 |#1| "failed") |#1|) 10)) (-3316 (((-3 |#1| "failed") |#1|) 26)) (-3304 (((-3 |#1| "failed") |#1|) 14)) (-3317 (((-3 |#1| "failed") |#1|) 27)) (-3305 (((-3 |#1| "failed") |#1|) 15)) (-3315 (((-3 |#1| "failed") |#1|) 25)) (-3303 (((-3 |#1| "failed") |#1|) 13)) (-3313 (((-3 |#1| "failed") |#1|) 23)) (-3301 (((-3 |#1| "failed") |#1|) 11))) +(((-959 |#1|) (-138) (-1171)) (T -959)) +((-3317 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3316 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3315 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3314 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3313 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3312 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3311 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3310 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3309 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3308 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3307 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3306 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3305 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3304 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3303 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3302 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3301 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3300 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3299 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3298 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3297 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3296 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3295 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3294 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3293 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3292 (*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171)))) (-3291 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(-13 (-10 -7 (-15 -3291 ((-3 |t#1| "failed") |t#1| (-751))) (-15 -3292 ((-3 |t#1| "failed") |t#1|)) (-15 -3293 ((-3 |t#1| "failed") |t#1|)) (-15 -3294 ((-3 |t#1| "failed") |t#1|)) (-15 -3295 ((-3 |t#1| "failed") |t#1|)) (-15 -3296 ((-3 |t#1| "failed") |t#1|)) (-15 -3297 ((-3 |t#1| "failed") |t#1|)) (-15 -3298 ((-3 |t#1| "failed") |t#1|)) (-15 -3299 ((-3 |t#1| "failed") |t#1|)) (-15 -3300 ((-3 |t#1| "failed") |t#1|)) (-15 -3301 ((-3 |t#1| "failed") |t#1|)) (-15 -3302 ((-3 |t#1| "failed") |t#1|)) (-15 -3303 ((-3 |t#1| "failed") |t#1|)) (-15 -3304 ((-3 |t#1| "failed") |t#1|)) (-15 -3305 ((-3 |t#1| "failed") |t#1|)) (-15 -3306 ((-3 |t#1| "failed") |t#1|)) (-15 -3307 ((-3 |t#1| "failed") |t#1|)) (-15 -3308 ((-3 |t#1| "failed") |t#1|)) (-15 -3309 ((-3 |t#1| "failed") |t#1|)) (-15 -3310 ((-3 |t#1| "failed") |t#1|)) (-15 -3311 ((-3 |t#1| "failed") |t#1|)) (-15 -3312 ((-3 |t#1| "failed") |t#1|)) (-15 -3313 ((-3 |t#1| "failed") |t#1|)) (-15 -3314 ((-3 |t#1| "failed") |t#1|)) (-15 -3315 ((-3 |t#1| "failed") |t#1|)) (-15 -3316 ((-3 |t#1| "failed") |t#1|)) (-15 -3317 ((-3 |t#1| "failed") |t#1|)))) +((-3319 ((|#4| |#4| (-622 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3318 ((|#4| |#4| (-622 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-4318 ((|#4| (-1 |#4| (-922 |#1|)) |#4|) 30))) +(((-960 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3318 (|#4| |#4| |#3|)) (-15 -3318 (|#4| |#4| (-622 |#3|))) (-15 -3319 (|#4| |#4| |#3|)) (-15 -3319 (|#4| |#4| (-622 |#3|))) (-15 -4318 (|#4| (-1 |#4| (-922 |#1|)) |#4|))) (-1025) (-773) (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149))))) (-926 (-922 |#1|) |#2| |#3|)) (T -960)) +((-4318 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-922 *4))) (-4 *4 (-1025)) (-4 *2 (-926 (-922 *4) *5 *6)) (-4 *5 (-773)) (-4 *6 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1="failed") (-1149)))))) (-5 *1 (-960 *4 *5 *6 *2)))) (-3319 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149)))))) (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) (-4 *2 (-926 (-922 *4) *5 *6)))) (-3319 (*1 *2 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149)))))) (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-926 (-922 *4) *5 *3)))) (-3318 (*1 *2 *2 *3) (-12 (-5 *3 (-622 *6)) (-4 *6 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149)))))) (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) (-4 *2 (-926 (-922 *4) *5 *6)))) (-3318 (*1 *2 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149)))))) (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-926 (-922 *4) *5 *3))))) +(-10 -7 (-15 -3318 (|#4| |#4| |#3|)) (-15 -3318 (|#4| |#4| (-622 |#3|))) (-15 -3319 (|#4| |#4| |#3|)) (-15 -3319 (|#4| |#4| (-622 |#3|))) (-15 -4318 (|#4| (-1 |#4| (-922 |#1|)) |#4|))) +((-3320 ((|#2| |#3|) 35)) (-4279 (((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|) 73)) (-4278 (((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) 89))) +(((-961 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|)) (-15 -3320 (|#2| |#3|))) (-345) (-1207 |#1|) (-1207 |#2|) (-705 |#2| |#3|)) (T -961)) +((-3320 (*1 *2 *3) (-12 (-4 *3 (-1207 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-961 *4 *2 *3 *5)) (-4 *4 (-345)) (-4 *5 (-705 *2 *3)))) (-4279 (*1 *2 *3) (-12 (-4 *4 (-345)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 *3)) (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-961 *4 *3 *5 *6)) (-4 *6 (-705 *3 *5)))) (-4278 (*1 *2) (-12 (-4 *3 (-345)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| -2128 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4)))) (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-705 *4 *5))))) +(-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|)) (-15 -3320 (|#2| |#3|))) +((-2898 (((-112) $ $) NIL)) (-3760 (((-3 (-112) #1="failed") $) 69)) (-4012 (($ $) 36 (-12 (|has| |#1| (-145)) (|has| |#1| (-302))))) (-3324 (($ $ (-3 (-112) #1#)) 70)) (-3325 (($ (-622 |#4|) |#4|) 25)) (-3593 (((-1131) $) NIL)) (-3321 (($ $) 67)) (-3594 (((-1093) $) NIL)) (-3762 (((-112) $) 68)) (-3928 (($) 30)) (-3322 ((|#4| $) 72)) (-3323 (((-622 |#4|) $) 71)) (-4317 (((-840) $) 66)) (-3387 (((-112) $ $) NIL))) +(((-962 |#1| |#2| |#3| |#4|) (-13 (-1074) (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -3325 ($ (-622 |#4|) |#4|)) (-15 -3760 ((-3 (-112) #1="failed") $)) (-15 -3324 ($ $ (-3 (-112) #1#))) (-15 -3762 ((-112) $)) (-15 -3323 ((-622 |#4|) $)) (-15 -3322 (|#4| $)) (-15 -3321 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -4012 ($ $)) |%noBranch|) |%noBranch|))) (-446) (-827) (-773) (-926 |#1| |#3| |#2|)) (T -962)) +((-3928 (*1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5)) (-4 *5 (-926 *2 *4 *3)))) (-3325 (*1 *1 *2 *3) (-12 (-5 *2 (-622 *3)) (-4 *3 (-926 *4 *6 *5)) (-4 *4 (-446)) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *1 (-962 *4 *5 *6 *3)))) (-3760 (*1 *2 *1) (|partial| -12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))) (-3762 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))) (-3323 (*1 *2 *1) (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-622 *6)) (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))) (-3322 (*1 *2 *1) (-12 (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-962 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)))) (-3321 (*1 *1 *1) (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5)) (-4 *5 (-926 *2 *4 *3)))) (-4012 (*1 *1 *1) (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5)) (-4 *5 (-926 *2 *4 *3))))) +(-13 (-1074) (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -3325 ($ (-622 |#4|) |#4|)) (-15 -3760 ((-3 (-112) #1="failed") $)) (-15 -3324 ($ $ (-3 (-112) #1#))) (-15 -3762 ((-112) $)) (-15 -3323 ((-622 |#4|) $)) (-15 -3322 (|#4| $)) (-15 -3321 ($ $)) (IF (|has| |#1| (-302)) (IF (|has| |#1| (-145)) (-15 -4012 ($ $)) |%noBranch|) |%noBranch|))) +((-3326 (((-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538)))) (-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538))))) 69))) +(((-963 |#1| |#2|) (-10 -7 (-15 -3326 ((-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538)))) (-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538))))))) (-622 (-1149)) (-751)) (T -963)) +((-3326 (*1 *2 *2) (-12 (-5 *2 (-962 (-402 (-538)) (-841 *3) (-235 *4 (-751)) (-243 *3 (-402 (-538))))) (-14 *3 (-622 (-1149))) (-14 *4 (-751)) (-5 *1 (-963 *3 *4))))) +(-10 -7 (-15 -3326 ((-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538)))) (-962 (-402 (-538)) (-841 |#1|) (-235 |#2| (-751)) (-243 |#1| (-402 (-538))))))) +((-3621 (((-112) |#5| |#5|) 38)) (-3624 (((-112) |#5| |#5|) 52)) (-3629 (((-112) |#5| (-622 |#5|)) 74) (((-112) |#5| |#5|) 61)) (-3625 (((-112) (-622 |#4|) (-622 |#4|)) 58)) (-3631 (((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) 63)) (-3620 (((-1237)) 33)) (-3619 (((-1237) (-1131) (-1131) (-1131)) 29)) (-3630 (((-622 |#5|) (-622 |#5|)) 81)) (-3632 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) 79)) (-3633 (((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112)) 101)) (-3623 (((-112) |#5| |#5|) 47)) (-3628 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3626 (((-112) (-622 |#4|) (-622 |#4|)) 57)) (-3627 (((-112) (-622 |#4|) (-622 |#4|)) 59)) (-4062 (((-112) (-622 |#4|) (-622 |#4|)) 60)) (-3634 (((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112)) 97)) (-3622 (((-622 |#5|) (-622 |#5|)) 43))) +(((-964 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3619 ((-1237) (-1131) (-1131) (-1131))) (-15 -3620 ((-1237))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3622 ((-622 |#5|) (-622 |#5|))) (-15 -3623 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3625 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3626 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3627 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -4062 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3628 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3629 ((-112) |#5| |#5|)) (-15 -3629 ((-112) |#5| (-622 |#5|))) (-15 -3630 ((-622 |#5|) (-622 |#5|))) (-15 -3631 ((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3632 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-15 -3633 ((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3634 ((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -964)) +((-3634 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *4) (|:| |ineq| (-622 *9)))) (-5 *1 (-964 *6 *7 *8 *9 *4)) (-5 *3 (-622 *9)) (-4 *4 (-1045 *6 *7 *8 *9)))) (-3633 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-622 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *10) (|:| |ineq| (-622 *9))))) (-5 *1 (-964 *6 *7 *8 *9 *10)) (-5 *3 (-622 *9)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-622 (-2 (|:| |val| (-622 *6)) (|:| -1660 *7)))) (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3631 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-964 *5 *6 *7 *8 *3)))) (-3629 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3628 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-4062 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3627 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3626 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3623 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3620 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-964 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3619 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-964 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) +(-10 -7 (-15 -3619 ((-1237) (-1131) (-1131) (-1131))) (-15 -3620 ((-1237))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3622 ((-622 |#5|) (-622 |#5|))) (-15 -3623 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3625 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3626 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3627 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -4062 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3628 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3629 ((-112) |#5| |#5|)) (-15 -3629 ((-112) |#5| (-622 |#5|))) (-15 -3630 ((-622 |#5|) (-622 |#5|))) (-15 -3631 ((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3632 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-15 -3633 ((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3634 ((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-4191 (((-1149) $) 15)) (-3761 (((-1131) $) 16)) (-3577 (($ (-1149) (-1131)) 14)) (-4317 (((-840) $) 13))) +(((-965) (-13 (-597 (-840)) (-10 -8 (-15 -3577 ($ (-1149) (-1131))) (-15 -4191 ((-1149) $)) (-15 -3761 ((-1131) $))))) (T -965)) +((-3577 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-965)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-965)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-965))))) +(-13 (-597 (-840)) (-10 -8 (-15 -3577 ($ (-1149) (-1131))) (-15 -4191 ((-1149) $)) (-15 -3761 ((-1131) $)))) +((-3508 (((-3 |#2| #1="failed") $) NIL) (((-3 (-1149) #1#) $) 65) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 (-538) #1#) $) 95)) (-3507 ((|#2| $) NIL) (((-1149) $) 60) (((-402 (-538)) $) NIL) (((-538) $) 92)) (-2362 (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 112) (((-669 |#2|) (-669 $)) 28)) (-3327 (($) 98)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 75) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 84)) (-3329 (($ $) 10)) (-3803 (((-3 $ "failed") $) 20)) (-4318 (($ (-1 |#2| |#2|) $) 22)) (-3804 (($) 16)) (-3463 (($ $) 54)) (-4170 (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3328 (($ $) 12)) (-4330 (((-866 (-538)) $) 70) (((-866 (-373)) $) 79) (((-527) $) 40) (((-373) $) 44) (((-221) $) 47)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) 90) (($ |#2|) NIL) (($ (-1149)) 57)) (-3461 (((-751)) 31)) (-3018 (((-112) $ $) 50))) +(((-966 |#1| |#2|) (-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -4317 (|#1| (-1149))) (-15 -3327 (|#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3329 (|#1| |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -4317 ((-840) |#1|))) (-967 |#2|) (-545)) (T -966)) +((-3461 (*1 *2) (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-966 *3 *4)) (-4 *3 (-967 *4))))) +(-10 -8 (-15 -3018 ((-112) |#1| |#1|)) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -4317 (|#1| (-1149))) (-15 -3327 (|#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3329 (|#1| |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -3129 ((-864 (-538) |#1|) |#1| (-866 (-538)) (-864 (-538) |#1|))) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -2362 ((-669 |#2|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3464 ((|#1| $) 136 (|has| |#1| (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 127 (|has| |#1| (-886)))) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 130 (|has| |#1| (-886)))) (-1705 (((-112) $ $) 57)) (-3986 (((-538) $) 117 (|has| |#1| (-800)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| #2="failed") $) 175) (((-3 (-1149) #2#) $) 125 (|has| |#1| (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) 109 (|has| |#1| (-1014 (-538)))) (((-3 (-538) #2#) $) 107 (|has| |#1| (-1014 (-538))))) (-3507 ((|#1| $) 174) (((-1149) $) 124 (|has| |#1| (-1014 (-1149)))) (((-402 (-538)) $) 108 (|has| |#1| (-1014 (-538)))) (((-538) $) 106 (|has| |#1| (-1014 (-538))))) (-2894 (($ $ $) 53)) (-2362 (((-669 (-538)) (-669 $)) 149 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 148 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 147) (((-669 |#1|) (-669 $)) 146)) (-3821 (((-3 $ "failed") $) 32)) (-3327 (($) 134 (|has| |#1| (-537)))) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-3537 (((-112) $) 119 (|has| |#1| (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 143 (|has| |#1| (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 142 (|has| |#1| (-862 (-373))))) (-2502 (((-112) $) 30)) (-3329 (($ $) 138)) (-3331 ((|#1| $) 140)) (-3803 (((-3 $ "failed") $) 105 (|has| |#1| (-1124)))) (-3538 (((-112) $) 118 (|has| |#1| (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) 50)) (-3677 (($ $ $) 115 (|has| |#1| (-827)))) (-3678 (($ $ $) 114 (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) 166)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3804 (($) 104 (|has| |#1| (-1124)) CONST)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3463 (($ $) 135 (|has| |#1| (-302)))) (-3465 ((|#1| $) 132 (|has| |#1| (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 129 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 128 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) 172 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) 170 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) 169 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 168 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 167 (|has| |#1| (-507 (-1149) |#1|)))) (-1704 (((-751) $) 56)) (-4159 (($ $ |#1|) 173 (|has| |#1| (-281 |#1| |#1|)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-4170 (($ $) 165 (|has| |#1| (-229))) (($ $ (-751)) 163 (|has| |#1| (-229))) (($ $ (-1149)) 161 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 160 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 159 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 158 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-3328 (($ $) 137)) (-3330 ((|#1| $) 139)) (-4330 (((-866 (-538)) $) 145 (|has| |#1| (-598 (-866 (-538))))) (((-866 (-373)) $) 144 (|has| |#1| (-598 (-866 (-373))))) (((-527) $) 122 (|has| |#1| (-598 (-527)))) (((-373) $) 121 (|has| |#1| (-996))) (((-221) $) 120 (|has| |#1| (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 131 (-3191 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ |#1|) 178) (($ (-1149)) 126 (|has| |#1| (-1014 (-1149))))) (-3035 (((-3 $ "failed") $) 123 (-3891 (|has| |#1| (-143)) (-3191 (|has| $ (-143)) (|has| |#1| (-886)))))) (-3461 (((-751)) 28)) (-3466 ((|#1| $) 133 (|has| |#1| (-537)))) (-2177 (((-112) $ $) 37)) (-3742 (($ $) 116 (|has| |#1| (-800)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $) 164 (|has| |#1| (-229))) (($ $ (-751)) 162 (|has| |#1| (-229))) (($ $ (-1149)) 157 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 156 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 155 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 154 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2896 (((-112) $ $) 112 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 111 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 113 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 110 (|has| |#1| (-827)))) (-4308 (($ $ $) 62) (($ |#1| |#1|) 141)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176))) +(((-967 |#1|) (-138) (-545)) (T -967)) +((-4308 (*1 *1 *2 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) (-3329 (*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) (-3328 (*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-302)))) (-3463 (*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-302)))) (-3327 (*1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-537)) (-4 *2 (-545)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-537)))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-537))))) +(-13 (-358) (-38 |t#1|) (-1014 |t#1|) (-333 |t#1|) (-227 |t#1|) (-372 |t#1|) (-860 |t#1|) (-395 |t#1|) (-10 -8 (-15 -4308 ($ |t#1| |t#1|)) (-15 -3331 (|t#1| $)) (-15 -3330 (|t#1| $)) (-15 -3329 ($ $)) (-15 -3328 ($ $)) (IF (|has| |t#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |t#1| (-1014 (-538))) (PROGN (-6 (-1014 (-538))) (-6 (-1014 (-402 (-538))))) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-800)) (-6 (-800)) |%noBranch|) (IF (|has| |t#1| (-996)) (-6 (-996)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1014 (-1149))) (-6 (-1014 (-1149))) |%noBranch|) (IF (|has| |t#1| (-302)) (PROGN (-15 -3464 (|t#1| $)) (-15 -3463 ($ $))) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -3327 ($)) (-15 -3466 (|t#1| $)) (-15 -3465 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-886)) (-6 (-886)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-598 (-221)) |has| |#1| (-996)) ((-598 (-373)) |has| |#1| (-996)) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-598 (-866 (-373))) |has| |#1| (-598 (-866 (-373)))) ((-598 (-866 (-538))) |has| |#1| (-598 (-866 (-538)))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) . T) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) . T) ((-302) . T) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-358) . T) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-395 |#1|) . T) ((-446) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-545) . T) ((-628 #1#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-771) |has| |#1| (-800)) ((-772) |has| |#1| (-800)) ((-774) |has| |#1| (-800)) ((-777) |has| |#1| (-800)) ((-800) |has| |#1| (-800)) ((-825) |has| |#1| (-800)) ((-827) -3891 (|has| |#1| (-827)) (|has| |#1| (-800))) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-373)) |has| |#1| (-862 (-373))) ((-862 (-538)) |has| |#1| (-862 (-538))) ((-860 |#1|) . T) ((-886) |has| |#1| (-886)) ((-897) . T) ((-996) |has| |#1| (-996)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-538))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 (-1149)) |has| |#1| (-1014 (-1149))) ((-1014 |#1|) . T) ((-1031 #1#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| |#1| (-1124)) ((-1185) . T) ((-1190) . T)) +((-4318 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-968 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#2| |#1|) |#3|))) (-545) (-545) (-967 |#1|) (-967 |#2|)) (T -968)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-4 *2 (-967 *6)) (-5 *1 (-968 *5 *6 *4 *2)) (-4 *4 (-967 *5))))) +(-10 -7 (-15 -4318 (|#4| (-1 |#2| |#1|) |#3|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3332 (($ (-1115 |#1| |#2|)) 11)) (-3459 (((-1115 |#1| |#2|) $) 12)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4159 ((|#2| $ (-235 |#1| |#2|)) 16)) (-4317 (((-840) $) NIL)) (-2991 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL))) +(((-969 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3332 ($ (-1115 |#1| |#2|))) (-15 -3459 ((-1115 |#1| |#2|) $)) (-15 -4159 (|#2| $ (-235 |#1| |#2|))))) (-895) (-358)) (T -969)) +((-3332 (*1 *1 *2) (-12 (-5 *2 (-1115 *3 *4)) (-14 *3 (-895)) (-4 *4 (-358)) (-5 *1 (-969 *3 *4)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-1115 *3 *4)) (-5 *1 (-969 *3 *4)) (-14 *3 (-895)) (-4 *4 (-358)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-895)) (-4 *2 (-358)) (-5 *1 (-969 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3332 ($ (-1115 |#1| |#2|))) (-15 -3459 ((-1115 |#1| |#2|) $)) (-15 -4159 (|#2| $ (-235 |#1| |#2|))))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 9)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-970) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $))))) (T -970)) +((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-970))))) +(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-3335 (($ $) 46)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-4193 (((-751) $) 45)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-3334 ((|#1| $) 44)) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3337 ((|#1| |#1| $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-3336 ((|#1| $) 47)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-3333 ((|#1| $) 43)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-971 |#1|) (-138) (-1185)) (T -971)) +((-3337 (*1 *2 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))) (-3336 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))) (-3335 (*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))) (-3334 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -3337 (|t#1| |t#1| $)) (-15 -3336 (|t#1| $)) (-15 -3335 ($ $)) (-15 -4193 ((-751) $)) (-15 -3334 (|t#1| $)) (-15 -3333 (|t#1| $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4006 ((|#1| $) 12)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL (|has| |#1| (-537)))) (-3356 (((-112) $) NIL (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) NIL (|has| |#1| (-537)))) (-3338 (($ |#1| |#1| |#1| |#1|) 16)) (-2502 (((-112) $) NIL)) (-3467 ((|#1| $) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-3339 ((|#1| $) 15)) (-3340 ((|#1| $) 14)) (-3341 ((|#1| $) 13)) (-3594 (((-1093) $) NIL)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) NIL (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-507 (-1149) |#1|)))) (-4159 (($ $ |#1|) NIL (|has| |#1| (-281 |#1| |#1|)))) (-4170 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3342 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538))))))) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-3742 ((|#1| $) NIL (|has| |#1| (-1034)))) (-2991 (($) 8 T CONST)) (-2997 (($) 10 T CONST)) (-3002 (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-358))) (($ (-402 (-538)) $) NIL (|has| |#1| (-358))))) +(((-972 |#1|) (-974 |#1|) (-170)) (T -972)) +NIL +(-974 |#1|) +((-3539 (((-112) $) 42)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#2| #1#) $) 45)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL) ((|#2| $) 43)) (-3357 (((-3 (-402 (-538)) "failed") $) 78)) (-3356 (((-112) $) 72)) (-3355 (((-402 (-538)) $) 76)) (-2502 (((-112) $) 41)) (-3467 ((|#2| $) 22)) (-4318 (($ (-1 |#2| |#2|) $) 19)) (-2734 (($ $) 61)) (-4170 (($ $) NIL) (($ $ (-751)) NIL) (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-4330 (((-527) $) 67)) (-3342 (($ $) 17)) (-4317 (((-840) $) 56) (($ (-538)) 38) (($ |#2|) 36) (($ (-402 (-538))) NIL)) (-3461 (((-751)) 10)) (-3742 ((|#2| $) 71)) (-3387 (((-112) $ $) 25)) (-3018 (((-112) $ $) 69)) (-4197 (($ $) 29) (($ $ $) 28)) (-4199 (($ $ $) 26)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL))) +(((-973 |#1| |#2|) (-10 -8 (-15 -4317 (|#1| (-402 (-538)))) (-15 -3018 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 * (|#1| |#1| (-402 (-538)))) (-15 -2734 (|#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3742 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -2502 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-974 |#2|) (-170)) (T -973)) +((-3461 (*1 *2) (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-973 *3 *4)) (-4 *3 (-974 *4))))) +(-10 -8 (-15 -4317 (|#1| (-402 (-538)))) (-15 -3018 ((-112) |#1| |#1|)) (-15 * (|#1| (-402 (-538)) |#1|)) (-15 * (|#1| |#1| (-402 (-538)))) (-15 -2734 (|#1| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|)) (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3742 (|#2| |#1|)) (-15 -3467 (|#2| |#1|)) (-15 -3342 (|#1| |#1|)) (-15 -4318 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3508 ((-3 |#2| #1="failed") |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -2502 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 * (|#1| (-751) |#1|)) (-15 -3539 ((-112) |#1|)) (-15 * (|#1| (-895) |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3508 (((-3 (-538) #1="failed") $) 116 (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 114 (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) 113)) (-3507 (((-538) $) 117 (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) 115 (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) 112)) (-2362 (((-669 (-538)) (-669 $)) 87 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 86 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 85) (((-669 |#1|) (-669 $)) 84)) (-3821 (((-3 $ "failed") $) 32)) (-4006 ((|#1| $) 77)) (-3357 (((-3 (-402 (-538)) "failed") $) 73 (|has| |#1| (-537)))) (-3356 (((-112) $) 75 (|has| |#1| (-537)))) (-3355 (((-402 (-538)) $) 74 (|has| |#1| (-537)))) (-3338 (($ |#1| |#1| |#1| |#1|) 78)) (-2502 (((-112) $) 30)) (-3467 ((|#1| $) 79)) (-3677 (($ $ $) 66 (|has| |#1| (-827)))) (-3678 (($ $ $) 65 (|has| |#1| (-827)))) (-4318 (($ (-1 |#1| |#1|) $) 88)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 70 (|has| |#1| (-358)))) (-3339 ((|#1| $) 80)) (-3340 ((|#1| $) 81)) (-3341 ((|#1| $) 82)) (-3594 (((-1093) $) 10)) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) 94 (|has| |#1| (-304 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-304 |#1|))) (($ $ (-288 |#1|)) 92 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-288 |#1|))) 91 (|has| |#1| (-304 |#1|))) (($ $ (-622 (-1149)) (-622 |#1|)) 90 (|has| |#1| (-507 (-1149) |#1|))) (($ $ (-1149) |#1|) 89 (|has| |#1| (-507 (-1149) |#1|)))) (-4159 (($ $ |#1|) 95 (|has| |#1| (-281 |#1| |#1|)))) (-4170 (($ $) 111 (|has| |#1| (-229))) (($ $ (-751)) 109 (|has| |#1| (-229))) (($ $ (-1149)) 107 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 106 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 105 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 104 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-4330 (((-527) $) 71 (|has| |#1| (-598 (-527))))) (-3342 (($ $) 83)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 35) (($ (-402 (-538))) 60 (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538))))))) (-3035 (((-3 $ "failed") $) 72 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-3742 ((|#1| $) 76 (|has| |#1| (-1034)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $) 110 (|has| |#1| (-229))) (($ $ (-751)) 108 (|has| |#1| (-229))) (($ $ (-1149)) 103 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 102 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 101 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 100 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2896 (((-112) $ $) 63 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 62 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 64 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 61 (|has| |#1| (-827)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 69 (|has| |#1| (-358)))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-402 (-538))) 68 (|has| |#1| (-358))) (($ (-402 (-538)) $) 67 (|has| |#1| (-358))))) +(((-974 |#1|) (-138) (-170)) (T -974)) +((-3342 (*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3467 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3338 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) (-3356 (*1 *2 *1) (-12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) (-3357 (*1 *2 *1) (|partial| -12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538)))))) +(-13 (-38 |t#1|) (-407 |t#1|) (-227 |t#1|) (-333 |t#1|) (-372 |t#1|) (-10 -8 (-15 -3342 ($ $)) (-15 -3341 (|t#1| $)) (-15 -3340 (|t#1| $)) (-15 -3339 (|t#1| $)) (-15 -3467 (|t#1| $)) (-15 -3338 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4006 (|t#1| $)) (IF (|has| |t#1| (-285)) (-6 (-285)) |%noBranch|) (IF (|has| |t#1| (-827)) (-6 (-827)) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-143)) |%noBranch|) (IF (|has| |t#1| (-1034)) (-15 -3742 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-537)) (PROGN (-15 -3356 ((-112) $)) (-15 -3355 ((-402 (-538)) $)) (-15 -3357 ((-3 (-402 (-538)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-358)) ((-38 |#1|) . T) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-358)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-227 |#1|) . T) ((-229) |has| |#1| (-229)) ((-239) |has| |#1| (-358)) ((-281 |#1| $) |has| |#1| (-281 |#1| |#1|)) ((-285) -3891 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-304 |#1|) |has| |#1| (-304 |#1|)) ((-333 |#1|) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-507 (-1149) |#1|) |has| |#1| (-507 (-1149) |#1|)) ((-507 |#1| |#1|) |has| |#1| (-304 |#1|)) ((-628 #1#) |has| |#1| (-358)) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) |has| |#1| (-358)) ((-698 |#1|) . T) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1031 #1#) |has| |#1| (-358)) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-358)) (|has| |#1| (-285))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-4318 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|))) (-974 |#2|) (-170) (-974 |#4|) (-170)) (T -975)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-974 *6)) (-5 *1 (-975 *4 *5 *2 *6)) (-4 *4 (-974 *5))))) +(-10 -7 (-15 -4318 (|#3| (-1 |#4| |#2|) |#1|))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-3335 (($ $) 20)) (-3343 (($ (-622 |#1|)) 29)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-4193 (((-751) $) 22)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) 24)) (-3970 (($ |#1| $) 15)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-3334 ((|#1| $) 23)) (-1334 ((|#1| $) 19)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3337 ((|#1| |#1| $) 14)) (-3762 (((-112) $) 17)) (-3928 (($) NIL)) (-3336 ((|#1| $) 18)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) NIL)) (-3333 ((|#1| $) 26)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-976 |#1|) (-13 (-971 |#1|) (-10 -8 (-15 -3343 ($ (-622 |#1|))))) (-1074)) (T -976)) +((-3343 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-976 *3))))) +(-13 (-971 |#1|) (-10 -8 (-15 -3343 ($ (-622 |#1|))))) +((-3370 (($ $) 12)) (-3344 (($ $ (-538)) 13))) +(((-977 |#1|) (-10 -8 (-15 -3370 (|#1| |#1|)) (-15 -3344 (|#1| |#1| (-538)))) (-978)) (T -977)) +NIL +(-10 -8 (-15 -3370 (|#1| |#1|)) (-15 -3344 (|#1| |#1| (-538)))) +((-3370 (($ $) 6)) (-3344 (($ $ (-538)) 7)) (** (($ $ (-402 (-538))) 8))) +(((-978) (-138)) (T -978)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-402 (-538))))) (-3344 (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-538)))) (-3370 (*1 *1 *1) (-4 *1 (-978)))) +(-13 (-10 -8 (-15 -3370 ($ $)) (-15 -3344 ($ $ (-538))) (-15 ** ($ $ (-402 (-538)))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1763 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| (-402 |#2|) (-358)))) (-2178 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-2176 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-1901 (((-669 (-402 |#2|)) (-1231 $)) NIL) (((-669 (-402 |#2|))) NIL)) (-3689 (((-402 |#2|) $) NIL)) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| (-402 |#2|) (-345)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-4329 (((-400 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1705 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3471 (((-751)) NIL (|has| (-402 |#2|) (-363)))) (-1777 (((-112)) NIL)) (-1776 (((-112) |#1|) 144) (((-112) |#2|) 149)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| (-402 |#2|) (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-3 (-402 |#2|) #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| (-402 |#2|) (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| (-402 |#2|) (-1014 (-402 (-538))))) (((-402 |#2|) $) NIL)) (-1911 (($ (-1231 (-402 |#2|)) (-1231 $)) NIL) (($ (-1231 (-402 |#2|))) 70) (($ (-1231 |#2|) |#2|) NIL)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-402 |#2|) (-345)))) (-2894 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1900 (((-669 (-402 |#2|)) $ (-1231 $)) NIL) (((-669 (-402 |#2|)) $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-402 |#2|) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-402 |#2|))) (|:| |vec| (-1231 (-402 |#2|)))) (-669 $) (-1231 $)) NIL) (((-669 (-402 |#2|)) (-669 $)) NIL)) (-1768 (((-1231 $) (-1231 $)) NIL)) (-4202 (($ |#3|) 65) (((-3 $ "failed") (-402 |#3|)) NIL (|has| (-402 |#2|) (-358)))) (-3821 (((-3 $ "failed") $) NIL)) (-1755 (((-622 (-622 |#1|))) NIL (|has| |#1| (-363)))) (-1780 (((-112) |#1| |#1|) NIL)) (-3444 (((-895)) NIL)) (-3327 (($) NIL (|has| (-402 |#2|) (-363)))) (-1775 (((-112)) NIL)) (-1774 (((-112) |#1|) 56) (((-112) |#2|) 146)) (-2893 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| (-402 |#2|) (-358)))) (-3857 (($ $) NIL)) (-3166 (($) NIL (|has| (-402 |#2|) (-345)))) (-1796 (((-112) $) NIL (|has| (-402 |#2|) (-345)))) (-1886 (($ $ (-751)) NIL (|has| (-402 |#2|) (-345))) (($ $) NIL (|has| (-402 |#2|) (-345)))) (-4086 (((-112) $) NIL (|has| (-402 |#2|) (-358)))) (-4131 (((-895) $) NIL (|has| (-402 |#2|) (-345))) (((-812 (-895)) $) NIL (|has| (-402 |#2|) (-345)))) (-2502 (((-112) $) NIL)) (-3736 (((-751)) NIL)) (-1769 (((-1231 $) (-1231 $)) NIL)) (-3467 (((-402 |#2|) $) NIL)) (-1756 (((-622 (-922 |#1|)) (-1149)) NIL (|has| |#1| (-358)))) (-3803 (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| (-402 |#2|) (-358)))) (-2130 ((|#3| $) NIL (|has| (-402 |#2|) (-358)))) (-2126 (((-895) $) NIL (|has| (-402 |#2|) (-363)))) (-3413 ((|#3| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-3593 (((-1131) $) NIL)) (-1764 (((-669 (-402 |#2|))) 52)) (-1766 (((-669 (-402 |#2|))) 51)) (-2734 (($ $) NIL (|has| (-402 |#2|) (-358)))) (-1761 (($ (-1231 |#2|) |#2|) 71)) (-1765 (((-669 (-402 |#2|))) 50)) (-1767 (((-669 (-402 |#2|))) 49)) (-1760 (((-2 (|:| |num| (-669 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1762 (((-2 (|:| |num| (-1231 |#2|)) (|:| |den| |#2|)) $) 77)) (-1773 (((-1231 $)) 46)) (-4278 (((-1231 $)) 45)) (-1772 (((-112) $) NIL)) (-1771 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3804 (($) NIL (|has| (-402 |#2|) (-345)) CONST)) (-2492 (($ (-895)) NIL (|has| (-402 |#2|) (-363)))) (-1758 (((-3 |#2| #3="failed")) 63)) (-3594 (((-1093) $) NIL)) (-1782 (((-751)) NIL)) (-2501 (($) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| (-402 |#2|) (-358)))) (-3495 (($ (-622 $)) NIL (|has| (-402 |#2|) (-358))) (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| (-402 |#2|) (-345)))) (-4092 (((-400 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| (-402 |#2|) (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-3820 (((-3 $ "failed") $ $) NIL (|has| (-402 |#2|) (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| (-402 |#2|) (-358)))) (-1704 (((-751) $) NIL (|has| (-402 |#2|) (-358)))) (-4159 ((|#1| $ |#1| |#1|) NIL)) (-1759 (((-3 |#2| #3#)) 62)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| (-402 |#2|) (-358)))) (-4117 (((-402 |#2|) (-1231 $)) NIL) (((-402 |#2|)) 42)) (-1887 (((-751) $) NIL (|has| (-402 |#2|) (-345))) (((-3 (-751) "failed") $ $) NIL (|has| (-402 |#2|) (-345)))) (-4170 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-2500 (((-669 (-402 |#2|)) (-1231 $) (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358)))) (-3536 ((|#3|) 53)) (-1790 (($) NIL (|has| (-402 |#2|) (-345)))) (-3575 (((-1231 (-402 |#2|)) $ (-1231 $)) NIL) (((-669 (-402 |#2|)) (-1231 $) (-1231 $)) NIL) (((-1231 (-402 |#2|)) $) 72) (((-669 (-402 |#2|)) (-1231 $)) NIL)) (-4330 (((-1231 (-402 |#2|)) $) NIL) (($ (-1231 (-402 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| (-402 |#2|) (-345)))) (-1770 (((-1231 $) (-1231 $)) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 |#2|)) NIL) (($ (-402 (-538))) NIL (-3891 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-1014 (-402 (-538)))))) (($ $) NIL (|has| (-402 |#2|) (-358)))) (-3035 (($ $) NIL (|has| (-402 |#2|) (-345))) (((-3 $ "failed") $) NIL (|has| (-402 |#2|) (-143)))) (-2698 ((|#3| $) NIL)) (-3461 (((-751)) NIL)) (-1779 (((-112)) 60)) (-1778 (((-112) |#1|) 150) (((-112) |#2|) 151)) (-2128 (((-1231 $)) 121)) (-2177 (((-112) $ $) NIL (|has| (-402 |#2|) (-358)))) (-1757 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1781 (((-112)) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1 (-402 |#2|) (-402 |#2|)) (-751)) NIL (|has| (-402 |#2|) (-358))) (($ $ (-1 (-402 |#2|) (-402 |#2|))) NIL (|has| (-402 |#2|) (-358))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-1149)) NIL (-12 (|has| (-402 |#2|) (-358)) (|has| (-402 |#2|) (-876 (-1149))))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345)))) (($ $) NIL (-3891 (-12 (|has| (-402 |#2|) (-229)) (|has| (-402 |#2|) (-358))) (|has| (-402 |#2|) (-345))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ $) NIL (|has| (-402 |#2|) (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| (-402 |#2|) (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 |#2|)) NIL) (($ (-402 |#2|) $) NIL) (($ (-402 (-538)) $) NIL (|has| (-402 |#2|) (-358))) (($ $ (-402 (-538))) NIL (|has| (-402 |#2|) (-358))))) +(((-979 |#1| |#2| |#3| |#4| |#5|) (-337 |#1| |#2| |#3|) (-1190) (-1207 |#1|) (-1207 (-402 |#2|)) (-402 |#2|) (-751)) (T -979)) +NIL +(-337 |#1| |#2| |#3|) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3350 (((-622 (-538)) $) 54)) (-3346 (($ (-622 (-538))) 62)) (-3464 (((-538) $) 40 (|has| (-538) (-302)))) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL (|has| (-538) (-800)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #2="failed") $) 49) (((-3 (-1149) #2#) $) NIL (|has| (-538) (-1014 (-1149)))) (((-3 (-402 (-538)) #2#) $) 47 (|has| (-538) (-1014 (-538)))) (((-3 (-538) #2#) $) 49 (|has| (-538) (-1014 (-538))))) (-3507 (((-538) $) NIL) (((-1149) $) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) NIL (|has| (-538) (-1014 (-538)))) (((-538) $) NIL (|has| (-538) (-1014 (-538))))) (-2894 (($ $ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| (-538) (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3327 (($) NIL (|has| (-538) (-537)))) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3348 (((-622 (-538)) $) 60)) (-3537 (((-112) $) NIL (|has| (-538) (-800)))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (|has| (-538) (-862 (-538)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (|has| (-538) (-862 (-373))))) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL)) (-3331 (((-538) $) 37)) (-3803 (((-3 $ "failed") $) NIL (|has| (-538) (-1124)))) (-3538 (((-112) $) NIL (|has| (-538) (-800)))) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-538) (-827)))) (-4318 (($ (-1 (-538) (-538)) $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL)) (-3804 (($) NIL (|has| (-538) (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3463 (($ $) NIL (|has| (-538) (-302))) (((-402 (-538)) $) 42)) (-3349 (((-1126 (-538)) $) 59)) (-3345 (($ (-622 (-538)) (-622 (-538))) 63)) (-3465 (((-538) $) 53 (|has| (-538) (-537)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| (-538) (-886)))) (-4092 (((-400 $) $) NIL)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-4127 (($ $ (-622 (-538)) (-622 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-538) (-538)) NIL (|has| (-538) (-304 (-538)))) (($ $ (-288 (-538))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-288 (-538)))) NIL (|has| (-538) (-304 (-538)))) (($ $ (-622 (-1149)) (-622 (-538))) NIL (|has| (-538) (-507 (-1149) (-538)))) (($ $ (-1149) (-538)) NIL (|has| (-538) (-507 (-1149) (-538))))) (-1704 (((-751) $) NIL)) (-4159 (($ $ (-538)) NIL (|has| (-538) (-281 (-538) (-538))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $) 11 (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-3328 (($ $) NIL)) (-3330 (((-538) $) 39)) (-3347 (((-622 (-538)) $) 61)) (-4330 (((-866 (-538)) $) NIL (|has| (-538) (-598 (-866 (-538))))) (((-866 (-373)) $) NIL (|has| (-538) (-598 (-866 (-373))))) (((-527) $) NIL (|has| (-538) (-598 (-527)))) (((-373) $) NIL (|has| (-538) (-996))) (((-221) $) NIL (|has| (-538) (-996)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-538) (-886))))) (-4317 (((-840) $) 77) (($ (-538)) 43) (($ $) NIL) (($ (-402 (-538))) 20) (($ (-538)) 43) (($ (-1149)) NIL (|has| (-538) (-1014 (-1149)))) (((-402 (-538)) $) 18)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-538) (-886))) (|has| (-538) (-143))))) (-3461 (((-751)) 9)) (-3466 (((-538) $) 51 (|has| (-538) (-537)))) (-2177 (((-112) $ $) NIL)) (-3742 (($ $) NIL (|has| (-538) (-800)))) (-2991 (($) 10 T CONST)) (-2997 (($) 12 T CONST)) (-3002 (($ $) NIL (|has| (-538) (-229))) (($ $ (-751)) NIL (|has| (-538) (-229))) (($ $ (-1149)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| (-538) (-876 (-1149)))) (($ $ (-1 (-538) (-538)) (-751)) NIL) (($ $ (-1 (-538) (-538))) NIL)) (-2896 (((-112) $ $) NIL (|has| (-538) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3387 (((-112) $ $) 14)) (-3017 (((-112) $ $) NIL (|has| (-538) (-827)))) (-3018 (((-112) $ $) 33 (|has| (-538) (-827)))) (-4308 (($ $ $) 29) (($ (-538) (-538)) 31)) (-4197 (($ $) 15) (($ $ $) 23)) (-4199 (($ $ $) 21)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 25) (($ $ $) 27) (($ $ (-402 (-538))) NIL) (($ (-402 (-538)) $) NIL) (($ (-538) $) 25) (($ $ (-538)) NIL))) +(((-980 |#1|) (-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -3350 ((-622 (-538)) $)) (-15 -3349 ((-1126 (-538)) $)) (-15 -3348 ((-622 (-538)) $)) (-15 -3347 ((-622 (-538)) $)) (-15 -3346 ($ (-622 (-538)))) (-15 -3345 ($ (-622 (-538)) (-622 (-538)))))) (-538)) (T -980)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3348 (*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3347 (*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3346 (*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) (-3345 (*1 *1 *2 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538))))) +(-13 (-967 (-538)) (-10 -8 (-15 -4317 ((-402 (-538)) $)) (-15 -3463 ((-402 (-538)) $)) (-15 -3350 ((-622 (-538)) $)) (-15 -3349 ((-1126 (-538)) $)) (-15 -3348 ((-622 (-538)) $)) (-15 -3347 ((-622 (-538)) $)) (-15 -3346 ($ (-622 (-538)))) (-15 -3345 ($ (-622 (-538)) (-622 (-538)))))) +((-3351 (((-51) (-402 (-538)) (-538)) 9))) +(((-981) (-10 -7 (-15 -3351 ((-51) (-402 (-538)) (-538))))) (T -981)) +((-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-538))) (-5 *4 (-538)) (-5 *2 (-51)) (-5 *1 (-981))))) +(-10 -7 (-15 -3351 ((-51) (-402 (-538)) (-538)))) +((-3471 (((-538)) 13)) (-3354 (((-538)) 16)) (-3353 (((-1237) (-538)) 15)) (-3352 (((-538) (-538)) 17) (((-538)) 12))) +(((-982) (-10 -7 (-15 -3352 ((-538))) (-15 -3471 ((-538))) (-15 -3352 ((-538) (-538))) (-15 -3353 ((-1237) (-538))) (-15 -3354 ((-538))))) (T -982)) +((-3354 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-982)))) (-3352 (*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))) (-3471 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))) (-3352 (*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982))))) +(-10 -7 (-15 -3352 ((-538))) (-15 -3471 ((-538))) (-15 -3352 ((-538) (-538))) (-15 -3353 ((-1237) (-538))) (-15 -3354 ((-538)))) +((-4093 (((-400 |#1|) |#1|) 41)) (-4092 (((-400 |#1|) |#1|) 40))) +(((-983 |#1|) (-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1|))) (-1207 (-402 (-538)))) (T -983)) +((-4093 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1207 (-402 (-538)))))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1207 (-402 (-538))))))) +(-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1|))) +((-3357 (((-3 (-402 (-538)) "failed") |#1|) 15)) (-3356 (((-112) |#1|) 14)) (-3355 (((-402 (-538)) |#1|) 10))) +(((-984 |#1|) (-10 -7 (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|))) (-1014 (-402 (-538)))) (T -984)) +((-3357 (*1 *2 *3) (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2)))) (-3356 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-1014 (-402 (-538)))))) (-3355 (*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2))))) +(-10 -7 (-15 -3355 ((-402 (-538)) |#1|)) (-15 -3356 ((-112) |#1|)) (-15 -3357 ((-3 (-402 (-538)) "failed") |#1|))) +((-4147 ((|#2| $ "value" |#2|) 12)) (-4159 ((|#2| $ "value") 10)) (-3361 (((-112) $ $) 18))) +(((-985 |#1| |#2|) (-10 -8 (-15 -4147 (|#2| |#1| "value" |#2|)) (-15 -3361 ((-112) |#1| |#1|)) (-15 -4159 (|#2| |#1| "value"))) (-986 |#2|) (-1185)) (T -985)) +NIL +(-10 -8 (-15 -4147 (|#2| |#1| "value" |#2|)) (-15 -3361 ((-112) |#1| |#1|)) (-15 -4159 (|#2| |#1| "value"))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-3896 (($) 7 T CONST)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ "value") 47)) (-3362 (((-538) $ $) 44)) (-3996 (((-112) $) 46)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-986 |#1|) (-138) (-1185)) (T -986)) +((-3876 (*1 *2 *1) (-12 (-4 *3 (-1185)) (-5 *2 (-622 *1)) (-4 *1 (-986 *3)))) (-3364 (*1 *2 *1) (-12 (-4 *3 (-1185)) (-5 *2 (-622 *1)) (-4 *1 (-986 *3)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1185)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-986 *2)) (-4 *2 (-1185)))) (-3996 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-3363 (*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-622 *3)))) (-3362 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-538)))) (-3361 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3360 (*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3359 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *1)) (|has| *1 (-6 -4354)) (-4 *1 (-986 *3)) (-4 *3 (-1185)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1185)))) (-3358 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1185))))) +(-13 (-483 |t#1|) (-10 -8 (-15 -3876 ((-622 $) $)) (-15 -3364 ((-622 $) $)) (-15 -3881 ((-112) $)) (-15 -3761 (|t#1| $)) (-15 -4159 (|t#1| $ "value")) (-15 -3996 ((-112) $)) (-15 -3363 ((-622 |t#1|) $)) (-15 -3362 ((-538) $ $)) (IF (|has| |t#1| (-1074)) (PROGN (-15 -3361 ((-112) $ $)) (-15 -3360 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4354)) (PROGN (-15 -3359 ($ $ (-622 $))) (-15 -4147 (|t#1| $ "value" |t#1|)) (-15 -3358 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-3370 (($ $) 9) (($ $ (-895)) 43) (($ (-402 (-538))) 13) (($ (-538)) 15)) (-3534 (((-3 $ "failed") (-1143 $) (-895) (-840)) 23) (((-3 $ "failed") (-1143 $) (-895)) 28)) (-3344 (($ $ (-538)) 49)) (-3461 (((-751)) 17)) (-3535 (((-622 $) (-1143 $)) NIL) (((-622 $) (-1143 (-402 (-538)))) 54) (((-622 $) (-1143 (-538))) 59) (((-622 $) (-922 $)) 63) (((-622 $) (-922 (-402 (-538)))) 67) (((-622 $) (-922 (-538))) 71)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL) (($ $ (-402 (-538))) 47))) +(((-987 |#1|) (-10 -8 (-15 -3370 (|#1| (-538))) (-15 -3370 (|#1| (-402 (-538)))) (-15 -3370 (|#1| |#1| (-895))) (-15 -3535 ((-622 |#1|) (-922 (-538)))) (-15 -3535 ((-622 |#1|) (-922 (-402 (-538))))) (-15 -3535 ((-622 |#1|) (-922 |#1|))) (-15 -3535 ((-622 |#1|) (-1143 (-538)))) (-15 -3535 ((-622 |#1|) (-1143 (-402 (-538))))) (-15 -3535 ((-622 |#1|) (-1143 |#1|))) (-15 -3534 ((-3 |#1| "failed") (-1143 |#1|) (-895))) (-15 -3534 ((-3 |#1| "failed") (-1143 |#1|) (-895) (-840))) (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -3344 (|#1| |#1| (-538))) (-15 -3370 (|#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -3461 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895)))) (-988)) (T -987)) +((-3461 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-987 *3)) (-4 *3 (-988))))) +(-10 -8 (-15 -3370 (|#1| (-538))) (-15 -3370 (|#1| (-402 (-538)))) (-15 -3370 (|#1| |#1| (-895))) (-15 -3535 ((-622 |#1|) (-922 (-538)))) (-15 -3535 ((-622 |#1|) (-922 (-402 (-538))))) (-15 -3535 ((-622 |#1|) (-922 |#1|))) (-15 -3535 ((-622 |#1|) (-1143 (-538)))) (-15 -3535 ((-622 |#1|) (-1143 (-402 (-538))))) (-15 -3535 ((-622 |#1|) (-1143 |#1|))) (-15 -3534 ((-3 |#1| "failed") (-1143 |#1|) (-895))) (-15 -3534 ((-3 |#1| "failed") (-1143 |#1|) (-895) (-840))) (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -3344 (|#1| |#1| (-538))) (-15 -3370 (|#1| |#1|)) (-15 ** (|#1| |#1| (-538))) (-15 -3461 ((-751))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 87)) (-2178 (($ $) 88)) (-2176 (((-112) $) 90)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 107)) (-4329 (((-400 $) $) 108)) (-3370 (($ $) 71) (($ $ (-895)) 57) (($ (-402 (-538))) 56) (($ (-538)) 55)) (-1705 (((-112) $ $) 98)) (-3986 (((-538) $) 124)) (-3896 (($) 17 T CONST)) (-3534 (((-3 $ "failed") (-1143 $) (-895) (-840)) 65) (((-3 $ "failed") (-1143 $) (-895)) 64)) (-3508 (((-3 (-538) #1="failed") $) 83 (|has| (-402 (-538)) (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 81 (|has| (-402 (-538)) (-1014 (-402 (-538))))) (((-3 (-402 (-538)) #1#) $) 79)) (-3507 (((-538) $) 84 (|has| (-402 (-538)) (-1014 (-538)))) (((-402 (-538)) $) 82 (|has| (-402 (-538)) (-1014 (-402 (-538))))) (((-402 (-538)) $) 78)) (-3366 (($ $ (-840)) 54)) (-3365 (($ $ (-840)) 53)) (-2894 (($ $ $) 102)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 101)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 96)) (-4086 (((-112) $) 109)) (-3537 (((-112) $) 122)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 70)) (-3538 (((-112) $) 123)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 105)) (-3677 (($ $ $) 121)) (-3678 (($ $ $) 120)) (-3367 (((-3 (-1143 $) "failed") $) 66)) (-3369 (((-3 (-840) "failed") $) 68)) (-3368 (((-3 (-1143 $) "failed") $) 67)) (-2013 (($ (-622 $)) 94) (($ $ $) 93)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 110)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 95)) (-3495 (($ (-622 $)) 92) (($ $ $) 91)) (-4092 (((-400 $) $) 106)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 103)) (-3820 (((-3 $ "failed") $ $) 86)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 97)) (-1704 (((-751) $) 99)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 100)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 114) (($ $) 85) (($ (-402 (-538))) 80) (($ (-538)) 77) (($ (-402 (-538))) 74)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 89)) (-4129 (((-402 (-538)) $ $) 52)) (-3535 (((-622 $) (-1143 $)) 63) (((-622 $) (-1143 (-402 (-538)))) 62) (((-622 $) (-1143 (-538))) 61) (((-622 $) (-922 $)) 60) (((-622 $) (-922 (-402 (-538)))) 59) (((-622 $) (-922 (-538))) 58)) (-3742 (($ $) 125)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 118)) (-2897 (((-112) $ $) 117)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 119)) (-3018 (((-112) $ $) 116)) (-4308 (($ $ $) 115)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 111) (($ $ (-402 (-538))) 69)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ (-402 (-538)) $) 113) (($ $ (-402 (-538))) 112) (($ (-538) $) 76) (($ $ (-538)) 75) (($ (-402 (-538)) $) 73) (($ $ (-402 (-538))) 72))) +(((-988) (-138)) (T -988)) +((-3370 (*1 *1 *1) (-4 *1 (-988))) (-3369 (*1 *2 *1) (|partial| -12 (-4 *1 (-988)) (-5 *2 (-840)))) (-3368 (*1 *2 *1) (|partial| -12 (-5 *2 (-1143 *1)) (-4 *1 (-988)))) (-3367 (*1 *2 *1) (|partial| -12 (-5 *2 (-1143 *1)) (-4 *1 (-988)))) (-3534 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1143 *1)) (-5 *3 (-895)) (-5 *4 (-840)) (-4 *1 (-988)))) (-3534 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1143 *1)) (-5 *3 (-895)) (-4 *1 (-988)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-988)) (-5 *2 (-622 *1)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-1143 (-402 (-538)))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-1143 (-538))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-988)) (-5 *2 (-622 *1)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-922 (-538))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) (-3370 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-895)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-4 *1 (-988)))) (-3370 (*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-988)))) (-3366 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-840)))) (-3365 (*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-840)))) (-4129 (*1 *2 *1 *1) (-12 (-4 *1 (-988)) (-5 *2 (-402 (-538)))))) +(-13 (-145) (-825) (-170) (-358) (-407 (-402 (-538))) (-38 (-538)) (-38 (-402 (-538))) (-978) (-10 -8 (-15 -3369 ((-3 (-840) "failed") $)) (-15 -3368 ((-3 (-1143 $) "failed") $)) (-15 -3367 ((-3 (-1143 $) "failed") $)) (-15 -3534 ((-3 $ "failed") (-1143 $) (-895) (-840))) (-15 -3534 ((-3 $ "failed") (-1143 $) (-895))) (-15 -3535 ((-622 $) (-1143 $))) (-15 -3535 ((-622 $) (-1143 (-402 (-538))))) (-15 -3535 ((-622 $) (-1143 (-538)))) (-15 -3535 ((-622 $) (-922 $))) (-15 -3535 ((-622 $) (-922 (-402 (-538))))) (-15 -3535 ((-622 $) (-922 (-538)))) (-15 -3370 ($ $ (-895))) (-15 -3370 ($ $)) (-15 -3370 ($ (-402 (-538)))) (-15 -3370 ($ (-538))) (-15 -3366 ($ $ (-840))) (-15 -3365 ($ $ (-840))) (-15 -4129 ((-402 (-538)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 #2=(-538)) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 #2# #2#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-840)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-407 (-402 (-538))) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 #2#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 #2#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-825) . T) ((-827) . T) ((-897) . T) ((-978) . T) ((-1014 (-402 (-538))) . T) ((-1014 (-538)) |has| (-402 (-538)) (-1014 (-538))) ((-1031 #1#) . T) ((-1031 #2#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T)) +((-3371 (((-2 (|:| |ans| |#2|) (|:| -3472 |#2|) (|:| |sol?| (-112))) (-538) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66))) +(((-989 |#1| |#2|) (-10 -7 (-15 -3371 ((-2 (|:| |ans| |#2|) (|:| -3472 |#2|) (|:| |sol?| (-112))) (-538) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-27) (-416 |#1|))) (T -989)) +((-3371 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1149)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-622 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1171) (-27) (-416 *8))) (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-538)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3472 *4) (|:| |sol?| (-112)))) (-5 *1 (-989 *8 *4))))) +(-10 -7 (-15 -3371 ((-2 (|:| |ans| |#2|) (|:| -3472 |#2|) (|:| |sol?| (-112))) (-538) |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3372 (((-3 (-622 |#2|) "failed") (-538) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53))) +(((-990 |#1| |#2|) (-10 -7 (-15 -3372 ((-3 (-622 |#2|) "failed") (-538) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538))) (-13 (-1171) (-27) (-416 |#1|))) (T -990)) +((-3372 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1149)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-622 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1171) (-27) (-416 *8))) (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-538)) (-5 *2 (-622 *4)) (-5 *1 (-990 *8 *4))))) +(-10 -7 (-15 -3372 ((-3 (-622 |#2|) "failed") (-538) |#2| |#2| |#2| (-1149) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-622 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-622 |#2|)) (-1 (-3 (-2 (|:| -2251 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-3375 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3617 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-538)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-538) (-1 |#2| |#2|)) 30)) (-3373 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 58)) (-3374 (((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|)) 63))) +(((-991 |#1| |#2|) (-10 -7 (-15 -3373 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3374 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -3375 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3617 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-538)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-538) (-1 |#2| |#2|)))) (-13 (-358) (-145) (-1014 (-538))) (-1207 |#1|)) (T -991)) +((-3375 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1207 *6)) (-4 *6 (-13 (-358) (-145) (-1014 *4))) (-5 *4 (-538)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3617 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-991 *6 *3)))) (-3374 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112)))) (-5 *1 (-991 *4 *5)) (-5 *3 (-402 *5)))) (-3373 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6)) (|:| -3429 *6))) (-5 *1 (-991 *5 *6)) (-5 *3 (-402 *6))))) +(-10 -7 (-15 -3373 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |c| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3374 ((-2 (|:| |ans| (-402 |#2|)) (|:| |nosol| (-112))) (-402 |#2|) (-402 |#2|))) (-15 -3375 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3617 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-538)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-538) (-1 |#2| |#2|)))) +((-3376 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|)) 22)) (-3377 (((-3 (-622 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)) 33))) +(((-992 |#1| |#2|) (-10 -7 (-15 -3376 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3377 ((-3 (-622 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)))) (-13 (-358) (-145) (-1014 (-538))) (-1207 |#1|)) (T -992)) +((-3377 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) (-5 *2 (-622 (-402 *5))) (-5 *1 (-992 *4 *5)) (-5 *3 (-402 *5)))) (-3376 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-13 (-358) (-145) (-1014 (-538)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6) (|:| |c1| (-402 *6)) (|:| |c2| (-402 *6)) (|:| -3429 *6))) (-5 *1 (-992 *5 *6)) (-5 *3 (-402 *6))))) +(-10 -7 (-15 -3376 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-402 |#2|)) (|:| |h| |#2|) (|:| |c1| (-402 |#2|)) (|:| |c2| (-402 |#2|)) (|:| -3429 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|) (-1 |#2| |#2|))) (-15 -3377 ((-3 (-622 (-402 |#2|)) "failed") (-402 |#2|) (-402 |#2|) (-402 |#2|)))) +((-3378 (((-1 |#1|) (-622 (-2 (|:| -3761 |#1|) (|:| -1577 (-538))))) 37)) (-3436 (((-1 |#1|) (-1070 |#1|)) 45)) (-3379 (((-1 |#1|) (-1231 |#1|) (-1231 (-538)) (-538)) 34))) +(((-993 |#1|) (-10 -7 (-15 -3436 ((-1 |#1|) (-1070 |#1|))) (-15 -3378 ((-1 |#1|) (-622 (-2 (|:| -3761 |#1|) (|:| -1577 (-538)))))) (-15 -3379 ((-1 |#1|) (-1231 |#1|) (-1231 (-538)) (-538)))) (-1074)) (T -993)) +((-3379 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1231 *6)) (-5 *4 (-1231 (-538))) (-5 *5 (-538)) (-4 *6 (-1074)) (-5 *2 (-1 *6)) (-5 *1 (-993 *6)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -3761 *4) (|:| -1577 (-538))))) (-4 *4 (-1074)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-1070 *4)) (-4 *4 (-1074)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4))))) +(-10 -7 (-15 -3436 ((-1 |#1|) (-1070 |#1|))) (-15 -3378 ((-1 |#1|) (-622 (-2 (|:| -3761 |#1|) (|:| -1577 (-538)))))) (-15 -3379 ((-1 |#1|) (-1231 |#1|) (-1231 (-538)) (-538)))) +((-4131 (((-751) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4131 ((-751) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-358) (-1207 |#1|) (-1207 (-402 |#2|)) (-337 |#1| |#2| |#3|) (-13 (-363) (-358))) (T -994)) +((-4131 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-328 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-4 *4 (-1207 (-402 *7))) (-4 *8 (-337 *6 *7 *4)) (-4 *9 (-13 (-363) (-358))) (-5 *2 (-751)) (-5 *1 (-994 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -4131 ((-751) (-328 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-2898 (((-112) $ $) NIL)) (-3380 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) NIL) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 11)) (-3387 (((-112) $ $) NIL))) +(((-995) (-13 (-1056) (-10 -8 (-15 -3380 ((-1108) $)) (-15 -3584 ((-1108) $))))) (T -995)) +((-3380 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995))))) +(-13 (-1056) (-10 -8 (-15 -3380 ((-1108) $)) (-15 -3584 ((-1108) $)))) +((-4330 (((-221) $) 6) (((-373) $) 9))) +(((-996) (-138)) (T -996)) +NIL +(-13 (-598 (-221)) (-598 (-373))) +(((-598 (-221)) . T) ((-598 (-373)) . T)) +((-3469 (((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) 31) (((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538))) 28)) (-3383 (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538))) 33) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538))) 29) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) 32) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|) 27)) (-3382 (((-622 (-402 (-538))) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) 19)) (-3381 (((-402 (-538)) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) 16))) +(((-997 |#1|) (-10 -7 (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|)) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538)))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3381 ((-402 (-538)) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3382 ((-622 (-402 (-538))) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))))) (-1207 (-538))) (T -997)) +((-3382 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *2 (-622 (-402 (-538)))) (-5 *1 (-997 *4)) (-4 *4 (-1207 (-538))))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) (-5 *2 (-402 (-538))) (-5 *1 (-997 *4)) (-4 *4 (-1207 (-538))))) (-3469 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))))) (-3469 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) (-5 *4 (-402 (-538))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))))) (-3383 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *5) (|:| -3472 *5)))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))) (-5 *4 (-2 (|:| -3473 *5) (|:| -3472 *5))))) (-3383 (*1 *2 *3 *4) (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))) (-5 *4 (-402 (-538))))) (-3383 (*1 *2 *3 *4) (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))) (-5 *4 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) (-3383 (*1 *2 *3) (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538)))))) +(-10 -7 (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|)) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538)))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3381 ((-402 (-538)) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3382 ((-622 (-402 (-538))) (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))))) +((-3469 (((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) 35) (((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538))) 32)) (-3383 (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538))) 30) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538))) 26) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) 28) (((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|) 24))) +(((-998 |#1|) (-10 -7 (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|)) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538)))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) (-1207 (-402 (-538)))) (T -998)) +((-3469 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538)))))) (-3469 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) (-5 *4 (-402 (-538))) (-5 *1 (-998 *3)) (-4 *3 (-1207 *4)))) (-3383 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *5) (|:| -3472 *5)))) (-5 *1 (-998 *3)) (-4 *3 (-1207 *5)) (-5 *4 (-2 (|:| -3473 *5) (|:| -3472 *5))))) (-3383 (*1 *2 *3 *4) (-12 (-5 *4 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *4) (|:| -3472 *4)))) (-5 *1 (-998 *3)) (-4 *3 (-1207 *4)))) (-3383 (*1 *2 *3 *4) (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538)))) (-5 *4 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) (-3383 (*1 *2 *3) (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538))))))) +(-10 -7 (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1|)) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-402 (-538)))) (-15 -3383 ((-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-402 (-538)))) (-15 -3469 ((-3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) "failed") |#1| (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))) (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) +((-3936 (((-622 (-373)) (-922 (-538)) (-373)) 28) (((-622 (-373)) (-922 (-402 (-538))) (-373)) 27)) (-4327 (((-622 (-622 (-373))) (-622 (-922 (-538))) (-622 (-1149)) (-373)) 37))) +(((-999) (-10 -7 (-15 -3936 ((-622 (-373)) (-922 (-402 (-538))) (-373))) (-15 -3936 ((-622 (-373)) (-922 (-538)) (-373))) (-15 -4327 ((-622 (-622 (-373))) (-622 (-922 (-538))) (-622 (-1149)) (-373))))) (T -999)) +((-4327 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-622 (-1149))) (-5 *2 (-622 (-622 (-373)))) (-5 *1 (-999)) (-5 *5 (-373)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-922 (-538))) (-5 *2 (-622 (-373))) (-5 *1 (-999)) (-5 *4 (-373)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *2 (-622 (-373))) (-5 *1 (-999)) (-5 *4 (-373))))) +(-10 -7 (-15 -3936 ((-622 (-373)) (-922 (-402 (-538))) (-373))) (-15 -3936 ((-622 (-373)) (-922 (-538)) (-373))) (-15 -4327 ((-622 (-622 (-373))) (-622 (-922 (-538))) (-622 (-1149)) (-373)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 70)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-3370 (($ $) NIL) (($ $ (-895)) NIL) (($ (-402 (-538))) NIL) (($ (-538)) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) 65)) (-3896 (($) NIL T CONST)) (-3534 (((-3 $ #1="failed") (-1143 $) (-895) (-840)) NIL) (((-3 $ #1#) (-1143 $) (-895)) 50)) (-3508 (((-3 (-402 (-538)) #2="failed") $) NIL (|has| (-402 (-538)) (-1014 (-402 (-538))))) (((-3 (-402 (-538)) #2#) $) NIL) (((-3 |#1| #2#) $) 107) (((-3 (-538) #2#) $) NIL (-3891 (|has| (-402 (-538)) (-1014 (-538))) (|has| |#1| (-1014 (-538)))))) (-3507 (((-402 (-538)) $) 15 (|has| (-402 (-538)) (-1014 (-402 (-538))))) (((-402 (-538)) $) 15) ((|#1| $) 108) (((-538) $) NIL (-3891 (|has| (-402 (-538)) (-1014 (-538))) (|has| |#1| (-1014 (-538)))))) (-3366 (($ $ (-840)) 42)) (-3365 (($ $ (-840)) 43)) (-2894 (($ $ $) NIL)) (-3533 (((-402 (-538)) $ $) 19)) (-3821 (((-3 $ "failed") $) 83)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-3537 (((-112) $) 61)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL)) (-3538 (((-112) $) 64)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3367 (((-3 (-1143 $) #1#) $) 78)) (-3369 (((-3 (-840) #1#) $) 77)) (-3368 (((-3 (-1143 $) #1#) $) 75)) (-3384 (((-3 (-1035 $ (-1143 $)) "failed") $) 73)) (-2013 (($ (-622 $)) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 84)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ (-622 $)) NIL) (($ $ $) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4317 (((-840) $) 82) (($ (-538)) NIL) (($ (-402 (-538))) NIL) (($ $) 58) (($ (-402 (-538))) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL) (($ |#1|) 110)) (-3461 (((-751)) NIL)) (-2177 (((-112) $ $) NIL)) (-4129 (((-402 (-538)) $ $) 25)) (-3535 (((-622 $) (-1143 $)) 56) (((-622 $) (-1143 (-402 (-538)))) NIL) (((-622 $) (-1143 (-538))) NIL) (((-622 $) (-922 $)) NIL) (((-622 $) (-922 (-402 (-538)))) NIL) (((-622 $) (-922 (-538))) NIL)) (-3385 (($ (-1035 $ (-1143 $)) (-840)) 41)) (-3742 (($ $) 20)) (-2991 (($) 29 T CONST)) (-2997 (($) 35 T CONST)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 71)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 22)) (-4308 (($ $ $) 33)) (-4197 (($ $) 34) (($ $ $) 69)) (-4199 (($ $ $) 103)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL) (($ $ (-402 (-538))) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 91) (($ $ $) 96) (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL) (($ (-538) $) 91) (($ $ (-538)) NIL) (($ (-402 (-538)) $) NIL) (($ $ (-402 (-538))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL))) +(((-1000 |#1|) (-13 (-988) (-407 |#1|) (-38 |#1|) (-10 -8 (-15 -3385 ($ (-1035 $ (-1143 $)) (-840))) (-15 -3384 ((-3 (-1035 $ (-1143 $)) "failed") $)) (-15 -3533 ((-402 (-538)) $ $)))) (-13 (-825) (-358) (-996))) (T -1000)) +((-3385 (*1 *1 *2 *3) (-12 (-5 *2 (-1035 (-1000 *4) (-1143 (-1000 *4)))) (-5 *3 (-840)) (-5 *1 (-1000 *4)) (-4 *4 (-13 (-825) (-358) (-996))))) (-3384 (*1 *2 *1) (|partial| -12 (-5 *2 (-1035 (-1000 *3) (-1143 (-1000 *3)))) (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-996))))) (-3533 (*1 *2 *1 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-996)))))) +(-13 (-988) (-407 |#1|) (-38 |#1|) (-10 -8 (-15 -3385 ($ (-1035 $ (-1143 $)) (-840))) (-15 -3384 ((-3 (-1035 $ (-1143 $)) "failed") $)) (-15 -3533 ((-402 (-538)) $ $)))) +((-3386 (((-2 (|:| -3617 |#2|) (|:| -2836 (-622 |#1|))) |#2| (-622 |#1|)) 20) ((|#2| |#2| |#1|) 15))) +(((-1001 |#1| |#2|) (-10 -7 (-15 -3386 (|#2| |#2| |#1|)) (-15 -3386 ((-2 (|:| -3617 |#2|) (|:| -2836 (-622 |#1|))) |#2| (-622 |#1|)))) (-358) (-638 |#1|)) (T -1001)) +((-3386 (*1 *2 *3 *4) (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -3617 *3) (|:| -2836 (-622 *5)))) (-5 *1 (-1001 *5 *3)) (-5 *4 (-622 *5)) (-4 *3 (-638 *5)))) (-3386 (*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-638 *3))))) +(-10 -7 (-15 -3386 (|#2| |#2| |#1|)) (-15 -3386 ((-2 (|:| -3617 |#2|) (|:| -2836 (-622 |#1|))) |#2| (-622 |#1|)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3388 ((|#1| $ |#1|) 14)) (-4147 ((|#1| $ |#1|) 12)) (-3390 (($ |#1|) 10)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4159 ((|#1| $) 11)) (-3389 ((|#1| $) 13)) (-4317 (((-840) $) 21 (|has| |#1| (-1074)))) (-3387 (((-112) $ $) 9))) +(((-1002 |#1|) (-13 (-1185) (-10 -8 (-15 -3390 ($ |#1|)) (-15 -4159 (|#1| $)) (-15 -4147 (|#1| $ |#1|)) (-15 -3389 (|#1| $)) (-15 -3388 (|#1| $ |#1|)) (-15 -3387 ((-112) $ $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|))) (-1185)) (T -1002)) +((-3390 (*1 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) (-4159 (*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) (-4147 (*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) (-3389 (*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) (-3388 (*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) (-3387 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1002 *3)) (-4 *3 (-1185))))) +(-13 (-1185) (-10 -8 (-15 -3390 ($ |#1|)) (-15 -4159 (|#1| $)) (-15 -4147 (|#1| $ |#1|)) (-15 -3389 (|#1| $)) (-15 -3388 (|#1| $ |#1|)) (-15 -3387 ((-112) $ $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|))) +((-2898 (((-112) $ $) NIL)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) NIL)) (-4045 (((-622 $) (-622 |#4|)) 105) (((-622 $) (-622 |#4|) (-112)) 106) (((-622 $) (-622 |#4|) (-112) (-112)) 104) (((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112)) 107)) (-3417 (((-622 |#3|) $) NIL)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4051 ((|#4| |#4| $) NIL)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 99)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 54)) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) 26 (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3233 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) NIL)) (-3507 (($ (-622 |#4|)) NIL)) (-4158 (((-3 $ #1#) $) 39)) (-4048 ((|#4| |#4| $) 57)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3765 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) NIL)) (-3548 (((-112) |#4| $) NIL)) (-3546 (((-112) |#4| $) NIL)) (-3549 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3797 (((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112)) 119)) (-2068 (((-622 |#4|) $) 16 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3531 ((|#3| $) 33)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#4|) $) 17 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2072 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 21)) (-3247 (((-622 |#3|) $) NIL)) (-3246 (((-112) |#3| $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) NIL)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 97)) (-4157 (((-3 |#4| #1#) $) 37)) (-3543 (((-622 $) |#4| $) 80)) (-3545 (((-3 (-112) (-622 $)) |#4| $) NIL)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 90) (((-112) |#4| $) 52)) (-3589 (((-622 $) |#4| $) 102) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) 103) (((-622 $) |#4| (-622 $)) NIL)) (-3798 (((-622 $) (-622 |#4|) (-112) (-112) (-112)) 114)) (-3799 (($ |#4| $) 70) (($ (-622 |#4|) $) 71) (((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 67)) (-4060 (((-622 |#4|) $) NIL)) (-4054 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-4062 (((-112) $ $) NIL)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4050 ((|#4| |#4| $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4042 (((-3 $ #1#) $ |#4|) 48)) (-4128 (($ $ |#4|) NIL) (((-622 $) |#4| $) 82) (((-622 $) |#4| (-622 $)) NIL) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) 77)) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 15)) (-3928 (($) 13)) (-4307 (((-751) $) NIL)) (-2069 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) 12)) (-4330 (((-527) $) NIL (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 20)) (-3243 (($ $ |#3|) 42)) (-3245 (($ $ |#3|) 44)) (-4047 (($ $) NIL)) (-3244 (($ $ |#3|) NIL)) (-4317 (((-840) $) 31) (((-622 |#4|) $) 40)) (-4041 (((-751) $) NIL (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) NIL)) (-3540 (((-622 $) |#4| $) 79) (((-622 $) |#4| (-622 $)) NIL) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) NIL)) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) NIL)) (-3547 (((-112) |#4| $) NIL)) (-4293 (((-112) |#3| $) 53)) (-3387 (((-112) $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1003 |#1| |#2| |#3| |#4|) (-13 (-1045 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3799 ((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112))) (-15 -3798 ((-622 $) (-622 |#4|) (-112) (-112) (-112))) (-15 -3797 ((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112))))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1003)) +((-3799 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *3))) (-5 *1 (-1003 *5 *6 *7 *3)) (-4 *3 (-1039 *5 *6 *7)))) (-4045 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-4045 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-3798 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8))) (-5 *1 (-1003 *5 *6 *7 *8)))) (-3797 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-622 *8)) (|:| |towers| (-622 (-1003 *5 *6 *7 *8))))) (-5 *1 (-1003 *5 *6 *7 *8)) (-5 *3 (-622 *8))))) +(-13 (-1045 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3799 ((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112))) (-15 -3798 ((-622 $) (-622 |#4|) (-112) (-112) (-112))) (-15 -3797 ((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112))))) +((-3391 (((-622 (-2 (|:| |radval| (-309 (-538))) (|:| |radmult| (-538)) (|:| |radvect| (-622 (-669 (-309 (-538))))))) (-669 (-402 (-922 (-538))))) 59)) (-3392 (((-622 (-669 (-309 (-538)))) (-309 (-538)) (-669 (-402 (-922 (-538))))) 48)) (-3393 (((-622 (-309 (-538))) (-669 (-402 (-922 (-538))))) 41)) (-3397 (((-622 (-669 (-309 (-538)))) (-669 (-402 (-922 (-538))))) 68)) (-3395 (((-669 (-309 (-538))) (-669 (-309 (-538)))) 34)) (-3396 (((-622 (-669 (-309 (-538)))) (-622 (-669 (-309 (-538))))) 62)) (-3394 (((-3 (-669 (-309 (-538))) "failed") (-669 (-402 (-922 (-538))))) 66))) +(((-1004) (-10 -7 (-15 -3391 ((-622 (-2 (|:| |radval| (-309 (-538))) (|:| |radmult| (-538)) (|:| |radvect| (-622 (-669 (-309 (-538))))))) (-669 (-402 (-922 (-538)))))) (-15 -3392 ((-622 (-669 (-309 (-538)))) (-309 (-538)) (-669 (-402 (-922 (-538)))))) (-15 -3393 ((-622 (-309 (-538))) (-669 (-402 (-922 (-538)))))) (-15 -3394 ((-3 (-669 (-309 (-538))) "failed") (-669 (-402 (-922 (-538)))))) (-15 -3395 ((-669 (-309 (-538))) (-669 (-309 (-538))))) (-15 -3396 ((-622 (-669 (-309 (-538)))) (-622 (-669 (-309 (-538)))))) (-15 -3397 ((-622 (-669 (-309 (-538)))) (-669 (-402 (-922 (-538)))))))) (T -1004)) +((-3397 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-669 (-309 (-538))))) (-5 *1 (-1004)))) (-3396 (*1 *2 *2) (-12 (-5 *2 (-622 (-669 (-309 (-538))))) (-5 *1 (-1004)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-669 (-309 (-538)))) (-5 *1 (-1004)))) (-3394 (*1 *2 *3) (|partial| -12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-669 (-309 (-538)))) (-5 *1 (-1004)))) (-3393 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-309 (-538)))) (-5 *1 (-1004)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *4 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-669 (-309 (-538))))) (-5 *1 (-1004)) (-5 *3 (-309 (-538))))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-2 (|:| |radval| (-309 (-538))) (|:| |radmult| (-538)) (|:| |radvect| (-622 (-669 (-309 (-538)))))))) (-5 *1 (-1004))))) +(-10 -7 (-15 -3391 ((-622 (-2 (|:| |radval| (-309 (-538))) (|:| |radmult| (-538)) (|:| |radvect| (-622 (-669 (-309 (-538))))))) (-669 (-402 (-922 (-538)))))) (-15 -3392 ((-622 (-669 (-309 (-538)))) (-309 (-538)) (-669 (-402 (-922 (-538)))))) (-15 -3393 ((-622 (-309 (-538))) (-669 (-402 (-922 (-538)))))) (-15 -3394 ((-3 (-669 (-309 (-538))) "failed") (-669 (-402 (-922 (-538)))))) (-15 -3395 ((-669 (-309 (-538))) (-669 (-309 (-538))))) (-15 -3396 ((-622 (-669 (-309 (-538)))) (-622 (-669 (-309 (-538)))))) (-15 -3397 ((-622 (-669 (-309 (-538)))) (-669 (-402 (-922 (-538))))))) +((-3401 (((-622 (-669 |#1|)) (-622 (-669 |#1|))) 58) (((-669 |#1|) (-669 |#1|)) 57) (((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-622 (-669 |#1|))) 56) (((-669 |#1|) (-669 |#1|) (-669 |#1|)) 53)) (-3400 (((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895)) 52) (((-669 |#1|) (-669 |#1|) (-895)) 51)) (-3402 (((-622 (-669 (-538))) (-622 (-622 (-538)))) 68) (((-622 (-669 (-538))) (-622 (-878 (-538))) (-538)) 67) (((-669 (-538)) (-622 (-538))) 64) (((-669 (-538)) (-878 (-538)) (-538)) 63)) (-3399 (((-669 (-922 |#1|)) (-751)) 81)) (-3398 (((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895)) 37 (|has| |#1| (-6 (-4355 "*")))) (((-669 |#1|) (-669 |#1|) (-895)) 35 (|has| |#1| (-6 (-4355 "*")))))) +(((-1005 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -3398 ((-669 |#1|) (-669 |#1|) (-895))) |%noBranch|) (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -3398 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895))) |%noBranch|) (-15 -3399 ((-669 (-922 |#1|)) (-751))) (-15 -3400 ((-669 |#1|) (-669 |#1|) (-895))) (-15 -3400 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895))) (-15 -3401 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3401 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3401 ((-669 |#1|) (-669 |#1|))) (-15 -3401 ((-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3402 ((-669 (-538)) (-878 (-538)) (-538))) (-15 -3402 ((-669 (-538)) (-622 (-538)))) (-15 -3402 ((-622 (-669 (-538))) (-622 (-878 (-538))) (-538))) (-15 -3402 ((-622 (-669 (-538))) (-622 (-622 (-538)))))) (-1025)) (T -1005)) +((-3402 (*1 *2 *3) (-12 (-5 *3 (-622 (-622 (-538)))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-1005 *4)) (-4 *4 (-1025)))) (-3402 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-878 (-538)))) (-5 *4 (-538)) (-5 *2 (-622 (-669 *4))) (-5 *1 (-1005 *5)) (-4 *5 (-1025)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1005 *4)) (-4 *4 (-1025)))) (-3402 (*1 *2 *3 *4) (-12 (-5 *3 (-878 (-538))) (-5 *4 (-538)) (-5 *2 (-669 *4)) (-5 *1 (-1005 *5)) (-4 *5 (-1025)))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-622 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) (-3401 (*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) (-3401 (*1 *2 *2 *2) (-12 (-5 *2 (-622 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) (-3401 (*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) (-3400 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-669 *4))) (-5 *3 (-895)) (-4 *4 (-1025)) (-5 *1 (-1005 *4)))) (-3400 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-895)) (-4 *4 (-1025)) (-5 *1 (-1005 *4)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-669 (-922 *4))) (-5 *1 (-1005 *4)) (-4 *4 (-1025)))) (-3398 (*1 *2 *2 *3) (-12 (-5 *2 (-622 (-669 *4))) (-5 *3 (-895)) (|has| *4 (-6 (-4355 "*"))) (-4 *4 (-1025)) (-5 *1 (-1005 *4)))) (-3398 (*1 *2 *2 *3) (-12 (-5 *2 (-669 *4)) (-5 *3 (-895)) (|has| *4 (-6 (-4355 "*"))) (-4 *4 (-1025)) (-5 *1 (-1005 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -3398 ((-669 |#1|) (-669 |#1|) (-895))) |%noBranch|) (IF (|has| |#1| (-6 (-4355 "*"))) (-15 -3398 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895))) |%noBranch|) (-15 -3399 ((-669 (-922 |#1|)) (-751))) (-15 -3400 ((-669 |#1|) (-669 |#1|) (-895))) (-15 -3400 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-895))) (-15 -3401 ((-669 |#1|) (-669 |#1|) (-669 |#1|))) (-15 -3401 ((-622 (-669 |#1|)) (-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3401 ((-669 |#1|) (-669 |#1|))) (-15 -3401 ((-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3402 ((-669 (-538)) (-878 (-538)) (-538))) (-15 -3402 ((-669 (-538)) (-622 (-538)))) (-15 -3402 ((-622 (-669 (-538))) (-622 (-878 (-538))) (-538))) (-15 -3402 ((-622 (-669 (-538))) (-622 (-622 (-538)))))) +((-3406 (((-669 |#1|) (-622 (-669 |#1|)) (-1231 |#1|)) 50 (|has| |#1| (-302)))) (-3777 (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 (-1231 |#1|))) 76 (|has| |#1| (-358))) (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 |#1|)) 79 (|has| |#1| (-358)))) (-3410 (((-1231 |#1|) (-622 (-1231 |#1|)) (-538)) 93 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-3409 (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-895)) 85 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112)) 83 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|))) 82 (-12 (|has| |#1| (-358)) (|has| |#1| (-363)))) (((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112) (-538) (-538)) 81 (-12 (|has| |#1| (-358)) (|has| |#1| (-363))))) (-3408 (((-112) (-622 (-669 |#1|))) 71 (|has| |#1| (-358))) (((-112) (-622 (-669 |#1|)) (-538)) 73 (|has| |#1| (-358)))) (-3405 (((-1231 (-1231 |#1|)) (-622 (-669 |#1|)) (-1231 |#1|)) 48 (|has| |#1| (-302)))) (-3404 (((-669 |#1|) (-622 (-669 |#1|)) (-669 |#1|)) 34)) (-3403 (((-669 |#1|) (-1231 (-1231 |#1|))) 31)) (-3407 (((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-538)) 65 (|has| |#1| (-358))) (((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|))) 64 (|has| |#1| (-358))) (((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-112) (-538)) 69 (|has| |#1| (-358))))) +(((-1006 |#1|) (-10 -7 (-15 -3403 ((-669 |#1|) (-1231 (-1231 |#1|)))) (-15 -3404 ((-669 |#1|) (-622 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -3405 ((-1231 (-1231 |#1|)) (-622 (-669 |#1|)) (-1231 |#1|))) (-15 -3406 ((-669 |#1|) (-622 (-669 |#1|)) (-1231 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-112) (-538))) (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-538))) (-15 -3408 ((-112) (-622 (-669 |#1|)) (-538))) (-15 -3408 ((-112) (-622 (-669 |#1|)))) (-15 -3777 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 |#1|))) (-15 -3777 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 (-1231 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112) (-538) (-538))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-895))) (-15 -3410 ((-1231 |#1|) (-622 (-1231 |#1|)) (-538)))) |%noBranch|) |%noBranch|)) (-1025)) (T -1006)) +((-3410 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-1231 *5))) (-5 *4 (-538)) (-5 *2 (-1231 *5)) (-5 *1 (-1006 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)))) (-3409 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) (-5 *3 (-622 (-669 *5))))) (-3409 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) (-5 *3 (-622 (-669 *5))))) (-3409 (*1 *2 *3) (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1025)) (-5 *2 (-622 (-622 (-669 *4)))) (-5 *1 (-1006 *4)) (-5 *3 (-622 (-669 *4))))) (-3409 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-538)) (-4 *6 (-358)) (-4 *6 (-363)) (-4 *6 (-1025)) (-5 *2 (-622 (-622 (-669 *6)))) (-5 *1 (-1006 *6)) (-5 *3 (-622 (-669 *6))))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-1231 (-1231 *5))) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) (-5 *3 (-622 (-669 *5))))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) (-5 *3 (-622 (-669 *5))))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-622 (-669 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-1006 *4)))) (-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-538)) (-4 *5 (-358)) (-4 *5 (-1025)) (-5 *2 (-112)) (-5 *1 (-1006 *5)))) (-3407 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-538)) (-5 *2 (-669 *5)) (-5 *1 (-1006 *5)) (-4 *5 (-358)) (-4 *5 (-1025)))) (-3407 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-669 *4))) (-5 *2 (-669 *4)) (-5 *1 (-1006 *4)) (-4 *4 (-358)) (-4 *4 (-1025)))) (-3407 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-622 (-669 *6))) (-5 *4 (-112)) (-5 *5 (-538)) (-5 *2 (-669 *6)) (-5 *1 (-1006 *6)) (-4 *6 (-358)) (-4 *6 (-1025)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-1231 *5)) (-4 *5 (-302)) (-4 *5 (-1025)) (-5 *2 (-669 *5)) (-5 *1 (-1006 *5)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-669 *5))) (-4 *5 (-302)) (-4 *5 (-1025)) (-5 *2 (-1231 (-1231 *5))) (-5 *1 (-1006 *5)) (-5 *4 (-1231 *5)))) (-3404 (*1 *2 *3 *2) (-12 (-5 *3 (-622 (-669 *4))) (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1006 *4)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-1231 (-1231 *4))) (-4 *4 (-1025)) (-5 *2 (-669 *4)) (-5 *1 (-1006 *4))))) +(-10 -7 (-15 -3403 ((-669 |#1|) (-1231 (-1231 |#1|)))) (-15 -3404 ((-669 |#1|) (-622 (-669 |#1|)) (-669 |#1|))) (IF (|has| |#1| (-302)) (PROGN (-15 -3405 ((-1231 (-1231 |#1|)) (-622 (-669 |#1|)) (-1231 |#1|))) (-15 -3406 ((-669 |#1|) (-622 (-669 |#1|)) (-1231 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-112) (-538))) (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3407 ((-669 |#1|) (-622 (-669 |#1|)) (-622 (-669 |#1|)) (-538))) (-15 -3408 ((-112) (-622 (-669 |#1|)) (-538))) (-15 -3408 ((-112) (-622 (-669 |#1|)))) (-15 -3777 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 |#1|))) (-15 -3777 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-1231 (-1231 |#1|))))) |%noBranch|) (IF (|has| |#1| (-363)) (IF (|has| |#1| (-358)) (PROGN (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112) (-538) (-538))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-112))) (-15 -3409 ((-622 (-622 (-669 |#1|))) (-622 (-669 |#1|)) (-895))) (-15 -3410 ((-1231 |#1|) (-622 (-1231 |#1|)) (-538)))) |%noBranch|) |%noBranch|)) +((-3411 ((|#1| (-895) |#1|) 9))) +(((-1007 |#1|) (-10 -7 (-15 -3411 (|#1| (-895) |#1|))) (-13 (-1074) (-10 -8 (-15 -4199 ($ $ $))))) (T -1007)) +((-3411 (*1 *2 *3 *2) (-12 (-5 *3 (-895)) (-5 *1 (-1007 *2)) (-4 *2 (-13 (-1074) (-10 -8 (-15 -4199 ($ $ $)))))))) +(-10 -7 (-15 -3411 (|#1| (-895) |#1|))) +((-3412 ((|#1| |#1| (-895)) 9))) +(((-1008 |#1|) (-10 -7 (-15 -3412 (|#1| |#1| (-895)))) (-13 (-1074) (-10 -8 (-15 * ($ $ $))))) (T -1008)) +((-3412 (*1 *2 *2 *3) (-12 (-5 *3 (-895)) (-5 *1 (-1008 *2)) (-4 *2 (-13 (-1074) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -3412 (|#1| |#1| (-895)))) +((-4317 ((|#1| (-306)) 11) (((-1237) |#1|) 9))) +(((-1009 |#1|) (-10 -7 (-15 -4317 ((-1237) |#1|)) (-15 -4317 (|#1| (-306)))) (-1185)) (T -1009)) +((-4317 (*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1009 *2)) (-4 *2 (-1185)))) (-4317 (*1 *2 *3) (-12 (-5 *2 (-1237)) (-5 *1 (-1009 *3)) (-4 *3 (-1185))))) +(-10 -7 (-15 -4317 ((-1237) |#1|)) (-15 -4317 (|#1| (-306)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-4202 (($ |#4|) 25)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3413 ((|#4| $) 27)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 46) (($ (-538)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3461 (((-751)) 43)) (-2991 (($) 21 T CONST)) (-2997 (($) 23 T CONST)) (-3387 (((-112) $ $) 40)) (-4197 (($ $) 31) (($ $ $) NIL)) (-4199 (($ $ $) 29)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1010 |#1| |#2| |#3| |#4| |#5|) (-13 (-170) (-38 |#1|) (-10 -8 (-15 -4202 ($ |#4|)) (-15 -4317 ($ |#4|)) (-15 -3413 (|#4| $)))) (-358) (-773) (-827) (-926 |#1| |#2| |#3|) (-622 |#4|)) (T -1010)) +((-4202 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-926 *3 *4 *5)) (-14 *6 (-622 *2)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-926 *3 *4 *5)) (-14 *6 (-622 *2)))) (-3413 (*1 *2 *1) (-12 (-4 *2 (-926 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-14 *6 (-622 *2))))) +(-13 (-170) (-38 |#1|) (-10 -8 (-15 -4202 ($ |#4|)) (-15 -4317 ($ |#4|)) (-15 -3413 (|#4| $)))) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-2305 (((-1237) $ (-1149) (-1149)) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-3415 (((-112) (-112)) 39)) (-3414 (((-112) (-112)) 38)) (-4147 (((-51) $ (-1149) (-51)) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 (-51) #1="failed") (-1149) $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-3764 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-51) #1#) (-1149) $) NIL)) (-3765 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-1637 (((-51) $ (-1149) (-51)) NIL (|has| $ (-6 -4354)))) (-3448 (((-51) $ (-1149)) NIL)) (-2068 (((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-1149) $) NIL (|has| (-1149) (-827)))) (-2511 (((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2308 (((-1149) $) NIL (|has| (-1149) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-2744 (((-622 (-1149)) $) 34)) (-2315 (((-112) (-1149) $) NIL)) (-1333 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL)) (-3970 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL)) (-2310 (((-622 (-1149)) $) NIL)) (-2311 (((-112) (-1149) $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-4160 (((-51) $) NIL (|has| (-1149) (-827)))) (-1399 (((-3 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) "failed") (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL)) (-2306 (($ $ (-51)) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-288 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-51)) (-622 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-288 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-622 (-288 (-51)))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2312 (((-622 (-51)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (((-51) $ (-1149)) 35) (((-51) $ (-1149) (-51)) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-751) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074)))) (((-751) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-4317 (((-840) $) 37 (-3891 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-597 (-840))) (|has| (-51) (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1011) (-13 (-1162 (-1149) (-51)) (-10 -7 (-15 -3415 ((-112) (-112))) (-15 -3414 ((-112) (-112))) (-6 -4353)))) (T -1011)) +((-3415 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011)))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011))))) +(-13 (-1162 (-1149) (-51)) (-10 -7 (-15 -3415 ((-112) (-112))) (-15 -3414 ((-112) (-112))) (-6 -4353))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 9)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-1012) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $))))) (T -1012)) +((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1012))))) +(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)))) +((-3507 ((|#2| $) 10))) +(((-1013 |#1| |#2|) (-10 -8 (-15 -3507 (|#2| |#1|))) (-1014 |#2|) (-1185)) (T -1013)) +NIL +(-10 -8 (-15 -3507 (|#2| |#1|))) +((-3508 (((-3 |#1| "failed") $) 7)) (-3507 ((|#1| $) 8)) (-4317 (($ |#1|) 6))) +(((-1014 |#1|) (-138) (-1185)) (T -1014)) +((-3507 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1185)))) (-3508 (*1 *2 *1) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1185)))) (-4317 (*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1185))))) +(-13 (-10 -8 (-15 -4317 ($ |t#1|)) (-15 -3508 ((-3 |t#1| "failed") $)) (-15 -3507 (|t#1| $)))) +((-3416 (((-622 (-622 (-288 (-402 (-922 |#2|))))) (-622 (-922 |#2|)) (-622 (-1149))) 38))) +(((-1015 |#1| |#2|) (-10 -7 (-15 -3416 ((-622 (-622 (-288 (-402 (-922 |#2|))))) (-622 (-922 |#2|)) (-622 (-1149))))) (-545) (-13 (-545) (-1014 |#1|))) (T -1015)) +((-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) (-4 *6 (-13 (-545) (-1014 *5))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *6)))))) (-5 *1 (-1015 *5 *6))))) +(-10 -7 (-15 -3416 ((-622 (-622 (-288 (-402 (-922 |#2|))))) (-622 (-922 |#2|)) (-622 (-1149))))) +((-3417 (((-622 (-1149)) (-402 (-922 |#1|))) 17)) (-3419 (((-402 (-1143 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149)) 24)) (-3420 (((-402 (-922 |#1|)) (-402 (-1143 (-402 (-922 |#1|)))) (-1149)) 26)) (-3418 (((-3 (-1149) "failed") (-402 (-922 |#1|))) 20)) (-4127 (((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-288 (-402 (-922 |#1|))))) 32) (((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|)))) 33) (((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-1149)) (-622 (-402 (-922 |#1|)))) 28) (((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|))) 29)) (-4317 (((-402 (-922 |#1|)) |#1|) 11))) +(((-1016 |#1|) (-10 -7 (-15 -3417 ((-622 (-1149)) (-402 (-922 |#1|)))) (-15 -3418 ((-3 (-1149) "failed") (-402 (-922 |#1|)))) (-15 -3419 ((-402 (-1143 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149))) (-15 -3420 ((-402 (-922 |#1|)) (-402 (-1143 (-402 (-922 |#1|)))) (-1149))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-1149)) (-622 (-402 (-922 |#1|))))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -4317 ((-402 (-922 |#1|)) |#1|))) (-545)) (T -1016)) +((-4317 (*1 *2 *3) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-1016 *3)) (-4 *3 (-545)))) (-4127 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-288 (-402 (-922 *4))))) (-5 *2 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *1 (-1016 *4)))) (-4127 (*1 *2 *2 *3) (-12 (-5 *3 (-288 (-402 (-922 *4)))) (-5 *2 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *1 (-1016 *4)))) (-4127 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-622 (-1149))) (-5 *4 (-622 (-402 (-922 *5)))) (-5 *2 (-402 (-922 *5))) (-4 *5 (-545)) (-5 *1 (-1016 *5)))) (-4127 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-402 (-922 *4))) (-5 *3 (-1149)) (-4 *4 (-545)) (-5 *1 (-1016 *4)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-1143 (-402 (-922 *5))))) (-5 *4 (-1149)) (-5 *2 (-402 (-922 *5))) (-5 *1 (-1016 *5)) (-4 *5 (-545)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-402 (-1143 (-402 (-922 *5))))) (-5 *1 (-1016 *5)) (-5 *3 (-402 (-922 *5))))) (-3418 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-1149)) (-5 *1 (-1016 *4)))) (-3417 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-622 (-1149))) (-5 *1 (-1016 *4))))) +(-10 -7 (-15 -3417 ((-622 (-1149)) (-402 (-922 |#1|)))) (-15 -3418 ((-3 (-1149) "failed") (-402 (-922 |#1|)))) (-15 -3419 ((-402 (-1143 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149))) (-15 -3420 ((-402 (-922 |#1|)) (-402 (-1143 (-402 (-922 |#1|)))) (-1149))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-1149)) (-622 (-402 (-922 |#1|))))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-288 (-402 (-922 |#1|))))) (-15 -4127 ((-402 (-922 |#1|)) (-402 (-922 |#1|)) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -4317 ((-402 (-922 |#1|)) |#1|))) +((-3421 (((-373)) 15)) (-3436 (((-1 (-373)) (-373) (-373)) 20)) (-3429 (((-1 (-373)) (-751)) 43)) (-3422 (((-373)) 34)) (-3425 (((-1 (-373)) (-373) (-373)) 35)) (-3423 (((-373)) 26)) (-3426 (((-1 (-373)) (-373)) 27)) (-3424 (((-373) (-751)) 38)) (-3427 (((-1 (-373)) (-751)) 39)) (-3428 (((-1 (-373)) (-751) (-751)) 42)) (-3743 (((-1 (-373)) (-751) (-751)) 40))) +(((-1017) (-10 -7 (-15 -3421 ((-373))) (-15 -3422 ((-373))) (-15 -3423 ((-373))) (-15 -3424 ((-373) (-751))) (-15 -3436 ((-1 (-373)) (-373) (-373))) (-15 -3425 ((-1 (-373)) (-373) (-373))) (-15 -3426 ((-1 (-373)) (-373))) (-15 -3427 ((-1 (-373)) (-751))) (-15 -3743 ((-1 (-373)) (-751) (-751))) (-15 -3428 ((-1 (-373)) (-751) (-751))) (-15 -3429 ((-1 (-373)) (-751))))) (T -1017)) +((-3429 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))) (-3428 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))) (-3743 (*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))) (-3427 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))) (-3426 (*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373)))) (-3425 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373)))) (-3436 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-373)) (-5 *1 (-1017)))) (-3423 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017)))) (-3422 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017)))) (-3421 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017))))) +(-10 -7 (-15 -3421 ((-373))) (-15 -3422 ((-373))) (-15 -3423 ((-373))) (-15 -3424 ((-373) (-751))) (-15 -3436 ((-1 (-373)) (-373) (-373))) (-15 -3425 ((-1 (-373)) (-373) (-373))) (-15 -3426 ((-1 (-373)) (-373))) (-15 -3427 ((-1 (-373)) (-751))) (-15 -3743 ((-1 (-373)) (-751) (-751))) (-15 -3428 ((-1 (-373)) (-751) (-751))) (-15 -3429 ((-1 (-373)) (-751)))) +((-4092 (((-400 |#1|) |#1|) 33))) +(((-1018 |#1|) (-10 -7 (-15 -4092 ((-400 |#1|) |#1|))) (-1207 (-402 (-922 (-538))))) (T -1018)) +((-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-1018 *3)) (-4 *3 (-1207 (-402 (-922 (-538)))))))) +(-10 -7 (-15 -4092 ((-400 |#1|) |#1|))) +((-3430 (((-402 (-400 (-922 |#1|))) (-402 (-922 |#1|))) 14))) +(((-1019 |#1|) (-10 -7 (-15 -3430 ((-402 (-400 (-922 |#1|))) (-402 (-922 |#1|))))) (-302)) (T -1019)) +((-3430 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-302)) (-5 *2 (-402 (-400 (-922 *4)))) (-5 *1 (-1019 *4))))) +(-10 -7 (-15 -3430 ((-402 (-400 (-922 |#1|))) (-402 (-922 |#1|))))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3896 (($) 17 T CONST)) (-3434 ((|#1| $) 22)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3433 ((|#1| $) 21)) (-3431 ((|#1|) 19 T CONST)) (-4317 (((-840) $) 11)) (-3432 ((|#1| $) 20)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15))) +(((-1020 |#1|) (-138) (-23)) (T -1020)) +((-3434 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3433 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23)))) (-3431 (*1 *2) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3434 (|t#1| $)) (-15 -3433 (|t#1| $)) (-15 -3432 (|t#1| $)) (-15 -3431 (|t#1|) -4311))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3435 (($) 24 T CONST)) (-3896 (($) 17 T CONST)) (-3434 ((|#1| $) 22)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3433 ((|#1| $) 21)) (-3431 ((|#1|) 19 T CONST)) (-4317 (((-840) $) 11)) (-3432 ((|#1| $) 20)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15))) +(((-1021 |#1|) (-138) (-23)) (T -1021)) +((-3435 (*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-23))))) +(-13 (-1020 |t#1|) (-10 -8 (-15 -3435 ($) -4311))) +(((-23) . T) ((-25) . T) ((-101) . T) ((-597 (-840)) . T) ((-1020 |#1|) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 (-760 |#1| (-841 |#2|)))))) (-622 (-760 |#1| (-841 |#2|)))) NIL)) (-4045 (((-622 $) (-622 (-760 |#1| (-841 |#2|)))) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-112)) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-112) (-112)) NIL)) (-3417 (((-622 (-841 |#2|)) $) NIL)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-4056 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-4051 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-4134 (((-622 (-2 (|:| |val| (-760 |#1| (-841 |#2|))) (|:| -1660 $))) (-760 |#1| (-841 |#2|)) $) NIL)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ (-841 |#2|)) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 (-760 |#1| (-841 |#2|)) #1="failed") $ (-841 |#2|)) NIL)) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) NIL (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-4052 (((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|))) $ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-3233 (((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|))) $) NIL (|has| |#1| (-545)))) (-3234 (((-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|))) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 (-760 |#1| (-841 |#2|)))) NIL)) (-3507 (($ (-622 (-760 |#1| (-841 |#2|)))) NIL)) (-4158 (((-3 $ #1#) $) NIL)) (-4048 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1074))))) (-3765 (($ (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (($ (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-760 |#1| (-841 |#2|))) (|:| |den| |#1|)) (-760 |#1| (-841 |#2|)) $) NIL (|has| |#1| (-545)))) (-4057 (((-112) (-760 |#1| (-841 |#2|)) $ (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-4046 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-4202 (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $ (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $ (-760 |#1| (-841 |#2|))) NIL (|has| $ (-6 -4353))) (((-760 |#1| (-841 |#2|)) (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-4059 (((-2 (|:| -4221 (-622 (-760 |#1| (-841 |#2|)))) (|:| -1818 (-622 (-760 |#1| (-841 |#2|))))) $) NIL)) (-3548 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-3546 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-3549 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-2068 (((-622 (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4058 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-3531 (((-841 |#2|) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1074))))) (-2072 (($ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) $) NIL)) (-3247 (((-622 (-841 |#2|)) $) NIL)) (-3246 (((-112) (-841 |#2|) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3542 (((-3 (-760 |#1| (-841 |#2|)) (-622 $)) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-3541 (((-622 (-2 (|:| |val| (-760 |#1| (-841 |#2|))) (|:| -1660 $))) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-4157 (((-3 (-760 |#1| (-841 |#2|)) #1#) $) NIL)) (-3543 (((-622 $) (-760 |#1| (-841 |#2|)) $) NIL)) (-3545 (((-3 (-112) (-622 $)) (-760 |#1| (-841 |#2|)) $) NIL)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-3589 (((-622 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) $) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-622 $)) NIL) (((-622 $) (-760 |#1| (-841 |#2|)) (-622 $)) NIL)) (-3799 (($ (-760 |#1| (-841 |#2|)) $) NIL) (($ (-622 (-760 |#1| (-841 |#2|))) $) NIL)) (-4060 (((-622 (-760 |#1| (-841 |#2|))) $) NIL)) (-4054 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-4049 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-4062 (((-112) $ $) NIL)) (-3236 (((-2 (|:| |num| (-760 |#1| (-841 |#2|))) (|:| |den| |#1|)) (-760 |#1| (-841 |#2|)) $) NIL (|has| |#1| (-545)))) (-4055 (((-112) (-760 |#1| (-841 |#2|)) $) NIL) (((-112) $) NIL)) (-4050 (((-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-3 (-760 |#1| (-841 |#2|)) #1#) $) NIL)) (-1399 (((-3 (-760 |#1| (-841 |#2|)) "failed") (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL)) (-4042 (((-3 $ #1#) $ (-760 |#1| (-841 |#2|))) NIL)) (-4128 (($ $ (-760 |#1| (-841 |#2|))) NIL) (((-622 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-622 $) (-760 |#1| (-841 |#2|)) (-622 $)) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) $) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-622 $)) NIL)) (-2070 (((-112) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-760 |#1| (-841 |#2|))) (-622 (-760 |#1| (-841 |#2|)))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (($ $ (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (($ $ (-288 (-760 |#1| (-841 |#2|)))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (($ $ (-622 (-288 (-760 |#1| (-841 |#2|))))) NIL (-12 (|has| (-760 |#1| (-841 |#2|)) (-304 (-760 |#1| (-841 |#2|)))) (|has| (-760 |#1| (-841 |#2|)) (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4307 (((-751) $) NIL)) (-2069 (((-751) (-760 |#1| (-841 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-760 |#1| (-841 |#2|)) (-1074)))) (((-751) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-760 |#1| (-841 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-760 |#1| (-841 |#2|)))) NIL)) (-3243 (($ $ (-841 |#2|)) NIL)) (-3245 (($ $ (-841 |#2|)) NIL)) (-4047 (($ $) NIL)) (-3244 (($ $ (-841 |#2|)) NIL)) (-4317 (((-840) $) NIL) (((-622 (-760 |#1| (-841 |#2|))) $) NIL)) (-4041 (((-751) $) NIL (|has| (-841 |#2|) (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 (-760 |#1| (-841 |#2|))))) #1#) (-622 (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 (-760 |#1| (-841 |#2|))))) #1#) (-622 (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|))) (-1 (-112) (-760 |#1| (-841 |#2|)) (-760 |#1| (-841 |#2|)))) NIL)) (-4053 (((-112) $ (-1 (-112) (-760 |#1| (-841 |#2|)) (-622 (-760 |#1| (-841 |#2|))))) NIL)) (-3540 (((-622 $) (-760 |#1| (-841 |#2|)) $) NIL) (((-622 $) (-760 |#1| (-841 |#2|)) (-622 $)) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) $) NIL) (((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-622 $)) NIL)) (-2071 (((-112) (-1 (-112) (-760 |#1| (-841 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4043 (((-622 (-841 |#2|)) $) NIL)) (-3547 (((-112) (-760 |#1| (-841 |#2|)) $) NIL)) (-4293 (((-112) (-841 |#2|) $) NIL)) (-3387 (((-112) $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1022 |#1| |#2|) (-13 (-1045 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) (-10 -8 (-15 -4045 ((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-112) (-112))))) (-446) (-622 (-1149))) (T -1022)) +((-4045 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-1022 *5 *6))))) +(-13 (-1045 |#1| (-524 (-841 |#2|)) (-841 |#2|) (-760 |#1| (-841 |#2|))) (-10 -8 (-15 -4045 ((-622 $) (-622 (-760 |#1| (-841 |#2|))) (-112) (-112))))) +((-3436 (((-1 (-538)) (-1062 (-538))) 33)) (-3440 (((-538) (-538) (-538) (-538) (-538)) 30)) (-3438 (((-1 (-538)) |RationalNumber|) NIL)) (-3439 (((-1 (-538)) |RationalNumber|) NIL)) (-3437 (((-1 (-538)) (-538) |RationalNumber|) NIL))) +(((-1023) (-10 -7 (-15 -3436 ((-1 (-538)) (-1062 (-538)))) (-15 -3437 ((-1 (-538)) (-538) |RationalNumber|)) (-15 -3438 ((-1 (-538)) |RationalNumber|)) (-15 -3439 ((-1 (-538)) |RationalNumber|)) (-15 -3440 ((-538) (-538) (-538) (-538) (-538))))) (T -1023)) +((-3440 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1023)))) (-3439 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023)))) (-3438 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023)))) (-3437 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023)) (-5 *3 (-538)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-1062 (-538))) (-5 *2 (-1 (-538))) (-5 *1 (-1023))))) +(-10 -7 (-15 -3436 ((-1 (-538)) (-1062 (-538)))) (-15 -3437 ((-1 (-538)) (-538) |RationalNumber|)) (-15 -3438 ((-1 (-538)) |RationalNumber|)) (-15 -3439 ((-1 (-538)) |RationalNumber|)) (-15 -3440 ((-538) (-538) (-538) (-538) (-538)))) +((-4317 (((-840) $) NIL) (($ (-538)) 10))) +(((-1024 |#1|) (-10 -8 (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-1025)) (T -1024)) +NIL +(-10 -8 (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-1025) (-138)) (T -1025)) +((-3461 (*1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-751)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1025))))) +(-13 (-1032) (-707) (-628 $) (-10 -8 (-15 -3461 ((-751))) (-15 -4317 ($ (-538))) (-6 -4350))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 $) . T) ((-707) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-3441 (((-402 (-922 |#2|)) (-622 |#2|) (-622 |#2|) (-751) (-751)) 46))) +(((-1026 |#1| |#2|) (-10 -7 (-15 -3441 ((-402 (-922 |#2|)) (-622 |#2|) (-622 |#2|) (-751) (-751)))) (-1149) (-358)) (T -1026)) +((-3441 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-751)) (-4 *6 (-358)) (-5 *2 (-402 (-922 *6))) (-5 *1 (-1026 *5 *6)) (-14 *5 (-1149))))) +(-10 -7 (-15 -3441 ((-402 (-922 |#2|)) (-622 |#2|) (-622 |#2|) (-751) (-751)))) +((-3456 (((-112) $) 29)) (-3458 (((-112) $) 16)) (-3450 (((-751) $) 13)) (-3449 (((-751) $) 14)) (-3457 (((-112) $) 26)) (-3455 (((-112) $) 31))) +(((-1027 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3449 ((-751) |#1|)) (-15 -3450 ((-751) |#1|)) (-15 -3455 ((-112) |#1|)) (-15 -3456 ((-112) |#1|)) (-15 -3457 ((-112) |#1|)) (-15 -3458 ((-112) |#1|))) (-1028 |#2| |#3| |#4| |#5| |#6|) (-751) (-751) (-1025) (-234 |#3| |#4|) (-234 |#2| |#4|)) (T -1027)) +NIL +(-10 -8 (-15 -3449 ((-751) |#1|)) (-15 -3450 ((-751) |#1|)) (-15 -3455 ((-112) |#1|)) (-15 -3456 ((-112) |#1|)) (-15 -3457 ((-112) |#1|)) (-15 -3458 ((-112) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3456 (((-112) $) 51)) (-1368 (((-3 $ "failed") $ $) 19)) (-3458 (((-112) $) 53)) (-1271 (((-112) $ (-751)) 61)) (-3896 (($) 17 T CONST)) (-3445 (($ $) 34 (|has| |#3| (-302)))) (-3447 ((|#4| $ (-538)) 39)) (-3444 (((-751) $) 33 (|has| |#3| (-545)))) (-3448 ((|#3| $ (-538) (-538)) 41)) (-2068 (((-622 |#3|) $) 68 (|has| $ (-6 -4353)))) (-3443 (((-751) $) 32 (|has| |#3| (-545)))) (-3442 (((-622 |#5|) $) 31 (|has| |#3| (-545)))) (-3450 (((-751) $) 45)) (-3449 (((-751) $) 44)) (-4082 (((-112) $ (-751)) 60)) (-3454 (((-538) $) 49)) (-3452 (((-538) $) 47)) (-2511 (((-622 |#3|) $) 69 (|has| $ (-6 -4353)))) (-3596 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1074)) (|has| $ (-6 -4353))))) (-3453 (((-538) $) 48)) (-3451 (((-538) $) 46)) (-3459 (($ (-622 (-622 |#3|))) 54)) (-2072 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3956 (((-622 (-622 |#3|)) $) 43)) (-4079 (((-112) $ (-751)) 59)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-545)))) (-2070 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#3|) (-622 |#3|)) 75 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-288 |#3|)) 73 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-622 (-288 |#3|))) 72 (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))) (-1272 (((-112) $ $) 55)) (-3762 (((-112) $) 58)) (-3928 (($) 57)) (-4159 ((|#3| $ (-538) (-538)) 42) ((|#3| $ (-538) (-538) |#3|) 40)) (-3457 (((-112) $) 52)) (-2069 (((-751) |#3| $) 70 (-12 (|has| |#3| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4353)))) (-3759 (($ $) 56)) (-3446 ((|#5| $ (-538)) 38)) (-4317 (((-840) $) 11)) (-2071 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4353)))) (-3455 (((-112) $) 50)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#3|) 35 (|has| |#3| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4316 (((-751) $) 62 (|has| $ (-6 -4353))))) +(((-1028 |#1| |#2| |#3| |#4| |#5|) (-138) (-751) (-751) (-1025) (-234 |t#2| |t#3|) (-234 |t#1| |t#3|)) (T -1028)) +((-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *5))) (-4 *5 (-1025)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-3456 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-3455 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-112)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))) (-3452 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-538)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-751)))) (-3956 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-5 *2 (-622 (-622 *5))))) (-4159 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))) (-3448 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))) (-4159 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *2 (-1025)) (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)))) (-3447 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *6 *2 *7)) (-4 *6 (-1025)) (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6)))) (-3446 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *6 *7 *2)) (-4 *6 (-1025)) (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6)))) (-4318 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) (-3820 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-545)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-358)))) (-3445 (*1 *1 *1) (-12 (-4 *1 (-1028 *2 *3 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *2 *4)) (-4 *4 (-302)))) (-3444 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-751)))) (-3443 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-751)))) (-3442 (*1 *2 *1) (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-622 *7))))) +(-13 (-111 |t#3| |t#3|) (-483 |t#3|) (-10 -8 (-6 -4353) (IF (|has| |t#3| (-170)) (-6 (-698 |t#3|)) |%noBranch|) (-15 -3459 ($ (-622 (-622 |t#3|)))) (-15 -3458 ((-112) $)) (-15 -3457 ((-112) $)) (-15 -3456 ((-112) $)) (-15 -3455 ((-112) $)) (-15 -3454 ((-538) $)) (-15 -3453 ((-538) $)) (-15 -3452 ((-538) $)) (-15 -3451 ((-538) $)) (-15 -3450 ((-751) $)) (-15 -3449 ((-751) $)) (-15 -3956 ((-622 (-622 |t#3|)) $)) (-15 -4159 (|t#3| $ (-538) (-538))) (-15 -3448 (|t#3| $ (-538) (-538))) (-15 -4159 (|t#3| $ (-538) (-538) |t#3|)) (-15 -3447 (|t#4| $ (-538))) (-15 -3446 (|t#5| $ (-538))) (-15 -4318 ($ (-1 |t#3| |t#3|) $)) (-15 -4318 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-545)) (-15 -3820 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-358)) (-15 -4308 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-302)) (-15 -3445 ($ $)) |%noBranch|) (IF (|has| |t#3| (-545)) (PROGN (-15 -3444 ((-751) $)) (-15 -3443 ((-751) $)) (-15 -3442 ((-622 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-101) . T) ((-111 |#3| |#3|) . T) ((-130) . T) ((-597 (-840)) . T) ((-304 |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))) ((-483 |#3|) . T) ((-507 |#3| |#3|) -12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))) ((-628 |#3|) . T) ((-698 |#3|) |has| |#3| (-170)) ((-1031 |#3|) . T) ((-1074) . T) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3456 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3458 (((-112) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-3445 (($ $) 43 (|has| |#3| (-302)))) (-3447 (((-235 |#2| |#3|) $ (-538)) 32)) (-3460 (($ (-669 |#3|)) 41)) (-3444 (((-751) $) 45 (|has| |#3| (-545)))) (-3448 ((|#3| $ (-538) (-538)) NIL)) (-2068 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3443 (((-751) $) 47 (|has| |#3| (-545)))) (-3442 (((-622 (-235 |#1| |#3|)) $) 51 (|has| |#3| (-545)))) (-3450 (((-751) $) NIL)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-3459 (($ (-622 (-622 |#3|))) 27)) (-2072 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3956 (((-622 (-622 |#3|)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-545)))) (-2070 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#3|) (-622 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-622 (-288 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#3| $ (-538) (-538)) NIL) ((|#3| $ (-538) (-538) |#3|) NIL)) (-4271 (((-133)) 54 (|has| |#3| (-358)))) (-3457 (((-112) $) NIL)) (-2069 (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074)))) (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) 63 (|has| |#3| (-598 (-527))))) (-3446 (((-235 |#1| |#3|) $ (-538)) 36)) (-4317 (((-840) $) 16) (((-669 |#3|) $) 38)) (-2071 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-2991 (($) 13 T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1029 |#1| |#2| |#3|) (-13 (-1028 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-597 (-669 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1239 |#3|)) |%noBranch|) (IF (|has| |#3| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (-15 -3460 ($ (-669 |#3|))) (-15 -4317 ((-669 |#3|) $)))) (-751) (-751) (-1025)) (T -1029)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-669 *5)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-1025)))) (-3460 (*1 *1 *2) (-12 (-5 *2 (-669 *5)) (-4 *5 (-1025)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751))))) +(-13 (-1028 |#1| |#2| |#3| (-235 |#2| |#3|) (-235 |#1| |#3|)) (-597 (-669 |#3|)) (-10 -8 (IF (|has| |#3| (-358)) (-6 (-1239 |#3|)) |%noBranch|) (IF (|has| |#3| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|) (-15 -3460 ($ (-669 |#3|))) (-15 -4317 ((-669 |#3|) $)))) +((-4202 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-4318 ((|#10| (-1 |#7| |#3|) |#6|) 32))) +(((-1030 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4318 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4202 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-751) (-751) (-1025) (-234 |#2| |#3|) (-234 |#1| |#3|) (-1028 |#1| |#2| |#3| |#4| |#5|) (-1025) (-234 |#2| |#7|) (-234 |#1| |#7|) (-1028 |#1| |#2| |#7| |#8| |#9|)) (T -1030)) +((-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1025)) (-4 *2 (-1025)) (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2)) (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *12 (-1028 *5 *6 *2 *10 *11)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1025)) (-4 *10 (-1025)) (-14 *5 (-751)) (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) (-4 *2 (-1028 *5 *6 *10 *11 *12)) (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10)) (-4 *12 (-234 *5 *10))))) +(-10 -7 (-15 -4318 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4202 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ |#1|) 23))) +(((-1031 |#1|) (-138) (-1032)) (T -1031)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1032))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-1030) (-138)) (T -1030)) -NIL -(-13 (-21) (-1083)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-595 (-838)) . T) ((-1083) . T) ((-1072) . T)) -((-4125 (($ $) 16)) (-3457 (($ $) 22)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 49)) (-3462 (($ $) 24)) (-3458 (($ $) 11)) (-3460 (($ $) 38)) (-4325 (((-371) $) NIL) (((-219) $) NIL) (((-864 (-371)) $) 33)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL) (($ (-400 (-536))) 28) (($ (-536)) NIL) (($ (-400 (-536))) 28)) (-3456 (((-749)) 8)) (-3461 (($ $) 39))) -(((-1031 |#1|) (-10 -8 (-15 -3457 (|#1| |#1|)) (-15 -4125 (|#1| |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -4312 ((-838) |#1|))) (-1032)) (T -1031)) -((-3456 (*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1031 *3)) (-4 *3 (-1032))))) -(-10 -8 (-15 -3457 (|#1| |#1|)) (-15 -4125 (|#1| |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3460 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3462 (|#1| |#1|)) (-15 -3124 ((-862 (-371) |#1|) |#1| (-864 (-371)) (-862 (-371) |#1|))) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 -4325 ((-219) |#1|)) (-15 -4325 ((-371) |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -3456 ((-749))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3459 (((-536) $) 86)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-4125 (($ $) 84)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-3365 (($ $) 94)) (-1700 (((-112) $ $) 57)) (-3981 (((-536) $) 111)) (-3891 (($) 17 T CONST)) (-3457 (($ $) 83)) (-3503 (((-3 (-536) #1="failed") $) 99) (((-3 (-400 (-536)) #1#) $) 96)) (-3502 (((-536) $) 98) (((-400 (-536)) $) 95)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-4081 (((-112) $) 68)) (-3532 (((-112) $) 109)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 90)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 93)) (-3462 (($ $) 89)) (-3533 (((-112) $) 110)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) 50)) (-3672 (($ $ $) 108)) (-3673 (($ $ $) 107)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-3458 (($ $) 85)) (-3460 (($ $) 87)) (-4087 (((-398 $) $) 71)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-4325 (((-371) $) 102) (((-219) $) 101) (((-864 (-371)) $) 91)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ (-536)) 100) (($ (-400 (-536))) 97)) (-3456 (((-749)) 28)) (-3461 (($ $) 88)) (-2172 (((-112) $ $) 37)) (-3737 (($ $) 112)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2891 (((-112) $ $) 105)) (-2892 (((-112) $ $) 104)) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 106)) (-3013 (((-112) $ $) 103)) (-4303 (($ $ $) 62)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66) (($ $ (-400 (-536))) 92)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) (((-1032) (-138)) (T -1032)) -((-3737 (*1 *1 *1) (-4 *1 (-1032))) (-3462 (*1 *1 *1) (-4 *1 (-1032))) (-3461 (*1 *1 *1) (-4 *1 (-1032))) (-3460 (*1 *1 *1) (-4 *1 (-1032))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-1032)) (-5 *2 (-536)))) (-3458 (*1 *1 *1) (-4 *1 (-1032))) (-4125 (*1 *1 *1) (-4 *1 (-1032))) (-3457 (*1 *1 *1) (-4 *1 (-1032)))) -(-13 (-356) (-823) (-994) (-1012 (-536)) (-1012 (-400 (-536))) (-976) (-596 (-864 (-371))) (-860 (-371)) (-145) (-10 -8 (-15 -3462 ($ $)) (-15 -3461 ($ $)) (-15 -3460 ($ $)) (-15 -3459 ((-536) $)) (-15 -3458 ($ $)) (-15 -4125 ($ $)) (-15 -3457 ($ $)) (-15 -3737 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-595 (-838)) . T) ((-170) . T) ((-596 (-219)) . T) ((-596 (-371)) . T) ((-596 (-864 (-371))) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 $) . T) ((-705) . T) ((-769) . T) ((-770) . T) ((-772) . T) ((-775) . T) ((-823) . T) ((-825) . T) ((-860 (-371)) . T) ((-895) . T) ((-976) . T) ((-994) . T) ((-1012 (-400 (-536))) . T) ((-1012 (-536)) . T) ((-1029 #1#) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) |#2| $) 23)) (-3466 ((|#1| $) 10)) (-3981 (((-536) |#2| $) 88)) (-3529 (((-3 $ #1="failed") |#2| (-893)) 57)) (-3467 ((|#1| $) 28)) (-3528 ((|#1| |#2| $ |#1|) 37)) (-3464 (($ $) 25)) (-3816 (((-3 |#2| #1#) |#2| $) 87)) (-3532 (((-112) |#2| $) NIL)) (-3533 (((-112) |#2| $) NIL)) (-3463 (((-112) |#2| $) 24)) (-3465 ((|#1| $) 89)) (-3468 ((|#1| $) 27)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3531 ((|#2| $) 79)) (-4312 (((-838) $) 70)) (-4124 ((|#1| |#2| $ |#1|) 38)) (-3530 (((-620 $) |#2|) 59)) (-3382 (((-112) $ $) 74))) -(((-1033 |#1| |#2|) (-13 (-1040 |#1| |#2|) (-10 -8 (-15 -3468 (|#1| $)) (-15 -3467 (|#1| $)) (-15 -3466 (|#1| $)) (-15 -3465 (|#1| $)) (-15 -3464 ($ $)) (-15 -3463 ((-112) |#2| $)) (-15 -3528 (|#1| |#2| $ |#1|)))) (-13 (-823) (-356)) (-1205 |#1|)) (T -1033)) -((-3528 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3468 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3467 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3466 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3465 (*1 *2 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3464 (*1 *1 *1) (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) (-3463 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-823) (-356))) (-5 *2 (-112)) (-5 *1 (-1033 *4 *3)) (-4 *3 (-1205 *4))))) -(-13 (-1040 |#1| |#2|) (-10 -8 (-15 -3468 (|#1| $)) (-15 -3467 (|#1| $)) (-15 -3466 (|#1| $)) (-15 -3465 (|#1| $)) (-15 -3464 ($ $)) (-15 -3463 ((-112) |#2| $)) (-15 -3528 (|#1| |#2| $ |#1|)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-2157 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2152 (($ $ $ $) NIL)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL)) (-2685 (($ $ $) NIL)) (-3891 (($) NIL T CONST)) (-3469 (($ (-1147)) 10) (($ (-536)) 7)) (-3503 (((-3 (-536) "failed") $) NIL)) (-3502 (((-536) $) NIL)) (-2889 (($ $ $) NIL)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-667 (-536)) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL)) (-3351 (((-112) $) NIL)) (-3350 (((-400 (-536)) $) NIL)) (-3322 (($) NIL) (($ $) NIL)) (-2888 (($ $ $) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2150 (($ $ $ $) NIL)) (-2158 (($ $ $) NIL)) (-3532 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL)) (-2497 (((-112) $) NIL)) (-3001 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $) NIL)) (-3533 (((-112) $) NIL)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2151 (($ $ $ $) NIL)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-2154 (($ $) NIL)) (-4188 (($ $) NIL)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2149 (($ $ $) NIL)) (-3799 (($) NIL T CONST)) (-2156 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) NIL) (($ (-620 $)) NIL)) (-1412 (($ $) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-2155 (($ $) NIL)) (-3754 (($ $) NIL)) (-4325 (((-536) $) 16) (((-525) $) NIL) (((-864 (-536)) $) NIL) (((-371) $) NIL) (((-219) $) NIL) (($ (-1147)) 9)) (-4312 (((-838) $) 20) (($ (-536)) 6) (($ $) NIL) (($ (-536)) 6)) (-3456 (((-749)) NIL)) (-2159 (((-112) $ $) NIL)) (-3432 (($ $ $) NIL)) (-3022 (($) NIL)) (-2172 (((-112) $ $) NIL)) (-2153 (($ $ $ $) NIL)) (-3737 (($ $) NIL)) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) NIL)) (-4192 (($ $) 19) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL))) -(((-1034) (-13 (-535) (-10 -8 (-6 -4335) (-6 -4340) (-6 -4336) (-15 -4325 ($ (-1147))) (-15 -3469 ($ (-1147))) (-15 -3469 ($ (-536)))))) (T -1034)) -((-4325 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1034)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1034)))) (-3469 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1034))))) -(-13 (-535) (-10 -8 (-6 -4335) (-6 -4340) (-6 -4336) (-15 -4325 ($ (-1147))) (-15 -3469 ($ (-1147))) (-15 -3469 ($ (-536))))) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-2300 (((-1235) $ (-1147) (-1147)) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-3471 (($) 9)) (-4142 (((-51) $ (-1147) (-51)) NIL)) (-3479 (($ $) 30)) (-3482 (($ $) 28)) (-3483 (($ $) 27)) (-3481 (($ $) 29)) (-3478 (($ $) 32)) (-3477 (($ $) 33)) (-3484 (($ $) 26)) (-3480 (($ $) 31)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) 25 (|has| $ (-6 -4348)))) (-2309 (((-3 (-51) #1="failed") (-1147) $) 40)) (-3891 (($) NIL T CONST)) (-3485 (($) 7)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-3759 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) 50 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-3 (-51) #1#) (-1147) $) NIL)) (-3760 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348)))) (-3470 (((-3 (-1129) "failed") $ (-1129) (-536)) 59)) (-1632 (((-51) $ (-1147) (-51)) NIL (|has| $ (-6 -4349)))) (-3443 (((-51) $ (-1147)) NIL)) (-2063 (((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-1147) $) NIL (|has| (-1147) (-825)))) (-2506 (((-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) 35 (|has| $ (-6 -4348))) (((-620 (-51)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2303 (((-1147) $) NIL (|has| (-1147) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4349))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-2739 (((-620 (-1147)) $) NIL)) (-2310 (((-112) (-1147) $) NIL)) (-1331 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL)) (-3965 (($ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) 43)) (-2305 (((-620 (-1147)) $) NIL)) (-2306 (((-112) (-1147) $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-3474 (((-371) $ (-1147)) 49)) (-3473 (((-620 (-1129)) $ (-1129)) 60)) (-4155 (((-51) $) NIL (|has| (-1147) (-825)))) (-1399 (((-3 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) "failed") (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL)) (-2301 (($ $ (-51)) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-286 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL (-12 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-302 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (($ $ (-620 (-51)) (-620 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-286 (-51))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072)))) (($ $ (-620 (-286 (-51)))) NIL (-12 (|has| (-51) (-302 (-51))) (|has| (-51) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072))))) (-2307 (((-620 (-51)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (((-51) $ (-1147)) NIL) (((-51) $ (-1147) (-51)) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-3472 (($ $ (-1147)) 51)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072)))) (((-749) (-51) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-51) (-1072)))) (((-749) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) 37)) (-4156 (($ $ $) 38)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-595 (-838))) (|has| (-51) (-595 (-838)))))) (-3476 (($ $ (-1147) (-371)) 47)) (-3475 (($ $ (-1147) (-371)) 48)) (-1333 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 (-1147)) (|:| -2186 (-51)))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-51) (-1072)) (|has| (-2 (|:| -4215 (-1147)) (|:| -2186 (-51))) (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1035) (-13 (-1160 (-1147) (-51)) (-10 -8 (-15 -4156 ($ $ $)) (-15 -3485 ($)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3481 ($ $)) (-15 -3480 ($ $)) (-15 -3479 ($ $)) (-15 -3478 ($ $)) (-15 -3477 ($ $)) (-15 -3476 ($ $ (-1147) (-371))) (-15 -3475 ($ $ (-1147) (-371))) (-15 -3474 ((-371) $ (-1147))) (-15 -3473 ((-620 (-1129)) $ (-1129))) (-15 -3472 ($ $ (-1147))) (-15 -3471 ($)) (-15 -3470 ((-3 (-1129) "failed") $ (-1129) (-536))) (-6 -4348)))) (T -1035)) -((-4156 (*1 *1 *1 *1) (-5 *1 (-1035))) (-3485 (*1 *1) (-5 *1 (-1035))) (-3484 (*1 *1 *1) (-5 *1 (-1035))) (-3483 (*1 *1 *1) (-5 *1 (-1035))) (-3482 (*1 *1 *1) (-5 *1 (-1035))) (-3481 (*1 *1 *1) (-5 *1 (-1035))) (-3480 (*1 *1 *1) (-5 *1 (-1035))) (-3479 (*1 *1 *1) (-5 *1 (-1035))) (-3478 (*1 *1 *1) (-5 *1 (-1035))) (-3477 (*1 *1 *1) (-5 *1 (-1035))) (-3476 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-371)) (-5 *1 (-1035)))) (-3475 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-371)) (-5 *1 (-1035)))) (-3474 (*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-371)) (-5 *1 (-1035)))) (-3473 (*1 *2 *1 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1035)) (-5 *3 (-1129)))) (-3472 (*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1035)))) (-3471 (*1 *1) (-5 *1 (-1035))) (-3470 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-1035))))) -(-13 (-1160 (-1147) (-51)) (-10 -8 (-15 -4156 ($ $ $)) (-15 -3485 ($)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3481 ($ $)) (-15 -3480 ($ $)) (-15 -3479 ($ $)) (-15 -3478 ($ $)) (-15 -3477 ($ $)) (-15 -3476 ($ $ (-1147) (-371))) (-15 -3475 ($ $ (-1147) (-371))) (-15 -3474 ((-371) $ (-1147))) (-15 -3473 ((-620 (-1129)) $ (-1129))) (-15 -3472 ($ $ (-1147))) (-15 -3471 ($)) (-15 -3470 ((-3 (-1129) "failed") $ (-1129) (-536))) (-6 -4348))) -((-4151 (($ $) 45)) (-3512 (((-112) $ $) 74)) (-3503 (((-3 |#2| #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 (-536) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-920 (-400 (-536)))) 227) (((-3 $ "failed") (-920 (-536))) 226) (((-3 $ "failed") (-920 |#2|)) 229)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL) (((-536) $) NIL) ((|#4| $) NIL) (($ (-920 (-400 (-536)))) 215) (($ (-920 (-536))) 211) (($ (-920 |#2|)) 231)) (-4314 (($ $) NIL) (($ $ |#4|) 43)) (-4052 (((-112) $ $) 112) (((-112) $ (-620 $)) 113)) (-3518 (((-112) $) 56)) (-4107 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 107)) (-3489 (($ $) 138)) (-3500 (($ $) 134)) (-3501 (($ $) 133)) (-3511 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3510 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4053 (((-112) $ $) 121) (((-112) $ (-620 $)) 122)) (-3526 ((|#4| $) 33)) (-3505 (($ $ $) 110)) (-3519 (((-112) $) 55)) (-3525 (((-749) $) 35)) (-3486 (($ $) 152)) (-3487 (($ $) 149)) (-3514 (((-620 $) $) 68)) (-3517 (($ $) 57)) (-3488 (($ $) 145)) (-3515 (((-620 $) $) 65)) (-3516 (($ $) 59)) (-3520 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3504 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-749))) $ $) 111)) (-3506 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $) 108) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $ |#4|) 109)) (-3507 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $) 104) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $ |#4|) 105)) (-3509 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3508 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3522 (((-620 $) $) 51)) (-4049 (((-112) $ $) 118) (((-112) $ (-620 $)) 119)) (-4044 (($ $ $) 103)) (-3799 (($ $) 37)) (-4057 (((-112) $ $) 72)) (-4050 (((-112) $ $) 114) (((-112) $ (-620 $)) 116)) (-4045 (($ $ $) 101)) (-3524 (($ $) 40)) (-3490 ((|#2| |#2| $) 142) (($ (-620 $)) NIL) (($ $ $) NIL)) (-3498 (($ $ |#2|) NIL) (($ $ $) 131)) (-3499 (($ $ |#2|) 126) (($ $ $) 129)) (-3523 (($ $) 48)) (-3521 (($ $) 52)) (-4325 (((-864 (-371)) $) NIL) (((-864 (-536)) $) NIL) (((-525) $) NIL) (($ (-920 (-400 (-536)))) 217) (($ (-920 (-536))) 213) (($ (-920 |#2|)) 228) (((-1129) $) 250) (((-920 |#2|) $) 162)) (-4312 (((-838) $) 30) (($ (-536)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-920 |#2|) $) 163) (($ (-400 (-536))) NIL) (($ $) NIL)) (-3513 (((-3 (-112) "failed") $ $) 71))) -(((-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 ((-920 |#2|) |#1|)) (-15 -4325 ((-920 |#2|) |#1|)) (-15 -4325 ((-1129) |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3490 (|#2| |#2| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#2|)) (-15 -3499 (|#1| |#1| |#2|)) (-15 -3500 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -4325 (|#1| (-920 |#2|))) (-15 -3502 (|#1| (-920 |#2|))) (-15 -3503 ((-3 |#1| "failed") (-920 |#2|))) (-15 -4325 (|#1| (-920 (-536)))) (-15 -3502 (|#1| (-920 (-536)))) (-15 -3503 ((-3 |#1| "failed") (-920 (-536)))) (-15 -4325 (|#1| (-920 (-400 (-536))))) (-15 -3502 (|#1| (-920 (-400 (-536))))) (-15 -3503 ((-3 |#1| "failed") (-920 (-400 (-536))))) (-15 -4044 (|#1| |#1| |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -3504 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3830 (-749))) |#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -4107 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3507 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3507 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3508 (|#1| |#1| |#1| |#4|)) (-15 -3509 (|#1| |#1| |#1| |#4|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1| |#1|)) (-15 -3510 (|#1| |#1| |#1| |#4|)) (-15 -3511 (|#1| |#1| |#1| |#4|)) (-15 -3510 (|#1| |#1| |#1|)) (-15 -3511 (|#1| |#1| |#1|)) (-15 -4053 ((-112) |#1| (-620 |#1|))) (-15 -4053 ((-112) |#1| |#1|)) (-15 -4049 ((-112) |#1| (-620 |#1|))) (-15 -4049 ((-112) |#1| |#1|)) (-15 -4050 ((-112) |#1| (-620 |#1|))) (-15 -4050 ((-112) |#1| |#1|)) (-15 -4052 ((-112) |#1| (-620 |#1|))) (-15 -4052 ((-112) |#1| |#1|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3513 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3514 ((-620 |#1|) |#1|)) (-15 -3515 ((-620 |#1|) |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -3519 ((-112) |#1|)) (-15 -4314 (|#1| |#1| |#4|)) (-15 -3520 (|#1| |#1| |#4|)) (-15 -3521 (|#1| |#1|)) (-15 -3522 ((-620 |#1|) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -3524 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3525 ((-749) |#1|)) (-15 -3526 (|#4| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -3502 (|#4| |#1|)) (-15 -3503 ((-3 |#4| #1="failed") |#1|)) (-15 -4312 (|#1| |#4|)) (-15 -3520 (|#2| |#1|)) (-15 -4314 (|#1| |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-1037 |#2| |#3| |#4|) (-1023) (-771) (-825)) (T -1036)) -NIL -(-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -3490 (|#1| |#1| |#1|)) (-15 -3490 (|#1| (-620 |#1|))) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 ((-920 |#2|) |#1|)) (-15 -4325 ((-920 |#2|) |#1|)) (-15 -4325 ((-1129) |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -3487 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3489 (|#1| |#1|)) (-15 -3490 (|#2| |#2| |#1|)) (-15 -3498 (|#1| |#1| |#1|)) (-15 -3499 (|#1| |#1| |#1|)) (-15 -3498 (|#1| |#1| |#2|)) (-15 -3499 (|#1| |#1| |#2|)) (-15 -3500 (|#1| |#1|)) (-15 -3501 (|#1| |#1|)) (-15 -4325 (|#1| (-920 |#2|))) (-15 -3502 (|#1| (-920 |#2|))) (-15 -3503 ((-3 |#1| "failed") (-920 |#2|))) (-15 -4325 (|#1| (-920 (-536)))) (-15 -3502 (|#1| (-920 (-536)))) (-15 -3503 ((-3 |#1| "failed") (-920 (-536)))) (-15 -4325 (|#1| (-920 (-400 (-536))))) (-15 -3502 (|#1| (-920 (-400 (-536))))) (-15 -3503 ((-3 |#1| "failed") (-920 (-400 (-536))))) (-15 -4044 (|#1| |#1| |#1|)) (-15 -4045 (|#1| |#1| |#1|)) (-15 -3504 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3830 (-749))) |#1| |#1|)) (-15 -3505 (|#1| |#1| |#1|)) (-15 -4107 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3506 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3507 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -3230 |#1|)) |#1| |#1| |#4|)) (-15 -3507 ((-2 (|:| -4308 |#1|) (|:| |gap| (-749)) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -3508 (|#1| |#1| |#1| |#4|)) (-15 -3509 (|#1| |#1| |#1| |#4|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3509 (|#1| |#1| |#1|)) (-15 -3510 (|#1| |#1| |#1| |#4|)) (-15 -3511 (|#1| |#1| |#1| |#4|)) (-15 -3510 (|#1| |#1| |#1|)) (-15 -3511 (|#1| |#1| |#1|)) (-15 -4053 ((-112) |#1| (-620 |#1|))) (-15 -4053 ((-112) |#1| |#1|)) (-15 -4049 ((-112) |#1| (-620 |#1|))) (-15 -4049 ((-112) |#1| |#1|)) (-15 -4050 ((-112) |#1| (-620 |#1|))) (-15 -4050 ((-112) |#1| |#1|)) (-15 -4052 ((-112) |#1| (-620 |#1|))) (-15 -4052 ((-112) |#1| |#1|)) (-15 -3512 ((-112) |#1| |#1|)) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3513 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3514 ((-620 |#1|) |#1|)) (-15 -3515 ((-620 |#1|) |#1|)) (-15 -3516 (|#1| |#1|)) (-15 -3517 (|#1| |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -3519 ((-112) |#1|)) (-15 -4314 (|#1| |#1| |#4|)) (-15 -3520 (|#1| |#1| |#4|)) (-15 -3521 (|#1| |#1|)) (-15 -3522 ((-620 |#1|) |#1|)) (-15 -3523 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -3524 (|#1| |#1|)) (-15 -3799 (|#1| |#1|)) (-15 -3525 ((-749) |#1|)) (-15 -3526 (|#4| |#1|)) (-15 -4325 ((-525) |#1|)) (-15 -4325 ((-864 (-536)) |#1|)) (-15 -4325 ((-864 (-371)) |#1|)) (-15 -3502 (|#4| |#1|)) (-15 -3503 ((-3 |#4| #1="failed") |#1|)) (-15 -4312 (|#1| |#4|)) (-15 -3520 (|#2| |#1|)) (-15 -4314 (|#1| |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 |#3|) $) 108)) (-3414 (((-1141 $) $ |#3|) 123) (((-1141 |#1|) $) 122)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 85 (|has| |#1| (-543)))) (-2173 (($ $) 86 (|has| |#1| (-543)))) (-2171 (((-112) $) 88 (|has| |#1| (-543)))) (-3147 (((-749) $) 110) (((-749) $ (-620 |#3|)) 109)) (-4151 (($ $) 269)) (-3512 (((-112) $ $) 255)) (-1367 (((-3 $ "failed") $ $) 19)) (-4110 (($ $ $) 214 (|has| |#1| (-543)))) (-3494 (((-620 $) $ $) 209 (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-884)))) (-4129 (($ $) 96 (|has| |#1| (-444)))) (-4324 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-884)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-536)) #2#) $) 160 (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) 158 (|has| |#1| (-1012 (-536)))) (((-3 |#3| #2#) $) 134) (((-3 $ "failed") (-920 (-400 (-536)))) 229 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147))))) (((-3 $ "failed") (-920 (-536))) 226 (-3886 (-12 (-3671 (|has| |#1| (-38 (-400 (-536))))) (|has| |#1| (-38 (-536))) (|has| |#3| (-596 (-1147)))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147)))))) (((-3 $ "failed") (-920 |#1|)) 223 (-3886 (-12 (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-38 (-536)))) (|has| |#3| (-596 (-1147)))) (-12 (-3671 (|has| |#1| (-535))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (|has| |#1| (-38 (-536))) (|has| |#3| (-596 (-1147)))) (-12 (-3671 (|has| |#1| (-965 (-536)))) (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147))))))) (-3502 ((|#1| $) 163) (((-400 (-536)) $) 159 (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) 157 (|has| |#1| (-1012 (-536)))) ((|#3| $) 133) (($ (-920 (-400 (-536)))) 228 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147))))) (($ (-920 (-536))) 225 (-3886 (-12 (-3671 (|has| |#1| (-38 (-400 (-536))))) (|has| |#1| (-38 (-536))) (|has| |#3| (-596 (-1147)))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147)))))) (($ (-920 |#1|)) 222 (-3886 (-12 (-3671 (|has| |#1| (-38 (-400 (-536))))) (-3671 (|has| |#1| (-38 (-536)))) (|has| |#3| (-596 (-1147)))) (-12 (-3671 (|has| |#1| (-535))) (-3671 (|has| |#1| (-38 (-400 (-536))))) (|has| |#1| (-38 (-536))) (|has| |#3| (-596 (-1147)))) (-12 (-3671 (|has| |#1| (-965 (-536)))) (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147))))))) (-4111 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-543)))) (-4314 (($ $) 152) (($ $ |#3|) 264)) (-2357 (((-667 (-536)) (-667 $)) 132 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 131 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-4052 (((-112) $ $) 254) (((-112) $ (-620 $)) 253)) (-3816 (((-3 $ "failed") $) 32)) (-3518 (((-112) $) 262)) (-4107 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 234)) (-3489 (($ $) 203 (|has| |#1| (-444)))) (-3852 (($ $) 174 (|has| |#1| (-444))) (($ $ |#3|) 103 (|has| |#1| (-444)))) (-3146 (((-620 $) $) 107)) (-4081 (((-112) $) 94 (|has| |#1| (-884)))) (-3500 (($ $) 219 (|has| |#1| (-543)))) (-3501 (($ $) 220 (|has| |#1| (-543)))) (-3511 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3510 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1716 (($ $ |#1| |#2| $) 170)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 82 (-12 (|has| |#3| (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 81 (-12 (|has| |#3| (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-2497 (((-112) $) 30)) (-2505 (((-749) $) 167)) (-4053 (((-112) $ $) 248) (((-112) $ (-620 $)) 247)) (-3491 (($ $ $ $ $) 205 (|has| |#1| (-543)))) (-3526 ((|#3| $) 273)) (-3415 (($ (-1141 |#1|) |#3|) 115) (($ (-1141 $) |#3|) 114)) (-3149 (((-620 $) $) 124)) (-4292 (((-112) $) 150)) (-3221 (($ |#1| |#2|) 151) (($ $ |#3| (-749)) 117) (($ $ (-620 |#3|) (-620 (-749))) 116)) (-3505 (($ $ $) 233)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#3|) 118)) (-3519 (((-112) $) 263)) (-3148 ((|#2| $) 168) (((-749) $ |#3|) 120) (((-620 (-749)) $ (-620 |#3|)) 119)) (-3672 (($ $ $) 77 (|has| |#1| (-825)))) (-3525 (((-749) $) 272)) (-3673 (($ $ $) 76 (|has| |#1| (-825)))) (-1717 (($ (-1 |#2| |#2|) $) 169)) (-4313 (($ (-1 |#1| |#1|) $) 149)) (-3413 (((-3 |#3| #3="failed") $) 121)) (-3486 (($ $) 200 (|has| |#1| (-444)))) (-3487 (($ $) 201 (|has| |#1| (-444)))) (-3514 (((-620 $) $) 258)) (-3517 (($ $) 261)) (-3488 (($ $) 202 (|has| |#1| (-444)))) (-3515 (((-620 $) $) 259)) (-3516 (($ $) 260)) (-3222 (($ $) 147)) (-3520 ((|#1| $) 146) (($ $ |#3|) 265)) (-2008 (($ (-620 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3504 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-749))) $ $) 232)) (-3506 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $) 236) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $ |#3|) 235)) (-3507 (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $) 238) (((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $ |#3|) 237)) (-3509 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3508 (($ $ $) 241) (($ $ $ |#3|) 239)) (-3588 (((-1129) $) 9)) (-3536 (($ $ $) 208 (|has| |#1| (-543)))) (-3522 (((-620 $) $) 267)) (-3151 (((-3 (-620 $) #3#) $) 112)) (-3150 (((-3 (-620 $) #3#) $) 113)) (-3152 (((-3 (-2 (|:| |var| |#3|) (|:| -2488 (-749))) #3#) $) 111)) (-4049 (((-112) $ $) 250) (((-112) $ (-620 $)) 249)) (-4044 (($ $ $) 230)) (-3799 (($ $) 271)) (-4057 (((-112) $ $) 256)) (-4050 (((-112) $ $) 252) (((-112) $ (-620 $)) 251)) (-4045 (($ $ $) 231)) (-3524 (($ $) 270)) (-3589 (((-1091) $) 10)) (-3495 (((-2 (|:| -3490 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-543)))) (-3496 (((-2 (|:| -3490 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-543)))) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3490 ((|#1| |#1| $) 204 (|has| |#1| (-444))) (($ (-620 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 97 (|has| |#1| (-884)))) (-3497 (((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-543)))) (-3815 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-543)))) (-3498 (($ $ |#1|) 217 (|has| |#1| (-543))) (($ $ $) 215 (|has| |#1| (-543)))) (-3499 (($ $ |#1|) 218 (|has| |#1| (-543))) (($ $ $) 216 (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-620 $) (-620 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-620 |#3|) (-620 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-620 |#3|) (-620 $)) 136)) (-4112 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4165 (($ $ |#3|) 40) (($ $ (-620 |#3|)) 39) (($ $ |#3| (-749)) 38) (($ $ (-620 |#3|) (-620 (-749))) 37)) (-4302 ((|#2| $) 148) (((-749) $ |#3|) 128) (((-620 (-749)) $ (-620 |#3|)) 127)) (-3523 (($ $) 268)) (-3521 (($ $) 266)) (-4325 (((-864 (-371)) $) 80 (-12 (|has| |#3| (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) 79 (-12 (|has| |#3| (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) 78 (-12 (|has| |#3| (-596 (-525))) (|has| |#1| (-596 (-525))))) (($ (-920 (-400 (-536)))) 227 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147))))) (($ (-920 (-536))) 224 (-3886 (-12 (-3671 (|has| |#1| (-38 (-400 (-536))))) (|has| |#1| (-38 (-536))) (|has| |#3| (-596 (-1147)))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#3| (-596 (-1147)))))) (($ (-920 |#1|)) 221 (|has| |#3| (-596 (-1147)))) (((-1129) $) 199 (-12 (|has| |#1| (-1012 (-536))) (|has| |#3| (-596 (-1147))))) (((-920 |#1|) $) 198 (|has| |#3| (-596 (-1147))))) (-3145 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ |#3|) 104 (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 102 (-3186 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-920 |#1|) $) 197 (|has| |#3| (-596 (-1147)))) (($ (-400 (-536))) 70 (-3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| |#1| (-38 (-400 (-536)))))) (($ $) 83 (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) 166)) (-4035 ((|#1| $ |#2|) 153) (($ $ |#3| (-749)) 126) (($ $ (-620 |#3|) (-620 (-749))) 125)) (-3030 (((-3 $ #1#) $) 71 (-3886 (-3186 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 28)) (-1715 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 87 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-3513 (((-3 (-112) "failed") $ $) 257)) (-2992 (($) 29 T CONST)) (-3492 (($ $ $ $ (-749)) 206 (|has| |#1| (-543)))) (-3493 (($ $ $ (-749)) 207 (|has| |#1| (-543)))) (-2997 (($ $ |#3|) 36) (($ $ (-620 |#3|)) 35) (($ $ |#3| (-749)) 34) (($ $ (-620 |#3|) (-620 (-749))) 33)) (-2891 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 73 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 75 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 72 (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 156 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 155 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1037 |#1| |#2| |#3|) (-138) (-1023) (-771) (-825)) (T -1037)) -((-3526 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-749)))) (-3799 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3524 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3523 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3522 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1037 *3 *4 *5)))) (-3521 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3520 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-4314 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3517 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3516 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3515 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1037 *3 *4 *5)))) (-3514 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1037 *3 *4 *5)))) (-3513 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4057 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-3512 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4052 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4052 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-4050 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4050 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-4049 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4049 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-4053 (*1 *2 *1 *1) (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)))) (-4053 (*1 *2 *1 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) (-3511 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3510 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3511 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3510 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3509 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3508 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3509 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3508 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) (-3507 (*1 *2 *1 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -3230 *1))) (-4 *1 (-1037 *3 *4 *5)))) (-3507 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -3230 *1))) (-4 *1 (-1037 *4 *5 *3)))) (-3506 (*1 *2 *1 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1037 *3 *4 *5)))) (-3506 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1037 *4 *5 *3)))) (-4107 (*1 *2 *1 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1037 *3 *4 *5)))) (-3505 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3504 (*1 *2 *1 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3830 (-749)))) (-4 *1 (-1037 *3 *4 *5)))) (-4045 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-4044 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)))) (-3502 (*1 *1 *2) (-12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)))) (-3503 (*1 *1 *2) (|partial| -3886 (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))))) (-3502 (*1 *1 *2) (-3886 (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))))) (-4325 (*1 *1 *2) (-3886 (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))))) (-3503 (*1 *1 *2) (|partial| -3886 (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-3671 (-4 *3 (-38 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-535))) (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-965 (-536)))) (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) (-3502 (*1 *1 *2) (-3886 (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-3671 (-4 *3 (-38 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-535))) (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) (-12 (-5 *2 (-920 *3)) (-12 (-3671 (-4 *3 (-965 (-536)))) (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *5 (-596 (-1147))) (-4 *4 (-771)) (-4 *5 (-825)))) (-3501 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3500 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3499 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3498 (*1 *1 *1 *2) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3499 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3498 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-4110 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3497 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3490 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1037 *3 *4 *5)))) (-3496 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3490 *1) (|:| |coef1| *1))) (-4 *1 (-1037 *3 *4 *5)))) (-3495 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-2 (|:| -3490 *1) (|:| |coef2| *1))) (-4 *1 (-1037 *3 *4 *5)))) (-4111 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3494 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1037 *3 *4 *5)))) (-3536 (*1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3493 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-543)))) (-3492 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *3 (-543)))) (-3491 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-543)))) (-3490 (*1 *2 *2 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3489 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3488 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3487 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444)))) (-3486 (*1 *1 *1) (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-444))))) -(-13 (-924 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3526 (|t#3| $)) (-15 -3525 ((-749) $)) (-15 -3799 ($ $)) (-15 -3524 ($ $)) (-15 -4151 ($ $)) (-15 -3523 ($ $)) (-15 -3522 ((-620 $) $)) (-15 -3521 ($ $)) (-15 -3520 ($ $ |t#3|)) (-15 -4314 ($ $ |t#3|)) (-15 -3519 ((-112) $)) (-15 -3518 ((-112) $)) (-15 -3517 ($ $)) (-15 -3516 ($ $)) (-15 -3515 ((-620 $) $)) (-15 -3514 ((-620 $) $)) (-15 -3513 ((-3 (-112) "failed") $ $)) (-15 -4057 ((-112) $ $)) (-15 -3512 ((-112) $ $)) (-15 -4052 ((-112) $ $)) (-15 -4052 ((-112) $ (-620 $))) (-15 -4050 ((-112) $ $)) (-15 -4050 ((-112) $ (-620 $))) (-15 -4049 ((-112) $ $)) (-15 -4049 ((-112) $ (-620 $))) (-15 -4053 ((-112) $ $)) (-15 -4053 ((-112) $ (-620 $))) (-15 -3511 ($ $ $)) (-15 -3510 ($ $ $)) (-15 -3511 ($ $ $ |t#3|)) (-15 -3510 ($ $ $ |t#3|)) (-15 -3509 ($ $ $)) (-15 -3508 ($ $ $)) (-15 -3509 ($ $ $ |t#3|)) (-15 -3508 ($ $ $ |t#3|)) (-15 -3507 ((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $)) (-15 -3507 ((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -3230 $)) $ $ |t#3|)) (-15 -3506 ((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -3506 ((-2 (|:| -4308 $) (|:| |gap| (-749)) (|:| -2091 $) (|:| -3230 $)) $ $ |t#3|)) (-15 -4107 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -3505 ($ $ $)) (-15 -3504 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3830 (-749))) $ $)) (-15 -4045 ($ $ $)) (-15 -4044 ($ $ $)) (IF (|has| |t#3| (-596 (-1147))) (PROGN (-6 (-595 (-920 |t#1|))) (-6 (-596 (-920 |t#1|))) (IF (|has| |t#1| (-38 (-400 (-536)))) (PROGN (-15 -3503 ((-3 $ "failed") (-920 (-400 (-536))))) (-15 -3502 ($ (-920 (-400 (-536))))) (-15 -4325 ($ (-920 (-400 (-536))))) (-15 -3503 ((-3 $ "failed") (-920 (-536)))) (-15 -3502 ($ (-920 (-536)))) (-15 -4325 ($ (-920 (-536)))) (IF (|has| |t#1| (-965 (-536))) |%noBranch| (PROGN (-15 -3503 ((-3 $ "failed") (-920 |t#1|))) (-15 -3502 ($ (-920 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-536))) (IF (|has| |t#1| (-38 (-400 (-536)))) |%noBranch| (PROGN (-15 -3503 ((-3 $ "failed") (-920 (-536)))) (-15 -3502 ($ (-920 (-536)))) (-15 -4325 ($ (-920 (-536)))) (IF (|has| |t#1| (-535)) |%noBranch| (PROGN (-15 -3503 ((-3 $ "failed") (-920 |t#1|))) (-15 -3502 ($ (-920 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-536))) |%noBranch| (IF (|has| |t#1| (-38 (-400 (-536)))) |%noBranch| (PROGN (-15 -3503 ((-3 $ "failed") (-920 |t#1|))) (-15 -3502 ($ (-920 |t#1|)))))) (-15 -4325 ($ (-920 |t#1|))) (IF (|has| |t#1| (-1012 (-536))) (-6 (-596 (-1129))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-15 -3501 ($ $)) (-15 -3500 ($ $)) (-15 -3499 ($ $ |t#1|)) (-15 -3498 ($ $ |t#1|)) (-15 -3499 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -4110 ($ $ $)) (-15 -3497 ((-2 (|:| -3490 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3496 ((-2 (|:| -3490 $) (|:| |coef1| $)) $ $)) (-15 -3495 ((-2 (|:| -3490 $) (|:| |coef2| $)) $ $)) (-15 -4111 ($ $ $)) (-15 -3494 ((-620 $) $ $)) (-15 -3536 ($ $ $)) (-15 -3493 ($ $ $ (-749))) (-15 -3492 ($ $ $ $ (-749))) (-15 -3491 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (PROGN (-15 -3490 (|t#1| |t#1| $)) (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3487 ($ $)) (-15 -3486 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-595 (-920 |#1|)) |has| |#3| (-596 (-1147))) ((-170) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-596 (-525)) -12 (|has| |#1| (-596 (-525))) (|has| |#3| (-596 (-525)))) ((-596 (-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#3| (-596 (-864 (-371))))) ((-596 (-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#3| (-596 (-864 (-536))))) ((-596 (-920 |#1|)) |has| |#3| (-596 (-1147))) ((-596 (-1129)) -12 (|has| |#1| (-1012 (-536))) (|has| |#3| (-596 (-1147)))) ((-283) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-302 $) . T) ((-319 |#1| |#2|) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-884)) (|has| |#1| (-444))) ((-505 |#3| |#1|) . T) ((-505 |#3| $) . T) ((-505 $ $) . T) ((-543) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 |#3|) . T) ((-860 (-371)) -12 (|has| |#1| (-860 (-371))) (|has| |#3| (-860 (-371)))) ((-860 (-536)) -12 (|has| |#1| (-860 (-536))) (|has| |#3| (-860 (-536)))) ((-924 |#1| |#2| |#3|) . T) ((-884) |has| |#1| (-884)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 |#1|) . T) ((-1012 |#3|) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) |has| |#1| (-884))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3527 (((-620 (-1106)) $) 13)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 24) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-1106) $) 15)) (-3382 (((-112) $ $) NIL))) -(((-1038) (-13 (-1054) (-10 -8 (-15 -3527 ((-620 (-1106)) $)) (-15 -3579 ((-1106) $))))) (T -1038)) -((-3527 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1038)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1038))))) -(-13 (-1054) (-10 -8 (-15 -3527 ((-620 (-1106)) $)) (-15 -3579 ((-1106) $)))) -((-3534 (((-112) |#3| $) 13)) (-3529 (((-3 $ "failed") |#3| (-893)) 23)) (-3816 (((-3 |#3| "failed") |#3| $) 38)) (-3532 (((-112) |#3| $) 16)) (-3533 (((-112) |#3| $) 14))) -(((-1039 |#1| |#2| |#3|) (-10 -8 (-15 -3529 ((-3 |#1| "failed") |#3| (-893))) (-15 -3816 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3532 ((-112) |#3| |#1|)) (-15 -3533 ((-112) |#3| |#1|)) (-15 -3534 ((-112) |#3| |#1|))) (-1040 |#2| |#3|) (-13 (-823) (-356)) (-1205 |#2|)) (T -1039)) -NIL -(-10 -8 (-15 -3529 ((-3 |#1| "failed") |#3| (-893))) (-15 -3816 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3532 ((-112) |#3| |#1|)) (-15 -3533 ((-112) |#3| |#1|)) (-15 -3534 ((-112) |#3| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) |#2| $) 21)) (-3981 (((-536) |#2| $) 22)) (-3529 (((-3 $ "failed") |#2| (-893)) 15)) (-3528 ((|#1| |#2| $ |#1|) 13)) (-3816 (((-3 |#2| "failed") |#2| $) 18)) (-3532 (((-112) |#2| $) 19)) (-3533 (((-112) |#2| $) 20)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3531 ((|#2| $) 17)) (-4312 (((-838) $) 11)) (-4124 ((|#1| |#2| $ |#1|) 14)) (-3530 (((-620 $) |#2|) 16)) (-3382 (((-112) $ $) 6))) -(((-1040 |#1| |#2|) (-138) (-13 (-823) (-356)) (-1205 |t#1|)) (T -1040)) -((-3981 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-536)))) (-3534 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-112)))) (-3533 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-112)))) (-3532 (*1 *2 *3 *1) (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-112)))) (-3816 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1040 *3 *2)) (-4 *3 (-13 (-823) (-356))) (-4 *2 (-1205 *3)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *2)) (-4 *3 (-13 (-823) (-356))) (-4 *2 (-1205 *3)))) (-3530 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-620 *1)) (-4 *1 (-1040 *4 *3)))) (-3529 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-893)) (-4 *4 (-13 (-823) (-356))) (-4 *1 (-1040 *4 *2)) (-4 *2 (-1205 *4)))) (-4124 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1040 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1205 *2)))) (-3528 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1040 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1205 *2))))) -(-13 (-1072) (-10 -8 (-15 -3981 ((-536) |t#2| $)) (-15 -3534 ((-112) |t#2| $)) (-15 -3533 ((-112) |t#2| $)) (-15 -3532 ((-112) |t#2| $)) (-15 -3816 ((-3 |t#2| "failed") |t#2| $)) (-15 -3531 (|t#2| $)) (-15 -3530 ((-620 $) |t#2|)) (-15 -3529 ((-3 $ "failed") |t#2| (-893))) (-15 -4124 (|t#1| |t#2| $ |t#1|)) (-15 -3528 (|t#1| |t#2| $ |t#1|)))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-3790 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749)) 96)) (-3787 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749)) 56)) (-3791 (((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)) 87)) (-3785 (((-749) (-620 |#4|) (-620 |#5|)) 27)) (-3788 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749)) 58) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112)) 60)) (-3789 (((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112)) 79)) (-4325 (((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) 82)) (-3786 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112)) 55)) (-3784 (((-749) (-620 |#4|) (-620 |#5|)) 19))) -(((-1041 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3784 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3785 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3786 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3790 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749))) (-15 -4325 ((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3791 ((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -1041)) -((-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *4 (-749)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1235)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1129)) (-5 *1 (-1041 *4 *5 *6 *7 *8)))) (-3790 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-620 *11)) (|:| |todo| (-620 (-2 (|:| |val| *3) (|:| -1655 *11)))))) (-5 *6 (-749)) (-5 *2 (-620 (-2 (|:| |val| (-620 *10)) (|:| -1655 *11)))) (-5 *3 (-620 *10)) (-5 *4 (-620 *11)) (-4 *10 (-1037 *7 *8 *9)) (-4 *11 (-1043 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-5 *1 (-1041 *7 *8 *9 *10 *11)))) (-3789 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) (-3789 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) (-3788 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) (-3788 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-4 *3 (-1037 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *7 *8 *9 *3 *4)) (-4 *4 (-1043 *7 *8 *9 *3)))) (-3787 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3787 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) (-3786 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1041 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3784 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3785 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3786 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-112))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3790 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749))) (-15 -4325 ((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3791 ((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)))) -((-3543 (((-112) |#5| $) 21)) (-3541 (((-112) |#5| $) 24)) (-3544 (((-112) |#5| $) 16) (((-112) $) 45)) (-3584 (((-620 $) |#5| $) NIL) (((-620 $) (-620 |#5|) $) 77) (((-620 $) (-620 |#5|) (-620 $)) 75) (((-620 $) |#5| (-620 $)) 78)) (-4123 (($ $ |#5|) NIL) (((-620 $) |#5| $) NIL) (((-620 $) |#5| (-620 $)) 60) (((-620 $) (-620 |#5|) $) 62) (((-620 $) (-620 |#5|) (-620 $)) 64)) (-3535 (((-620 $) |#5| $) NIL) (((-620 $) |#5| (-620 $)) 54) (((-620 $) (-620 |#5|) $) 56) (((-620 $) (-620 |#5|) (-620 $)) 58)) (-3542 (((-112) |#5| $) 27))) -(((-1042 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4123 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -4123 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -4123 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -4123 ((-620 |#1|) |#5| |#1|)) (-15 -3535 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -3535 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -3535 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -3535 ((-620 |#1|) |#5| |#1|)) (-15 -3584 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -3584 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -3584 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -3584 ((-620 |#1|) |#5| |#1|)) (-15 -3541 ((-112) |#5| |#1|)) (-15 -3544 ((-112) |#1|)) (-15 -3542 ((-112) |#5| |#1|)) (-15 -3543 ((-112) |#5| |#1|)) (-15 -3544 ((-112) |#5| |#1|)) (-15 -4123 (|#1| |#1| |#5|))) (-1043 |#2| |#3| |#4| |#5|) (-444) (-771) (-825) (-1037 |#2| |#3| |#4|)) (T -1042)) -NIL -(-10 -8 (-15 -4123 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -4123 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -4123 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -4123 ((-620 |#1|) |#5| |#1|)) (-15 -3535 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -3535 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -3535 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -3535 ((-620 |#1|) |#5| |#1|)) (-15 -3584 ((-620 |#1|) |#5| (-620 |#1|))) (-15 -3584 ((-620 |#1|) (-620 |#5|) (-620 |#1|))) (-15 -3584 ((-620 |#1|) (-620 |#5|) |#1|)) (-15 -3584 ((-620 |#1|) |#5| |#1|)) (-15 -3541 ((-112) |#5| |#1|)) (-15 -3544 ((-112) |#1|)) (-15 -3542 ((-112) |#5| |#1|)) (-15 -3543 ((-112) |#5| |#1|)) (-15 -3544 ((-112) |#5| |#1|)) (-15 -4123 (|#1| |#1| |#5|))) -((-2893 (((-112) $ $) 7)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) 85)) (-4040 (((-620 $) (-620 |#4|)) 86) (((-620 $) (-620 |#4|) (-112)) 111)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) 101) (((-112) $) 97)) (-4046 ((|#4| |#4| $) 92)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-4153 (((-3 $ #1#) $) 82)) (-4043 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4041 ((|#4| |#4| $) 87)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) 105)) (-3543 (((-112) |#4| $) 136)) (-3541 (((-112) |#4| $) 133)) (-3544 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) 104) (((-112) $) 103)) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) 128)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4152 (((-3 |#4| #1#) $) 83)) (-3538 (((-620 $) |#4| $) 129)) (-3540 (((-3 (-112) (-620 $)) |#4| $) 132)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3584 (((-620 $) |#4| $) 125) (((-620 $) (-620 |#4|) $) 124) (((-620 $) (-620 |#4|) (-620 $)) 123) (((-620 $) |#4| (-620 $)) 122)) (-3794 (($ |#4| $) 117) (($ (-620 |#4|) $) 116)) (-4055 (((-620 |#4|) $) 107)) (-4049 (((-112) |#4| $) 99) (((-112) $) 95)) (-4044 ((|#4| |#4| $) 90)) (-4057 (((-112) $ $) 110)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) 100) (((-112) $) 96)) (-4045 ((|#4| |#4| $) 91)) (-3589 (((-1091) $) 10)) (-4155 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4037 (((-3 $ #1#) $ |#4|) 78)) (-4123 (($ $ |#4|) 77) (((-620 $) |#4| $) 115) (((-620 $) |#4| (-620 $)) 114) (((-620 $) (-620 |#4|) $) 113) (((-620 $) (-620 |#4|) (-620 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-4302 (((-749) $) 106)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-4042 (($ $) 88)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-4036 (((-749) $) 76 (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) 98)) (-3535 (((-620 $) |#4| $) 121) (((-620 $) |#4| (-620 $)) 120) (((-620 $) (-620 |#4|) $) 119) (((-620 $) (-620 |#4|) (-620 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) 81)) (-3542 (((-112) |#4| $) 135)) (-4288 (((-112) |#3| $) 80)) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) -(((-1043 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -1043)) -((-3544 (*1 *2 *3 *1) (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-3543 (*1 *2 *3 *1) (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-3542 (*1 *2 *3 *1) (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-3541 (*1 *2 *3 *1) (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-3540 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-3 (-112) (-620 *1))) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3539 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *1)))) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3539 (*1 *2 *3 *1) (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-3538 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3537 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-3 *3 (-620 *1))) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3536 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *1)))) (-4 *1 (-1043 *4 *5 *6 *3)))) (-4129 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *1)))) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3584 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3584 (*1 *2 *3 *1) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) (-3584 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) (-3584 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) (-3535 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) (-3535 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) (-3535 (*1 *2 *3 *1) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) (-3535 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) (-3794 (*1 *1 *2 *1) (-12 (-4 *1 (-1043 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-3794 (*1 *1 *2 *1) (-12 (-5 *2 (-620 *6)) (-4 *1 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)))) (-4123 (*1 *2 *3 *1) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) (-4123 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) (-4123 (*1 *2 *3 *1) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) (-4123 (*1 *2 *3 *2) (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *5 *6 *7 *8))))) -(-13 (-1178 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3544 ((-112) |t#4| $)) (-15 -3543 ((-112) |t#4| $)) (-15 -3542 ((-112) |t#4| $)) (-15 -3544 ((-112) $)) (-15 -3541 ((-112) |t#4| $)) (-15 -3540 ((-3 (-112) (-620 $)) |t#4| $)) (-15 -3539 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |t#4| $)) (-15 -3539 ((-112) |t#4| $)) (-15 -3538 ((-620 $) |t#4| $)) (-15 -3537 ((-3 |t#4| (-620 $)) |t#4| |t#4| $)) (-15 -3536 ((-620 (-2 (|:| |val| |t#4|) (|:| -1655 $))) |t#4| |t#4| $)) (-15 -4129 ((-620 (-2 (|:| |val| |t#4|) (|:| -1655 $))) |t#4| $)) (-15 -3584 ((-620 $) |t#4| $)) (-15 -3584 ((-620 $) (-620 |t#4|) $)) (-15 -3584 ((-620 $) (-620 |t#4|) (-620 $))) (-15 -3584 ((-620 $) |t#4| (-620 $))) (-15 -3535 ((-620 $) |t#4| $)) (-15 -3535 ((-620 $) |t#4| (-620 $))) (-15 -3535 ((-620 $) (-620 |t#4|) $)) (-15 -3535 ((-620 $) (-620 |t#4|) (-620 $))) (-15 -3794 ($ |t#4| $)) (-15 -3794 ($ (-620 |t#4|) $)) (-15 -4123 ((-620 $) |t#4| $)) (-15 -4123 ((-620 $) |t#4| (-620 $))) (-15 -4123 ((-620 $) (-620 |t#4|) $)) (-15 -4123 ((-620 $) (-620 |t#4|) (-620 $))) (-15 -4040 ((-620 $) (-620 |t#4|) (-112))))) -(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1072) . T) ((-1178 |#1| |#2| |#3| |#4|) . T) ((-1183) . T)) -((-3551 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 81)) (-3548 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 113)) (-3550 (((-620 |#5|) |#4| |#5|) 70)) (-3549 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3633 (((-1235)) 37)) (-3631 (((-1235)) 26)) (-3632 (((-1235) (-1129) (-1129) (-1129)) 33)) (-3630 (((-1235) (-1129) (-1129) (-1129)) 22)) (-3545 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|) 96)) (-3546 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112)) 107) (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3547 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 102))) -(((-1044 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3630 ((-1235) (-1129) (-1129) (-1129))) (-15 -3631 ((-1235))) (-15 -3632 ((-1235) (-1129) (-1129) (-1129))) (-15 -3633 ((-1235))) (-15 -3545 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3546 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3546 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3547 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3548 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3549 ((-112) |#4| |#5|)) (-15 -3549 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3550 ((-620 |#5|) |#4| |#5|)) (-15 -3551 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -1044)) -((-3551 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3550 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 *4)) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3549 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3549 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3548 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3547 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3546 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) (-4 *8 (-1037 *6 *7 *4)) (-4 *9 (-1043 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) (-5 *2 (-620 (-2 (|:| |val| *8) (|:| -1655 *9)))) (-5 *1 (-1044 *6 *7 *4 *8 *9)))) (-3546 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) (-3545 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3633 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3632 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1044 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3631 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3630 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1044 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7))))) -(-10 -7 (-15 -3630 ((-1235) (-1129) (-1129) (-1129))) (-15 -3631 ((-1235))) (-15 -3632 ((-1235) (-1129) (-1129) (-1129))) (-15 -3633 ((-1235))) (-15 -3545 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3546 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3546 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3547 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3548 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3549 ((-112) |#4| |#5|)) (-15 -3549 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3550 ((-620 |#5|) |#4| |#5|)) (-15 -3551 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) -((-2893 (((-112) $ $) NIL)) (-3664 (((-1184) $) 13)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3552 (((-1106) $) 10)) (-4312 (((-838) $) 22) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-1045) (-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $))))) (T -1045)) -((-3552 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1045)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1045))))) -(-13 (-1054) (-10 -8 (-15 -3552 ((-1106) $)) (-15 -3664 ((-1184) $)))) -((-2893 (((-112) $ $) NIL)) (-3555 (($ $ (-620 (-1147)) (-1 (-112) (-620 |#3|))) 33)) (-3556 (($ |#3| |#3|) 22) (($ |#3| |#3| (-620 (-1147))) 20)) (-3877 ((|#3| $) 13)) (-3503 (((-3 (-286 |#3|) "failed") $) 58)) (-3502 (((-286 |#3|) $) NIL)) (-3553 (((-620 (-1147)) $) 16)) (-3554 (((-864 |#1|) $) 11)) (-3878 ((|#3| $) 12)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4154 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-893)) 39)) (-4312 (((-838) $) 86) (($ (-286 |#3|)) 21)) (-3382 (((-112) $ $) 36))) -(((-1046 |#1| |#2| |#3|) (-13 (-1072) (-279 |#3| |#3|) (-1012 (-286 |#3|)) (-10 -8 (-15 -3556 ($ |#3| |#3|)) (-15 -3556 ($ |#3| |#3| (-620 (-1147)))) (-15 -3555 ($ $ (-620 (-1147)) (-1 (-112) (-620 |#3|)))) (-15 -3554 ((-864 |#1|) $)) (-15 -3878 (|#3| $)) (-15 -3877 (|#3| $)) (-15 -4154 (|#3| $ |#3| (-893))) (-15 -3553 ((-620 (-1147)) $)))) (-1072) (-13 (-1023) (-860 |#1|) (-825) (-596 (-864 |#1|))) (-13 (-414 |#2|) (-860 |#1|) (-596 (-864 |#1|)))) (T -1046)) -((-3556 (*1 *1 *2 *2) (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) (-5 *1 (-1046 *3 *4 *2)) (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))))) (-3556 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-5 *1 (-1046 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) (-3555 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-1 (-112) (-620 *6))) (-4 *6 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-5 *1 (-1046 *4 *5 *6)))) (-3554 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 *2))) (-5 *2 (-864 *3)) (-5 *1 (-1046 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-860 *3) (-596 *2))))) (-3878 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) (-5 *1 (-1046 *3 *4 *2)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))))) (-3877 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) (-5 *1 (-1046 *3 *4 *2)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))))) (-4154 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-893)) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-5 *1 (-1046 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) (-3553 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) (-5 *2 (-620 (-1147))) (-5 *1 (-1046 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3))))))) -(-13 (-1072) (-279 |#3| |#3|) (-1012 (-286 |#3|)) (-10 -8 (-15 -3556 ($ |#3| |#3|)) (-15 -3556 ($ |#3| |#3| (-620 (-1147)))) (-15 -3555 ($ $ (-620 (-1147)) (-1 (-112) (-620 |#3|)))) (-15 -3554 ((-864 |#1|) $)) (-15 -3878 (|#3| $)) (-15 -3877 (|#3| $)) (-15 -4154 (|#3| $ |#3| (-893))) (-15 -3553 ((-620 (-1147)) $)))) -((-2893 (((-112) $ $) NIL)) (-3900 (((-1147) $) 8)) (-3588 (((-1129) $) 16)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 13))) -(((-1047 |#1|) (-13 (-1072) (-10 -8 (-15 -3900 ((-1147) $)))) (-1147)) (T -1047)) -((-3900 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1047 *3)) (-14 *3 *2)))) -(-13 (-1072) (-10 -8 (-15 -3900 ((-1147) $)))) -((-2893 (((-112) $ $) NIL)) (-3558 (($ (-620 (-1046 |#1| |#2| |#3|))) 13)) (-3557 (((-620 (-1046 |#1| |#2| |#3|)) $) 20)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4154 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-893)) 26)) (-4312 (((-838) $) 16)) (-3382 (((-112) $ $) 19))) -(((-1048 |#1| |#2| |#3|) (-13 (-1072) (-279 |#3| |#3|) (-10 -8 (-15 -3558 ($ (-620 (-1046 |#1| |#2| |#3|)))) (-15 -3557 ((-620 (-1046 |#1| |#2| |#3|)) $)) (-15 -4154 (|#3| $ |#3| (-893))))) (-1072) (-13 (-1023) (-860 |#1|) (-825) (-596 (-864 |#1|))) (-13 (-414 |#2|) (-860 |#1|) (-596 (-864 |#1|)))) (T -1048)) -((-3558 (*1 *1 *2) (-12 (-5 *2 (-620 (-1046 *3 *4 *5))) (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) (-5 *1 (-1048 *3 *4 *5)))) (-3557 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) (-5 *2 (-620 (-1046 *3 *4 *5))) (-5 *1 (-1048 *3 *4 *5)) (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))))) (-4154 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-893)) (-4 *4 (-1072)) (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) (-5 *1 (-1048 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4))))))) -(-13 (-1072) (-279 |#3| |#3|) (-10 -8 (-15 -3558 ($ (-620 (-1046 |#1| |#2| |#3|)))) (-15 -3557 ((-620 (-1046 |#1| |#2| |#3|)) $)) (-15 -4154 (|#3| $ |#3| (-893))))) -((-3559 (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112)) 75) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|))) 77) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112)) 76))) -(((-1049 |#1| |#2|) (-10 -7 (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112))) (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112)))) (-13 (-300) (-145)) (-620 (-1147))) (T -1049)) -((-3559 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) (-5 *1 (-1049 *5 *6)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))))) (-3559 (*1 *2 *3) (-12 (-4 *4 (-13 (-300) (-145))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) (-5 *1 (-1049 *4 *5)) (-5 *3 (-620 (-920 *4))) (-14 *5 (-620 (-1147))))) (-3559 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) (-5 *1 (-1049 *5 *6)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147)))))) -(-10 -7 (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112))) (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -3559 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 126)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-356)))) (-2173 (($ $) NIL (|has| |#1| (-356)))) (-2171 (((-112) $) NIL (|has| |#1| (-356)))) (-1896 (((-667 |#1|) (-1229 $)) NIL) (((-667 |#1|)) 115)) (-3684 ((|#1| $) 119)) (-1786 (((-1156 (-893) (-749)) (-536)) NIL (|has| |#1| (-343)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3466 (((-749)) 40 (|has| |#1| (-361)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-1906 (($ (-1229 |#1|) (-1229 $)) NIL) (($ (-1229 |#1|)) 43)) (-1784 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-343)))) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-1895 (((-667 |#1|) $ (-1229 $)) NIL) (((-667 |#1|) $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 106) (((-667 |#1|) (-667 $)) 101)) (-4197 (($ |#2|) 61) (((-3 $ "failed") (-400 |#2|)) NIL (|has| |#1| (-356)))) (-3816 (((-3 $ "failed") $) NIL)) (-3439 (((-893)) 77)) (-3322 (($) 44 (|has| |#1| (-361)))) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-3161 (($) NIL (|has| |#1| (-343)))) (-1791 (((-112) $) NIL (|has| |#1| (-343)))) (-1881 (($ $ (-749)) NIL (|has| |#1| (-343))) (($ $) NIL (|has| |#1| (-343)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-4126 (((-893) $) NIL (|has| |#1| (-343))) (((-810 (-893)) $) NIL (|has| |#1| (-343)))) (-2497 (((-112) $) NIL)) (-3462 ((|#1| $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-343)))) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-2125 ((|#2| $) 84 (|has| |#1| (-356)))) (-2121 (((-893) $) 131 (|has| |#1| (-361)))) (-3408 ((|#2| $) 58)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-3799 (($) NIL (|has| |#1| (-343)) CONST)) (-2487 (($ (-893)) 125 (|has| |#1| (-361)))) (-3589 (((-1091) $) NIL)) (-2496 (($) 121)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-1787 (((-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536))))) NIL (|has| |#1| (-343)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4112 ((|#1| (-1229 $)) NIL) ((|#1|) 109)) (-1882 (((-749) $) NIL (|has| |#1| (-343))) (((-3 (-749) "failed") $ $) NIL (|has| |#1| (-343)))) (-4165 (($ $) NIL (-3886 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-749)) NIL (-3886 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-1 |#1| |#1|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-2495 (((-667 |#1|) (-1229 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3531 ((|#2|) 73)) (-1785 (($) NIL (|has| |#1| (-343)))) (-3570 (((-1229 |#1|) $ (-1229 $)) 89) (((-667 |#1|) (-1229 $) (-1229 $)) NIL) (((-1229 |#1|) $) 71) (((-667 |#1|) (-1229 $)) 85)) (-4325 (((-1229 |#1|) $) NIL) (($ (-1229 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3031 (((-3 (-1229 $) "failed") (-667 $)) NIL (|has| |#1| (-343)))) (-4312 (((-838) $) 57) (($ (-536)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-356))) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-356)) (|has| |#1| (-1012 (-400 (-536))))))) (-3030 (($ $) NIL (|has| |#1| (-343))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2693 ((|#2| $) 82)) (-3456 (((-749)) 75)) (-2123 (((-1229 $)) 81)) (-2172 (((-112) $ $) NIL (|has| |#1| (-356)))) (-2986 (($) 30 T CONST)) (-2992 (($) 19 T CONST)) (-2997 (($ $) NIL (-3886 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-749)) NIL (-3886 (-12 (|has| |#1| (-227)) (|has| |#1| (-356))) (|has| |#1| (-343)))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-356)) (|has| |#1| (-874 (-1147))))) (($ $ (-1 |#1| |#1|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-356)))) (-3382 (((-112) $ $) 63)) (-4303 (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) 67) (($ $ $) NIL)) (-4194 (($ $ $) 65)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-400 (-536)) $) NIL (|has| |#1| (-356))) (($ $ (-400 (-536))) NIL (|has| |#1| (-356))))) -(((-1050 |#1| |#2| |#3|) (-703 |#1| |#2|) (-170) (-1205 |#1|) |#2|) (T -1050)) -NIL -(-703 |#1| |#2|) -((-4087 (((-398 |#3|) |#3|) 18))) -(((-1051 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-398 |#3|) |#3|))) (-1205 (-400 (-536))) (-13 (-356) (-145) (-703 (-400 (-536)) |#1|)) (-1205 |#2|)) (T -1051)) -((-4087 (*1 *2 *3) (-12 (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-13 (-356) (-145) (-703 (-400 (-536)) *4))) (-5 *2 (-398 *3)) (-5 *1 (-1051 *4 *5 *3)) (-4 *3 (-1205 *5))))) -(-10 -7 (-15 -4087 ((-398 |#3|) |#3|))) -((-4087 (((-398 |#3|) |#3|) 19))) -(((-1052 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-398 |#3|) |#3|))) (-1205 (-400 (-920 (-536)))) (-13 (-356) (-145) (-703 (-400 (-920 (-536))) |#1|)) (-1205 |#2|)) (T -1052)) -((-4087 (*1 *2 *3) (-12 (-4 *4 (-1205 (-400 (-920 (-536))))) (-4 *5 (-13 (-356) (-145) (-703 (-400 (-920 (-536))) *4))) (-5 *2 (-398 *3)) (-5 *1 (-1052 *4 *5 *3)) (-4 *3 (-1205 *5))))) -(-10 -7 (-15 -4087 ((-398 |#3|) |#3|))) -((-2893 (((-112) $ $) NIL)) (-3672 (($ $ $) 14)) (-3673 (($ $ $) 15)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3560 (($) 6)) (-4325 (((-1147) $) 18)) (-4312 (((-838) $) 12)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 13)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 8))) -(((-1053) (-13 (-825) (-10 -8 (-15 -3560 ($)) (-15 -4325 ((-1147) $))))) (T -1053)) -((-3560 (*1 *1) (-5 *1 (-1053))) (-4325 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1053))))) -(-13 (-825) (-10 -8 (-15 -3560 ($)) (-15 -4325 ((-1147) $)))) -((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (((-1152) $) 15) (($ (-1152)) 14)) (-3382 (((-112) $ $) 6))) -(((-1054) (-138)) (T -1054)) +NIL +(-13 (-21) (-1085)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-130) . T) ((-597 (-840)) . T) ((-1085) . T) ((-1074) . T)) +((-4130 (($ $) 16)) (-3462 (($ $) 22)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 49)) (-3467 (($ $) 24)) (-3463 (($ $) 11)) (-3465 (($ $) 38)) (-4330 (((-373) $) NIL) (((-221) $) NIL) (((-866 (-373)) $) 33)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL) (($ (-402 (-538))) 28) (($ (-538)) NIL) (($ (-402 (-538))) 28)) (-3461 (((-751)) 8)) (-3466 (($ $) 39))) +(((-1033 |#1|) (-10 -8 (-15 -3462 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -4317 ((-840) |#1|))) (-1034)) (T -1033)) +((-3461 (*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1033 *3)) (-4 *3 (-1034))))) +(-10 -8 (-15 -3462 (|#1| |#1|)) (-15 -4130 (|#1| |#1|)) (-15 -3463 (|#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3467 (|#1| |#1|)) (-15 -3129 ((-864 (-373) |#1|) |#1| (-866 (-373)) (-864 (-373) |#1|))) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 -4330 ((-221) |#1|)) (-15 -4330 ((-373) |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -3461 ((-751))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3464 (((-538) $) 86)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-4130 (($ $) 84)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-3370 (($ $) 94)) (-1705 (((-112) $ $) 57)) (-3986 (((-538) $) 111)) (-3896 (($) 17 T CONST)) (-3462 (($ $) 83)) (-3508 (((-3 (-538) #1="failed") $) 99) (((-3 (-402 (-538)) #1#) $) 96)) (-3507 (((-538) $) 98) (((-402 (-538)) $) 95)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-4086 (((-112) $) 68)) (-3537 (((-112) $) 109)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 90)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 93)) (-3467 (($ $) 89)) (-3538 (((-112) $) 110)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) 50)) (-3677 (($ $ $) 108)) (-3678 (($ $ $) 107)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-3463 (($ $) 85)) (-3465 (($ $) 87)) (-4092 (((-400 $) $) 71)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-4330 (((-373) $) 102) (((-221) $) 101) (((-866 (-373)) $) 91)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ (-538)) 100) (($ (-402 (-538))) 97)) (-3461 (((-751)) 28)) (-3466 (($ $) 88)) (-2177 (((-112) $ $) 37)) (-3742 (($ $) 112)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-2896 (((-112) $ $) 105)) (-2897 (((-112) $ $) 104)) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 106)) (-3018 (((-112) $ $) 103)) (-4308 (($ $ $) 62)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66) (($ $ (-402 (-538))) 92)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64))) +(((-1034) (-138)) (T -1034)) +((-3742 (*1 *1 *1) (-4 *1 (-1034))) (-3467 (*1 *1 *1) (-4 *1 (-1034))) (-3466 (*1 *1 *1) (-4 *1 (-1034))) (-3465 (*1 *1 *1) (-4 *1 (-1034))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-538)))) (-3463 (*1 *1 *1) (-4 *1 (-1034))) (-4130 (*1 *1 *1) (-4 *1 (-1034))) (-3462 (*1 *1 *1) (-4 *1 (-1034)))) +(-13 (-358) (-825) (-996) (-1014 (-538)) (-1014 (-402 (-538))) (-978) (-598 (-866 (-373))) (-862 (-373)) (-145) (-10 -8 (-15 -3467 ($ $)) (-15 -3466 ($ $)) (-15 -3465 ($ $)) (-15 -3464 ((-538) $)) (-15 -3463 ($ $)) (-15 -4130 ($ $)) (-15 -3462 ($ $)) (-15 -3742 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-130) . T) ((-145) . T) ((-597 (-840)) . T) ((-170) . T) ((-598 (-221)) . T) ((-598 (-373)) . T) ((-598 (-866 (-373))) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 $) . T) ((-707) . T) ((-771) . T) ((-772) . T) ((-774) . T) ((-777) . T) ((-825) . T) ((-827) . T) ((-862 (-373)) . T) ((-897) . T) ((-978) . T) ((-996) . T) ((-1014 (-402 (-538))) . T) ((-1014 (-538)) . T) ((-1031 #1#) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) |#2| $) 23)) (-3471 ((|#1| $) 10)) (-3986 (((-538) |#2| $) 88)) (-3534 (((-3 $ #1="failed") |#2| (-895)) 57)) (-3472 ((|#1| $) 28)) (-3533 ((|#1| |#2| $ |#1|) 37)) (-3469 (($ $) 25)) (-3821 (((-3 |#2| #1#) |#2| $) 87)) (-3537 (((-112) |#2| $) NIL)) (-3538 (((-112) |#2| $) NIL)) (-3468 (((-112) |#2| $) 24)) (-3470 ((|#1| $) 89)) (-3473 ((|#1| $) 27)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3536 ((|#2| $) 79)) (-4317 (((-840) $) 70)) (-4129 ((|#1| |#2| $ |#1|) 38)) (-3535 (((-622 $) |#2|) 59)) (-3387 (((-112) $ $) 74))) +(((-1035 |#1| |#2|) (-13 (-1042 |#1| |#2|) (-10 -8 (-15 -3473 (|#1| $)) (-15 -3472 (|#1| $)) (-15 -3471 (|#1| $)) (-15 -3470 (|#1| $)) (-15 -3469 ($ $)) (-15 -3468 ((-112) |#2| $)) (-15 -3533 (|#1| |#2| $ |#1|)))) (-13 (-825) (-358)) (-1207 |#1|)) (T -1035)) +((-3533 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3473 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3472 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3471 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3470 (*1 *2 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3469 (*1 *1 *1) (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) (-3468 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-825) (-358))) (-5 *2 (-112)) (-5 *1 (-1035 *4 *3)) (-4 *3 (-1207 *4))))) +(-13 (-1042 |#1| |#2|) (-10 -8 (-15 -3473 (|#1| $)) (-15 -3472 (|#1| $)) (-15 -3471 (|#1| $)) (-15 -3470 (|#1| $)) (-15 -3469 ($ $)) (-15 -3468 ((-112) |#2| $)) (-15 -3533 (|#1| |#2| $ |#1|)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-2162 (($ $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2157 (($ $ $ $) NIL)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL)) (-2690 (($ $ $) NIL)) (-3896 (($) NIL T CONST)) (-3474 (($ (-1149)) 10) (($ (-538)) 7)) (-3508 (((-3 (-538) "failed") $) NIL)) (-3507 (((-538) $) NIL)) (-2894 (($ $ $) NIL)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-669 (-538)) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL)) (-3356 (((-112) $) NIL)) (-3355 (((-402 (-538)) $) NIL)) (-3327 (($) NIL) (($ $) NIL)) (-2893 (($ $ $) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2155 (($ $ $ $) NIL)) (-2163 (($ $ $) NIL)) (-3537 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL)) (-2502 (((-112) $) NIL)) (-3006 (((-112) $) NIL)) (-3803 (((-3 $ "failed") $) NIL)) (-3538 (((-112) $) NIL)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2156 (($ $ $ $) NIL)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-2159 (($ $) NIL)) (-4193 (($ $) NIL)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2154 (($ $ $) NIL)) (-3804 (($) NIL T CONST)) (-2161 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) NIL) (($ (-622 $)) NIL)) (-1412 (($ $) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-2160 (($ $) NIL)) (-3759 (($ $) NIL)) (-4330 (((-538) $) 16) (((-527) $) NIL) (((-866 (-538)) $) NIL) (((-373) $) NIL) (((-221) $) NIL) (($ (-1149)) 9)) (-4317 (((-840) $) 20) (($ (-538)) 6) (($ $) NIL) (($ (-538)) 6)) (-3461 (((-751)) NIL)) (-2164 (((-112) $ $) NIL)) (-3437 (($ $ $) NIL)) (-3027 (($) NIL)) (-2177 (((-112) $ $) NIL)) (-2158 (($ $ $ $) NIL)) (-3742 (($ $) NIL)) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) NIL)) (-4197 (($ $) 19) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL))) +(((-1036) (-13 (-537) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -4330 ($ (-1149))) (-15 -3474 ($ (-1149))) (-15 -3474 ($ (-538)))))) (T -1036)) +((-4330 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))) (-3474 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1036))))) +(-13 (-537) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -4330 ($ (-1149))) (-15 -3474 ($ (-1149))) (-15 -3474 ($ (-538))))) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-2305 (((-1237) $ (-1149) (-1149)) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-3476 (($) 9)) (-4147 (((-51) $ (-1149) (-51)) NIL)) (-3484 (($ $) 30)) (-3487 (($ $) 28)) (-3488 (($ $) 27)) (-3486 (($ $) 29)) (-3483 (($ $) 32)) (-3482 (($ $) 33)) (-3489 (($ $) 26)) (-3485 (($ $) 31)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) 25 (|has| $ (-6 -4353)))) (-2314 (((-3 (-51) #1="failed") (-1149) $) 40)) (-3896 (($) NIL T CONST)) (-3490 (($) 7)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-3764 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) 50 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-3 (-51) #1#) (-1149) $) NIL)) (-3765 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353)))) (-3475 (((-3 (-1131) "failed") $ (-1131) (-538)) 59)) (-1637 (((-51) $ (-1149) (-51)) NIL (|has| $ (-6 -4354)))) (-3448 (((-51) $ (-1149)) NIL)) (-2068 (((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-1149) $) NIL (|has| (-1149) (-827)))) (-2511 (((-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) 35 (|has| $ (-6 -4353))) (((-622 (-51)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2308 (((-1149) $) NIL (|has| (-1149) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4354))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-2744 (((-622 (-1149)) $) NIL)) (-2315 (((-112) (-1149) $) NIL)) (-1333 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL)) (-3970 (($ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) 43)) (-2310 (((-622 (-1149)) $) NIL)) (-2311 (((-112) (-1149) $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-3479 (((-373) $ (-1149)) 49)) (-3478 (((-622 (-1131)) $ (-1131)) 60)) (-4160 (((-51) $) NIL (|has| (-1149) (-827)))) (-1399 (((-3 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) "failed") (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL)) (-2306 (($ $ (-51)) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-288 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL (-12 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-304 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (($ $ (-622 (-51)) (-622 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-288 (-51))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074)))) (($ $ (-622 (-288 (-51)))) NIL (-12 (|has| (-51) (-304 (-51))) (|has| (-51) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074))))) (-2312 (((-622 (-51)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (((-51) $ (-1149)) NIL) (((-51) $ (-1149) (-51)) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-3477 (($ $ (-1149)) 51)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074)))) (((-751) (-51) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-51) (-1074)))) (((-751) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) 37)) (-4161 (($ $ $) 38)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-597 (-840))) (|has| (-51) (-597 (-840)))))) (-3481 (($ $ (-1149) (-373)) 47)) (-3480 (($ $ (-1149) (-373)) 48)) (-1335 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 (-1149)) (|:| -2191 (-51)))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) (-51)) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-51) (-1074)) (|has| (-2 (|:| -4220 (-1149)) (|:| -2191 (-51))) (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1037) (-13 (-1162 (-1149) (-51)) (-10 -8 (-15 -4161 ($ $ $)) (-15 -3490 ($)) (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3487 ($ $)) (-15 -3486 ($ $)) (-15 -3485 ($ $)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3481 ($ $ (-1149) (-373))) (-15 -3480 ($ $ (-1149) (-373))) (-15 -3479 ((-373) $ (-1149))) (-15 -3478 ((-622 (-1131)) $ (-1131))) (-15 -3477 ($ $ (-1149))) (-15 -3476 ($)) (-15 -3475 ((-3 (-1131) "failed") $ (-1131) (-538))) (-6 -4353)))) (T -1037)) +((-4161 (*1 *1 *1 *1) (-5 *1 (-1037))) (-3490 (*1 *1) (-5 *1 (-1037))) (-3489 (*1 *1 *1) (-5 *1 (-1037))) (-3488 (*1 *1 *1) (-5 *1 (-1037))) (-3487 (*1 *1 *1) (-5 *1 (-1037))) (-3486 (*1 *1 *1) (-5 *1 (-1037))) (-3485 (*1 *1 *1) (-5 *1 (-1037))) (-3484 (*1 *1 *1) (-5 *1 (-1037))) (-3483 (*1 *1 *1) (-5 *1 (-1037))) (-3482 (*1 *1 *1) (-5 *1 (-1037))) (-3481 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-373)) (-5 *1 (-1037)))) (-3480 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-373)) (-5 *1 (-1037)))) (-3479 (*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-373)) (-5 *1 (-1037)))) (-3478 (*1 *2 *1 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1037)) (-5 *3 (-1131)))) (-3477 (*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1037)))) (-3476 (*1 *1) (-5 *1 (-1037))) (-3475 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-1037))))) +(-13 (-1162 (-1149) (-51)) (-10 -8 (-15 -4161 ($ $ $)) (-15 -3490 ($)) (-15 -3489 ($ $)) (-15 -3488 ($ $)) (-15 -3487 ($ $)) (-15 -3486 ($ $)) (-15 -3485 ($ $)) (-15 -3484 ($ $)) (-15 -3483 ($ $)) (-15 -3482 ($ $)) (-15 -3481 ($ $ (-1149) (-373))) (-15 -3480 ($ $ (-1149) (-373))) (-15 -3479 ((-373) $ (-1149))) (-15 -3478 ((-622 (-1131)) $ (-1131))) (-15 -3477 ($ $ (-1149))) (-15 -3476 ($)) (-15 -3475 ((-3 (-1131) "failed") $ (-1131) (-538))) (-6 -4353))) +((-4156 (($ $) 45)) (-3517 (((-112) $ $) 74)) (-3508 (((-3 |#2| #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 (-538) #1#) $) NIL) (((-3 |#4| #1#) $) NIL) (((-3 $ "failed") (-922 (-402 (-538)))) 227) (((-3 $ "failed") (-922 (-538))) 226) (((-3 $ "failed") (-922 |#2|)) 229)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL) (((-538) $) NIL) ((|#4| $) NIL) (($ (-922 (-402 (-538)))) 215) (($ (-922 (-538))) 211) (($ (-922 |#2|)) 231)) (-4319 (($ $) NIL) (($ $ |#4|) 43)) (-4057 (((-112) $ $) 112) (((-112) $ (-622 $)) 113)) (-3523 (((-112) $) 56)) (-4112 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 107)) (-3494 (($ $) 138)) (-3505 (($ $) 134)) (-3506 (($ $) 133)) (-3516 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3515 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4058 (((-112) $ $) 121) (((-112) $ (-622 $)) 122)) (-3531 ((|#4| $) 33)) (-3510 (($ $ $) 110)) (-3524 (((-112) $) 55)) (-3530 (((-751) $) 35)) (-3491 (($ $) 152)) (-3492 (($ $) 149)) (-3519 (((-622 $) $) 68)) (-3522 (($ $) 57)) (-3493 (($ $) 145)) (-3520 (((-622 $) $) 65)) (-3521 (($ $) 59)) (-3525 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3509 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3835 (-751))) $ $) 111)) (-3511 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $) 108) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $ |#4|) 109)) (-3512 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $) 104) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $ |#4|) 105)) (-3514 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3513 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3527 (((-622 $) $) 51)) (-4054 (((-112) $ $) 118) (((-112) $ (-622 $)) 119)) (-4049 (($ $ $) 103)) (-3804 (($ $) 37)) (-4062 (((-112) $ $) 72)) (-4055 (((-112) $ $) 114) (((-112) $ (-622 $)) 116)) (-4050 (($ $ $) 101)) (-3529 (($ $) 40)) (-3495 ((|#2| |#2| $) 142) (($ (-622 $)) NIL) (($ $ $) NIL)) (-3503 (($ $ |#2|) NIL) (($ $ $) 131)) (-3504 (($ $ |#2|) 126) (($ $ $) 129)) (-3528 (($ $) 48)) (-3526 (($ $) 52)) (-4330 (((-866 (-373)) $) NIL) (((-866 (-538)) $) NIL) (((-527) $) NIL) (($ (-922 (-402 (-538)))) 217) (($ (-922 (-538))) 213) (($ (-922 |#2|)) 228) (((-1131) $) 250) (((-922 |#2|) $) 162)) (-4317 (((-840) $) 30) (($ (-538)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-922 |#2|) $) 163) (($ (-402 (-538))) NIL) (($ $) NIL)) (-3518 (((-3 (-112) "failed") $ $) 71))) +(((-1038 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 ((-922 |#2|) |#1|)) (-15 -4330 ((-922 |#2|) |#1|)) (-15 -4330 ((-1131) |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3495 (|#2| |#2| |#1|)) (-15 -3503 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1| |#1|)) (-15 -3503 (|#1| |#1| |#2|)) (-15 -3504 (|#1| |#1| |#2|)) (-15 -3505 (|#1| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -4330 (|#1| (-922 |#2|))) (-15 -3507 (|#1| (-922 |#2|))) (-15 -3508 ((-3 |#1| "failed") (-922 |#2|))) (-15 -4330 (|#1| (-922 (-538)))) (-15 -3507 (|#1| (-922 (-538)))) (-15 -3508 ((-3 |#1| "failed") (-922 (-538)))) (-15 -4330 (|#1| (-922 (-402 (-538))))) (-15 -3507 (|#1| (-922 (-402 (-538))))) (-15 -3508 ((-3 |#1| "failed") (-922 (-402 (-538))))) (-15 -4049 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#1|)) (-15 -3509 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3835 (-751))) |#1| |#1|)) (-15 -3510 (|#1| |#1| |#1|)) (-15 -4112 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3512 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3512 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3513 (|#1| |#1| |#1| |#4|)) (-15 -3514 (|#1| |#1| |#1| |#4|)) (-15 -3513 (|#1| |#1| |#1|)) (-15 -3514 (|#1| |#1| |#1|)) (-15 -3515 (|#1| |#1| |#1| |#4|)) (-15 -3516 (|#1| |#1| |#1| |#4|)) (-15 -3515 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1| |#1|)) (-15 -4058 ((-112) |#1| (-622 |#1|))) (-15 -4058 ((-112) |#1| |#1|)) (-15 -4054 ((-112) |#1| (-622 |#1|))) (-15 -4054 ((-112) |#1| |#1|)) (-15 -4055 ((-112) |#1| (-622 |#1|))) (-15 -4055 ((-112) |#1| |#1|)) (-15 -4057 ((-112) |#1| (-622 |#1|))) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3517 ((-112) |#1| |#1|)) (-15 -4062 ((-112) |#1| |#1|)) (-15 -3518 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3519 ((-622 |#1|) |#1|)) (-15 -3520 ((-622 |#1|) |#1|)) (-15 -3521 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3523 ((-112) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -4319 (|#1| |#1| |#4|)) (-15 -3525 (|#1| |#1| |#4|)) (-15 -3526 (|#1| |#1|)) (-15 -3527 ((-622 |#1|) |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3530 ((-751) |#1|)) (-15 -3531 (|#4| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -3507 (|#4| |#1|)) (-15 -3508 ((-3 |#4| #1="failed") |#1|)) (-15 -4317 (|#1| |#4|)) (-15 -3525 (|#2| |#1|)) (-15 -4319 (|#1| |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-1039 |#2| |#3| |#4|) (-1025) (-773) (-827)) (T -1038)) +NIL +(-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3495 (|#1| (-622 |#1|))) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 ((-922 |#2|) |#1|)) (-15 -4330 ((-922 |#2|) |#1|)) (-15 -4330 ((-1131) |#1|)) (-15 -3491 (|#1| |#1|)) (-15 -3492 (|#1| |#1|)) (-15 -3493 (|#1| |#1|)) (-15 -3494 (|#1| |#1|)) (-15 -3495 (|#2| |#2| |#1|)) (-15 -3503 (|#1| |#1| |#1|)) (-15 -3504 (|#1| |#1| |#1|)) (-15 -3503 (|#1| |#1| |#2|)) (-15 -3504 (|#1| |#1| |#2|)) (-15 -3505 (|#1| |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -4330 (|#1| (-922 |#2|))) (-15 -3507 (|#1| (-922 |#2|))) (-15 -3508 ((-3 |#1| "failed") (-922 |#2|))) (-15 -4330 (|#1| (-922 (-538)))) (-15 -3507 (|#1| (-922 (-538)))) (-15 -3508 ((-3 |#1| "failed") (-922 (-538)))) (-15 -4330 (|#1| (-922 (-402 (-538))))) (-15 -3507 (|#1| (-922 (-402 (-538))))) (-15 -3508 ((-3 |#1| "failed") (-922 (-402 (-538))))) (-15 -4049 (|#1| |#1| |#1|)) (-15 -4050 (|#1| |#1| |#1|)) (-15 -3509 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3835 (-751))) |#1| |#1|)) (-15 -3510 (|#1| |#1| |#1|)) (-15 -4112 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3511 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3512 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -3235 |#1|)) |#1| |#1| |#4|)) (-15 -3512 ((-2 (|:| -4313 |#1|) (|:| |gap| (-751)) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -3513 (|#1| |#1| |#1| |#4|)) (-15 -3514 (|#1| |#1| |#1| |#4|)) (-15 -3513 (|#1| |#1| |#1|)) (-15 -3514 (|#1| |#1| |#1|)) (-15 -3515 (|#1| |#1| |#1| |#4|)) (-15 -3516 (|#1| |#1| |#1| |#4|)) (-15 -3515 (|#1| |#1| |#1|)) (-15 -3516 (|#1| |#1| |#1|)) (-15 -4058 ((-112) |#1| (-622 |#1|))) (-15 -4058 ((-112) |#1| |#1|)) (-15 -4054 ((-112) |#1| (-622 |#1|))) (-15 -4054 ((-112) |#1| |#1|)) (-15 -4055 ((-112) |#1| (-622 |#1|))) (-15 -4055 ((-112) |#1| |#1|)) (-15 -4057 ((-112) |#1| (-622 |#1|))) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3517 ((-112) |#1| |#1|)) (-15 -4062 ((-112) |#1| |#1|)) (-15 -3518 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3519 ((-622 |#1|) |#1|)) (-15 -3520 ((-622 |#1|) |#1|)) (-15 -3521 (|#1| |#1|)) (-15 -3522 (|#1| |#1|)) (-15 -3523 ((-112) |#1|)) (-15 -3524 ((-112) |#1|)) (-15 -4319 (|#1| |#1| |#4|)) (-15 -3525 (|#1| |#1| |#4|)) (-15 -3526 (|#1| |#1|)) (-15 -3527 ((-622 |#1|) |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -3804 (|#1| |#1|)) (-15 -3530 ((-751) |#1|)) (-15 -3531 (|#4| |#1|)) (-15 -4330 ((-527) |#1|)) (-15 -4330 ((-866 (-538)) |#1|)) (-15 -4330 ((-866 (-373)) |#1|)) (-15 -3507 (|#4| |#1|)) (-15 -3508 ((-3 |#4| #1="failed") |#1|)) (-15 -4317 (|#1| |#4|)) (-15 -3525 (|#2| |#1|)) (-15 -4319 (|#1| |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 |#3|) $) 108)) (-3419 (((-1143 $) $ |#3|) 123) (((-1143 |#1|) $) 122)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-545)))) (-2178 (($ $) 86 (|has| |#1| (-545)))) (-2176 (((-112) $) 88 (|has| |#1| (-545)))) (-3152 (((-751) $) 110) (((-751) $ (-622 |#3|)) 109)) (-4156 (($ $) 269)) (-3517 (((-112) $ $) 255)) (-1368 (((-3 $ "failed") $ $) 19)) (-4115 (($ $ $) 214 (|has| |#1| (-545)))) (-3499 (((-622 $) $ $) 209 (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) 98 (|has| |#1| (-886)))) (-4134 (($ $) 96 (|has| |#1| (-446)))) (-4329 (((-400 $) $) 95 (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 101 (|has| |#1| (-886)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| #2="failed") $) 162) (((-3 (-402 (-538)) #2#) $) 160 (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) 158 (|has| |#1| (-1014 (-538)))) (((-3 |#3| #2#) $) 134) (((-3 $ "failed") (-922 (-402 (-538)))) 229 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149))))) (((-3 $ "failed") (-922 (-538))) 226 (-3891 (-12 (-3676 (|has| |#1| (-38 (-402 (-538))))) (|has| |#1| (-38 (-538))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149)))))) (((-3 $ "failed") (-922 |#1|)) 223 (-3891 (-12 (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-38 (-538)))) (|has| |#3| (-598 (-1149)))) (-12 (-3676 (|has| |#1| (-537))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (|has| |#1| (-38 (-538))) (|has| |#3| (-598 (-1149)))) (-12 (-3676 (|has| |#1| (-967 (-538)))) (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149))))))) (-3507 ((|#1| $) 163) (((-402 (-538)) $) 159 (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) 157 (|has| |#1| (-1014 (-538)))) ((|#3| $) 133) (($ (-922 (-402 (-538)))) 228 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149))))) (($ (-922 (-538))) 225 (-3891 (-12 (-3676 (|has| |#1| (-38 (-402 (-538))))) (|has| |#1| (-38 (-538))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149)))))) (($ (-922 |#1|)) 222 (-3891 (-12 (-3676 (|has| |#1| (-38 (-402 (-538))))) (-3676 (|has| |#1| (-38 (-538)))) (|has| |#3| (-598 (-1149)))) (-12 (-3676 (|has| |#1| (-537))) (-3676 (|has| |#1| (-38 (-402 (-538))))) (|has| |#1| (-38 (-538))) (|has| |#3| (-598 (-1149)))) (-12 (-3676 (|has| |#1| (-967 (-538)))) (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149))))))) (-4116 (($ $ $ |#3|) 106 (|has| |#1| (-170))) (($ $ $) 210 (|has| |#1| (-545)))) (-4319 (($ $) 152) (($ $ |#3|) 264)) (-2362 (((-669 (-538)) (-669 $)) 132 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 131 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-4057 (((-112) $ $) 254) (((-112) $ (-622 $)) 253)) (-3821 (((-3 $ "failed") $) 32)) (-3523 (((-112) $) 262)) (-4112 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 234)) (-3494 (($ $) 203 (|has| |#1| (-446)))) (-3857 (($ $) 174 (|has| |#1| (-446))) (($ $ |#3|) 103 (|has| |#1| (-446)))) (-3151 (((-622 $) $) 107)) (-4086 (((-112) $) 94 (|has| |#1| (-886)))) (-3505 (($ $) 219 (|has| |#1| (-545)))) (-3506 (($ $) 220 (|has| |#1| (-545)))) (-3516 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3515 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1721 (($ $ |#1| |#2| $) 170)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 82 (-12 (|has| |#3| (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 81 (-12 (|has| |#3| (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-2502 (((-112) $) 30)) (-2510 (((-751) $) 167)) (-4058 (((-112) $ $) 248) (((-112) $ (-622 $)) 247)) (-3496 (($ $ $ $ $) 205 (|has| |#1| (-545)))) (-3531 ((|#3| $) 273)) (-3420 (($ (-1143 |#1|) |#3|) 115) (($ (-1143 $) |#3|) 114)) (-3154 (((-622 $) $) 124)) (-4297 (((-112) $) 150)) (-3226 (($ |#1| |#2|) 151) (($ $ |#3| (-751)) 117) (($ $ (-622 |#3|) (-622 (-751))) 116)) (-3510 (($ $ $) 233)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#3|) 118)) (-3524 (((-112) $) 263)) (-3153 ((|#2| $) 168) (((-751) $ |#3|) 120) (((-622 (-751)) $ (-622 |#3|)) 119)) (-3677 (($ $ $) 77 (|has| |#1| (-827)))) (-3530 (((-751) $) 272)) (-3678 (($ $ $) 76 (|has| |#1| (-827)))) (-1722 (($ (-1 |#2| |#2|) $) 169)) (-4318 (($ (-1 |#1| |#1|) $) 149)) (-3418 (((-3 |#3| #3="failed") $) 121)) (-3491 (($ $) 200 (|has| |#1| (-446)))) (-3492 (($ $) 201 (|has| |#1| (-446)))) (-3519 (((-622 $) $) 258)) (-3522 (($ $) 261)) (-3493 (($ $) 202 (|has| |#1| (-446)))) (-3520 (((-622 $) $) 259)) (-3521 (($ $) 260)) (-3227 (($ $) 147)) (-3525 ((|#1| $) 146) (($ $ |#3|) 265)) (-2013 (($ (-622 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-3509 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3835 (-751))) $ $) 232)) (-3511 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $) 236) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $ |#3|) 235)) (-3512 (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $) 238) (((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $ |#3|) 237)) (-3514 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3513 (($ $ $) 241) (($ $ $ |#3|) 239)) (-3593 (((-1131) $) 9)) (-3541 (($ $ $) 208 (|has| |#1| (-545)))) (-3527 (((-622 $) $) 267)) (-3156 (((-3 (-622 $) #3#) $) 112)) (-3155 (((-3 (-622 $) #3#) $) 113)) (-3157 (((-3 (-2 (|:| |var| |#3|) (|:| -2493 (-751))) #3#) $) 111)) (-4054 (((-112) $ $) 250) (((-112) $ (-622 $)) 249)) (-4049 (($ $ $) 230)) (-3804 (($ $) 271)) (-4062 (((-112) $ $) 256)) (-4055 (((-112) $ $) 252) (((-112) $ (-622 $)) 251)) (-4050 (($ $ $) 231)) (-3529 (($ $) 270)) (-3594 (((-1093) $) 10)) (-3500 (((-2 (|:| -3495 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-545)))) (-3501 (((-2 (|:| -3495 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-545)))) (-1916 (((-112) $) 164)) (-1915 ((|#1| $) 165)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 93 (|has| |#1| (-446)))) (-3495 ((|#1| |#1| $) 204 (|has| |#1| (-446))) (($ (-622 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 100 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 99 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 97 (|has| |#1| (-886)))) (-3502 (((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-545)))) (-3820 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-3503 (($ $ |#1|) 217 (|has| |#1| (-545))) (($ $ $) 215 (|has| |#1| (-545)))) (-3504 (($ $ |#1|) 218 (|has| |#1| (-545))) (($ $ $) 216 (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-622 $) (-622 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-622 |#3|) (-622 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-622 |#3|) (-622 $)) 136)) (-4117 (($ $ |#3|) 105 (|has| |#1| (-170)))) (-4170 (($ $ |#3|) 40) (($ $ (-622 |#3|)) 39) (($ $ |#3| (-751)) 38) (($ $ (-622 |#3|) (-622 (-751))) 37)) (-4307 ((|#2| $) 148) (((-751) $ |#3|) 128) (((-622 (-751)) $ (-622 |#3|)) 127)) (-3528 (($ $) 268)) (-3526 (($ $) 266)) (-4330 (((-866 (-373)) $) 80 (-12 (|has| |#3| (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) 79 (-12 (|has| |#3| (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) 78 (-12 (|has| |#3| (-598 (-527))) (|has| |#1| (-598 (-527))))) (($ (-922 (-402 (-538)))) 227 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149))))) (($ (-922 (-538))) 224 (-3891 (-12 (-3676 (|has| |#1| (-38 (-402 (-538))))) (|has| |#1| (-38 (-538))) (|has| |#3| (-598 (-1149)))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#3| (-598 (-1149)))))) (($ (-922 |#1|)) 221 (|has| |#3| (-598 (-1149)))) (((-1131) $) 199 (-12 (|has| |#1| (-1014 (-538))) (|has| |#3| (-598 (-1149))))) (((-922 |#1|) $) 198 (|has| |#3| (-598 (-1149))))) (-3150 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ |#3|) 104 (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 102 (-3191 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-922 |#1|) $) 197 (|has| |#3| (-598 (-1149)))) (($ (-402 (-538))) 70 (-3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| |#1| (-38 (-402 (-538)))))) (($ $) 83 (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) 166)) (-4040 ((|#1| $ |#2|) 153) (($ $ |#3| (-751)) 126) (($ $ (-622 |#3|) (-622 (-751))) 125)) (-3035 (((-3 $ #1#) $) 71 (-3891 (-3191 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 28)) (-1720 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 87 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-3518 (((-3 (-112) "failed") $ $) 257)) (-2997 (($) 29 T CONST)) (-3497 (($ $ $ $ (-751)) 206 (|has| |#1| (-545)))) (-3498 (($ $ $ (-751)) 207 (|has| |#1| (-545)))) (-3002 (($ $ |#3|) 36) (($ $ (-622 |#3|)) 35) (($ $ |#3| (-751)) 34) (($ $ (-622 |#3|) (-622 (-751))) 33)) (-2896 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 73 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 75 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 72 (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 156 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 155 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1039 |#1| |#2| |#3|) (-138) (-1025) (-773) (-827)) (T -1039)) +((-3531 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-751)))) (-3804 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3529 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3528 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3527 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3526 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3525 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-4319 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3522 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3521 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3520 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3519 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3518 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4062 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-3517 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4057 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4057 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-4055 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4055 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-4054 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4054 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-4058 (*1 *2 *1 *1) (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) (-4058 (*1 *2 *1 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) (-3516 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3515 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3516 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3515 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3514 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3513 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3514 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3513 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) (-3512 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -3235 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3512 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -3235 *1))) (-4 *1 (-1039 *4 *5 *3)))) (-3511 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3511 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1039 *4 *5 *3)))) (-4112 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3510 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3509 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3835 (-751)))) (-4 *1 (-1039 *3 *4 *5)))) (-4050 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-4049 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) (-3508 (*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-3507 (*1 *1 *2) (-12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)))) (-3508 (*1 *1 *2) (|partial| -3891 (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-3507 (*1 *1 *2) (-3891 (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-4330 (*1 *1 *2) (-3891 (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))))) (-3508 (*1 *1 *2) (|partial| -3891 (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-3676 (-4 *3 (-38 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-537))) (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-967 (-538)))) (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))))) (-3507 (*1 *1 *2) (-3891 (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-3676 (-4 *3 (-38 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-537))) (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) (-12 (-5 *2 (-922 *3)) (-12 (-3676 (-4 *3 (-967 (-538)))) (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *5 (-598 (-1149))) (-4 *4 (-773)) (-4 *5 (-827)))) (-3506 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3505 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3504 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3503 (*1 *1 *1 *2) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3504 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3503 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-4115 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3502 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3501 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-3500 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-2 (|:| -3495 *1) (|:| |coef2| *1))) (-4 *1 (-1039 *3 *4 *5)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3499 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1039 *3 *4 *5)))) (-3541 (*1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3498 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-545)))) (-3497 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *3 (-545)))) (-3496 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-545)))) (-3495 (*1 *2 *2 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3494 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3493 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3492 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446)))) (-3491 (*1 *1 *1) (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-446))))) +(-13 (-926 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3531 (|t#3| $)) (-15 -3530 ((-751) $)) (-15 -3804 ($ $)) (-15 -3529 ($ $)) (-15 -4156 ($ $)) (-15 -3528 ($ $)) (-15 -3527 ((-622 $) $)) (-15 -3526 ($ $)) (-15 -3525 ($ $ |t#3|)) (-15 -4319 ($ $ |t#3|)) (-15 -3524 ((-112) $)) (-15 -3523 ((-112) $)) (-15 -3522 ($ $)) (-15 -3521 ($ $)) (-15 -3520 ((-622 $) $)) (-15 -3519 ((-622 $) $)) (-15 -3518 ((-3 (-112) "failed") $ $)) (-15 -4062 ((-112) $ $)) (-15 -3517 ((-112) $ $)) (-15 -4057 ((-112) $ $)) (-15 -4057 ((-112) $ (-622 $))) (-15 -4055 ((-112) $ $)) (-15 -4055 ((-112) $ (-622 $))) (-15 -4054 ((-112) $ $)) (-15 -4054 ((-112) $ (-622 $))) (-15 -4058 ((-112) $ $)) (-15 -4058 ((-112) $ (-622 $))) (-15 -3516 ($ $ $)) (-15 -3515 ($ $ $)) (-15 -3516 ($ $ $ |t#3|)) (-15 -3515 ($ $ $ |t#3|)) (-15 -3514 ($ $ $)) (-15 -3513 ($ $ $)) (-15 -3514 ($ $ $ |t#3|)) (-15 -3513 ($ $ $ |t#3|)) (-15 -3512 ((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $)) (-15 -3512 ((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -3235 $)) $ $ |t#3|)) (-15 -3511 ((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -3511 ((-2 (|:| -4313 $) (|:| |gap| (-751)) (|:| -2096 $) (|:| -3235 $)) $ $ |t#3|)) (-15 -4112 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -3510 ($ $ $)) (-15 -3509 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3835 (-751))) $ $)) (-15 -4050 ($ $ $)) (-15 -4049 ($ $ $)) (IF (|has| |t#3| (-598 (-1149))) (PROGN (-6 (-597 (-922 |t#1|))) (-6 (-598 (-922 |t#1|))) (IF (|has| |t#1| (-38 (-402 (-538)))) (PROGN (-15 -3508 ((-3 $ "failed") (-922 (-402 (-538))))) (-15 -3507 ($ (-922 (-402 (-538))))) (-15 -4330 ($ (-922 (-402 (-538))))) (-15 -3508 ((-3 $ "failed") (-922 (-538)))) (-15 -3507 ($ (-922 (-538)))) (-15 -4330 ($ (-922 (-538)))) (IF (|has| |t#1| (-967 (-538))) |%noBranch| (PROGN (-15 -3508 ((-3 $ "failed") (-922 |t#1|))) (-15 -3507 ($ (-922 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-538))) (IF (|has| |t#1| (-38 (-402 (-538)))) |%noBranch| (PROGN (-15 -3508 ((-3 $ "failed") (-922 (-538)))) (-15 -3507 ($ (-922 (-538)))) (-15 -4330 ($ (-922 (-538)))) (IF (|has| |t#1| (-537)) |%noBranch| (PROGN (-15 -3508 ((-3 $ "failed") (-922 |t#1|))) (-15 -3507 ($ (-922 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-538))) |%noBranch| (IF (|has| |t#1| (-38 (-402 (-538)))) |%noBranch| (PROGN (-15 -3508 ((-3 $ "failed") (-922 |t#1|))) (-15 -3507 ($ (-922 |t#1|)))))) (-15 -4330 ($ (-922 |t#1|))) (IF (|has| |t#1| (-1014 (-538))) (-6 (-598 (-1131))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3506 ($ $)) (-15 -3505 ($ $)) (-15 -3504 ($ $ |t#1|)) (-15 -3503 ($ $ |t#1|)) (-15 -3504 ($ $ $)) (-15 -3503 ($ $ $)) (-15 -4115 ($ $ $)) (-15 -3502 ((-2 (|:| -3495 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3501 ((-2 (|:| -3495 $) (|:| |coef1| $)) $ $)) (-15 -3500 ((-2 (|:| -3495 $) (|:| |coef2| $)) $ $)) (-15 -4116 ($ $ $)) (-15 -3499 ((-622 $) $ $)) (-15 -3541 ($ $ $)) (-15 -3498 ($ $ $ (-751))) (-15 -3497 ($ $ $ $ (-751))) (-15 -3496 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (PROGN (-15 -3495 (|t#1| |t#1| $)) (-15 -3494 ($ $)) (-15 -3493 ($ $)) (-15 -3492 ($ $)) (-15 -3491 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-597 (-922 |#1|)) |has| |#3| (-598 (-1149))) ((-170) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-598 (-527)) -12 (|has| |#1| (-598 (-527))) (|has| |#3| (-598 (-527)))) ((-598 (-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#3| (-598 (-866 (-373))))) ((-598 (-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#3| (-598 (-866 (-538))))) ((-598 (-922 |#1|)) |has| |#3| (-598 (-1149))) ((-598 (-1131)) -12 (|has| |#1| (-1014 (-538))) (|has| |#3| (-598 (-1149)))) ((-285) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-304 $) . T) ((-321 |#1| |#2|) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-886)) (|has| |#1| (-446))) ((-507 |#3| |#1|) . T) ((-507 |#3| $) . T) ((-507 $ $) . T) ((-545) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 |#3|) . T) ((-862 (-373)) -12 (|has| |#1| (-862 (-373))) (|has| |#3| (-862 (-373)))) ((-862 (-538)) -12 (|has| |#1| (-862 (-538))) (|has| |#3| (-862 (-538)))) ((-926 |#1| |#2| |#3|) . T) ((-886) |has| |#1| (-886)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 |#1|) . T) ((-1014 |#3|) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) |has| |#1| (-886))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3532 (((-622 (-1108)) $) 13)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 24) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-1108) $) 15)) (-3387 (((-112) $ $) NIL))) +(((-1040) (-13 (-1056) (-10 -8 (-15 -3532 ((-622 (-1108)) $)) (-15 -3584 ((-1108) $))))) (T -1040)) +((-3532 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1040)))) (-3584 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1040))))) +(-13 (-1056) (-10 -8 (-15 -3532 ((-622 (-1108)) $)) (-15 -3584 ((-1108) $)))) +((-3539 (((-112) |#3| $) 13)) (-3534 (((-3 $ "failed") |#3| (-895)) 23)) (-3821 (((-3 |#3| "failed") |#3| $) 38)) (-3537 (((-112) |#3| $) 16)) (-3538 (((-112) |#3| $) 14))) +(((-1041 |#1| |#2| |#3|) (-10 -8 (-15 -3534 ((-3 |#1| "failed") |#3| (-895))) (-15 -3821 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3537 ((-112) |#3| |#1|)) (-15 -3538 ((-112) |#3| |#1|)) (-15 -3539 ((-112) |#3| |#1|))) (-1042 |#2| |#3|) (-13 (-825) (-358)) (-1207 |#2|)) (T -1041)) +NIL +(-10 -8 (-15 -3534 ((-3 |#1| "failed") |#3| (-895))) (-15 -3821 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3537 ((-112) |#3| |#1|)) (-15 -3538 ((-112) |#3| |#1|)) (-15 -3539 ((-112) |#3| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) |#2| $) 21)) (-3986 (((-538) |#2| $) 22)) (-3534 (((-3 $ "failed") |#2| (-895)) 15)) (-3533 ((|#1| |#2| $ |#1|) 13)) (-3821 (((-3 |#2| "failed") |#2| $) 18)) (-3537 (((-112) |#2| $) 19)) (-3538 (((-112) |#2| $) 20)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3536 ((|#2| $) 17)) (-4317 (((-840) $) 11)) (-4129 ((|#1| |#2| $ |#1|) 14)) (-3535 (((-622 $) |#2|) 16)) (-3387 (((-112) $ $) 6))) +(((-1042 |#1| |#2|) (-138) (-13 (-825) (-358)) (-1207 |t#1|)) (T -1042)) +((-3986 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-538)))) (-3539 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-112)))) (-3538 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-112)))) (-3537 (*1 *2 *3 *1) (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-112)))) (-3821 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) (-4 *2 (-1207 *3)))) (-3536 (*1 *2 *1) (-12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) (-4 *2 (-1207 *3)))) (-3535 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-622 *1)) (-4 *1 (-1042 *4 *3)))) (-3534 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-895)) (-4 *4 (-13 (-825) (-358))) (-4 *1 (-1042 *4 *2)) (-4 *2 (-1207 *4)))) (-4129 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1207 *2)))) (-3533 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1207 *2))))) +(-13 (-1074) (-10 -8 (-15 -3986 ((-538) |t#2| $)) (-15 -3539 ((-112) |t#2| $)) (-15 -3538 ((-112) |t#2| $)) (-15 -3537 ((-112) |t#2| $)) (-15 -3821 ((-3 |t#2| "failed") |t#2| $)) (-15 -3536 (|t#2| $)) (-15 -3535 ((-622 $) |t#2|)) (-15 -3534 ((-3 $ "failed") |t#2| (-895))) (-15 -4129 (|t#1| |t#2| $ |t#1|)) (-15 -3533 (|t#1| |t#2| $ |t#1|)))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-3795 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751)) 96)) (-3792 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751)) 56)) (-3796 (((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751)) 87)) (-3790 (((-751) (-622 |#4|) (-622 |#5|)) 27)) (-3793 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751)) 58) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112)) 60)) (-3794 (((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112)) 78) (((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112)) 79)) (-4330 (((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) 82)) (-3791 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-112)) 55)) (-3789 (((-751) (-622 |#4|) (-622 |#5|)) 19))) +(((-1043 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3789 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3790 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3791 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-112))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3795 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751))) (-15 -4330 ((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3796 ((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1043)) +((-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) (-5 *1 (-1043 *4 *5 *6 *7 *8)))) (-3795 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-622 *11)) (|:| |todo| (-622 (-2 (|:| |val| *3) (|:| -1660 *11)))))) (-5 *6 (-751)) (-5 *2 (-622 (-2 (|:| |val| (-622 *10)) (|:| -1660 *11)))) (-5 *3 (-622 *10)) (-5 *4 (-622 *11)) (-4 *10 (-1039 *7 *8 *9)) (-4 *11 (-1045 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-5 *1 (-1043 *7 *8 *9 *10 *11)))) (-3794 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3794 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3793 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3793 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3793 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1045 *7 *8 *9 *3)))) (-3792 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3792 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3789 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3790 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3791 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-112))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3795 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751))) (-15 -4330 ((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3796 ((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751)))) +((-3548 (((-112) |#5| $) 21)) (-3546 (((-112) |#5| $) 24)) (-3549 (((-112) |#5| $) 16) (((-112) $) 45)) (-3589 (((-622 $) |#5| $) NIL) (((-622 $) (-622 |#5|) $) 77) (((-622 $) (-622 |#5|) (-622 $)) 75) (((-622 $) |#5| (-622 $)) 78)) (-4128 (($ $ |#5|) NIL) (((-622 $) |#5| $) NIL) (((-622 $) |#5| (-622 $)) 60) (((-622 $) (-622 |#5|) $) 62) (((-622 $) (-622 |#5|) (-622 $)) 64)) (-3540 (((-622 $) |#5| $) NIL) (((-622 $) |#5| (-622 $)) 54) (((-622 $) (-622 |#5|) $) 56) (((-622 $) (-622 |#5|) (-622 $)) 58)) (-3547 (((-112) |#5| $) 27))) +(((-1044 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4128 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -4128 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -4128 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -4128 ((-622 |#1|) |#5| |#1|)) (-15 -3540 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -3540 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -3540 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -3540 ((-622 |#1|) |#5| |#1|)) (-15 -3589 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -3589 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -3589 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -3589 ((-622 |#1|) |#5| |#1|)) (-15 -3546 ((-112) |#5| |#1|)) (-15 -3549 ((-112) |#1|)) (-15 -3547 ((-112) |#5| |#1|)) (-15 -3548 ((-112) |#5| |#1|)) (-15 -3549 ((-112) |#5| |#1|)) (-15 -4128 (|#1| |#1| |#5|))) (-1045 |#2| |#3| |#4| |#5|) (-446) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -1044)) +NIL +(-10 -8 (-15 -4128 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -4128 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -4128 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -4128 ((-622 |#1|) |#5| |#1|)) (-15 -3540 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -3540 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -3540 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -3540 ((-622 |#1|) |#5| |#1|)) (-15 -3589 ((-622 |#1|) |#5| (-622 |#1|))) (-15 -3589 ((-622 |#1|) (-622 |#5|) (-622 |#1|))) (-15 -3589 ((-622 |#1|) (-622 |#5|) |#1|)) (-15 -3589 ((-622 |#1|) |#5| |#1|)) (-15 -3546 ((-112) |#5| |#1|)) (-15 -3549 ((-112) |#1|)) (-15 -3547 ((-112) |#5| |#1|)) (-15 -3548 ((-112) |#5| |#1|)) (-15 -3549 ((-112) |#5| |#1|)) (-15 -4128 (|#1| |#1| |#5|))) +((-2898 (((-112) $ $) 7)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) 85)) (-4045 (((-622 $) (-622 |#4|)) 86) (((-622 $) (-622 |#4|) (-112)) 111)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) 101) (((-112) $) 97)) (-4051 ((|#4| |#4| $) 92)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 126)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-4158 (((-3 $ #1#) $) 82)) (-4048 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4046 ((|#4| |#4| $) 87)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) 105)) (-3548 (((-112) |#4| $) 136)) (-3546 (((-112) |#4| $) 133)) (-3549 (((-112) |#4| $) 137) (((-112) $) 134)) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) 104) (((-112) $) 103)) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) 128)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 127)) (-4157 (((-3 |#4| #1#) $) 83)) (-3543 (((-622 $) |#4| $) 129)) (-3545 (((-3 (-112) (-622 $)) |#4| $) 132)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3589 (((-622 $) |#4| $) 125) (((-622 $) (-622 |#4|) $) 124) (((-622 $) (-622 |#4|) (-622 $)) 123) (((-622 $) |#4| (-622 $)) 122)) (-3799 (($ |#4| $) 117) (($ (-622 |#4|) $) 116)) (-4060 (((-622 |#4|) $) 107)) (-4054 (((-112) |#4| $) 99) (((-112) $) 95)) (-4049 ((|#4| |#4| $) 90)) (-4062 (((-112) $ $) 110)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) 100) (((-112) $) 96)) (-4050 ((|#4| |#4| $) 91)) (-3594 (((-1093) $) 10)) (-4160 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4042 (((-3 $ #1#) $ |#4|) 78)) (-4128 (($ $ |#4|) 77) (((-622 $) |#4| $) 115) (((-622 $) |#4| (-622 $)) 114) (((-622 $) (-622 |#4|) $) 113) (((-622 $) (-622 |#4|) (-622 $)) 112)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-4307 (((-751) $) 106)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-4047 (($ $) 88)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-4041 (((-751) $) 76 (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) 98)) (-3540 (((-622 $) |#4| $) 121) (((-622 $) |#4| (-622 $)) 120) (((-622 $) (-622 |#4|) $) 119) (((-622 $) (-622 |#4|) (-622 $)) 118)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) 81)) (-3547 (((-112) |#4| $) 135)) (-4293 (((-112) |#3| $) 80)) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353))))) +(((-1045 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1045)) +((-3549 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3548 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3547 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3549 (*1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-3546 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3545 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 (-112) (-622 *1))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3544 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3544 (*1 *2 *3 *1) (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-3543 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3542 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-3 *3 (-622 *1))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3541 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-4134 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *1)))) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3589 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3589 (*1 *2 *3 *1) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-3589 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-3589 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-3540 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-3540 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-3540 (*1 *2 *3 *1) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-3540 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-3799 (*1 *1 *2 *1) (-12 (-4 *1 (-1045 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-3799 (*1 *1 *2 *1) (-12 (-5 *2 (-622 *6)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)))) (-4128 (*1 *2 *3 *1) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) (-4128 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) (-4128 (*1 *2 *3 *1) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) (-4128 (*1 *2 *3 *2) (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *5 *6 *7 *8))))) +(-13 (-1180 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3549 ((-112) |t#4| $)) (-15 -3548 ((-112) |t#4| $)) (-15 -3547 ((-112) |t#4| $)) (-15 -3549 ((-112) $)) (-15 -3546 ((-112) |t#4| $)) (-15 -3545 ((-3 (-112) (-622 $)) |t#4| $)) (-15 -3544 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |t#4| $)) (-15 -3544 ((-112) |t#4| $)) (-15 -3543 ((-622 $) |t#4| $)) (-15 -3542 ((-3 |t#4| (-622 $)) |t#4| |t#4| $)) (-15 -3541 ((-622 (-2 (|:| |val| |t#4|) (|:| -1660 $))) |t#4| |t#4| $)) (-15 -4134 ((-622 (-2 (|:| |val| |t#4|) (|:| -1660 $))) |t#4| $)) (-15 -3589 ((-622 $) |t#4| $)) (-15 -3589 ((-622 $) (-622 |t#4|) $)) (-15 -3589 ((-622 $) (-622 |t#4|) (-622 $))) (-15 -3589 ((-622 $) |t#4| (-622 $))) (-15 -3540 ((-622 $) |t#4| $)) (-15 -3540 ((-622 $) |t#4| (-622 $))) (-15 -3540 ((-622 $) (-622 |t#4|) $)) (-15 -3540 ((-622 $) (-622 |t#4|) (-622 $))) (-15 -3799 ($ |t#4| $)) (-15 -3799 ($ (-622 |t#4|) $)) (-15 -4128 ((-622 $) |t#4| $)) (-15 -4128 ((-622 $) |t#4| (-622 $))) (-15 -4128 ((-622 $) (-622 |t#4|) $)) (-15 -4128 ((-622 $) (-622 |t#4|) (-622 $))) (-15 -4045 ((-622 $) (-622 |t#4|) (-112))))) +(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1074) . T) ((-1180 |#1| |#2| |#3| |#4|) . T) ((-1185) . T)) +((-3556 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|) 81)) (-3553 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|) 113)) (-3555 (((-622 |#5|) |#4| |#5|) 70)) (-3554 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3638 (((-1237)) 37)) (-3636 (((-1237)) 26)) (-3637 (((-1237) (-1131) (-1131) (-1131)) 33)) (-3635 (((-1237) (-1131) (-1131) (-1131)) 22)) (-3550 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|) 96)) (-3551 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112)) 107) (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3552 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|) 102))) +(((-1046 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3635 ((-1237) (-1131) (-1131) (-1131))) (-15 -3636 ((-1237))) (-15 -3637 ((-1237) (-1131) (-1131) (-1131))) (-15 -3638 ((-1237))) (-15 -3550 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3551 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3551 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112))) (-15 -3552 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3553 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3554 ((-112) |#4| |#5|)) (-15 -3554 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3555 ((-622 |#5|) |#4| |#5|)) (-15 -3556 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1046)) +((-3556 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3555 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 *4)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3554 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3554 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3553 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3552 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827)) (-5 *2 (-622 (-2 (|:| |val| *8) (|:| -1660 *9)))) (-5 *1 (-1046 *6 *7 *4 *8 *9)))) (-3551 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3550 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3638 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3637 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3636 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3635 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) +(-10 -7 (-15 -3635 ((-1237) (-1131) (-1131) (-1131))) (-15 -3636 ((-1237))) (-15 -3637 ((-1237) (-1131) (-1131) (-1131))) (-15 -3638 ((-1237))) (-15 -3550 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3551 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3551 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112))) (-15 -3552 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3553 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3554 ((-112) |#4| |#5|)) (-15 -3554 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3555 ((-622 |#5|) |#4| |#5|)) (-15 -3556 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|))) +((-2898 (((-112) $ $) NIL)) (-3669 (((-1186) $) 13)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3557 (((-1108) $) 10)) (-4317 (((-840) $) 22) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-1047) (-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $))))) (T -1047)) +((-3557 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1047)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1047))))) +(-13 (-1056) (-10 -8 (-15 -3557 ((-1108) $)) (-15 -3669 ((-1186) $)))) +((-2898 (((-112) $ $) NIL)) (-3560 (($ $ (-622 (-1149)) (-1 (-112) (-622 |#3|))) 33)) (-3561 (($ |#3| |#3|) 22) (($ |#3| |#3| (-622 (-1149))) 20)) (-3882 ((|#3| $) 13)) (-3508 (((-3 (-288 |#3|) "failed") $) 58)) (-3507 (((-288 |#3|) $) NIL)) (-3558 (((-622 (-1149)) $) 16)) (-3559 (((-866 |#1|) $) 11)) (-3883 ((|#3| $) 12)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4159 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-895)) 39)) (-4317 (((-840) $) 86) (($ (-288 |#3|)) 21)) (-3387 (((-112) $ $) 36))) +(((-1048 |#1| |#2| |#3|) (-13 (-1074) (-281 |#3| |#3|) (-1014 (-288 |#3|)) (-10 -8 (-15 -3561 ($ |#3| |#3|)) (-15 -3561 ($ |#3| |#3| (-622 (-1149)))) (-15 -3560 ($ $ (-622 (-1149)) (-1 (-112) (-622 |#3|)))) (-15 -3559 ((-866 |#1|) $)) (-15 -3883 (|#3| $)) (-15 -3882 (|#3| $)) (-15 -4159 (|#3| $ |#3| (-895))) (-15 -3558 ((-622 (-1149)) $)))) (-1074) (-13 (-1025) (-862 |#1|) (-827) (-598 (-866 |#1|))) (-13 (-416 |#2|) (-862 |#1|) (-598 (-866 |#1|)))) (T -1048)) +((-3561 (*1 *1 *2 *2) (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) (-5 *1 (-1048 *3 *4 *2)) (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))))) (-3561 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-1048 *4 *5 *2)) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))) (-3560 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-1 (-112) (-622 *6))) (-4 *6 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-1048 *4 *5 *6)))) (-3559 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 *2))) (-5 *2 (-866 *3)) (-5 *1 (-1048 *3 *4 *5)) (-4 *5 (-13 (-416 *4) (-862 *3) (-598 *2))))) (-3883 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))) (-5 *1 (-1048 *3 *4 *2)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))))) (-3882 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))) (-5 *1 (-1048 *3 *4 *2)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))))) (-4159 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-895)) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-1048 *4 *5 *2)) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))) (-3558 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) (-5 *2 (-622 (-1149))) (-5 *1 (-1048 *3 *4 *5)) (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3))))))) +(-13 (-1074) (-281 |#3| |#3|) (-1014 (-288 |#3|)) (-10 -8 (-15 -3561 ($ |#3| |#3|)) (-15 -3561 ($ |#3| |#3| (-622 (-1149)))) (-15 -3560 ($ $ (-622 (-1149)) (-1 (-112) (-622 |#3|)))) (-15 -3559 ((-866 |#1|) $)) (-15 -3883 (|#3| $)) (-15 -3882 (|#3| $)) (-15 -4159 (|#3| $ |#3| (-895))) (-15 -3558 ((-622 (-1149)) $)))) +((-2898 (((-112) $ $) NIL)) (-3905 (((-1149) $) 8)) (-3593 (((-1131) $) 16)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 13))) +(((-1049 |#1|) (-13 (-1074) (-10 -8 (-15 -3905 ((-1149) $)))) (-1149)) (T -1049)) +((-3905 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1049 *3)) (-14 *3 *2)))) +(-13 (-1074) (-10 -8 (-15 -3905 ((-1149) $)))) +((-2898 (((-112) $ $) NIL)) (-3563 (($ (-622 (-1048 |#1| |#2| |#3|))) 13)) (-3562 (((-622 (-1048 |#1| |#2| |#3|)) $) 20)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4159 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-895)) 26)) (-4317 (((-840) $) 16)) (-3387 (((-112) $ $) 19))) +(((-1050 |#1| |#2| |#3|) (-13 (-1074) (-281 |#3| |#3|) (-10 -8 (-15 -3563 ($ (-622 (-1048 |#1| |#2| |#3|)))) (-15 -3562 ((-622 (-1048 |#1| |#2| |#3|)) $)) (-15 -4159 (|#3| $ |#3| (-895))))) (-1074) (-13 (-1025) (-862 |#1|) (-827) (-598 (-866 |#1|))) (-13 (-416 |#2|) (-862 |#1|) (-598 (-866 |#1|)))) (T -1050)) +((-3563 (*1 *1 *2) (-12 (-5 *2 (-622 (-1048 *3 *4 *5))) (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))) (-5 *1 (-1050 *3 *4 *5)))) (-3562 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) (-5 *2 (-622 (-1048 *3 *4 *5))) (-5 *1 (-1050 *3 *4 *5)) (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))))) (-4159 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-895)) (-4 *4 (-1074)) (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-1050 *4 *5 *2)) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4))))))) +(-13 (-1074) (-281 |#3| |#3|) (-10 -8 (-15 -3563 ($ (-622 (-1048 |#1| |#2| |#3|)))) (-15 -3562 ((-622 (-1048 |#1| |#2| |#3|)) $)) (-15 -4159 (|#3| $ |#3| (-895))))) +((-3564 (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112)) 75) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|))) 77) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112)) 76))) +(((-1051 |#1| |#2|) (-10 -7 (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112))) (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112)))) (-13 (-302) (-145)) (-622 (-1149))) (T -1051)) +((-3564 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) (-5 *1 (-1051 *5 *6)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))))) (-3564 (*1 *2 *3) (-12 (-4 *4 (-13 (-302) (-145))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4)))))) (-5 *1 (-1051 *4 *5)) (-5 *3 (-622 (-922 *4))) (-14 *5 (-622 (-1149))))) (-3564 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) (-5 *1 (-1051 *5 *6)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149)))))) +(-10 -7 (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112))) (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -3564 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 126)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-358)))) (-2178 (($ $) NIL (|has| |#1| (-358)))) (-2176 (((-112) $) NIL (|has| |#1| (-358)))) (-1901 (((-669 |#1|) (-1231 $)) NIL) (((-669 |#1|)) 115)) (-3689 ((|#1| $) 119)) (-1791 (((-1158 (-895) (-751)) (-538)) NIL (|has| |#1| (-345)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3471 (((-751)) 40 (|has| |#1| (-363)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-1911 (($ (-1231 |#1|) (-1231 $)) NIL) (($ (-1231 |#1|)) 43)) (-1789 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-345)))) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-1900 (((-669 |#1|) $ (-1231 $)) NIL) (((-669 |#1|) $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 106) (((-669 |#1|) (-669 $)) 101)) (-4202 (($ |#2|) 61) (((-3 $ "failed") (-402 |#2|)) NIL (|has| |#1| (-358)))) (-3821 (((-3 $ "failed") $) NIL)) (-3444 (((-895)) 77)) (-3327 (($) 44 (|has| |#1| (-363)))) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-3166 (($) NIL (|has| |#1| (-345)))) (-1796 (((-112) $) NIL (|has| |#1| (-345)))) (-1886 (($ $ (-751)) NIL (|has| |#1| (-345))) (($ $) NIL (|has| |#1| (-345)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-4131 (((-895) $) NIL (|has| |#1| (-345))) (((-812 (-895)) $) NIL (|has| |#1| (-345)))) (-2502 (((-112) $) NIL)) (-3467 ((|#1| $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-345)))) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-2130 ((|#2| $) 84 (|has| |#1| (-358)))) (-2126 (((-895) $) 131 (|has| |#1| (-363)))) (-3413 ((|#2| $) 58)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-3804 (($) NIL (|has| |#1| (-345)) CONST)) (-2492 (($ (-895)) 125 (|has| |#1| (-363)))) (-3594 (((-1093) $) NIL)) (-2501 (($) 121)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-1792 (((-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538))))) NIL (|has| |#1| (-345)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4117 ((|#1| (-1231 $)) NIL) ((|#1|) 109)) (-1887 (((-751) $) NIL (|has| |#1| (-345))) (((-3 (-751) "failed") $ $) NIL (|has| |#1| (-345)))) (-4170 (($ $) NIL (-3891 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-751)) NIL (-3891 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1 |#1| |#1|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-2500 (((-669 |#1|) (-1231 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3536 ((|#2|) 73)) (-1790 (($) NIL (|has| |#1| (-345)))) (-3575 (((-1231 |#1|) $ (-1231 $)) 89) (((-669 |#1|) (-1231 $) (-1231 $)) NIL) (((-1231 |#1|) $) 71) (((-669 |#1|) (-1231 $)) 85)) (-4330 (((-1231 |#1|) $) NIL) (($ (-1231 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3036 (((-3 (-1231 $) "failed") (-669 $)) NIL (|has| |#1| (-345)))) (-4317 (((-840) $) 57) (($ (-538)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-358))) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-358)) (|has| |#1| (-1014 (-402 (-538))))))) (-3035 (($ $) NIL (|has| |#1| (-345))) (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-2698 ((|#2| $) 82)) (-3461 (((-751)) 75)) (-2128 (((-1231 $)) 81)) (-2177 (((-112) $ $) NIL (|has| |#1| (-358)))) (-2991 (($) 30 T CONST)) (-2997 (($) 19 T CONST)) (-3002 (($ $) NIL (-3891 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-751)) NIL (-3891 (-12 (|has| |#1| (-229)) (|has| |#1| (-358))) (|has| |#1| (-345)))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-358)) (|has| |#1| (-876 (-1149))))) (($ $ (-1 |#1| |#1|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-358)))) (-3387 (((-112) $ $) 63)) (-4308 (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) 67) (($ $ $) NIL)) (-4199 (($ $ $) 65)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-402 (-538)) $) NIL (|has| |#1| (-358))) (($ $ (-402 (-538))) NIL (|has| |#1| (-358))))) +(((-1052 |#1| |#2| |#3|) (-705 |#1| |#2|) (-170) (-1207 |#1|) |#2|) (T -1052)) +NIL +(-705 |#1| |#2|) +((-4092 (((-400 |#3|) |#3|) 18))) +(((-1053 |#1| |#2| |#3|) (-10 -7 (-15 -4092 ((-400 |#3|) |#3|))) (-1207 (-402 (-538))) (-13 (-358) (-145) (-705 (-402 (-538)) |#1|)) (-1207 |#2|)) (T -1053)) +((-4092 (*1 *2 *3) (-12 (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-13 (-358) (-145) (-705 (-402 (-538)) *4))) (-5 *2 (-400 *3)) (-5 *1 (-1053 *4 *5 *3)) (-4 *3 (-1207 *5))))) +(-10 -7 (-15 -4092 ((-400 |#3|) |#3|))) +((-4092 (((-400 |#3|) |#3|) 19))) +(((-1054 |#1| |#2| |#3|) (-10 -7 (-15 -4092 ((-400 |#3|) |#3|))) (-1207 (-402 (-922 (-538)))) (-13 (-358) (-145) (-705 (-402 (-922 (-538))) |#1|)) (-1207 |#2|)) (T -1054)) +((-4092 (*1 *2 *3) (-12 (-4 *4 (-1207 (-402 (-922 (-538))))) (-4 *5 (-13 (-358) (-145) (-705 (-402 (-922 (-538))) *4))) (-5 *2 (-400 *3)) (-5 *1 (-1054 *4 *5 *3)) (-4 *3 (-1207 *5))))) +(-10 -7 (-15 -4092 ((-400 |#3|) |#3|))) +((-2898 (((-112) $ $) NIL)) (-3677 (($ $ $) 14)) (-3678 (($ $ $) 15)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3565 (($) 6)) (-4330 (((-1149) $) 18)) (-4317 (((-840) $) 12)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 13)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 8))) +(((-1055) (-13 (-827) (-10 -8 (-15 -3565 ($)) (-15 -4330 ((-1149) $))))) (T -1055)) +((-3565 (*1 *1) (-5 *1 (-1055))) (-4330 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1055))))) +(-13 (-827) (-10 -8 (-15 -3565 ($)) (-15 -4330 ((-1149) $)))) +((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-3387 (((-112) $ $) 6))) +(((-1056) (-138)) (T -1056)) NIL (-13 (-92)) -(((-92) . T) ((-101) . T) ((-595 (-838)) . T) ((-595 (-1152)) . T) ((-1072) . T)) -((-3563 ((|#1| |#1| (-1 (-536) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-3561 (((-1235)) 15)) (-3562 (((-620 |#1|)) 9))) -(((-1055 |#1|) (-10 -7 (-15 -3561 ((-1235))) (-15 -3562 ((-620 |#1|))) (-15 -3563 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3563 (|#1| |#1| (-1 (-536) |#1| |#1|)))) (-131)) (T -1055)) -((-3563 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-536) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1055 *2)))) (-3563 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1055 *2)))) (-3562 (*1 *2) (-12 (-5 *2 (-620 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-131)))) (-3561 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1055 *3)) (-4 *3 (-131))))) -(-10 -7 (-15 -3561 ((-1235))) (-15 -3562 ((-620 |#1|))) (-15 -3563 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3563 (|#1| |#1| (-1 (-536) |#1| |#1|)))) -((-3566 (($ (-108) $) 16)) (-3567 (((-3 (-108) "failed") (-1147) $) 15)) (-3923 (($) 7)) (-3565 (($) 17)) (-3564 (($) 18)) (-3568 (((-620 (-173)) $) 10)) (-4312 (((-838) $) 21))) -(((-1056) (-13 (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -3568 ((-620 (-173)) $)) (-15 -3567 ((-3 (-108) "failed") (-1147) $)) (-15 -3566 ($ (-108) $)) (-15 -3565 ($)) (-15 -3564 ($))))) (T -1056)) -((-3923 (*1 *1) (-5 *1 (-1056))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-620 (-173))) (-5 *1 (-1056)))) (-3567 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-108)) (-5 *1 (-1056)))) (-3566 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1056)))) (-3565 (*1 *1) (-5 *1 (-1056))) (-3564 (*1 *1) (-5 *1 (-1056)))) -(-13 (-595 (-838)) (-10 -8 (-15 -3923 ($)) (-15 -3568 ((-620 (-173)) $)) (-15 -3567 ((-3 (-108) "failed") (-1147) $)) (-15 -3566 ($ (-108) $)) (-15 -3565 ($)) (-15 -3564 ($)))) -((-3569 (((-1229 (-667 |#1|)) (-620 (-667 |#1|))) 42) (((-1229 (-667 (-920 |#1|))) (-620 (-1147)) (-667 (-920 |#1|))) 63) (((-1229 (-667 (-400 (-920 |#1|)))) (-620 (-1147)) (-667 (-400 (-920 |#1|)))) 79)) (-3570 (((-1229 |#1|) (-667 |#1|) (-620 (-667 |#1|))) 36))) -(((-1057 |#1|) (-10 -7 (-15 -3569 ((-1229 (-667 (-400 (-920 |#1|)))) (-620 (-1147)) (-667 (-400 (-920 |#1|))))) (-15 -3569 ((-1229 (-667 (-920 |#1|))) (-620 (-1147)) (-667 (-920 |#1|)))) (-15 -3569 ((-1229 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3570 ((-1229 |#1|) (-667 |#1|) (-620 (-667 |#1|))))) (-356)) (T -1057)) -((-3570 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-667 *5))) (-5 *3 (-667 *5)) (-4 *5 (-356)) (-5 *2 (-1229 *5)) (-5 *1 (-1057 *5)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-620 (-667 *4))) (-4 *4 (-356)) (-5 *2 (-1229 (-667 *4))) (-5 *1 (-1057 *4)))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-1147))) (-4 *5 (-356)) (-5 *2 (-1229 (-667 (-920 *5)))) (-5 *1 (-1057 *5)) (-5 *4 (-667 (-920 *5))))) (-3569 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-1147))) (-4 *5 (-356)) (-5 *2 (-1229 (-667 (-400 (-920 *5))))) (-5 *1 (-1057 *5)) (-5 *4 (-667 (-400 (-920 *5))))))) -(-10 -7 (-15 -3569 ((-1229 (-667 (-400 (-920 |#1|)))) (-620 (-1147)) (-667 (-400 (-920 |#1|))))) (-15 -3569 ((-1229 (-667 (-920 |#1|))) (-620 (-1147)) (-667 (-920 |#1|)))) (-15 -3569 ((-1229 (-667 |#1|)) (-620 (-667 |#1|)))) (-15 -3570 ((-1229 |#1|) (-667 |#1|) (-620 (-667 |#1|))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1538 (((-620 (-749)) $) NIL) (((-620 (-749)) $ (-1147)) NIL)) (-1572 (((-749) $) NIL) (((-749) $ (-1147)) NIL)) (-3412 (((-620 (-1059 (-1147))) $) NIL)) (-3414 (((-1141 $) $ (-1059 (-1147))) NIL) (((-1141 |#1|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1059 (-1147)))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-1534 (($ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-1059 (-1147)) #2#) $) NIL) (((-3 (-1147) #2#) $) NIL) (((-3 (-1096 |#1| (-1147)) #2#) $) NIL)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-1059 (-1147)) $) NIL) (((-1147) $) NIL) (((-1096 |#1| (-1147)) $) NIL)) (-4111 (($ $ $ (-1059 (-1147))) NIL (|has| |#1| (-170)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ (-1059 (-1147))) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-522 (-1059 (-1147))) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1059 (-1147)) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1059 (-1147)) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ (-1147)) NIL) (((-749) $) NIL)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3415 (($ (-1141 |#1|) (-1059 (-1147))) NIL) (($ (-1141 $) (-1059 (-1147))) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-522 (-1059 (-1147)))) NIL) (($ $ (-1059 (-1147)) (-749)) NIL) (($ $ (-620 (-1059 (-1147))) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1059 (-1147))) NIL)) (-3148 (((-522 (-1059 (-1147))) $) NIL) (((-749) $ (-1059 (-1147))) NIL) (((-620 (-749)) $ (-620 (-1059 (-1147)))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 (-1059 (-1147))) (-522 (-1059 (-1147)))) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-1573 (((-1 $ (-749)) (-1147)) NIL) (((-1 $ (-749)) $) NIL (|has| |#1| (-227)))) (-3413 (((-3 (-1059 (-1147)) #3="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-1536 (((-1059 (-1147)) $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-1537 (((-112) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1059 (-1147))) (|:| -2488 (-749))) #3#) $) NIL)) (-1535 (($ $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1059 (-1147)) |#1|) NIL) (($ $ (-620 (-1059 (-1147))) (-620 |#1|)) NIL) (($ $ (-1059 (-1147)) $) NIL) (($ $ (-620 (-1059 (-1147))) (-620 $)) NIL) (($ $ (-1147) $) NIL (|has| |#1| (-227))) (($ $ (-620 (-1147)) (-620 $)) NIL (|has| |#1| (-227))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-227))) (($ $ (-620 (-1147)) (-620 |#1|)) NIL (|has| |#1| (-227)))) (-4112 (($ $ (-1059 (-1147))) NIL (|has| |#1| (-170)))) (-4165 (($ $ (-1059 (-1147))) NIL) (($ $ (-620 (-1059 (-1147)))) NIL) (($ $ (-1059 (-1147)) (-749)) NIL) (($ $ (-620 (-1059 (-1147))) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1539 (((-620 (-1147)) $) NIL)) (-4302 (((-522 (-1059 (-1147))) $) NIL) (((-749) $ (-1059 (-1147))) NIL) (((-620 (-749)) $ (-620 (-1059 (-1147)))) NIL) (((-749) $ (-1147)) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1059 (-1147)) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1059 (-1147)) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1059 (-1147)) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) NIL (|has| |#1| (-444))) (($ $ (-1059 (-1147))) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-1059 (-1147))) NIL) (($ (-1147)) NIL) (($ (-1096 |#1| (-1147))) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-522 (-1059 (-1147)))) NIL) (($ $ (-1059 (-1147)) (-749)) NIL) (($ $ (-620 (-1059 (-1147))) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1059 (-1147))) NIL) (($ $ (-620 (-1059 (-1147)))) NIL) (($ $ (-1059 (-1147)) (-749)) NIL) (($ $ (-620 (-1059 (-1147))) (-620 (-749))) NIL) (($ $) NIL (|has| |#1| (-227))) (($ $ (-749)) NIL (|has| |#1| (-227))) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1058 |#1|) (-13 (-246 |#1| (-1147) (-1059 (-1147)) (-522 (-1059 (-1147)))) (-1012 (-1096 |#1| (-1147)))) (-1023)) (T -1058)) -NIL -(-13 (-246 |#1| (-1147) (-1059 (-1147)) (-522 (-1059 (-1147)))) (-1012 (-1096 |#1| (-1147)))) -((-2893 (((-112) $ $) NIL)) (-1572 (((-749) $) NIL)) (-4186 ((|#1| $) 10)) (-3503 (((-3 |#1| "failed") $) NIL)) (-3502 ((|#1| $) NIL)) (-4126 (((-749) $) 11)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-1573 (($ |#1| (-749)) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4165 (($ $) NIL) (($ $ (-749)) NIL)) (-4312 (((-838) $) NIL) (($ |#1|) NIL)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 15))) -(((-1059 |#1|) (-259 |#1|) (-825)) (T -1059)) -NIL -(-259 |#1|) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4091 (($ |#1| |#1|) 15)) (-4313 (((-620 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-823)))) (-3575 ((|#1| $) 10)) (-3577 ((|#1| $) 9)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3573 (((-536) $) 14)) (-3574 ((|#1| $) 12)) (-3576 ((|#1| $) 11)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4318 (((-620 |#1|) $) 36 (|has| |#1| (-823))) (((-620 |#1|) (-620 $)) 35 (|has| |#1| (-823)))) (-4325 (($ |#1|) 26)) (-4312 (((-838) $) 25 (|has| |#1| (-1072)))) (-4092 (($ |#1| |#1|) 8)) (-3578 (($ $ (-536)) 16)) (-3382 (((-112) $ $) 19 (|has| |#1| (-1072))))) -(((-1060 |#1|) (-13 (-1065 |#1|) (-10 -7 (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1066 |#1| (-620 |#1|))) |%noBranch|))) (-1183)) (T -1060)) -NIL -(-13 (-1065 |#1|) (-10 -7 (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1066 |#1| (-620 |#1|))) |%noBranch|))) -((-4313 (((-620 |#2|) (-1 |#2| |#1|) (-1060 |#1|)) 24 (|has| |#1| (-823))) (((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|)) 14))) -(((-1061 |#1| |#2|) (-10 -7 (-15 -4313 ((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) (IF (|has| |#1| (-823)) (-15 -4313 ((-620 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) |%noBranch|)) (-1183) (-1183)) (T -1061)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-823)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-620 *6)) (-5 *1 (-1061 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1060 *6)) (-5 *1 (-1061 *5 *6))))) -(-10 -7 (-15 -4313 ((-1060 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) (IF (|has| |#1| (-823)) (-15 -4313 ((-620 |#2|) (-1 |#2| |#1|) (-1060 |#1|))) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3571 (((-620 (-1106)) $) 9)) (-3382 (((-112) $ $) NIL))) -(((-1062) (-13 (-1054) (-10 -8 (-15 -3571 ((-620 (-1106)) $))))) (T -1062)) -((-3571 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1062))))) -(-13 (-1054) (-10 -8 (-15 -3571 ((-620 (-1106)) $)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4186 (((-1147) $) 11)) (-4091 (((-1060 |#1|) $) 12)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-3572 (($ (-1147) (-1060 |#1|)) 10)) (-4312 (((-838) $) 20 (|has| |#1| (-1072)))) (-3382 (((-112) $ $) 15 (|has| |#1| (-1072))))) -(((-1063 |#1|) (-13 (-1183) (-10 -8 (-15 -3572 ($ (-1147) (-1060 |#1|))) (-15 -4186 ((-1147) $)) (-15 -4091 ((-1060 |#1|) $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) (-1183)) (T -1063)) -((-3572 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1060 *4)) (-4 *4 (-1183)) (-5 *1 (-1063 *4)))) (-4186 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1063 *3)) (-4 *3 (-1183)))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-1063 *3)) (-4 *3 (-1183))))) -(-13 (-1183) (-10 -8 (-15 -3572 ($ (-1147) (-1060 |#1|))) (-15 -4186 ((-1147) $)) (-15 -4091 ((-1060 |#1|) $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) -((-4313 (((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|)) 19))) -(((-1064 |#1| |#2|) (-10 -7 (-15 -4313 ((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|)))) (-1183) (-1183)) (T -1064)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1063 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1063 *6)) (-5 *1 (-1064 *5 *6))))) -(-10 -7 (-15 -4313 ((-1063 |#2|) (-1 |#2| |#1|) (-1063 |#1|)))) -((-4091 (($ |#1| |#1|) 7)) (-3575 ((|#1| $) 10)) (-3577 ((|#1| $) 12)) (-3573 (((-536) $) 8)) (-3574 ((|#1| $) 9)) (-3576 ((|#1| $) 11)) (-4325 (($ |#1|) 6)) (-4092 (($ |#1| |#1|) 14)) (-3578 (($ $ (-536)) 13))) -(((-1065 |#1|) (-138) (-1183)) (T -1065)) -((-4092 (*1 *1 *2 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-3578 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1065 *3)) (-4 *3 (-1183)))) (-3577 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-3576 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1183)) (-5 *2 (-536)))) (-4091 (*1 *1 *2 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183))))) -(-13 (-1183) (-10 -8 (-15 -4092 ($ |t#1| |t#1|)) (-15 -3578 ($ $ (-536))) (-15 -3577 (|t#1| $)) (-15 -3576 (|t#1| $)) (-15 -3575 (|t#1| $)) (-15 -3574 (|t#1| $)) (-15 -3573 ((-536) $)) (-15 -4091 ($ |t#1| |t#1|)) (-15 -4325 ($ |t#1|)))) -(((-1183) . T)) -((-4091 (($ |#1| |#1|) 7)) (-4313 ((|#2| (-1 |#1| |#1|) $) 16)) (-3575 ((|#1| $) 10)) (-3577 ((|#1| $) 12)) (-3573 (((-536) $) 8)) (-3574 ((|#1| $) 9)) (-3576 ((|#1| $) 11)) (-4318 ((|#2| (-620 $)) 18) ((|#2| $) 17)) (-4325 (($ |#1|) 6)) (-4092 (($ |#1| |#1|) 14)) (-3578 (($ $ (-536)) 13))) -(((-1066 |#1| |#2|) (-138) (-823) (-1120 |t#1|)) (T -1066)) -((-4318 (*1 *2 *3) (-12 (-5 *3 (-620 *1)) (-4 *1 (-1066 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1120 *4)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1120 *3)))) (-4313 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1066 *4 *2)) (-4 *4 (-823)) (-4 *2 (-1120 *4))))) -(-13 (-1065 |t#1|) (-10 -8 (-15 -4318 (|t#2| (-620 $))) (-15 -4318 (|t#2| $)) (-15 -4313 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-1065 |#1|) . T) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-4152 (((-1106) $) 12)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3579 (((-620 (-1106)) $) 10)) (-3382 (((-112) $ $) NIL))) -(((-1067) (-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $)) (-15 -4152 ((-1106) $))))) (T -1067)) -((-3579 (*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1067)))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1067))))) -(-13 (-1054) (-10 -8 (-15 -3579 ((-620 (-1106)) $)) (-15 -4152 ((-1106) $)))) -((-2893 (((-112) $ $) NIL)) (-1916 (($) NIL (|has| |#1| (-361)))) (-3580 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3582 (($ $ $) 72)) (-3581 (((-112) $ $) 73)) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#1| (-361)))) (-3585 (($ (-620 |#1|)) NIL) (($) 13)) (-1626 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3759 (($ |#1| $) 67 (|has| $ (-6 -4348))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4348)))) (-3322 (($) NIL (|has| |#1| (-361)))) (-2063 (((-620 |#1|) $) 19 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3672 ((|#1| $) 57 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3673 ((|#1| $) 55 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 34)) (-2121 (((-893) $) NIL (|has| |#1| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3584 (($ $ $) 70)) (-1331 ((|#1| $) 25)) (-3965 (($ |#1| $) 65)) (-2487 (($ (-893)) NIL (|has| |#1| (-361)))) (-3589 (((-1091) $) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1332 ((|#1| $) 27)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 21)) (-3923 (($) 11)) (-3583 (($ $ |#1|) NIL) (($ $ $) 71)) (-1518 (($) NIL) (($ (-620 |#1|)) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 16)) (-4325 (((-525) $) 52 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 61)) (-1917 (($ $) NIL (|has| |#1| (-361)))) (-4312 (((-838) $) NIL)) (-1918 (((-749) $) NIL)) (-3586 (($ (-620 |#1|)) NIL) (($) 12)) (-1333 (($ (-620 |#1|)) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 54)) (-4311 (((-749) $) 10 (|has| $ (-6 -4348))))) -(((-1068 |#1|) (-419 |#1|) (-1072)) (T -1068)) -NIL -(-419 |#1|) -((-3580 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3582 (($ $ $) 10)) (-3583 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1069 |#1| |#2|) (-10 -8 (-15 -3580 (|#1| |#2| |#1|)) (-15 -3580 (|#1| |#1| |#2|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3583 (|#1| |#1| |#1|))) (-1070 |#2|) (-1072)) (T -1069)) -NIL -(-10 -8 (-15 -3580 (|#1| |#2| |#1|)) (-15 -3580 (|#1| |#1| |#2|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#2|)) (-15 -3583 (|#1| |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-3580 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3582 (($ $ $) 20)) (-3581 (((-112) $ $) 19)) (-1269 (((-112) $ (-749)) 35)) (-3585 (($) 25) (($ (-620 |#1|)) 24)) (-4068 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4348)))) (-3891 (($) 36 T CONST)) (-1398 (($ $) 59 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 58 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4348)))) (-2063 (((-620 |#1|) $) 43 (|has| $ (-6 -4348)))) (-3587 (((-112) $ $) 28)) (-4077 (((-112) $ (-749)) 34)) (-2506 (((-620 |#1|) $) 44 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 38)) (-4074 (((-112) $ (-749)) 33)) (-3588 (((-1129) $) 9)) (-3584 (($ $ $) 23)) (-3589 (((-1091) $) 10)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2065 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#1|) (-620 |#1|)) 50 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 48 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 (-286 |#1|))) 47 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 29)) (-3757 (((-112) $) 32)) (-3923 (($) 31)) (-3583 (($ $ $) 22) (($ $ |#1|) 21)) (-2064 (((-749) |#1| $) 45 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4348)))) (-3754 (($ $) 30)) (-4325 (((-525) $) 60 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 51)) (-4312 (((-838) $) 11)) (-3586 (($) 27) (($ (-620 |#1|)) 26)) (-2066 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 37 (|has| $ (-6 -4348))))) -(((-1070 |#1|) (-138) (-1072)) (T -1070)) -((-3587 (*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3)) (-4 *3 (-1072)) (-5 *2 (-112)))) (-3586 (*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3586 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-1070 *3)))) (-3585 (*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3585 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-1070 *3)))) (-3584 (*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3583 (*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3583 (*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3582 (*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3581 (*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3)) (-4 *3 (-1072)) (-5 *2 (-112)))) (-3580 (*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3580 (*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) (-3580 (*1 *1 *2 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) -(-13 (-1072) (-149 |t#1|) (-10 -8 (-6 -4338) (-15 -3587 ((-112) $ $)) (-15 -3586 ($)) (-15 -3586 ($ (-620 |t#1|))) (-15 -3585 ($)) (-15 -3585 ($ (-620 |t#1|))) (-15 -3584 ($ $ $)) (-15 -3583 ($ $ $)) (-15 -3583 ($ $ |t#1|)) (-15 -3582 ($ $ $)) (-15 -3581 ((-112) $ $)) (-15 -3580 ($ $ $)) (-15 -3580 ($ $ |t#1|)) (-15 -3580 ($ |t#1| $)))) -(((-34) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) . T) ((-1183) . T)) -((-3588 (((-1129) $) 10)) (-3589 (((-1091) $) 8))) -(((-1071 |#1|) (-10 -8 (-15 -3588 ((-1129) |#1|)) (-15 -3589 ((-1091) |#1|))) (-1072)) (T -1071)) -NIL -(-10 -8 (-15 -3588 ((-1129) |#1|)) (-15 -3589 ((-1091) |#1|))) -((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) -(((-1072) (-138)) (T -1072)) -((-3589 (*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-1091)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-1129))))) -(-13 (-101) (-595 (-838)) (-10 -8 (-15 -3589 ((-1091) $)) (-15 -3588 ((-1129) $)))) -(((-101) . T) ((-595 (-838)) . T)) -((-2893 (((-112) $ $) NIL)) (-3466 (((-749)) 30)) (-3593 (($ (-620 (-893))) 52)) (-3595 (((-3 $ #1="failed") $ (-893) (-893)) 58)) (-3322 (($) 32)) (-3591 (((-112) (-893) $) 35)) (-2121 (((-893) $) 50)) (-3588 (((-1129) $) NIL)) (-2487 (($ (-893)) 31)) (-3596 (((-3 $ #1#) $ (-893)) 55)) (-3589 (((-1091) $) NIL)) (-3592 (((-1229 $)) 40)) (-3594 (((-620 (-893)) $) 24)) (-3590 (((-749) $ (-893) (-893)) 56)) (-4312 (((-838) $) 29)) (-3382 (((-112) $ $) 21))) -(((-1073 |#1| |#2|) (-13 (-361) (-10 -8 (-15 -3596 ((-3 $ #1="failed") $ (-893))) (-15 -3595 ((-3 $ #1#) $ (-893) (-893))) (-15 -3594 ((-620 (-893)) $)) (-15 -3593 ($ (-620 (-893)))) (-15 -3592 ((-1229 $))) (-15 -3591 ((-112) (-893) $)) (-15 -3590 ((-749) $ (-893) (-893))))) (-893) (-893)) (T -1073)) -((-3596 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-893)) (-5 *1 (-1073 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3595 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-893)) (-5 *1 (-1073 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3594 (*1 *2 *1) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) (-3592 (*1 *2) (-12 (-5 *2 (-1229 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) (-3591 (*1 *2 *3 *1) (-12 (-5 *3 (-893)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3590 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-749)) (-5 *1 (-1073 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-361) (-10 -8 (-15 -3596 ((-3 $ #1="failed") $ (-893))) (-15 -3595 ((-3 $ #1#) $ (-893) (-893))) (-15 -3594 ((-620 (-893)) $)) (-15 -3593 ($ (-620 (-893)))) (-15 -3592 ((-1229 $))) (-15 -3591 ((-112) (-893) $)) (-15 -3590 ((-749) $ (-893) (-893))))) -((-2893 (((-112) $ $) NIL)) (-3606 (((-112) $) NIL)) (-3602 (((-1147) $) NIL)) (-3607 (((-112) $) NIL)) (-3893 (((-1129) $) NIL)) (-3609 (((-112) $) NIL)) (-3611 (((-112) $) NIL)) (-3608 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-3605 (((-112) $) NIL)) (-3601 (((-536) $) NIL)) (-3589 (((-1091) $) NIL)) (-3604 (((-112) $) NIL)) (-3600 (((-219) $) NIL)) (-3599 (((-838) $) NIL)) (-3612 (((-112) $ $) NIL)) (-4154 (($ $ (-536)) NIL) (($ $ (-620 (-536))) NIL)) (-3603 (((-620 $) $) NIL)) (-4325 (($ (-620 $)) NIL) (($ (-1129)) NIL) (($ (-1147)) NIL) (($ (-536)) NIL) (($ (-219)) NIL) (($ (-838)) NIL)) (-4312 (((-838) $) NIL)) (-3597 (($ $) NIL)) (-3598 (($ $) NIL)) (-3610 (((-112) $) NIL)) (-3382 (((-112) $ $) NIL)) (-4311 (((-536) $) NIL))) -(((-1074) (-1075 (-1129) (-1147) (-536) (-219) (-838))) (T -1074)) -NIL -(-1075 (-1129) (-1147) (-536) (-219) (-838)) -((-2893 (((-112) $ $) 7)) (-3606 (((-112) $) 32)) (-3602 ((|#2| $) 27)) (-3607 (((-112) $) 33)) (-3893 ((|#1| $) 28)) (-3609 (((-112) $) 35)) (-3611 (((-112) $) 37)) (-3608 (((-112) $) 34)) (-3588 (((-1129) $) 9)) (-3605 (((-112) $) 31)) (-3601 ((|#3| $) 26)) (-3589 (((-1091) $) 10)) (-3604 (((-112) $) 30)) (-3600 ((|#4| $) 25)) (-3599 ((|#5| $) 24)) (-3612 (((-112) $ $) 38)) (-4154 (($ $ (-536)) 14) (($ $ (-620 (-536))) 13)) (-3603 (((-620 $) $) 29)) (-4325 (($ (-620 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4312 (((-838) $) 11)) (-3597 (($ $) 16)) (-3598 (($ $) 17)) (-3610 (((-112) $) 36)) (-3382 (((-112) $ $) 6)) (-4311 (((-536) $) 15))) -(((-1075 |#1| |#2| |#3| |#4| |#5|) (-138) (-1072) (-1072) (-1072) (-1072) (-1072)) (T -1075)) -((-3612 (*1 *2 *1 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112)))) (-3603 (*1 *2 *1) (-12 (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-620 *1)) (-4 *1 (-1075 *3 *4 *5 *6 *7)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *2 *4 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-3601 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *2 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-3599 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *2)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1075 *3 *2 *4 *5 *6)) (-4 *3 (-1072)) (-4 *2 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *2 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1075 *3 *4 *5 *2 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *2 (-1072)) (-4 *6 (-1072)))) (-4325 (*1 *1 *2) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *2)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) (-3598 (*1 *1 *1) (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) (-3597 (*1 *1 *1) (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-536)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072))))) -(-13 (-1072) (-10 -8 (-15 -3612 ((-112) $ $)) (-15 -3611 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -3609 ((-112) $)) (-15 -3608 ((-112) $)) (-15 -3607 ((-112) $)) (-15 -3606 ((-112) $)) (-15 -3605 ((-112) $)) (-15 -3604 ((-112) $)) (-15 -3603 ((-620 $) $)) (-15 -3893 (|t#1| $)) (-15 -3602 (|t#2| $)) (-15 -3601 (|t#3| $)) (-15 -3600 (|t#4| $)) (-15 -3599 (|t#5| $)) (-15 -4325 ($ (-620 $))) (-15 -4325 ($ |t#1|)) (-15 -4325 ($ |t#2|)) (-15 -4325 ($ |t#3|)) (-15 -4325 ($ |t#4|)) (-15 -4325 ($ |t#5|)) (-15 -3598 ($ $)) (-15 -3597 ($ $)) (-15 -4311 ((-536) $)) (-15 -4154 ($ $ (-536))) (-15 -4154 ($ $ (-620 (-536)))))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3606 (((-112) $) 38)) (-3602 ((|#2| $) 42)) (-3607 (((-112) $) 37)) (-3893 ((|#1| $) 41)) (-3609 (((-112) $) 35)) (-3611 (((-112) $) 14)) (-3608 (((-112) $) 36)) (-3588 (((-1129) $) NIL)) (-3605 (((-112) $) 39)) (-3601 ((|#3| $) 44)) (-3589 (((-1091) $) NIL)) (-3604 (((-112) $) 40)) (-3600 ((|#4| $) 43)) (-3599 ((|#5| $) 45)) (-3612 (((-112) $ $) 34)) (-4154 (($ $ (-536)) 56) (($ $ (-620 (-536))) 58)) (-3603 (((-620 $) $) 22)) (-4325 (($ (-620 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4312 (((-838) $) 23)) (-3597 (($ $) 21)) (-3598 (($ $) 52)) (-3610 (((-112) $) 18)) (-3382 (((-112) $ $) 33)) (-4311 (((-536) $) 54))) -(((-1076 |#1| |#2| |#3| |#4| |#5|) (-1075 |#1| |#2| |#3| |#4| |#5|) (-1072) (-1072) (-1072) (-1072) (-1072)) (T -1076)) -NIL -(-1075 |#1| |#2| |#3| |#4| |#5|) -((-3734 (((-1235) $) 23)) (-3613 (($ (-1147) (-427) |#2|) 11)) (-4312 (((-838) $) 16))) -(((-1077 |#1| |#2|) (-13 (-389) (-10 -8 (-15 -3613 ($ (-1147) (-427) |#2|)))) (-825) (-414 |#1|)) (T -1077)) -((-3613 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1147)) (-5 *3 (-427)) (-4 *5 (-825)) (-5 *1 (-1077 *5 *4)) (-4 *4 (-414 *5))))) -(-13 (-389) (-10 -8 (-15 -3613 ($ (-1147) (-427) |#2|)))) -((-3616 (((-112) |#5| |#5|) 38)) (-3619 (((-112) |#5| |#5|) 52)) (-3624 (((-112) |#5| (-620 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3620 (((-112) (-620 |#4|) (-620 |#4|)) 58)) (-3626 (((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) 63)) (-3615 (((-1235)) 33)) (-3614 (((-1235) (-1129) (-1129) (-1129)) 29)) (-3625 (((-620 |#5|) (-620 |#5|)) 82)) (-3627 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) 80)) (-3628 (((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112)) 102)) (-3618 (((-112) |#5| |#5|) 47)) (-3623 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3621 (((-112) (-620 |#4|) (-620 |#4|)) 57)) (-3622 (((-112) (-620 |#4|) (-620 |#4|)) 59)) (-4057 (((-112) (-620 |#4|) (-620 |#4|)) 60)) (-3629 (((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3617 (((-620 |#5|) (-620 |#5|)) 43))) -(((-1078 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3614 ((-1235) (-1129) (-1129) (-1129))) (-15 -3615 ((-1235))) (-15 -3616 ((-112) |#5| |#5|)) (-15 -3617 ((-620 |#5|) (-620 |#5|))) (-15 -3618 ((-112) |#5| |#5|)) (-15 -3619 ((-112) |#5| |#5|)) (-15 -3620 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3621 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3622 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -4057 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3623 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| (-620 |#5|))) (-15 -3625 ((-620 |#5|) (-620 |#5|))) (-15 -3626 ((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3627 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-15 -3628 ((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3629 ((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -1078)) -((-3629 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *4) (|:| |ineq| (-620 *9)))) (-5 *1 (-1078 *6 *7 *8 *9 *4)) (-5 *3 (-620 *9)) (-4 *4 (-1043 *6 *7 *8 *9)))) (-3628 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-620 *10)) (-5 *5 (-112)) (-4 *10 (-1043 *6 *7 *8 *9)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *10) (|:| |ineq| (-620 *9))))) (-5 *1 (-1078 *6 *7 *8 *9 *10)) (-5 *3 (-620 *9)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-620 (-2 (|:| |val| (-620 *6)) (|:| -1655 *7)))) (-4 *6 (-1037 *3 *4 *5)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1078 *3 *4 *5 *6 *7)))) (-3626 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)))) (-3625 (*1 *2 *2) (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *1 (-1078 *3 *4 *5 *6 *7)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1078 *5 *6 *7 *8 *3)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3623 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-4057 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3622 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3620 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3619 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3618 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *1 (-1078 *3 *4 *5 *6 *7)))) (-3616 (*1 *2 *3 *3) (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) (-3615 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3614 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7))))) -(-10 -7 (-15 -3614 ((-1235) (-1129) (-1129) (-1129))) (-15 -3615 ((-1235))) (-15 -3616 ((-112) |#5| |#5|)) (-15 -3617 ((-620 |#5|) (-620 |#5|))) (-15 -3618 ((-112) |#5| |#5|)) (-15 -3619 ((-112) |#5| |#5|)) (-15 -3620 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3621 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3622 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -4057 ((-112) (-620 |#4|) (-620 |#4|))) (-15 -3623 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| (-620 |#5|))) (-15 -3625 ((-620 |#5|) (-620 |#5|))) (-15 -3626 ((-112) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3627 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-15 -3628 ((-620 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|)))) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3629 ((-3 (-2 (|:| -3612 (-620 |#4|)) (|:| -1655 |#5|) (|:| |ineq| (-620 |#4|))) "failed") (-620 |#4|) |#5| (-620 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-3644 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|) 96)) (-3634 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|) 72)) (-3637 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 91)) (-3639 (((-620 |#5|) |#4| |#5|) 110)) (-3641 (((-620 |#5|) |#4| |#5|) 117)) (-3643 (((-620 |#5|) |#4| |#5|) 118)) (-3638 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 97)) (-3640 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 116)) (-3642 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3635 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112)) 84) (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3636 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|) 79)) (-3633 (((-1235)) 37)) (-3631 (((-1235)) 26)) (-3632 (((-1235) (-1129) (-1129) (-1129)) 33)) (-3630 (((-1235) (-1129) (-1129) (-1129)) 22))) -(((-1079 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3630 ((-1235) (-1129) (-1129) (-1129))) (-15 -3631 ((-1235))) (-15 -3632 ((-1235) (-1129) (-1129) (-1129))) (-15 -3633 ((-1235))) (-15 -3634 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3635 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3635 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3636 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3637 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3642 ((-112) |#4| |#5|)) (-15 -3638 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3639 ((-620 |#5|) |#4| |#5|)) (-15 -3640 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3641 ((-620 |#5|) |#4| |#5|)) (-15 -3642 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3643 ((-620 |#5|) |#4| |#5|)) (-15 -3644 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1043 |#1| |#2| |#3| |#4|)) (T -1079)) -((-3644 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3643 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3642 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3641 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3640 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3639 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3638 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3642 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3637 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3636 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) (-4 *8 (-1037 *6 *7 *4)) (-4 *9 (-1043 *6 *7 *4 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *4 (-825)) (-5 *2 (-620 (-2 (|:| |val| *8) (|:| -1655 *9)))) (-5 *1 (-1079 *6 *7 *4 *8 *9)))) (-3635 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1079 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) (-3634 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) (-3633 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3632 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1079 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7)))) (-3631 (*1 *2) (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-1235)) (-5 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) (-3630 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1079 *4 *5 *6 *7 *8)) (-4 *8 (-1043 *4 *5 *6 *7))))) -(-10 -7 (-15 -3630 ((-1235) (-1129) (-1129) (-1129))) (-15 -3631 ((-1235))) (-15 -3632 ((-1235) (-1129) (-1129) (-1129))) (-15 -3633 ((-1235))) (-15 -3634 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3635 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3635 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) |#3| (-112))) (-15 -3636 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3637 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#4| |#5|)) (-15 -3642 ((-112) |#4| |#5|)) (-15 -3638 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3639 ((-620 |#5|) |#4| |#5|)) (-15 -3640 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3641 ((-620 |#5|) |#4| |#5|)) (-15 -3642 ((-620 (-2 (|:| |val| (-112)) (|:| -1655 |#5|))) |#4| |#5|)) (-15 -3643 ((-620 |#5|) |#4| |#5|)) (-15 -3644 ((-620 (-2 (|:| |val| |#4|) (|:| -1655 |#5|))) |#4| |#5|))) -((-2893 (((-112) $ $) 7)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) 85)) (-4040 (((-620 $) (-620 |#4|)) 86) (((-620 $) (-620 |#4|) (-112)) 111)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) 101) (((-112) $) 97)) (-4046 ((|#4| |#4| $) 92)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-4153 (((-3 $ #1#) $) 82)) (-4043 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4041 ((|#4| |#4| $) 87)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) 105)) (-3543 (((-112) |#4| $) 136)) (-3541 (((-112) |#4| $) 133)) (-3544 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) 104) (((-112) $) 103)) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) 128)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4152 (((-3 |#4| #1#) $) 83)) (-3538 (((-620 $) |#4| $) 129)) (-3540 (((-3 (-112) (-620 $)) |#4| $) 132)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3584 (((-620 $) |#4| $) 125) (((-620 $) (-620 |#4|) $) 124) (((-620 $) (-620 |#4|) (-620 $)) 123) (((-620 $) |#4| (-620 $)) 122)) (-3794 (($ |#4| $) 117) (($ (-620 |#4|) $) 116)) (-4055 (((-620 |#4|) $) 107)) (-4049 (((-112) |#4| $) 99) (((-112) $) 95)) (-4044 ((|#4| |#4| $) 90)) (-4057 (((-112) $ $) 110)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) 100) (((-112) $) 96)) (-4045 ((|#4| |#4| $) 91)) (-3589 (((-1091) $) 10)) (-4155 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4037 (((-3 $ #1#) $ |#4|) 78)) (-4123 (($ $ |#4|) 77) (((-620 $) |#4| $) 115) (((-620 $) |#4| (-620 $)) 114) (((-620 $) (-620 |#4|) $) 113) (((-620 $) (-620 |#4|) (-620 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-4302 (((-749) $) 106)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-4042 (($ $) 88)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-4036 (((-749) $) 76 (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) 98)) (-3535 (((-620 $) |#4| $) 121) (((-620 $) |#4| (-620 $)) 120) (((-620 $) (-620 |#4|) $) 119) (((-620 $) (-620 |#4|) (-620 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) 81)) (-3542 (((-112) |#4| $) 135)) (-4288 (((-112) |#3| $) 80)) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) -(((-1080 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -1080)) -NIL -(-13 (-1043 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1043 |#1| |#2| |#3| |#4|) . T) ((-1072) . T) ((-1178 |#1| |#2| |#3| |#4|) . T) ((-1183) . T)) -((-3655 (((-620 (-536)) (-536) (-536) (-536)) 22)) (-3654 (((-620 (-536)) (-536) (-536) (-536)) 12)) (-3653 (((-620 (-536)) (-536) (-536) (-536)) 18)) (-3652 (((-536) (-536) (-536)) 9)) (-3651 (((-1229 (-536)) (-620 (-536)) (-1229 (-536)) (-536)) 46) (((-1229 (-536)) (-1229 (-536)) (-1229 (-536)) (-536)) 41)) (-3650 (((-620 (-536)) (-620 (-536)) (-620 (-536)) (-112)) 28)) (-3649 (((-667 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536))) 45)) (-3648 (((-667 (-536)) (-620 (-536)) (-620 (-536))) 33)) (-3647 (((-620 (-667 (-536))) (-620 (-536))) 35)) (-3646 (((-620 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536))) 49)) (-3645 (((-667 (-536)) (-620 (-536)) (-620 (-536)) (-620 (-536))) 57))) -(((-1081) (-10 -7 (-15 -3645 ((-667 (-536)) (-620 (-536)) (-620 (-536)) (-620 (-536)))) (-15 -3646 ((-620 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536)))) (-15 -3647 ((-620 (-667 (-536))) (-620 (-536)))) (-15 -3648 ((-667 (-536)) (-620 (-536)) (-620 (-536)))) (-15 -3649 ((-667 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536)))) (-15 -3650 ((-620 (-536)) (-620 (-536)) (-620 (-536)) (-112))) (-15 -3651 ((-1229 (-536)) (-1229 (-536)) (-1229 (-536)) (-536))) (-15 -3651 ((-1229 (-536)) (-620 (-536)) (-1229 (-536)) (-536))) (-15 -3652 ((-536) (-536) (-536))) (-15 -3653 ((-620 (-536)) (-536) (-536) (-536))) (-15 -3654 ((-620 (-536)) (-536) (-536) (-536))) (-15 -3655 ((-620 (-536)) (-536) (-536) (-536))))) (T -1081)) -((-3655 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536)))) (-3654 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536)))) (-3653 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536)))) (-3652 (*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1081)))) (-3651 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1229 (-536))) (-5 *3 (-620 (-536))) (-5 *4 (-536)) (-5 *1 (-1081)))) (-3651 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1229 (-536))) (-5 *3 (-536)) (-5 *1 (-1081)))) (-3650 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *3 (-112)) (-5 *1 (-1081)))) (-3649 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-667 (-536))) (-5 *3 (-620 (-536))) (-5 *1 (-1081)))) (-3648 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1081)))) (-3647 (*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-1081)))) (-3646 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *3 (-667 (-536))) (-5 *1 (-1081)))) (-3645 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1081))))) -(-10 -7 (-15 -3645 ((-667 (-536)) (-620 (-536)) (-620 (-536)) (-620 (-536)))) (-15 -3646 ((-620 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536)))) (-15 -3647 ((-620 (-667 (-536))) (-620 (-536)))) (-15 -3648 ((-667 (-536)) (-620 (-536)) (-620 (-536)))) (-15 -3649 ((-667 (-536)) (-620 (-536)) (-620 (-536)) (-667 (-536)))) (-15 -3650 ((-620 (-536)) (-620 (-536)) (-620 (-536)) (-112))) (-15 -3651 ((-1229 (-536)) (-1229 (-536)) (-1229 (-536)) (-536))) (-15 -3651 ((-1229 (-536)) (-620 (-536)) (-1229 (-536)) (-536))) (-15 -3652 ((-536) (-536) (-536))) (-15 -3653 ((-620 (-536)) (-536) (-536) (-536))) (-15 -3654 ((-620 (-536)) (-536) (-536) (-536))) (-15 -3655 ((-620 (-536)) (-536) (-536) (-536)))) -((** (($ $ (-893)) 10))) -(((-1082 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-893)))) (-1083)) (T -1082)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-893)))) -((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6)) (** (($ $ (-893)) 13)) (* (($ $ $) 14))) -(((-1083) (-138)) (T -1083)) -((* (*1 *1 *1 *1) (-4 *1 (-1083))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1083)) (-5 *2 (-893))))) -(-13 (-1072) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-893))))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL (|has| |#3| (-1072)))) (-3534 (((-112) $) NIL (|has| |#3| (-130)))) (-4065 (($ (-893)) NIL (|has| |#3| (-1023)))) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-2728 (($ $ $) NIL (|has| |#3| (-771)))) (-1367 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1269 (((-112) $ (-749)) NIL)) (-3466 (((-749)) NIL (|has| |#3| (-361)))) (-3981 (((-536) $) NIL (|has| |#3| (-823)))) (-4142 ((|#3| $ (-536) |#3|) NIL (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072)))) (((-3 (-400 (-536)) #1#) $) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1072)))) (-3502 (((-536) $) NIL (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072)))) (((-400 (-536)) $) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072)))) ((|#3| $) NIL (|has| |#3| (-1072)))) (-2357 (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#3| (-619 (-536))) (|has| |#3| (-1023)))) (((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 $) (-1229 $)) NIL (|has| |#3| (-1023))) (((-667 |#3|) (-667 $)) NIL (|has| |#3| (-1023)))) (-3816 (((-3 $ "failed") $) NIL (|has| |#3| (-705)))) (-3322 (($) NIL (|has| |#3| (-361)))) (-1632 ((|#3| $ (-536) |#3|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#3| $ (-536)) 12)) (-3532 (((-112) $) NIL (|has| |#3| (-823)))) (-2063 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL (|has| |#3| (-705)))) (-3533 (((-112) $) NIL (|has| |#3| (-823)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2506 (((-620 |#3|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2067 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#3| |#3|) $) NIL)) (-2121 (((-893) $) NIL (|has| |#3| (-361)))) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#3| (-1072)))) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-2487 (($ (-893)) NIL (|has| |#3| (-361)))) (-3589 (((-1091) $) NIL (|has| |#3| (-1072)))) (-4155 ((|#3| $) NIL (|has| (-536) (-825)))) (-2301 (($ $ |#3|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#3|))) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-286 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072)))) (($ $ (-620 |#3|) (-620 |#3|)) NIL (-12 (|has| |#3| (-302 |#3|)) (|has| |#3| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-2307 (((-620 |#3|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#3| $ (-536) |#3|) NIL) ((|#3| $ (-536)) NIL)) (-4191 ((|#3| $ $) NIL (|has| |#3| (-1023)))) (-1520 (($ (-1229 |#3|)) NIL)) (-4266 (((-133)) NIL (|has| |#3| (-356)))) (-4165 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1023))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1023)))) (-2064 (((-749) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348))) (((-749) |#3| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#3| (-1072))))) (-3754 (($ $) NIL)) (-4312 (((-1229 |#3|) $) NIL) (($ (-536)) NIL (-3886 (-12 (|has| |#3| (-1012 (-536))) (|has| |#3| (-1072))) (|has| |#3| (-1023)))) (($ (-400 (-536))) NIL (-12 (|has| |#3| (-1012 (-400 (-536)))) (|has| |#3| (-1072)))) (($ |#3|) NIL (|has| |#3| (-1072))) (((-838) $) NIL (|has| |#3| (-595 (-838))))) (-3456 (((-749)) NIL (|has| |#3| (-1023)))) (-2066 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4348)))) (-3737 (($ $) NIL (|has| |#3| (-823)))) (-2986 (($) NIL (|has| |#3| (-130)) CONST)) (-2992 (($) NIL (|has| |#3| (-705)) CONST)) (-2997 (($ $) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $ (-749)) NIL (-12 (|has| |#3| (-227)) (|has| |#3| (-1023)))) (($ $ (-1147)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#3| (-874 (-1147))) (|has| |#3| (-1023)))) (($ $ (-1 |#3| |#3|) (-749)) NIL (|has| |#3| (-1023))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1023)))) (-2891 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-2892 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3382 (((-112) $ $) NIL (|has| |#3| (-1072)))) (-3012 (((-112) $ $) NIL (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-3013 (((-112) $ $) 17 (-3886 (|has| |#3| (-771)) (|has| |#3| (-823))))) (-4303 (($ $ |#3|) NIL (|has| |#3| (-356)))) (-4192 (($ $ $) NIL (|has| |#3| (-1023))) (($ $) NIL (|has| |#3| (-1023)))) (-4194 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-749)) NIL (|has| |#3| (-705))) (($ $ (-893)) NIL (|has| |#3| (-705)))) (* (($ (-536) $) NIL (|has| |#3| (-1023))) (($ $ $) NIL (|has| |#3| (-705))) (($ $ |#3|) NIL (|has| |#3| (-705))) (($ |#3| $) NIL (|has| |#3| (-705))) (($ (-749) $) NIL (|has| |#3| (-130))) (($ (-893) $) NIL (|has| |#3| (-25)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1084 |#1| |#2| |#3|) (-232 |#1| |#3|) (-749) (-749) (-771)) (T -1084)) -NIL -(-232 |#1| |#3|) -((-3656 (((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 37)) (-3662 (((-536) (-1198 |#2| |#1|)) 69 (|has| |#1| (-444)))) (-3660 (((-536) (-1198 |#2| |#1|)) 54)) (-3657 (((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 45)) (-3661 (((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 68 (|has| |#1| (-444)))) (-3658 (((-620 |#1|) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 48)) (-3659 (((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|)) 53))) -(((-1085 |#1| |#2|) (-10 -7 (-15 -3656 ((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3657 ((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3658 ((-620 |#1|) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3659 ((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3660 ((-536) (-1198 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3661 ((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3662 ((-536) (-1198 |#2| |#1|)))) |%noBranch|)) (-798) (-1147)) (T -1085)) -((-3662 (*1 *2 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) (-5 *1 (-1085 *4 *5)))) (-3661 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) (-5 *1 (-1085 *4 *5)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) (-5 *1 (-1085 *4 *5)))) (-3659 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) (-5 *1 (-1085 *4 *5)))) (-3658 (*1 *2 *3 *3) (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 *4)) (-5 *1 (-1085 *4 *5)))) (-3657 (*1 *2 *3 *3) (-12 (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 (-1198 *5 *4))) (-5 *1 (-1085 *4 *5)) (-5 *3 (-1198 *5 *4)))) (-3656 (*1 *2 *3 *3) (-12 (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 (-1198 *5 *4))) (-5 *1 (-1085 *4 *5)) (-5 *3 (-1198 *5 *4))))) -(-10 -7 (-15 -3656 ((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3657 ((-620 (-1198 |#2| |#1|)) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3658 ((-620 |#1|) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3659 ((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3660 ((-536) (-1198 |#2| |#1|))) (IF (|has| |#1| (-444)) (PROGN (-15 -3661 ((-536) (-1198 |#2| |#1|) (-1198 |#2| |#1|))) (-15 -3662 ((-536) (-1198 |#2| |#1|)))) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-3664 (((-1152) $) 10)) (-3663 (((-620 (-1152)) $) 11)) (-3665 (($ (-620 (-1152)) (-1152)) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 20)) (-3382 (((-112) $ $) 14))) -(((-1086) (-13 (-1072) (-10 -8 (-15 -3665 ($ (-620 (-1152)) (-1152))) (-15 -3664 ((-1152) $)) (-15 -3663 ((-620 (-1152)) $))))) (T -1086)) -((-3665 (*1 *1 *2 *3) (-12 (-5 *2 (-620 (-1152))) (-5 *3 (-1152)) (-5 *1 (-1086)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1086)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1086))))) -(-13 (-1072) (-10 -8 (-15 -3665 ($ (-620 (-1152)) (-1152))) (-15 -3664 ((-1152) $)) (-15 -3663 ((-620 (-1152)) $)))) -((-2893 (((-112) $ $) NIL)) (-3666 (($ (-497) (-1086)) 14)) (-3665 (((-1086) $) 20)) (-3900 (((-497) $) 17)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 28) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-1087) (-13 (-1054) (-10 -8 (-15 -3666 ($ (-497) (-1086))) (-15 -3900 ((-497) $)) (-15 -3665 ((-1086) $))))) (T -1087)) -((-3666 (*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1086)) (-5 *1 (-1087)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1087)))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1087))))) -(-13 (-1054) (-10 -8 (-15 -3666 ($ (-497) (-1086))) (-15 -3900 ((-497) $)) (-15 -3665 ((-1086) $)))) -((-3981 (((-3 (-536) #1="failed") |#2| (-1147) |#2| (-1129)) 17) (((-3 (-536) #1#) |#2| (-1147) (-817 |#2|)) 15) (((-3 (-536) #1#) |#2|) 54))) -(((-1088 |#1| |#2|) (-10 -7 (-15 -3981 ((-3 (-536) #1="failed") |#2|)) (-15 -3981 ((-3 (-536) #1#) |#2| (-1147) (-817 |#2|))) (-15 -3981 ((-3 (-536) #1#) |#2| (-1147) |#2| (-1129)))) (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)) (-444)) (-13 (-27) (-1169) (-414 |#1|))) (T -1088)) -((-3981 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-1129)) (-4 *6 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-536)) (-5 *1 (-1088 *6 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))))) (-3981 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-817 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) (-4 *6 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-536)) (-5 *1 (-1088 *6 *3)))) (-3981 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-536)) (-5 *1 (-1088 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4)))))) -(-10 -7 (-15 -3981 ((-3 (-536) #1="failed") |#2|)) (-15 -3981 ((-3 (-536) #1#) |#2| (-1147) (-817 |#2|))) (-15 -3981 ((-3 (-536) #1#) |#2| (-1147) |#2| (-1129)))) -((-3981 (((-3 (-536) #1="failed") (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|)) (-1129)) 35) (((-3 (-536) #1#) (-400 (-920 |#1|)) (-1147) (-817 (-400 (-920 |#1|)))) 30) (((-3 (-536) #1#) (-400 (-920 |#1|))) 13))) -(((-1089 |#1|) (-10 -7 (-15 -3981 ((-3 (-536) #1="failed") (-400 (-920 |#1|)))) (-15 -3981 ((-3 (-536) #1#) (-400 (-920 |#1|)) (-1147) (-817 (-400 (-920 |#1|))))) (-15 -3981 ((-3 (-536) #1#) (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|)) (-1129)))) (-444)) (T -1089)) -((-3981 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-400 (-920 *6))) (-5 *4 (-1147)) (-5 *5 (-1129)) (-4 *6 (-444)) (-5 *2 (-536)) (-5 *1 (-1089 *6)))) (-3981 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-817 (-400 (-920 *6)))) (-5 *3 (-400 (-920 *6))) (-4 *6 (-444)) (-5 *2 (-536)) (-5 *1 (-1089 *6)))) (-3981 (*1 *2 *3) (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-444)) (-5 *2 (-536)) (-5 *1 (-1089 *4))))) -(-10 -7 (-15 -3981 ((-3 (-536) #1="failed") (-400 (-920 |#1|)))) (-15 -3981 ((-3 (-536) #1#) (-400 (-920 |#1|)) (-1147) (-817 (-400 (-920 |#1|))))) (-15 -3981 ((-3 (-536) #1#) (-400 (-920 |#1|)) (-1147) (-400 (-920 |#1|)) (-1129)))) -((-4007 (((-307 (-536)) (-48)) 12))) -(((-1090) (-10 -7 (-15 -4007 ((-307 (-536)) (-48))))) (T -1090)) -((-4007 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-536))) (-5 *1 (-1090))))) -(-10 -7 (-15 -4007 ((-307 (-536)) (-48)))) -((-2893 (((-112) $ $) NIL)) (-3674 (($ $) 41)) (-3534 (((-112) $) 65)) (-3670 (($ $ $) 48)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 86)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-2157 (($ $ $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-2152 (($ $ $ $) 75)) (-4129 (($ $) NIL)) (-4324 (((-398 $) $) NIL)) (-1700 (((-112) $ $) NIL)) (-3981 (((-536) $) NIL)) (-2685 (($ $ $) 72)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) "failed") $) NIL)) (-3502 (((-536) $) NIL)) (-2889 (($ $ $) 59)) (-2357 (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 80) (((-667 (-536)) (-667 $)) 28)) (-3816 (((-3 $ "failed") $) NIL)) (-3352 (((-3 (-400 (-536)) "failed") $) NIL)) (-3351 (((-112) $) NIL)) (-3350 (((-400 (-536)) $) NIL)) (-3322 (($) 83) (($ $) 84)) (-2888 (($ $ $) 58)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL)) (-4081 (((-112) $) NIL)) (-2150 (($ $ $ $) NIL)) (-2158 (($ $ $) 81)) (-3532 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL)) (-2497 (((-112) $) 66)) (-3001 (((-112) $) 64)) (-3671 (($ $) 42)) (-3798 (((-3 $ "failed") $) NIL)) (-3533 (((-112) $) 76)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL)) (-2151 (($ $ $ $) 73)) (-3672 (($ $ $) 68) (($) 39)) (-3673 (($ $ $) 67) (($) 38)) (-2154 (($ $) NIL)) (-4188 (($ $) 71)) (-2008 (($ $ $) NIL) (($ (-620 $)) NIL)) (-3588 (((-1129) $) NIL)) (-2149 (($ $ $) NIL)) (-3799 (($) NIL T CONST)) (-2156 (($ $) 50)) (-3589 (((-1091) $) 70)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL)) (-3490 (($ $ $) 62) (($ (-620 $)) NIL)) (-1412 (($ $) NIL)) (-4087 (((-398 $) $) NIL)) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL)) (-3815 (((-3 $ "failed") $ $) NIL)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL)) (-3002 (((-112) $) NIL)) (-1699 (((-749) $) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 61)) (-4165 (($ $ (-749)) NIL) (($ $) NIL)) (-2155 (($ $) 51)) (-3754 (($ $) NIL)) (-4325 (((-536) $) 32) (((-525) $) NIL) (((-864 (-536)) $) NIL) (((-371) $) NIL) (((-219) $) NIL)) (-4312 (((-838) $) 31) (($ (-536)) 82) (($ $) NIL) (($ (-536)) 82)) (-3456 (((-749)) NIL)) (-2159 (((-112) $ $) NIL)) (-3432 (($ $ $) NIL)) (-3022 (($) 37)) (-2172 (((-112) $ $) NIL)) (-2153 (($ $ $ $) 74)) (-3737 (($ $) 63)) (-3676 (($ $ $) 44)) (-2986 (($) 35 T CONST)) (-3667 (($ $ $) 47)) (-2992 (($) 36 T CONST)) (-2829 (((-1129) $) 21) (((-1129) $ (-112)) 23) (((-1235) (-801) $) 24) (((-1235) (-801) $ (-112)) 25)) (-3669 (($ $) 45)) (-2997 (($ $ (-749)) NIL) (($ $) NIL)) (-3668 (($ $ $) 46)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 40)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 49)) (-3675 (($ $ $) 43)) (-4192 (($ $) 52) (($ $ $) 54)) (-4194 (($ $ $) 53)) (** (($ $ (-893)) NIL) (($ $ (-749)) 57)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 34) (($ $ $) 55))) -(((-1091) (-13 (-535) (-640) (-799) (-10 -8 (-6 -4335) (-6 -4340) (-6 -4336) (-15 -3673 ($)) (-15 -3672 ($)) (-15 -3671 ($ $)) (-15 -3674 ($ $)) (-15 -3675 ($ $ $)) (-15 -3676 ($ $ $)) (-15 -3670 ($ $ $)) (-15 -3669 ($ $)) (-15 -3668 ($ $ $)) (-15 -3667 ($ $ $))))) (T -1091)) -((-3676 (*1 *1 *1 *1) (-5 *1 (-1091))) (-3675 (*1 *1 *1 *1) (-5 *1 (-1091))) (-3674 (*1 *1 *1) (-5 *1 (-1091))) (-3673 (*1 *1) (-5 *1 (-1091))) (-3672 (*1 *1) (-5 *1 (-1091))) (-3671 (*1 *1 *1) (-5 *1 (-1091))) (-3670 (*1 *1 *1 *1) (-5 *1 (-1091))) (-3669 (*1 *1 *1) (-5 *1 (-1091))) (-3668 (*1 *1 *1 *1) (-5 *1 (-1091))) (-3667 (*1 *1 *1 *1) (-5 *1 (-1091)))) -(-13 (-535) (-640) (-799) (-10 -8 (-6 -4335) (-6 -4340) (-6 -4336) (-15 -3673 ($)) (-15 -3672 ($)) (-15 -3671 ($ $)) (-15 -3674 ($ $)) (-15 -3675 ($ $ $)) (-15 -3676 ($ $ $)) (-15 -3670 ($ $ $)) (-15 -3669 ($ $)) (-15 -3668 ($ $ $)) (-15 -3667 ($ $ $)))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3678 ((|#1| $) 44)) (-1269 (((-112) $ (-749)) 8)) (-3891 (($) 7 T CONST)) (-3680 ((|#1| |#1| $) 46)) (-3679 ((|#1| $) 45)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-1331 ((|#1| $) 39)) (-3965 (($ |#1| $) 40)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-1332 ((|#1| $) 41)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-3677 (((-749) $) 43)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) 42)) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-1092 |#1|) (-138) (-1183)) (T -1092)) -((-3680 (*1 *2 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1183)) (-5 *2 (-749))))) -(-13 (-106 |t#1|) (-10 -8 (-6 -4348) (-15 -3680 (|t#1| |t#1| $)) (-15 -3679 (|t#1| $)) (-15 -3678 (|t#1| $)) (-15 -3677 ((-749) $)))) -(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-3684 ((|#3| $) 76)) (-3503 (((-3 (-536) #1="failed") $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3502 (((-536) $) NIL) (((-400 (-536)) $) NIL) ((|#3| $) 37)) (-2357 (((-667 (-536)) (-667 $)) NIL) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL) (((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 $) (-1229 $)) 73) (((-667 |#3|) (-667 $)) 65)) (-4165 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147)) NIL) (($ $ (-749)) NIL) (($ $) NIL)) (-3683 ((|#3| $) 78)) (-3685 ((|#4| $) 32)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-400 (-536))) NIL) (($ |#3|) 16)) (** (($ $ (-893)) NIL) (($ $ (-749)) 15) (($ $ (-536)) 82))) -(((-1093 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-536))) (-15 -3683 (|#3| |#1|)) (-15 -3684 (|#3| |#1|)) (-15 -3685 (|#4| |#1|)) (-15 -2357 ((-667 |#3|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| #1="failed") |#1|)) (-15 -4312 (|#1| |#3|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4312 (|#1| (-536))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893))) (-15 -4312 ((-838) |#1|))) (-1094 |#2| |#3| |#4| |#5|) (-749) (-1023) (-232 |#2| |#3|) (-232 |#2| |#3|)) (T -1093)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-536))) (-15 -3683 (|#3| |#1|)) (-15 -3684 (|#3| |#1|)) (-15 -3685 (|#4| |#1|)) (-15 -2357 ((-667 |#3|) (-667 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 |#3|)) (|:| |vec| (-1229 |#3|))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 |#1|) (-1229 |#1|))) (-15 -2357 ((-667 (-536)) (-667 |#1|))) (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| #1="failed") |#1|)) (-15 -4312 (|#1| |#3|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-536) |#1|)) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|) (-749))) (-15 -4165 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4312 (|#1| (-536))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3684 ((|#2| $) 70)) (-3451 (((-112) $) 110)) (-1367 (((-3 $ "failed") $ $) 19)) (-3453 (((-112) $) 108)) (-1269 (((-112) $ (-749)) 100)) (-3687 (($ |#2|) 73)) (-3891 (($) 17 T CONST)) (-3440 (($ $) 127 (|has| |#2| (-300)))) (-3442 ((|#3| $ (-536)) 122)) (-3503 (((-3 (-536) #1="failed") $) 84 (|has| |#2| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) 82 (|has| |#2| (-1012 (-400 (-536))))) (((-3 |#2| #1#) $) 79)) (-3502 (((-536) $) 85 (|has| |#2| (-1012 (-536)))) (((-400 (-536)) $) 83 (|has| |#2| (-1012 (-400 (-536))))) ((|#2| $) 78)) (-2357 (((-667 (-536)) (-667 $)) 77 (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 76 (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 75) (((-667 |#2|) (-667 $)) 74)) (-3816 (((-3 $ "failed") $) 32)) (-3439 (((-749) $) 128 (|has| |#2| (-543)))) (-3443 ((|#2| $ (-536) (-536)) 120)) (-2063 (((-620 |#2|) $) 93 (|has| $ (-6 -4348)))) (-2497 (((-112) $) 30)) (-3438 (((-749) $) 129 (|has| |#2| (-543)))) (-3437 (((-620 |#4|) $) 130 (|has| |#2| (-543)))) (-3445 (((-749) $) 116)) (-3444 (((-749) $) 117)) (-4077 (((-112) $ (-749)) 101)) (-3681 ((|#2| $) 65 (|has| |#2| (-6 (-4350 #2="*"))))) (-3449 (((-536) $) 112)) (-3447 (((-536) $) 114)) (-2506 (((-620 |#2|) $) 92 (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-3448 (((-536) $) 113)) (-3446 (((-536) $) 115)) (-3454 (($ (-620 (-620 |#2|))) 107)) (-2067 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3951 (((-620 (-620 |#2|)) $) 118)) (-4074 (((-112) $ (-749)) 102)) (-3588 (((-1129) $) 9)) (-3947 (((-3 $ "failed") $) 64 (|has| |#2| (-356)))) (-3589 (((-1091) $) 10)) (-3815 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-543)))) (-2065 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) 89 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) 88 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) 106)) (-3757 (((-112) $) 103)) (-3923 (($) 104)) (-4154 ((|#2| $ (-536) (-536) |#2|) 121) ((|#2| $ (-536) (-536)) 119)) (-4165 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-749)) 49) (($ $ (-620 (-1147)) (-620 (-749))) 42 (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) 41 (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) 40 (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) 39 (|has| |#2| (-874 (-1147)))) (($ $ (-749)) 37 (|has| |#2| (-227))) (($ $) 35 (|has| |#2| (-227)))) (-3683 ((|#2| $) 69)) (-3686 (($ (-620 |#2|)) 72)) (-3452 (((-112) $) 109)) (-3685 ((|#3| $) 71)) (-3682 ((|#2| $) 66 (|has| |#2| (-6 (-4350 #2#))))) (-2064 (((-749) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4348))) (((-749) |#2| $) 91 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 105)) (-3441 ((|#4| $ (-536)) 123)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 81 (|has| |#2| (-1012 (-400 (-536))))) (($ |#2|) 80)) (-3456 (((-749)) 28)) (-2066 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4348)))) (-3450 (((-112) $) 111)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-749)) 47) (($ $ (-620 (-1147)) (-620 (-749))) 46 (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) 45 (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) 44 (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) 43 (|has| |#2| (-874 (-1147)))) (($ $ (-749)) 38 (|has| |#2| (-227))) (($ $) 36 (|has| |#2| (-227)))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#2|) 126 (|has| |#2| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 63 (|has| |#2| (-356)))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-4311 (((-749) $) 99 (|has| $ (-6 -4348))))) -(((-1094 |#1| |#2| |#3| |#4|) (-138) (-749) (-1023) (-232 |t#1| |t#2|) (-232 |t#1| |t#2|)) (T -1094)) -((-3687 (*1 *1 *2) (-12 (-4 *2 (-1023)) (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)))) (-3686 (*1 *1 *2) (-12 (-5 *2 (-620 *4)) (-4 *4 (-1023)) (-4 *1 (-1094 *3 *4 *5 *6)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)))) (-3685 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *2 *5)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1023)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (-4 *2 (-1023)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1094 *3 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) (-4 *2 (-232 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1094 *3 *4 *2 *5)) (-4 *4 (-1023)) (-4 *2 (-232 *3 *4)) (-4 *5 (-232 *3 *4)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4350 #1="*"))) (-4 *2 (-1023)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) (|has| *2 (-6 (-4350 #1#))) (-4 *2 (-1023)))) (-3947 (*1 *1 *1) (|partial| -12 (-4 *1 (-1094 *2 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1094 *3 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356))))) -(-13 (-225 |t#2|) (-111 |t#2| |t#2|) (-1026 |t#1| |t#1| |t#2| |t#3| |t#4|) (-405 |t#2|) (-370 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-696 |t#2|)) |%noBranch|) (-15 -3687 ($ |t#2|)) (-15 -3686 ($ (-620 |t#2|))) (-15 -3685 (|t#3| $)) (-15 -3684 (|t#2| $)) (-15 -3683 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4350 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3682 (|t#2| $)) (-15 -3681 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-356)) (PROGN (-15 -3947 ((-3 $ "failed") $)) (-15 ** ($ $ (-536)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4350 #1="*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-838)) . T) ((-225 |#2|) . T) ((-227) |has| |#2| (-227)) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-370 |#2|) . T) ((-405 |#2|) . T) ((-481 |#2|) . T) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-626 |#2|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#2| (-619 (-536))) ((-619 |#2|) . T) ((-696 |#2|) -3886 (|has| |#2| (-170)) (|has| |#2| (-6 (-4350 #1#)))) ((-705) . T) ((-874 (-1147)) |has| |#2| (-874 (-1147))) ((-1026 |#1| |#1| |#2| |#3| |#4|) . T) ((-1012 (-400 (-536))) |has| |#2| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#2| (-1012 (-536))) ((-1012 |#2|) . T) ((-1029 |#2|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1183) . T)) -((-3690 ((|#4| |#4|) 70)) (-3688 ((|#4| |#4|) 65)) (-3692 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-620 |#3|))) |#4| |#3|) 78)) (-3691 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3689 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) -(((-1095 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3688 (|#4| |#4|)) (-15 -3689 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3690 (|#4| |#4|)) (-15 -3691 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3692 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-620 |#3|))) |#4| |#3|))) (-300) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|)) (T -1095)) -((-3692 (*1 *2 *3 *4) (-12 (-4 *5 (-300)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-620 *4)))) (-5 *1 (-1095 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) (-3691 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1095 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3690 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1095 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) (-3688 (*1 *2 *2) (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) -(-10 -7 (-15 -3688 (|#4| |#4|)) (-15 -3689 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3690 (|#4| |#4|)) (-15 -3691 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3692 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2123 (-620 |#3|))) |#4| |#3|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 17)) (-3412 (((-620 |#2|) $) 159)) (-3414 (((-1141 $) $ |#2|) 54) (((-1141 |#1|) $) 43)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 108 (|has| |#1| (-543)))) (-2173 (($ $) 110 (|has| |#1| (-543)))) (-2171 (((-112) $) 112 (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 |#2|)) 192)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) 156) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 |#2| #2#) $) NIL)) (-3502 ((|#1| $) 154) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) ((|#2| $) NIL)) (-4111 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-4314 (($ $) 196)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) 82)) (-3852 (($ $) NIL (|has| |#1| (-444))) (($ $ |#2|) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-522 |#2|) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| |#1| (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| |#1| (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-2497 (((-112) $) 19)) (-2505 (((-749) $) 26)) (-3415 (($ (-1141 |#1|) |#2|) 48) (($ (-1141 $) |#2|) 64)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) 32)) (-3221 (($ |#1| (-522 |#2|)) 71) (($ $ |#2| (-749)) 52) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ |#2|) NIL)) (-3148 (((-522 |#2|) $) 186) (((-749) $ |#2|) 187) (((-620 (-749)) $ (-620 |#2|)) 188)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-522 |#2|) (-522 |#2|)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) 120)) (-3413 (((-3 |#2| #3="failed") $) 161)) (-3222 (($ $) 195)) (-3520 ((|#1| $) 37)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-3151 (((-3 (-620 $) #3#) $) NIL)) (-3150 (((-3 (-620 $) #3#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| |#2|) (|:| -2488 (-749))) #3#) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) 33)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 138 (|has| |#1| (-444)))) (-3490 (($ (-620 $)) 143 (|has| |#1| (-444))) (($ $ $) 130 (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#1| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-884)))) (-3815 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-543)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-620 |#2|) (-620 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-620 |#2|) (-620 $)) 176)) (-4112 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4165 (($ $ |#2|) 194) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-4302 (((-522 |#2|) $) 182) (((-749) $ |#2|) 178) (((-620 (-749)) $ (-620 |#2|)) 180)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| |#1| (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| |#1| (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| |#1| (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#1| $) 126 (|has| |#1| (-444))) (($ $ |#2|) 129 (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4312 (((-838) $) 149) (($ (-536)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-543))) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-4172 (((-620 |#1|) $) 152)) (-4035 ((|#1| $ (-522 |#2|)) 73) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-3030 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 79)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) 115 (|has| |#1| (-543)))) (-2986 (($) 12 T CONST)) (-2992 (($) 14 T CONST)) (-2997 (($ $ |#2|) NIL) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 97)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 124 (|has| |#1| (-356)))) (-4192 (($ $) 85) (($ $ $) 95)) (-4194 (($ $ $) 49)) (** (($ $ (-893)) 102) (($ $ (-749)) 100)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 88) (($ $ $) 65) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) -(((-1096 |#1| |#2|) (-924 |#1| (-522 |#2|) |#2|) (-1023) (-825)) (T -1096)) -NIL -(-924 |#1| (-522 |#2|) |#2|) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 |#2|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3841 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 113 (|has| |#1| (-38 (-400 (-536)))))) (-3843 (($ $) 145 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4169 (((-920 |#1|) $ (-749)) NIL) (((-920 |#1|) $ (-749) (-749)) NIL)) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $ |#2|) NIL) (((-749) $ |#2| (-749)) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4292 (((-112) $) NIL)) (-3221 (($ $ (-620 |#2|) (-620 (-522 |#2|))) NIL) (($ $ |#2| (-522 |#2|)) NIL) (($ |#1| (-522 |#2|)) NIL) (($ $ |#2| (-749)) 56) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) 111 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-4167 (($ $ |#2|) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-4034 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-400 (-536)))))) (-4123 (($ $ (-749)) 13)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4298 (($ $) 109 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (($ $ |#2| $) 95) (($ $ (-620 |#2|) (-620 $)) 88) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL)) (-4165 (($ $ |#2|) 98) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-4302 (((-522 |#2|) $) NIL)) (-3693 (((-1 (-1124 |#3|) |#3|) (-620 |#2|) (-620 (-1124 |#3|))) 77)) (-3844 (($ $) 147 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 143 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 15)) (-4312 (((-838) $) 180) (($ (-536)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-543))) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#2|) 63) (($ |#3|) 61)) (-4035 ((|#1| $ (-522 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL) ((|#3| $ (-749)) 38)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-3847 (($ $) 153 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) 149 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 157 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3850 (($ $) 159 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 155 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 151 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 47 T CONST)) (-2992 (($) 55 T CONST)) (-2997 (($ $ |#2|) NIL) (($ $ (-620 |#2|)) NIL) (($ $ |#2| (-749)) NIL) (($ $ (-620 |#2|) (-620 (-749))) NIL)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) 182 (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 59)) (** (($ $ (-893)) NIL) (($ $ (-749)) 68) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 101 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 58) (($ $ (-400 (-536))) 106 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 104 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) -(((-1097 |#1| |#2| |#3|) (-13 (-719 |#1| |#2|) (-10 -8 (-15 -4035 (|#3| $ (-749))) (-15 -4312 ($ |#2|)) (-15 -4312 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3693 ((-1 (-1124 |#3|) |#3|) (-620 |#2|) (-620 (-1124 |#3|)))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $ |#2| |#1|)) (-15 -4034 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1023) (-825) (-924 |#1| (-522 |#2|) |#2|)) (T -1097)) -((-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *2 (-924 *4 (-522 *5) *5)) (-5 *1 (-1097 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-825)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *2 (-825)) (-5 *1 (-1097 *3 *2 *4)) (-4 *4 (-924 *3 (-522 *2) *2)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-5 *1 (-1097 *3 *4 *2)) (-4 *2 (-924 *3 (-522 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-5 *1 (-1097 *3 *4 *2)) (-4 *2 (-924 *3 (-522 *4) *4)))) (-3693 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-1124 *7))) (-4 *6 (-825)) (-4 *7 (-924 *5 (-522 *6) *6)) (-4 *5 (-1023)) (-5 *2 (-1 (-1124 *7) *7)) (-5 *1 (-1097 *5 *6 *7)))) (-4167 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-4 *2 (-825)) (-5 *1 (-1097 *3 *2 *4)) (-4 *4 (-924 *3 (-522 *2) *2)))) (-4034 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1097 *4 *3 *5))) (-4 *4 (-38 (-400 (-536)))) (-4 *4 (-1023)) (-4 *3 (-825)) (-5 *1 (-1097 *4 *3 *5)) (-4 *5 (-924 *4 (-522 *3) *3))))) -(-13 (-719 |#1| |#2|) (-10 -8 (-15 -4035 (|#3| $ (-749))) (-15 -4312 ($ |#2|)) (-15 -4312 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3693 ((-1 (-1124 |#3|) |#3|) (-620 |#2|) (-620 (-1124 |#3|)))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $ |#2| |#1|)) (-15 -4034 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2893 (((-112) $ $) 7)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) 85)) (-4040 (((-620 $) (-620 |#4|)) 86) (((-620 $) (-620 |#4|) (-112)) 111)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) 101) (((-112) $) 97)) (-4046 ((|#4| |#4| $) 92)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 126)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-4153 (((-3 $ #1#) $) 82)) (-4043 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4041 ((|#4| |#4| $) 87)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) 105)) (-3543 (((-112) |#4| $) 136)) (-3541 (((-112) |#4| $) 133)) (-3544 (((-112) |#4| $) 137) (((-112) $) 134)) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) 104) (((-112) $) 103)) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) 128)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 127)) (-4152 (((-3 |#4| #1#) $) 83)) (-3538 (((-620 $) |#4| $) 129)) (-3540 (((-3 (-112) (-620 $)) |#4| $) 132)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3584 (((-620 $) |#4| $) 125) (((-620 $) (-620 |#4|) $) 124) (((-620 $) (-620 |#4|) (-620 $)) 123) (((-620 $) |#4| (-620 $)) 122)) (-3794 (($ |#4| $) 117) (($ (-620 |#4|) $) 116)) (-4055 (((-620 |#4|) $) 107)) (-4049 (((-112) |#4| $) 99) (((-112) $) 95)) (-4044 ((|#4| |#4| $) 90)) (-4057 (((-112) $ $) 110)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) 100) (((-112) $) 96)) (-4045 ((|#4| |#4| $) 91)) (-3589 (((-1091) $) 10)) (-4155 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4037 (((-3 $ #1#) $ |#4|) 78)) (-4123 (($ $ |#4|) 77) (((-620 $) |#4| $) 115) (((-620 $) |#4| (-620 $)) 114) (((-620 $) (-620 |#4|) $) 113) (((-620 $) (-620 |#4|) (-620 $)) 112)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-4302 (((-749) $) 106)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-4042 (($ $) 88)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-4036 (((-749) $) 76 (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) 98)) (-3535 (((-620 $) |#4| $) 121) (((-620 $) |#4| (-620 $)) 120) (((-620 $) (-620 |#4|) $) 119) (((-620 $) (-620 |#4|) (-620 $)) 118)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) 81)) (-3542 (((-112) |#4| $) 135)) (-4288 (((-112) |#3| $) 80)) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) -(((-1098 |#1| |#2| |#3| |#4|) (-138) (-444) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -1098)) -NIL -(-13 (-1080 |t#1| |t#2| |t#3| |t#4|) (-762 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-762 |#1| |#2| |#3| |#4|) . T) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1043 |#1| |#2| |#3| |#4|) . T) ((-1072) . T) ((-1080 |#1| |#2| |#3| |#4|) . T) ((-1178 |#1| |#2| |#3| |#4|) . T) ((-1183) . T)) -((-3931 (((-620 |#2|) |#1|) 12)) (-3699 (((-620 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-620 |#2|) |#1|) 52)) (-3697 (((-620 |#2|) |#2| |#2| |#2|) 39) (((-620 |#2|) |#1|) 50)) (-3694 ((|#2| |#1|) 46)) (-3695 (((-2 (|:| |solns| (-620 |#2|)) (|:| |maps| (-620 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3696 (((-620 |#2|) |#2| |#2|) 38) (((-620 |#2|) |#1|) 49)) (-3698 (((-620 |#2|) |#2| |#2| |#2| |#2|) 40) (((-620 |#2|) |#1|) 51)) (-3703 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3701 ((|#2| |#2| |#2| |#2|) 43)) (-3700 ((|#2| |#2| |#2|) 42)) (-3702 ((|#2| |#2| |#2| |#2| |#2|) 44))) -(((-1099 |#1| |#2|) (-10 -7 (-15 -3931 ((-620 |#2|) |#1|)) (-15 -3694 (|#2| |#1|)) (-15 -3695 ((-2 (|:| |solns| (-620 |#2|)) (|:| |maps| (-620 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3696 ((-620 |#2|) |#1|)) (-15 -3697 ((-620 |#2|) |#1|)) (-15 -3698 ((-620 |#2|) |#1|)) (-15 -3699 ((-620 |#2|) |#1|)) (-15 -3696 ((-620 |#2|) |#2| |#2|)) (-15 -3697 ((-620 |#2|) |#2| |#2| |#2|)) (-15 -3698 ((-620 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3699 ((-620 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3700 (|#2| |#2| |#2|)) (-15 -3701 (|#2| |#2| |#2| |#2|)) (-15 -3702 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3703 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1205 |#2|) (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (T -1099)) -((-3703 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2)))) (-3702 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2)))) (-3701 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2)))) (-3700 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2)))) (-3699 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3)))) (-3698 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3)))) (-3697 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3)))) (-3696 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3)))) (-3699 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) (-3697 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-2 (|:| |solns| (-620 *5)) (|:| |maps| (-620 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1099 *3 *5)) (-4 *3 (-1205 *5)))) (-3694 (*1 *2 *3) (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4))))) -(-10 -7 (-15 -3931 ((-620 |#2|) |#1|)) (-15 -3694 (|#2| |#1|)) (-15 -3695 ((-2 (|:| |solns| (-620 |#2|)) (|:| |maps| (-620 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3696 ((-620 |#2|) |#1|)) (-15 -3697 ((-620 |#2|) |#1|)) (-15 -3698 ((-620 |#2|) |#1|)) (-15 -3699 ((-620 |#2|) |#1|)) (-15 -3696 ((-620 |#2|) |#2| |#2|)) (-15 -3697 ((-620 |#2|) |#2| |#2| |#2|)) (-15 -3698 ((-620 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3699 ((-620 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3700 (|#2| |#2| |#2|)) (-15 -3701 (|#2| |#2| |#2| |#2|)) (-15 -3702 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3703 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3704 (((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|))))) 95) (((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147))) 94) (((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|)))) 92) (((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|))) (-620 (-1147))) 90) (((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|)))) 75) (((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|))) (-1147)) 76) (((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|))) 70) (((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|)) (-1147)) 59)) (-3705 (((-620 (-620 (-307 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147))) 88) (((-620 (-307 |#1|)) (-400 (-920 |#1|)) (-1147)) 43)) (-3706 (((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-400 (-920 |#1|)) (-1147)) 98) (((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147)) 97))) -(((-1100 |#1|) (-10 -7 (-15 -3704 ((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|)))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|))))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|))))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147)))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -3705 ((-620 (-307 |#1|)) (-400 (-920 |#1|)) (-1147))) (-15 -3705 ((-620 (-620 (-307 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3706 ((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3706 ((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-400 (-920 |#1|)) (-1147)))) (-13 (-300) (-825) (-145))) (T -1100)) -((-3706 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-1136 (-620 (-307 *5)) (-620 (-286 (-307 *5))))) (-5 *1 (-1100 *5)))) (-3706 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-920 *5)))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-1136 (-620 (-307 *5)) (-620 (-286 (-307 *5))))) (-5 *1 (-1100 *5)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-307 *5)))) (-5 *1 (-1100 *5)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-307 *5))) (-5 *1 (-1100 *5)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-620 (-286 (-400 (-920 *4))))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *4))))) (-5 *1 (-1100 *4)))) (-3704 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-286 (-400 (-920 *5))))) (-5 *4 (-620 (-1147))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *5))))) (-5 *1 (-1100 *5)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-620 (-400 (-920 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *4))))) (-5 *1 (-1100 *4)))) (-3704 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *5))))) (-5 *1 (-1100 *5)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-286 (-400 (-920 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1100 *4)))) (-3704 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-400 (-920 *5)))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1100 *5)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1100 *4)))) (-3704 (*1 *2 *3 *4) (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1100 *5))))) -(-10 -7 (-15 -3704 ((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|)) (-1147))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-400 (-920 |#1|)))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3704 ((-620 (-286 (-307 |#1|))) (-286 (-400 (-920 |#1|))))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-400 (-920 |#1|))))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147)))) (-15 -3704 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -3705 ((-620 (-307 |#1|)) (-400 (-920 |#1|)) (-1147))) (-15 -3705 ((-620 (-620 (-307 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3706 ((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3706 ((-1136 (-620 (-307 |#1|)) (-620 (-286 (-307 |#1|)))) (-400 (-920 |#1|)) (-1147)))) -((-3708 (((-400 (-1141 (-307 |#1|))) (-1229 (-307 |#1|)) (-400 (-1141 (-307 |#1|))) (-536)) 29)) (-3707 (((-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|)))) 40))) -(((-1101 |#1|) (-10 -7 (-15 -3707 ((-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))))) (-15 -3708 ((-400 (-1141 (-307 |#1|))) (-1229 (-307 |#1|)) (-400 (-1141 (-307 |#1|))) (-536)))) (-13 (-543) (-825))) (T -1101)) -((-3708 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-400 (-1141 (-307 *5)))) (-5 *3 (-1229 (-307 *5))) (-5 *4 (-536)) (-4 *5 (-13 (-543) (-825))) (-5 *1 (-1101 *5)))) (-3707 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-400 (-1141 (-307 *3)))) (-4 *3 (-13 (-543) (-825))) (-5 *1 (-1101 *3))))) -(-10 -7 (-15 -3707 ((-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))) (-400 (-1141 (-307 |#1|))))) (-15 -3708 ((-400 (-1141 (-307 |#1|))) (-1229 (-307 |#1|)) (-400 (-1141 (-307 |#1|))) (-536)))) -((-3931 (((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-307 |#1|))) (-620 (-1147))) 224) (((-620 (-286 (-307 |#1|))) (-307 |#1|) (-1147)) 20) (((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1147)) 26) (((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|))) 25) (((-620 (-286 (-307 |#1|))) (-307 |#1|)) 21))) -(((-1102 |#1|) (-10 -7 (-15 -3931 ((-620 (-286 (-307 |#1|))) (-307 |#1|))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|)))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1147))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-307 |#1|) (-1147))) (-15 -3931 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-307 |#1|))) (-620 (-1147))))) (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (T -1102)) -((-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-1147))) (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *5))))) (-5 *1 (-1102 *5)) (-5 *3 (-620 (-286 (-307 *5)))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1102 *5)) (-5 *3 (-307 *5)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1102 *5)) (-5 *3 (-286 (-307 *5))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-286 (-307 *4))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-307 *4))))) -(-10 -7 (-15 -3931 ((-620 (-286 (-307 |#1|))) (-307 |#1|))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|)))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-286 (-307 |#1|)) (-1147))) (-15 -3931 ((-620 (-286 (-307 |#1|))) (-307 |#1|) (-1147))) (-15 -3931 ((-620 (-620 (-286 (-307 |#1|)))) (-620 (-286 (-307 |#1|))) (-620 (-1147))))) -((-3710 ((|#2| |#2|) 20 (|has| |#1| (-825))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3709 ((|#2| |#2|) 19 (|has| |#1| (-825))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) -(((-1103 |#1| |#2|) (-10 -7 (-15 -3709 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3710 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-825)) (PROGN (-15 -3709 (|#2| |#2|)) (-15 -3710 (|#2| |#2|))) |%noBranch|)) (-1183) (-13 (-586 (-536) |#1|) (-10 -7 (-6 -4348) (-6 -4349)))) (T -1103)) -((-3710 (*1 *2 *2) (-12 (-4 *3 (-825)) (-4 *3 (-1183)) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-586 (-536) *3) (-10 -7 (-6 -4348) (-6 -4349)))))) (-3709 (*1 *2 *2) (-12 (-4 *3 (-825)) (-4 *3 (-1183)) (-5 *1 (-1103 *3 *2)) (-4 *2 (-13 (-586 (-536) *3) (-10 -7 (-6 -4348) (-6 -4349)))))) (-3710 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-1103 *4 *2)) (-4 *2 (-13 (-586 (-536) *4) (-10 -7 (-6 -4348) (-6 -4349)))))) (-3709 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-1103 *4 *2)) (-4 *2 (-13 (-586 (-536) *4) (-10 -7 (-6 -4348) (-6 -4349))))))) -(-10 -7 (-15 -3709 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3710 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-825)) (PROGN (-15 -3709 (|#2| |#2|)) (-15 -3710 (|#2| |#2|))) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-4243 (((-1135 3 |#1|) $) 107)) (-3720 (((-112) $) 72)) (-3721 (($ $ (-620 (-917 |#1|))) 20) (($ $ (-620 (-620 |#1|))) 75) (($ (-620 (-917 |#1|))) 74) (((-620 (-917 |#1|)) $) 73)) (-3726 (((-112) $) 41)) (-4064 (($ $ (-917 |#1|)) 46) (($ $ (-620 |#1|)) 51) (($ $ (-749)) 53) (($ (-917 |#1|)) 47) (((-917 |#1|) $) 45)) (-3712 (((-2 (|:| -4205 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $) 105)) (-3730 (((-749) $) 26)) (-3731 (((-749) $) 25)) (-4242 (($ $ (-749) (-917 |#1|)) 39)) (-3718 (((-112) $) 82)) (-3719 (($ $ (-620 (-620 (-917 |#1|))) (-620 (-169)) (-169)) 89) (($ $ (-620 (-620 (-620 |#1|))) (-620 (-169)) (-169)) 91) (($ $ (-620 (-620 (-917 |#1|))) (-112) (-112)) 85) (($ $ (-620 (-620 (-620 |#1|))) (-112) (-112)) 93) (($ (-620 (-620 (-917 |#1|)))) 86) (($ (-620 (-620 (-917 |#1|))) (-112) (-112)) 87) (((-620 (-620 (-917 |#1|))) $) 84)) (-3867 (($ (-620 $)) 28) (($ $ $) 29)) (-3713 (((-620 (-169)) $) 102)) (-3717 (((-620 (-917 |#1|)) $) 96)) (-3714 (((-620 (-620 (-169))) $) 101)) (-3715 (((-620 (-620 (-620 (-917 |#1|)))) $) NIL)) (-3716 (((-620 (-620 (-620 (-749)))) $) 99)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3727 (((-749) $ (-620 (-917 |#1|))) 37)) (-3724 (((-112) $) 54)) (-3725 (($ $ (-620 (-917 |#1|))) 56) (($ $ (-620 (-620 |#1|))) 62) (($ (-620 (-917 |#1|))) 57) (((-620 (-917 |#1|)) $) 55)) (-3732 (($) 23) (($ (-1135 3 |#1|)) 24)) (-3754 (($ $) 35)) (-3728 (((-620 $) $) 34)) (-4109 (($ (-620 $)) 31)) (-3729 (((-620 $) $) 33)) (-4312 (((-838) $) 111)) (-3722 (((-112) $) 64)) (-3723 (($ $ (-620 (-917 |#1|))) 66) (($ $ (-620 (-620 |#1|))) 69) (($ (-620 (-917 |#1|))) 67) (((-620 (-917 |#1|)) $) 65)) (-3711 (($ $) 106)) (-3382 (((-112) $ $) NIL))) -(((-1104 |#1|) (-1105 |#1|) (-1023)) (T -1104)) -NIL -(-1105 |#1|) -((-2893 (((-112) $ $) 7)) (-4243 (((-1135 3 |#1|) $) 13)) (-3720 (((-112) $) 29)) (-3721 (($ $ (-620 (-917 |#1|))) 33) (($ $ (-620 (-620 |#1|))) 32) (($ (-620 (-917 |#1|))) 31) (((-620 (-917 |#1|)) $) 30)) (-3726 (((-112) $) 44)) (-4064 (($ $ (-917 |#1|)) 49) (($ $ (-620 |#1|)) 48) (($ $ (-749)) 47) (($ (-917 |#1|)) 46) (((-917 |#1|) $) 45)) (-3712 (((-2 (|:| -4205 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $) 15)) (-3730 (((-749) $) 58)) (-3731 (((-749) $) 59)) (-4242 (($ $ (-749) (-917 |#1|)) 50)) (-3718 (((-112) $) 21)) (-3719 (($ $ (-620 (-620 (-917 |#1|))) (-620 (-169)) (-169)) 28) (($ $ (-620 (-620 (-620 |#1|))) (-620 (-169)) (-169)) 27) (($ $ (-620 (-620 (-917 |#1|))) (-112) (-112)) 26) (($ $ (-620 (-620 (-620 |#1|))) (-112) (-112)) 25) (($ (-620 (-620 (-917 |#1|)))) 24) (($ (-620 (-620 (-917 |#1|))) (-112) (-112)) 23) (((-620 (-620 (-917 |#1|))) $) 22)) (-3867 (($ (-620 $)) 57) (($ $ $) 56)) (-3713 (((-620 (-169)) $) 16)) (-3717 (((-620 (-917 |#1|)) $) 20)) (-3714 (((-620 (-620 (-169))) $) 17)) (-3715 (((-620 (-620 (-620 (-917 |#1|)))) $) 18)) (-3716 (((-620 (-620 (-620 (-749)))) $) 19)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3727 (((-749) $ (-620 (-917 |#1|))) 51)) (-3724 (((-112) $) 39)) (-3725 (($ $ (-620 (-917 |#1|))) 43) (($ $ (-620 (-620 |#1|))) 42) (($ (-620 (-917 |#1|))) 41) (((-620 (-917 |#1|)) $) 40)) (-3732 (($) 61) (($ (-1135 3 |#1|)) 60)) (-3754 (($ $) 52)) (-3728 (((-620 $) $) 53)) (-4109 (($ (-620 $)) 55)) (-3729 (((-620 $) $) 54)) (-4312 (((-838) $) 11)) (-3722 (((-112) $) 34)) (-3723 (($ $ (-620 (-917 |#1|))) 38) (($ $ (-620 (-620 |#1|))) 37) (($ (-620 (-917 |#1|))) 36) (((-620 (-917 |#1|)) $) 35)) (-3711 (($ $) 14)) (-3382 (((-112) $ $) 6))) -(((-1105 |#1|) (-138) (-1023)) (T -1105)) -((-4312 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-838)))) (-3732 (*1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) (-3732 (*1 *1 *2) (-12 (-5 *2 (-1135 3 *3)) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) (-4109 (*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3729 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)))) (-3728 (*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)))) (-3754 (*1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) (-3727 (*1 *2 *1 *3) (-12 (-5 *3 (-620 (-917 *4))) (-4 *1 (-1105 *4)) (-4 *4 (-1023)) (-5 *2 (-749)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-917 *4)) (-4 *1 (-1105 *4)) (-4 *4 (-1023)))) (-4064 (*1 *1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-4064 (*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-4064 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-4064 (*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-917 *3)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112)))) (-3725 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3725 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112)))) (-3723 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3723 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3723 (*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112)))) (-3721 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3721 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) (-3721 (*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112)))) (-3719 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-620 (-620 (-917 *5)))) (-5 *3 (-620 (-169))) (-5 *4 (-169)) (-4 *1 (-1105 *5)) (-4 *5 (-1023)))) (-3719 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-620 (-620 (-620 *5)))) (-5 *3 (-620 (-169))) (-5 *4 (-169)) (-4 *1 (-1105 *5)) (-4 *5 (-1023)))) (-3719 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-620 (-620 (-917 *4)))) (-5 *3 (-112)) (-4 *1 (-1105 *4)) (-4 *4 (-1023)))) (-3719 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-620 (-620 (-620 *4)))) (-5 *3 (-112)) (-4 *1 (-1105 *4)) (-4 *4 (-1023)))) (-3719 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-917 *3)))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) (-3719 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-620 (-620 (-917 *4)))) (-5 *3 (-112)) (-4 *4 (-1023)) (-4 *1 (-1105 *4)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-917 *3)))))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112)))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) (-3716 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-620 (-749))))))) (-3715 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-620 (-917 *3))))))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-169)))))) (-3713 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-169))))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -4205 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749)))))) (-3711 (*1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) (-4243 (*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-1135 3 *3))))) -(-13 (-1072) (-10 -8 (-15 -3732 ($)) (-15 -3732 ($ (-1135 3 |t#1|))) (-15 -3731 ((-749) $)) (-15 -3730 ((-749) $)) (-15 -3867 ($ (-620 $))) (-15 -3867 ($ $ $)) (-15 -4109 ($ (-620 $))) (-15 -3729 ((-620 $) $)) (-15 -3728 ((-620 $) $)) (-15 -3754 ($ $)) (-15 -3727 ((-749) $ (-620 (-917 |t#1|)))) (-15 -4242 ($ $ (-749) (-917 |t#1|))) (-15 -4064 ($ $ (-917 |t#1|))) (-15 -4064 ($ $ (-620 |t#1|))) (-15 -4064 ($ $ (-749))) (-15 -4064 ($ (-917 |t#1|))) (-15 -4064 ((-917 |t#1|) $)) (-15 -3726 ((-112) $)) (-15 -3725 ($ $ (-620 (-917 |t#1|)))) (-15 -3725 ($ $ (-620 (-620 |t#1|)))) (-15 -3725 ($ (-620 (-917 |t#1|)))) (-15 -3725 ((-620 (-917 |t#1|)) $)) (-15 -3724 ((-112) $)) (-15 -3723 ($ $ (-620 (-917 |t#1|)))) (-15 -3723 ($ $ (-620 (-620 |t#1|)))) (-15 -3723 ($ (-620 (-917 |t#1|)))) (-15 -3723 ((-620 (-917 |t#1|)) $)) (-15 -3722 ((-112) $)) (-15 -3721 ($ $ (-620 (-917 |t#1|)))) (-15 -3721 ($ $ (-620 (-620 |t#1|)))) (-15 -3721 ($ (-620 (-917 |t#1|)))) (-15 -3721 ((-620 (-917 |t#1|)) $)) (-15 -3720 ((-112) $)) (-15 -3719 ($ $ (-620 (-620 (-917 |t#1|))) (-620 (-169)) (-169))) (-15 -3719 ($ $ (-620 (-620 (-620 |t#1|))) (-620 (-169)) (-169))) (-15 -3719 ($ $ (-620 (-620 (-917 |t#1|))) (-112) (-112))) (-15 -3719 ($ $ (-620 (-620 (-620 |t#1|))) (-112) (-112))) (-15 -3719 ($ (-620 (-620 (-917 |t#1|))))) (-15 -3719 ($ (-620 (-620 (-917 |t#1|))) (-112) (-112))) (-15 -3719 ((-620 (-620 (-917 |t#1|))) $)) (-15 -3718 ((-112) $)) (-15 -3717 ((-620 (-917 |t#1|)) $)) (-15 -3716 ((-620 (-620 (-620 (-749)))) $)) (-15 -3715 ((-620 (-620 (-620 (-917 |t#1|)))) $)) (-15 -3714 ((-620 (-620 (-169))) $)) (-15 -3713 ((-620 (-169)) $)) (-15 -3712 ((-2 (|:| -4205 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) (|:| |constructs| (-749))) $)) (-15 -3711 ($ $)) (-15 -4243 ((-1135 3 |t#1|) $)) (-15 -4312 ((-838) $)))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 176) (((-1152) $) 7) (($ (-1152)) NIL)) (-3924 (((-112) $ (|[\|\|]| (-515))) 17) (((-112) $ (|[\|\|]| (-212))) 21) (((-112) $ (|[\|\|]| (-654))) 25) (((-112) $ (|[\|\|]| (-1240))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1087))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-659))) 49) (((-112) $ (|[\|\|]| (-508))) 53) (((-112) $ (|[\|\|]| (-1038))) 57) (((-112) $ (|[\|\|]| (-1241))) 61) (((-112) $ (|[\|\|]| (-516))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-649))) 73) (((-112) $ (|[\|\|]| (-305))) 77) (((-112) $ (|[\|\|]| (-1010))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-944))) 89) (((-112) $ (|[\|\|]| (-1045))) 93) (((-112) $ (|[\|\|]| (-1062))) 97) (((-112) $ (|[\|\|]| (-1067))) 101) (((-112) $ (|[\|\|]| (-606))) 105) (((-112) $ (|[\|\|]| (-1137))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-470))) 121) (((-112) $ (|[\|\|]| (-575))) 125) (((-112) $ (|[\|\|]| (-497))) 131) (((-112) $ (|[\|\|]| (-1129))) 135) (((-112) $ (|[\|\|]| (-536))) 139)) (-3930 (((-515) $) 18) (((-212) $) 22) (((-654) $) 26) (((-1240) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1087) $) 42) (((-95) $) 46) (((-659) $) 50) (((-508) $) 54) (((-1038) $) 58) (((-1241) $) 62) (((-516) $) 66) (((-152) $) 70) (((-649) $) 74) (((-305) $) 78) (((-1010) $) 82) (((-178) $) 86) (((-944) $) 90) (((-1045) $) 94) (((-1062) $) 98) (((-1067) $) 102) (((-606) $) 106) (((-1137) $) 110) (((-154) $) 114) (((-136) $) 118) (((-470) $) 122) (((-575) $) 126) (((-497) $) 132) (((-1129) $) 136) (((-536) $) 140)) (-3382 (((-112) $ $) NIL))) -(((-1106) (-1108)) (T -1106)) -NIL -(-1108) -((-3733 (((-620 (-1152)) (-1129)) 9))) -(((-1107) (-10 -7 (-15 -3733 ((-620 (-1152)) (-1129))))) (T -1107)) -((-3733 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-620 (-1152))) (-5 *1 (-1107))))) -(-10 -7 (-15 -3733 ((-620 (-1152)) (-1129)))) -((-2893 (((-112) $ $) 7)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (((-1152) $) 15) (($ (-1152)) 14)) (-3924 (((-112) $ (|[\|\|]| (-515))) 80) (((-112) $ (|[\|\|]| (-212))) 78) (((-112) $ (|[\|\|]| (-654))) 76) (((-112) $ (|[\|\|]| (-1240))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1087))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-659))) 64) (((-112) $ (|[\|\|]| (-508))) 62) (((-112) $ (|[\|\|]| (-1038))) 60) (((-112) $ (|[\|\|]| (-1241))) 58) (((-112) $ (|[\|\|]| (-516))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-649))) 52) (((-112) $ (|[\|\|]| (-305))) 50) (((-112) $ (|[\|\|]| (-1010))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-944))) 44) (((-112) $ (|[\|\|]| (-1045))) 42) (((-112) $ (|[\|\|]| (-1062))) 40) (((-112) $ (|[\|\|]| (-1067))) 38) (((-112) $ (|[\|\|]| (-606))) 36) (((-112) $ (|[\|\|]| (-1137))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-470))) 28) (((-112) $ (|[\|\|]| (-575))) 26) (((-112) $ (|[\|\|]| (-497))) 24) (((-112) $ (|[\|\|]| (-1129))) 22) (((-112) $ (|[\|\|]| (-536))) 20)) (-3930 (((-515) $) 79) (((-212) $) 77) (((-654) $) 75) (((-1240) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1087) $) 67) (((-95) $) 65) (((-659) $) 63) (((-508) $) 61) (((-1038) $) 59) (((-1241) $) 57) (((-516) $) 55) (((-152) $) 53) (((-649) $) 51) (((-305) $) 49) (((-1010) $) 47) (((-178) $) 45) (((-944) $) 43) (((-1045) $) 41) (((-1062) $) 39) (((-1067) $) 37) (((-606) $) 35) (((-1137) $) 33) (((-154) $) 31) (((-136) $) 29) (((-470) $) 27) (((-575) $) 25) (((-497) $) 23) (((-1129) $) 21) (((-536) $) 19)) (-3382 (((-112) $ $) 6))) -(((-1108) (-138)) (T -1108)) -((-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-515)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-212)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-654))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-654)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1240))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1240)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-137)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-132)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1087)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-95)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-659))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-659)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-508)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1038))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1038)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1241))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1241)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-516)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-152)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-649))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-649)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-305)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1010)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-178)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-944))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-944)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1045))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1045)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1062)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1067)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-606)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1137)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-154)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-136)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-470)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-575)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-497)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1129))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1129)))) (-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) (-3930 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-536))))) -(-13 (-1054) (-1225) (-10 -8 (-15 -3924 ((-112) $ (|[\|\|]| (-515)))) (-15 -3930 ((-515) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-212)))) (-15 -3930 ((-212) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-654)))) (-15 -3930 ((-654) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1240)))) (-15 -3930 ((-1240) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-137)))) (-15 -3930 ((-137) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-132)))) (-15 -3930 ((-132) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1087)))) (-15 -3930 ((-1087) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-95)))) (-15 -3930 ((-95) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-659)))) (-15 -3930 ((-659) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-508)))) (-15 -3930 ((-508) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1038)))) (-15 -3930 ((-1038) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1241)))) (-15 -3930 ((-1241) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-516)))) (-15 -3930 ((-516) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-152)))) (-15 -3930 ((-152) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-649)))) (-15 -3930 ((-649) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-305)))) (-15 -3930 ((-305) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1010)))) (-15 -3930 ((-1010) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-178)))) (-15 -3930 ((-178) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-944)))) (-15 -3930 ((-944) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1045)))) (-15 -3930 ((-1045) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1062)))) (-15 -3930 ((-1062) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1067)))) (-15 -3930 ((-1067) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-606)))) (-15 -3930 ((-606) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1137)))) (-15 -3930 ((-1137) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-154)))) (-15 -3930 ((-154) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-136)))) (-15 -3930 ((-136) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-470)))) (-15 -3930 ((-470) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-575)))) (-15 -3930 ((-575) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-497)))) (-15 -3930 ((-497) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-1129)))) (-15 -3930 ((-1129) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-536)))) (-15 -3930 ((-536) $)))) -(((-92) . T) ((-101) . T) ((-595 (-838)) . T) ((-595 (-1152)) . T) ((-1072) . T) ((-1054) . T) ((-1225) . T)) -((-3736 (((-1235) (-620 (-838))) 23) (((-1235) (-838)) 22)) (-3735 (((-1235) (-620 (-838))) 21) (((-1235) (-838)) 20)) (-3734 (((-1235) (-620 (-838))) 19) (((-1235) (-838)) 11) (((-1235) (-1129) (-838)) 17))) -(((-1109) (-10 -7 (-15 -3734 ((-1235) (-1129) (-838))) (-15 -3734 ((-1235) (-838))) (-15 -3735 ((-1235) (-838))) (-15 -3736 ((-1235) (-838))) (-15 -3734 ((-1235) (-620 (-838)))) (-15 -3735 ((-1235) (-620 (-838)))) (-15 -3736 ((-1235) (-620 (-838)))))) (T -1109)) -((-3736 (*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3736 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3735 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3734 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-1129)) (-5 *4 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109))))) -(-10 -7 (-15 -3734 ((-1235) (-1129) (-838))) (-15 -3734 ((-1235) (-838))) (-15 -3735 ((-1235) (-838))) (-15 -3736 ((-1235) (-838))) (-15 -3734 ((-1235) (-620 (-838)))) (-15 -3735 ((-1235) (-620 (-838)))) (-15 -3736 ((-1235) (-620 (-838))))) -((-3740 (($ $ $) 10)) (-3739 (($ $) 9)) (-3743 (($ $ $) 13)) (-3745 (($ $ $) 15)) (-3742 (($ $ $) 12)) (-3744 (($ $ $) 14)) (-3747 (($ $) 17)) (-3746 (($ $) 16)) (-3737 (($ $) 6)) (-3741 (($ $ $) 11) (($ $) 7)) (-3738 (($ $ $) 8))) +(((-92) . T) ((-101) . T) ((-597 (-840)) . T) ((-597 (-1154)) . T) ((-1074) . T)) +((-3568 ((|#1| |#1| (-1 (-538) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-112) |#1|)) 20)) (-3566 (((-1237)) 15)) (-3567 (((-622 |#1|)) 9))) +(((-1057 |#1|) (-10 -7 (-15 -3566 ((-1237))) (-15 -3567 ((-622 |#1|))) (-15 -3568 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3568 (|#1| |#1| (-1 (-538) |#1| |#1|)))) (-131)) (T -1057)) +((-3568 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-538) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))) (-3568 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))) (-3567 (*1 *2) (-12 (-5 *2 (-622 *3)) (-5 *1 (-1057 *3)) (-4 *3 (-131)))) (-3566 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1057 *3)) (-4 *3 (-131))))) +(-10 -7 (-15 -3566 ((-1237))) (-15 -3567 ((-622 |#1|))) (-15 -3568 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3568 (|#1| |#1| (-1 (-538) |#1| |#1|)))) +((-3571 (($ (-108) $) 16)) (-3572 (((-3 (-108) "failed") (-1149) $) 15)) (-3928 (($) 7)) (-3570 (($) 17)) (-3569 (($) 18)) (-3573 (((-622 (-173)) $) 10)) (-4317 (((-840) $) 21))) +(((-1058) (-13 (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -3573 ((-622 (-173)) $)) (-15 -3572 ((-3 (-108) "failed") (-1149) $)) (-15 -3571 ($ (-108) $)) (-15 -3570 ($)) (-15 -3569 ($))))) (T -1058)) +((-3928 (*1 *1) (-5 *1 (-1058))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-622 (-173))) (-5 *1 (-1058)))) (-3572 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-1058)))) (-3571 (*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1058)))) (-3570 (*1 *1) (-5 *1 (-1058))) (-3569 (*1 *1) (-5 *1 (-1058)))) +(-13 (-597 (-840)) (-10 -8 (-15 -3928 ($)) (-15 -3573 ((-622 (-173)) $)) (-15 -3572 ((-3 (-108) "failed") (-1149) $)) (-15 -3571 ($ (-108) $)) (-15 -3570 ($)) (-15 -3569 ($)))) +((-3574 (((-1231 (-669 |#1|)) (-622 (-669 |#1|))) 42) (((-1231 (-669 (-922 |#1|))) (-622 (-1149)) (-669 (-922 |#1|))) 63) (((-1231 (-669 (-402 (-922 |#1|)))) (-622 (-1149)) (-669 (-402 (-922 |#1|)))) 79)) (-3575 (((-1231 |#1|) (-669 |#1|) (-622 (-669 |#1|))) 36))) +(((-1059 |#1|) (-10 -7 (-15 -3574 ((-1231 (-669 (-402 (-922 |#1|)))) (-622 (-1149)) (-669 (-402 (-922 |#1|))))) (-15 -3574 ((-1231 (-669 (-922 |#1|))) (-622 (-1149)) (-669 (-922 |#1|)))) (-15 -3574 ((-1231 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3575 ((-1231 |#1|) (-669 |#1|) (-622 (-669 |#1|))))) (-358)) (T -1059)) +((-3575 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-669 *5))) (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 (-1231 *5)) (-5 *1 (-1059 *5)))) (-3574 (*1 *2 *3) (-12 (-5 *3 (-622 (-669 *4))) (-4 *4 (-358)) (-5 *2 (-1231 (-669 *4))) (-5 *1 (-1059 *4)))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-1149))) (-4 *5 (-358)) (-5 *2 (-1231 (-669 (-922 *5)))) (-5 *1 (-1059 *5)) (-5 *4 (-669 (-922 *5))))) (-3574 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-1149))) (-4 *5 (-358)) (-5 *2 (-1231 (-669 (-402 (-922 *5))))) (-5 *1 (-1059 *5)) (-5 *4 (-669 (-402 (-922 *5))))))) +(-10 -7 (-15 -3574 ((-1231 (-669 (-402 (-922 |#1|)))) (-622 (-1149)) (-669 (-402 (-922 |#1|))))) (-15 -3574 ((-1231 (-669 (-922 |#1|))) (-622 (-1149)) (-669 (-922 |#1|)))) (-15 -3574 ((-1231 (-669 |#1|)) (-622 (-669 |#1|)))) (-15 -3575 ((-1231 |#1|) (-669 |#1|) (-622 (-669 |#1|))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1543 (((-622 (-751)) $) NIL) (((-622 (-751)) $ (-1149)) NIL)) (-1577 (((-751) $) NIL) (((-751) $ (-1149)) NIL)) (-3417 (((-622 (-1061 (-1149))) $) NIL)) (-3419 (((-1143 $) $ (-1061 (-1149))) NIL) (((-1143 |#1|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1061 (-1149)))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-1539 (($ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-1061 (-1149)) #2#) $) NIL) (((-3 (-1149) #2#) $) NIL) (((-3 (-1098 |#1| (-1149)) #2#) $) NIL)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-1061 (-1149)) $) NIL) (((-1149) $) NIL) (((-1098 |#1| (-1149)) $) NIL)) (-4116 (($ $ $ (-1061 (-1149))) NIL (|has| |#1| (-170)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ (-1061 (-1149))) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-524 (-1061 (-1149))) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1061 (-1149)) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1061 (-1149)) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ (-1149)) NIL) (((-751) $) NIL)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3420 (($ (-1143 |#1|) (-1061 (-1149))) NIL) (($ (-1143 $) (-1061 (-1149))) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-524 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-622 (-1061 (-1149))) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1061 (-1149))) NIL)) (-3153 (((-524 (-1061 (-1149))) $) NIL) (((-751) $ (-1061 (-1149))) NIL) (((-622 (-751)) $ (-622 (-1061 (-1149)))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 (-1061 (-1149))) (-524 (-1061 (-1149)))) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-1578 (((-1 $ (-751)) (-1149)) NIL) (((-1 $ (-751)) $) NIL (|has| |#1| (-229)))) (-3418 (((-3 (-1061 (-1149)) #3="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-1541 (((-1061 (-1149)) $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-1542 (((-112) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1061 (-1149))) (|:| -2493 (-751))) #3#) $) NIL)) (-1540 (($ $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1061 (-1149)) |#1|) NIL) (($ $ (-622 (-1061 (-1149))) (-622 |#1|)) NIL) (($ $ (-1061 (-1149)) $) NIL) (($ $ (-622 (-1061 (-1149))) (-622 $)) NIL) (($ $ (-1149) $) NIL (|has| |#1| (-229))) (($ $ (-622 (-1149)) (-622 $)) NIL (|has| |#1| (-229))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-229))) (($ $ (-622 (-1149)) (-622 |#1|)) NIL (|has| |#1| (-229)))) (-4117 (($ $ (-1061 (-1149))) NIL (|has| |#1| (-170)))) (-4170 (($ $ (-1061 (-1149))) NIL) (($ $ (-622 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-622 (-1061 (-1149))) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1544 (((-622 (-1149)) $) NIL)) (-4307 (((-524 (-1061 (-1149))) $) NIL) (((-751) $ (-1061 (-1149))) NIL) (((-622 (-751)) $ (-622 (-1061 (-1149)))) NIL) (((-751) $ (-1149)) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1061 (-1149)) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) NIL (|has| |#1| (-446))) (($ $ (-1061 (-1149))) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-1061 (-1149))) NIL) (($ (-1149)) NIL) (($ (-1098 |#1| (-1149))) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-524 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-622 (-1061 (-1149))) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1061 (-1149))) NIL) (($ $ (-622 (-1061 (-1149)))) NIL) (($ $ (-1061 (-1149)) (-751)) NIL) (($ $ (-622 (-1061 (-1149))) (-622 (-751))) NIL) (($ $) NIL (|has| |#1| (-229))) (($ $ (-751)) NIL (|has| |#1| (-229))) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1060 |#1|) (-13 (-248 |#1| (-1149) (-1061 (-1149)) (-524 (-1061 (-1149)))) (-1014 (-1098 |#1| (-1149)))) (-1025)) (T -1060)) +NIL +(-13 (-248 |#1| (-1149) (-1061 (-1149)) (-524 (-1061 (-1149)))) (-1014 (-1098 |#1| (-1149)))) +((-2898 (((-112) $ $) NIL)) (-1577 (((-751) $) NIL)) (-4191 ((|#1| $) 10)) (-3508 (((-3 |#1| "failed") $) NIL)) (-3507 ((|#1| $) NIL)) (-4131 (((-751) $) 11)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-1578 (($ |#1| (-751)) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4170 (($ $) NIL) (($ $ (-751)) NIL)) (-4317 (((-840) $) NIL) (($ |#1|) NIL)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 15))) +(((-1061 |#1|) (-261 |#1|) (-827)) (T -1061)) +NIL +(-261 |#1|) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4096 (($ |#1| |#1|) 15)) (-4318 (((-622 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-825)))) (-3580 ((|#1| $) 10)) (-3582 ((|#1| $) 9)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3578 (((-538) $) 14)) (-3579 ((|#1| $) 12)) (-3581 ((|#1| $) 11)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4323 (((-622 |#1|) $) 36 (|has| |#1| (-825))) (((-622 |#1|) (-622 $)) 35 (|has| |#1| (-825)))) (-4330 (($ |#1|) 26)) (-4317 (((-840) $) 25 (|has| |#1| (-1074)))) (-4097 (($ |#1| |#1|) 8)) (-3583 (($ $ (-538)) 16)) (-3387 (((-112) $ $) 19 (|has| |#1| (-1074))))) +(((-1062 |#1|) (-13 (-1067 |#1|) (-10 -7 (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-622 |#1|))) |%noBranch|))) (-1185)) (T -1062)) +NIL +(-13 (-1067 |#1|) (-10 -7 (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-622 |#1|))) |%noBranch|))) +((-4318 (((-622 |#2|) (-1 |#2| |#1|) (-1062 |#1|)) 24 (|has| |#1| (-825))) (((-1062 |#2|) (-1 |#2| |#1|) (-1062 |#1|)) 14))) +(((-1063 |#1| |#2|) (-10 -7 (-15 -4318 ((-1062 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) (IF (|has| |#1| (-825)) (-15 -4318 ((-622 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) |%noBranch|)) (-1185) (-1185)) (T -1063)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-825)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-622 *6)) (-5 *1 (-1063 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1062 *6)) (-5 *1 (-1063 *5 *6))))) +(-10 -7 (-15 -4318 ((-1062 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) (IF (|has| |#1| (-825)) (-15 -4318 ((-622 |#2|) (-1 |#2| |#1|) (-1062 |#1|))) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3576 (((-622 (-1108)) $) 9)) (-3387 (((-112) $ $) NIL))) +(((-1064) (-13 (-1056) (-10 -8 (-15 -3576 ((-622 (-1108)) $))))) (T -1064)) +((-3576 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1064))))) +(-13 (-1056) (-10 -8 (-15 -3576 ((-622 (-1108)) $)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4191 (((-1149) $) 11)) (-4096 (((-1062 |#1|) $) 12)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-3577 (($ (-1149) (-1062 |#1|)) 10)) (-4317 (((-840) $) 20 (|has| |#1| (-1074)))) (-3387 (((-112) $ $) 15 (|has| |#1| (-1074))))) +(((-1065 |#1|) (-13 (-1185) (-10 -8 (-15 -3577 ($ (-1149) (-1062 |#1|))) (-15 -4191 ((-1149) $)) (-15 -4096 ((-1062 |#1|) $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|))) (-1185)) (T -1065)) +((-3577 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1062 *4)) (-4 *4 (-1185)) (-5 *1 (-1065 *4)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1065 *3)) (-4 *3 (-1185)))) (-4096 (*1 *2 *1) (-12 (-5 *2 (-1062 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-1185))))) +(-13 (-1185) (-10 -8 (-15 -3577 ($ (-1149) (-1062 |#1|))) (-15 -4191 ((-1149) $)) (-15 -4096 ((-1062 |#1|) $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|))) +((-4318 (((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)) 19))) +(((-1066 |#1| |#2|) (-10 -7 (-15 -4318 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)))) (-1185) (-1185)) (T -1066)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1065 *6)) (-5 *1 (-1066 *5 *6))))) +(-10 -7 (-15 -4318 ((-1065 |#2|) (-1 |#2| |#1|) (-1065 |#1|)))) +((-4096 (($ |#1| |#1|) 7)) (-3580 ((|#1| $) 10)) (-3582 ((|#1| $) 12)) (-3578 (((-538) $) 8)) (-3579 ((|#1| $) 9)) (-3581 ((|#1| $) 11)) (-4330 (($ |#1|) 6)) (-4097 (($ |#1| |#1|) 14)) (-3583 (($ $ (-538)) 13))) +(((-1067 |#1|) (-138) (-1185)) (T -1067)) +((-4097 (*1 *1 *2 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-3583 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1067 *3)) (-4 *3 (-1185)))) (-3582 (*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-3580 (*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-3578 (*1 *2 *1) (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1185)) (-5 *2 (-538)))) (-4096 (*1 *1 *2 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185))))) +(-13 (-1185) (-10 -8 (-15 -4097 ($ |t#1| |t#1|)) (-15 -3583 ($ $ (-538))) (-15 -3582 (|t#1| $)) (-15 -3581 (|t#1| $)) (-15 -3580 (|t#1| $)) (-15 -3579 (|t#1| $)) (-15 -3578 ((-538) $)) (-15 -4096 ($ |t#1| |t#1|)) (-15 -4330 ($ |t#1|)))) +(((-1185) . T)) +((-4096 (($ |#1| |#1|) 7)) (-4318 ((|#2| (-1 |#1| |#1|) $) 16)) (-3580 ((|#1| $) 10)) (-3582 ((|#1| $) 12)) (-3578 (((-538) $) 8)) (-3579 ((|#1| $) 9)) (-3581 ((|#1| $) 11)) (-4323 ((|#2| (-622 $)) 18) ((|#2| $) 17)) (-4330 (($ |#1|) 6)) (-4097 (($ |#1| |#1|) 14)) (-3583 (($ $ (-538)) 13))) +(((-1068 |#1| |#2|) (-138) (-825) (-1122 |t#1|)) (T -1068)) +((-4323 (*1 *2 *3) (-12 (-5 *3 (-622 *1)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1122 *4)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1122 *3)))) (-4318 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1122 *4))))) +(-13 (-1067 |t#1|) (-10 -8 (-15 -4323 (|t#2| (-622 $))) (-15 -4323 (|t#2| $)) (-15 -4318 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-1067 |#1|) . T) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-4157 (((-1108) $) 12)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3584 (((-622 (-1108)) $) 10)) (-3387 (((-112) $ $) NIL))) +(((-1069) (-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $)) (-15 -4157 ((-1108) $))))) (T -1069)) +((-3584 (*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1069)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1069))))) +(-13 (-1056) (-10 -8 (-15 -3584 ((-622 (-1108)) $)) (-15 -4157 ((-1108) $)))) +((-2898 (((-112) $ $) NIL)) (-1921 (($) NIL (|has| |#1| (-363)))) (-3585 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3587 (($ $ $) 72)) (-3586 (((-112) $ $) 73)) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#1| (-363)))) (-3590 (($ (-622 |#1|)) NIL) (($) 13)) (-1631 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3764 (($ |#1| $) 67 (|has| $ (-6 -4353))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4353)))) (-3327 (($) NIL (|has| |#1| (-363)))) (-2068 (((-622 |#1|) $) 19 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3677 ((|#1| $) 57 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3678 ((|#1| $) 55 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 34)) (-2126 (((-895) $) NIL (|has| |#1| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3589 (($ $ $) 70)) (-1333 ((|#1| $) 25)) (-3970 (($ |#1| $) 65)) (-2492 (($ (-895)) NIL (|has| |#1| (-363)))) (-3594 (((-1093) $) NIL)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1334 ((|#1| $) 27)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 21)) (-3928 (($) 11)) (-3588 (($ $ |#1|) NIL) (($ $ $) 71)) (-1523 (($) NIL) (($ (-622 |#1|)) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 16)) (-4330 (((-527) $) 52 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 61)) (-1922 (($ $) NIL (|has| |#1| (-363)))) (-4317 (((-840) $) NIL)) (-1923 (((-751) $) NIL)) (-3591 (($ (-622 |#1|)) NIL) (($) 12)) (-1335 (($ (-622 |#1|)) NIL)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 54)) (-4316 (((-751) $) 10 (|has| $ (-6 -4353))))) +(((-1070 |#1|) (-421 |#1|) (-1074)) (T -1070)) +NIL +(-421 |#1|) +((-3585 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3587 (($ $ $) 10)) (-3588 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1071 |#1| |#2|) (-10 -8 (-15 -3585 (|#1| |#2| |#1|)) (-15 -3585 (|#1| |#1| |#2|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#2|)) (-15 -3588 (|#1| |#1| |#1|))) (-1072 |#2|) (-1074)) (T -1071)) +NIL +(-10 -8 (-15 -3585 (|#1| |#2| |#1|)) (-15 -3585 (|#1| |#1| |#2|)) (-15 -3585 (|#1| |#1| |#1|)) (-15 -3587 (|#1| |#1| |#1|)) (-15 -3588 (|#1| |#1| |#2|)) (-15 -3588 (|#1| |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-3585 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3587 (($ $ $) 20)) (-3586 (((-112) $ $) 19)) (-1271 (((-112) $ (-751)) 35)) (-3590 (($) 25) (($ (-622 |#1|)) 24)) (-4073 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4353)))) (-3896 (($) 36 T CONST)) (-1398 (($ $) 59 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 58 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4353)))) (-2068 (((-622 |#1|) $) 43 (|has| $ (-6 -4353)))) (-3592 (((-112) $ $) 28)) (-4082 (((-112) $ (-751)) 34)) (-2511 (((-622 |#1|) $) 44 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 38)) (-4079 (((-112) $ (-751)) 33)) (-3593 (((-1131) $) 9)) (-3589 (($ $ $) 23)) (-3594 (((-1093) $) 10)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-2070 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#1|) (-622 |#1|)) 50 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 48 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 (-288 |#1|))) 47 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 29)) (-3762 (((-112) $) 32)) (-3928 (($) 31)) (-3588 (($ $ $) 22) (($ $ |#1|) 21)) (-2069 (((-751) |#1| $) 45 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4353)))) (-3759 (($ $) 30)) (-4330 (((-527) $) 60 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 51)) (-4317 (((-840) $) 11)) (-3591 (($) 27) (($ (-622 |#1|)) 26)) (-2071 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 37 (|has| $ (-6 -4353))))) +(((-1072 |#1|) (-138) (-1074)) (T -1072)) +((-3592 (*1 *2 *1 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3591 (*1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3591 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-1072 *3)))) (-3590 (*1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-1072 *3)))) (-3589 (*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3588 (*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3588 (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3587 (*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3586 (*1 *2 *1 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) (-3585 (*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3585 (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) (-3585 (*1 *1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074))))) +(-13 (-1074) (-149 |t#1|) (-10 -8 (-6 -4343) (-15 -3592 ((-112) $ $)) (-15 -3591 ($)) (-15 -3591 ($ (-622 |t#1|))) (-15 -3590 ($)) (-15 -3590 ($ (-622 |t#1|))) (-15 -3589 ($ $ $)) (-15 -3588 ($ $ $)) (-15 -3588 ($ $ |t#1|)) (-15 -3587 ($ $ $)) (-15 -3586 ((-112) $ $)) (-15 -3585 ($ $ $)) (-15 -3585 ($ $ |t#1|)) (-15 -3585 ($ |t#1| $)))) +(((-34) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) . T) ((-1185) . T)) +((-3593 (((-1131) $) 10)) (-3594 (((-1093) $) 8))) +(((-1073 |#1|) (-10 -8 (-15 -3593 ((-1131) |#1|)) (-15 -3594 ((-1093) |#1|))) (-1074)) (T -1073)) +NIL +(-10 -8 (-15 -3593 ((-1131) |#1|)) (-15 -3594 ((-1093) |#1|))) +((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6))) +(((-1074) (-138)) (T -1074)) +((-3594 (*1 *2 *1) (-12 (-4 *1 (-1074)) (-5 *2 (-1093)))) (-3593 (*1 *2 *1) (-12 (-4 *1 (-1074)) (-5 *2 (-1131))))) +(-13 (-101) (-597 (-840)) (-10 -8 (-15 -3594 ((-1093) $)) (-15 -3593 ((-1131) $)))) +(((-101) . T) ((-597 (-840)) . T)) +((-2898 (((-112) $ $) NIL)) (-3471 (((-751)) 30)) (-3598 (($ (-622 (-895))) 52)) (-3600 (((-3 $ #1="failed") $ (-895) (-895)) 58)) (-3327 (($) 32)) (-3596 (((-112) (-895) $) 35)) (-2126 (((-895) $) 50)) (-3593 (((-1131) $) NIL)) (-2492 (($ (-895)) 31)) (-3601 (((-3 $ #1#) $ (-895)) 55)) (-3594 (((-1093) $) NIL)) (-3597 (((-1231 $)) 40)) (-3599 (((-622 (-895)) $) 24)) (-3595 (((-751) $ (-895) (-895)) 56)) (-4317 (((-840) $) 29)) (-3387 (((-112) $ $) 21))) +(((-1075 |#1| |#2|) (-13 (-363) (-10 -8 (-15 -3601 ((-3 $ #1="failed") $ (-895))) (-15 -3600 ((-3 $ #1#) $ (-895) (-895))) (-15 -3599 ((-622 (-895)) $)) (-15 -3598 ($ (-622 (-895)))) (-15 -3597 ((-1231 $))) (-15 -3596 ((-112) (-895) $)) (-15 -3595 ((-751) $ (-895) (-895))))) (-895) (-895)) (T -1075)) +((-3601 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1075 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3600 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1075 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3599 (*1 *2 *1) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-3598 (*1 *1 *2) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-3597 (*1 *2) (-12 (-5 *2 (-1231 (-1075 *3 *4))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) (-3596 (*1 *2 *3 *1) (-12 (-5 *3 (-895)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-751)) (-5 *1 (-1075 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-363) (-10 -8 (-15 -3601 ((-3 $ #1="failed") $ (-895))) (-15 -3600 ((-3 $ #1#) $ (-895) (-895))) (-15 -3599 ((-622 (-895)) $)) (-15 -3598 ($ (-622 (-895)))) (-15 -3597 ((-1231 $))) (-15 -3596 ((-112) (-895) $)) (-15 -3595 ((-751) $ (-895) (-895))))) +((-2898 (((-112) $ $) NIL)) (-3611 (((-112) $) NIL)) (-3607 (((-1149) $) NIL)) (-3612 (((-112) $) NIL)) (-3898 (((-1131) $) NIL)) (-3614 (((-112) $) NIL)) (-3616 (((-112) $) NIL)) (-3613 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-3610 (((-112) $) NIL)) (-3606 (((-538) $) NIL)) (-3594 (((-1093) $) NIL)) (-3609 (((-112) $) NIL)) (-3605 (((-221) $) NIL)) (-3604 (((-840) $) NIL)) (-3617 (((-112) $ $) NIL)) (-4159 (($ $ (-538)) NIL) (($ $ (-622 (-538))) NIL)) (-3608 (((-622 $) $) NIL)) (-4330 (($ (-622 $)) NIL) (($ (-1131)) NIL) (($ (-1149)) NIL) (($ (-538)) NIL) (($ (-221)) NIL) (($ (-840)) NIL)) (-4317 (((-840) $) NIL)) (-3602 (($ $) NIL)) (-3603 (($ $) NIL)) (-3615 (((-112) $) NIL)) (-3387 (((-112) $ $) NIL)) (-4316 (((-538) $) NIL))) +(((-1076) (-1077 (-1131) (-1149) (-538) (-221) (-840))) (T -1076)) +NIL +(-1077 (-1131) (-1149) (-538) (-221) (-840)) +((-2898 (((-112) $ $) 7)) (-3611 (((-112) $) 32)) (-3607 ((|#2| $) 27)) (-3612 (((-112) $) 33)) (-3898 ((|#1| $) 28)) (-3614 (((-112) $) 35)) (-3616 (((-112) $) 37)) (-3613 (((-112) $) 34)) (-3593 (((-1131) $) 9)) (-3610 (((-112) $) 31)) (-3606 ((|#3| $) 26)) (-3594 (((-1093) $) 10)) (-3609 (((-112) $) 30)) (-3605 ((|#4| $) 25)) (-3604 ((|#5| $) 24)) (-3617 (((-112) $ $) 38)) (-4159 (($ $ (-538)) 14) (($ $ (-622 (-538))) 13)) (-3608 (((-622 $) $) 29)) (-4330 (($ (-622 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-4317 (((-840) $) 11)) (-3602 (($ $) 16)) (-3603 (($ $) 17)) (-3615 (((-112) $) 36)) (-3387 (((-112) $ $) 6)) (-4316 (((-538) $) 15))) +(((-1077 |#1| |#2| |#3| |#4| |#5|) (-138) (-1074) (-1074) (-1074) (-1074) (-1074)) (T -1077)) +((-3617 (*1 *2 *1 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3611 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112)))) (-3608 (*1 *2 *1) (-12 (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-622 *1)) (-4 *1 (-1077 *3 *4 *5 *6 *7)))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *2 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *2 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *2 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *2)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1077 *3 *2 *4 *5 *6)) (-4 *3 (-1074)) (-4 *2 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *2 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *2 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *5 *2 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *2 (-1074)) (-4 *6 (-1074)))) (-4330 (*1 *1 *2) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *2)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) (-3603 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) (-3602 (*1 *1 *1) (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) (-4316 (*1 *2 *1) (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-538)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074))))) +(-13 (-1074) (-10 -8 (-15 -3617 ((-112) $ $)) (-15 -3616 ((-112) $)) (-15 -3615 ((-112) $)) (-15 -3614 ((-112) $)) (-15 -3613 ((-112) $)) (-15 -3612 ((-112) $)) (-15 -3611 ((-112) $)) (-15 -3610 ((-112) $)) (-15 -3609 ((-112) $)) (-15 -3608 ((-622 $) $)) (-15 -3898 (|t#1| $)) (-15 -3607 (|t#2| $)) (-15 -3606 (|t#3| $)) (-15 -3605 (|t#4| $)) (-15 -3604 (|t#5| $)) (-15 -4330 ($ (-622 $))) (-15 -4330 ($ |t#1|)) (-15 -4330 ($ |t#2|)) (-15 -4330 ($ |t#3|)) (-15 -4330 ($ |t#4|)) (-15 -4330 ($ |t#5|)) (-15 -3603 ($ $)) (-15 -3602 ($ $)) (-15 -4316 ((-538) $)) (-15 -4159 ($ $ (-538))) (-15 -4159 ($ $ (-622 (-538)))))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3611 (((-112) $) 38)) (-3607 ((|#2| $) 42)) (-3612 (((-112) $) 37)) (-3898 ((|#1| $) 41)) (-3614 (((-112) $) 35)) (-3616 (((-112) $) 14)) (-3613 (((-112) $) 36)) (-3593 (((-1131) $) NIL)) (-3610 (((-112) $) 39)) (-3606 ((|#3| $) 44)) (-3594 (((-1093) $) NIL)) (-3609 (((-112) $) 40)) (-3605 ((|#4| $) 43)) (-3604 ((|#5| $) 45)) (-3617 (((-112) $ $) 34)) (-4159 (($ $ (-538)) 56) (($ $ (-622 (-538))) 58)) (-3608 (((-622 $) $) 22)) (-4330 (($ (-622 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-4317 (((-840) $) 23)) (-3602 (($ $) 21)) (-3603 (($ $) 52)) (-3615 (((-112) $) 18)) (-3387 (((-112) $ $) 33)) (-4316 (((-538) $) 54))) +(((-1078 |#1| |#2| |#3| |#4| |#5|) (-1077 |#1| |#2| |#3| |#4| |#5|) (-1074) (-1074) (-1074) (-1074) (-1074)) (T -1078)) +NIL +(-1077 |#1| |#2| |#3| |#4| |#5|) +((-3739 (((-1237) $) 23)) (-3618 (($ (-1149) (-429) |#2|) 11)) (-4317 (((-840) $) 16))) +(((-1079 |#1| |#2|) (-13 (-391) (-10 -8 (-15 -3618 ($ (-1149) (-429) |#2|)))) (-827) (-416 |#1|)) (T -1079)) +((-3618 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1149)) (-5 *3 (-429)) (-4 *5 (-827)) (-5 *1 (-1079 *5 *4)) (-4 *4 (-416 *5))))) +(-13 (-391) (-10 -8 (-15 -3618 ($ (-1149) (-429) |#2|)))) +((-3621 (((-112) |#5| |#5|) 38)) (-3624 (((-112) |#5| |#5|) 52)) (-3629 (((-112) |#5| (-622 |#5|)) 75) (((-112) |#5| |#5|) 61)) (-3625 (((-112) (-622 |#4|) (-622 |#4|)) 58)) (-3631 (((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) 63)) (-3620 (((-1237)) 33)) (-3619 (((-1237) (-1131) (-1131) (-1131)) 29)) (-3630 (((-622 |#5|) (-622 |#5|)) 82)) (-3632 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) 80)) (-3633 (((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112)) 102)) (-3623 (((-112) |#5| |#5|) 47)) (-3628 (((-3 (-112) "failed") |#5| |#5|) 71)) (-3626 (((-112) (-622 |#4|) (-622 |#4|)) 57)) (-3627 (((-112) (-622 |#4|) (-622 |#4|)) 59)) (-4062 (((-112) (-622 |#4|) (-622 |#4|)) 60)) (-3634 (((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112)) 98)) (-3622 (((-622 |#5|) (-622 |#5|)) 43))) +(((-1080 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3619 ((-1237) (-1131) (-1131) (-1131))) (-15 -3620 ((-1237))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3622 ((-622 |#5|) (-622 |#5|))) (-15 -3623 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3625 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3626 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3627 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -4062 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3628 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3629 ((-112) |#5| |#5|)) (-15 -3629 ((-112) |#5| (-622 |#5|))) (-15 -3630 ((-622 |#5|) (-622 |#5|))) (-15 -3631 ((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3632 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-15 -3633 ((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3634 ((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1080)) +((-3634 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *4) (|:| |ineq| (-622 *9)))) (-5 *1 (-1080 *6 *7 *8 *9 *4)) (-5 *3 (-622 *9)) (-4 *4 (-1045 *6 *7 *8 *9)))) (-3633 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-622 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *10) (|:| |ineq| (-622 *9))))) (-5 *1 (-1080 *6 *7 *8 *9 *10)) (-5 *3 (-622 *9)))) (-3632 (*1 *2 *2) (-12 (-5 *2 (-622 (-2 (|:| |val| (-622 *6)) (|:| -1660 *7)))) (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3631 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)))) (-3630 (*1 *2 *2) (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1080 *5 *6 *7 *8 *3)))) (-3629 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3628 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-4062 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3627 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3626 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3625 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3623 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *1 (-1080 *3 *4 *5 *6 *7)))) (-3621 (*1 *2 *3 *3) (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) (-3620 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3619 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) +(-10 -7 (-15 -3619 ((-1237) (-1131) (-1131) (-1131))) (-15 -3620 ((-1237))) (-15 -3621 ((-112) |#5| |#5|)) (-15 -3622 ((-622 |#5|) (-622 |#5|))) (-15 -3623 ((-112) |#5| |#5|)) (-15 -3624 ((-112) |#5| |#5|)) (-15 -3625 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3626 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3627 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -4062 ((-112) (-622 |#4|) (-622 |#4|))) (-15 -3628 ((-3 (-112) "failed") |#5| |#5|)) (-15 -3629 ((-112) |#5| |#5|)) (-15 -3629 ((-112) |#5| (-622 |#5|))) (-15 -3630 ((-622 |#5|) (-622 |#5|))) (-15 -3631 ((-112) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3632 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-15 -3633 ((-622 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|)))) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3634 ((-3 (-2 (|:| -3617 (-622 |#4|)) (|:| -1660 |#5|) (|:| |ineq| (-622 |#4|))) "failed") (-622 |#4|) |#5| (-622 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3649 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|) 96)) (-3639 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|) 72)) (-3642 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|) 91)) (-3644 (((-622 |#5|) |#4| |#5|) 110)) (-3646 (((-622 |#5|) |#4| |#5|) 117)) (-3648 (((-622 |#5|) |#4| |#5|) 118)) (-3643 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|) 97)) (-3645 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|) 116)) (-3647 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|) 46) (((-112) |#4| |#5|) 53)) (-3640 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112)) 84) (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112)) 50)) (-3641 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|) 79)) (-3638 (((-1237)) 37)) (-3636 (((-1237)) 26)) (-3637 (((-1237) (-1131) (-1131) (-1131)) 33)) (-3635 (((-1237) (-1131) (-1131) (-1131)) 22))) +(((-1081 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3635 ((-1237) (-1131) (-1131) (-1131))) (-15 -3636 ((-1237))) (-15 -3637 ((-1237) (-1131) (-1131) (-1131))) (-15 -3638 ((-1237))) (-15 -3639 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3640 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3640 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112))) (-15 -3641 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3642 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3647 ((-112) |#4| |#5|)) (-15 -3643 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3644 ((-622 |#5|) |#4| |#5|)) (-15 -3645 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3646 ((-622 |#5|) |#4| |#5|)) (-15 -3647 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3648 ((-622 |#5|) |#4| |#5|)) (-15 -3649 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1045 |#1| |#2| |#3| |#4|)) (T -1081)) +((-3649 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3648 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3647 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3646 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3645 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3644 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3643 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3647 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3642 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3641 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3640 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *5 (-112)) (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *4 (-827)) (-5 *2 (-622 (-2 (|:| |val| *8) (|:| -1660 *9)))) (-5 *1 (-1081 *6 *7 *4 *8 *9)))) (-3640 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) (-3639 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) (-3638 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3637 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7)))) (-3636 (*1 *2) (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) (-3635 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) (-4 *8 (-1045 *4 *5 *6 *7))))) +(-10 -7 (-15 -3635 ((-1237) (-1131) (-1131) (-1131))) (-15 -3636 ((-1237))) (-15 -3637 ((-1237) (-1131) (-1131) (-1131))) (-15 -3638 ((-1237))) (-15 -3639 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3640 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3640 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) |#3| (-112))) (-15 -3641 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3642 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#4| |#5|)) (-15 -3647 ((-112) |#4| |#5|)) (-15 -3643 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3644 ((-622 |#5|) |#4| |#5|)) (-15 -3645 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3646 ((-622 |#5|) |#4| |#5|)) (-15 -3647 ((-622 (-2 (|:| |val| (-112)) (|:| -1660 |#5|))) |#4| |#5|)) (-15 -3648 ((-622 |#5|) |#4| |#5|)) (-15 -3649 ((-622 (-2 (|:| |val| |#4|) (|:| -1660 |#5|))) |#4| |#5|))) +((-2898 (((-112) $ $) 7)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) 85)) (-4045 (((-622 $) (-622 |#4|)) 86) (((-622 $) (-622 |#4|) (-112)) 111)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) 101) (((-112) $) 97)) (-4051 ((|#4| |#4| $) 92)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 126)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-4158 (((-3 $ #1#) $) 82)) (-4048 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4046 ((|#4| |#4| $) 87)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) 105)) (-3548 (((-112) |#4| $) 136)) (-3546 (((-112) |#4| $) 133)) (-3549 (((-112) |#4| $) 137) (((-112) $) 134)) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) 104) (((-112) $) 103)) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) 128)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 127)) (-4157 (((-3 |#4| #1#) $) 83)) (-3543 (((-622 $) |#4| $) 129)) (-3545 (((-3 (-112) (-622 $)) |#4| $) 132)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3589 (((-622 $) |#4| $) 125) (((-622 $) (-622 |#4|) $) 124) (((-622 $) (-622 |#4|) (-622 $)) 123) (((-622 $) |#4| (-622 $)) 122)) (-3799 (($ |#4| $) 117) (($ (-622 |#4|) $) 116)) (-4060 (((-622 |#4|) $) 107)) (-4054 (((-112) |#4| $) 99) (((-112) $) 95)) (-4049 ((|#4| |#4| $) 90)) (-4062 (((-112) $ $) 110)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) 100) (((-112) $) 96)) (-4050 ((|#4| |#4| $) 91)) (-3594 (((-1093) $) 10)) (-4160 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4042 (((-3 $ #1#) $ |#4|) 78)) (-4128 (($ $ |#4|) 77) (((-622 $) |#4| $) 115) (((-622 $) |#4| (-622 $)) 114) (((-622 $) (-622 |#4|) $) 113) (((-622 $) (-622 |#4|) (-622 $)) 112)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-4307 (((-751) $) 106)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-4047 (($ $) 88)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-4041 (((-751) $) 76 (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) 98)) (-3540 (((-622 $) |#4| $) 121) (((-622 $) |#4| (-622 $)) 120) (((-622 $) (-622 |#4|) $) 119) (((-622 $) (-622 |#4|) (-622 $)) 118)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) 81)) (-3547 (((-112) |#4| $) 135)) (-4293 (((-112) |#3| $) 80)) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353))))) +(((-1082 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1082)) +NIL +(-13 (-1045 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1074) . T) ((-1180 |#1| |#2| |#3| |#4|) . T) ((-1185) . T)) +((-3660 (((-622 (-538)) (-538) (-538) (-538)) 22)) (-3659 (((-622 (-538)) (-538) (-538) (-538)) 12)) (-3658 (((-622 (-538)) (-538) (-538) (-538)) 18)) (-3657 (((-538) (-538) (-538)) 9)) (-3656 (((-1231 (-538)) (-622 (-538)) (-1231 (-538)) (-538)) 46) (((-1231 (-538)) (-1231 (-538)) (-1231 (-538)) (-538)) 41)) (-3655 (((-622 (-538)) (-622 (-538)) (-622 (-538)) (-112)) 28)) (-3654 (((-669 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538))) 45)) (-3653 (((-669 (-538)) (-622 (-538)) (-622 (-538))) 33)) (-3652 (((-622 (-669 (-538))) (-622 (-538))) 35)) (-3651 (((-622 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538))) 49)) (-3650 (((-669 (-538)) (-622 (-538)) (-622 (-538)) (-622 (-538))) 57))) +(((-1083) (-10 -7 (-15 -3650 ((-669 (-538)) (-622 (-538)) (-622 (-538)) (-622 (-538)))) (-15 -3651 ((-622 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538)))) (-15 -3652 ((-622 (-669 (-538))) (-622 (-538)))) (-15 -3653 ((-669 (-538)) (-622 (-538)) (-622 (-538)))) (-15 -3654 ((-669 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538)))) (-15 -3655 ((-622 (-538)) (-622 (-538)) (-622 (-538)) (-112))) (-15 -3656 ((-1231 (-538)) (-1231 (-538)) (-1231 (-538)) (-538))) (-15 -3656 ((-1231 (-538)) (-622 (-538)) (-1231 (-538)) (-538))) (-15 -3657 ((-538) (-538) (-538))) (-15 -3658 ((-622 (-538)) (-538) (-538) (-538))) (-15 -3659 ((-622 (-538)) (-538) (-538) (-538))) (-15 -3660 ((-622 (-538)) (-538) (-538) (-538))))) (T -1083)) +((-3660 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538)))) (-3659 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538)))) (-3658 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538)))) (-3657 (*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1083)))) (-3656 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1231 (-538))) (-5 *3 (-622 (-538))) (-5 *4 (-538)) (-5 *1 (-1083)))) (-3656 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1231 (-538))) (-5 *3 (-538)) (-5 *1 (-1083)))) (-3655 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *3 (-112)) (-5 *1 (-1083)))) (-3654 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-669 (-538))) (-5 *3 (-622 (-538))) (-5 *1 (-1083)))) (-3653 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1083)))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-1083)))) (-3651 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *3 (-669 (-538))) (-5 *1 (-1083)))) (-3650 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1083))))) +(-10 -7 (-15 -3650 ((-669 (-538)) (-622 (-538)) (-622 (-538)) (-622 (-538)))) (-15 -3651 ((-622 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538)))) (-15 -3652 ((-622 (-669 (-538))) (-622 (-538)))) (-15 -3653 ((-669 (-538)) (-622 (-538)) (-622 (-538)))) (-15 -3654 ((-669 (-538)) (-622 (-538)) (-622 (-538)) (-669 (-538)))) (-15 -3655 ((-622 (-538)) (-622 (-538)) (-622 (-538)) (-112))) (-15 -3656 ((-1231 (-538)) (-1231 (-538)) (-1231 (-538)) (-538))) (-15 -3656 ((-1231 (-538)) (-622 (-538)) (-1231 (-538)) (-538))) (-15 -3657 ((-538) (-538) (-538))) (-15 -3658 ((-622 (-538)) (-538) (-538) (-538))) (-15 -3659 ((-622 (-538)) (-538) (-538) (-538))) (-15 -3660 ((-622 (-538)) (-538) (-538) (-538)))) +((** (($ $ (-895)) 10))) +(((-1084 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-895)))) (-1085)) (T -1084)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-895)))) +((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6)) (** (($ $ (-895)) 13)) (* (($ $ $) 14))) +(((-1085) (-138)) (T -1085)) +((* (*1 *1 *1 *1) (-4 *1 (-1085))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1085)) (-5 *2 (-895))))) +(-13 (-1074) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-895))))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL (|has| |#3| (-1074)))) (-3539 (((-112) $) NIL (|has| |#3| (-130)))) (-4070 (($ (-895)) NIL (|has| |#3| (-1025)))) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-2733 (($ $ $) NIL (|has| |#3| (-773)))) (-1368 (((-3 $ "failed") $ $) NIL (|has| |#3| (-130)))) (-1271 (((-112) $ (-751)) NIL)) (-3471 (((-751)) NIL (|has| |#3| (-363)))) (-3986 (((-538) $) NIL (|has| |#3| (-825)))) (-4147 ((|#3| $ (-538) |#3|) NIL (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074)))) (((-3 (-402 (-538)) #1#) $) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074)))) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1074)))) (-3507 (((-538) $) NIL (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074)))) (((-402 (-538)) $) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074)))) ((|#3| $) NIL (|has| |#3| (-1074)))) (-2362 (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#3| (-621 (-538))) (|has| |#3| (-1025)))) (((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 $) (-1231 $)) NIL (|has| |#3| (-1025))) (((-669 |#3|) (-669 $)) NIL (|has| |#3| (-1025)))) (-3821 (((-3 $ "failed") $) NIL (|has| |#3| (-707)))) (-3327 (($) NIL (|has| |#3| (-363)))) (-1637 ((|#3| $ (-538) |#3|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#3| $ (-538)) 12)) (-3537 (((-112) $) NIL (|has| |#3| (-825)))) (-2068 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL (|has| |#3| (-707)))) (-3538 (((-112) $) NIL (|has| |#3| (-825)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2511 (((-622 |#3|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2072 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#3| |#3|) $) NIL)) (-2126 (((-895) $) NIL (|has| |#3| (-363)))) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#3| (-1074)))) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-2492 (($ (-895)) NIL (|has| |#3| (-363)))) (-3594 (((-1093) $) NIL (|has| |#3| (-1074)))) (-4160 ((|#3| $) NIL (|has| (-538) (-827)))) (-2306 (($ $ |#3|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#3|))) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-288 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074)))) (($ $ (-622 |#3|) (-622 |#3|)) NIL (-12 (|has| |#3| (-304 |#3|)) (|has| |#3| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-2312 (((-622 |#3|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#3| $ (-538) |#3|) NIL) ((|#3| $ (-538)) NIL)) (-4196 ((|#3| $ $) NIL (|has| |#3| (-1025)))) (-1525 (($ (-1231 |#3|)) NIL)) (-4271 (((-133)) NIL (|has| |#3| (-358)))) (-4170 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025)))) (-2069 (((-751) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353))) (((-751) |#3| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#3| (-1074))))) (-3759 (($ $) NIL)) (-4317 (((-1231 |#3|) $) NIL) (($ (-538)) NIL (-3891 (-12 (|has| |#3| (-1014 (-538))) (|has| |#3| (-1074))) (|has| |#3| (-1025)))) (($ (-402 (-538))) NIL (-12 (|has| |#3| (-1014 (-402 (-538)))) (|has| |#3| (-1074)))) (($ |#3|) NIL (|has| |#3| (-1074))) (((-840) $) NIL (|has| |#3| (-597 (-840))))) (-3461 (((-751)) NIL (|has| |#3| (-1025)))) (-2071 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4353)))) (-3742 (($ $) NIL (|has| |#3| (-825)))) (-2991 (($) NIL (|has| |#3| (-130)) CONST)) (-2997 (($) NIL (|has| |#3| (-707)) CONST)) (-3002 (($ $) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-751)) NIL (-12 (|has| |#3| (-229)) (|has| |#3| (-1025)))) (($ $ (-1149)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#3| (-876 (-1149))) (|has| |#3| (-1025)))) (($ $ (-1 |#3| |#3|) (-751)) NIL (|has| |#3| (-1025))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1025)))) (-2896 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-2897 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3387 (((-112) $ $) NIL (|has| |#3| (-1074)))) (-3017 (((-112) $ $) NIL (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-3018 (((-112) $ $) 17 (-3891 (|has| |#3| (-773)) (|has| |#3| (-825))))) (-4308 (($ $ |#3|) NIL (|has| |#3| (-358)))) (-4197 (($ $ $) NIL (|has| |#3| (-1025))) (($ $) NIL (|has| |#3| (-1025)))) (-4199 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-751)) NIL (|has| |#3| (-707))) (($ $ (-895)) NIL (|has| |#3| (-707)))) (* (($ (-538) $) NIL (|has| |#3| (-1025))) (($ $ $) NIL (|has| |#3| (-707))) (($ $ |#3|) NIL (|has| |#3| (-707))) (($ |#3| $) NIL (|has| |#3| (-707))) (($ (-751) $) NIL (|has| |#3| (-130))) (($ (-895) $) NIL (|has| |#3| (-25)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1086 |#1| |#2| |#3|) (-234 |#1| |#3|) (-751) (-751) (-773)) (T -1086)) +NIL +(-234 |#1| |#3|) +((-3661 (((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 37)) (-3667 (((-538) (-1200 |#2| |#1|)) 69 (|has| |#1| (-446)))) (-3665 (((-538) (-1200 |#2| |#1|)) 54)) (-3662 (((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 45)) (-3666 (((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 68 (|has| |#1| (-446)))) (-3663 (((-622 |#1|) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 48)) (-3664 (((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|)) 53))) +(((-1087 |#1| |#2|) (-10 -7 (-15 -3661 ((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3662 ((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3663 ((-622 |#1|) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3664 ((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3665 ((-538) (-1200 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3666 ((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3667 ((-538) (-1200 |#2| |#1|)))) |%noBranch|)) (-800) (-1149)) (T -1087)) +((-3667 (*1 *2 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538)) (-5 *1 (-1087 *4 *5)))) (-3666 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538)) (-5 *1 (-1087 *4 *5)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538)) (-5 *1 (-1087 *4 *5)))) (-3664 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538)) (-5 *1 (-1087 *4 *5)))) (-3663 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 *4)) (-5 *1 (-1087 *4 *5)))) (-3662 (*1 *2 *3 *3) (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 (-1200 *5 *4))) (-5 *1 (-1087 *4 *5)) (-5 *3 (-1200 *5 *4)))) (-3661 (*1 *2 *3 *3) (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 (-1200 *5 *4))) (-5 *1 (-1087 *4 *5)) (-5 *3 (-1200 *5 *4))))) +(-10 -7 (-15 -3661 ((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3662 ((-622 (-1200 |#2| |#1|)) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3663 ((-622 |#1|) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3664 ((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3665 ((-538) (-1200 |#2| |#1|))) (IF (|has| |#1| (-446)) (PROGN (-15 -3666 ((-538) (-1200 |#2| |#1|) (-1200 |#2| |#1|))) (-15 -3667 ((-538) (-1200 |#2| |#1|)))) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-3669 (((-1154) $) 10)) (-3668 (((-622 (-1154)) $) 11)) (-3670 (($ (-622 (-1154)) (-1154)) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 20)) (-3387 (((-112) $ $) 14))) +(((-1088) (-13 (-1074) (-10 -8 (-15 -3670 ($ (-622 (-1154)) (-1154))) (-15 -3669 ((-1154) $)) (-15 -3668 ((-622 (-1154)) $))))) (T -1088)) +((-3670 (*1 *1 *2 *3) (-12 (-5 *2 (-622 (-1154))) (-5 *3 (-1154)) (-5 *1 (-1088)))) (-3669 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1088)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1088))))) +(-13 (-1074) (-10 -8 (-15 -3670 ($ (-622 (-1154)) (-1154))) (-15 -3669 ((-1154) $)) (-15 -3668 ((-622 (-1154)) $)))) +((-2898 (((-112) $ $) NIL)) (-3671 (($ (-499) (-1088)) 14)) (-3670 (((-1088) $) 20)) (-3905 (((-499) $) 17)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 28) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-1089) (-13 (-1056) (-10 -8 (-15 -3671 ($ (-499) (-1088))) (-15 -3905 ((-499) $)) (-15 -3670 ((-1088) $))))) (T -1089)) +((-3671 (*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-1088)) (-5 *1 (-1089)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1089)))) (-3670 (*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1089))))) +(-13 (-1056) (-10 -8 (-15 -3671 ($ (-499) (-1088))) (-15 -3905 ((-499) $)) (-15 -3670 ((-1088) $)))) +((-3986 (((-3 (-538) #1="failed") |#2| (-1149) |#2| (-1131)) 17) (((-3 (-538) #1#) |#2| (-1149) (-819 |#2|)) 15) (((-3 (-538) #1#) |#2|) 54))) +(((-1090 |#1| |#2|) (-10 -7 (-15 -3986 ((-3 (-538) #1="failed") |#2|)) (-15 -3986 ((-3 (-538) #1#) |#2| (-1149) (-819 |#2|))) (-15 -3986 ((-3 (-538) #1#) |#2| (-1149) |#2| (-1131)))) (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)) (-446)) (-13 (-27) (-1171) (-416 |#1|))) (T -1090)) +((-3986 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-1131)) (-4 *6 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-538)) (-5 *1 (-1090 *6 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))))) (-3986 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-819 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) (-4 *6 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-538)) (-5 *1 (-1090 *6 *3)))) (-3986 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-538)) (-5 *1 (-1090 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4)))))) +(-10 -7 (-15 -3986 ((-3 (-538) #1="failed") |#2|)) (-15 -3986 ((-3 (-538) #1#) |#2| (-1149) (-819 |#2|))) (-15 -3986 ((-3 (-538) #1#) |#2| (-1149) |#2| (-1131)))) +((-3986 (((-3 (-538) #1="failed") (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)) (-1131)) 35) (((-3 (-538) #1#) (-402 (-922 |#1|)) (-1149) (-819 (-402 (-922 |#1|)))) 30) (((-3 (-538) #1#) (-402 (-922 |#1|))) 13))) +(((-1091 |#1|) (-10 -7 (-15 -3986 ((-3 (-538) #1="failed") (-402 (-922 |#1|)))) (-15 -3986 ((-3 (-538) #1#) (-402 (-922 |#1|)) (-1149) (-819 (-402 (-922 |#1|))))) (-15 -3986 ((-3 (-538) #1#) (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)) (-1131)))) (-446)) (T -1091)) +((-3986 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-402 (-922 *6))) (-5 *4 (-1149)) (-5 *5 (-1131)) (-4 *6 (-446)) (-5 *2 (-538)) (-5 *1 (-1091 *6)))) (-3986 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-819 (-402 (-922 *6)))) (-5 *3 (-402 (-922 *6))) (-4 *6 (-446)) (-5 *2 (-538)) (-5 *1 (-1091 *6)))) (-3986 (*1 *2 *3) (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-446)) (-5 *2 (-538)) (-5 *1 (-1091 *4))))) +(-10 -7 (-15 -3986 ((-3 (-538) #1="failed") (-402 (-922 |#1|)))) (-15 -3986 ((-3 (-538) #1#) (-402 (-922 |#1|)) (-1149) (-819 (-402 (-922 |#1|))))) (-15 -3986 ((-3 (-538) #1#) (-402 (-922 |#1|)) (-1149) (-402 (-922 |#1|)) (-1131)))) +((-4012 (((-309 (-538)) (-48)) 12))) +(((-1092) (-10 -7 (-15 -4012 ((-309 (-538)) (-48))))) (T -1092)) +((-4012 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-538))) (-5 *1 (-1092))))) +(-10 -7 (-15 -4012 ((-309 (-538)) (-48)))) +((-2898 (((-112) $ $) NIL)) (-3679 (($ $) 41)) (-3539 (((-112) $) 65)) (-3675 (($ $ $) 48)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 86)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-2162 (($ $ $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-2157 (($ $ $ $) 75)) (-4134 (($ $) NIL)) (-4329 (((-400 $) $) NIL)) (-1705 (((-112) $ $) NIL)) (-3986 (((-538) $) NIL)) (-2690 (($ $ $) 72)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) "failed") $) NIL)) (-3507 (((-538) $) NIL)) (-2894 (($ $ $) 59)) (-2362 (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 80) (((-669 (-538)) (-669 $)) 28)) (-3821 (((-3 $ "failed") $) NIL)) (-3357 (((-3 (-402 (-538)) "failed") $) NIL)) (-3356 (((-112) $) NIL)) (-3355 (((-402 (-538)) $) NIL)) (-3327 (($) 83) (($ $) 84)) (-2893 (($ $ $) 58)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL)) (-4086 (((-112) $) NIL)) (-2155 (($ $ $ $) NIL)) (-2163 (($ $ $) 81)) (-3537 (((-112) $) NIL)) (-1414 (($ $ $) NIL)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL)) (-2502 (((-112) $) 66)) (-3006 (((-112) $) 64)) (-3676 (($ $) 42)) (-3803 (((-3 $ "failed") $) NIL)) (-3538 (((-112) $) 76)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL)) (-2156 (($ $ $ $) 73)) (-3677 (($ $ $) 68) (($) 39)) (-3678 (($ $ $) 67) (($) 38)) (-2159 (($ $) NIL)) (-4193 (($ $) 71)) (-2013 (($ $ $) NIL) (($ (-622 $)) NIL)) (-3593 (((-1131) $) NIL)) (-2154 (($ $ $) NIL)) (-3804 (($) NIL T CONST)) (-2161 (($ $) 50)) (-3594 (((-1093) $) 70)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL)) (-3495 (($ $ $) 62) (($ (-622 $)) NIL)) (-1412 (($ $) NIL)) (-4092 (((-400 $) $) NIL)) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL)) (-3820 (((-3 $ "failed") $ $) NIL)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL)) (-3007 (((-112) $) NIL)) (-1704 (((-751) $) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 61)) (-4170 (($ $ (-751)) NIL) (($ $) NIL)) (-2160 (($ $) 51)) (-3759 (($ $) NIL)) (-4330 (((-538) $) 32) (((-527) $) NIL) (((-866 (-538)) $) NIL) (((-373) $) NIL) (((-221) $) NIL)) (-4317 (((-840) $) 31) (($ (-538)) 82) (($ $) NIL) (($ (-538)) 82)) (-3461 (((-751)) NIL)) (-2164 (((-112) $ $) NIL)) (-3437 (($ $ $) NIL)) (-3027 (($) 37)) (-2177 (((-112) $ $) NIL)) (-2158 (($ $ $ $) 74)) (-3742 (($ $) 63)) (-3681 (($ $ $) 44)) (-2991 (($) 35 T CONST)) (-3672 (($ $ $) 47)) (-2997 (($) 36 T CONST)) (-2834 (((-1131) $) 21) (((-1131) $ (-112)) 23) (((-1237) (-803) $) 24) (((-1237) (-803) $ (-112)) 25)) (-3674 (($ $) 45)) (-3002 (($ $ (-751)) NIL) (($ $) NIL)) (-3673 (($ $ $) 46)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 40)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 49)) (-3680 (($ $ $) 43)) (-4197 (($ $) 52) (($ $ $) 54)) (-4199 (($ $ $) 53)) (** (($ $ (-895)) NIL) (($ $ (-751)) 57)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 34) (($ $ $) 55))) +(((-1093) (-13 (-537) (-642) (-801) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -3678 ($)) (-15 -3677 ($)) (-15 -3676 ($ $)) (-15 -3679 ($ $)) (-15 -3680 ($ $ $)) (-15 -3681 ($ $ $)) (-15 -3675 ($ $ $)) (-15 -3674 ($ $)) (-15 -3673 ($ $ $)) (-15 -3672 ($ $ $))))) (T -1093)) +((-3681 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3680 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3679 (*1 *1 *1) (-5 *1 (-1093))) (-3678 (*1 *1) (-5 *1 (-1093))) (-3677 (*1 *1) (-5 *1 (-1093))) (-3676 (*1 *1 *1) (-5 *1 (-1093))) (-3675 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3674 (*1 *1 *1) (-5 *1 (-1093))) (-3673 (*1 *1 *1 *1) (-5 *1 (-1093))) (-3672 (*1 *1 *1 *1) (-5 *1 (-1093)))) +(-13 (-537) (-642) (-801) (-10 -8 (-6 -4340) (-6 -4345) (-6 -4341) (-15 -3678 ($)) (-15 -3677 ($)) (-15 -3676 ($ $)) (-15 -3679 ($ $)) (-15 -3680 ($ $ $)) (-15 -3681 ($ $ $)) (-15 -3675 ($ $ $)) (-15 -3674 ($ $)) (-15 -3673 ($ $ $)) (-15 -3672 ($ $ $)))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3683 ((|#1| $) 44)) (-1271 (((-112) $ (-751)) 8)) (-3896 (($) 7 T CONST)) (-3685 ((|#1| |#1| $) 46)) (-3684 ((|#1| $) 45)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-1333 ((|#1| $) 39)) (-3970 (($ |#1| $) 40)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-1334 ((|#1| $) 41)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-3682 (((-751) $) 43)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) 42)) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-1094 |#1|) (-138) (-1185)) (T -1094)) +((-3685 (*1 *2 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1094 *3)) (-4 *3 (-1185)) (-5 *2 (-751))))) +(-13 (-106 |t#1|) (-10 -8 (-6 -4353) (-15 -3685 (|t#1| |t#1| $)) (-15 -3684 (|t#1| $)) (-15 -3683 (|t#1| $)) (-15 -3682 ((-751) $)))) +(((-34) . T) ((-106 |#1|) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-3689 ((|#3| $) 76)) (-3508 (((-3 (-538) #1="failed") $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 |#3| #1#) $) 40)) (-3507 (((-538) $) NIL) (((-402 (-538)) $) NIL) ((|#3| $) 37)) (-2362 (((-669 (-538)) (-669 $)) NIL) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL) (((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 $) (-1231 $)) 73) (((-669 |#3|) (-669 $)) 65)) (-4170 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149)) NIL) (($ $ (-751)) NIL) (($ $) NIL)) (-3688 ((|#3| $) 78)) (-3690 ((|#4| $) 32)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-402 (-538))) NIL) (($ |#3|) 16)) (** (($ $ (-895)) NIL) (($ $ (-751)) 15) (($ $ (-538)) 82))) +(((-1095 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-538))) (-15 -3688 (|#3| |#1|)) (-15 -3689 (|#3| |#1|)) (-15 -3690 (|#4| |#1|)) (-15 -2362 ((-669 |#3|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| #1="failed") |#1|)) (-15 -4317 (|#1| |#3|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4317 (|#1| (-538))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895))) (-15 -4317 ((-840) |#1|))) (-1096 |#2| |#3| |#4| |#5|) (-751) (-1025) (-234 |#2| |#3|) (-234 |#2| |#3|)) (T -1095)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-538))) (-15 -3688 (|#3| |#1|)) (-15 -3689 (|#3| |#1|)) (-15 -3690 (|#4| |#1|)) (-15 -2362 ((-669 |#3|) (-669 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 |#3|)) (|:| |vec| (-1231 |#3|))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 |#1|) (-1231 |#1|))) (-15 -2362 ((-669 (-538)) (-669 |#1|))) (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| #1="failed") |#1|)) (-15 -4317 (|#1| |#3|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-538) |#1|)) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|) (-751))) (-15 -4170 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4317 (|#1| (-538))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3689 ((|#2| $) 70)) (-3456 (((-112) $) 110)) (-1368 (((-3 $ "failed") $ $) 19)) (-3458 (((-112) $) 108)) (-1271 (((-112) $ (-751)) 100)) (-3692 (($ |#2|) 73)) (-3896 (($) 17 T CONST)) (-3445 (($ $) 127 (|has| |#2| (-302)))) (-3447 ((|#3| $ (-538)) 122)) (-3508 (((-3 (-538) #1="failed") $) 84 (|has| |#2| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) 82 (|has| |#2| (-1014 (-402 (-538))))) (((-3 |#2| #1#) $) 79)) (-3507 (((-538) $) 85 (|has| |#2| (-1014 (-538)))) (((-402 (-538)) $) 83 (|has| |#2| (-1014 (-402 (-538))))) ((|#2| $) 78)) (-2362 (((-669 (-538)) (-669 $)) 77 (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 76 (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 75) (((-669 |#2|) (-669 $)) 74)) (-3821 (((-3 $ "failed") $) 32)) (-3444 (((-751) $) 128 (|has| |#2| (-545)))) (-3448 ((|#2| $ (-538) (-538)) 120)) (-2068 (((-622 |#2|) $) 93 (|has| $ (-6 -4353)))) (-2502 (((-112) $) 30)) (-3443 (((-751) $) 129 (|has| |#2| (-545)))) (-3442 (((-622 |#4|) $) 130 (|has| |#2| (-545)))) (-3450 (((-751) $) 116)) (-3449 (((-751) $) 117)) (-4082 (((-112) $ (-751)) 101)) (-3686 ((|#2| $) 65 (|has| |#2| (-6 (-4355 #2="*"))))) (-3454 (((-538) $) 112)) (-3452 (((-538) $) 114)) (-2511 (((-622 |#2|) $) 92 (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) 90 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-3453 (((-538) $) 113)) (-3451 (((-538) $) 115)) (-3459 (($ (-622 (-622 |#2|))) 107)) (-2072 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3956 (((-622 (-622 |#2|)) $) 118)) (-4079 (((-112) $ (-751)) 102)) (-3593 (((-1131) $) 9)) (-3952 (((-3 $ "failed") $) 64 (|has| |#2| (-358)))) (-3594 (((-1093) $) 10)) (-3820 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-545)))) (-2070 (((-112) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) 89 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) 88 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) 106)) (-3762 (((-112) $) 103)) (-3928 (($) 104)) (-4159 ((|#2| $ (-538) (-538) |#2|) 121) ((|#2| $ (-538) (-538)) 119)) (-4170 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-751)) 49) (($ $ (-622 (-1149)) (-622 (-751))) 42 (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) 41 (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) 40 (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) 39 (|has| |#2| (-876 (-1149)))) (($ $ (-751)) 37 (|has| |#2| (-229))) (($ $) 35 (|has| |#2| (-229)))) (-3688 ((|#2| $) 69)) (-3691 (($ (-622 |#2|)) 72)) (-3457 (((-112) $) 109)) (-3690 ((|#3| $) 71)) (-3687 ((|#2| $) 66 (|has| |#2| (-6 (-4355 #2#))))) (-2069 (((-751) (-1 (-112) |#2|) $) 94 (|has| $ (-6 -4353))) (((-751) |#2| $) 91 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 105)) (-3446 ((|#4| $ (-538)) 123)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 81 (|has| |#2| (-1014 (-402 (-538))))) (($ |#2|) 80)) (-3461 (((-751)) 28)) (-2071 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4353)))) (-3455 (((-112) $) 111)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-751)) 47) (($ $ (-622 (-1149)) (-622 (-751))) 46 (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) 45 (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) 44 (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) 43 (|has| |#2| (-876 (-1149)))) (($ $ (-751)) 38 (|has| |#2| (-229))) (($ $) 36 (|has| |#2| (-229)))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#2|) 126 (|has| |#2| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 63 (|has| |#2| (-358)))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-4316 (((-751) $) 99 (|has| $ (-6 -4353))))) +(((-1096 |#1| |#2| |#3| |#4|) (-138) (-751) (-1025) (-234 |t#1| |t#2|) (-234 |t#1| |t#2|)) (T -1096)) +((-3692 (*1 *1 *2) (-12 (-4 *2 (-1025)) (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-622 *4)) (-4 *4 (-1025)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)))) (-3690 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1025)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (-4 *2 (-1025)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *2 (-234 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *2 (-234 *3 *4)) (-4 *5 (-234 *3 *4)))) (-3687 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 #1="*"))) (-4 *2 (-1025)))) (-3686 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) (|has| *2 (-6 (-4355 #1#))) (-4 *2 (-1025)))) (-3952 (*1 *1 *1) (|partial| -12 (-4 *1 (-1096 *2 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358))))) +(-13 (-227 |t#2|) (-111 |t#2| |t#2|) (-1028 |t#1| |t#1| |t#2| |t#3| |t#4|) (-407 |t#2|) (-372 |t#2|) (-10 -8 (IF (|has| |t#2| (-170)) (-6 (-698 |t#2|)) |%noBranch|) (-15 -3692 ($ |t#2|)) (-15 -3691 ($ (-622 |t#2|))) (-15 -3690 (|t#3| $)) (-15 -3689 (|t#2| $)) (-15 -3688 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4355 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3687 (|t#2| $)) (-15 -3686 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-358)) (PROGN (-15 -3952 ((-3 $ "failed") $)) (-15 ** ($ $ (-538)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4355 #1="*"))) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-840)) . T) ((-227 |#2|) . T) ((-229) |has| |#2| (-229)) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-372 |#2|) . T) ((-407 |#2|) . T) ((-483 |#2|) . T) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-628 |#2|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#2| (-621 (-538))) ((-621 |#2|) . T) ((-698 |#2|) -3891 (|has| |#2| (-170)) (|has| |#2| (-6 (-4355 #1#)))) ((-707) . T) ((-876 (-1149)) |has| |#2| (-876 (-1149))) ((-1028 |#1| |#1| |#2| |#3| |#4|) . T) ((-1014 (-402 (-538))) |has| |#2| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#2| (-1014 (-538))) ((-1014 |#2|) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1185) . T)) +((-3695 ((|#4| |#4|) 70)) (-3693 ((|#4| |#4|) 65)) (-3697 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2128 (-622 |#3|))) |#4| |#3|) 78)) (-3696 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-3694 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67))) +(((-1097 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3693 (|#4| |#4|)) (-15 -3694 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3695 (|#4| |#4|)) (-15 -3696 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3697 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2128 (-622 |#3|))) |#4| |#3|))) (-302) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|)) (T -1097)) +((-3697 (*1 *2 *3 *4) (-12 (-4 *5 (-302)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2128 (-622 *4)))) (-5 *1 (-1097 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))) (-3696 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-3694 (*1 *2 *3) (-12 (-4 *4 (-302)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) (-3693 (*1 *2 *2) (-12 (-4 *3 (-302)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))) +(-10 -7 (-15 -3693 (|#4| |#4|)) (-15 -3694 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3695 (|#4| |#4|)) (-15 -3696 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3697 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2128 (-622 |#3|))) |#4| |#3|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 17)) (-3417 (((-622 |#2|) $) 159)) (-3419 (((-1143 $) $ |#2|) 54) (((-1143 |#1|) $) 43)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 108 (|has| |#1| (-545)))) (-2178 (($ $) 110 (|has| |#1| (-545)))) (-2176 (((-112) $) 112 (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 |#2|)) 192)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) 156) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 |#2| #2#) $) NIL)) (-3507 ((|#1| $) 154) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) ((|#2| $) NIL)) (-4116 (($ $ $ |#2|) NIL (|has| |#1| (-170)))) (-4319 (($ $) 196)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) 82)) (-3857 (($ $) NIL (|has| |#1| (-446))) (($ $ |#2|) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-524 |#2|) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| |#1| (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| |#1| (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-2502 (((-112) $) 19)) (-2510 (((-751) $) 26)) (-3420 (($ (-1143 |#1|) |#2|) 48) (($ (-1143 $) |#2|) 64)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) 32)) (-3226 (($ |#1| (-524 |#2|)) 71) (($ $ |#2| (-751)) 52) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ |#2|) NIL)) (-3153 (((-524 |#2|) $) 186) (((-751) $ |#2|) 187) (((-622 (-751)) $ (-622 |#2|)) 188)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-524 |#2|) (-524 |#2|)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) 120)) (-3418 (((-3 |#2| #3="failed") $) 161)) (-3227 (($ $) 195)) (-3525 ((|#1| $) 37)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-3156 (((-3 (-622 $) #3#) $) NIL)) (-3155 (((-3 (-622 $) #3#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| |#2|) (|:| -2493 (-751))) #3#) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) 33)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 138 (|has| |#1| (-446)))) (-3495 (($ (-622 $)) 143 (|has| |#1| (-446))) (($ $ $) 130 (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#1| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-886)))) (-3820 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-545)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-622 |#2|) (-622 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-622 |#2|) (-622 $)) 176)) (-4117 (($ $ |#2|) NIL (|has| |#1| (-170)))) (-4170 (($ $ |#2|) 194) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-4307 (((-524 |#2|) $) 182) (((-751) $ |#2|) 178) (((-622 (-751)) $ (-622 |#2|)) 180)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| |#1| (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| |#1| (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| |#1| (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#1| $) 126 (|has| |#1| (-446))) (($ $ |#2|) 129 (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4317 (((-840) $) 149) (($ (-538)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-545))) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-4177 (((-622 |#1|) $) 152)) (-4040 ((|#1| $ (-524 |#2|)) 73) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-3035 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 79)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) 115 (|has| |#1| (-545)))) (-2991 (($) 12 T CONST)) (-2997 (($) 14 T CONST)) (-3002 (($ $ |#2|) NIL) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 97)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 124 (|has| |#1| (-358)))) (-4197 (($ $) 85) (($ $ $) 95)) (-4199 (($ $ $) 49)) (** (($ $ (-895)) 102) (($ $ (-751)) 100)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 88) (($ $ $) 65) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 90) (($ $ |#1|) NIL))) +(((-1098 |#1| |#2|) (-926 |#1| (-524 |#2|) |#2|) (-1025) (-827)) (T -1098)) +NIL +(-926 |#1| (-524 |#2|) |#2|) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 |#2|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3846 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 113 (|has| |#1| (-38 (-402 (-538)))))) (-3848 (($ $) 145 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4174 (((-922 |#1|) $ (-751)) NIL) (((-922 |#1|) $ (-751) (-751)) NIL)) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $ |#2|) NIL) (((-751) $ |#2| (-751)) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4297 (((-112) $) NIL)) (-3226 (($ $ (-622 |#2|) (-622 (-524 |#2|))) NIL) (($ $ |#2| (-524 |#2|)) NIL) (($ |#1| (-524 |#2|)) NIL) (($ $ |#2| (-751)) 56) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) 111 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-4172 (($ $ |#2|) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-4039 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-38 (-402 (-538)))))) (-4128 (($ $ (-751)) 13)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4303 (($ $) 109 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (($ $ |#2| $) 95) (($ $ (-622 |#2|) (-622 $)) 88) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL)) (-4170 (($ $ |#2|) 98) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-4307 (((-524 |#2|) $) NIL)) (-3698 (((-1 (-1126 |#3|) |#3|) (-622 |#2|) (-622 (-1126 |#3|))) 77)) (-3849 (($ $) 147 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 143 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 15)) (-4317 (((-840) $) 180) (($ (-538)) NIL) (($ |#1|) 40 (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-545))) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#2|) 63) (($ |#3|) 61)) (-4040 ((|#1| $ (-524 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL) ((|#3| $ (-751)) 38)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-3852 (($ $) 153 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) 149 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 157 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-3855 (($ $) 159 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 155 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 151 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 47 T CONST)) (-2997 (($) 55 T CONST)) (-3002 (($ $ |#2|) NIL) (($ $ (-622 |#2|)) NIL) (($ $ |#2| (-751)) NIL) (($ $ (-622 |#2|) (-622 (-751))) NIL)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) 182 (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 59)) (** (($ $ (-895)) NIL) (($ $ (-751)) 68) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 101 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 58) (($ $ (-402 (-538))) 106 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 104 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 43) (($ $ |#1|) 44) (($ |#3| $) 42))) +(((-1099 |#1| |#2| |#3|) (-13 (-721 |#1| |#2|) (-10 -8 (-15 -4040 (|#3| $ (-751))) (-15 -4317 ($ |#2|)) (-15 -4317 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3698 ((-1 (-1126 |#3|) |#3|) (-622 |#2|) (-622 (-1126 |#3|)))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $ |#2| |#1|)) (-15 -4039 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1025) (-827) (-926 |#1| (-524 |#2|) |#2|)) (T -1099)) +((-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *2 (-926 *4 (-524 *5) *5)) (-5 *1 (-1099 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-827)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-926 *3 (-524 *2) *2)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) (-4 *2 (-926 *3 (-524 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) (-4 *2 (-926 *3 (-524 *4) *4)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-1126 *7))) (-4 *6 (-827)) (-4 *7 (-926 *5 (-524 *6) *6)) (-4 *5 (-1025)) (-5 *2 (-1 (-1126 *7) *7)) (-5 *1 (-1099 *5 *6 *7)))) (-4172 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-926 *3 (-524 *2) *2)))) (-4039 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1099 *4 *3 *5))) (-4 *4 (-38 (-402 (-538)))) (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *1 (-1099 *4 *3 *5)) (-4 *5 (-926 *4 (-524 *3) *3))))) +(-13 (-721 |#1| |#2|) (-10 -8 (-15 -4040 (|#3| $ (-751))) (-15 -4317 ($ |#2|)) (-15 -4317 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3698 ((-1 (-1126 |#3|) |#3|) (-622 |#2|) (-622 (-1126 |#3|)))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $ |#2| |#1|)) (-15 -4039 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-2898 (((-112) $ $) 7)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) 85)) (-4045 (((-622 $) (-622 |#4|)) 86) (((-622 $) (-622 |#4|) (-112)) 111)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) 101) (((-112) $) 97)) (-4051 ((|#4| |#4| $) 92)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 126)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 79)) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-4158 (((-3 $ #1#) $) 82)) (-4048 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4046 ((|#4| |#4| $) 87)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) 105)) (-3548 (((-112) |#4| $) 136)) (-3546 (((-112) |#4| $) 133)) (-3549 (((-112) |#4| $) 137) (((-112) $) 134)) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) 104) (((-112) $) 103)) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) 128)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 127)) (-4157 (((-3 |#4| #1#) $) 83)) (-3543 (((-622 $) |#4| $) 129)) (-3545 (((-3 (-112) (-622 $)) |#4| $) 132)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-3589 (((-622 $) |#4| $) 125) (((-622 $) (-622 |#4|) $) 124) (((-622 $) (-622 |#4|) (-622 $)) 123) (((-622 $) |#4| (-622 $)) 122)) (-3799 (($ |#4| $) 117) (($ (-622 |#4|) $) 116)) (-4060 (((-622 |#4|) $) 107)) (-4054 (((-112) |#4| $) 99) (((-112) $) 95)) (-4049 ((|#4| |#4| $) 90)) (-4062 (((-112) $ $) 110)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) 100) (((-112) $) 96)) (-4050 ((|#4| |#4| $) 91)) (-3594 (((-1093) $) 10)) (-4160 (((-3 |#4| #1#) $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4042 (((-3 $ #1#) $ |#4|) 78)) (-4128 (($ $ |#4|) 77) (((-622 $) |#4| $) 115) (((-622 $) |#4| (-622 $)) 114) (((-622 $) (-622 |#4|) $) 113) (((-622 $) (-622 |#4|) (-622 $)) 112)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-4307 (((-751) $) 106)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-4047 (($ $) 88)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-4041 (((-751) $) 76 (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) 98)) (-3540 (((-622 $) |#4| $) 121) (((-622 $) |#4| (-622 $)) 120) (((-622 $) (-622 |#4|) $) 119) (((-622 $) (-622 |#4|) (-622 $)) 118)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) 81)) (-3547 (((-112) |#4| $) 135)) (-4293 (((-112) |#3| $) 80)) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353))))) +(((-1100 |#1| |#2| |#3| |#4|) (-138) (-446) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1100)) +NIL +(-13 (-1082 |t#1| |t#2| |t#3| |t#4|) (-764 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-764 |#1| |#2| |#3| |#4|) . T) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1045 |#1| |#2| |#3| |#4|) . T) ((-1074) . T) ((-1082 |#1| |#2| |#3| |#4|) . T) ((-1180 |#1| |#2| |#3| |#4|) . T) ((-1185) . T)) +((-3936 (((-622 |#2|) |#1|) 12)) (-3704 (((-622 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-622 |#2|) |#1|) 52)) (-3702 (((-622 |#2|) |#2| |#2| |#2|) 39) (((-622 |#2|) |#1|) 50)) (-3699 ((|#2| |#1|) 46)) (-3700 (((-2 (|:| |solns| (-622 |#2|)) (|:| |maps| (-622 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3701 (((-622 |#2|) |#2| |#2|) 38) (((-622 |#2|) |#1|) 49)) (-3703 (((-622 |#2|) |#2| |#2| |#2| |#2|) 40) (((-622 |#2|) |#1|) 51)) (-3708 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3706 ((|#2| |#2| |#2| |#2|) 43)) (-3705 ((|#2| |#2| |#2|) 42)) (-3707 ((|#2| |#2| |#2| |#2| |#2|) 44))) +(((-1101 |#1| |#2|) (-10 -7 (-15 -3936 ((-622 |#2|) |#1|)) (-15 -3699 (|#2| |#1|)) (-15 -3700 ((-2 (|:| |solns| (-622 |#2|)) (|:| |maps| (-622 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3701 ((-622 |#2|) |#1|)) (-15 -3702 ((-622 |#2|) |#1|)) (-15 -3703 ((-622 |#2|) |#1|)) (-15 -3704 ((-622 |#2|) |#1|)) (-15 -3701 ((-622 |#2|) |#2| |#2|)) (-15 -3702 ((-622 |#2|) |#2| |#2| |#2|)) (-15 -3703 ((-622 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3704 ((-622 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3706 (|#2| |#2| |#2| |#2|)) (-15 -3707 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3708 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1207 |#2|) (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (T -1101)) +((-3708 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))) (-3707 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))) (-3706 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))) (-3705 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))) (-3704 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))) (-3703 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))) (-3702 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))) (-3701 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3)))) (-3704 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) (-3703 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) (-3702 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) (-3701 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) (-3700 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-2 (|:| |solns| (-622 *5)) (|:| |maps| (-622 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1101 *3 *5)) (-4 *3 (-1207 *5)))) (-3699 (*1 *2 *3) (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2)))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4))))) +(-10 -7 (-15 -3936 ((-622 |#2|) |#1|)) (-15 -3699 (|#2| |#1|)) (-15 -3700 ((-2 (|:| |solns| (-622 |#2|)) (|:| |maps| (-622 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3701 ((-622 |#2|) |#1|)) (-15 -3702 ((-622 |#2|) |#1|)) (-15 -3703 ((-622 |#2|) |#1|)) (-15 -3704 ((-622 |#2|) |#1|)) (-15 -3701 ((-622 |#2|) |#2| |#2|)) (-15 -3702 ((-622 |#2|) |#2| |#2| |#2|)) (-15 -3703 ((-622 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3704 ((-622 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3706 (|#2| |#2| |#2| |#2|)) (-15 -3707 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3708 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-3709 (((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|))))) 95) (((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149))) 94) (((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|)))) 92) (((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|))) (-622 (-1149))) 90) (((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|)))) 75) (((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|))) (-1149)) 76) (((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|))) 70) (((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|)) (-1149)) 59)) (-3710 (((-622 (-622 (-309 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149))) 88) (((-622 (-309 |#1|)) (-402 (-922 |#1|)) (-1149)) 43)) (-3711 (((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-402 (-922 |#1|)) (-1149)) 98) (((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149)) 97))) +(((-1102 |#1|) (-10 -7 (-15 -3709 ((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|)))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|))))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|))))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149)))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -3710 ((-622 (-309 |#1|)) (-402 (-922 |#1|)) (-1149))) (-15 -3710 ((-622 (-622 (-309 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3711 ((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3711 ((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-402 (-922 |#1|)) (-1149)))) (-13 (-302) (-827) (-145))) (T -1102)) +((-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-1138 (-622 (-309 *5)) (-622 (-288 (-309 *5))))) (-5 *1 (-1102 *5)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-402 (-922 *5)))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-1138 (-622 (-309 *5)) (-622 (-288 (-309 *5))))) (-5 *1 (-1102 *5)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-309 *5)))) (-5 *1 (-1102 *5)))) (-3710 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-309 *5))) (-5 *1 (-1102 *5)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-622 (-288 (-402 (-922 *4))))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *4))))) (-5 *1 (-1102 *4)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-288 (-402 (-922 *5))))) (-5 *4 (-622 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *5))))) (-5 *1 (-1102 *5)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-622 (-402 (-922 *4)))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *4))))) (-5 *1 (-1102 *4)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *5))))) (-5 *1 (-1102 *5)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-288 (-402 (-922 *4)))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1102 *4)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-288 (-402 (-922 *5)))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1102 *5)))) (-3709 (*1 *2 *3) (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1102 *4)))) (-3709 (*1 *2 *3 *4) (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1102 *5))))) +(-10 -7 (-15 -3709 ((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|)) (-1149))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-402 (-922 |#1|)))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3709 ((-622 (-288 (-309 |#1|))) (-288 (-402 (-922 |#1|))))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-402 (-922 |#1|))))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149)))) (-15 -3709 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -3710 ((-622 (-309 |#1|)) (-402 (-922 |#1|)) (-1149))) (-15 -3710 ((-622 (-622 (-309 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3711 ((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3711 ((-1138 (-622 (-309 |#1|)) (-622 (-288 (-309 |#1|)))) (-402 (-922 |#1|)) (-1149)))) +((-3713 (((-402 (-1143 (-309 |#1|))) (-1231 (-309 |#1|)) (-402 (-1143 (-309 |#1|))) (-538)) 29)) (-3712 (((-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|)))) 40))) +(((-1103 |#1|) (-10 -7 (-15 -3712 ((-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))))) (-15 -3713 ((-402 (-1143 (-309 |#1|))) (-1231 (-309 |#1|)) (-402 (-1143 (-309 |#1|))) (-538)))) (-13 (-545) (-827))) (T -1103)) +((-3713 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-402 (-1143 (-309 *5)))) (-5 *3 (-1231 (-309 *5))) (-5 *4 (-538)) (-4 *5 (-13 (-545) (-827))) (-5 *1 (-1103 *5)))) (-3712 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-402 (-1143 (-309 *3)))) (-4 *3 (-13 (-545) (-827))) (-5 *1 (-1103 *3))))) +(-10 -7 (-15 -3712 ((-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))) (-402 (-1143 (-309 |#1|))))) (-15 -3713 ((-402 (-1143 (-309 |#1|))) (-1231 (-309 |#1|)) (-402 (-1143 (-309 |#1|))) (-538)))) +((-3936 (((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-309 |#1|))) (-622 (-1149))) 224) (((-622 (-288 (-309 |#1|))) (-309 |#1|) (-1149)) 20) (((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|)) (-1149)) 26) (((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|))) 25) (((-622 (-288 (-309 |#1|))) (-309 |#1|)) 21))) +(((-1104 |#1|) (-10 -7 (-15 -3936 ((-622 (-288 (-309 |#1|))) (-309 |#1|))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|)))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|)) (-1149))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-309 |#1|) (-1149))) (-15 -3936 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-309 |#1|))) (-622 (-1149))))) (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (T -1104)) +((-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-1149))) (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *5))))) (-5 *1 (-1104 *5)) (-5 *3 (-622 (-288 (-309 *5)))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1104 *5)) (-5 *3 (-309 *5)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1104 *5)) (-5 *3 (-288 (-309 *5))))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-288 (-309 *4))))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-309 *4))))) +(-10 -7 (-15 -3936 ((-622 (-288 (-309 |#1|))) (-309 |#1|))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|)))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-288 (-309 |#1|)) (-1149))) (-15 -3936 ((-622 (-288 (-309 |#1|))) (-309 |#1|) (-1149))) (-15 -3936 ((-622 (-622 (-288 (-309 |#1|)))) (-622 (-288 (-309 |#1|))) (-622 (-1149))))) +((-3715 ((|#2| |#2|) 20 (|has| |#1| (-827))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 17)) (-3714 ((|#2| |#2|) 19 (|has| |#1| (-827))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 16))) +(((-1105 |#1| |#2|) (-10 -7 (-15 -3714 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3715 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-827)) (PROGN (-15 -3714 (|#2| |#2|)) (-15 -3715 (|#2| |#2|))) |%noBranch|)) (-1185) (-13 (-588 (-538) |#1|) (-10 -7 (-6 -4353) (-6 -4354)))) (T -1105)) +((-3715 (*1 *2 *2) (-12 (-4 *3 (-827)) (-4 *3 (-1185)) (-5 *1 (-1105 *3 *2)) (-4 *2 (-13 (-588 (-538) *3) (-10 -7 (-6 -4353) (-6 -4354)))))) (-3714 (*1 *2 *2) (-12 (-4 *3 (-827)) (-4 *3 (-1185)) (-5 *1 (-1105 *3 *2)) (-4 *2 (-13 (-588 (-538) *3) (-10 -7 (-6 -4353) (-6 -4354)))))) (-3715 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-1105 *4 *2)) (-4 *2 (-13 (-588 (-538) *4) (-10 -7 (-6 -4353) (-6 -4354)))))) (-3714 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-1105 *4 *2)) (-4 *2 (-13 (-588 (-538) *4) (-10 -7 (-6 -4353) (-6 -4354))))))) +(-10 -7 (-15 -3714 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3715 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-827)) (PROGN (-15 -3714 (|#2| |#2|)) (-15 -3715 (|#2| |#2|))) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-4248 (((-1137 3 |#1|) $) 107)) (-3725 (((-112) $) 72)) (-3726 (($ $ (-622 (-919 |#1|))) 20) (($ $ (-622 (-622 |#1|))) 75) (($ (-622 (-919 |#1|))) 74) (((-622 (-919 |#1|)) $) 73)) (-3731 (((-112) $) 41)) (-4069 (($ $ (-919 |#1|)) 46) (($ $ (-622 |#1|)) 51) (($ $ (-751)) 53) (($ (-919 |#1|)) 47) (((-919 |#1|) $) 45)) (-3717 (((-2 (|:| -4210 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $) 105)) (-3735 (((-751) $) 26)) (-3736 (((-751) $) 25)) (-4247 (($ $ (-751) (-919 |#1|)) 39)) (-3723 (((-112) $) 82)) (-3724 (($ $ (-622 (-622 (-919 |#1|))) (-622 (-169)) (-169)) 89) (($ $ (-622 (-622 (-622 |#1|))) (-622 (-169)) (-169)) 91) (($ $ (-622 (-622 (-919 |#1|))) (-112) (-112)) 85) (($ $ (-622 (-622 (-622 |#1|))) (-112) (-112)) 93) (($ (-622 (-622 (-919 |#1|)))) 86) (($ (-622 (-622 (-919 |#1|))) (-112) (-112)) 87) (((-622 (-622 (-919 |#1|))) $) 84)) (-3872 (($ (-622 $)) 28) (($ $ $) 29)) (-3718 (((-622 (-169)) $) 102)) (-3722 (((-622 (-919 |#1|)) $) 96)) (-3719 (((-622 (-622 (-169))) $) 101)) (-3720 (((-622 (-622 (-622 (-919 |#1|)))) $) NIL)) (-3721 (((-622 (-622 (-622 (-751)))) $) 99)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3732 (((-751) $ (-622 (-919 |#1|))) 37)) (-3729 (((-112) $) 54)) (-3730 (($ $ (-622 (-919 |#1|))) 56) (($ $ (-622 (-622 |#1|))) 62) (($ (-622 (-919 |#1|))) 57) (((-622 (-919 |#1|)) $) 55)) (-3737 (($) 23) (($ (-1137 3 |#1|)) 24)) (-3759 (($ $) 35)) (-3733 (((-622 $) $) 34)) (-4114 (($ (-622 $)) 31)) (-3734 (((-622 $) $) 33)) (-4317 (((-840) $) 111)) (-3727 (((-112) $) 64)) (-3728 (($ $ (-622 (-919 |#1|))) 66) (($ $ (-622 (-622 |#1|))) 69) (($ (-622 (-919 |#1|))) 67) (((-622 (-919 |#1|)) $) 65)) (-3716 (($ $) 106)) (-3387 (((-112) $ $) NIL))) +(((-1106 |#1|) (-1107 |#1|) (-1025)) (T -1106)) +NIL +(-1107 |#1|) +((-2898 (((-112) $ $) 7)) (-4248 (((-1137 3 |#1|) $) 13)) (-3725 (((-112) $) 29)) (-3726 (($ $ (-622 (-919 |#1|))) 33) (($ $ (-622 (-622 |#1|))) 32) (($ (-622 (-919 |#1|))) 31) (((-622 (-919 |#1|)) $) 30)) (-3731 (((-112) $) 44)) (-4069 (($ $ (-919 |#1|)) 49) (($ $ (-622 |#1|)) 48) (($ $ (-751)) 47) (($ (-919 |#1|)) 46) (((-919 |#1|) $) 45)) (-3717 (((-2 (|:| -4210 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $) 15)) (-3735 (((-751) $) 58)) (-3736 (((-751) $) 59)) (-4247 (($ $ (-751) (-919 |#1|)) 50)) (-3723 (((-112) $) 21)) (-3724 (($ $ (-622 (-622 (-919 |#1|))) (-622 (-169)) (-169)) 28) (($ $ (-622 (-622 (-622 |#1|))) (-622 (-169)) (-169)) 27) (($ $ (-622 (-622 (-919 |#1|))) (-112) (-112)) 26) (($ $ (-622 (-622 (-622 |#1|))) (-112) (-112)) 25) (($ (-622 (-622 (-919 |#1|)))) 24) (($ (-622 (-622 (-919 |#1|))) (-112) (-112)) 23) (((-622 (-622 (-919 |#1|))) $) 22)) (-3872 (($ (-622 $)) 57) (($ $ $) 56)) (-3718 (((-622 (-169)) $) 16)) (-3722 (((-622 (-919 |#1|)) $) 20)) (-3719 (((-622 (-622 (-169))) $) 17)) (-3720 (((-622 (-622 (-622 (-919 |#1|)))) $) 18)) (-3721 (((-622 (-622 (-622 (-751)))) $) 19)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3732 (((-751) $ (-622 (-919 |#1|))) 51)) (-3729 (((-112) $) 39)) (-3730 (($ $ (-622 (-919 |#1|))) 43) (($ $ (-622 (-622 |#1|))) 42) (($ (-622 (-919 |#1|))) 41) (((-622 (-919 |#1|)) $) 40)) (-3737 (($) 61) (($ (-1137 3 |#1|)) 60)) (-3759 (($ $) 52)) (-3733 (((-622 $) $) 53)) (-4114 (($ (-622 $)) 55)) (-3734 (((-622 $) $) 54)) (-4317 (((-840) $) 11)) (-3727 (((-112) $) 34)) (-3728 (($ $ (-622 (-919 |#1|))) 38) (($ $ (-622 (-622 |#1|))) 37) (($ (-622 (-919 |#1|))) 36) (((-622 (-919 |#1|)) $) 35)) (-3716 (($ $) 14)) (-3387 (((-112) $ $) 6))) +(((-1107 |#1|) (-138) (-1025)) (T -1107)) +((-4317 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-840)))) (-3737 (*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-3737 (*1 *1 *2) (-12 (-5 *2 (-1137 3 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3872 (*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3734 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)))) (-3733 (*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)))) (-3759 (*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-3732 (*1 *2 *1 *3) (-12 (-5 *3 (-622 (-919 *4))) (-4 *1 (-1107 *4)) (-4 *4 (-1025)) (-5 *2 (-751)))) (-4247 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-919 *4)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-4069 (*1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-4069 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-919 *3)))) (-3731 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-3730 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3730 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3730 (*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3728 (*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) (-3727 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-3726 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3726 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) (-3726 (*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-3724 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-622 (-622 (-919 *5)))) (-5 *3 (-622 (-169))) (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025)))) (-3724 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-622 (-622 (-622 *5)))) (-5 *3 (-622 (-169))) (-5 *4 (-169)) (-4 *1 (-1107 *5)) (-4 *5 (-1025)))) (-3724 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-622 (-622 (-919 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-3724 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-622 (-622 (-622 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) (-3724 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-919 *3)))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) (-3724 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-622 (-622 (-919 *4)))) (-5 *3 (-112)) (-4 *4 (-1025)) (-4 *1 (-1107 *4)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-919 *3)))))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112)))) (-3722 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-622 (-751))))))) (-3720 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-622 (-919 *3))))))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-169)))))) (-3718 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-169))))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -4210 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751)))))) (-3716 (*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) (-4248 (*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-1137 3 *3))))) +(-13 (-1074) (-10 -8 (-15 -3737 ($)) (-15 -3737 ($ (-1137 3 |t#1|))) (-15 -3736 ((-751) $)) (-15 -3735 ((-751) $)) (-15 -3872 ($ (-622 $))) (-15 -3872 ($ $ $)) (-15 -4114 ($ (-622 $))) (-15 -3734 ((-622 $) $)) (-15 -3733 ((-622 $) $)) (-15 -3759 ($ $)) (-15 -3732 ((-751) $ (-622 (-919 |t#1|)))) (-15 -4247 ($ $ (-751) (-919 |t#1|))) (-15 -4069 ($ $ (-919 |t#1|))) (-15 -4069 ($ $ (-622 |t#1|))) (-15 -4069 ($ $ (-751))) (-15 -4069 ($ (-919 |t#1|))) (-15 -4069 ((-919 |t#1|) $)) (-15 -3731 ((-112) $)) (-15 -3730 ($ $ (-622 (-919 |t#1|)))) (-15 -3730 ($ $ (-622 (-622 |t#1|)))) (-15 -3730 ($ (-622 (-919 |t#1|)))) (-15 -3730 ((-622 (-919 |t#1|)) $)) (-15 -3729 ((-112) $)) (-15 -3728 ($ $ (-622 (-919 |t#1|)))) (-15 -3728 ($ $ (-622 (-622 |t#1|)))) (-15 -3728 ($ (-622 (-919 |t#1|)))) (-15 -3728 ((-622 (-919 |t#1|)) $)) (-15 -3727 ((-112) $)) (-15 -3726 ($ $ (-622 (-919 |t#1|)))) (-15 -3726 ($ $ (-622 (-622 |t#1|)))) (-15 -3726 ($ (-622 (-919 |t#1|)))) (-15 -3726 ((-622 (-919 |t#1|)) $)) (-15 -3725 ((-112) $)) (-15 -3724 ($ $ (-622 (-622 (-919 |t#1|))) (-622 (-169)) (-169))) (-15 -3724 ($ $ (-622 (-622 (-622 |t#1|))) (-622 (-169)) (-169))) (-15 -3724 ($ $ (-622 (-622 (-919 |t#1|))) (-112) (-112))) (-15 -3724 ($ $ (-622 (-622 (-622 |t#1|))) (-112) (-112))) (-15 -3724 ($ (-622 (-622 (-919 |t#1|))))) (-15 -3724 ($ (-622 (-622 (-919 |t#1|))) (-112) (-112))) (-15 -3724 ((-622 (-622 (-919 |t#1|))) $)) (-15 -3723 ((-112) $)) (-15 -3722 ((-622 (-919 |t#1|)) $)) (-15 -3721 ((-622 (-622 (-622 (-751)))) $)) (-15 -3720 ((-622 (-622 (-622 (-919 |t#1|)))) $)) (-15 -3719 ((-622 (-622 (-169))) $)) (-15 -3718 ((-622 (-169)) $)) (-15 -3717 ((-2 (|:| -4210 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) (|:| |constructs| (-751))) $)) (-15 -3716 ($ $)) (-15 -4248 ((-1137 3 |t#1|) $)) (-15 -4317 ((-840) $)))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 176) (((-1154) $) 7) (($ (-1154)) NIL)) (-3929 (((-112) $ (|[\|\|]| (-517))) 17) (((-112) $ (|[\|\|]| (-214))) 21) (((-112) $ (|[\|\|]| (-656))) 25) (((-112) $ (|[\|\|]| (-1242))) 29) (((-112) $ (|[\|\|]| (-137))) 33) (((-112) $ (|[\|\|]| (-132))) 37) (((-112) $ (|[\|\|]| (-1089))) 41) (((-112) $ (|[\|\|]| (-95))) 45) (((-112) $ (|[\|\|]| (-661))) 49) (((-112) $ (|[\|\|]| (-510))) 53) (((-112) $ (|[\|\|]| (-1040))) 57) (((-112) $ (|[\|\|]| (-1243))) 61) (((-112) $ (|[\|\|]| (-518))) 65) (((-112) $ (|[\|\|]| (-152))) 69) (((-112) $ (|[\|\|]| (-651))) 73) (((-112) $ (|[\|\|]| (-307))) 77) (((-112) $ (|[\|\|]| (-1012))) 81) (((-112) $ (|[\|\|]| (-178))) 85) (((-112) $ (|[\|\|]| (-946))) 89) (((-112) $ (|[\|\|]| (-1047))) 93) (((-112) $ (|[\|\|]| (-1064))) 97) (((-112) $ (|[\|\|]| (-1069))) 101) (((-112) $ (|[\|\|]| (-608))) 105) (((-112) $ (|[\|\|]| (-1139))) 109) (((-112) $ (|[\|\|]| (-154))) 113) (((-112) $ (|[\|\|]| (-136))) 117) (((-112) $ (|[\|\|]| (-472))) 121) (((-112) $ (|[\|\|]| (-577))) 125) (((-112) $ (|[\|\|]| (-499))) 131) (((-112) $ (|[\|\|]| (-1131))) 135) (((-112) $ (|[\|\|]| (-538))) 139)) (-3935 (((-517) $) 18) (((-214) $) 22) (((-656) $) 26) (((-1242) $) 30) (((-137) $) 34) (((-132) $) 38) (((-1089) $) 42) (((-95) $) 46) (((-661) $) 50) (((-510) $) 54) (((-1040) $) 58) (((-1243) $) 62) (((-518) $) 66) (((-152) $) 70) (((-651) $) 74) (((-307) $) 78) (((-1012) $) 82) (((-178) $) 86) (((-946) $) 90) (((-1047) $) 94) (((-1064) $) 98) (((-1069) $) 102) (((-608) $) 106) (((-1139) $) 110) (((-154) $) 114) (((-136) $) 118) (((-472) $) 122) (((-577) $) 126) (((-499) $) 132) (((-1131) $) 136) (((-538) $) 140)) (-3387 (((-112) $ $) NIL))) +(((-1108) (-1110)) (T -1108)) +NIL +(-1110) +((-3738 (((-622 (-1154)) (-1131)) 9))) +(((-1109) (-10 -7 (-15 -3738 ((-622 (-1154)) (-1131))))) (T -1109)) +((-3738 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-622 (-1154))) (-5 *1 (-1109))))) +(-10 -7 (-15 -3738 ((-622 (-1154)) (-1131)))) +((-2898 (((-112) $ $) 7)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (((-1154) $) 15) (($ (-1154)) 14)) (-3929 (((-112) $ (|[\|\|]| (-517))) 80) (((-112) $ (|[\|\|]| (-214))) 78) (((-112) $ (|[\|\|]| (-656))) 76) (((-112) $ (|[\|\|]| (-1242))) 74) (((-112) $ (|[\|\|]| (-137))) 72) (((-112) $ (|[\|\|]| (-132))) 70) (((-112) $ (|[\|\|]| (-1089))) 68) (((-112) $ (|[\|\|]| (-95))) 66) (((-112) $ (|[\|\|]| (-661))) 64) (((-112) $ (|[\|\|]| (-510))) 62) (((-112) $ (|[\|\|]| (-1040))) 60) (((-112) $ (|[\|\|]| (-1243))) 58) (((-112) $ (|[\|\|]| (-518))) 56) (((-112) $ (|[\|\|]| (-152))) 54) (((-112) $ (|[\|\|]| (-651))) 52) (((-112) $ (|[\|\|]| (-307))) 50) (((-112) $ (|[\|\|]| (-1012))) 48) (((-112) $ (|[\|\|]| (-178))) 46) (((-112) $ (|[\|\|]| (-946))) 44) (((-112) $ (|[\|\|]| (-1047))) 42) (((-112) $ (|[\|\|]| (-1064))) 40) (((-112) $ (|[\|\|]| (-1069))) 38) (((-112) $ (|[\|\|]| (-608))) 36) (((-112) $ (|[\|\|]| (-1139))) 34) (((-112) $ (|[\|\|]| (-154))) 32) (((-112) $ (|[\|\|]| (-136))) 30) (((-112) $ (|[\|\|]| (-472))) 28) (((-112) $ (|[\|\|]| (-577))) 26) (((-112) $ (|[\|\|]| (-499))) 24) (((-112) $ (|[\|\|]| (-1131))) 22) (((-112) $ (|[\|\|]| (-538))) 20)) (-3935 (((-517) $) 79) (((-214) $) 77) (((-656) $) 75) (((-1242) $) 73) (((-137) $) 71) (((-132) $) 69) (((-1089) $) 67) (((-95) $) 65) (((-661) $) 63) (((-510) $) 61) (((-1040) $) 59) (((-1243) $) 57) (((-518) $) 55) (((-152) $) 53) (((-651) $) 51) (((-307) $) 49) (((-1012) $) 47) (((-178) $) 45) (((-946) $) 43) (((-1047) $) 41) (((-1064) $) 39) (((-1069) $) 37) (((-608) $) 35) (((-1139) $) 33) (((-154) $) 31) (((-136) $) 29) (((-472) $) 27) (((-577) $) 25) (((-499) $) 23) (((-1131) $) 21) (((-538) $) 19)) (-3387 (((-112) $ $) 6))) (((-1110) (-138)) (T -1110)) -((-3747 (*1 *1 *1) (-4 *1 (-1110))) (-3746 (*1 *1 *1) (-4 *1 (-1110))) (-3745 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3744 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3743 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3742 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3741 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3740 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3739 (*1 *1 *1) (-4 *1 (-1110))) (-3738 (*1 *1 *1 *1) (-4 *1 (-1110))) (-3741 (*1 *1 *1) (-4 *1 (-1110))) (-3737 (*1 *1 *1) (-4 *1 (-1110)))) -(-13 (-10 -8 (-15 -3737 ($ $)) (-15 -3741 ($ $)) (-15 -3738 ($ $ $)) (-15 -3739 ($ $)) (-15 -3740 ($ $ $)) (-15 -3741 ($ $ $)) (-15 -3742 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3744 ($ $ $)) (-15 -3745 ($ $ $)) (-15 -3746 ($ $)) (-15 -3747 ($ $)))) -((-2893 (((-112) $ $) 41)) (-3756 ((|#1| $) 15)) (-3748 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-3755 (((-112) $) 17)) (-3753 (($ $ |#1|) 28)) (-3751 (($ $ (-112)) 30)) (-3750 (($ $) 31)) (-3752 (($ $ |#2|) 29)) (-3588 (((-1129) $) NIL)) (-3749 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3589 (((-1091) $) NIL)) (-3757 (((-112) $) 14)) (-3923 (($) 10)) (-3754 (($ $) 27)) (-3879 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) 21) (((-620 $) (-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) 24) (((-620 $) |#1| (-620 |#2|)) 26)) (-4277 ((|#2| $) 16)) (-4312 (((-838) $) 50)) (-3382 (((-112) $ $) 39))) -(((-1111 |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -3923 ($)) (-15 -3757 ((-112) $)) (-15 -3756 (|#1| $)) (-15 -4277 (|#2| $)) (-15 -3755 ((-112) $)) (-15 -3879 ($ |#1| |#2| (-112))) (-15 -3879 ($ |#1| |#2|)) (-15 -3879 ($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) (-15 -3879 ((-620 $) (-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))))) (-15 -3879 ((-620 $) |#1| (-620 |#2|))) (-15 -3754 ($ $)) (-15 -3753 ($ $ |#1|)) (-15 -3752 ($ $ |#2|)) (-15 -3751 ($ $ (-112))) (-15 -3750 ($ $)) (-15 -3749 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3748 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1072) (-34)) (-13 (-1072) (-34))) (T -1111)) -((-3923 (*1 *1) (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))))) (-3756 (*1 *2 *1) (-12 (-4 *2 (-13 (-1072) (-34))) (-5 *1 (-1111 *2 *3)) (-4 *3 (-13 (-1072) (-34))))) (-4277 (*1 *2 *1) (-12 (-4 *2 (-13 (-1072) (-34))) (-5 *1 (-1111 *3 *2)) (-4 *3 (-13 (-1072) (-34))))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))))) (-3879 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3879 (*1 *1 *2 *3) (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1655 *4))) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1111 *3 *4)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-620 (-2 (|:| |val| *4) (|:| -1655 *5)))) (-4 *4 (-13 (-1072) (-34))) (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-620 (-1111 *4 *5))) (-5 *1 (-1111 *4 *5)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *4 (-620 *5)) (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-620 (-1111 *3 *5))) (-5 *1 (-1111 *3 *5)) (-4 *3 (-13 (-1072) (-34))))) (-3754 (*1 *1 *1) (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3753 (*1 *1 *1 *2) (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3752 (*1 *1 *1 *2) (-12 (-5 *1 (-1111 *3 *2)) (-4 *3 (-13 (-1072) (-34))) (-4 *2 (-13 (-1072) (-34))))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))))) (-3750 (*1 *1 *1) (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3749 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1072) (-34))) (-4 *6 (-13 (-1072) (-34))) (-5 *2 (-112)) (-5 *1 (-1111 *5 *6)))) (-3748 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-112)) (-5 *1 (-1111 *4 *5)) (-4 *4 (-13 (-1072) (-34)))))) -(-13 (-1072) (-10 -8 (-15 -3923 ($)) (-15 -3757 ((-112) $)) (-15 -3756 (|#1| $)) (-15 -4277 (|#2| $)) (-15 -3755 ((-112) $)) (-15 -3879 ($ |#1| |#2| (-112))) (-15 -3879 ($ |#1| |#2|)) (-15 -3879 ($ (-2 (|:| |val| |#1|) (|:| -1655 |#2|)))) (-15 -3879 ((-620 $) (-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))))) (-15 -3879 ((-620 $) |#1| (-620 |#2|))) (-15 -3754 ($ $)) (-15 -3753 ($ $ |#1|)) (-15 -3752 ($ $ |#2|)) (-15 -3751 ($ $ (-112))) (-15 -3750 ($ $)) (-15 -3749 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3748 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2893 (((-112) $ $) NIL (|has| (-1111 |#1| |#2|) (-1072)))) (-3756 (((-1111 |#1| |#2|) $) 25)) (-3765 (($ $) 76)) (-3761 (((-112) (-1111 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3758 (($ $ $ (-620 (-1111 |#1| |#2|))) 90) (($ $ $ (-620 (-1111 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1269 (((-112) $ (-749)) NIL)) (-3353 (((-1111 |#1| |#2|) $ (-1111 |#1| |#2|)) 43 (|has| $ (-6 -4349)))) (-4142 (((-1111 |#1| |#2|) $ #1="value" (-1111 |#1| |#2|)) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-3763 (((-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $) 80)) (-3759 (($ (-1111 |#1| |#2|) $) 39)) (-3760 (($ (-1111 |#1| |#2|) $) 31)) (-2063 (((-620 (-1111 |#1| |#2|)) $) NIL (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 51)) (-3762 (((-112) (-1111 |#1| |#2|) $) 82)) (-3355 (((-112) $ $) NIL (|has| (-1111 |#1| |#2|) (-1072)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 (-1111 |#1| |#2|)) $) 55 (|has| $ (-6 -4348)))) (-3591 (((-112) (-1111 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-1111 |#1| |#2|) (-1072))))) (-2067 (($ (-1 (-1111 |#1| |#2|) (-1111 |#1| |#2|)) $) 47 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-1111 |#1| |#2|) (-1111 |#1| |#2|)) $) 46)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 (-1111 |#1| |#2|)) $) 53)) (-3876 (((-112) $) 42)) (-3588 (((-1129) $) NIL (|has| (-1111 |#1| |#2|) (-1072)))) (-3589 (((-1091) $) NIL (|has| (-1111 |#1| |#2|) (-1072)))) (-3766 (((-3 $ "failed") $) 75)) (-2065 (((-112) (-1 (-112) (-1111 |#1| |#2|)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-1111 |#1| |#2|)))) NIL (-12 (|has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|))) (|has| (-1111 |#1| |#2|) (-1072)))) (($ $ (-286 (-1111 |#1| |#2|))) NIL (-12 (|has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|))) (|has| (-1111 |#1| |#2|) (-1072)))) (($ $ (-1111 |#1| |#2|) (-1111 |#1| |#2|)) NIL (-12 (|has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|))) (|has| (-1111 |#1| |#2|) (-1072)))) (($ $ (-620 (-1111 |#1| |#2|)) (-620 (-1111 |#1| |#2|))) NIL (-12 (|has| (-1111 |#1| |#2|) (-302 (-1111 |#1| |#2|))) (|has| (-1111 |#1| |#2|) (-1072))))) (-1270 (((-112) $ $) 50)) (-3757 (((-112) $) 22)) (-3923 (($) 24)) (-4154 (((-1111 |#1| |#2|) $ #1#) NIL)) (-3357 (((-536) $ $) NIL)) (-3991 (((-112) $) 44)) (-2064 (((-749) (-1 (-112) (-1111 |#1| |#2|)) $) NIL (|has| $ (-6 -4348))) (((-749) (-1111 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-1111 |#1| |#2|) (-1072))))) (-3754 (($ $) 49)) (-3879 (($ (-1111 |#1| |#2|)) 9) (($ |#1| |#2| (-620 $)) 12) (($ |#1| |#2| (-620 (-1111 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-620 |#2|)) 17)) (-3764 (((-620 |#2|) $) 81)) (-4312 (((-838) $) 73 (|has| (-1111 |#1| |#2|) (-595 (-838))))) (-3871 (((-620 $) $) 28)) (-3356 (((-112) $ $) NIL (|has| (-1111 |#1| |#2|) (-1072)))) (-2066 (((-112) (-1 (-112) (-1111 |#1| |#2|)) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 64 (|has| (-1111 |#1| |#2|) (-1072)))) (-4311 (((-749) $) 58 (|has| $ (-6 -4348))))) -(((-1112 |#1| |#2|) (-13 (-984 (-1111 |#1| |#2|)) (-10 -8 (-6 -4349) (-6 -4348) (-15 -3766 ((-3 $ "failed") $)) (-15 -3765 ($ $)) (-15 -3879 ($ (-1111 |#1| |#2|))) (-15 -3879 ($ |#1| |#2| (-620 $))) (-15 -3879 ($ |#1| |#2| (-620 (-1111 |#1| |#2|)))) (-15 -3879 ($ |#1| |#2| |#1| (-620 |#2|))) (-15 -3764 ((-620 |#2|) $)) (-15 -3763 ((-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $)) (-15 -3762 ((-112) (-1111 |#1| |#2|) $)) (-15 -3761 ((-112) (-1111 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3760 ($ (-1111 |#1| |#2|) $)) (-15 -3759 ($ (-1111 |#1| |#2|) $)) (-15 -3758 ($ $ $ (-620 (-1111 |#1| |#2|)))) (-15 -3758 ($ $ $ (-620 (-1111 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1072) (-34)) (-13 (-1072) (-34))) (T -1112)) -((-3766 (*1 *1 *1) (|partial| -12 (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3765 (*1 *1 *1) (-12 (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4)))) (-3879 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-620 (-1112 *2 *3))) (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) (-3879 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-620 (-1111 *2 *3))) (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))) (-5 *1 (-1112 *2 *3)))) (-3879 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-1072) (-34))) (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-620 *4)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1112 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))))) (-3762 (*1 *2 *3 *1) (-12 (-5 *3 (-1111 *4 *5)) (-4 *4 (-13 (-1072) (-34))) (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-112)) (-5 *1 (-1112 *4 *5)))) (-3761 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1111 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1072) (-34))) (-4 *6 (-13 (-1072) (-34))) (-5 *2 (-112)) (-5 *1 (-1112 *5 *6)))) (-3760 (*1 *1 *2 *1) (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4)))) (-3759 (*1 *1 *2 *1) (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4)))) (-3758 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-620 (-1111 *3 *4))) (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4)))) (-3758 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1111 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1072) (-34))) (-4 *5 (-13 (-1072) (-34))) (-5 *1 (-1112 *4 *5))))) -(-13 (-984 (-1111 |#1| |#2|)) (-10 -8 (-6 -4349) (-6 -4348) (-15 -3766 ((-3 $ "failed") $)) (-15 -3765 ($ $)) (-15 -3879 ($ (-1111 |#1| |#2|))) (-15 -3879 ($ |#1| |#2| (-620 $))) (-15 -3879 ($ |#1| |#2| (-620 (-1111 |#1| |#2|)))) (-15 -3879 ($ |#1| |#2| |#1| (-620 |#2|))) (-15 -3764 ((-620 |#2|) $)) (-15 -3763 ((-620 (-2 (|:| |val| |#1|) (|:| -1655 |#2|))) $)) (-15 -3762 ((-112) (-1111 |#1| |#2|) $)) (-15 -3761 ((-112) (-1111 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3760 ($ (-1111 |#1| |#2|) $)) (-15 -3759 ($ (-1111 |#1| |#2|) $)) (-15 -3758 ($ $ $ (-620 (-1111 |#1| |#2|)))) (-15 -3758 ($ $ $ (-620 (-1111 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3768 (($ $) NIL)) (-3684 ((|#2| $) NIL)) (-3451 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3767 (($ (-667 |#2|)) 50)) (-3453 (((-112) $) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-3687 (($ |#2|) 10)) (-3891 (($) NIL T CONST)) (-3440 (($ $) 63 (|has| |#2| (-300)))) (-3442 (((-233 |#1| |#2|) $ (-536)) 36)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 |#2| #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) ((|#2| $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) 77)) (-3439 (((-749) $) 65 (|has| |#2| (-543)))) (-3443 ((|#2| $ (-536) (-536)) NIL)) (-2063 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-2497 (((-112) $) NIL)) (-3438 (((-749) $) 67 (|has| |#2| (-543)))) (-3437 (((-620 (-233 |#1| |#2|)) $) 71 (|has| |#2| (-543)))) (-3445 (((-749) $) NIL)) (-3972 (($ |#2|) 20)) (-3444 (((-749) $) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-3681 ((|#2| $) 61 (|has| |#2| (-6 (-4350 #2="*"))))) (-3449 (((-536) $) NIL)) (-3447 (((-536) $) NIL)) (-2506 (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3448 (((-536) $) NIL)) (-3446 (((-536) $) NIL)) (-3454 (($ (-620 (-620 |#2|))) 31)) (-2067 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3951 (((-620 (-620 |#2|)) $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3947 (((-3 $ "failed") $) 74 (|has| |#2| (-356)))) (-3589 (((-1091) $) NIL)) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543)))) (-2065 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ (-536) (-536) |#2|) NIL) ((|#2| $ (-536) (-536)) NIL)) (-4165 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3683 ((|#2| $) NIL)) (-3686 (($ (-620 |#2|)) 44)) (-3452 (((-112) $) NIL)) (-3685 (((-233 |#1| |#2|) $) NIL)) (-3682 ((|#2| $) 59 (|has| |#2| (-6 (-4350 #2#))))) (-2064 (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-3754 (($ $) NIL)) (-4325 (((-525) $) 86 (|has| |#2| (-596 (-525))))) (-3441 (((-233 |#1| |#2|) $ (-536)) 38)) (-4312 (((-838) $) 41) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#2| (-1012 (-400 (-536))))) (($ |#2|) NIL) (((-667 |#2|) $) 46)) (-3456 (((-749)) 18)) (-2066 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3450 (((-112) $) NIL)) (-2986 (($) 12 T CONST)) (-2992 (($) 15 T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-749)) NIL (|has| |#2| (-227))) (($ $) NIL (|has| |#2| (-227)))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) 57) (($ $ (-536)) 76 (|has| |#2| (-356)))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-233 |#1| |#2|) $ (-233 |#1| |#2|)) 53) (((-233 |#1| |#2|) (-233 |#1| |#2|) $) 55)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1113 |#1| |#2|) (-13 (-1094 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-595 (-667 |#2|)) (-10 -8 (-15 -3972 ($ |#2|)) (-15 -3768 ($ $)) (-15 -3767 ($ (-667 |#2|))) (IF (|has| |#2| (-6 (-4350 "*"))) (-6 -4337) |%noBranch|) (IF (|has| |#2| (-6 (-4350 "*"))) (IF (|has| |#2| (-6 -4345)) (-6 -4345) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|))) (-749) (-1023)) (T -1113)) -((-3972 (*1 *1 *2) (-12 (-5 *1 (-1113 *3 *2)) (-14 *3 (-749)) (-4 *2 (-1023)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-14 *2 (-749)) (-4 *3 (-1023)))) (-3767 (*1 *1 *2) (-12 (-5 *2 (-667 *4)) (-4 *4 (-1023)) (-5 *1 (-1113 *3 *4)) (-14 *3 (-749))))) -(-13 (-1094 |#1| |#2| (-233 |#1| |#2|) (-233 |#1| |#2|)) (-595 (-667 |#2|)) (-10 -8 (-15 -3972 ($ |#2|)) (-15 -3768 ($ $)) (-15 -3767 ($ (-667 |#2|))) (IF (|has| |#2| (-6 (-4350 "*"))) (-6 -4337) |%noBranch|) (IF (|has| |#2| (-6 (-4350 "*"))) (IF (|has| |#2| (-6 -4345)) (-6 -4345) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-596 (-525))) (-6 (-596 (-525))) |%noBranch|))) -((-3781 (($ $) 19)) (-3771 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-3779 (((-112) $ $) 24)) (-3783 (($ $) 17)) (-4154 (((-142) $ (-536) (-142)) NIL) (((-142) $ (-536)) NIL) (($ $ (-1196 (-536))) NIL) (($ $ $) 29)) (-4312 (($ (-142)) 27) (((-838) $) NIL))) -(((-1114 |#1|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4154 (|#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-139))) (-15 -3771 (|#1| |#1| (-142))) (-15 -4312 (|#1| (-142))) (-15 -3779 ((-112) |#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3783 (|#1| |#1|)) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4154 ((-142) |#1| (-536))) (-15 -4154 ((-142) |#1| (-536) (-142)))) (-1115)) (T -1114)) -NIL -(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -4154 (|#1| |#1| |#1|)) (-15 -3771 (|#1| |#1| (-139))) (-15 -3771 (|#1| |#1| (-142))) (-15 -4312 (|#1| (-142))) (-15 -3779 ((-112) |#1| |#1|)) (-15 -3781 (|#1| |#1|)) (-15 -3783 (|#1| |#1|)) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4154 ((-142) |#1| (-536))) (-15 -4154 ((-142) |#1| (-536) (-142)))) -((-2893 (((-112) $ $) 19 (|has| (-142) (-1072)))) (-3780 (($ $) 120)) (-3781 (($ $) 121)) (-3771 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-3778 (((-112) $ $) 118)) (-3777 (((-112) $ $ (-536)) 117)) (-3772 (((-620 $) $ (-142)) 110) (((-620 $) $ (-139)) 109)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-825)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| (-142) (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 (((-142) $ (-536) (-142)) 52 (|has| $ (-6 -4349))) (((-142) $ (-1196 (-536)) (-142)) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-3769 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-3774 (($ $ (-1196 (-536)) $) 114)) (-1398 (($ $) 78 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ (-142) $) 77 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4348)))) (-4197 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4348)))) (-1632 (((-142) $ (-536) (-142)) 53 (|has| $ (-6 -4349)))) (-3443 (((-142) $ (-536)) 51)) (-3779 (((-112) $ $) 119)) (-3773 (((-536) (-1 (-112) (-142)) $) 97) (((-536) (-142) $) 96 (|has| (-142) (-1072))) (((-536) (-142) $ (-536)) 95 (|has| (-142) (-1072))) (((-536) $ $ (-536)) 113) (((-536) (-139) $ (-536)) 112)) (-2063 (((-620 (-142)) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) (-142)) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| (-142) (-825)))) (-3867 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-825)))) (-2506 (((-620 (-142)) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| (-142) (-825)))) (-3775 (((-112) $ $ (-142)) 115)) (-3776 (((-749) $ $ (-142)) 116)) (-2067 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3782 (($ $) 122)) (-3783 (($ $) 123)) (-4074 (((-112) $ (-749)) 10)) (-3770 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3588 (((-1129) $) 22 (|has| (-142) (-1072)))) (-2377 (($ (-142) $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| (-142) (-1072)))) (-4155 (((-142) $) 42 (|has| (-536) (-825)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2301 (($ $ (-142)) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-620 (-142)) (-620 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2307 (((-620 (-142)) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 (((-142) $ (-536) (-142)) 50) (((-142) $ (-536)) 49) (($ $ (-1196 (-536))) 63) (($ $ $) 102)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4348))) (((-749) (-142) $) 28 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| (-142) (-596 (-525))))) (-3879 (($ (-620 (-142))) 70)) (-4156 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (($ (-142)) 111) (((-838) $) 18 (|has| (-142) (-595 (-838))))) (-2066 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 84 (|has| (-142) (-825)))) (-2892 (((-112) $ $) 83 (|has| (-142) (-825)))) (-3382 (((-112) $ $) 20 (|has| (-142) (-1072)))) (-3012 (((-112) $ $) 85 (|has| (-142) (-825)))) (-3013 (((-112) $ $) 82 (|has| (-142) (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-1115) (-138)) (T -1115)) -((-3783 (*1 *1 *1) (-4 *1 (-1115))) (-3782 (*1 *1 *1) (-4 *1 (-1115))) (-3781 (*1 *1 *1) (-4 *1 (-1115))) (-3780 (*1 *1 *1) (-4 *1 (-1115))) (-3779 (*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112)))) (-3778 (*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112)))) (-3777 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-536)) (-5 *2 (-112)))) (-3776 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-142)) (-5 *2 (-749)))) (-3775 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-142)) (-5 *2 (-112)))) (-3774 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1196 (-536))))) (-3773 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-536)))) (-3773 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-536)) (-5 *3 (-139)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1115)))) (-3772 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-620 *1)) (-4 *1 (-1115)))) (-3772 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-620 *1)) (-4 *1 (-1115)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142)))) (-3771 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142)))) (-3770 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142)))) (-3769 (*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) (-4154 (*1 *1 *1 *1) (-4 *1 (-1115)))) -(-13 (-19 (-142)) (-10 -8 (-15 -3783 ($ $)) (-15 -3782 ($ $)) (-15 -3781 ($ $)) (-15 -3780 ($ $)) (-15 -3779 ((-112) $ $)) (-15 -3778 ((-112) $ $)) (-15 -3777 ((-112) $ $ (-536))) (-15 -3776 ((-749) $ $ (-142))) (-15 -3775 ((-112) $ $ (-142))) (-15 -3774 ($ $ (-1196 (-536)) $)) (-15 -3773 ((-536) $ $ (-536))) (-15 -3773 ((-536) (-139) $ (-536))) (-15 -4312 ($ (-142))) (-15 -3772 ((-620 $) $ (-142))) (-15 -3772 ((-620 $) $ (-139))) (-15 -3771 ($ $ (-142))) (-15 -3771 ($ $ (-139))) (-15 -3770 ($ $ (-142))) (-15 -3770 ($ $ (-139))) (-15 -3769 ($ $ (-142))) (-15 -3769 ($ $ (-139))) (-15 -4154 ($ $ $)))) -(((-34) . T) ((-101) -3886 (|has| (-142) (-1072)) (|has| (-142) (-825))) ((-595 (-838)) -3886 (|has| (-142) (-1072)) (|has| (-142) (-825)) (|has| (-142) (-595 (-838)))) ((-149 #1=(-142)) . T) ((-596 (-525)) |has| (-142) (-596 (-525))) ((-279 #2=(-536) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))) ((-365 #1#) . T) ((-481 #1#) . T) ((-586 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))) ((-629 #1#) . T) ((-19 #1#) . T) ((-825) |has| (-142) (-825)) ((-1072) -3886 (|has| (-142) (-1072)) (|has| (-142) (-825))) ((-1183) . T)) -((-3790 (((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749)) 94)) (-3787 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749)) 54)) (-3791 (((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)) 85)) (-3785 (((-749) (-620 |#4|) (-620 |#5|)) 27)) (-3788 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749)) 56) (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112)) 58)) (-3789 (((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112)) 77)) (-4325 (((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) 80)) (-3786 (((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|) 53)) (-3784 (((-749) (-620 |#4|) (-620 |#5|)) 19))) -(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3784 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3785 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3786 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3790 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749))) (-15 -4325 ((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3791 ((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|) (-1080 |#1| |#2| |#3| |#4|)) (T -1116)) -((-3791 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *4 (-749)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1235)) (-5 *1 (-1116 *5 *6 *7 *8 *9)))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1129)) (-5 *1 (-1116 *4 *5 *6 *7 *8)))) (-3790 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-620 *11)) (|:| |todo| (-620 (-2 (|:| |val| *3) (|:| -1655 *11)))))) (-5 *6 (-749)) (-5 *2 (-620 (-2 (|:| |val| (-620 *10)) (|:| -1655 *11)))) (-5 *3 (-620 *10)) (-5 *4 (-620 *11)) (-4 *10 (-1037 *7 *8 *9)) (-4 *11 (-1080 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-5 *1 (-1116 *7 *8 *9 *10 *11)))) (-3789 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1116 *5 *6 *7 *8 *9)))) (-3789 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1116 *5 *6 *7 *8 *9)))) (-3788 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-3788 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) (-4 *3 (-1037 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *7 *8 *9 *3 *4)) (-4 *4 (-1080 *7 *8 *9 *3)))) (-3787 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3787 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) (-3786 (*1 *2 *3 *4) (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-620 *4)) (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3)))) (-3785 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1116 *5 *6 *7 *8 *9)))) (-3784 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-749)) (-5 *1 (-1116 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -3784 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3785 ((-749) (-620 |#4|) (-620 |#5|))) (-15 -3786 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3787 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749) (-112))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5| (-749))) (-15 -3788 ((-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) |#4| |#5|)) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112))) (-15 -3789 ((-620 |#5|) (-620 |#4|) (-620 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3790 ((-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-620 |#4|) (-620 |#5|) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-2 (|:| |done| (-620 |#5|)) (|:| |todo| (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))))) (-749))) (-15 -4325 ((-1129) (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|)))) (-15 -3791 ((-1235) (-620 (-2 (|:| |val| (-620 |#4|)) (|:| -1655 |#5|))) (-749)))) -((-2893 (((-112) $ $) NIL)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) NIL)) (-4040 (((-620 $) (-620 |#4|)) 110) (((-620 $) (-620 |#4|) (-112)) 111) (((-620 $) (-620 |#4|) (-112) (-112)) 109) (((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3412 (((-620 |#3|) $) NIL)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4129 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| $) 84)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) 26 (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3228 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) NIL)) (-3502 (($ (-620 |#4|)) NIL)) (-4153 (((-3 $ #1#) $) 39)) (-4043 ((|#4| |#4| $) 65)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3760 (($ |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4041 ((|#4| |#4| $) NIL)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) NIL)) (-3543 (((-112) |#4| $) NIL)) (-3541 (((-112) |#4| $) NIL)) (-3544 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3792 (((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112)) 124)) (-2063 (((-620 |#4|) $) 16 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3526 ((|#3| $) 33)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#4|) $) 17 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-2067 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 21)) (-3242 (((-620 |#3|) $) NIL)) (-3241 (((-112) |#3| $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-3537 (((-3 |#4| (-620 $)) |#4| |#4| $) NIL)) (-3536 (((-620 (-2 (|:| |val| |#4|) (|:| -1655 $))) |#4| |#4| $) 103)) (-4152 (((-3 |#4| #1#) $) 37)) (-3538 (((-620 $) |#4| $) 88)) (-3540 (((-3 (-112) (-620 $)) |#4| $) NIL)) (-3539 (((-620 (-2 (|:| |val| (-112)) (|:| -1655 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3584 (((-620 $) |#4| $) 107) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) 108) (((-620 $) |#4| (-620 $)) NIL)) (-3793 (((-620 $) (-620 |#4|) (-112) (-112) (-112)) 119)) (-3794 (($ |#4| $) 75) (($ (-620 |#4|) $) 76) (((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-4055 (((-620 |#4|) $) NIL)) (-4049 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4044 ((|#4| |#4| $) NIL)) (-4057 (((-112) $ $) NIL)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4045 ((|#4| |#4| $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4037 (((-3 $ #1#) $ |#4|) 48)) (-4123 (($ $ |#4|) NIL) (((-620 $) |#4| $) 90) (((-620 $) |#4| (-620 $)) NIL) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) 86)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 15)) (-3923 (($) 13)) (-4302 (((-749) $) NIL)) (-2064 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) 12)) (-4325 (((-525) $) NIL (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 20)) (-3238 (($ $ |#3|) 42)) (-3240 (($ $ |#3|) 44)) (-4042 (($ $) NIL)) (-3239 (($ $ |#3|) NIL)) (-4312 (((-838) $) 31) (((-620 |#4|) $) 40)) (-4036 (((-749) $) NIL (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) NIL)) (-3535 (((-620 $) |#4| $) 54) (((-620 $) |#4| (-620 $)) NIL) (((-620 $) (-620 |#4|) $) NIL) (((-620 $) (-620 |#4|) (-620 $)) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) NIL)) (-3542 (((-112) |#4| $) NIL)) (-4288 (((-112) |#3| $) 61)) (-3382 (((-112) $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1117 |#1| |#2| |#3| |#4|) (-13 (-1080 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3794 ((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112))) (-15 -3793 ((-620 $) (-620 |#4|) (-112) (-112) (-112))) (-15 -3792 ((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112))))) (-444) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -1117)) -((-3794 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *3))) (-5 *1 (-1117 *5 *6 *7 *3)) (-4 *3 (-1037 *5 *6 *7)))) (-4040 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) (-5 *1 (-1117 *5 *6 *7 *8)))) (-4040 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) (-5 *1 (-1117 *5 *6 *7 *8)))) (-3793 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) (-5 *1 (-1117 *5 *6 *7 *8)))) (-3792 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-620 *8)) (|:| |towers| (-620 (-1117 *5 *6 *7 *8))))) (-5 *1 (-1117 *5 *6 *7 *8)) (-5 *3 (-620 *8))))) -(-13 (-1080 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3794 ((-620 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112))) (-15 -4040 ((-620 $) (-620 |#4|) (-112) (-112) (-112) (-112))) (-15 -3793 ((-620 $) (-620 |#4|) (-112) (-112) (-112))) (-15 -3792 ((-2 (|:| |val| (-620 |#4|)) (|:| |towers| (-620 $))) (-620 |#4|) (-112) (-112))))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3678 ((|#1| $) 34)) (-3795 (($ (-620 |#1|)) 39)) (-1269 (((-112) $ (-749)) NIL)) (-3891 (($) NIL T CONST)) (-3680 ((|#1| |#1| $) 36)) (-3679 ((|#1| $) 32)) (-2063 (((-620 |#1|) $) 18 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 22)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-1331 ((|#1| $) 35)) (-3965 (($ |#1| $) 37)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-1332 ((|#1| $) 33)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 31)) (-3923 (($) 38)) (-3677 (((-749) $) 29)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 27)) (-4312 (((-838) $) 14 (|has| |#1| (-595 (-838))))) (-1333 (($ (-620 |#1|)) NIL)) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 17 (|has| |#1| (-1072)))) (-4311 (((-749) $) 30 (|has| $ (-6 -4348))))) -(((-1118 |#1|) (-13 (-1092 |#1|) (-10 -8 (-15 -3795 ($ (-620 |#1|))))) (-1183)) (T -1118)) -((-3795 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1118 *3))))) -(-13 (-1092 |#1|) (-10 -8 (-15 -3795 ($ (-620 |#1|))))) -((-4142 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1196 (-536)) |#2|) 44) ((|#2| $ (-536) |#2|) 41)) (-3796 (((-112) $) 12)) (-2067 (($ (-1 |#2| |#2|) $) 39)) (-4155 ((|#2| $) NIL) (($ $ (-749)) 17)) (-2301 (($ $ |#2|) 40)) (-3797 (((-112) $) 11)) (-4154 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1196 (-536))) 31) ((|#2| $ (-536)) 23) ((|#2| $ (-536) |#2|) NIL)) (-4145 (($ $ $) 47) (($ $ |#2|) NIL)) (-4156 (($ $ $) 33) (($ |#2| $) NIL) (($ (-620 $)) 36) (($ $ |#2|) NIL))) -(((-1119 |#1| |#2|) (-10 -8 (-15 -3796 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -2301 (|#1| |#1| |#2|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4142 (|#2| |#1| (-1196 (-536)) |#2|)) (-15 -4142 (|#2| |#1| #1="last" |#2|)) (-15 -4142 (|#1| |#1| #2="rest" |#1|)) (-15 -4142 (|#2| |#1| #3="first" |#2|)) (-15 -4145 (|#1| |#1| |#2|)) (-15 -4145 (|#1| |#1| |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -4154 (|#1| |#1| #2#)) (-15 -4155 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| #3#)) (-15 -4155 (|#2| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| #4="value" |#2|)) (-15 -4154 (|#2| |#1| #4#)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|))) (-1120 |#2|) (-1183)) (T -1119)) -NIL -(-10 -8 (-15 -3796 ((-112) |#1|)) (-15 -3797 ((-112) |#1|)) (-15 -4142 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536) |#2|)) (-15 -4154 (|#2| |#1| (-536))) (-15 -2301 (|#1| |#1| |#2|)) (-15 -4156 (|#1| |#1| |#2|)) (-15 -4156 (|#1| (-620 |#1|))) (-15 -4154 (|#1| |#1| (-1196 (-536)))) (-15 -4142 (|#2| |#1| (-1196 (-536)) |#2|)) (-15 -4142 (|#2| |#1| #1="last" |#2|)) (-15 -4142 (|#1| |#1| #2="rest" |#1|)) (-15 -4142 (|#2| |#1| #3="first" |#2|)) (-15 -4145 (|#1| |#1| |#2|)) (-15 -4145 (|#1| |#1| |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -4154 (|#1| |#1| #2#)) (-15 -4155 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| #3#)) (-15 -4155 (|#2| |#1|)) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -4142 (|#2| |#1| #4="value" |#2|)) (-15 -4154 (|#2| |#1| #4#)) (-15 -2067 (|#1| (-1 |#2| |#2|) |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-4149 ((|#1| $) 65)) (-4151 (($ $) 67)) (-2300 (((-1235) $ (-536) (-536)) 97 (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 52 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-4141 (($ $ $) 56 (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) 54 (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 58 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4349))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 117 (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) 86 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4348)))) (-4150 ((|#1| $) 66)) (-3891 (($) 7 T CONST)) (-4153 (($ $) 73) (($ $ (-749)) 71)) (-1398 (($ $) 99 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4348))) (($ |#1| $) 100 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1632 ((|#1| $ (-536) |#1|) 85 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 87)) (-3796 (((-112) $) 83)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) 108)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 95 (|has| (-536) (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 94 (|has| (-536) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-4152 ((|#1| $) 70) (($ $ (-749)) 68)) (-2377 (($ $ $ (-536)) 116) (($ |#1| $ (-536)) 115)) (-2305 (((-620 (-536)) $) 92)) (-2306 (((-112) (-536) $) 91)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 76) (($ $ (-749)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2301 (($ $ |#1|) 96 (|has| $ (-6 -4349)))) (-3797 (((-112) $) 84)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 90)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1196 (-536))) 112) ((|#1| $ (-536)) 89) ((|#1| $ (-536) |#1|) 88)) (-3357 (((-536) $ $) 44)) (-2378 (($ $ (-1196 (-536))) 114) (($ $ (-536)) 113)) (-3991 (((-112) $) 46)) (-4146 (($ $) 62)) (-4144 (($ $) 59 (|has| $ (-6 -4349)))) (-4147 (((-749) $) 63)) (-4148 (($ $) 64)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4325 (((-525) $) 98 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 107)) (-4145 (($ $ $) 61 (|has| $ (-6 -4349))) (($ $ |#1|) 60 (|has| $ (-6 -4349)))) (-4156 (($ $ $) 78) (($ |#1| $) 77) (($ (-620 $)) 110) (($ $ |#1|) 109)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-1120 |#1|) (-138) (-1183)) (T -1120)) -((-3797 (*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) -(-13 (-1218 |t#1|) (-629 |t#1|) (-10 -8 (-15 -3797 ((-112) $)) (-15 -3796 ((-112) $)))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T) ((-1218 |#1|) . T)) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) NIL)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) NIL)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1121 |#1| |#2| |#3|) (-1160 |#1| |#2|) (-1072) (-1072) |#2|) (T -1121)) -NIL -(-1160 |#1| |#2|) -((-2893 (((-112) $ $) 7)) (-3798 (((-3 $ "failed") $) 13)) (-3588 (((-1129) $) 9)) (-3799 (($) 14 T CONST)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11)) (-3382 (((-112) $ $) 6))) -(((-1122) (-138)) (T -1122)) -((-3799 (*1 *1) (-4 *1 (-1122))) (-3798 (*1 *1 *1) (|partial| -4 *1 (-1122)))) -(-13 (-1072) (-10 -8 (-15 -3799 ($) -4306) (-15 -3798 ((-3 $ "failed") $)))) -(((-101) . T) ((-595 (-838)) . T) ((-1072) . T)) -((-3802 (((-1124 |#1|) (-1124 |#1|)) 17)) (-3800 (((-1124 |#1|) (-1124 |#1|)) 13)) (-3803 (((-1124 |#1|) (-1124 |#1|) (-536) (-536)) 20)) (-3801 (((-1124 |#1|) (-1124 |#1|)) 15))) -(((-1123 |#1|) (-10 -7 (-15 -3800 ((-1124 |#1|) (-1124 |#1|))) (-15 -3801 ((-1124 |#1|) (-1124 |#1|))) (-15 -3802 ((-1124 |#1|) (-1124 |#1|))) (-15 -3803 ((-1124 |#1|) (-1124 |#1|) (-536) (-536)))) (-13 (-543) (-145))) (T -1123)) -((-3803 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-13 (-543) (-145))) (-5 *1 (-1123 *4)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3))))) -(-10 -7 (-15 -3800 ((-1124 |#1|) (-1124 |#1|))) (-15 -3801 ((-1124 |#1|) (-1124 |#1|))) (-15 -3802 ((-1124 |#1|) (-1124 |#1|))) (-15 -3803 ((-1124 |#1|) (-1124 |#1|) (-536) (-536)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) NIL)) (-4149 ((|#1| $) NIL)) (-4151 (($ $) 52)) (-2300 (((-1235) $ (-536) (-536)) 77 (|has| $ (-6 -4349)))) (-4139 (($ $ (-536)) 111 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-3808 (((-838) $) 41 (|has| |#1| (-1072)))) (-3807 (((-112)) 40 (|has| |#1| (-1072)))) (-3353 ((|#1| $ |#1|) NIL (|has| $ (-6 -4349)))) (-4141 (($ $ $) 99 (|has| $ (-6 -4349))) (($ $ (-536) $) 123)) (-4140 ((|#1| $ |#1|) 108 (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 103 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ #2="first" |#1|) 105 (|has| $ (-6 -4349))) (($ $ #3="rest" $) 107 (|has| $ (-6 -4349))) ((|#1| $ #4="last" |#1|) 110 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 90 (|has| $ (-6 -4349))) ((|#1| $ (-536) |#1|) 56 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 59)) (-4150 ((|#1| $) NIL)) (-3891 (($) NIL T CONST)) (-2393 (($ $) 14)) (-4153 (($ $) 29) (($ $ (-749)) 89)) (-3813 (((-112) (-620 |#1|) $) 117 (|has| |#1| (-1072)))) (-3814 (($ (-620 |#1|)) 113)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) 58)) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3796 (((-112) $) NIL)) (-2063 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3809 (((-1235) (-536) $) 122 (|has| |#1| (-1072)))) (-2392 (((-749) $) 119)) (-3359 (((-620 $) $) NIL)) (-3355 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-4074 (((-112) $ (-749)) NIL)) (-3358 (((-620 |#1|) $) NIL)) (-3876 (((-112) $) NIL)) (-2395 (($ $) 91)) (-2396 (((-112) $) 13)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-4152 ((|#1| $) NIL) (($ $ (-749)) NIL)) (-2377 (($ $ $ (-536)) NIL) (($ |#1| $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) 75)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-3806 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-2394 ((|#1| $) 10)) (-4155 ((|#1| $) 28) (($ $ (-749)) 50)) (-3812 (((-2 (|:| |cycle?| (-112)) (|:| -2920 (-749)) (|:| |period| (-749))) (-749) $) 25)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3805 (($ (-1 (-112) |#1|) $) 127)) (-3804 (($ (-1 (-112) |#1|) $) 128)) (-2301 (($ $ |#1|) 69 (|has| $ (-6 -4349)))) (-4123 (($ $ (-536)) 32)) (-3797 (((-112) $) 73)) (-2397 (((-112) $) 12)) (-2398 (((-112) $) 118)) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 20)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) 15)) (-3923 (($) 45)) (-4154 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1196 (-536))) NIL) ((|#1| $ (-536)) 55) ((|#1| $ (-536) |#1|) NIL)) (-3357 (((-536) $ $) 49)) (-2378 (($ $ (-1196 (-536))) NIL) (($ $ (-536)) NIL)) (-3811 (($ (-1 $)) 48)) (-3991 (((-112) $) 70)) (-4146 (($ $) 71)) (-4144 (($ $) 100 (|has| $ (-6 -4349)))) (-4147 (((-749) $) NIL)) (-4148 (($ $) NIL)) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 44)) (-4325 (((-525) $) NIL (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 54)) (-3810 (($ |#1| $) 98)) (-4145 (($ $ $) 101 (|has| $ (-6 -4349))) (($ $ |#1|) 102 (|has| $ (-6 -4349)))) (-4156 (($ $ $) 79) (($ |#1| $) 46) (($ (-620 $)) 84) (($ $ |#1|) 78)) (-3219 (($ $) 51)) (-4312 (($ (-620 |#1|)) 112) (((-838) $) 42 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) NIL)) (-3356 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 115 (|has| |#1| (-1072)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1124 |#1|) (-13 (-652 |#1|) (-10 -8 (-6 -4349) (-15 -4312 ($ (-620 |#1|))) (-15 -3814 ($ (-620 |#1|))) (IF (|has| |#1| (-1072)) (-15 -3813 ((-112) (-620 |#1|) $)) |%noBranch|) (-15 -3812 ((-2 (|:| |cycle?| (-112)) (|:| -2920 (-749)) (|:| |period| (-749))) (-749) $)) (-15 -3811 ($ (-1 $))) (-15 -3810 ($ |#1| $)) (IF (|has| |#1| (-1072)) (PROGN (-15 -3809 ((-1235) (-536) $)) (-15 -3808 ((-838) $)) (-15 -3807 ((-112)))) |%noBranch|) (-15 -4141 ($ $ (-536) $)) (-15 -3806 ($ (-1 |#1|))) (-15 -3806 ($ (-1 |#1| |#1|) |#1|)) (-15 -3805 ($ (-1 (-112) |#1|) $)) (-15 -3804 ($ (-1 (-112) |#1|) $)))) (-1183)) (T -1124)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) (-3814 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) (-3813 (*1 *2 *3 *1) (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-4 *4 (-1183)) (-5 *2 (-112)) (-5 *1 (-1124 *4)))) (-3812 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2920 (-749)) (|:| |period| (-749)))) (-5 *1 (-1124 *4)) (-4 *4 (-1183)) (-5 *3 (-749)))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-1 (-1124 *3))) (-5 *1 (-1124 *3)) (-4 *3 (-1183)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1183)))) (-3809 (*1 *2 *3 *1) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1124 *4)) (-4 *4 (-1072)) (-4 *4 (-1183)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1124 *3)) (-4 *3 (-1072)) (-4 *3 (-1183)))) (-3807 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3)) (-4 *3 (-1072)) (-4 *3 (-1183)))) (-4141 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1124 *3)) (-4 *3 (-1183)))) (-3806 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) (-3806 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) (-3805 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) (-3804 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3))))) -(-13 (-652 |#1|) (-10 -8 (-6 -4349) (-15 -4312 ($ (-620 |#1|))) (-15 -3814 ($ (-620 |#1|))) (IF (|has| |#1| (-1072)) (-15 -3813 ((-112) (-620 |#1|) $)) |%noBranch|) (-15 -3812 ((-2 (|:| |cycle?| (-112)) (|:| -2920 (-749)) (|:| |period| (-749))) (-749) $)) (-15 -3811 ($ (-1 $))) (-15 -3810 ($ |#1| $)) (IF (|has| |#1| (-1072)) (PROGN (-15 -3809 ((-1235) (-536) $)) (-15 -3808 ((-838) $)) (-15 -3807 ((-112)))) |%noBranch|) (-15 -4141 ($ $ (-536) $)) (-15 -3806 ($ (-1 |#1|))) (-15 -3806 ($ (-1 |#1| |#1|) |#1|)) (-15 -3805 ($ (-1 (-112) |#1|) $)) (-15 -3804 ($ (-1 (-112) |#1|) $)))) -((-4156 (((-1124 |#1|) (-1124 (-1124 |#1|))) 15))) -(((-1125 |#1|) (-10 -7 (-15 -4156 ((-1124 |#1|) (-1124 (-1124 |#1|))))) (-1183)) (T -1125)) -((-4156 (*1 *2 *3) (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1125 *4)) (-4 *4 (-1183))))) -(-10 -7 (-15 -4156 ((-1124 |#1|) (-1124 (-1124 |#1|))))) -((-4196 (((-1124 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)) 25)) (-4197 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)) 26)) (-4313 (((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|)) 16))) -(((-1126 |#1| |#2|) (-10 -7 (-15 -4313 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (-15 -4196 ((-1124 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|))) (-15 -4197 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)))) (-1183) (-1183)) (T -1126)) -((-4197 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1124 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-1126 *5 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1124 *6)) (-4 *6 (-1183)) (-4 *3 (-1183)) (-5 *2 (-1124 *3)) (-5 *1 (-1126 *6 *3)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1124 *6)) (-5 *1 (-1126 *5 *6))))) -(-10 -7 (-15 -4313 ((-1124 |#2|) (-1 |#2| |#1|) (-1124 |#1|))) (-15 -4196 ((-1124 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|))) (-15 -4197 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1124 |#1|)))) -((-4313 (((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-1124 |#2|)) 21))) -(((-1127 |#1| |#2| |#3|) (-10 -7 (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-1124 |#2|)))) (-1183) (-1183) (-1183)) (T -1127)) -((-4313 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-1124 *7)) (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) (-5 *1 (-1127 *6 *7 *8))))) -(-10 -7 (-15 -4313 ((-1124 |#3|) (-1 |#3| |#1| |#2|) (-1124 |#1|) (-1124 |#2|)))) -((-2893 (((-112) $ $) 19)) (-3780 (($ $) 120)) (-3781 (($ $) 121)) (-3771 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-3778 (((-112) $ $) 118)) (-3777 (((-112) $ $ (-536)) 117)) (-3893 (($ (-536)) 127)) (-3772 (((-620 $) $ (-142)) 110) (((-620 $) $ (-139)) 109)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-825)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| (-142) (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 (((-142) $ (-536) (-142)) 52 (|has| $ (-6 -4349))) (((-142) $ (-1196 (-536)) (-142)) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-3769 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-3774 (($ $ (-1196 (-536)) $) 114)) (-1398 (($ $) 78 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ (-142) $) 77 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4348)))) (-4197 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4348)))) (-1632 (((-142) $ (-536) (-142)) 53 (|has| $ (-6 -4349)))) (-3443 (((-142) $ (-536)) 51)) (-3779 (((-112) $ $) 119)) (-3773 (((-536) (-1 (-112) (-142)) $) 97) (((-536) (-142) $) 96 (|has| (-142) (-1072))) (((-536) (-142) $ (-536)) 95 (|has| (-142) (-1072))) (((-536) $ $ (-536)) 113) (((-536) (-139) $ (-536)) 112)) (-2063 (((-620 (-142)) $) 30 (|has| $ (-6 -4348)))) (-3972 (($ (-749) (-142)) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| (-142) (-825)))) (-3867 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-825)))) (-2506 (((-620 (-142)) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| (-142) (-825)))) (-3775 (((-112) $ $ (-142)) 115)) (-3776 (((-749) $ $ (-142)) 116)) (-2067 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3782 (($ $) 122)) (-3783 (($ $) 123)) (-4074 (((-112) $ (-749)) 10)) (-3770 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3588 (((-1129) $) 22)) (-2377 (($ (-142) $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21)) (-4155 (((-142) $) 42 (|has| (-536) (-825)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2301 (($ $ (-142)) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-142)))) 26 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-286 (-142))) 25 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-620 (-142)) (-620 (-142))) 23 (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2307 (((-620 (-142)) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 (((-142) $ (-536) (-142)) 50) (((-142) $ (-536)) 49) (($ $ (-1196 (-536))) 63) (($ $ $) 102)) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-2064 (((-749) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4348))) (((-749) (-142) $) 28 (-12 (|has| (-142) (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| (-142) (-596 (-525))))) (-3879 (($ (-620 (-142))) 70)) (-4156 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (($ (-142)) 111) (((-838) $) 18)) (-2066 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4348)))) (-2829 (((-1129) $) 131) (((-1129) $ (-112)) 130) (((-1235) (-801) $) 129) (((-1235) (-801) $ (-112)) 128)) (-2891 (((-112) $ $) 84 (|has| (-142) (-825)))) (-2892 (((-112) $ $) 83 (|has| (-142) (-825)))) (-3382 (((-112) $ $) 20)) (-3012 (((-112) $ $) 85 (|has| (-142) (-825)))) (-3013 (((-112) $ $) 82 (|has| (-142) (-825)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-1128) (-138)) (T -1128)) -((-3893 (*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1128))))) -(-13 (-1115) (-1072) (-799) (-10 -8 (-15 -3893 ($ (-536))))) -(((-34) . T) ((-101) . T) ((-595 (-838)) . T) ((-149 #1=(-142)) . T) ((-596 (-525)) |has| (-142) (-596 (-525))) ((-279 #2=(-536) #1#) . T) ((-281 #2# #1#) . T) ((-302 #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))) ((-365 #1#) . T) ((-481 #1#) . T) ((-586 #2# #1#) . T) ((-505 #1# #1#) -12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))) ((-629 #1#) . T) ((-19 #1#) . T) ((-799) . T) ((-825) |has| (-142) (-825)) ((-1072) . T) ((-1115) . T) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-3780 (($ $) NIL)) (-3781 (($ $) NIL)) (-3771 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-3778 (((-112) $ $) NIL)) (-3777 (((-112) $ $ (-536)) NIL)) (-3893 (($ (-536)) 7)) (-3772 (((-620 $) $ (-142)) NIL) (((-620 $) $ (-139)) NIL)) (-1843 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-825)))) (-1841 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| (-142) (-825))))) (-3237 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 (((-142) $ (-536) (-142)) NIL (|has| $ (-6 -4349))) (((-142) $ (-1196 (-536)) (-142)) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-3769 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-3774 (($ $ (-1196 (-536)) $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-3760 (($ (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4348))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4348)))) (-1632 (((-142) $ (-536) (-142)) NIL (|has| $ (-6 -4349)))) (-3443 (((-142) $ (-536)) NIL)) (-3779 (((-112) $ $) NIL)) (-3773 (((-536) (-1 (-112) (-142)) $) NIL) (((-536) (-142) $) NIL (|has| (-142) (-1072))) (((-536) (-142) $ (-536)) NIL (|has| (-142) (-1072))) (((-536) $ $ (-536)) NIL) (((-536) (-139) $ (-536)) NIL)) (-2063 (((-620 (-142)) $) NIL (|has| $ (-6 -4348)))) (-3972 (($ (-749) (-142)) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| (-142) (-825)))) (-3867 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-825)))) (-2506 (((-620 (-142)) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| (-142) (-825)))) (-3775 (((-112) $ $ (-142)) NIL)) (-3776 (((-749) $ $ (-142)) NIL)) (-2067 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3782 (($ $) NIL)) (-3783 (($ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3770 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3588 (((-1129) $) NIL)) (-2377 (($ (-142) $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-142) $) NIL (|has| (-536) (-825)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2301 (($ $ (-142)) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-142)))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-286 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072)))) (($ $ (-620 (-142)) (-620 (-142))) NIL (-12 (|has| (-142) (-302 (-142))) (|has| (-142) (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-2307 (((-620 (-142)) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 (((-142) $ (-536) (-142)) NIL) (((-142) $ (-536)) NIL) (($ $ (-1196 (-536))) NIL) (($ $ $) NIL)) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-2064 (((-749) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348))) (((-749) (-142) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-142) (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-142) (-596 (-525))))) (-3879 (($ (-620 (-142))) NIL)) (-4156 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (($ (-142)) NIL) (((-838) $) NIL)) (-2066 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4348)))) (-2829 (((-1129) $) 18) (((-1129) $ (-112)) 20) (((-1235) (-801) $) 21) (((-1235) (-801) $ (-112)) 22)) (-2891 (((-112) $ $) NIL (|has| (-142) (-825)))) (-2892 (((-112) $ $) NIL (|has| (-142) (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| (-142) (-825)))) (-3013 (((-112) $ $) NIL (|has| (-142) (-825)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1129) (-1128)) (T -1129)) -NIL -(-1128) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)) (|has| |#1| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-2300 (((-1235) $ (-1129) (-1129)) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-1129) |#1|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#1| #1="failed") (-1129) $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#1| #1#) (-1129) $) NIL)) (-3760 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-1129) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-1129)) NIL)) (-2063 (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2506 (((-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-1129) $) NIL (|has| (-1129) (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)) (|has| |#1| (-1072))))) (-2739 (((-620 (-1129)) $) NIL)) (-2310 (((-112) (-1129) $) NIL)) (-1331 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-2305 (((-620 (-1129)) $) NIL)) (-2306 (((-112) (-1129) $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)) (|has| |#1| (-1072))))) (-4155 ((|#1| $) NIL (|has| (-1129) (-825)))) (-1399 (((-3 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) "failed") (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL (-12 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-302 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-1129)) NIL) ((|#1| $ (-1129) |#1|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-595 (-838))) (|has| |#1| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 (-1129)) (|:| -2186 |#1|)) (-1072)) (|has| |#1| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1130 |#1|) (-13 (-1160 (-1129) |#1|) (-10 -7 (-6 -4348))) (-1072)) (T -1130)) -NIL -(-13 (-1160 (-1129) |#1|) (-10 -7 (-6 -4348))) -((-4159 (((-1124 |#1|) (-1124 |#1|)) 77)) (-3816 (((-3 (-1124 |#1|) "failed") (-1124 |#1|)) 37)) (-3827 (((-1124 |#1|) (-400 (-536)) (-1124 |#1|)) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3830 (((-1124 |#1|) |#1| (-1124 |#1|)) 127 (|has| |#1| (-356)))) (-4162 (((-1124 |#1|) (-1124 |#1|)) 90)) (-3818 (((-1124 (-536)) (-536)) 57)) (-3826 (((-1124 |#1|) (-1124 (-1124 |#1|))) 109 (|has| |#1| (-38 (-400 (-536)))))) (-4158 (((-1124 |#1|) (-536) (-536) (-1124 |#1|)) 95)) (-4293 (((-1124 |#1|) |#1| (-536)) 45)) (-3820 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 60)) (-3828 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 124 (|has| |#1| (-356)))) (-3825 (((-1124 |#1|) |#1| (-1 (-1124 |#1|))) 108 (|has| |#1| (-38 (-400 (-536)))))) (-3829 (((-1124 |#1|) (-1 |#1| (-536)) |#1| (-1 (-1124 |#1|))) 125 (|has| |#1| (-356)))) (-4163 (((-1124 |#1|) (-1124 |#1|)) 89)) (-4164 (((-1124 |#1|) (-1124 |#1|)) 76)) (-4157 (((-1124 |#1|) (-536) (-536) (-1124 |#1|)) 96)) (-4167 (((-1124 |#1|) |#1| (-1124 |#1|)) 105 (|has| |#1| (-38 (-400 (-536)))))) (-3817 (((-1124 (-536)) (-536)) 56)) (-3819 (((-1124 |#1|) |#1|) 59)) (-4160 (((-1124 |#1|) (-1124 |#1|) (-536) (-536)) 92)) (-3822 (((-1124 |#1|) (-1 |#1| (-536)) (-1124 |#1|)) 66)) (-3815 (((-3 (-1124 |#1|) "failed") (-1124 |#1|) (-1124 |#1|)) 35)) (-4161 (((-1124 |#1|) (-1124 |#1|)) 91)) (-4122 (((-1124 |#1|) (-1124 |#1|) |#1|) 71)) (-3821 (((-1124 |#1|) (-1124 |#1|)) 62)) (-3823 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 72)) (-4312 (((-1124 |#1|) |#1|) 67)) (-3824 (((-1124 |#1|) (-1124 (-1124 |#1|))) 82)) (-4303 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 36)) (-4192 (((-1124 |#1|) (-1124 |#1|)) 21) (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 23)) (-4194 (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 17)) (* (((-1124 |#1|) (-1124 |#1|) |#1|) 29) (((-1124 |#1|) |#1| (-1124 |#1|)) 26) (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 27))) -(((-1131 |#1|) (-10 -7 (-15 -4194 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4192 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4192 ((-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -3815 ((-3 (-1124 |#1|) "failed") (-1124 |#1|) (-1124 |#1|))) (-15 -4303 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3816 ((-3 (-1124 |#1|) "failed") (-1124 |#1|))) (-15 -4293 ((-1124 |#1|) |#1| (-536))) (-15 -3817 ((-1124 (-536)) (-536))) (-15 -3818 ((-1124 (-536)) (-536))) (-15 -3819 ((-1124 |#1|) |#1|)) (-15 -3820 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3821 ((-1124 |#1|) (-1124 |#1|))) (-15 -3822 ((-1124 |#1|) (-1 |#1| (-536)) (-1124 |#1|))) (-15 -4312 ((-1124 |#1|) |#1|)) (-15 -4122 ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -3823 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4164 ((-1124 |#1|) (-1124 |#1|))) (-15 -4159 ((-1124 |#1|) (-1124 |#1|))) (-15 -3824 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -4163 ((-1124 |#1|) (-1124 |#1|))) (-15 -4162 ((-1124 |#1|) (-1124 |#1|))) (-15 -4161 ((-1124 |#1|) (-1124 |#1|))) (-15 -4160 ((-1124 |#1|) (-1124 |#1|) (-536) (-536))) (-15 -4158 ((-1124 |#1|) (-536) (-536) (-1124 |#1|))) (-15 -4157 ((-1124 |#1|) (-536) (-536) (-1124 |#1|))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 -3825 ((-1124 |#1|) |#1| (-1 (-1124 |#1|)))) (-15 -3826 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -3827 ((-1124 |#1|) (-400 (-536)) (-1124 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3828 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3829 ((-1124 |#1|) (-1 |#1| (-536)) |#1| (-1 (-1124 |#1|)))) (-15 -3830 ((-1124 |#1|) |#1| (-1124 |#1|)))) |%noBranch|)) (-1023)) (T -1131)) -((-3830 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3829 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-536))) (-5 *5 (-1 (-1124 *4))) (-4 *4 (-356)) (-4 *4 (-1023)) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4)))) (-3828 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3827 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1023)) (-5 *3 (-400 (-536))) (-5 *1 (-1131 *4)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4)) (-4 *4 (-38 (-400 (-536)))) (-4 *4 (-1023)))) (-3825 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1124 *3))) (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)))) (-4167 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4157 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) (-4158 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) (-4160 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) (-4161 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4162 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4163 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4)) (-4 *4 (-1023)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4164 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3823 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4122 (*1 *2 *2 *3) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023)))) (-3822 (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *4)) (-5 *3 (-1 *4 (-536))) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3820 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3819 (*1 *2 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023)))) (-3818 (*1 *2 *3) (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-1131 *4)) (-4 *4 (-1023)) (-5 *3 (-536)))) (-3817 (*1 *2 *3) (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-1131 *4)) (-4 *4 (-1023)) (-5 *3 (-536)))) (-4293 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023)))) (-3816 (*1 *2 *2) (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4303 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-3815 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4192 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) (-4194 (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) -(-10 -7 (-15 -4194 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4192 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4192 ((-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 * ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 * ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -3815 ((-3 (-1124 |#1|) "failed") (-1124 |#1|) (-1124 |#1|))) (-15 -4303 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3816 ((-3 (-1124 |#1|) "failed") (-1124 |#1|))) (-15 -4293 ((-1124 |#1|) |#1| (-536))) (-15 -3817 ((-1124 (-536)) (-536))) (-15 -3818 ((-1124 (-536)) (-536))) (-15 -3819 ((-1124 |#1|) |#1|)) (-15 -3820 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3821 ((-1124 |#1|) (-1124 |#1|))) (-15 -3822 ((-1124 |#1|) (-1 |#1| (-536)) (-1124 |#1|))) (-15 -4312 ((-1124 |#1|) |#1|)) (-15 -4122 ((-1124 |#1|) (-1124 |#1|) |#1|)) (-15 -3823 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -4164 ((-1124 |#1|) (-1124 |#1|))) (-15 -4159 ((-1124 |#1|) (-1124 |#1|))) (-15 -3824 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -4163 ((-1124 |#1|) (-1124 |#1|))) (-15 -4162 ((-1124 |#1|) (-1124 |#1|))) (-15 -4161 ((-1124 |#1|) (-1124 |#1|))) (-15 -4160 ((-1124 |#1|) (-1124 |#1|) (-536) (-536))) (-15 -4158 ((-1124 |#1|) (-536) (-536) (-1124 |#1|))) (-15 -4157 ((-1124 |#1|) (-536) (-536) (-1124 |#1|))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ((-1124 |#1|) |#1| (-1124 |#1|))) (-15 -3825 ((-1124 |#1|) |#1| (-1 (-1124 |#1|)))) (-15 -3826 ((-1124 |#1|) (-1124 (-1124 |#1|)))) (-15 -3827 ((-1124 |#1|) (-400 (-536)) (-1124 |#1|)))) |%noBranch|) (IF (|has| |#1| (-356)) (PROGN (-15 -3828 ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3829 ((-1124 |#1|) (-1 |#1| (-536)) |#1| (-1 (-1124 |#1|)))) (-15 -3830 ((-1124 |#1|) |#1| (-1124 |#1|)))) |%noBranch|)) -((-3841 (((-1124 |#1|) (-1124 |#1|)) 100)) (-3997 (((-1124 |#1|) (-1124 |#1|)) 64)) (-3832 (((-2 (|:| -3839 (-1124 |#1|)) (|:| -3840 (-1124 |#1|))) (-1124 |#1|)) 96)) (-3839 (((-1124 |#1|) (-1124 |#1|)) 97)) (-3831 (((-2 (|:| -3996 (-1124 |#1|)) (|:| -3992 (-1124 |#1|))) (-1124 |#1|)) 53)) (-3996 (((-1124 |#1|) (-1124 |#1|)) 54)) (-3843 (((-1124 |#1|) (-1124 |#1|)) 102)) (-3995 (((-1124 |#1|) (-1124 |#1|)) 71)) (-4297 (((-1124 |#1|) (-1124 |#1|)) 39)) (-4298 (((-1124 |#1|) (-1124 |#1|)) 36)) (-3844 (((-1124 |#1|) (-1124 |#1|)) 103)) (-3994 (((-1124 |#1|) (-1124 |#1|)) 72)) (-3842 (((-1124 |#1|) (-1124 |#1|)) 101)) (-3993 (((-1124 |#1|) (-1124 |#1|)) 67)) (-3840 (((-1124 |#1|) (-1124 |#1|)) 98)) (-3992 (((-1124 |#1|) (-1124 |#1|)) 55)) (-3847 (((-1124 |#1|) (-1124 |#1|)) 111)) (-3835 (((-1124 |#1|) (-1124 |#1|)) 86)) (-3845 (((-1124 |#1|) (-1124 |#1|)) 105)) (-3833 (((-1124 |#1|) (-1124 |#1|)) 82)) (-3849 (((-1124 |#1|) (-1124 |#1|)) 115)) (-3837 (((-1124 |#1|) (-1124 |#1|)) 90)) (-3850 (((-1124 |#1|) (-1124 |#1|)) 117)) (-3838 (((-1124 |#1|) (-1124 |#1|)) 92)) (-3848 (((-1124 |#1|) (-1124 |#1|)) 113)) (-3836 (((-1124 |#1|) (-1124 |#1|)) 88)) (-3846 (((-1124 |#1|) (-1124 |#1|)) 107)) (-3834 (((-1124 |#1|) (-1124 |#1|)) 84)) (** (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 40))) -(((-1132 |#1|) (-10 -7 (-15 -4298 ((-1124 |#1|) (-1124 |#1|))) (-15 -4297 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3831 ((-2 (|:| -3996 (-1124 |#1|)) (|:| -3992 (-1124 |#1|))) (-1124 |#1|))) (-15 -3996 ((-1124 |#1|) (-1124 |#1|))) (-15 -3992 ((-1124 |#1|) (-1124 |#1|))) (-15 -3997 ((-1124 |#1|) (-1124 |#1|))) (-15 -3993 ((-1124 |#1|) (-1124 |#1|))) (-15 -3995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3994 ((-1124 |#1|) (-1124 |#1|))) (-15 -3833 ((-1124 |#1|) (-1124 |#1|))) (-15 -3834 ((-1124 |#1|) (-1124 |#1|))) (-15 -3835 ((-1124 |#1|) (-1124 |#1|))) (-15 -3836 ((-1124 |#1|) (-1124 |#1|))) (-15 -3837 ((-1124 |#1|) (-1124 |#1|))) (-15 -3838 ((-1124 |#1|) (-1124 |#1|))) (-15 -3832 ((-2 (|:| -3839 (-1124 |#1|)) (|:| -3840 (-1124 |#1|))) (-1124 |#1|))) (-15 -3839 ((-1124 |#1|) (-1124 |#1|))) (-15 -3840 ((-1124 |#1|) (-1124 |#1|))) (-15 -3841 ((-1124 |#1|) (-1124 |#1|))) (-15 -3842 ((-1124 |#1|) (-1124 |#1|))) (-15 -3843 ((-1124 |#1|) (-1124 |#1|))) (-15 -3844 ((-1124 |#1|) (-1124 |#1|))) (-15 -3845 ((-1124 |#1|) (-1124 |#1|))) (-15 -3846 ((-1124 |#1|) (-1124 |#1|))) (-15 -3847 ((-1124 |#1|) (-1124 |#1|))) (-15 -3848 ((-1124 |#1|) (-1124 |#1|))) (-15 -3849 ((-1124 |#1|) (-1124 |#1|))) (-15 -3850 ((-1124 |#1|) (-1124 |#1|)))) (-38 (-400 (-536)))) (T -1132)) -((-3850 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3832 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-536)))) (-5 *2 (-2 (|:| -3839 (-1124 *4)) (|:| -3840 (-1124 *4)))) (-5 *1 (-1132 *4)) (-5 *3 (-1124 *4)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-3831 (*1 *2 *3) (-12 (-4 *4 (-38 (-400 (-536)))) (-5 *2 (-2 (|:| -3996 (-1124 *4)) (|:| -3992 (-1124 *4)))) (-5 *1 (-1132 *4)) (-5 *3 (-1124 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-4297 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) (-4298 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3))))) -(-10 -7 (-15 -4298 ((-1124 |#1|) (-1124 |#1|))) (-15 -4297 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3831 ((-2 (|:| -3996 (-1124 |#1|)) (|:| -3992 (-1124 |#1|))) (-1124 |#1|))) (-15 -3996 ((-1124 |#1|) (-1124 |#1|))) (-15 -3992 ((-1124 |#1|) (-1124 |#1|))) (-15 -3997 ((-1124 |#1|) (-1124 |#1|))) (-15 -3993 ((-1124 |#1|) (-1124 |#1|))) (-15 -3995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3994 ((-1124 |#1|) (-1124 |#1|))) (-15 -3833 ((-1124 |#1|) (-1124 |#1|))) (-15 -3834 ((-1124 |#1|) (-1124 |#1|))) (-15 -3835 ((-1124 |#1|) (-1124 |#1|))) (-15 -3836 ((-1124 |#1|) (-1124 |#1|))) (-15 -3837 ((-1124 |#1|) (-1124 |#1|))) (-15 -3838 ((-1124 |#1|) (-1124 |#1|))) (-15 -3832 ((-2 (|:| -3839 (-1124 |#1|)) (|:| -3840 (-1124 |#1|))) (-1124 |#1|))) (-15 -3839 ((-1124 |#1|) (-1124 |#1|))) (-15 -3840 ((-1124 |#1|) (-1124 |#1|))) (-15 -3841 ((-1124 |#1|) (-1124 |#1|))) (-15 -3842 ((-1124 |#1|) (-1124 |#1|))) (-15 -3843 ((-1124 |#1|) (-1124 |#1|))) (-15 -3844 ((-1124 |#1|) (-1124 |#1|))) (-15 -3845 ((-1124 |#1|) (-1124 |#1|))) (-15 -3846 ((-1124 |#1|) (-1124 |#1|))) (-15 -3847 ((-1124 |#1|) (-1124 |#1|))) (-15 -3848 ((-1124 |#1|) (-1124 |#1|))) (-15 -3849 ((-1124 |#1|) (-1124 |#1|))) (-15 -3850 ((-1124 |#1|) (-1124 |#1|)))) -((-3841 (((-1124 |#1|) (-1124 |#1|)) 57)) (-3997 (((-1124 |#1|) (-1124 |#1|)) 39)) (-3839 (((-1124 |#1|) (-1124 |#1|)) 53)) (-3996 (((-1124 |#1|) (-1124 |#1|)) 35)) (-3843 (((-1124 |#1|) (-1124 |#1|)) 60)) (-3995 (((-1124 |#1|) (-1124 |#1|)) 42)) (-4297 (((-1124 |#1|) (-1124 |#1|)) 31)) (-4298 (((-1124 |#1|) (-1124 |#1|)) 27)) (-3844 (((-1124 |#1|) (-1124 |#1|)) 61)) (-3994 (((-1124 |#1|) (-1124 |#1|)) 43)) (-3842 (((-1124 |#1|) (-1124 |#1|)) 58)) (-3993 (((-1124 |#1|) (-1124 |#1|)) 40)) (-3840 (((-1124 |#1|) (-1124 |#1|)) 55)) (-3992 (((-1124 |#1|) (-1124 |#1|)) 37)) (-3847 (((-1124 |#1|) (-1124 |#1|)) 65)) (-3835 (((-1124 |#1|) (-1124 |#1|)) 47)) (-3845 (((-1124 |#1|) (-1124 |#1|)) 63)) (-3833 (((-1124 |#1|) (-1124 |#1|)) 45)) (-3849 (((-1124 |#1|) (-1124 |#1|)) 68)) (-3837 (((-1124 |#1|) (-1124 |#1|)) 50)) (-3850 (((-1124 |#1|) (-1124 |#1|)) 69)) (-3838 (((-1124 |#1|) (-1124 |#1|)) 51)) (-3848 (((-1124 |#1|) (-1124 |#1|)) 67)) (-3836 (((-1124 |#1|) (-1124 |#1|)) 49)) (-3846 (((-1124 |#1|) (-1124 |#1|)) 66)) (-3834 (((-1124 |#1|) (-1124 |#1|)) 48)) (** (((-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) 33))) -(((-1133 |#1|) (-10 -7 (-15 -4298 ((-1124 |#1|) (-1124 |#1|))) (-15 -4297 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3996 ((-1124 |#1|) (-1124 |#1|))) (-15 -3992 ((-1124 |#1|) (-1124 |#1|))) (-15 -3997 ((-1124 |#1|) (-1124 |#1|))) (-15 -3993 ((-1124 |#1|) (-1124 |#1|))) (-15 -3995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3994 ((-1124 |#1|) (-1124 |#1|))) (-15 -3833 ((-1124 |#1|) (-1124 |#1|))) (-15 -3834 ((-1124 |#1|) (-1124 |#1|))) (-15 -3835 ((-1124 |#1|) (-1124 |#1|))) (-15 -3836 ((-1124 |#1|) (-1124 |#1|))) (-15 -3837 ((-1124 |#1|) (-1124 |#1|))) (-15 -3838 ((-1124 |#1|) (-1124 |#1|))) (-15 -3839 ((-1124 |#1|) (-1124 |#1|))) (-15 -3840 ((-1124 |#1|) (-1124 |#1|))) (-15 -3841 ((-1124 |#1|) (-1124 |#1|))) (-15 -3842 ((-1124 |#1|) (-1124 |#1|))) (-15 -3843 ((-1124 |#1|) (-1124 |#1|))) (-15 -3844 ((-1124 |#1|) (-1124 |#1|))) (-15 -3845 ((-1124 |#1|) (-1124 |#1|))) (-15 -3846 ((-1124 |#1|) (-1124 |#1|))) (-15 -3847 ((-1124 |#1|) (-1124 |#1|))) (-15 -3848 ((-1124 |#1|) (-1124 |#1|))) (-15 -3849 ((-1124 |#1|) (-1124 |#1|))) (-15 -3850 ((-1124 |#1|) (-1124 |#1|)))) (-38 (-400 (-536)))) (T -1133)) -((-3850 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3836 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3835 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3834 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3992 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-4297 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) (-4298 (*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) -(-10 -7 (-15 -4298 ((-1124 |#1|) (-1124 |#1|))) (-15 -4297 ((-1124 |#1|) (-1124 |#1|))) (-15 ** ((-1124 |#1|) (-1124 |#1|) (-1124 |#1|))) (-15 -3996 ((-1124 |#1|) (-1124 |#1|))) (-15 -3992 ((-1124 |#1|) (-1124 |#1|))) (-15 -3997 ((-1124 |#1|) (-1124 |#1|))) (-15 -3993 ((-1124 |#1|) (-1124 |#1|))) (-15 -3995 ((-1124 |#1|) (-1124 |#1|))) (-15 -3994 ((-1124 |#1|) (-1124 |#1|))) (-15 -3833 ((-1124 |#1|) (-1124 |#1|))) (-15 -3834 ((-1124 |#1|) (-1124 |#1|))) (-15 -3835 ((-1124 |#1|) (-1124 |#1|))) (-15 -3836 ((-1124 |#1|) (-1124 |#1|))) (-15 -3837 ((-1124 |#1|) (-1124 |#1|))) (-15 -3838 ((-1124 |#1|) (-1124 |#1|))) (-15 -3839 ((-1124 |#1|) (-1124 |#1|))) (-15 -3840 ((-1124 |#1|) (-1124 |#1|))) (-15 -3841 ((-1124 |#1|) (-1124 |#1|))) (-15 -3842 ((-1124 |#1|) (-1124 |#1|))) (-15 -3843 ((-1124 |#1|) (-1124 |#1|))) (-15 -3844 ((-1124 |#1|) (-1124 |#1|))) (-15 -3845 ((-1124 |#1|) (-1124 |#1|))) (-15 -3846 ((-1124 |#1|) (-1124 |#1|))) (-15 -3847 ((-1124 |#1|) (-1124 |#1|))) (-15 -3848 ((-1124 |#1|) (-1124 |#1|))) (-15 -3849 ((-1124 |#1|) (-1124 |#1|))) (-15 -3850 ((-1124 |#1|) (-1124 |#1|)))) -((-3851 (((-932 |#2|) |#2| |#2|) 35)) (-3852 ((|#2| |#2| |#1|) 19 (|has| |#1| (-300))))) -(((-1134 |#1| |#2|) (-10 -7 (-15 -3851 ((-932 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -3852 (|#2| |#2| |#1|)) |%noBranch|)) (-543) (-1205 |#1|)) (T -1134)) -((-3852 (*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-4 *3 (-543)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-1205 *3)))) (-3851 (*1 *2 *3 *3) (-12 (-4 *4 (-543)) (-5 *2 (-932 *3)) (-5 *1 (-1134 *4 *3)) (-4 *3 (-1205 *4))))) -(-10 -7 (-15 -3851 ((-932 |#2|) |#2| |#2|)) (IF (|has| |#1| (-300)) (-15 -3852 (|#2| |#2| |#1|)) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-3860 (($ $ (-620 (-749))) 67)) (-4243 (($) 26)) (-3869 (($ $) 42)) (-4106 (((-620 $) $) 51)) (-3875 (((-112) $) 16)) (-3853 (((-620 (-917 |#2|)) $) 74)) (-3854 (($ $) 68)) (-3870 (((-749) $) 37)) (-3972 (($) 25)) (-3863 (($ $ (-620 (-749)) (-917 |#2|)) 60) (($ $ (-620 (-749)) (-749)) 61) (($ $ (-749) (-917 |#2|)) 63)) (-3867 (($ $ $) 48) (($ (-620 $)) 50)) (-3855 (((-749) $) 75)) (-3876 (((-112) $) 15)) (-3588 (((-1129) $) NIL)) (-3874 (((-112) $) 18)) (-3589 (((-1091) $) NIL)) (-3856 (((-169) $) 73)) (-3859 (((-917 |#2|) $) 69)) (-3858 (((-749) $) 70)) (-3857 (((-112) $) 72)) (-3861 (($ $ (-620 (-749)) (-169)) 66)) (-3868 (($ $) 43)) (-4312 (((-838) $) 86)) (-3862 (($ $ (-620 (-749)) (-112)) 65)) (-3871 (((-620 $) $) 11)) (-3872 (($ $ (-749)) 36)) (-3873 (($ $) 32)) (-3864 (($ $ $ (-917 |#2|) (-749)) 56)) (-3865 (($ $ (-917 |#2|)) 55)) (-3866 (($ $ (-620 (-749)) (-917 |#2|)) 54) (($ $ (-620 (-749)) (-749)) 58) (((-749) $ (-917 |#2|)) 59)) (-3382 (((-112) $ $) 80))) -(((-1135 |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -3876 ((-112) $)) (-15 -3875 ((-112) $)) (-15 -3874 ((-112) $)) (-15 -3972 ($)) (-15 -4243 ($)) (-15 -3873 ($ $)) (-15 -3872 ($ $ (-749))) (-15 -3871 ((-620 $) $)) (-15 -3870 ((-749) $)) (-15 -3869 ($ $)) (-15 -3868 ($ $)) (-15 -3867 ($ $ $)) (-15 -3867 ($ (-620 $))) (-15 -4106 ((-620 $) $)) (-15 -3866 ($ $ (-620 (-749)) (-917 |#2|))) (-15 -3865 ($ $ (-917 |#2|))) (-15 -3864 ($ $ $ (-917 |#2|) (-749))) (-15 -3863 ($ $ (-620 (-749)) (-917 |#2|))) (-15 -3866 ($ $ (-620 (-749)) (-749))) (-15 -3863 ($ $ (-620 (-749)) (-749))) (-15 -3866 ((-749) $ (-917 |#2|))) (-15 -3863 ($ $ (-749) (-917 |#2|))) (-15 -3862 ($ $ (-620 (-749)) (-112))) (-15 -3861 ($ $ (-620 (-749)) (-169))) (-15 -3860 ($ $ (-620 (-749)))) (-15 -3859 ((-917 |#2|) $)) (-15 -3858 ((-749) $)) (-15 -3857 ((-112) $)) (-15 -3856 ((-169) $)) (-15 -3855 ((-749) $)) (-15 -3854 ($ $)) (-15 -3853 ((-620 (-917 |#2|)) $)))) (-893) (-1023)) (T -1135)) -((-3876 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3874 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3972 (*1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-4243 (*1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3873 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3872 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3869 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3868 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3867 (*1 *1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3867 (*1 *1 *2) (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-917 *4)) (-4 *4 (-1023)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)))) (-3864 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-917 *5)) (-5 *3 (-749)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)))) (-3863 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-749)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)) (-4 *5 (-1023)))) (-3863 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-749)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)) (-4 *5 (-1023)))) (-3866 (*1 *2 *1 *3) (-12 (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *2 (-749)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)))) (-3863 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)))) (-3862 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-112)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)) (-4 *5 (-1023)))) (-3861 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-749))) (-5 *3 (-169)) (-5 *1 (-1135 *4 *5)) (-14 *4 (-893)) (-4 *5 (-1023)))) (-3860 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-917 *4)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023)))) (-3854 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-620 (-917 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) -(-13 (-1072) (-10 -8 (-15 -3876 ((-112) $)) (-15 -3875 ((-112) $)) (-15 -3874 ((-112) $)) (-15 -3972 ($)) (-15 -4243 ($)) (-15 -3873 ($ $)) (-15 -3872 ($ $ (-749))) (-15 -3871 ((-620 $) $)) (-15 -3870 ((-749) $)) (-15 -3869 ($ $)) (-15 -3868 ($ $)) (-15 -3867 ($ $ $)) (-15 -3867 ($ (-620 $))) (-15 -4106 ((-620 $) $)) (-15 -3866 ($ $ (-620 (-749)) (-917 |#2|))) (-15 -3865 ($ $ (-917 |#2|))) (-15 -3864 ($ $ $ (-917 |#2|) (-749))) (-15 -3863 ($ $ (-620 (-749)) (-917 |#2|))) (-15 -3866 ($ $ (-620 (-749)) (-749))) (-15 -3863 ($ $ (-620 (-749)) (-749))) (-15 -3866 ((-749) $ (-917 |#2|))) (-15 -3863 ($ $ (-749) (-917 |#2|))) (-15 -3862 ($ $ (-620 (-749)) (-112))) (-15 -3861 ($ $ (-620 (-749)) (-169))) (-15 -3860 ($ $ (-620 (-749)))) (-15 -3859 ((-917 |#2|) $)) (-15 -3858 ((-749) $)) (-15 -3857 ((-112) $)) (-15 -3856 ((-169) $)) (-15 -3855 ((-749) $)) (-15 -3854 ($ $)) (-15 -3853 ((-620 (-917 |#2|)) $)))) -((-2893 (((-112) $ $) NIL)) (-3877 ((|#2| $) 11)) (-3878 ((|#1| $) 10)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3879 (($ |#1| |#2|) 9)) (-4312 (((-838) $) 16)) (-3382 (((-112) $ $) NIL))) -(((-1136 |#1| |#2|) (-13 (-1072) (-10 -8 (-15 -3879 ($ |#1| |#2|)) (-15 -3878 (|#1| $)) (-15 -3877 (|#2| $)))) (-1072) (-1072)) (T -1136)) -((-3879 (*1 *1 *2 *3) (-12 (-5 *1 (-1136 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3878 (*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-1136 *2 *3)) (-4 *3 (-1072)))) (-3877 (*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1072))))) -(-13 (-1072) (-10 -8 (-15 -3879 ($ |#1| |#2|)) (-15 -3878 (|#1| $)) (-15 -3877 (|#2| $)))) -((-2893 (((-112) $ $) NIL)) (-3880 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-1137) (-13 (-1054) (-10 -8 (-15 -3880 ((-1106) $))))) (T -1137)) -((-3880 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1137))))) -(-13 (-1054) (-10 -8 (-15 -3880 ((-1106) $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-1145 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 11)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-2173 (($ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-2171 (((-112) $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-4125 (($ $ (-536)) NIL) (($ $ (-536) (-536)) 66)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) NIL)) (-4086 (((-1145 |#1| |#2| |#3|) $) 36)) (-4083 (((-3 (-1145 |#1| |#2| |#3|) "failed") $) 29)) (-4084 (((-1145 |#1| |#2| |#3|) $) 30)) (-3841 (($ $) 107 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 83 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) 103 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 79 (|has| |#1| (-38 (-400 (-536)))))) (-3981 (((-536) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) 111 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 87 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-1145 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1147) #2#) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (((-3 (-400 (-536)) #2#) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356)))) (((-3 (-536) #2#) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))))) (-3502 (((-1145 |#1| |#2| |#3|) $) 131) (((-1147) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (((-400 (-536)) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356)))) (((-536) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))))) (-4085 (($ $) 34) (($ (-536) $) 35)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-1145 |#1| |#2| |#3|)) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-1145 |#1| |#2| |#3|))) (|:| |vec| (-1229 (-1145 |#1| |#2| |#3|)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-619 (-536))) (|has| |#1| (-356)))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-619 (-536))) (|has| |#1| (-356))))) (-3816 (((-3 $ "failed") $) 48)) (-4082 (((-400 (-920 |#1|)) $ (-536)) 65 (|has| |#1| (-543))) (((-400 (-920 |#1|)) $ (-536) (-536)) 67 (|has| |#1| (-543)))) (-3322 (($) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3532 (((-112) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-3220 (((-112) $) 25)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-860 (-536))) (|has| |#1| (-356)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-860 (-371))) (|has| |#1| (-356))))) (-4126 (((-536) $) NIL) (((-536) $ (-536)) 24)) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL (|has| |#1| (-356)))) (-3326 (((-1145 |#1| |#2| |#3|) $) 38 (|has| |#1| (-356)))) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3798 (((-3 $ "failed") $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1122)) (|has| |#1| (-356))))) (-3533 (((-112) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-4131 (($ $ (-893)) NIL)) (-4170 (($ (-1 |#1| (-536)) $) NIL)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-536)) 18) (($ $ (-1053) (-536)) NIL) (($ $ (-620 (-1053)) (-620 (-536))) NIL)) (-3672 (($ $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3673 (($ $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-4297 (($ $) 72 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4133 (($ (-536) (-1145 |#1| |#2| |#3|)) 33)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) 70 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 71 (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1122)) (|has| |#1| (-356))) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3458 (($ $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3460 (((-1145 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-536)) 145)) (-3815 (((-3 $ "failed") $ $) 49 (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) 73 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-536))))) (($ $ (-1147) (-1145 |#1| |#2| |#3|)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-505 (-1147) (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-1147)) (-620 (-1145 |#1| |#2| |#3|))) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-505 (-1147) (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-286 (-1145 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-286 (-1145 |#1| |#2| |#3|))) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-1145 |#1| |#2| |#3|)) (-620 (-1145 |#1| |#2| |#3|))) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-302 (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-536)) NIL) (($ $ $) 54 (|has| (-536) (-1083))) (($ $ (-1145 |#1| |#2| |#3|)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-279 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-1 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1226 |#2|)) 51) (($ $ (-749)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) 50 (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-3323 (($ $) NIL (|has| |#1| (-356)))) (-3325 (((-1145 |#1| |#2| |#3|) $) 41 (|has| |#1| (-356)))) (-4302 (((-536) $) 37)) (-3844 (($ $) 113 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 89 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 109 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 85 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 105 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 81 (|has| |#1| (-38 (-400 (-536)))))) (-4325 (((-525) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-596 (-525))) (|has| |#1| (-356)))) (((-371) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-994)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-994)) (|has| |#1| (-356)))) (((-864 (-371)) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-596 (-864 (-371)))) (|has| |#1| (-356)))) (((-864 (-536)) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-596 (-864 (-536)))) (|has| |#1| (-356))))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) 149) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1145 |#1| |#2| |#3|)) 27) (($ (-1226 |#2|)) 23) (($ (-1147)) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (($ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543)))) (($ (-400 (-536))) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-536))))))) (-4035 ((|#1| $ (-536)) 68)) (-3030 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 12)) (-3461 (((-1145 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3847 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 95 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-3845 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 91 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 99 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-536)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 101 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 97 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 93 (|has| |#1| (-38 (-400 (-536)))))) (-3737 (($ $) NIL (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2986 (($) 20 T CONST)) (-2992 (($) 16 T CONST)) (-2997 (($ $ (-1 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-2891 (((-112) $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2892 (((-112) $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3013 (((-112) $ $) NIL (-3886 (-12 (|has| (-1145 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1145 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 44 (|has| |#1| (-356))) (($ (-1145 |#1| |#2| |#3|) (-1145 |#1| |#2| |#3|)) 45 (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 21)) (** (($ $ (-893)) NIL) (($ $ (-749)) 53) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) 74 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 128 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1145 |#1| |#2| |#3|)) 43 (|has| |#1| (-356))) (($ (-1145 |#1| |#2| |#3|) $) 42 (|has| |#1| (-356))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-1138 |#1| |#2| |#3|) (-13 (-1193 |#1| (-1145 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1138)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) -(-13 (-1193 |#1| (-1145 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) -((-3881 ((|#2| |#2| (-1063 |#2|)) 26) ((|#2| |#2| (-1147)) 28))) -(((-1139 |#1| |#2|) (-10 -7 (-15 -3881 (|#2| |#2| (-1147))) (-15 -3881 (|#2| |#2| (-1063 |#2|)))) (-13 (-543) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-414 |#1|) (-158) (-27) (-1169))) (T -1139)) -((-3881 (*1 *2 *2 *3) (-12 (-5 *3 (-1063 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1169))) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1139 *4 *2)))) (-3881 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1139 *4 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1169)))))) -(-10 -7 (-15 -3881 (|#2| |#2| (-1147))) (-15 -3881 (|#2| |#2| (-1063 |#2|)))) -((-3881 (((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1063 (-400 (-920 |#1|)))) 31) (((-400 (-920 |#1|)) (-920 |#1|) (-1063 (-920 |#1|))) 44) (((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1147)) 33) (((-400 (-920 |#1|)) (-920 |#1|) (-1147)) 36))) -(((-1140 |#1|) (-10 -7 (-15 -3881 ((-400 (-920 |#1|)) (-920 |#1|) (-1147))) (-15 -3881 ((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1147))) (-15 -3881 ((-400 (-920 |#1|)) (-920 |#1|) (-1063 (-920 |#1|)))) (-15 -3881 ((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1063 (-400 (-920 |#1|)))))) (-13 (-543) (-825) (-1012 (-536)))) (T -1140)) -((-3881 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-3 *3 (-307 *5))) (-5 *1 (-1140 *5)))) (-3881 (*1 *2 *3 *4) (-12 (-5 *4 (-1063 (-920 *5))) (-5 *3 (-920 *5)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-400 *3)) (-5 *1 (-1140 *5)))) (-3881 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-3 (-400 (-920 *5)) (-307 *5))) (-5 *1 (-1140 *5)) (-5 *3 (-400 (-920 *5))))) (-3881 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-400 (-920 *5))) (-5 *1 (-1140 *5)) (-5 *3 (-920 *5))))) -(-10 -7 (-15 -3881 ((-400 (-920 |#1|)) (-920 |#1|) (-1147))) (-15 -3881 ((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1147))) (-15 -3881 ((-400 (-920 |#1|)) (-920 |#1|) (-1063 (-920 |#1|)))) (-15 -3881 ((-3 (-400 (-920 |#1|)) (-307 |#1|)) (-400 (-920 |#1|)) (-1063 (-400 (-920 |#1|)))))) -((-2893 (((-112) $ $) 137)) (-3534 (((-112) $) 27)) (-4121 (((-1229 |#1|) $ (-749)) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4119 (($ (-1141 |#1|)) NIL)) (-3414 (((-1141 $) $ (-1053)) 58) (((-1141 |#1|) $) 47)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) 132 (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1053))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4110 (($ $ $) 126 (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) 71 (|has| |#1| (-884)))) (-4129 (($ $) NIL (|has| |#1| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 91 (|has| |#1| (-884)))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-4115 (($ $ (-749)) 39)) (-4114 (($ $ (-749)) 40)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-444)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#1| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-1053) #2#) $) NIL)) (-3502 ((|#1| $) NIL) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-1053) $) NIL)) (-4111 (($ $ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) 56)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) NIL) (((-667 |#1|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4113 (($ $ $) 104)) (-4108 (($ $ $) NIL (|has| |#1| (-543)))) (-4107 (((-2 (|:| -4308 |#1|) (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-3852 (($ $) 133 (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-749) $) 45)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1053) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1053) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-3882 (((-838) $ (-838)) 117)) (-4126 (((-749) $ $) NIL (|has| |#1| (-543)))) (-2497 (((-112) $) 30)) (-2505 (((-749) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#1| (-1122)))) (-3415 (($ (-1141 |#1|) (-1053)) 49) (($ (-1141 $) (-1053)) 65)) (-4131 (($ $ (-749)) 32)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) 63) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1053)) NIL) (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 121)) (-3148 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-1717 (($ (-1 (-749) (-749)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4120 (((-1141 |#1|) $) NIL)) (-3413 (((-3 (-1053) #4="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) 52)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) NIL (|has| |#1| (-444)))) (-3588 (((-1129) $) NIL)) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) 38)) (-3151 (((-3 (-620 $) #4#) $) NIL)) (-3150 (((-3 (-620 $) #4#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1053)) (|:| -2488 (-749))) #4#) $) NIL)) (-4167 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) NIL (|has| |#1| (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) 31)) (-1910 ((|#1| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 79 (|has| |#1| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-444))) (($ $ $) 135 (|has| |#1| (-444)))) (-4093 (($ $ (-749) |#1| $) 99)) (-3033 (((-398 (-1141 $)) (-1141 $)) 77 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 76 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 84 (|has| |#1| (-884)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1053) |#1|) NIL) (($ $ (-620 (-1053)) (-620 |#1|)) NIL) (($ $ (-1053) $) NIL) (($ $ (-620 (-1053)) (-620 $)) NIL)) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#1| (-543))) ((|#1| (-400 $) |#1|) NIL (|has| |#1| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#1| (-543)))) (-4118 (((-3 $ #5="failed") $ (-749)) 35)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 138 (|has| |#1| (-356)))) (-4112 (($ $ (-1053)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-4165 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4302 (((-749) $) 54) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1053) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) 130 (|has| |#1| (-444))) (($ $ (-1053)) NIL (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-884))))) (-4109 (((-3 $ #5#) $ $) NIL (|has| |#1| (-543))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#1| (-543)))) (-4312 (((-838) $) 118) (($ (-536)) NIL) (($ |#1|) 53) (($ (-1053)) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) 25 (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 15 T CONST)) (-2992 (($) 16 T CONST)) (-2997 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) 96)) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 139 (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 66)) (** (($ $ (-893)) 14) (($ $ (-749)) 12)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 24) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1141 |#1|) (-13 (-1205 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-838))) (-15 -4093 ($ $ (-749) |#1| $)))) (-1023)) (T -1141)) -((-3882 (*1 *2 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-1141 *3)) (-4 *3 (-1023)))) (-4093 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1141 *3)) (-4 *3 (-1023))))) -(-13 (-1205 |#1|) (-10 -8 (-15 -3882 ((-838) $ (-838))) (-15 -4093 ($ $ (-749) |#1| $)))) -((-4313 (((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)) 13))) -(((-1142 |#1| |#2|) (-10 -7 (-15 -4313 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)))) (-1023) (-1023)) (T -1142)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-5 *2 (-1141 *6)) (-5 *1 (-1142 *5 *6))))) -(-10 -7 (-15 -4313 ((-1141 |#2|) (-1 |#2| |#1|) (-1141 |#1|)))) -((-4324 (((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))) 51)) (-4087 (((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))) 52))) -(((-1143 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4087 ((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|)))) (-15 -4324 ((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))))) (-771) (-825) (-444) (-924 |#3| |#1| |#2|)) (T -1143)) -((-4324 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-398 (-1141 (-400 *7)))) (-5 *1 (-1143 *4 *5 *6 *7)) (-5 *3 (-1141 (-400 *7))))) (-4087 (*1 *2 *3) (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-398 (-1141 (-400 *7)))) (-5 *1 (-1143 *4 *5 *6 *7)) (-5 *3 (-1141 (-400 *7)))))) -(-10 -7 (-15 -4087 ((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|)))) (-15 -4324 ((-398 (-1141 (-400 |#4|))) (-1141 (-400 |#4|))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 11)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) NIL) (($ $ (-400 (-536)) (-400 (-536))) NIL)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-1138 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1145 |#1| |#2| |#3|) #1#) $) 36)) (-3502 (((-1138 |#1| |#2| |#3|) $) NIL) (((-1145 |#1| |#2| |#3|) $) NIL)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4135 (((-400 (-536)) $) 55)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4136 (($ (-400 (-536)) (-1138 |#1| |#2| |#3|)) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) NIL) (((-400 (-536)) $ (-400 (-536))) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) NIL) (($ $ (-400 (-536))) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-400 (-536))) 20) (($ $ (-1053) (-400 (-536))) NIL) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4134 (((-1138 |#1| |#2| |#3|) $) 41)) (-4132 (((-3 (-1138 |#1| |#2| |#3|) "failed") $) NIL)) (-4133 (((-1138 |#1| |#2| |#3|) $) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) 39 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 40 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) NIL) (($ $ $) NIL (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $ (-1226 |#2|)) 38)) (-4302 (((-400 (-536)) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) 58) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1138 |#1| |#2| |#3|)) 30) (($ (-1145 |#1| |#2| |#3|)) 31) (($ (-1226 |#2|)) 26) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 12)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 22 T CONST)) (-2992 (($) 16 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 24)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-1144 |#1| |#2| |#3|) (-13 (-1214 |#1| (-1138 |#1| |#2| |#3|)) (-1012 (-1145 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1144)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) -(-13 (-1214 |#1| (-1138 |#1| |#2| |#3|)) (-1012 (-1145 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 125)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 116)) (-4166 (((-1198 |#2| |#1|) $ (-749)) 63)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-749)) 79) (($ $ (-749) (-749)) 76)) (-4128 (((-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 102)) (-3841 (($ $) 169 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 145 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) 165 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 115) (($ (-1124 |#1|)) 110)) (-3843 (($ $) 173 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 149 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) 23)) (-4171 (($ $) 26)) (-4169 (((-920 |#1|) $ (-749)) 75) (((-920 |#1|) $ (-749) (-749)) 77)) (-3220 (((-112) $) 120)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $) 122) (((-749) $ (-749)) 124)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) NIL)) (-4170 (($ (-1 |#1| (-536)) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) 13) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-4167 (($ $) 129 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-4123 (($ $ (-749)) 15)) (-3815 (((-3 $ "failed") $ $) 24 (|has| |#1| (-543)))) (-4298 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-4154 ((|#1| $ (-749)) 119) (($ $ $) 128 (|has| (-749) (-1083)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $ (-1226 |#2|)) 29)) (-4302 (((-749) $) NIL)) (-3844 (($ $) 175 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 151 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 171 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 147 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 167 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 143 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) 201) (($ (-536)) NIL) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1198 |#2| |#1|)) 51) (($ (-1226 |#2|)) 32)) (-4172 (((-1124 |#1|) $) 98)) (-4035 ((|#1| $ (-749)) 118)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 54)) (-3847 (($ $) 181 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 157 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) 177 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 153 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 185 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 161 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-749)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 187 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 163 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 183 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 159 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 179 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 155 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 17 T CONST)) (-2992 (($) 19 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) 194)) (-4194 (($ $ $) 31)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ |#1|) 198 (|has| |#1| (-356))) (($ $ $) 134 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 137 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-1145 |#1| |#2| |#3|) (-13 (-1222 |#1|) (-10 -8 (-15 -4312 ($ (-1198 |#2| |#1|))) (-15 -4166 ((-1198 |#2| |#1|) $ (-749))) (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1145)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) (-5 *1 (-1145 *3 *4 *5)))) (-4166 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1145 *4 *5 *6)) (-4 *4 (-1023)) (-14 *5 (-1147)) (-14 *6 *4))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) -(-13 (-1222 |#1|) (-10 -8 (-15 -4312 ($ (-1198 |#2| |#1|))) (-15 -4166 ((-1198 |#2| |#1|) $ (-749))) (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) -((-4312 (((-838) $) 27) (($ (-1147)) 29)) (-3886 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 40)) (-3883 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 33) (($ $) 34)) (-3890 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 35)) (-3888 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 37)) (-3889 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 36)) (-3887 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 38)) (-3885 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $))) 39))) -(((-1146) (-13 (-595 (-838)) (-10 -8 (-15 -4312 ($ (-1147))) (-15 -3890 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3889 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3888 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3887 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3886 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3885 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3883 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3883 ($ $))))) (T -1146)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1146)))) (-3890 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3889 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3888 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3887 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3886 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3885 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) (-5 *1 (-1146)))) (-3883 (*1 *1 *1) (-5 *1 (-1146)))) -(-13 (-595 (-838)) (-10 -8 (-15 -4312 ($ (-1147))) (-15 -3890 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3889 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3888 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3887 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3886 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3885 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)) (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3883 ($ (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) (|:| CF (-307 (-166 (-371)))) (|:| |switch| $)))) (-15 -3883 ($ $)))) -((-2893 (((-112) $ $) NIL)) (-3895 (($ $ (-620 (-838))) 59)) (-3896 (($ $ (-620 (-838))) 57)) (-3893 (((-1129) $) 84)) (-3898 (((-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838)))) $) 87)) (-3899 (((-112) $) 22)) (-3897 (($ $ (-620 (-620 (-838)))) 56) (($ $ (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838))))) 82)) (-3891 (($) 124 T CONST)) (-3901 (((-1235)) 106)) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 66) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 73)) (-3972 (($) 95) (($ $) 101)) (-3900 (($ $) 83)) (-3672 (($ $ $) NIL)) (-3673 (($ $ $) NIL)) (-3892 (((-620 $) $) 107)) (-3588 (((-1129) $) 90)) (-3589 (((-1091) $) NIL)) (-4154 (($ $ (-620 (-838))) 58)) (-4325 (((-525) $) 46) (((-1147) $) 47) (((-864 (-536)) $) 77) (((-864 (-371)) $) 75)) (-4312 (((-838) $) 53) (($ (-1129)) 48)) (-3894 (($ $ (-620 (-838))) 60)) (-2829 (((-1129) $) 33) (((-1129) $ (-112)) 34) (((-1235) (-801) $) 35) (((-1235) (-801) $ (-112)) 36)) (-2891 (((-112) $ $) NIL)) (-2892 (((-112) $ $) NIL)) (-3382 (((-112) $ $) 49)) (-3012 (((-112) $ $) NIL)) (-3013 (((-112) $ $) 50))) -(((-1147) (-13 (-825) (-596 (-525)) (-799) (-596 (-1147)) (-596 (-864 (-536))) (-596 (-864 (-371))) (-860 (-536)) (-860 (-371)) (-10 -8 (-15 -3972 ($)) (-15 -3972 ($ $)) (-15 -3901 ((-1235))) (-15 -4312 ($ (-1129))) (-15 -3900 ($ $)) (-15 -3899 ((-112) $)) (-15 -3898 ((-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838)))) $)) (-15 -3897 ($ $ (-620 (-620 (-838))))) (-15 -3897 ($ $ (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838)))))) (-15 -3896 ($ $ (-620 (-838)))) (-15 -3895 ($ $ (-620 (-838)))) (-15 -3894 ($ $ (-620 (-838)))) (-15 -4154 ($ $ (-620 (-838)))) (-15 -3893 ((-1129) $)) (-15 -3892 ((-620 $) $)) (-15 -3891 ($) -4306)))) (T -1147)) -((-3972 (*1 *1) (-5 *1 (-1147))) (-3972 (*1 *1 *1) (-5 *1 (-1147))) (-3901 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1147)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1147)))) (-3900 (*1 *1 *1) (-5 *1 (-1147))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838))))) (-5 *1 (-1147)))) (-3897 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-620 (-838)))) (-5 *1 (-1147)))) (-3897 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838))))) (-5 *1 (-1147)))) (-3896 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147)))) (-3895 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147)))) (-3894 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147)))) (-3893 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1147)))) (-3892 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1147)))) (-3891 (*1 *1) (-5 *1 (-1147)))) -(-13 (-825) (-596 (-525)) (-799) (-596 (-1147)) (-596 (-864 (-536))) (-596 (-864 (-371))) (-860 (-536)) (-860 (-371)) (-10 -8 (-15 -3972 ($)) (-15 -3972 ($ $)) (-15 -3901 ((-1235))) (-15 -4312 ($ (-1129))) (-15 -3900 ($ $)) (-15 -3899 ((-112) $)) (-15 -3898 ((-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838)))) $)) (-15 -3897 ($ $ (-620 (-620 (-838))))) (-15 -3897 ($ $ (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) (|:| |args| (-620 (-838)))))) (-15 -3896 ($ $ (-620 (-838)))) (-15 -3895 ($ $ (-620 (-838)))) (-15 -3894 ($ $ (-620 (-838)))) (-15 -4154 ($ $ (-620 (-838)))) (-15 -3893 ((-1129) $)) (-15 -3892 ((-620 $) $)) (-15 -3891 ($) -4306))) -((-3902 (((-1229 |#1|) |#1| (-893)) 16) (((-1229 |#1|) (-620 |#1|)) 20))) -(((-1148 |#1|) (-10 -7 (-15 -3902 ((-1229 |#1|) (-620 |#1|))) (-15 -3902 ((-1229 |#1|) |#1| (-893)))) (-1023)) (T -1148)) -((-3902 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-5 *2 (-1229 *3)) (-5 *1 (-1148 *3)) (-4 *3 (-1023)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-1023)) (-5 *2 (-1229 *4)) (-5 *1 (-1148 *4))))) -(-10 -7 (-15 -3902 ((-1229 |#1|) (-620 |#1|))) (-15 -3902 ((-1229 |#1|) |#1| (-893)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| |#1| (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| |#1| (-1012 (-400 (-536))))) (((-3 |#1| #1#) $) NIL)) (-3502 (((-536) $) NIL (|has| |#1| (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| |#1| (-1012 (-400 (-536))))) ((|#1| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-3852 (($ $) NIL (|has| |#1| (-444)))) (-1716 (($ $ |#1| (-945) $) NIL)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-945)) NIL)) (-3148 (((-945) $) NIL)) (-1717 (($ (-1 (-945) (-945)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#1| $) NIL)) (-4093 (($ $ (-945) |#1| $) NIL (-12 (|has| (-945) (-130)) (|has| |#1| (-543))))) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-543)))) (-4302 (((-945) $) NIL)) (-3145 ((|#1| $) NIL (|has| |#1| (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ $) NIL (|has| |#1| (-543))) (($ |#1|) NIL) (($ (-400 (-536))) NIL (-3886 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-1012 (-400 (-536))))))) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ (-945)) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#1| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-2986 (($) 9 T CONST)) (-2992 (($) 14 T CONST)) (-3382 (((-112) $ $) 16)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 19)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-1149 |#1|) (-13 (-319 |#1| (-945)) (-10 -8 (IF (|has| |#1| (-543)) (IF (|has| (-945) (-130)) (-15 -4093 ($ $ (-945) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) (-1023)) (T -1149)) -((-4093 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-945)) (-4 *2 (-130)) (-5 *1 (-1149 *3)) (-4 *3 (-543)) (-4 *3 (-1023))))) -(-13 (-319 |#1| #1=(-945)) (-10 -8 (IF (|has| |#1| (-543)) (IF (|has| #1# (-130)) (-15 -4093 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) -((-3903 (((-1151) (-1147) $) 25)) (-3913 (($) 29)) (-3905 (((-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) (-1147) $) 22)) (-3907 (((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1#)) $) 41) (((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) 42) (((-1235) (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) 43)) (-3915 (((-1235) (-1147)) 58)) (-3906 (((-1235) (-1147) $) 55) (((-1235) (-1147)) 56) (((-1235)) 57)) (-3911 (((-1235) (-1147)) 37)) (-3909 (((-1147)) 36)) (-3923 (($) 34)) (-3922 (((-429) (-1147) (-429) (-1147) $) 45) (((-429) (-620 (-1147)) (-429) (-1147) $) 49) (((-429) (-1147) (-429)) 46) (((-429) (-1147) (-429) (-1147)) 50)) (-3910 (((-1147)) 35)) (-4312 (((-838) $) 28)) (-3912 (((-1235)) 30) (((-1235) (-1147)) 33)) (-3904 (((-620 (-1147)) (-1147) $) 24)) (-3908 (((-1235) (-1147) (-620 (-1147)) $) 38) (((-1235) (-1147) (-620 (-1147))) 39) (((-1235) (-620 (-1147))) 40))) -(((-1150) (-13 (-595 (-838)) (-10 -8 (-15 -3913 ($)) (-15 -3912 ((-1235))) (-15 -3912 ((-1235) (-1147))) (-15 -3922 ((-429) (-1147) (-429) (-1147) $)) (-15 -3922 ((-429) (-620 (-1147)) (-429) (-1147) $)) (-15 -3922 ((-429) (-1147) (-429))) (-15 -3922 ((-429) (-1147) (-429) (-1147))) (-15 -3911 ((-1235) (-1147))) (-15 -3910 ((-1147))) (-15 -3909 ((-1147))) (-15 -3908 ((-1235) (-1147) (-620 (-1147)) $)) (-15 -3908 ((-1235) (-1147) (-620 (-1147)))) (-15 -3908 ((-1235) (-620 (-1147)))) (-15 -3907 ((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) $)) (-15 -3907 ((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1#)))) (-15 -3907 ((-1235) (-3 (|:| |fst| (-427)) (|:| -4265 #1#)))) (-15 -3906 ((-1235) (-1147) $)) (-15 -3906 ((-1235) (-1147))) (-15 -3906 ((-1235))) (-15 -3915 ((-1235) (-1147))) (-15 -3923 ($)) (-15 -3905 ((-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-1147) $)) (-15 -3904 ((-620 (-1147)) (-1147) $)) (-15 -3903 ((-1151) (-1147) $))))) (T -1150)) -((-3913 (*1 *1) (-5 *1 (-1150))) (-3912 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3922 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) (-3922 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-429)) (-5 *3 (-620 (-1147))) (-5 *4 (-1147)) (-5 *1 (-1150)))) (-3922 (*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) (-3922 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3910 (*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1150)))) (-3909 (*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1150)))) (-3908 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3907 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1147)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3906 (*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3906 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) (-3923 (*1 *1) (-5 *1 (-1150))) (-3905 (*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *1 (-1150)))) (-3904 (*1 *2 *3 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1150)) (-5 *3 (-1147)))) (-3903 (*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-1151)) (-5 *1 (-1150))))) -(-13 (-595 (-838)) (-10 -8 (-15 -3913 ($)) (-15 -3912 ((-1235))) (-15 -3912 ((-1235) (-1147))) (-15 -3922 ((-429) (-1147) (-429) (-1147) $)) (-15 -3922 ((-429) (-620 (-1147)) (-429) (-1147) $)) (-15 -3922 ((-429) (-1147) (-429))) (-15 -3922 ((-429) (-1147) (-429) (-1147))) (-15 -3911 ((-1235) (-1147))) (-15 -3910 ((-1147))) (-15 -3909 ((-1147))) (-15 -3908 ((-1235) (-1147) (-620 (-1147)) $)) (-15 -3908 ((-1235) (-1147) (-620 (-1147)))) (-15 -3908 ((-1235) (-620 (-1147)))) (-15 -3907 ((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1="void")) $)) (-15 -3907 ((-1235) (-1147) (-3 (|:| |fst| (-427)) (|:| -4265 #1#)))) (-15 -3907 ((-1235) (-3 (|:| |fst| (-427)) (|:| -4265 #1#)))) (-15 -3906 ((-1235) (-1147) $)) (-15 -3906 ((-1235) (-1147))) (-15 -3906 ((-1235))) (-15 -3915 ((-1235) (-1147))) (-15 -3923 ($)) (-15 -3905 ((-3 (|:| |fst| (-427)) (|:| -4265 #1#)) (-1147) $)) (-15 -3904 ((-620 (-1147)) (-1147) $)) (-15 -3903 ((-1151) (-1147) $)))) -((-3917 (((-620 (-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536))))))))) $) 59)) (-3919 (((-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536)))))))) (-427) $) 43)) (-3914 (($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-429))))) 17)) (-3915 (((-1235) $) 67)) (-3920 (((-620 (-1147)) $) 22)) (-3916 (((-1074) $) 55)) (-3921 (((-429) (-1147) $) 27)) (-3918 (((-620 (-1147)) $) 30)) (-3923 (($) 19)) (-3922 (((-429) (-620 (-1147)) (-429) $) 25) (((-429) (-1147) (-429) $) 24)) (-4312 (((-838) $) 9) (((-1156 (-1147) (-429)) $) 13))) -(((-1151) (-13 (-595 (-838)) (-10 -8 (-15 -4312 ((-1156 (-1147) (-429)) $)) (-15 -3923 ($)) (-15 -3922 ((-429) (-620 (-1147)) (-429) $)) (-15 -3922 ((-429) (-1147) (-429) $)) (-15 -3921 ((-429) (-1147) $)) (-15 -3920 ((-620 (-1147)) $)) (-15 -3919 ((-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536)))))))) (-427) $)) (-15 -3918 ((-620 (-1147)) $)) (-15 -3917 ((-620 (-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536))))))))) $)) (-15 -3916 ((-1074) $)) (-15 -3915 ((-1235) $)) (-15 -3914 ($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-429))))))))) (T -1151)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-1156 (-1147) (-429))) (-5 *1 (-1151)))) (-3923 (*1 *1) (-5 *1 (-1151))) (-3922 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-620 (-1147))) (-5 *1 (-1151)))) (-3922 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1151)))) (-3921 (*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-429)) (-5 *1 (-1151)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1151)))) (-3919 (*1 *2 *3 *1) (-12 (-5 *3 (-427)) (-5 *2 (-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536))))))))) (-5 *1 (-1151)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1151)))) (-3917 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536)))))))))) (-5 *1 (-1151)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1151)))) (-3915 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1151)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-429))))) (-5 *1 (-1151))))) -(-13 (-595 (-838)) (-10 -8 (-15 -4312 ((-1156 (-1147) (-429)) $)) (-15 -3923 ($)) (-15 -3922 ((-429) (-620 (-1147)) (-429) $)) (-15 -3922 ((-429) (-1147) (-429) $)) (-15 -3921 ((-429) (-1147) $)) (-15 -3920 ((-620 (-1147)) $)) (-15 -3919 ((-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536)))))))) (-427) $)) (-15 -3918 ((-620 (-1147)) $)) (-15 -3917 ((-620 (-620 (-3 (|:| -3900 (-1147)) (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536))))))))) $)) (-15 -3916 ((-1074) $)) (-15 -3915 ((-1235) $)) (-15 -3914 ($ (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-429)))))))) -((-2893 (((-112) $ $) NIL)) (-3928 (((-112) $) 48)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3927 (((-3 (-536) (-219) (-1147) (-1129) $) $) 56)) (-3926 (((-620 $) $) 61)) (-4325 (((-1074) $) 30) (($ (-1074)) 31)) (-3925 (((-112) $) 58)) (-4312 (((-838) $) 29) (($ (-536)) 32) (((-536) $) 34) (($ (-219)) 35) (((-219) $) 37) (($ (-1147)) 38) (((-1147) $) 40) (($ (-1129)) 41) (((-1129) $) 43)) (-3924 (((-112) $ (|[\|\|]| (-536))) 13) (((-112) $ (|[\|\|]| (-219))) 17) (((-112) $ (|[\|\|]| (-1147))) 25) (((-112) $ (|[\|\|]| (-1129))) 21)) (-3929 (($ (-1147) (-620 $)) 45) (($ $ (-620 $)) 46)) (-3930 (((-536) $) 33) (((-219) $) 36) (((-1147) $) 39) (((-1129) $) 42)) (-3382 (((-112) $ $) 8))) -(((-1152) (-13 (-1225) (-1072) (-10 -8 (-15 -4325 ((-1074) $)) (-15 -4325 ($ (-1074))) (-15 -4312 ($ (-536))) (-15 -4312 ((-536) $)) (-15 -3930 ((-536) $)) (-15 -4312 ($ (-219))) (-15 -4312 ((-219) $)) (-15 -3930 ((-219) $)) (-15 -4312 ($ (-1147))) (-15 -4312 ((-1147) $)) (-15 -3930 ((-1147) $)) (-15 -4312 ($ (-1129))) (-15 -4312 ((-1129) $)) (-15 -3930 ((-1129) $)) (-15 -3929 ($ (-1147) (-620 $))) (-15 -3929 ($ $ (-620 $))) (-15 -3928 ((-112) $)) (-15 -3927 ((-3 (-536) (-219) (-1147) (-1129) $) $)) (-15 -3926 ((-620 $) $)) (-15 -3925 ((-112) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-536)))) (-15 -3924 ((-112) $ (|[\|\|]| (-219)))) (-15 -3924 ((-112) $ (|[\|\|]| (-1147)))) (-15 -3924 ((-112) $ (|[\|\|]| (-1129))))))) (T -1152)) -((-4325 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1152)))) (-4325 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1152)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1152)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1152)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1152)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-1152))) (-5 *1 (-1152)))) (-3929 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1152)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-3 (-536) (-219) (-1147) (-1129) (-1152))) (-5 *1 (-1152)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1152)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)) (-5 *1 (-1152)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1152)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1147))) (-5 *2 (-112)) (-5 *1 (-1152)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1129))) (-5 *2 (-112)) (-5 *1 (-1152))))) -(-13 (-1225) (-1072) (-10 -8 (-15 -4325 ((-1074) $)) (-15 -4325 ($ (-1074))) (-15 -4312 ($ (-536))) (-15 -4312 ((-536) $)) (-15 -3930 ((-536) $)) (-15 -4312 ($ (-219))) (-15 -4312 ((-219) $)) (-15 -3930 ((-219) $)) (-15 -4312 ($ (-1147))) (-15 -4312 ((-1147) $)) (-15 -3930 ((-1147) $)) (-15 -4312 ($ (-1129))) (-15 -4312 ((-1129) $)) (-15 -3930 ((-1129) $)) (-15 -3929 ($ (-1147) (-620 $))) (-15 -3929 ($ $ (-620 $))) (-15 -3928 ((-112) $)) (-15 -3927 ((-3 (-536) (-219) (-1147) (-1129) $) $)) (-15 -3926 ((-620 $) $)) (-15 -3925 ((-112) $)) (-15 -3924 ((-112) $ (|[\|\|]| (-536)))) (-15 -3924 ((-112) $ (|[\|\|]| (-219)))) (-15 -3924 ((-112) $ (|[\|\|]| (-1147)))) (-15 -3924 ((-112) $ (|[\|\|]| (-1129)))))) -((-3932 (((-620 (-620 (-920 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147))) 57)) (-3931 (((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|)))) 69) (((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|))) 65) (((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147)) 70) (((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147)) 64) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|))))) 93) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|)))) 92) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147))) 94) (((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|))) (-620 (-1147))) 91))) -(((-1153 |#1|) (-10 -7 (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|))))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|)))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|))))) (-15 -3932 ((-620 (-620 (-920 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147))))) (-543)) (T -1153)) -((-3932 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-920 *5)))) (-5 *1 (-1153 *5)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *4))))) (-5 *1 (-1153 *4)) (-5 *3 (-286 (-400 (-920 *4)))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *4))))) (-5 *1 (-1153 *4)) (-5 *3 (-400 (-920 *4))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *5))))) (-5 *1 (-1153 *5)) (-5 *3 (-286 (-400 (-920 *5)))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *5))))) (-5 *1 (-1153 *5)) (-5 *3 (-400 (-920 *5))))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-1153 *4)) (-5 *3 (-620 (-286 (-400 (-920 *4))))))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-620 (-400 (-920 *4)))) (-4 *4 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-1153 *4)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-620 (-1147))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-1153 *5)) (-5 *3 (-620 (-286 (-400 (-920 *5))))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-1153 *5))))) -(-10 -7 (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|))) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|)))) (-620 (-1147)))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-400 (-920 |#1|))))) (-15 -3931 ((-620 (-620 (-286 (-400 (-920 |#1|))))) (-620 (-286 (-400 (-920 |#1|)))))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|)) (-1147))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|))) (-1147))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-400 (-920 |#1|)))) (-15 -3931 ((-620 (-286 (-400 (-920 |#1|)))) (-286 (-400 (-920 |#1|))))) (-15 -3932 ((-620 (-620 (-920 |#1|))) (-620 (-400 (-920 |#1|))) (-620 (-1147))))) -((-3933 (((-1129)) 7)) (-3935 (((-1129)) 9)) (-3936 (((-1235) (-1129)) 11)) (-3934 (((-1129)) 8))) -(((-1154) (-10 -7 (-15 -3933 ((-1129))) (-15 -3934 ((-1129))) (-15 -3935 ((-1129))) (-15 -3936 ((-1235) (-1129))))) (T -1154)) -((-3936 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1154)))) (-3935 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154)))) (-3934 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154)))) (-3933 (*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154))))) -(-10 -7 (-15 -3933 ((-1129))) (-15 -3934 ((-1129))) (-15 -3935 ((-1129))) (-15 -3936 ((-1235) (-1129)))) -((-3940 (((-620 (-620 |#1|)) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|)))) 38)) (-3943 (((-620 (-620 (-620 |#1|))) (-620 (-620 |#1|))) 24)) (-3944 (((-1157 (-620 |#1|)) (-620 |#1|)) 34)) (-3946 (((-620 (-620 |#1|)) (-620 |#1|)) 30)) (-3949 (((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 (-620 (-620 |#1|)))) 37)) (-3948 (((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 |#1|) (-620 (-620 (-620 |#1|))) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|)))) 36)) (-3945 (((-620 (-620 |#1|)) (-620 (-620 |#1|))) 28)) (-3947 (((-620 |#1|) (-620 |#1|)) 31)) (-3939 (((-620 (-620 (-620 |#1|))) (-620 |#1|) (-620 (-620 (-620 |#1|)))) 18)) (-3938 (((-620 (-620 (-620 |#1|))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 (-620 |#1|)))) 16)) (-3937 (((-2 (|:| |fs| (-112)) (|:| |sd| (-620 |#1|)) (|:| |td| (-620 (-620 |#1|)))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 |#1|))) 14)) (-3941 (((-620 (-620 |#1|)) (-620 (-620 (-620 |#1|)))) 39)) (-3942 (((-620 (-620 |#1|)) (-1157 (-620 |#1|))) 41))) -(((-1155 |#1|) (-10 -7 (-15 -3937 ((-2 (|:| |fs| (-112)) (|:| |sd| (-620 |#1|)) (|:| |td| (-620 (-620 |#1|)))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 |#1|)))) (-15 -3938 ((-620 (-620 (-620 |#1|))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 (-620 |#1|))))) (-15 -3939 ((-620 (-620 (-620 |#1|))) (-620 |#1|) (-620 (-620 (-620 |#1|))))) (-15 -3940 ((-620 (-620 |#1|)) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))))) (-15 -3941 ((-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))))) (-15 -3942 ((-620 (-620 |#1|)) (-1157 (-620 |#1|)))) (-15 -3943 ((-620 (-620 (-620 |#1|))) (-620 (-620 |#1|)))) (-15 -3944 ((-1157 (-620 |#1|)) (-620 |#1|))) (-15 -3945 ((-620 (-620 |#1|)) (-620 (-620 |#1|)))) (-15 -3946 ((-620 (-620 |#1|)) (-620 |#1|))) (-15 -3947 ((-620 |#1|) (-620 |#1|))) (-15 -3948 ((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 |#1|) (-620 (-620 (-620 |#1|))) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|))))) (-15 -3949 ((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 (-620 (-620 |#1|)))))) (-825)) (T -1155)) -((-3949 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-2 (|:| |f1| (-620 *4)) (|:| |f2| (-620 (-620 (-620 *4)))) (|:| |f3| (-620 (-620 *4))) (|:| |f4| (-620 (-620 (-620 *4)))))) (-5 *1 (-1155 *4)) (-5 *3 (-620 (-620 (-620 *4)))))) (-3948 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-825)) (-5 *3 (-620 *6)) (-5 *5 (-620 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-620 *5)) (|:| |f3| *5) (|:| |f4| (-620 *5)))) (-5 *1 (-1155 *6)) (-5 *4 (-620 *5)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-1155 *3)))) (-3946 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-620 (-620 *4))) (-5 *1 (-1155 *4)) (-5 *3 (-620 *4)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-825)) (-5 *1 (-1155 *3)))) (-3944 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-1157 (-620 *4))) (-5 *1 (-1155 *4)) (-5 *3 (-620 *4)))) (-3943 (*1 *2 *3) (-12 (-4 *4 (-825)) (-5 *2 (-620 (-620 (-620 *4)))) (-5 *1 (-1155 *4)) (-5 *3 (-620 (-620 *4))))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-1157 (-620 *4))) (-4 *4 (-825)) (-5 *2 (-620 (-620 *4))) (-5 *1 (-1155 *4)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-620 (-620 (-620 *4)))) (-5 *2 (-620 (-620 *4))) (-5 *1 (-1155 *4)) (-4 *4 (-825)))) (-3940 (*1 *2 *2 *3) (-12 (-5 *3 (-620 (-620 (-620 *4)))) (-5 *2 (-620 (-620 *4))) (-4 *4 (-825)) (-5 *1 (-1155 *4)))) (-3939 (*1 *2 *3 *2) (-12 (-5 *2 (-620 (-620 (-620 *4)))) (-5 *3 (-620 *4)) (-4 *4 (-825)) (-5 *1 (-1155 *4)))) (-3938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-620 (-620 (-620 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-620 *5)) (-4 *5 (-825)) (-5 *1 (-1155 *5)))) (-3937 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-825)) (-5 *4 (-620 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-620 *4)))) (-5 *1 (-1155 *6)) (-5 *5 (-620 *4))))) -(-10 -7 (-15 -3937 ((-2 (|:| |fs| (-112)) (|:| |sd| (-620 |#1|)) (|:| |td| (-620 (-620 |#1|)))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 |#1|)))) (-15 -3938 ((-620 (-620 (-620 |#1|))) (-1 (-112) |#1| |#1|) (-620 |#1|) (-620 (-620 (-620 |#1|))))) (-15 -3939 ((-620 (-620 (-620 |#1|))) (-620 |#1|) (-620 (-620 (-620 |#1|))))) (-15 -3940 ((-620 (-620 |#1|)) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))))) (-15 -3941 ((-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))))) (-15 -3942 ((-620 (-620 |#1|)) (-1157 (-620 |#1|)))) (-15 -3943 ((-620 (-620 (-620 |#1|))) (-620 (-620 |#1|)))) (-15 -3944 ((-1157 (-620 |#1|)) (-620 |#1|))) (-15 -3945 ((-620 (-620 |#1|)) (-620 (-620 |#1|)))) (-15 -3946 ((-620 (-620 |#1|)) (-620 |#1|))) (-15 -3947 ((-620 |#1|) (-620 |#1|))) (-15 -3948 ((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 |#1|) (-620 (-620 (-620 |#1|))) (-620 (-620 |#1|)) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|))) (-620 (-620 (-620 |#1|))))) (-15 -3949 ((-2 (|:| |f1| (-620 |#1|)) (|:| |f2| (-620 (-620 (-620 |#1|)))) (|:| |f3| (-620 (-620 |#1|))) (|:| |f4| (-620 (-620 (-620 |#1|))))) (-620 (-620 (-620 |#1|)))))) -((-2893 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-3955 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2300 (((-1235) $ |#1| |#1|) NIL (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#2| $ |#1| |#2|) NIL)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3891 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) NIL)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) NIL)) (-2302 ((|#1| $) NIL (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-620 |#2|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2303 ((|#1| $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-2739 (((-620 |#1|) $) NIL)) (-2310 (((-112) |#1| $) NIL)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2305 (((-620 |#1|) $) NIL)) (-2306 (((-112) |#1| $) NIL)) (-3589 (((-1091) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4155 ((|#2| $) NIL (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL)) (-2301 (($ $ |#2|) NIL (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1518 (($) NIL) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) NIL (-12 (|has| $ (-6 -4348)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (((-749) |#2| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072)))) (((-749) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-4312 (((-838) $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) NIL)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) NIL (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) NIL (-3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1156 |#1| |#2|) (-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) (-1072) (-1072)) (T -1156)) -NIL -(-13 (-1160 |#1| |#2|) (-10 -7 (-6 -4348))) -((-3950 (($ (-620 (-620 |#1|))) 10)) (-3951 (((-620 (-620 |#1|)) $) 11)) (-4312 (((-838) $) 26))) -(((-1157 |#1|) (-10 -8 (-15 -3950 ($ (-620 (-620 |#1|)))) (-15 -3951 ((-620 (-620 |#1|)) $)) (-15 -4312 ((-838) $))) (-1072)) (T -1157)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1157 *3)) (-4 *3 (-1072)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 *3))) (-5 *1 (-1157 *3)) (-4 *3 (-1072)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-1157 *3))))) -(-10 -8 (-15 -3950 ($ (-620 (-620 |#1|)))) (-15 -3951 ((-620 (-620 |#1|)) $)) (-15 -4312 ((-838) $))) -((-3952 ((|#1| (-620 |#1|)) 32)) (-3954 ((|#1| |#1| (-536)) 18)) (-3953 (((-1141 |#1|) |#1| (-893)) 15))) -(((-1158 |#1|) (-10 -7 (-15 -3952 (|#1| (-620 |#1|))) (-15 -3953 ((-1141 |#1|) |#1| (-893))) (-15 -3954 (|#1| |#1| (-536)))) (-356)) (T -1158)) -((-3954 (*1 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-1158 *2)) (-4 *2 (-356)))) (-3953 (*1 *2 *3 *4) (-12 (-5 *4 (-893)) (-5 *2 (-1141 *3)) (-5 *1 (-1158 *3)) (-4 *3 (-356)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-1158 *2)) (-4 *2 (-356))))) -(-10 -7 (-15 -3952 (|#1| (-620 |#1|))) (-15 -3953 ((-1141 |#1|) |#1| (-893))) (-15 -3954 (|#1| |#1| (-536)))) -((-3955 (($) 10) (($ (-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)))) 14)) (-3759 (($ (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2063 (((-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) 39) (((-620 |#3|) $) 41)) (-2067 (($ (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4313 (($ (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1331 (((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) 54)) (-3965 (($ (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) 16)) (-2305 (((-620 |#2|) $) 19)) (-2306 (((-112) |#2| $) 59)) (-1399 (((-3 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) "failed") (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) 58)) (-1332 (((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) 63)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2307 (((-620 |#3|) $) 43)) (-4154 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) NIL) (((-749) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) $) NIL) (((-749) |#3| $) NIL) (((-749) (-1 (-112) |#3|) $) 68)) (-4312 (((-838) $) 27)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-3382 (((-112) $ $) 49))) -(((-1159 |#1| |#2| |#3|) (-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3955 (|#1| (-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))))) (-15 -3955 (|#1|)) (-15 -4313 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#3|) |#1|)) (-15 -2063 ((-620 |#3|) |#1|)) (-15 -2064 ((-749) |#3| |#1|)) (-15 -4154 (|#3| |#1| |#2| |#3|)) (-15 -4154 (|#3| |#1| |#2|)) (-15 -2307 ((-620 |#3|) |#1|)) (-15 -2306 ((-112) |#2| |#1|)) (-15 -2305 ((-620 |#2|) |#1|)) (-15 -3759 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3759 (|#1| (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -3759 (|#1| (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -1399 ((-3 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) "failed") (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -1331 ((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -3965 (|#1| (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -1332 ((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -2064 ((-749) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -2063 ((-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2064 ((-749) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2065 ((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2066 ((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2067 (|#1| (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -4313 (|#1| (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|))) (-1160 |#2| |#3|) (-1072) (-1072)) (T -1159)) -NIL -(-10 -8 (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4313 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3955 (|#1| (-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))))) (-15 -3955 (|#1|)) (-15 -4313 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2067 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2066 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2065 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2064 ((-749) (-1 (-112) |#3|) |#1|)) (-15 -2063 ((-620 |#3|) |#1|)) (-15 -2064 ((-749) |#3| |#1|)) (-15 -4154 (|#3| |#1| |#2| |#3|)) (-15 -4154 (|#3| |#1| |#2|)) (-15 -2307 ((-620 |#3|) |#1|)) (-15 -2306 ((-112) |#2| |#1|)) (-15 -2305 ((-620 |#2|) |#1|)) (-15 -3759 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3759 (|#1| (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -3759 (|#1| (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -1399 ((-3 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) "failed") (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -1331 ((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -3965 (|#1| (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -1332 ((-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -2064 ((-749) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) |#1|)) (-15 -2063 ((-620 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2064 ((-749) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2065 ((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2066 ((-112) (-1 (-112) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -2067 (|#1| (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|)) (-15 -4313 (|#1| (-1 (-2 (|:| -4215 |#2|) (|:| -2186 |#3|)) (-2 (|:| -4215 |#2|) (|:| -2186 |#3|))) |#1|))) -((-2893 (((-112) $ $) 19 (-3886 (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-3955 (($) 72) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 71)) (-2300 (((-1235) $ |#1| |#1|) 99 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#2| $ |#1| |#2|) 73)) (-1626 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 45 (|has| $ (-6 -4348)))) (-4068 (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 55 (|has| $ (-6 -4348)))) (-2309 (((-3 |#2| #1="failed") |#1| $) 61)) (-3891 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348))))) (-3759 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 47 (|has| $ (-6 -4348))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 46 (|has| $ (-6 -4348))) (((-3 |#2| #1#) |#1| $) 62)) (-3760 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 54 (|has| $ (-6 -4348)))) (-4197 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 56 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 53 (|has| $ (-6 -4348))) (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 52 (|has| $ (-6 -4348)))) (-1632 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4349)))) (-3443 ((|#2| $ |#1|) 88)) (-2063 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 30 (|has| $ (-6 -4348))) (((-620 |#2|) $) 79 (|has| $ (-6 -4348)))) (-4077 (((-112) $ (-749)) 9)) (-2302 ((|#1| $) 96 (|has| |#1| (-825)))) (-2506 (((-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 29 (|has| $ (-6 -4348))) (((-620 |#2|) $) 80 (|has| $ (-6 -4348)))) (-3591 (((-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348))))) (-2303 ((|#1| $) 95 (|has| |#1| (-825)))) (-2067 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 34 (|has| $ (-6 -4349))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4349)))) (-4313 (($ (-1 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4074 (((-112) $ (-749)) 10)) (-3588 (((-1129) $) 22 (-3886 (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-2739 (((-620 |#1|) $) 63)) (-2310 (((-112) |#1| $) 64)) (-1331 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 39)) (-3965 (($ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 40)) (-2305 (((-620 |#1|) $) 93)) (-2306 (((-112) |#1| $) 92)) (-3589 (((-1091) $) 21 (-3886 (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-4155 ((|#2| $) 97 (|has| |#1| (-825)))) (-1399 (((-3 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) "failed") (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 51)) (-2301 (($ $ |#2|) 98 (|has| $ (-6 -4349)))) (-1332 (((-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 41)) (-2065 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 32 (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))))) 26 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-286 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 25 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) 24 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 23 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)))) (($ $ (-620 |#2|) (-620 |#2|)) 86 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-286 |#2|)) 84 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072)))) (($ $ (-620 (-286 |#2|))) 83 (-12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4348)) (|has| |#2| (-1072))))) (-2307 (((-620 |#2|) $) 91)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1518 (($) 49) (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 48)) (-2064 (((-749) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 31 (|has| $ (-6 -4348))) (((-749) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| $ (-6 -4348)))) (((-749) |#2| $) 81 (-12 (|has| |#2| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4348)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 59 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))))) (-3879 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 50)) (-4312 (((-838) $) 18 (-3886 (|has| |#2| (-595 (-838))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838)))))) (-1333 (($ (-620 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) 42)) (-2066 (((-112) (-1 (-112) (-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) $) 33 (|has| $ (-6 -4348))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (-3886 (|has| |#2| (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-1160 |#1| |#2|) (-138) (-1072) (-1072)) (T -1160)) -((-4142 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) (-3955 (*1 *1) (-12 (-4 *1 (-1160 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-620 (-2 (|:| -4215 *3) (|:| -2186 *4)))) (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *1 (-1160 *3 *4)))) (-4313 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1160 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) -(-13 (-592 |t#1| |t#2|) (-586 |t#1| |t#2|) (-10 -8 (-15 -4142 (|t#2| $ |t#1| |t#2|)) (-15 -3955 ($)) (-15 -3955 ($ (-620 (-2 (|:| -4215 |t#1|) (|:| -2186 |t#2|))))) (-15 -4313 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-106 #1=(-2 (|:| -4215 |#1|) (|:| -2186 |#2|))) . T) ((-101) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))) ((-595 (-838)) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-595 (-838))) (|has| |#2| (-1072)) (|has| |#2| (-595 (-838)))) ((-149 #1#) . T) ((-596 (-525)) |has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-596 (-525))) ((-223 #1#) . T) ((-229 #1#) . T) ((-279 |#1| |#2|) . T) ((-281 |#1| |#2|) . T) ((-302 #1#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-302 |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-481 #1#) . T) ((-481 |#2|) . T) ((-586 |#1| |#2|) . T) ((-505 #1# #1#) -12 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-302 (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)))) (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072))) ((-505 |#2| |#2|) -12 (|has| |#2| (-302 |#2|)) (|has| |#2| (-1072))) ((-592 |#1| |#2|) . T) ((-1072) -3886 (|has| (-2 (|:| -4215 |#1|) (|:| -2186 |#2|)) (-1072)) (|has| |#2| (-1072))) ((-1183) . T)) -((-3961 (((-112)) 24)) (-3958 (((-1235) (-1129)) 26)) (-3962 (((-112)) 36)) (-3959 (((-1235)) 34)) (-3957 (((-1235) (-1129) (-1129)) 25)) (-3963 (((-112)) 37)) (-3965 (((-1235) |#1| |#2|) 44)) (-3956 (((-1235)) 20)) (-3964 (((-3 |#2| "failed") |#1|) 42)) (-3960 (((-1235)) 35))) -(((-1161 |#1| |#2|) (-10 -7 (-15 -3956 ((-1235))) (-15 -3957 ((-1235) (-1129) (-1129))) (-15 -3958 ((-1235) (-1129))) (-15 -3959 ((-1235))) (-15 -3960 ((-1235))) (-15 -3961 ((-112))) (-15 -3962 ((-112))) (-15 -3963 ((-112))) (-15 -3964 ((-3 |#2| "failed") |#1|)) (-15 -3965 ((-1235) |#1| |#2|))) (-1072) (-1072)) (T -1161)) -((-3965 (*1 *2 *3 *4) (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3964 (*1 *2 *3) (|partial| -12 (-4 *2 (-1072)) (-5 *1 (-1161 *3 *2)) (-4 *3 (-1072)))) (-3963 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3962 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3961 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3960 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3959 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)))) (-3957 (*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)))) (-3956 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) -(-10 -7 (-15 -3956 ((-1235))) (-15 -3957 ((-1235) (-1129) (-1129))) (-15 -3958 ((-1235) (-1129))) (-15 -3959 ((-1235))) (-15 -3960 ((-1235))) (-15 -3961 ((-112))) (-15 -3962 ((-112))) (-15 -3963 ((-112))) (-15 -3964 ((-3 |#2| "failed") |#1|)) (-15 -3965 ((-1235) |#1| |#2|))) -((-3967 (((-1129) (-1129)) 18)) (-3966 (((-51) (-1129)) 21))) -(((-1162) (-10 -7 (-15 -3966 ((-51) (-1129))) (-15 -3967 ((-1129) (-1129))))) (T -1162)) -((-3967 (*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1162)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-1162))))) -(-10 -7 (-15 -3966 ((-51) (-1129))) (-15 -3967 ((-1129) (-1129)))) -((-2893 (((-112) $ $) NIL)) (-3973 (((-620 (-1129)) $) 34)) (-3969 (((-620 (-1129)) $ (-620 (-1129))) 37)) (-3968 (((-620 (-1129)) $ (-620 (-1129))) 36)) (-3970 (((-620 (-1129)) $ (-620 (-1129))) 38)) (-3971 (((-620 (-1129)) $) 33)) (-3972 (($) 22)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3974 (((-620 (-1129)) $) 35)) (-3975 (((-1235) $ (-536)) 29) (((-1235) $) 30)) (-4325 (($ (-838) (-536)) 26) (($ (-838) (-536) (-838)) NIL)) (-4312 (((-838) $) 40) (($ (-838)) 24)) (-3382 (((-112) $ $) NIL))) -(((-1163) (-13 (-1072) (-10 -8 (-15 -4312 ($ (-838))) (-15 -4325 ($ (-838) (-536))) (-15 -4325 ($ (-838) (-536) (-838))) (-15 -3975 ((-1235) $ (-536))) (-15 -3975 ((-1235) $)) (-15 -3974 ((-620 (-1129)) $)) (-15 -3973 ((-620 (-1129)) $)) (-15 -3972 ($)) (-15 -3971 ((-620 (-1129)) $)) (-15 -3970 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3969 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3968 ((-620 (-1129)) $ (-620 (-1129))))))) (T -1163)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-1163)))) (-4325 (*1 *1 *2 *3) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-1163)))) (-4325 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-1163)))) (-3975 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1163)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1163)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163)))) (-3972 (*1 *1) (-5 *1 (-1163))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163)))) (-3970 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163)))) (-3969 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163)))) (-3968 (*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) -(-13 (-1072) (-10 -8 (-15 -4312 ($ (-838))) (-15 -4325 ($ (-838) (-536))) (-15 -4325 ($ (-838) (-536) (-838))) (-15 -3975 ((-1235) $ (-536))) (-15 -3975 ((-1235) $)) (-15 -3974 ((-620 (-1129)) $)) (-15 -3973 ((-620 (-1129)) $)) (-15 -3972 ($)) (-15 -3971 ((-620 (-1129)) $)) (-15 -3970 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3969 ((-620 (-1129)) $ (-620 (-1129)))) (-15 -3968 ((-620 (-1129)) $ (-620 (-1129)))))) -((-4312 (((-1163) |#1|) 11))) -(((-1164 |#1|) (-10 -7 (-15 -4312 ((-1163) |#1|))) (-1072)) (T -1164)) -((-4312 (*1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *1 (-1164 *3)) (-4 *3 (-1072))))) -(-10 -7 (-15 -4312 ((-1163) |#1|))) -((-2893 (((-112) $ $) NIL)) (-3980 (((-1129) $ (-1129)) 17) (((-1129) $) 16)) (-1808 (((-1129) $ (-1129)) 15)) (-1812 (($ $ (-1129)) NIL)) (-3978 (((-3 (-1129) "failed") $) 11)) (-3979 (((-1129) $) 8)) (-3977 (((-3 (-1129) "failed") $) 12)) (-1809 (((-1129) $) 9)) (-1813 (($ (-381)) NIL) (($ (-381) (-1129)) NIL)) (-3900 (((-381) $) NIL)) (-3588 (((-1129) $) NIL)) (-1810 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-3976 (((-112) $) 18)) (-4312 (((-838) $) NIL)) (-1811 (($ $) NIL)) (-3382 (((-112) $ $) NIL))) -(((-1165) (-13 (-358 (-381) (-1129)) (-10 -8 (-15 -3980 ((-1129) $ (-1129))) (-15 -3980 ((-1129) $)) (-15 -3979 ((-1129) $)) (-15 -3978 ((-3 (-1129) "failed") $)) (-15 -3977 ((-3 (-1129) "failed") $)) (-15 -3976 ((-112) $))))) (T -1165)) -((-3980 (*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1165)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1165)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1165)))) (-3978 (*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-1165)))) (-3977 (*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-1165)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165))))) -(-13 (-358 (-381) (-1129)) (-10 -8 (-15 -3980 ((-1129) $ (-1129))) (-15 -3980 ((-1129) $)) (-15 -3979 ((-1129) $)) (-15 -3978 ((-3 (-1129) "failed") $)) (-15 -3977 ((-3 (-1129) "failed") $)) (-15 -3976 ((-112) $)))) -((-3981 (((-3 (-536) "failed") |#1|) 19)) (-3982 (((-3 (-536) "failed") |#1|) 14)) (-3983 (((-536) (-1129)) 28))) -(((-1166 |#1|) (-10 -7 (-15 -3981 ((-3 (-536) "failed") |#1|)) (-15 -3982 ((-3 (-536) "failed") |#1|)) (-15 -3983 ((-536) (-1129)))) (-1023)) (T -1166)) -((-3983 (*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-536)) (-5 *1 (-1166 *4)) (-4 *4 (-1023)))) (-3982 (*1 *2 *3) (|partial| -12 (-5 *2 (-536)) (-5 *1 (-1166 *3)) (-4 *3 (-1023)))) (-3981 (*1 *2 *3) (|partial| -12 (-5 *2 (-536)) (-5 *1 (-1166 *3)) (-4 *3 (-1023))))) -(-10 -7 (-15 -3981 ((-3 (-536) "failed") |#1|)) (-15 -3982 ((-3 (-536) "failed") |#1|)) (-15 -3983 ((-536) (-1129)))) -((-3984 (((-1104 (-219))) 9))) -(((-1167) (-10 -7 (-15 -3984 ((-1104 (-219)))))) (T -1167)) -((-3984 (*1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1167))))) -(-10 -7 (-15 -3984 ((-1104 (-219))))) -((-3985 (($) 11)) (-3847 (($ $) 35)) (-3845 (($ $) 33)) (-3833 (($ $) 25)) (-3849 (($ $) 17)) (-3850 (($ $) 15)) (-3848 (($ $) 19)) (-3836 (($ $) 30)) (-3846 (($ $) 34)) (-3834 (($ $) 29))) -(((-1168 |#1|) (-10 -8 (-15 -3985 (|#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3834 (|#1| |#1|))) (-1169)) (T -1168)) -NIL -(-10 -8 (-15 -3985 (|#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3834 (|#1| |#1|))) -((-3841 (($ $) 26)) (-3997 (($ $) 11)) (-3839 (($ $) 27)) (-3996 (($ $) 10)) (-3843 (($ $) 28)) (-3995 (($ $) 9)) (-3985 (($) 16)) (-4297 (($ $) 19)) (-4298 (($ $) 18)) (-3844 (($ $) 29)) (-3994 (($ $) 8)) (-3842 (($ $) 30)) (-3993 (($ $) 7)) (-3840 (($ $) 31)) (-3992 (($ $) 6)) (-3847 (($ $) 20)) (-3835 (($ $) 32)) (-3845 (($ $) 21)) (-3833 (($ $) 33)) (-3849 (($ $) 22)) (-3837 (($ $) 34)) (-3850 (($ $) 23)) (-3838 (($ $) 35)) (-3848 (($ $) 24)) (-3836 (($ $) 36)) (-3846 (($ $) 25)) (-3834 (($ $) 37)) (** (($ $ $) 17))) -(((-1169) (-138)) (T -1169)) -((-3985 (*1 *1) (-4 *1 (-1169)))) -(-13 (-1172) (-94) (-484) (-35) (-277) (-10 -8 (-15 -3985 ($)))) -(((-35) . T) ((-94) . T) ((-277) . T) ((-484) . T) ((-1172) . T)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3756 ((|#1| $) 17)) (-3990 (($ |#1| (-620 $)) 23) (($ (-620 |#1|)) 27) (($ |#1|) 25)) (-1269 (((-112) $ (-749)) 48)) (-3353 ((|#1| $ |#1|) 14 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 13 (|has| $ (-6 -4349)))) (-3891 (($) NIL T CONST)) (-2063 (((-620 |#1|) $) 52 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 43)) (-3355 (((-112) $ $) 33 (|has| |#1| (-1072)))) (-4077 (((-112) $ (-749)) 41)) (-2506 (((-620 |#1|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2067 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 22)) (-4074 (((-112) $ (-749)) 40)) (-3358 (((-620 |#1|) $) 37)) (-3876 (((-112) $) 36)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-2065 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 74)) (-3757 (((-112) $) 9)) (-3923 (($) 10)) (-4154 ((|#1| $ #1#) NIL)) (-3357 (((-536) $ $) 32)) (-3986 (((-620 $) $) 59)) (-3987 (((-112) $ $) 77)) (-3988 (((-620 $) $) 72)) (-3989 (($ $) 73)) (-3991 (((-112) $) 56)) (-2064 (((-749) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4348))) (((-749) |#1| $) 16 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3754 (($ $) 58)) (-4312 (((-838) $) 61 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 12)) (-3356 (((-112) $ $) 29 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 28 (|has| |#1| (-1072)))) (-4311 (((-749) $) 39 (|has| $ (-6 -4348))))) -(((-1170 |#1|) (-13 (-984 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -3990 ($ |#1| (-620 $))) (-15 -3990 ($ (-620 |#1|))) (-15 -3990 ($ |#1|)) (-15 -3991 ((-112) $)) (-15 -3989 ($ $)) (-15 -3988 ((-620 $) $)) (-15 -3987 ((-112) $ $)) (-15 -3986 ((-620 $) $)))) (-1072)) (T -1170)) -((-3991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1072)))) (-3990 (*1 *1 *2 *3) (-12 (-5 *3 (-620 (-1170 *2))) (-5 *1 (-1170 *2)) (-4 *2 (-1072)))) (-3990 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-1170 *3)))) (-3990 (*1 *1 *2) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1072)))) (-3989 (*1 *1 *1) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1072)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-620 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1072)))) (-3987 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1072)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-620 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1072))))) -(-13 (-984 |#1|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -3990 ($ |#1| (-620 $))) (-15 -3990 ($ (-620 |#1|))) (-15 -3990 ($ |#1|)) (-15 -3991 ((-112) $)) (-15 -3989 ($ $)) (-15 -3988 ((-620 $) $)) (-15 -3987 ((-112) $ $)) (-15 -3986 ((-620 $) $)))) -((-3997 (($ $) 15)) (-3995 (($ $) 12)) (-3994 (($ $) 10)) (-3993 (($ $) 17))) -(((-1171 |#1|) (-10 -8 (-15 -3993 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3997 (|#1| |#1|))) (-1172)) (T -1171)) -NIL -(-10 -8 (-15 -3993 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3997 (|#1| |#1|))) -((-3997 (($ $) 11)) (-3996 (($ $) 10)) (-3995 (($ $) 9)) (-3994 (($ $) 8)) (-3993 (($ $) 7)) (-3992 (($ $) 6))) -(((-1172) (-138)) (T -1172)) -((-3997 (*1 *1 *1) (-4 *1 (-1172))) (-3996 (*1 *1 *1) (-4 *1 (-1172))) (-3995 (*1 *1 *1) (-4 *1 (-1172))) (-3994 (*1 *1 *1) (-4 *1 (-1172))) (-3993 (*1 *1 *1) (-4 *1 (-1172))) (-3992 (*1 *1 *1) (-4 *1 (-1172)))) -(-13 (-10 -8 (-15 -3992 ($ $)) (-15 -3993 ($ $)) (-15 -3994 ($ $)) (-15 -3995 ($ $)) (-15 -3996 ($ $)) (-15 -3997 ($ $)))) -((-4000 ((|#2| |#2|) 88)) (-4003 (((-112) |#2|) 26)) (-4001 ((|#2| |#2|) 30)) (-4002 ((|#2| |#2|) 32)) (-3998 ((|#2| |#2| (-1147)) 83) ((|#2| |#2|) 84)) (-4004 (((-166 |#2|) |#2|) 28)) (-3999 ((|#2| |#2| (-1147)) 85) ((|#2| |#2|) 86))) -(((-1173 |#1| |#2|) (-10 -7 (-15 -3998 (|#2| |#2|)) (-15 -3998 (|#2| |#2| (-1147))) (-15 -3999 (|#2| |#2|)) (-15 -3999 (|#2| |#2| (-1147))) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 ((-112) |#2|)) (-15 -4004 ((-166 |#2|) |#2|))) (-13 (-444) (-825) (-1012 (-536)) (-619 (-536))) (-13 (-27) (-1169) (-414 |#1|))) (T -1173)) -((-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-166 *3)) (-5 *1 (-1173 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4003 (*1 *2 *3) (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-112)) (-5 *1 (-1173 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) (-4002 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) (-4001 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) (-4000 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) (-3999 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) (-3998 (*1 *2 *2 *3) (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) (-3998 (*1 *2 *2) (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3)))))) -(-10 -7 (-15 -3998 (|#2| |#2|)) (-15 -3998 (|#2| |#2| (-1147))) (-15 -3999 (|#2| |#2|)) (-15 -3999 (|#2| |#2| (-1147))) (-15 -4000 (|#2| |#2|)) (-15 -4001 (|#2| |#2|)) (-15 -4002 (|#2| |#2|)) (-15 -4003 ((-112) |#2|)) (-15 -4004 ((-166 |#2|) |#2|))) -((-4005 ((|#4| |#4| |#1|) 27)) (-4006 ((|#4| |#4| |#1|) 28))) -(((-1174 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4005 (|#4| |#4| |#1|)) (-15 -4006 (|#4| |#4| |#1|))) (-543) (-365 |#1|) (-365 |#1|) (-664 |#1| |#2| |#3|)) (T -1174)) -((-4006 (*1 *2 *2 *3) (-12 (-4 *3 (-543)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1174 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) (-4005 (*1 *2 *2 *3) (-12 (-4 *3 (-543)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) (-5 *1 (-1174 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) -(-10 -7 (-15 -4005 (|#4| |#4| |#1|)) (-15 -4006 (|#4| |#4| |#1|))) -((-4024 ((|#2| |#2|) 133)) (-4026 ((|#2| |#2|) 130)) (-4023 ((|#2| |#2|) 121)) (-4025 ((|#2| |#2|) 118)) (-4022 ((|#2| |#2|) 126)) (-4021 ((|#2| |#2|) 114)) (-4010 ((|#2| |#2|) 43)) (-4009 ((|#2| |#2|) 94)) (-4007 ((|#2| |#2|) 74)) (-4020 ((|#2| |#2|) 128)) (-4019 ((|#2| |#2|) 116)) (-4032 ((|#2| |#2|) 138)) (-4030 ((|#2| |#2|) 136)) (-4031 ((|#2| |#2|) 137)) (-4029 ((|#2| |#2|) 135)) (-4008 ((|#2| |#2|) 148)) (-4033 ((|#2| |#2|) 30 (-12 (|has| |#2| (-596 (-864 |#1|))) (|has| |#2| (-860 |#1|)) (|has| |#1| (-596 (-864 |#1|))) (|has| |#1| (-860 |#1|))))) (-4011 ((|#2| |#2|) 75)) (-4012 ((|#2| |#2|) 139)) (-4318 ((|#2| |#2|) 140)) (-4018 ((|#2| |#2|) 127)) (-4017 ((|#2| |#2|) 115)) (-4016 ((|#2| |#2|) 134)) (-4028 ((|#2| |#2|) 132)) (-4015 ((|#2| |#2|) 122)) (-4027 ((|#2| |#2|) 120)) (-4014 ((|#2| |#2|) 124)) (-4013 ((|#2| |#2|) 112))) -(((-1175 |#1| |#2|) (-10 -7 (-15 -4318 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -4010 (|#2| |#2|)) (-15 -4011 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -4030 (|#2| |#2|)) (-15 -4031 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (IF (|has| |#1| (-860 |#1|)) (IF (|has| |#1| (-596 (-864 |#1|))) (IF (|has| |#2| (-596 (-864 |#1|))) (IF (|has| |#2| (-860 |#1|)) (-15 -4033 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-825) (-444)) (-13 (-414 |#1|) (-1169))) (T -1175)) -((-4033 (*1 *2 *2) (-12 (-4 *3 (-596 (-864 *3))) (-4 *3 (-860 *3)) (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-596 (-864 *3))) (-4 *2 (-860 *3)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4031 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4030 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4029 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4028 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4027 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4022 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4021 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4019 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4017 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4016 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4015 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4012 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4011 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4010 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4009 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169))))) (-4318 (*1 *2 *2) (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-414 *3) (-1169)))))) -(-10 -7 (-15 -4318 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4009 (|#2| |#2|)) (-15 -4010 (|#2| |#2|)) (-15 -4011 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -4030 (|#2| |#2|)) (-15 -4031 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (IF (|has| |#1| (-860 |#1|)) (IF (|has| |#1| (-596 (-864 |#1|))) (IF (|has| |#2| (-596 (-864 |#1|))) (IF (|has| |#2| (-860 |#1|)) (-15 -4033 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1147)) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4169 (((-920 |#1|) $ (-749)) 17) (((-920 |#1|) $ (-749) (-749)) NIL)) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $ (-1147)) NIL) (((-749) $ (-1147) (-749)) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4292 (((-112) $) NIL)) (-3221 (($ $ (-620 (-1147)) (-620 (-522 (-1147)))) NIL) (($ $ (-1147) (-522 (-1147))) NIL) (($ |#1| (-522 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-4167 (($ $ (-1147)) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147) |#1|) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-4034 (($ (-1 $) (-1147) |#1|) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4123 (($ $ (-749)) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (($ $ (-1147) $) NIL) (($ $ (-620 (-1147)) (-620 $)) NIL) (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL)) (-4165 (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-4302 (((-522 (-1147)) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-543))) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-1147)) NIL) (($ (-920 |#1|)) NIL)) (-4035 ((|#1| $ (-522 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (((-920 |#1|) $ (-749)) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) NIL T CONST)) (-2992 (($) NIL T CONST)) (-2997 (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1176 |#1|) (-13 (-719 |#1| (-1147)) (-10 -8 (-15 -4035 ((-920 |#1|) $ (-749))) (-15 -4312 ($ (-1147))) (-15 -4312 ($ (-920 |#1|))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $ (-1147) |#1|)) (-15 -4034 ($ (-1 $) (-1147) |#1|))) |%noBranch|))) (-1023)) (T -1176)) -((-4035 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-920 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1023)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1176 *3)) (-4 *3 (-1023)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-5 *1 (-1176 *3)))) (-4167 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *1 (-1176 *3)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)))) (-4034 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1176 *4))) (-5 *3 (-1147)) (-5 *1 (-1176 *4)) (-4 *4 (-38 (-400 (-536)))) (-4 *4 (-1023))))) -(-13 (-719 |#1| (-1147)) (-10 -8 (-15 -4035 ((-920 |#1|) $ (-749))) (-15 -4312 ($ (-1147))) (-15 -4312 ($ (-920 |#1|))) (IF (|has| |#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $ (-1147) |#1|)) (-15 -4034 ($ (-1 $) (-1147) |#1|))) |%noBranch|))) -((-4051 (((-112) |#5| $) 60) (((-112) $) 102)) (-4046 ((|#5| |#5| $) 75)) (-4068 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4047 (((-620 |#5|) (-620 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-3503 (((-3 $ "failed") (-620 |#5|)) 126)) (-4153 (((-3 $ "failed") $) 112)) (-4043 ((|#5| |#5| $) 94)) (-4052 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-4041 ((|#5| |#5| $) 98)) (-4197 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-4054 (((-2 (|:| -4216 (-620 |#5|)) (|:| -1813 (-620 |#5|))) $) 55)) (-4053 (((-112) |#5| $) 58) (((-112) $) 103)) (-3526 ((|#4| $) 108)) (-4152 (((-3 |#5| "failed") $) 110)) (-4055 (((-620 |#5|) $) 49)) (-4049 (((-112) |#5| $) 67) (((-112) $) 107)) (-4044 ((|#5| |#5| $) 81)) (-4057 (((-112) $ $) 27)) (-4050 (((-112) |#5| $) 63) (((-112) $) 105)) (-4045 ((|#5| |#5| $) 78)) (-4155 (((-3 |#5| "failed") $) 109)) (-4123 (($ $ |#5|) 127)) (-4302 (((-749) $) 52)) (-3879 (($ (-620 |#5|)) 124)) (-3238 (($ $ |#4|) 122)) (-3240 (($ $ |#4|) 121)) (-4042 (($ $) 120)) (-4312 (((-838) $) NIL) (((-620 |#5|) $) 113)) (-4036 (((-749) $) 130)) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-4048 (((-112) $ (-1 (-112) |#5| (-620 |#5|))) 100)) (-4038 (((-620 |#4|) $) 115)) (-4288 (((-112) |#4| $) 118)) (-3382 (((-112) $ $) 19))) -(((-1177 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4036 ((-749) |#1|)) (-15 -4123 (|#1| |#1| |#5|)) (-15 -4068 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4288 ((-112) |#4| |#1|)) (-15 -4038 ((-620 |#4|) |#1|)) (-15 -4153 ((-3 |#1| "failed") |#1|)) (-15 -4152 ((-3 |#5| "failed") |#1|)) (-15 -4155 ((-3 |#5| "failed") |#1|)) (-15 -4041 (|#5| |#5| |#1|)) (-15 -4042 (|#1| |#1|)) (-15 -4043 (|#5| |#5| |#1|)) (-15 -4044 (|#5| |#5| |#1|)) (-15 -4045 (|#5| |#5| |#1|)) (-15 -4046 (|#5| |#5| |#1|)) (-15 -4047 ((-620 |#5|) (-620 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4197 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4049 ((-112) |#1|)) (-15 -4050 ((-112) |#1|)) (-15 -4051 ((-112) |#1|)) (-15 -4048 ((-112) |#1| (-1 (-112) |#5| (-620 |#5|)))) (-15 -4049 ((-112) |#5| |#1|)) (-15 -4050 ((-112) |#5| |#1|)) (-15 -4051 ((-112) |#5| |#1|)) (-15 -4052 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4053 ((-112) |#1|)) (-15 -4053 ((-112) |#5| |#1|)) (-15 -4054 ((-2 (|:| -4216 (-620 |#5|)) (|:| -1813 (-620 |#5|))) |#1|)) (-15 -4302 ((-749) |#1|)) (-15 -4055 ((-620 |#5|) |#1|)) (-15 -4056 ((-3 (-2 (|:| |bas| |#1|) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4056 ((-3 (-2 (|:| |bas| |#1|) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3238 (|#1| |#1| |#4|)) (-15 -3240 (|#1| |#1| |#4|)) (-15 -3526 (|#4| |#1|)) (-15 -3503 ((-3 |#1| "failed") (-620 |#5|))) (-15 -4312 ((-620 |#5|) |#1|)) (-15 -3879 (|#1| (-620 |#5|))) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4068 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) (-1178 |#2| |#3| |#4| |#5|) (-543) (-771) (-825) (-1037 |#2| |#3| |#4|)) (T -1177)) -NIL -(-10 -8 (-15 -4036 ((-749) |#1|)) (-15 -4123 (|#1| |#1| |#5|)) (-15 -4068 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4288 ((-112) |#4| |#1|)) (-15 -4038 ((-620 |#4|) |#1|)) (-15 -4153 ((-3 |#1| "failed") |#1|)) (-15 -4152 ((-3 |#5| "failed") |#1|)) (-15 -4155 ((-3 |#5| "failed") |#1|)) (-15 -4041 (|#5| |#5| |#1|)) (-15 -4042 (|#1| |#1|)) (-15 -4043 (|#5| |#5| |#1|)) (-15 -4044 (|#5| |#5| |#1|)) (-15 -4045 (|#5| |#5| |#1|)) (-15 -4046 (|#5| |#5| |#1|)) (-15 -4047 ((-620 |#5|) (-620 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4197 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4049 ((-112) |#1|)) (-15 -4050 ((-112) |#1|)) (-15 -4051 ((-112) |#1|)) (-15 -4048 ((-112) |#1| (-1 (-112) |#5| (-620 |#5|)))) (-15 -4049 ((-112) |#5| |#1|)) (-15 -4050 ((-112) |#5| |#1|)) (-15 -4051 ((-112) |#5| |#1|)) (-15 -4052 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4053 ((-112) |#1|)) (-15 -4053 ((-112) |#5| |#1|)) (-15 -4054 ((-2 (|:| -4216 (-620 |#5|)) (|:| -1813 (-620 |#5|))) |#1|)) (-15 -4302 ((-749) |#1|)) (-15 -4055 ((-620 |#5|) |#1|)) (-15 -4056 ((-3 (-2 (|:| |bas| |#1|) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4056 ((-3 (-2 (|:| |bas| |#1|) (|:| -3678 (-620 |#5|))) "failed") (-620 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4057 ((-112) |#1| |#1|)) (-15 -3238 (|#1| |#1| |#4|)) (-15 -3240 (|#1| |#1| |#4|)) (-15 -3526 (|#4| |#1|)) (-15 -3503 ((-3 |#1| "failed") (-620 |#5|))) (-15 -4312 ((-620 |#5|) |#1|)) (-15 -3879 (|#1| (-620 |#5|))) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4068 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4197 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4312 ((-838) |#1|)) (-15 -3382 ((-112) |#1| |#1|))) -((-2893 (((-112) $ $) 7)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) 85)) (-4040 (((-620 $) (-620 |#4|)) 86)) (-3412 (((-620 |#3|) $) 33)) (-3236 (((-112) $) 26)) (-3227 (((-112) $) 17 (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) 101) (((-112) $) 97)) (-4046 ((|#4| |#4| $) 92)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) 27)) (-1269 (((-112) $ (-749)) 44)) (-4068 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4348))) (((-3 |#4| "failed") $ |#3|) 79)) (-3891 (($) 45 T CONST)) (-3232 (((-112) $) 22 (|has| |#1| (-543)))) (-3234 (((-112) $ $) 24 (|has| |#1| (-543)))) (-3233 (((-112) $ $) 23 (|has| |#1| (-543)))) (-3235 (((-112) $) 25 (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3228 (((-620 |#4|) (-620 |#4|) $) 18 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) 19 (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) 36)) (-3502 (($ (-620 |#4|)) 35)) (-4153 (((-3 $ "failed") $) 82)) (-4043 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#4| $) 67 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4041 ((|#4| |#4| $) 87)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) 105)) (-2063 (((-620 |#4|) $) 52 (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) 104) (((-112) $) 103)) (-3526 ((|#3| $) 34)) (-4077 (((-112) $ (-749)) 43)) (-2506 (((-620 |#4|) $) 53 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) 47)) (-3242 (((-620 |#3|) $) 32)) (-3241 (((-112) |#3| $) 31)) (-4074 (((-112) $ (-749)) 42)) (-3588 (((-1129) $) 9)) (-4152 (((-3 |#4| "failed") $) 83)) (-4055 (((-620 |#4|) $) 107)) (-4049 (((-112) |#4| $) 99) (((-112) $) 95)) (-4044 ((|#4| |#4| $) 90)) (-4057 (((-112) $ $) 110)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) 100) (((-112) $) 96)) (-4045 ((|#4| |#4| $) 91)) (-3589 (((-1091) $) 10)) (-4155 (((-3 |#4| "failed") $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4037 (((-3 $ "failed") $ |#4|) 78)) (-4123 (($ $ |#4|) 77)) (-2065 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) 59 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) 57 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) 56 (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) 38)) (-3757 (((-112) $) 41)) (-3923 (($) 40)) (-4302 (((-749) $) 106)) (-2064 (((-749) |#4| $) 54 (-12 (|has| |#4| (-1072)) (|has| $ (-6 -4348)))) (((-749) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4348)))) (-3754 (($ $) 39)) (-4325 (((-525) $) 69 (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) 60)) (-3238 (($ $ |#3|) 28)) (-3240 (($ $ |#3|) 30)) (-4042 (($ $) 88)) (-3239 (($ $ |#3|) 29)) (-4312 (((-838) $) 11) (((-620 |#4|) $) 37)) (-4036 (((-749) $) 76 (|has| |#3| (-361)))) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) "failed") (-620 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) "failed") (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) 98)) (-2066 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) 81)) (-4288 (((-112) |#3| $) 80)) (-3382 (((-112) $ $) 6)) (-4311 (((-749) $) 46 (|has| $ (-6 -4348))))) -(((-1178 |#1| |#2| |#3| |#4|) (-138) (-543) (-771) (-825) (-1037 |t#1| |t#2| |t#3|)) (T -1178)) -((-4057 (*1 *2 *1 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-4056 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3678 (-620 *8)))) (-5 *3 (-620 *8)) (-4 *1 (-1178 *5 *6 *7 *8)))) (-4056 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3678 (-620 *9)))) (-5 *3 (-620 *9)) (-4 *1 (-1178 *6 *7 *8 *9)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *6)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-749)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-2 (|:| -4216 (-620 *6)) (|:| -1813 (-620 *6)))))) (-4053 (*1 *2 *3 *1) (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-4052 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1178 *5 *6 *7 *3)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-112)))) (-4051 (*1 *2 *3 *1) (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-4050 (*1 *2 *3 *1) (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-4049 (*1 *2 *3 *1) (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-4048 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-620 *7))) (-4 *1 (-1178 *4 *5 *6 *7)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-4049 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) (-4197 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1178 *5 *6 *7 *2)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *2 (-1037 *5 *6 *7)))) (-4047 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-620 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1178 *5 *6 *7 *8)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)))) (-4046 (*1 *2 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4045 (*1 *2 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4044 (*1 *2 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4043 (*1 *2 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4042 (*1 *1 *1) (-12 (-4 *1 (-1178 *2 *3 *4 *5)) (-4 *2 (-543)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-1037 *2 *3 *4)))) (-4041 (*1 *2 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4040 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1178 *4 *5 *6 *7)))) (-4039 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-620 (-2 (|:| -4216 *1) (|:| -1813 (-620 *7))))) (-5 *3 (-620 *7)) (-4 *1 (-1178 *4 *5 *6 *7)))) (-4155 (*1 *2 *1) (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4152 (*1 *2 *1) (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4153 (*1 *1 *1) (|partial| -12 (-4 *1 (-1178 *2 *3 *4 *5)) (-4 *2 (-543)) (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-1037 *2 *3 *4)))) (-4038 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5)))) (-4288 (*1 *2 *3 *1) (-12 (-4 *1 (-1178 *4 *5 *3 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1037 *4 *5 *3)) (-5 *2 (-112)))) (-4068 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1178 *4 *5 *3 *2)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *2 (-1037 *4 *5 *3)))) (-4037 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-749))))) -(-13 (-950 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4348) (-6 -4349) (-15 -4057 ((-112) $ $)) (-15 -4056 ((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |t#4|))) "failed") (-620 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4056 ((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |t#4|))) "failed") (-620 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4055 ((-620 |t#4|) $)) (-15 -4302 ((-749) $)) (-15 -4054 ((-2 (|:| -4216 (-620 |t#4|)) (|:| -1813 (-620 |t#4|))) $)) (-15 -4053 ((-112) |t#4| $)) (-15 -4053 ((-112) $)) (-15 -4052 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4051 ((-112) |t#4| $)) (-15 -4050 ((-112) |t#4| $)) (-15 -4049 ((-112) |t#4| $)) (-15 -4048 ((-112) $ (-1 (-112) |t#4| (-620 |t#4|)))) (-15 -4051 ((-112) $)) (-15 -4050 ((-112) $)) (-15 -4049 ((-112) $)) (-15 -4197 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4047 ((-620 |t#4|) (-620 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4046 (|t#4| |t#4| $)) (-15 -4045 (|t#4| |t#4| $)) (-15 -4044 (|t#4| |t#4| $)) (-15 -4043 (|t#4| |t#4| $)) (-15 -4042 ($ $)) (-15 -4041 (|t#4| |t#4| $)) (-15 -4040 ((-620 $) (-620 |t#4|))) (-15 -4039 ((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |t#4|)))) (-620 |t#4|))) (-15 -4155 ((-3 |t#4| "failed") $)) (-15 -4152 ((-3 |t#4| "failed") $)) (-15 -4153 ((-3 $ "failed") $)) (-15 -4038 ((-620 |t#3|) $)) (-15 -4288 ((-112) |t#3| $)) (-15 -4068 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4037 ((-3 $ "failed") $ |t#4|)) (-15 -4123 ($ $ |t#4|)) (IF (|has| |t#3| (-361)) (-15 -4036 ((-749) $)) |%noBranch|))) -(((-34) . T) ((-101) . T) ((-595 (-620 |#4|)) . T) ((-595 (-838)) . T) ((-149 |#4|) . T) ((-596 (-525)) |has| |#4| (-596 (-525))) ((-302 |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-481 |#4|) . T) ((-505 |#4| |#4|) -12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))) ((-950 |#1| |#2| |#3| |#4|) . T) ((-1072) . T) ((-1183) . T)) -((-4063 (($ |#1| (-620 (-620 (-917 (-219)))) (-112)) 19)) (-4062 (((-112) $ (-112)) 18)) (-4061 (((-112) $) 17)) (-4059 (((-620 (-620 (-917 (-219)))) $) 13)) (-4058 ((|#1| $) 8)) (-4060 (((-112) $) 15))) -(((-1179 |#1|) (-10 -8 (-15 -4058 (|#1| $)) (-15 -4059 ((-620 (-620 (-917 (-219)))) $)) (-15 -4060 ((-112) $)) (-15 -4061 ((-112) $)) (-15 -4062 ((-112) $ (-112))) (-15 -4063 ($ |#1| (-620 (-620 (-917 (-219)))) (-112)))) (-948)) (T -1179)) -((-4063 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-112)) (-5 *1 (-1179 *2)) (-4 *2 (-948)))) (-4062 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-1179 *3)) (-4 *3 (-948)))) (-4058 (*1 *2 *1) (-12 (-5 *1 (-1179 *2)) (-4 *2 (-948))))) -(-10 -8 (-15 -4058 (|#1| $)) (-15 -4059 ((-620 (-620 (-917 (-219)))) $)) (-15 -4060 ((-112) $)) (-15 -4061 ((-112) $)) (-15 -4062 ((-112) $ (-112))) (-15 -4063 ($ |#1| (-620 (-620 (-917 (-219)))) (-112)))) -((-4065 (((-917 (-219)) (-917 (-219))) 25)) (-4064 (((-917 (-219)) (-219) (-219) (-219) (-219)) 10)) (-4067 (((-620 (-917 (-219))) (-917 (-219)) (-917 (-219)) (-917 (-219)) (-219) (-620 (-620 (-219)))) 37)) (-4191 (((-219) (-917 (-219)) (-917 (-219))) 21)) (-4189 (((-917 (-219)) (-917 (-219)) (-917 (-219))) 22)) (-4066 (((-620 (-620 (-219))) (-536)) 31)) (-4192 (((-917 (-219)) (-917 (-219)) (-917 (-219))) 20)) (-4194 (((-917 (-219)) (-917 (-219)) (-917 (-219))) 19)) (* (((-917 (-219)) (-219) (-917 (-219))) 18))) -(((-1180) (-10 -7 (-15 -4064 ((-917 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-917 (-219)) (-219) (-917 (-219)))) (-15 -4194 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4192 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4191 ((-219) (-917 (-219)) (-917 (-219)))) (-15 -4189 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4065 ((-917 (-219)) (-917 (-219)))) (-15 -4066 ((-620 (-620 (-219))) (-536))) (-15 -4067 ((-620 (-917 (-219))) (-917 (-219)) (-917 (-219)) (-917 (-219)) (-219) (-620 (-620 (-219))))))) (T -1180)) -((-4067 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-620 (-620 (-219)))) (-5 *4 (-219)) (-5 *2 (-620 (-917 *4))) (-5 *1 (-1180)) (-5 *3 (-917 *4)))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *2 (-620 (-620 (-219)))) (-5 *1 (-1180)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) (-4189 (*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) (-4191 (*1 *2 *3 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-219)) (-5 *1 (-1180)))) (-4192 (*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) (-4194 (*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-917 (-219))) (-5 *3 (-219)) (-5 *1 (-1180)))) (-4064 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)) (-5 *3 (-219))))) -(-10 -7 (-15 -4064 ((-917 (-219)) (-219) (-219) (-219) (-219))) (-15 * ((-917 (-219)) (-219) (-917 (-219)))) (-15 -4194 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4192 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4191 ((-219) (-917 (-219)) (-917 (-219)))) (-15 -4189 ((-917 (-219)) (-917 (-219)) (-917 (-219)))) (-15 -4065 ((-917 (-219)) (-917 (-219)))) (-15 -4066 ((-620 (-620 (-219))) (-536))) (-15 -4067 ((-620 (-917 (-219))) (-917 (-219)) (-917 (-219)) (-917 (-219)) (-219) (-620 (-620 (-219)))))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4068 ((|#1| $ (-749)) 13)) (-4188 (((-749) $) 12)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4312 (((-932 |#1|) $) 10) (($ (-932 |#1|)) 9) (((-838) $) 23 (|has| |#1| (-595 (-838))))) (-3382 (((-112) $ $) 16 (|has| |#1| (-1072))))) -(((-1181 |#1|) (-13 (-595 (-932 |#1|)) (-10 -8 (-15 -4312 ($ (-932 |#1|))) (-15 -4068 (|#1| $ (-749))) (-15 -4188 ((-749) $)) (IF (|has| |#1| (-595 (-838))) (-6 (-595 (-838))) |%noBranch|) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) (-1183)) (T -1181)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-932 *3)) (-4 *3 (-1183)) (-5 *1 (-1181 *3)))) (-4068 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-1181 *2)) (-4 *2 (-1183)))) (-4188 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1181 *3)) (-4 *3 (-1183))))) -(-13 (-595 (-932 |#1|)) (-10 -8 (-15 -4312 ($ (-932 |#1|))) (-15 -4068 (|#1| $ (-749))) (-15 -4188 ((-749) $)) (IF (|has| |#1| (-595 (-838))) (-6 (-595 (-838))) |%noBranch|) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|))) -((-4071 (((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)) (-536)) 80)) (-4069 (((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|))) 74)) (-4070 (((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|))) 59))) -(((-1182 |#1|) (-10 -7 (-15 -4069 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -4070 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -4071 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)) (-536)))) (-343)) (T -1182)) -((-4071 (*1 *2 *3 *4) (-12 (-5 *4 (-536)) (-4 *5 (-343)) (-5 *2 (-398 (-1141 (-1141 *5)))) (-5 *1 (-1182 *5)) (-5 *3 (-1141 (-1141 *5))))) (-4070 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1141 (-1141 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1141 (-1141 *4))))) (-4069 (*1 *2 *3) (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1141 (-1141 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1141 (-1141 *4)))))) -(-10 -7 (-15 -4069 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -4070 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)))) (-15 -4071 ((-398 (-1141 (-1141 |#1|))) (-1141 (-1141 |#1|)) (-536)))) -NIL -(((-1183) (-138)) (T -1183)) -NIL -(-13 (-10 -7 (-6 -2363))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 9) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-1184) (-1054)) (T -1184)) -NIL -(-1054) -((-4075 (((-112)) 15)) (-4072 (((-1235) (-620 |#1|) (-620 |#1|)) 19) (((-1235) (-620 |#1|)) 20)) (-4077 (((-112) |#1| |#1|) 32 (|has| |#1| (-825)))) (-4074 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-4076 ((|#1| (-620 |#1|)) 33 (|has| |#1| (-825))) ((|#1| (-620 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-4073 (((-2 (|:| -3575 (-620 |#1|)) (|:| -3574 (-620 |#1|)))) 17))) -(((-1185 |#1|) (-10 -7 (-15 -4072 ((-1235) (-620 |#1|))) (-15 -4072 ((-1235) (-620 |#1|) (-620 |#1|))) (-15 -4073 ((-2 (|:| -3575 (-620 |#1|)) (|:| -3574 (-620 |#1|))))) (-15 -4074 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4074 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4076 (|#1| (-620 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4075 ((-112))) (IF (|has| |#1| (-825)) (PROGN (-15 -4076 (|#1| (-620 |#1|))) (-15 -4077 ((-112) |#1| |#1|))) |%noBranch|)) (-1072)) (T -1185)) -((-4077 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-825)) (-4 *3 (-1072)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-825)) (-5 *1 (-1185 *2)))) (-4075 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1072)))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1185 *2)) (-4 *2 (-1072)))) (-4074 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1072)) (-5 *2 (-112)) (-5 *1 (-1185 *3)))) (-4074 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1072)))) (-4073 (*1 *2) (-12 (-5 *2 (-2 (|:| -3575 (-620 *3)) (|:| -3574 (-620 *3)))) (-5 *1 (-1185 *3)) (-4 *3 (-1072)))) (-4072 (*1 *2 *3 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-5 *2 (-1235)) (-5 *1 (-1185 *4)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-5 *2 (-1235)) (-5 *1 (-1185 *4))))) -(-10 -7 (-15 -4072 ((-1235) (-620 |#1|))) (-15 -4072 ((-1235) (-620 |#1|) (-620 |#1|))) (-15 -4073 ((-2 (|:| -3575 (-620 |#1|)) (|:| -3574 (-620 |#1|))))) (-15 -4074 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4074 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4076 (|#1| (-620 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4075 ((-112))) (IF (|has| |#1| (-825)) (PROGN (-15 -4076 (|#1| (-620 |#1|))) (-15 -4077 ((-112) |#1| |#1|))) |%noBranch|)) -((-4078 (((-1235) (-620 (-1147)) (-620 (-1147))) 13) (((-1235) (-620 (-1147))) 11)) (-4080 (((-1235)) 14)) (-4079 (((-2 (|:| -3574 (-620 (-1147))) (|:| -3575 (-620 (-1147))))) 18))) -(((-1186) (-10 -7 (-15 -4078 ((-1235) (-620 (-1147)))) (-15 -4078 ((-1235) (-620 (-1147)) (-620 (-1147)))) (-15 -4079 ((-2 (|:| -3574 (-620 (-1147))) (|:| -3575 (-620 (-1147)))))) (-15 -4080 ((-1235))))) (T -1186)) -((-4080 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1186)))) (-4079 (*1 *2) (-12 (-5 *2 (-2 (|:| -3574 (-620 (-1147))) (|:| -3575 (-620 (-1147))))) (-5 *1 (-1186)))) (-4078 (*1 *2 *3 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1186)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1186))))) -(-10 -7 (-15 -4078 ((-1235) (-620 (-1147)))) (-15 -4078 ((-1235) (-620 (-1147)) (-620 (-1147)))) (-15 -4079 ((-2 (|:| -3574 (-620 (-1147))) (|:| -3575 (-620 (-1147)))))) (-15 -4080 ((-1235)))) -((-4129 (($ $) 17)) (-4081 (((-112) $) 24))) -(((-1187 |#1|) (-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4081 ((-112) |#1|))) (-1188)) (T -1187)) -NIL -(-10 -8 (-15 -4129 (|#1| |#1|)) (-15 -4081 ((-112) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 49)) (-4324 (((-398 $) $) 50)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-4081 (((-112) $) 51)) (-2497 (((-112) $) 30)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-4087 (((-398 $) $) 48)) (-3815 (((-3 $ "failed") $ $) 40)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41)) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24))) -(((-1188) (-138)) (T -1188)) -((-4081 (*1 *2 *1) (-12 (-4 *1 (-1188)) (-5 *2 (-112)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1188)))) (-4129 (*1 *1 *1) (-4 *1 (-1188))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1188))))) -(-13 (-444) (-10 -8 (-15 -4081 ((-112) $)) (-15 -4324 ((-398 $) $)) (-15 -4129 ($ $)) (-15 -4087 ((-398 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-595 (-838)) . T) ((-170) . T) ((-283) . T) ((-444) . T) ((-543) . T) ((-626 $) . T) ((-696 $) . T) ((-705) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3459 (((-1219 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 10)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-2173 (($ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-2171 (((-112) $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-4125 (($ $ (-536)) NIL) (($ $ (-536) (-536)) NIL)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) NIL)) (-4086 (((-1219 |#1| |#2| |#3|) $) NIL)) (-4083 (((-3 (-1219 |#1| |#2| |#3|) "failed") $) NIL)) (-4084 (((-1219 |#1| |#2| |#3|) $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3981 (((-536) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-1219 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1147) #2#) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (((-3 (-400 (-536)) #2#) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356)))) (((-3 (-536) #2#) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))))) (-3502 (((-1219 |#1| |#2| |#3|) $) NIL) (((-1147) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (((-400 (-536)) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356)))) (((-536) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))))) (-4085 (($ $) NIL) (($ (-536) $) NIL)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-1219 |#1| |#2| |#3|)) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-1219 |#1| |#2| |#3|))) (|:| |vec| (-1229 (-1219 |#1| |#2| |#3|)))) (-667 $) (-1229 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-619 (-536))) (|has| |#1| (-356)))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-619 (-536))) (|has| |#1| (-356))))) (-3816 (((-3 $ "failed") $) NIL)) (-4082 (((-400 (-920 |#1|)) $ (-536)) NIL (|has| |#1| (-543))) (((-400 (-920 |#1|)) $ (-536) (-536)) NIL (|has| |#1| (-543)))) (-3322 (($) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3532 (((-112) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3124 (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-860 (-536))) (|has| |#1| (-356)))) (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-860 (-371))) (|has| |#1| (-356))))) (-4126 (((-536) $) NIL) (((-536) $ (-536)) NIL)) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL (|has| |#1| (-356)))) (-3326 (((-1219 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3798 (((-3 $ "failed") $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1122)) (|has| |#1| (-356))))) (-3533 (((-112) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-4131 (($ $ (-893)) NIL)) (-4170 (($ (-1 |#1| (-536)) $) NIL)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-536)) 17) (($ $ (-1053) (-536)) NIL) (($ $ (-620 (-1053)) (-620 (-536))) NIL)) (-3672 (($ $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3673 (($ $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-356)))) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4133 (($ (-536) (-1219 |#1| |#2| |#3|)) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) 25 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 26 (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1122)) (|has| |#1| (-356))) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3458 (($ $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-300)) (|has| |#1| (-356))))) (-3460 (((-1219 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-536)) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-536))))) (($ $ (-1147) (-1219 |#1| |#2| |#3|)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-505 (-1147) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-1147)) (-620 (-1219 |#1| |#2| |#3|))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-505 (-1147) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-286 (-1219 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-286 (-1219 |#1| |#2| |#3|))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356)))) (($ $ (-620 (-1219 |#1| |#2| |#3|)) (-620 (-1219 |#1| |#2| |#3|))) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-302 (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-536)) NIL) (($ $ $) NIL (|has| (-536) (-1083))) (($ $ (-1219 |#1| |#2| |#3|)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-279 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) (|has| |#1| (-356))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-1226 |#2|)) 24) (($ $ (-749)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) 23 (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-3323 (($ $) NIL (|has| |#1| (-356)))) (-3325 (((-1219 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356)))) (-4302 (((-536) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4325 (((-525) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-596 (-525))) (|has| |#1| (-356)))) (((-371) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-994)) (|has| |#1| (-356)))) (((-219) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-994)) (|has| |#1| (-356)))) (((-864 (-371)) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-596 (-864 (-371)))) (|has| |#1| (-356)))) (((-864 (-536)) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-596 (-864 (-536)))) (|has| |#1| (-356))))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1219 |#1| |#2| |#3|)) NIL) (($ (-1226 |#2|)) 22) (($ (-1147)) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-1147))) (|has| |#1| (-356)))) (($ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543)))) (($ (-400 (-536))) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-1012 (-536))) (|has| |#1| (-356))) (|has| |#1| (-38 (-400 (-536))))))) (-4035 ((|#1| $ (-536)) NIL)) (-3030 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| $ (-143)) (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-143)) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 11)) (-3461 (((-1219 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-535)) (|has| |#1| (-356))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-884)) (|has| |#1| (-356))) (|has| |#1| (-543))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-536)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3737 (($ $) NIL (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))))) (-2986 (($) 19 T CONST)) (-2992 (($) 15 T CONST)) (-2997 (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|))) NIL (|has| |#1| (-356))) (($ $ (-1 (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-2891 (((-112) $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-2892 (((-112) $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-3013 (((-112) $ $) NIL (-3886 (-12 (|has| (-1219 |#1| |#2| |#3|) (-798)) (|has| |#1| (-356))) (-12 (|has| (-1219 |#1| |#2| |#3|) (-825)) (|has| |#1| (-356)))))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356))) (($ (-1219 |#1| |#2| |#3|) (-1219 |#1| |#2| |#3|)) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 20)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1219 |#1| |#2| |#3|)) NIL (|has| |#1| (-356))) (($ (-1219 |#1| |#2| |#3|) $) NIL (|has| |#1| (-356))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-1189 |#1| |#2| |#3|) (-13 (-1193 |#1| (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1189)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) -(-13 (-1193 |#1| (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) -((-4313 (((-1189 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1189 |#1| |#3| |#5|)) 23))) -(((-1190 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4313 ((-1189 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1189 |#1| |#3| |#5|)))) (-1023) (-1023) (-1147) (-1147) |#1| |#2|) (T -1190)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1189 *5 *7 *9)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-14 *7 (-1147)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1189 *6 *8 *10)) (-5 *1 (-1190 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1147))))) -(-10 -7 (-15 -4313 ((-1189 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1189 |#1| |#3| |#5|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ (-536)) 96) (($ $ (-536) (-536)) 95)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) 103)) (-3841 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 116 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 160 (|has| |#1| (-356)))) (-4324 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3365 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3839 (($ $) 132 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) 171)) (-3843 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 118 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-2889 (($ $ $) 155 (|has| |#1| (-356)))) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-4082 (((-400 (-920 |#1|)) $ (-536)) 169 (|has| |#1| (-543))) (((-400 (-920 |#1|)) $ (-536) (-536)) 168 (|has| |#1| (-543)))) (-2888 (($ $ $) 154 (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 149 (|has| |#1| (-356)))) (-4081 (((-112) $) 162 (|has| |#1| (-356)))) (-3220 (((-112) $) 71)) (-3985 (($) 143 (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-536) $) 98) (((-536) $ (-536)) 97)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 114 (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) 99)) (-4170 (($ (-1 |#1| (-536)) $) 170)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 158 (|has| |#1| (-356)))) (-4292 (((-112) $) 60)) (-3221 (($ |#1| (-536)) 59) (($ $ (-1053) (-536)) 74) (($ $ (-620 (-1053)) (-620 (-536))) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-4297 (($ $) 140 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-2008 (($ (-620 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 163 (|has| |#1| (-356)))) (-4167 (($ $) 167 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 166 (-3886 (-12 (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169)) (|has| |#1| (-38 (-400 (-536))))) (-12 (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-38 (-400 (-536)))))))) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3490 (($ (-620 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4087 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 156 (|has| |#1| (-356)))) (-4123 (($ $ (-536)) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 150 (|has| |#1| (-356)))) (-4298 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-536)))))) (-1699 (((-749) $) 152 (|has| |#1| (-356)))) (-4154 ((|#1| $ (-536)) 102) (($ $ $) 79 (|has| (-536) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 153 (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 87 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147) (-749)) 86 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147))) 85 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147)) 84 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (-4302 (((-536) $) 62)) (-3844 (($ $) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 120 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543)))) (-4035 ((|#1| $ (-536)) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-3847 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-3845 (($ $) 138 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 126 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-536)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 136 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 124 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 134 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 122 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 91 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147) (-749)) 90 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147))) 89 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-1147)) 88 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 113 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) -(((-1191 |#1|) (-138) (-1023)) (T -1191)) -((-4173 (*1 *1 *2) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-4 *3 (-1023)) (-4 *1 (-1191 *3)))) (-4170 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-536))) (-4 *1 (-1191 *3)) (-4 *3 (-1023)))) (-4082 (*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1191 *4)) (-4 *4 (-1023)) (-4 *4 (-543)) (-5 *2 (-400 (-920 *4))))) (-4082 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-4 *1 (-1191 *4)) (-4 *4 (-1023)) (-4 *4 (-543)) (-5 *2 (-400 (-920 *4))))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) (-4167 (*1 *1 *1 *2) (-3886 (-12 (-5 *2 (-1147)) (-4 *1 (-1191 *3)) (-4 *3 (-1023)) (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) (-4 *3 (-38 (-400 (-536)))))) (-12 (-5 *2 (-1147)) (-4 *1 (-1191 *3)) (-4 *3 (-1023)) (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536))))))))) -(-13 (-1208 |t#1| (-536)) (-10 -8 (-15 -4173 ($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |t#1|))))) (-15 -4170 ($ (-1 |t#1| (-536)) $)) (IF (|has| |t#1| (-543)) (PROGN (-15 -4082 ((-400 (-920 |t#1|)) $ (-536))) (-15 -4082 ((-400 (-920 |t#1|)) $ (-536) (-536)))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $)) (IF (|has| |t#1| (-15 -4167 (|t#1| |t#1| (-1147)))) (IF (|has| |t#1| (-15 -3412 ((-620 (-1147)) |t#1|))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1169)) (IF (|has| |t#1| (-934)) (IF (|has| |t#1| (-29 (-536))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-976)) (-6 (-1169))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-536)) . T) ((-25) . T) ((-38 #2=(-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-536) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-279 $ $) |has| (-536) (-1083)) ((-283) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-543) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-626 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) ((-947 |#1| #1# (-1053)) . T) ((-895) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-1029 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536)))) ((-1188) |has| |#1| (-356)) ((-1208 |#1| #1#) . T)) -((-3534 (((-112) $) 12)) (-3503 (((-3 |#3| #1="failed") $) 17) (((-3 (-1147) #1#) $) NIL) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 (-536) #1#) $) NIL)) (-3502 ((|#3| $) 14) (((-1147) $) NIL) (((-400 (-536)) $) NIL) (((-536) $) NIL))) -(((-1192 |#1| |#2| |#3|) (-10 -8 (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| #1#) |#1|)) (-15 -3534 ((-112) |#1|))) (-1193 |#2| |#3|) (-1023) (-1222 |#2|)) (T -1192)) -NIL -(-10 -8 (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1="failed") |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -3502 ((-1147) |#1|)) (-15 -3503 ((-3 (-1147) #1#) |#1|)) (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| #1#) |#1|)) (-15 -3534 ((-112) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3459 ((|#2| $) 228 (-3186 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ (-536)) 96) (($ $ (-536) (-536)) 95)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) 103)) (-4086 ((|#2| $) 264)) (-4083 (((-3 |#2| "failed") $) 260)) (-4084 ((|#2| $) 261)) (-3841 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 116 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-3035 (((-398 (-1141 $)) (-1141 $)) 237 (-3186 (|has| |#2| (-884)) (|has| |#1| (-356))))) (-4129 (($ $) 160 (|has| |#1| (-356)))) (-4324 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3365 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 234 (-3186 (|has| |#2| (-884)) (|has| |#1| (-356))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3839 (($ $) 132 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-3981 (((-536) $) 246 (-3186 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) 171)) (-3843 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 118 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#2| #2="failed") $) 267) (((-3 (-536) #2#) $) 256 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#1| (-356)))) (((-3 (-400 (-536)) #2#) $) 254 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#1| (-356)))) (((-3 (-1147) #2#) $) 239 (-3186 (|has| |#2| (-1012 (-1147))) (|has| |#1| (-356))))) (-3502 ((|#2| $) 266) (((-536) $) 257 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#1| (-356)))) (((-400 (-536)) $) 255 (-3186 (|has| |#2| (-1012 (-536))) (|has| |#1| (-356)))) (((-1147) $) 240 (-3186 (|has| |#2| (-1012 (-1147))) (|has| |#1| (-356))))) (-4085 (($ $) 263) (($ (-536) $) 262)) (-2889 (($ $ $) 155 (|has| |#1| (-356)))) (-4314 (($ $) 58)) (-2357 (((-667 |#2|) (-667 $)) 218 (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) 217 (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 216 (-3186 (|has| |#2| (-619 (-536))) (|has| |#1| (-356)))) (((-667 (-536)) (-667 $)) 215 (-3186 (|has| |#2| (-619 (-536))) (|has| |#1| (-356))))) (-3816 (((-3 $ "failed") $) 32)) (-4082 (((-400 (-920 |#1|)) $ (-536)) 169 (|has| |#1| (-543))) (((-400 (-920 |#1|)) $ (-536) (-536)) 168 (|has| |#1| (-543)))) (-3322 (($) 230 (-3186 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-2888 (($ $ $) 154 (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 149 (|has| |#1| (-356)))) (-4081 (((-112) $) 162 (|has| |#1| (-356)))) (-3532 (((-112) $) 244 (-3186 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-3220 (((-112) $) 71)) (-3985 (($) 143 (|has| |#1| (-38 (-400 (-536)))))) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 222 (-3186 (|has| |#2| (-860 (-371))) (|has| |#1| (-356)))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 221 (-3186 (|has| |#2| (-860 (-536))) (|has| |#1| (-356))))) (-4126 (((-536) $) 98) (((-536) $ (-536)) 97)) (-2497 (((-112) $) 30)) (-3324 (($ $) 226 (|has| |#1| (-356)))) (-3326 ((|#2| $) 224 (|has| |#1| (-356)))) (-3339 (($ $ (-536)) 114 (|has| |#1| (-38 (-400 (-536)))))) (-3798 (((-3 $ "failed") $) 258 (-3186 (|has| |#2| (-1122)) (|has| |#1| (-356))))) (-3533 (((-112) $) 245 (-3186 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-4131 (($ $ (-893)) 99)) (-4170 (($ (-1 |#1| (-536)) $) 170)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) 158 (|has| |#1| (-356)))) (-4292 (((-112) $) 60)) (-3221 (($ |#1| (-536)) 59) (($ $ (-1053) (-536)) 74) (($ $ (-620 (-1053)) (-620 (-536))) 73)) (-3672 (($ $ $) 248 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-3673 (($ $ $) 249 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-4313 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-356)))) (-4297 (($ $) 140 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-2008 (($ (-620 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-4133 (($ (-536) |#2|) 265)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 163 (|has| |#1| (-356)))) (-4167 (($ $) 167 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 166 (-3886 (-12 (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169)) (|has| |#1| (-38 (-400 (-536))))) (-12 (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-38 (-400 (-536)))))))) (-3799 (($) 259 (-3186 (|has| |#2| (-1122)) (|has| |#1| (-356))) CONST)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3490 (($ (-620 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-3458 (($ $) 229 (-3186 (|has| |#2| (-300)) (|has| |#1| (-356))))) (-3460 ((|#2| $) 232 (-3186 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3033 (((-398 (-1141 $)) (-1141 $)) 235 (-3186 (|has| |#2| (-884)) (|has| |#1| (-356))))) (-3034 (((-398 (-1141 $)) (-1141 $)) 236 (-3186 (|has| |#2| (-884)) (|has| |#1| (-356))))) (-4087 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 156 (|has| |#1| (-356)))) (-4123 (($ $ (-536)) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 150 (|has| |#1| (-356)))) (-4298 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-536))))) (($ $ (-1147) |#2|) 209 (-3186 (|has| |#2| (-505 (-1147) |#2|)) (|has| |#1| (-356)))) (($ $ (-620 (-1147)) (-620 |#2|)) 208 (-3186 (|has| |#2| (-505 (-1147) |#2|)) (|has| |#1| (-356)))) (($ $ (-620 (-286 |#2|))) 207 (-3186 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-286 |#2|)) 206 (-3186 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ |#2| |#2|) 205 (-3186 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356)))) (($ $ (-620 |#2|) (-620 |#2|)) 204 (-3186 (|has| |#2| (-302 |#2|)) (|has| |#1| (-356))))) (-1699 (((-749) $) 152 (|has| |#1| (-356)))) (-4154 ((|#1| $ (-536)) 102) (($ $ $) 79 (|has| (-536) (-1083))) (($ $ |#2|) 203 (-3186 (|has| |#2| (-279 |#2| |#2|)) (|has| |#1| (-356))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 153 (|has| |#1| (-356)))) (-4165 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) 213 (|has| |#1| (-356))) (($ $ (-749)) 82 (-3886 (-3186 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) 80 (-3886 (-3186 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) 87 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) 86 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) 85 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) 84 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-3323 (($ $) 227 (|has| |#1| (-356)))) (-3325 ((|#2| $) 225 (|has| |#1| (-356)))) (-4302 (((-536) $) 62)) (-3844 (($ $) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 120 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-4325 (((-219) $) 243 (-3186 (|has| |#2| (-994)) (|has| |#1| (-356)))) (((-371) $) 242 (-3186 (|has| |#2| (-994)) (|has| |#1| (-356)))) (((-525) $) 241 (-3186 (|has| |#2| (-596 (-525))) (|has| |#1| (-356)))) (((-864 (-371)) $) 220 (-3186 (|has| |#2| (-596 (-864 (-371)))) (|has| |#1| (-356)))) (((-864 (-536)) $) 219 (-3186 (|has| |#2| (-596 (-864 (-536)))) (|has| |#1| (-356))))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 233 (-3186 (-3186 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#1| (-356))))) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1147)) 238 (-3186 (|has| |#2| (-1012 (-1147))) (|has| |#1| (-356)))) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543)))) (-4035 ((|#1| $ (-536)) 57)) (-3030 (((-3 $ "failed") $) 46 (-3886 (-3186 (-3886 (|has| |#2| (-143)) (-3186 (|has| $ (-143)) (|has| |#2| (-884)))) (|has| |#1| (-356))) (|has| |#1| (-143))))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-3461 ((|#2| $) 231 (-3186 (|has| |#2| (-535)) (|has| |#1| (-356))))) (-3847 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-3845 (($ $) 138 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 126 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-536)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 136 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 124 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 134 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 122 (|has| |#1| (-38 (-400 (-536)))))) (-3737 (($ $) 247 (-3186 (|has| |#2| (-798)) (|has| |#1| (-356))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) 211 (|has| |#1| (-356))) (($ $ (-749)) 83 (-3886 (-3186 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) 81 (-3886 (-3186 (|has| |#2| (-227)) (|has| |#1| (-356))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) 91 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147) (-749)) 90 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-620 (-1147))) 89 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))))) (($ $ (-1147)) 88 (-3886 (-3186 (|has| |#2| (-874 (-1147))) (|has| |#1| (-356))) (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))))) (-2891 (((-112) $ $) 251 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-2892 (((-112) $ $) 252 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 250 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-3013 (((-112) $ $) 253 (-3186 (|has| |#2| (-825)) (|has| |#1| (-356))))) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356))) (($ |#2| |#2|) 223 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 113 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-356))) (($ |#2| $) 201 (|has| |#1| (-356))) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) -(((-1193 |#1| |#2|) (-138) (-1023) (-1222 |t#1|)) (T -1193)) -((-4302 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1222 *3)) (-5 *2 (-536)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-1193 *3 *2)) (-4 *2 (-1222 *3)))) (-4133 (*1 *1 *2 *3) (-12 (-5 *2 (-536)) (-4 *4 (-1023)) (-4 *1 (-1193 *4 *3)) (-4 *3 (-1222 *4)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3)))) (-4085 (*1 *1 *1) (-12 (-4 *1 (-1193 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1222 *2)))) (-4085 (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1222 *3)))) (-4084 (*1 *2 *1) (-12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3)))) (-4083 (*1 *2 *1) (|partial| -12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3))))) -(-13 (-1191 |t#1|) (-1012 |t#2|) (-10 -8 (-15 -4133 ($ (-536) |t#2|)) (-15 -4302 ((-536) $)) (-15 -4086 (|t#2| $)) (-15 -4085 ($ $)) (-15 -4085 ($ (-536) $)) (-15 -4312 ($ |t#2|)) (-15 -4084 (|t#2| $)) (-15 -4083 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-356)) (-6 (-965 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-536)) . T) ((-25) . T) ((-38 #2=(-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-356)) ((-38 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-356)) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) -3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-596 (-219)) -12 (|has| |#1| (-356)) (|has| |#2| (-994))) ((-596 (-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-994))) ((-596 (-525)) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-525)))) ((-596 (-864 (-371))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-371))))) ((-596 (-864 (-536))) -12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-536))))) ((-225 |#2|) |has| |#1| (-356)) ((-227) -3886 (|has| |#1| (-15 * (|#1| (-536) |#1|))) (-12 (|has| |#1| (-356)) (|has| |#2| (-227)))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-279 |#2| $) -12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))) ((-279 $ $) |has| (-536) (-1083)) ((-283) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-356) |has| |#1| (-356)) ((-331 |#2|) |has| |#1| (-356)) ((-370 |#2|) |has| |#1| (-356)) ((-393 |#2|) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-505 (-1147) |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1147) |#2|))) ((-505 |#2| |#2|) -12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))) ((-543) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-626 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-626 |#1|) . T) ((-626 |#2|) |has| |#1| (-356)) ((-626 $) . T) ((-619 (-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-619 (-536)))) ((-619 |#2|) |has| |#1| (-356)) ((-696 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 |#2|) |has| |#1| (-356)) ((-696 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-705) . T) ((-769) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-770) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-772) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-775) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-798) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-823) -12 (|has| |#1| (-356)) (|has| |#2| (-798))) ((-825) -3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-825))) (-12 (|has| |#1| (-356)) (|has| |#2| (-798)))) ((-874 (-1147)) -3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147))))) ((-860 (-371)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-371)))) ((-860 (-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-860 (-536)))) ((-858 |#2|) |has| |#1| (-356)) ((-884) -12 (|has| |#1| (-356)) (|has| |#2| (-884))) ((-947 |#1| #1# (-1053)) . T) ((-895) |has| |#1| (-356)) ((-965 |#2|) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-994) -12 (|has| |#1| (-356)) (|has| |#2| (-994))) ((-1012 (-400 (-536))) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536)))) ((-1012 (-536)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536)))) ((-1012 (-1147)) -12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1147)))) ((-1012 |#2|) . T) ((-1029 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-1029 |#1|) . T) ((-1029 |#2|) |has| |#1| (-356)) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) -12 (|has| |#1| (-356)) (|has| |#2| (-1122))) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536)))) ((-1183) |has| |#1| (-356)) ((-1188) |has| |#1| (-356)) ((-1191 |#1|) . T) ((-1208 |#1| #1#) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 70)) (-3459 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-300))))) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 88)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-536)) 97) (($ $ (-536) (-536)) 99)) (-4128 (((-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|))) $) 47)) (-4086 ((|#2| $) 11)) (-4083 (((-3 |#2| "failed") $) 30)) (-4084 ((|#2| $) 31)) (-3841 (($ $) 192 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 168 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-884))))) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-884))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) 188 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 164 (|has| |#1| (-38 (-400 (-536)))))) (-3981 (((-536) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-798))))) (-4173 (($ (-1124 (-2 (|:| |k| (-536)) (|:| |c| |#1|)))) 57)) (-3843 (($ $) 196 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 172 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) 144) (((-3 (-536) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536))))) (((-3 (-400 (-536)) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536))))) (((-3 (-1147) #2#) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1147)))))) (-3502 ((|#2| $) 143) (((-536) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536))))) (((-400 (-536)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-536))))) (((-1147) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1147)))))) (-4085 (($ $) 61) (($ (-536) $) 24)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-2357 (((-667 |#2|) (-667 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL (|has| |#1| (-356))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-619 (-536))))) (((-667 (-536)) (-667 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-619 (-536)))))) (-3816 (((-3 $ "failed") $) 77)) (-4082 (((-400 (-920 |#1|)) $ (-536)) 112 (|has| |#1| (-543))) (((-400 (-920 |#1|)) $ (-536) (-536)) 114 (|has| |#1| (-543)))) (-3322 (($) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-535))))) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3532 (((-112) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-798))))) (-3220 (((-112) $) 64)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-860 (-536)))))) (-4126 (((-536) $) 93) (((-536) $ (-536)) 95)) (-2497 (((-112) $) NIL)) (-3324 (($ $) NIL (|has| |#1| (-356)))) (-3326 ((|#2| $) 151 (|has| |#1| (-356)))) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3798 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1122))))) (-3533 (((-112) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-798))))) (-4131 (($ $ (-893)) 136)) (-4170 (($ (-1 |#1| (-536)) $) 132)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-536)) 19) (($ $ (-1053) (-536)) NIL) (($ $ (-620 (-1053)) (-620 (-536))) NIL)) (-3672 (($ $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-3673 (($ $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-4313 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-356)))) (-4297 (($ $) 162 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4133 (($ (-536) |#2|) 10)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 145 (|has| |#1| (-356)))) (-4167 (($ $) 214 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 219 (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))))))) (-3799 (($) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1122))) CONST)) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-3458 (($ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-300))))) (-3460 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-535))))) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-884))))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-884))))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-536)) 126)) (-3815 (((-3 $ "failed") $ $) 116 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) 160 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-536))))) (($ $ (-1147) |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1147) |#2|)))) (($ $ (-620 (-1147)) (-620 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-505 (-1147) |#2|)))) (($ $ (-620 (-286 |#2|))) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ (-286 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|)))) (($ $ (-620 |#2|) (-620 |#2|)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-302 |#2|))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-536)) 91) (($ $ $) 79 (|has| (-536) (-1083))) (($ $ |#2|) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-279 |#2| |#2|))))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) 137 (-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-1147)) 140 (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147))))))) (-3323 (($ $) NIL (|has| |#1| (-356)))) (-3325 ((|#2| $) 152 (|has| |#1| (-356)))) (-4302 (((-536) $) 12)) (-3844 (($ $) 198 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 174 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 194 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 170 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 190 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 166 (|has| |#1| (-38 (-400 (-536)))))) (-4325 (((-219) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-994)))) (((-371) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-994)))) (((-525) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-596 (-525))))) (((-864 (-371)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-596 (-864 (-536))))))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-356)) (|has| |#2| (-884))))) (-3219 (($ $) 124)) (-4312 (((-838) $) 245) (($ (-536)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1147)) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-1012 (-1147))))) (($ (-400 (-536))) 155 (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-536)) 74)) (-3030 (((-3 $ "failed") $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#1| (-356)) (|has| |#2| (-884))) (|has| |#1| (-143)) (-12 (|has| |#1| (-356)) (|has| |#2| (-143)))))) (-3456 (((-749)) 142)) (-4127 ((|#1| $) 90)) (-3461 ((|#2| $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-535))))) (-3847 (($ $) 204 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 180 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) 200 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 176 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 208 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 184 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-536)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-536)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 210 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 186 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 206 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 182 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 202 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 178 (|has| |#1| (-38 (-400 (-536)))))) (-3737 (($ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-798))))) (-2986 (($) 13 T CONST)) (-2992 (($) 17 T CONST)) (-2997 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-356))) (($ $ (-1 |#2| |#2|) (-749)) NIL (|has| |#1| (-356))) (($ $ (-749)) NIL (-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $) NIL (-3886 (-12 (|has| |#1| (-356)) (|has| |#2| (-227))) (|has| |#1| (-15 * (|#1| (-536) |#1|))))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-1147) (-749)) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-620 (-1147))) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147)))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-536) |#1|)))) (-12 (|has| |#1| (-356)) (|has| |#2| (-874 (-1147))))))) (-2891 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-2892 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-3382 (((-112) $ $) 63)) (-3012 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-3013 (((-112) $ $) NIL (-12 (|has| |#1| (-356)) (|has| |#2| (-825))))) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 149 (|has| |#1| (-356))) (($ |#2| |#2|) 150 (|has| |#1| (-356)))) (-4192 (($ $) 213) (($ $ $) 68)) (-4194 (($ $ $) 66)) (** (($ $ (-893)) NIL) (($ $ (-749)) 73) (($ $ (-536)) 146 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 158 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-356))) (($ |#2| $) 147 (|has| |#1| (-356))) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-1194 |#1| |#2|) (-1193 |#1| |#2|) (-1023) (-1222 |#1|)) (T -1194)) -NIL -(-1193 |#1| |#2|) -((-4089 (((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112)) 12)) (-4088 (((-398 |#1|) |#1|) 22)) (-4087 (((-398 |#1|) |#1|) 21))) -(((-1195 |#1|) (-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1|)) (-15 -4089 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112)))) (-1205 (-536))) (T -1195)) -((-4089 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536))))) (-4088 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536))))) (-4087 (*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536)))))) -(-10 -7 (-15 -4087 ((-398 |#1|) |#1|)) (-15 -4088 ((-398 |#1|) |#1|)) (-15 -4089 ((-2 (|:| |contp| (-536)) (|:| -2762 (-620 (-2 (|:| |irr| |#1|) (|:| -2482 (-536)))))) |#1| (-112)))) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4091 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4313 (((-1124 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-823)))) (-3575 ((|#1| $) 14)) (-3577 ((|#1| $) 10)) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-3573 (((-536) $) 18)) (-3574 ((|#1| $) 17)) (-3576 ((|#1| $) 11)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4090 (((-112) $) 16)) (-4318 (((-1124 |#1|) $) 38 (|has| |#1| (-823))) (((-1124 |#1|) (-620 $)) 37 (|has| |#1| (-823)))) (-4325 (($ |#1|) 25)) (-4312 (($ (-1060 |#1|)) 24) (((-838) $) 34 (|has| |#1| (-1072)))) (-4092 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3578 (($ $ (-536)) 13)) (-3382 (((-112) $ $) 27 (|has| |#1| (-1072))))) -(((-1196 |#1|) (-13 (-1065 |#1|) (-10 -8 (-15 -4092 ($ |#1|)) (-15 -4091 ($ |#1|)) (-15 -4312 ($ (-1060 |#1|))) (-15 -4090 ((-112) $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1066 |#1| (-1124 |#1|))) |%noBranch|))) (-1183)) (T -1196)) -((-4092 (*1 *1 *2) (-12 (-5 *1 (-1196 *2)) (-4 *2 (-1183)))) (-4091 (*1 *1 *2) (-12 (-5 *1 (-1196 *2)) (-4 *2 (-1183)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-1183)) (-5 *1 (-1196 *3)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1183))))) -(-13 (-1065 |#1|) (-10 -8 (-15 -4092 ($ |#1|)) (-15 -4091 ($ |#1|)) (-15 -4312 ($ (-1060 |#1|))) (-15 -4090 ((-112) $)) (IF (|has| |#1| (-1072)) (-6 (-1072)) |%noBranch|) (IF (|has| |#1| (-823)) (-6 (-1066 |#1| (-1124 |#1|))) |%noBranch|))) -((-4313 (((-1124 |#2|) (-1 |#2| |#1|) (-1196 |#1|)) 23 (|has| |#1| (-823))) (((-1196 |#2|) (-1 |#2| |#1|) (-1196 |#1|)) 17))) -(((-1197 |#1| |#2|) (-10 -7 (-15 -4313 ((-1196 |#2|) (-1 |#2| |#1|) (-1196 |#1|))) (IF (|has| |#1| (-823)) (-15 -4313 ((-1124 |#2|) (-1 |#2| |#1|) (-1196 |#1|))) |%noBranch|)) (-1183) (-1183)) (T -1197)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5)) (-4 *5 (-823)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1124 *6)) (-5 *1 (-1197 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1196 *6)) (-5 *1 (-1197 *5 *6))))) -(-10 -7 (-15 -4313 ((-1196 |#2|) (-1 |#2| |#1|) (-1196 |#1|))) (IF (|has| |#1| (-823)) (-15 -4313 ((-1124 |#2|) (-1 |#2| |#1|) (-1196 |#1|))) |%noBranch|)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4121 (((-1229 |#2|) $ (-749)) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4119 (($ (-1141 |#2|)) NIL)) (-3414 (((-1141 $) $ (-1053)) NIL) (((-1141 |#2|) $) NIL)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#2| (-543)))) (-2173 (($ $) NIL (|has| |#2| (-543)))) (-2171 (((-112) $) NIL (|has| |#2| (-543)))) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1053))) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4110 (($ $ $) NIL (|has| |#2| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4129 (($ $) NIL (|has| |#2| (-444)))) (-4324 (((-398 $) $) NIL (|has| |#2| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-1700 (((-112) $ $) NIL (|has| |#2| (-356)))) (-4115 (($ $ (-749)) NIL)) (-4114 (($ $ (-749)) NIL)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-444)))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| #2="failed") $) NIL) (((-3 (-400 (-536)) #2#) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) NIL (|has| |#2| (-1012 (-536)))) (((-3 (-1053) #2#) $) NIL)) (-3502 ((|#2| $) NIL) (((-400 (-536)) $) NIL (|has| |#2| (-1012 (-400 (-536))))) (((-536) $) NIL (|has| |#2| (-1012 (-536)))) (((-1053) $) NIL)) (-4111 (($ $ $ (-1053)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2889 (($ $ $) NIL (|has| |#2| (-356)))) (-4314 (($ $) NIL)) (-2357 (((-667 (-536)) (-667 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) NIL (|has| |#2| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#2|)) (|:| |vec| (-1229 |#2|))) (-667 $) (-1229 $)) NIL) (((-667 |#2|) (-667 $)) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-2888 (($ $ $) NIL (|has| |#2| (-356)))) (-4113 (($ $ $) NIL)) (-4108 (($ $ $) NIL (|has| |#2| (-543)))) (-4107 (((-2 (|:| -4308 |#2|) (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#2| (-356)))) (-3852 (($ $) NIL (|has| |#2| (-444))) (($ $ (-1053)) NIL (|has| |#2| (-444)))) (-3146 (((-620 $) $) NIL)) (-4081 (((-112) $) NIL (|has| |#2| (-884)))) (-1716 (($ $ |#2| (-749) $) NIL)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) NIL (-12 (|has| (-1053) (-860 (-371))) (|has| |#2| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) NIL (-12 (|has| (-1053) (-860 (-536))) (|has| |#2| (-860 (-536)))))) (-4126 (((-749) $ $) NIL (|has| |#2| (-543)))) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3798 (((-3 $ "failed") $) NIL (|has| |#2| (-1122)))) (-3415 (($ (-1141 |#2|) (-1053)) NIL) (($ (-1141 $) (-1053)) NIL)) (-4131 (($ $ (-749)) NIL)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) NIL (|has| |#2| (-356)))) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-3221 (($ |#2| (-749)) 17) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1053)) NIL) (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL)) (-3148 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-3672 (($ $ $) NIL (|has| |#2| (-825)))) (-3673 (($ $ $) NIL (|has| |#2| (-825)))) (-1717 (($ (-1 (-749) (-749)) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-4120 (((-1141 |#2|) $) NIL)) (-3413 (((-3 (-1053) #4="failed") $) NIL)) (-3222 (($ $) NIL)) (-3520 ((|#2| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-3588 (((-1129) $) NIL)) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) NIL)) (-3151 (((-3 (-620 $) #4#) $) NIL)) (-3150 (((-3 (-620 $) #4#) $) NIL)) (-3152 (((-3 (-2 (|:| |var| (-1053)) (|:| -2488 (-749))) #4#) $) NIL)) (-4167 (($ $) NIL (|has| |#2| (-38 (-400 (-536)))))) (-3799 (($) NIL (|has| |#2| (-1122)) CONST)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 ((|#2| $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#2| (-444)))) (-3490 (($ (-620 $)) NIL (|has| |#2| (-444))) (($ $ $) NIL (|has| |#2| (-444)))) (-4093 (($ $ (-749) |#2| $) NIL)) (-3033 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) NIL (|has| |#2| (-884)))) (-4087 (((-398 $) $) NIL (|has| |#2| (-884)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#2| (-356)))) (-3815 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-543))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#2| (-356)))) (-4122 (($ $ (-620 (-286 $))) NIL) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1053) |#2|) NIL) (($ $ (-620 (-1053)) (-620 |#2|)) NIL) (($ $ (-1053) $) NIL) (($ $ (-620 (-1053)) (-620 $)) NIL)) (-1699 (((-749) $) NIL (|has| |#2| (-356)))) (-4154 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) NIL (|has| |#2| (-543))) ((|#2| (-400 $) |#2|) NIL (|has| |#2| (-356))) (((-400 $) $ (-400 $)) NIL (|has| |#2| (-543)))) (-4118 (((-3 $ #5="failed") $ (-749)) NIL)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#2| (-356)))) (-4112 (($ $ (-1053)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-4165 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4302 (((-749) $) NIL) (((-749) $ (-1053)) NIL) (((-620 (-749)) $ (-620 (-1053))) NIL)) (-4325 (((-864 (-371)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-371)))) (|has| |#2| (-596 (-864 (-371)))))) (((-864 (-536)) $) NIL (-12 (|has| (-1053) (-596 (-864 (-536)))) (|has| |#2| (-596 (-864 (-536)))))) (((-525) $) NIL (-12 (|has| (-1053) (-596 (-525))) (|has| |#2| (-596 (-525)))))) (-3145 ((|#2| $) NIL (|has| |#2| (-444))) (($ $ (-1053)) NIL (|has| |#2| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-884))))) (-4109 (((-3 $ #5#) $ $) NIL (|has| |#2| (-543))) (((-3 (-400 $) #5#) (-400 $) $) NIL (|has| |#2| (-543)))) (-4312 (((-838) $) 13) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-1053)) NIL) (($ (-1226 |#1|)) 19) (($ (-400 (-536))) NIL (-3886 (|has| |#2| (-38 (-400 (-536)))) (|has| |#2| (-1012 (-400 (-536)))))) (($ $) NIL (|has| |#2| (-543)))) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-749)) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3030 (((-3 $ #1#) $) NIL (-3886 (-12 (|has| $ (-143)) (|has| |#2| (-884))) (|has| |#2| (-143))))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| |#2| (-170)))) (-2172 (((-112) $ $) NIL (|has| |#2| (-543)))) (-2986 (($) NIL T CONST)) (-2992 (($) 14 T CONST)) (-2997 (($ $ (-1053)) NIL) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) NIL) (($ $ (-1147)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1147) (-749)) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) NIL (|has| |#2| (-874 (-1147)))) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2891 (((-112) $ $) NIL (|has| |#2| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3382 (((-112) $ $) NIL)) (-3012 (((-112) $ $) NIL (|has| |#2| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#2| (-825)))) (-4303 (($ $ |#2|) NIL (|has| |#2| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-400 (-536))) NIL (|has| |#2| (-38 (-400 (-536))))) (($ (-400 (-536)) $) NIL (|has| |#2| (-38 (-400 (-536))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1198 |#1| |#2|) (-13 (-1205 |#2|) (-10 -8 (-15 -4312 ($ (-1226 |#1|))) (-15 -4093 ($ $ (-749) |#2| $)))) (-1147) (-1023)) (T -1198)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *3)) (-14 *3 (-1147)) (-5 *1 (-1198 *3 *4)) (-4 *4 (-1023)))) (-4093 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1198 *4 *3)) (-14 *4 (-1147)) (-4 *3 (-1023))))) -(-13 (-1205 |#2|) (-10 -8 (-15 -4312 ($ (-1226 |#1|))) (-15 -4093 ($ $ (-749) |#2| $)))) -((-4313 (((-1198 |#3| |#4|) (-1 |#4| |#2|) (-1198 |#1| |#2|)) 15))) -(((-1199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 ((-1198 |#3| |#4|) (-1 |#4| |#2|) (-1198 |#1| |#2|)))) (-1147) (-1023) (-1147) (-1023)) (T -1199)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1198 *5 *6)) (-14 *5 (-1147)) (-4 *6 (-1023)) (-4 *8 (-1023)) (-5 *2 (-1198 *7 *8)) (-5 *1 (-1199 *5 *6 *7 *8)) (-14 *7 (-1147))))) -(-10 -7 (-15 -4313 ((-1198 |#3| |#4|) (-1 |#4| |#2|) (-1198 |#1| |#2|)))) -((-4096 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4094 ((|#1| |#3|) 13)) (-4095 ((|#3| |#3|) 19))) -(((-1200 |#1| |#2| |#3|) (-10 -7 (-15 -4094 (|#1| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-543) (-965 |#1|) (-1205 |#2|)) (T -1200)) -((-4096 (*1 *2 *3) (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1200 *4 *5 *3)) (-4 *3 (-1205 *5)))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-543)) (-4 *4 (-965 *3)) (-5 *1 (-1200 *3 *4 *2)) (-4 *2 (-1205 *4)))) (-4094 (*1 *2 *3) (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-1200 *2 *4 *3)) (-4 *3 (-1205 *4))))) -(-10 -7 (-15 -4094 (|#1| |#3|)) (-15 -4095 (|#3| |#3|)) (-15 -4096 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-4098 (((-3 |#2| "failed") |#2| (-749) |#1|) 29)) (-4097 (((-3 |#2| "failed") |#2| (-749)) 30)) (-4100 (((-3 (-2 (|:| -3468 |#2|) (|:| -3467 |#2|)) "failed") |#2|) 43)) (-4101 (((-620 |#2|) |#2|) 45)) (-4099 (((-3 |#2| "failed") |#2| |#2|) 40))) -(((-1201 |#1| |#2|) (-10 -7 (-15 -4097 ((-3 |#2| "failed") |#2| (-749))) (-15 -4098 ((-3 |#2| "failed") |#2| (-749) |#1|)) (-15 -4099 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4100 ((-3 (-2 (|:| -3468 |#2|) (|:| -3467 |#2|)) "failed") |#2|)) (-15 -4101 ((-620 |#2|) |#2|))) (-13 (-543) (-145)) (-1205 |#1|)) (T -1201)) -((-4101 (*1 *2 *3) (-12 (-4 *4 (-13 (-543) (-145))) (-5 *2 (-620 *3)) (-5 *1 (-1201 *4 *3)) (-4 *3 (-1205 *4)))) (-4100 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-543) (-145))) (-5 *2 (-2 (|:| -3468 *3) (|:| -3467 *3))) (-5 *1 (-1201 *4 *3)) (-4 *3 (-1205 *4)))) (-4099 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1201 *3 *2)) (-4 *2 (-1205 *3)))) (-4098 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-543) (-145))) (-5 *1 (-1201 *4 *2)) (-4 *2 (-1205 *4)))) (-4097 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-543) (-145))) (-5 *1 (-1201 *4 *2)) (-4 *2 (-1205 *4))))) -(-10 -7 (-15 -4097 ((-3 |#2| "failed") |#2| (-749))) (-15 -4098 ((-3 |#2| "failed") |#2| (-749) |#1|)) (-15 -4099 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4100 ((-3 (-2 (|:| -3468 |#2|) (|:| -3467 |#2|)) "failed") |#2|)) (-15 -4101 ((-620 |#2|) |#2|))) -((-4102 (((-3 (-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) "failed") |#2| |#2|) 32))) -(((-1202 |#1| |#2|) (-10 -7 (-15 -4102 ((-3 (-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) "failed") |#2| |#2|))) (-543) (-1205 |#1|)) (T -1202)) -((-4102 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-1202 *4 *3)) (-4 *3 (-1205 *4))))) -(-10 -7 (-15 -4102 ((-3 (-2 (|:| -2091 |#2|) (|:| -3230 |#2|)) "failed") |#2| |#2|))) -((-4103 ((|#2| |#2| |#2|) 19)) (-4104 ((|#2| |#2| |#2|) 30)) (-4105 ((|#2| |#2| |#2| (-749) (-749)) 36))) -(((-1203 |#1| |#2|) (-10 -7 (-15 -4103 (|#2| |#2| |#2|)) (-15 -4104 (|#2| |#2| |#2|)) (-15 -4105 (|#2| |#2| |#2| (-749) (-749)))) (-1023) (-1205 |#1|)) (T -1203)) -((-4105 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-1203 *4 *2)) (-4 *2 (-1205 *4)))) (-4104 (*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-1205 *3)))) (-4103 (*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-1205 *3))))) -(-10 -7 (-15 -4103 (|#2| |#2| |#2|)) (-15 -4104 (|#2| |#2| |#2|)) (-15 -4105 (|#2| |#2| |#2| (-749) (-749)))) -((-4121 (((-1229 |#2|) $ (-749)) 114)) (-3412 (((-620 (-1053)) $) 15)) (-4119 (($ (-1141 |#2|)) 67)) (-3147 (((-749) $) NIL) (((-749) $ (-620 (-1053))) 18)) (-3035 (((-398 (-1141 $)) (-1141 $)) 185)) (-4129 (($ $) 175)) (-4324 (((-398 $) $) 173)) (-3032 (((-3 (-620 (-1141 $)) "failed") (-620 (-1141 $)) (-1141 $)) 82)) (-4115 (($ $ (-749)) 71)) (-4114 (($ $ (-749)) 73)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3503 (((-3 |#2| #1="failed") $) 117) (((-3 (-400 (-536)) #1#) $) NIL) (((-3 (-536) #1#) $) NIL) (((-3 (-1053) #1#) $) NIL)) (-3502 ((|#2| $) 115) (((-400 (-536)) $) NIL) (((-536) $) NIL) (((-1053) $) NIL)) (-4108 (($ $ $) 151)) (-4107 (((-2 (|:| -4308 |#2|) (|:| -2091 $) (|:| -3230 $)) $ $) 153)) (-4126 (((-749) $ $) 170)) (-3798 (((-3 $ "failed") $) 123)) (-3221 (($ |#2| (-749)) NIL) (($ $ (-1053) (-749)) 47) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-3148 (((-749) $) NIL) (((-749) $ (-1053)) 42) (((-620 (-749)) $ (-620 (-1053))) 43)) (-4120 (((-1141 |#2|) $) 59)) (-3413 (((-3 (-1053) "failed") $) 40)) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) 70)) (-4167 (($ $) 197)) (-3799 (($) 119)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 182)) (-3033 (((-398 (-1141 $)) (-1141 $)) 88)) (-3034 (((-398 (-1141 $)) (-1141 $)) 86)) (-4087 (((-398 $) $) 107)) (-4122 (($ $ (-620 (-286 $))) 39) (($ $ (-286 $)) NIL) (($ $ $ $) NIL) (($ $ (-620 $) (-620 $)) NIL) (($ $ (-1053) |#2|) 31) (($ $ (-620 (-1053)) (-620 |#2|)) 28) (($ $ (-1053) $) 25) (($ $ (-620 (-1053)) (-620 $)) 23)) (-1699 (((-749) $) 188)) (-4154 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-400 $) (-400 $) (-400 $)) 147) ((|#2| (-400 $) |#2|) 187) (((-400 $) $ (-400 $)) 169)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 191)) (-4165 (($ $ (-1053)) 140) (($ $ (-620 (-1053))) NIL) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL) (($ $ (-749)) NIL) (($ $) 138) (($ $ (-1147)) NIL) (($ $ (-620 (-1147))) NIL) (($ $ (-1147) (-749)) NIL) (($ $ (-620 (-1147)) (-620 (-749))) NIL) (($ $ (-1 |#2| |#2|) (-749)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4302 (((-749) $) NIL) (((-749) $ (-1053)) 16) (((-620 (-749)) $ (-620 (-1053))) 20)) (-3145 ((|#2| $) NIL) (($ $ (-1053)) 125)) (-4109 (((-3 $ "failed") $ $) 161) (((-3 (-400 $) "failed") (-400 $) $) 157)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#2|) NIL) (($ (-1053)) 51) (($ (-400 (-536))) NIL) (($ $) NIL))) -(((-1204 |#1| |#2|) (-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -4154 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -1699 ((-749) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -4167 (|#1| |#1|)) (-15 -4154 (|#2| (-400 |#1|) |#2|)) (-15 -4106 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4107 ((-2 (|:| -4308 |#2|) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -4108 (|#1| |#1| |#1|)) (-15 -4109 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -4109 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4126 ((-749) |#1| |#1|)) (-15 -4154 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4114 (|#1| |#1| (-749))) (-15 -4115 (|#1| |#1| (-749))) (-15 -4116 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| (-749))) (-15 -4119 (|#1| (-1141 |#2|))) (-15 -4120 ((-1141 |#2|) |#1|)) (-15 -4121 ((-1229 |#2|) |#1| (-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| |#1|)) (-15 -4154 (|#2| |#1| |#2|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3035 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3145 (|#1| |#1| (-1053))) (-15 -3412 ((-620 (-1053)) |#1|)) (-15 -3147 ((-749) |#1| (-620 (-1053)))) (-15 -3147 ((-749) |#1|)) (-15 -3221 (|#1| |#1| (-620 (-1053)) (-620 (-749)))) (-15 -3221 (|#1| |#1| (-1053) (-749))) (-15 -3148 ((-620 (-749)) |#1| (-620 (-1053)))) (-15 -3148 ((-749) |#1| (-1053))) (-15 -3413 ((-3 (-1053) "failed") |#1|)) (-15 -4302 ((-620 (-749)) |#1| (-620 (-1053)))) (-15 -4302 ((-749) |#1| (-1053))) (-15 -3502 ((-1053) |#1|)) (-15 -3503 ((-3 (-1053) #1="failed") |#1|)) (-15 -4312 (|#1| (-1053))) (-15 -4122 (|#1| |#1| (-620 (-1053)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-1053) |#1|)) (-15 -4122 (|#1| |#1| (-620 (-1053)) (-620 |#2|))) (-15 -4122 (|#1| |#1| (-1053) |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4302 ((-749) |#1|)) (-15 -3221 (|#1| |#2| (-749))) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3148 ((-749) |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -4165 (|#1| |#1| (-620 (-1053)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1053) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1053)))) (-15 -4165 (|#1| |#1| (-1053))) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) (-1205 |#2|) (-1023)) (T -1204)) -NIL -(-10 -8 (-15 -4312 (|#1| |#1|)) (-15 -3036 ((-1141 |#1|) (-1141 |#1|) (-1141 |#1|))) (-15 -4324 ((-398 |#1|) |#1|)) (-15 -4129 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -3799 (|#1|)) (-15 -3798 ((-3 |#1| "failed") |#1|)) (-15 -4154 ((-400 |#1|) |#1| (-400 |#1|))) (-15 -1699 ((-749) |#1|)) (-15 -3209 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -4167 (|#1| |#1|)) (-15 -4154 (|#2| (-400 |#1|) |#2|)) (-15 -4106 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4107 ((-2 (|:| -4308 |#2|) (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| |#1|)) (-15 -4108 (|#1| |#1| |#1|)) (-15 -4109 ((-3 (-400 |#1|) "failed") (-400 |#1|) |#1|)) (-15 -4109 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4126 ((-749) |#1| |#1|)) (-15 -4154 ((-400 |#1|) (-400 |#1|) (-400 |#1|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4114 (|#1| |#1| (-749))) (-15 -4115 (|#1| |#1| (-749))) (-15 -4116 ((-2 (|:| -2091 |#1|) (|:| -3230 |#1|)) |#1| (-749))) (-15 -4119 (|#1| (-1141 |#2|))) (-15 -4120 ((-1141 |#2|) |#1|)) (-15 -4121 ((-1229 |#2|) |#1| (-749))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4165 (|#1| |#1| (-1 |#2| |#2|) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1147) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1147)))) (-15 -4165 (|#1| |#1| (-1147))) (-15 -4165 (|#1| |#1|)) (-15 -4165 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| |#1|)) (-15 -4154 (|#2| |#1| |#2|)) (-15 -4087 ((-398 |#1|) |#1|)) (-15 -3035 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3034 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3033 ((-398 (-1141 |#1|)) (-1141 |#1|))) (-15 -3032 ((-3 (-620 (-1141 |#1|)) "failed") (-620 (-1141 |#1|)) (-1141 |#1|))) (-15 -3145 (|#1| |#1| (-1053))) (-15 -3412 ((-620 (-1053)) |#1|)) (-15 -3147 ((-749) |#1| (-620 (-1053)))) (-15 -3147 ((-749) |#1|)) (-15 -3221 (|#1| |#1| (-620 (-1053)) (-620 (-749)))) (-15 -3221 (|#1| |#1| (-1053) (-749))) (-15 -3148 ((-620 (-749)) |#1| (-620 (-1053)))) (-15 -3148 ((-749) |#1| (-1053))) (-15 -3413 ((-3 (-1053) "failed") |#1|)) (-15 -4302 ((-620 (-749)) |#1| (-620 (-1053)))) (-15 -4302 ((-749) |#1| (-1053))) (-15 -3502 ((-1053) |#1|)) (-15 -3503 ((-3 (-1053) #1="failed") |#1|)) (-15 -4312 (|#1| (-1053))) (-15 -4122 (|#1| |#1| (-620 (-1053)) (-620 |#1|))) (-15 -4122 (|#1| |#1| (-1053) |#1|)) (-15 -4122 (|#1| |#1| (-620 (-1053)) (-620 |#2|))) (-15 -4122 (|#1| |#1| (-1053) |#2|)) (-15 -4122 (|#1| |#1| (-620 |#1|) (-620 |#1|))) (-15 -4122 (|#1| |#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| (-286 |#1|))) (-15 -4122 (|#1| |#1| (-620 (-286 |#1|)))) (-15 -4302 ((-749) |#1|)) (-15 -3221 (|#1| |#2| (-749))) (-15 -3502 ((-536) |#1|)) (-15 -3503 ((-3 (-536) #1#) |#1|)) (-15 -3502 ((-400 (-536)) |#1|)) (-15 -3503 ((-3 (-400 (-536)) #1#) |#1|)) (-15 -4312 (|#1| |#2|)) (-15 -3503 ((-3 |#2| #1#) |#1|)) (-15 -3502 (|#2| |#1|)) (-15 -3148 ((-749) |#1|)) (-15 -3145 (|#2| |#1|)) (-15 -4165 (|#1| |#1| (-620 (-1053)) (-620 (-749)))) (-15 -4165 (|#1| |#1| (-1053) (-749))) (-15 -4165 (|#1| |#1| (-620 (-1053)))) (-15 -4165 (|#1| |#1| (-1053))) (-15 -4312 (|#1| (-536))) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-4121 (((-1229 |#1|) $ (-749)) 236)) (-3412 (((-620 (-1053)) $) 108)) (-4119 (($ (-1141 |#1|)) 234)) (-3414 (((-1141 $) $ (-1053)) 123) (((-1141 |#1|) $) 122)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 85 (|has| |#1| (-543)))) (-2173 (($ $) 86 (|has| |#1| (-543)))) (-2171 (((-112) $) 88 (|has| |#1| (-543)))) (-3147 (((-749) $) 110) (((-749) $ (-620 (-1053))) 109)) (-1367 (((-3 $ "failed") $ $) 19)) (-4110 (($ $ $) 221 (|has| |#1| (-543)))) (-3035 (((-398 (-1141 $)) (-1141 $)) 98 (|has| |#1| (-884)))) (-4129 (($ $) 96 (|has| |#1| (-444)))) (-4324 (((-398 $) $) 95 (|has| |#1| (-444)))) (-3032 (((-3 (-620 (-1141 $)) #1="failed") (-620 (-1141 $)) (-1141 $)) 101 (|has| |#1| (-884)))) (-1700 (((-112) $ $) 206 (|has| |#1| (-356)))) (-4115 (($ $ (-749)) 229)) (-4114 (($ $ (-749)) 228)) (-4106 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-444)))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| #2="failed") $) 162) (((-3 (-400 (-536)) #2#) $) 160 (|has| |#1| (-1012 (-400 (-536))))) (((-3 (-536) #2#) $) 158 (|has| |#1| (-1012 (-536)))) (((-3 (-1053) #2#) $) 134)) (-3502 ((|#1| $) 163) (((-400 (-536)) $) 159 (|has| |#1| (-1012 (-400 (-536))))) (((-536) $) 157 (|has| |#1| (-1012 (-536)))) (((-1053) $) 133)) (-4111 (($ $ $ (-1053)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-2889 (($ $ $) 210 (|has| |#1| (-356)))) (-4314 (($ $) 152)) (-2357 (((-667 (-536)) (-667 $)) 132 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 (-536))) (|:| |vec| (-1229 (-536)))) (-667 $) (-1229 $)) 131 (|has| |#1| (-619 (-536)))) (((-2 (|:| -1695 (-667 |#1|)) (|:| |vec| (-1229 |#1|))) (-667 $) (-1229 $)) 130) (((-667 |#1|) (-667 $)) 129)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 209 (|has| |#1| (-356)))) (-4113 (($ $ $) 227)) (-4108 (($ $ $) 218 (|has| |#1| (-543)))) (-4107 (((-2 (|:| -4308 |#1|) (|:| -2091 $) (|:| -3230 $)) $ $) 217 (|has| |#1| (-543)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 204 (|has| |#1| (-356)))) (-3852 (($ $) 174 (|has| |#1| (-444))) (($ $ (-1053)) 103 (|has| |#1| (-444)))) (-3146 (((-620 $) $) 107)) (-4081 (((-112) $) 94 (|has| |#1| (-884)))) (-1716 (($ $ |#1| (-749) $) 170)) (-3124 (((-862 (-371) $) $ (-864 (-371)) (-862 (-371) $)) 82 (-12 (|has| (-1053) (-860 (-371))) (|has| |#1| (-860 (-371))))) (((-862 (-536) $) $ (-864 (-536)) (-862 (-536) $)) 81 (-12 (|has| (-1053) (-860 (-536))) (|has| |#1| (-860 (-536)))))) (-4126 (((-749) $ $) 222 (|has| |#1| (-543)))) (-2497 (((-112) $) 30)) (-2505 (((-749) $) 167)) (-3798 (((-3 $ "failed") $) 202 (|has| |#1| (-1122)))) (-3415 (($ (-1141 |#1|) (-1053)) 115) (($ (-1141 $) (-1053)) 114)) (-4131 (($ $ (-749)) 233)) (-1697 (((-3 (-620 $) #3="failed") (-620 $) $) 213 (|has| |#1| (-356)))) (-3149 (((-620 $) $) 124)) (-4292 (((-112) $) 150)) (-3221 (($ |#1| (-749)) 151) (($ $ (-1053) (-749)) 117) (($ $ (-620 (-1053)) (-620 (-749))) 116)) (-4117 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $ (-1053)) 118) (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 231)) (-3148 (((-749) $) 168) (((-749) $ (-1053)) 120) (((-620 (-749)) $ (-620 (-1053))) 119)) (-3672 (($ $ $) 77 (|has| |#1| (-825)))) (-3673 (($ $ $) 76 (|has| |#1| (-825)))) (-1717 (($ (-1 (-749) (-749)) $) 169)) (-4313 (($ (-1 |#1| |#1|) $) 149)) (-4120 (((-1141 |#1|) $) 235)) (-3413 (((-3 (-1053) #4="failed") $) 121)) (-3222 (($ $) 147)) (-3520 ((|#1| $) 146)) (-2008 (($ (-620 $)) 92 (|has| |#1| (-444))) (($ $ $) 91 (|has| |#1| (-444)))) (-3588 (((-1129) $) 9)) (-4116 (((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749)) 230)) (-3151 (((-3 (-620 $) #4#) $) 112)) (-3150 (((-3 (-620 $) #4#) $) 113)) (-3152 (((-3 (-2 (|:| |var| (-1053)) (|:| -2488 (-749))) #4#) $) 111)) (-4167 (($ $) 214 (|has| |#1| (-38 (-400 (-536)))))) (-3799 (($) 201 (|has| |#1| (-1122)) CONST)) (-3589 (((-1091) $) 10)) (-1911 (((-112) $) 164)) (-1910 ((|#1| $) 165)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 93 (|has| |#1| (-444)))) (-3490 (($ (-620 $)) 90 (|has| |#1| (-444))) (($ $ $) 89 (|has| |#1| (-444)))) (-3033 (((-398 (-1141 $)) (-1141 $)) 100 (|has| |#1| (-884)))) (-3034 (((-398 (-1141 $)) (-1141 $)) 99 (|has| |#1| (-884)))) (-4087 (((-398 $) $) 97 (|has| |#1| (-884)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 212 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 211 (|has| |#1| (-356)))) (-3815 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-543))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 205 (|has| |#1| (-356)))) (-4122 (($ $ (-620 (-286 $))) 143) (($ $ (-286 $)) 142) (($ $ $ $) 141) (($ $ (-620 $) (-620 $)) 140) (($ $ (-1053) |#1|) 139) (($ $ (-620 (-1053)) (-620 |#1|)) 138) (($ $ (-1053) $) 137) (($ $ (-620 (-1053)) (-620 $)) 136)) (-1699 (((-749) $) 207 (|has| |#1| (-356)))) (-4154 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-400 $) (-400 $) (-400 $)) 223 (|has| |#1| (-543))) ((|#1| (-400 $) |#1|) 215 (|has| |#1| (-356))) (((-400 $) $ (-400 $)) 203 (|has| |#1| (-543)))) (-4118 (((-3 $ "failed") $ (-749)) 232)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 208 (|has| |#1| (-356)))) (-4112 (($ $ (-1053)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-4165 (($ $ (-1053)) 40) (($ $ (-620 (-1053))) 39) (($ $ (-1053) (-749)) 38) (($ $ (-620 (-1053)) (-620 (-749))) 37) (($ $ (-749)) 251) (($ $) 249) (($ $ (-1147)) 248 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 247 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 246 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 245 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-4302 (((-749) $) 148) (((-749) $ (-1053)) 128) (((-620 (-749)) $ (-620 (-1053))) 127)) (-4325 (((-864 (-371)) $) 80 (-12 (|has| (-1053) (-596 (-864 (-371)))) (|has| |#1| (-596 (-864 (-371)))))) (((-864 (-536)) $) 79 (-12 (|has| (-1053) (-596 (-864 (-536)))) (|has| |#1| (-596 (-864 (-536)))))) (((-525) $) 78 (-12 (|has| (-1053) (-596 (-525))) (|has| |#1| (-596 (-525)))))) (-3145 ((|#1| $) 173 (|has| |#1| (-444))) (($ $ (-1053)) 104 (|has| |#1| (-444)))) (-3031 (((-3 (-1229 $) #1#) (-667 $)) 102 (-3186 (|has| $ (-143)) (|has| |#1| (-884))))) (-4109 (((-3 $ "failed") $ $) 220 (|has| |#1| (-543))) (((-3 (-400 $) "failed") (-400 $) $) 219 (|has| |#1| (-543)))) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 161) (($ (-1053)) 135) (($ (-400 (-536))) 70 (-3886 (|has| |#1| (-1012 (-400 (-536)))) (|has| |#1| (-38 (-400 (-536)))))) (($ $) 83 (|has| |#1| (-543)))) (-4172 (((-620 |#1|) $) 166)) (-4035 ((|#1| $ (-749)) 153) (($ $ (-1053) (-749)) 126) (($ $ (-620 (-1053)) (-620 (-749))) 125)) (-3030 (((-3 $ #1#) $) 71 (-3886 (-3186 (|has| $ (-143)) (|has| |#1| (-884))) (|has| |#1| (-143))))) (-3456 (((-749)) 28)) (-1715 (($ $ $ (-749)) 171 (|has| |#1| (-170)))) (-2172 (((-112) $ $) 87 (|has| |#1| (-543)))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-1053)) 36) (($ $ (-620 (-1053))) 35) (($ $ (-1053) (-749)) 34) (($ $ (-620 (-1053)) (-620 (-749))) 33) (($ $ (-749)) 252) (($ $) 250) (($ $ (-1147)) 244 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147))) 243 (|has| |#1| (-874 (-1147)))) (($ $ (-1147) (-749)) 242 (|has| |#1| (-874 (-1147)))) (($ $ (-620 (-1147)) (-620 (-749))) 241 (|has| |#1| (-874 (-1147)))) (($ $ (-1 |#1| |#1|) (-749)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2891 (((-112) $ $) 74 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 73 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 6)) (-3012 (((-112) $ $) 75 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 72 (|has| |#1| (-825)))) (-4303 (($ $ |#1|) 154 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 156 (|has| |#1| (-38 (-400 (-536))))) (($ (-400 (-536)) $) 155 (|has| |#1| (-38 (-400 (-536))))) (($ |#1| $) 145) (($ $ |#1|) 144))) -(((-1205 |#1|) (-138) (-1023)) (T -1205)) -((-4121 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1205 *4)) (-4 *4 (-1023)) (-5 *2 (-1229 *4)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-5 *2 (-1141 *3)))) (-4119 (*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1023)) (-4 *1 (-1205 *3)))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) (-4118 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) (-4117 (*1 *2 *1 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1205 *3)))) (-4116 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1205 *4)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) (-4114 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) (-4113 (*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)))) (-4165 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) (-4112 (*1 *2 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-170)))) (-4111 (*1 *2 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-170)))) (-4154 (*1 *2 *2 *2) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-4 *3 (-543)))) (-4126 (*1 *2 *1 *1) (-12 (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-4 *3 (-543)) (-5 *2 (-749)))) (-4110 (*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543)))) (-4109 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543)))) (-4109 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-4 *3 (-543)))) (-4108 (*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543)))) (-4107 (*1 *2 *1 *1) (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| -4308 *3) (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1205 *3)))) (-4106 (*1 *2 *1 *1) (-12 (-4 *3 (-444)) (-4 *3 (-1023)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1205 *3)))) (-4154 (*1 *2 *3 *2) (-12 (-5 *3 (-400 *1)) (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536))))))) -(-13 (-924 |t#1| (-749) (-1053)) (-279 |t#1| |t#1|) (-279 $ $) (-227) (-225 |t#1|) (-10 -8 (-15 -4121 ((-1229 |t#1|) $ (-749))) (-15 -4120 ((-1141 |t#1|) $)) (-15 -4119 ($ (-1141 |t#1|))) (-15 -4131 ($ $ (-749))) (-15 -4118 ((-3 $ "failed") $ (-749))) (-15 -4117 ((-2 (|:| -2091 $) (|:| -3230 $)) $ $)) (-15 -4116 ((-2 (|:| -2091 $) (|:| -3230 $)) $ (-749))) (-15 -4115 ($ $ (-749))) (-15 -4114 ($ $ (-749))) (-15 -4113 ($ $ $)) (-15 -4165 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4112 (|t#1| $)) (-15 -4111 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-543)) (PROGN (-6 (-279 (-400 $) (-400 $))) (-15 -4154 ((-400 $) (-400 $) (-400 $))) (-15 -4126 ((-749) $ $)) (-15 -4110 ($ $ $)) (-15 -4109 ((-3 $ "failed") $ $)) (-15 -4109 ((-3 (-400 $) "failed") (-400 $) $)) (-15 -4108 ($ $ $)) (-15 -4107 ((-2 (|:| -4308 |t#1|) (|:| -2091 $) (|:| -3230 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-444)) (-15 -4106 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-356)) (PROGN (-6 (-300)) (-6 -4344) (-15 -4154 (|t#1| (-400 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-536)))) (-15 -4167 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-749)) . T) ((-25) . T) ((-38 #2=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-596 (-525)) -12 (|has| |#1| (-596 (-525))) (|has| (-1053) (-596 (-525)))) ((-596 (-864 (-371))) -12 (|has| |#1| (-596 (-864 (-371)))) (|has| (-1053) (-596 (-864 (-371))))) ((-596 (-864 (-536))) -12 (|has| |#1| (-596 (-864 (-536)))) (|has| (-1053) (-596 (-864 (-536))))) ((-225 |#1|) . T) ((-227) . T) ((-279 (-400 $) (-400 $)) |has| |#1| (-543)) ((-279 |#1| |#1|) . T) ((-279 $ $) . T) ((-283) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-302 $) . T) ((-319 |#1| #1#) . T) ((-370 |#1|) . T) ((-405 |#1|) . T) ((-444) -3886 (|has| |#1| (-884)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-505 #3=(-1053) |#1|) . T) ((-505 #3# $) . T) ((-505 $ $) . T) ((-543) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-626 #2#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-619 (-536)) |has| |#1| (-619 (-536))) ((-619 |#1|) . T) ((-696 #2#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356))) ((-705) . T) ((-825) |has| |#1| (-825)) ((-874 #3#) . T) ((-874 (-1147)) |has| |#1| (-874 (-1147))) ((-860 (-371)) -12 (|has| |#1| (-860 (-371))) (|has| (-1053) (-860 (-371)))) ((-860 (-536)) -12 (|has| |#1| (-860 (-536))) (|has| (-1053) (-860 (-536)))) ((-924 |#1| #1# #3#) . T) ((-884) |has| |#1| (-884)) ((-895) |has| |#1| (-356)) ((-1012 (-400 (-536))) |has| |#1| (-1012 (-400 (-536)))) ((-1012 (-536)) |has| |#1| (-1012 (-536))) ((-1012 #3#) . T) ((-1012 |#1|) . T) ((-1029 #2#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-884)) (|has| |#1| (-543)) (|has| |#1| (-444)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1122) |has| |#1| (-1122)) ((-1188) |has| |#1| (-884))) -((-4313 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1206 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|))) (-1023) (-1205 |#1|) (-1023) (-1205 |#3|)) (T -1206)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1205 *6)) (-5 *1 (-1206 *5 *4 *6 *2)) (-4 *4 (-1205 *5))))) -(-10 -7 (-15 -4313 (|#4| (-1 |#3| |#1|) |#2|))) -((-3412 (((-620 (-1053)) $) 28)) (-4314 (($ $) 25)) (-3221 (($ |#2| |#3|) NIL) (($ $ (-1053) |#3|) 22) (($ $ (-620 (-1053)) (-620 |#3|)) 21)) (-3222 (($ $) 14)) (-3520 ((|#2| $) 12)) (-4302 ((|#3| $) 10))) -(((-1207 |#1| |#2| |#3|) (-10 -8 (-15 -3412 ((-620 (-1053)) |#1|)) (-15 -3221 (|#1| |#1| (-620 (-1053)) (-620 |#3|))) (-15 -3221 (|#1| |#1| (-1053) |#3|)) (-15 -4314 (|#1| |#1|)) (-15 -3221 (|#1| |#2| |#3|)) (-15 -4302 (|#3| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -3520 (|#2| |#1|))) (-1208 |#2| |#3|) (-1023) (-770)) (T -1207)) -NIL -(-10 -8 (-15 -3412 ((-620 (-1053)) |#1|)) (-15 -3221 (|#1| |#1| (-620 (-1053)) (-620 |#3|))) (-15 -3221 (|#1| |#1| (-1053) |#3|)) (-15 -4314 (|#1| |#1|)) (-15 -3221 (|#1| |#2| |#3|)) (-15 -4302 (|#3| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -3520 (|#2| |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4128 (((-1124 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-3220 (((-112) $) 71)) (-4126 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2497 (((-112) $) 30)) (-4131 (($ $ (-893)) 99)) (-4292 (((-112) $) 60)) (-3221 (($ |#1| |#2|) 59) (($ $ (-1053) |#2|) 74) (($ $ (-620 (-1053)) (-620 |#2|)) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4123 (($ $ |#2|) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4154 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1083)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 87 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1147) (-749)) 86 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-620 (-1147))) 85 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1147)) 84 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4302 ((|#2| $) 62)) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4035 ((|#1| $ |#2|) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-4124 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 91 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1147) (-749)) 90 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-620 (-1147))) 89 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1147)) 88 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) -(((-1208 |#1| |#2|) (-138) (-1023) (-770)) (T -1208)) -((-4128 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-1124 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4154 (*1 *2 *1 *3) (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-1147)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4126 (*1 *2 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4125 (*1 *1 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4125 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4124 (*1 *2 *1 *3) (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4312 (*2 (-1147)))) (-4 *2 (-1023)))) (-4123 (*1 *1 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) (-4122 (*1 *2 *1 *3) (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1124 *3))))) -(-13 (-947 |t#1| |t#2| (-1053)) (-10 -8 (-15 -4128 ((-1124 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4154 (|t#1| $ |t#2|)) (-15 -4186 ((-1147) $)) (-15 -4127 (|t#1| $)) (-15 -4131 ($ $ (-893))) (-15 -4126 (|t#2| $)) (-15 -4126 (|t#2| $ |t#2|)) (-15 -4125 ($ $ |t#2|)) (-15 -4125 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4312 (|t#1| (-1147)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4124 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4123 ($ $ |t#2|)) (IF (|has| |t#2| (-1083)) (-6 (-279 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-227)) (IF (|has| |t#1| (-874 (-1147))) (-6 (-874 (-1147))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4122 ((-1124 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-279 $ $) |has| |#2| (-1083)) ((-283) |has| |#1| (-543)) ((-543) |has| |#1| (-543)) ((-626 #1#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-947 |#1| |#2| (-1053)) . T) ((-1029 #1#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-4129 ((|#2| |#2|) 12)) (-4324 (((-398 |#2|) |#2|) 14)) (-4130 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-536))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-536)))) 30))) -(((-1209 |#1| |#2|) (-10 -7 (-15 -4324 ((-398 |#2|) |#2|)) (-15 -4129 (|#2| |#2|)) (-15 -4130 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-536))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-536)))))) (-543) (-13 (-1205 |#1|) (-543) (-10 -8 (-15 -3490 ($ $ $))))) (T -1209)) -((-4130 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-536)))) (-4 *4 (-13 (-1205 *3) (-543) (-10 -8 (-15 -3490 ($ $ $))))) (-4 *3 (-543)) (-5 *1 (-1209 *3 *4)))) (-4129 (*1 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-1209 *3 *2)) (-4 *2 (-13 (-1205 *3) (-543) (-10 -8 (-15 -3490 ($ $ $))))))) (-4324 (*1 *2 *3) (-12 (-4 *4 (-543)) (-5 *2 (-398 *3)) (-5 *1 (-1209 *4 *3)) (-4 *3 (-13 (-1205 *4) (-543) (-10 -8 (-15 -3490 ($ $ $)))))))) -(-10 -7 (-15 -4324 ((-398 |#2|) |#2|)) (-15 -4129 (|#2| |#2|)) (-15 -4130 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-536))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-536)))))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 11)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) NIL) (($ $ (-400 (-536)) (-400 (-536))) NIL)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-1189 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1219 |#1| |#2| |#3|) #1#) $) 22)) (-3502 (((-1189 |#1| |#2| |#3|) $) NIL) (((-1219 |#1| |#2| |#3|) $) NIL)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4135 (((-400 (-536)) $) 57)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4136 (($ (-400 (-536)) (-1189 |#1| |#2| |#3|)) NIL)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) NIL) (((-400 (-536)) $ (-400 (-536))) NIL)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) NIL) (($ $ (-400 (-536))) NIL)) (-1697 (((-3 (-620 $) #2="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-400 (-536))) 30) (($ $ (-1053) (-400 (-536))) NIL) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4134 (((-1189 |#1| |#2| |#3|) $) 60)) (-4132 (((-3 (-1189 |#1| |#2| |#3|) "failed") $) NIL)) (-4133 (((-1189 |#1| |#2| |#3|) $) NIL)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) NIL (|has| |#1| (-356)))) (-4167 (($ $) 39 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) NIL (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 40 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) NIL)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) NIL) (($ $ $) NIL (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $ (-1226 |#2|)) 38)) (-4302 (((-400 (-536)) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) NIL)) (-4312 (((-838) $) 89) (($ (-536)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1189 |#1| |#2| |#3|)) 16) (($ (-1219 |#1| |#2| |#3|)) 17) (($ (-1226 |#2|)) 36) (($ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 12)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 32 T CONST)) (-2992 (($) 26 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 34)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ (-536)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-1210 |#1| |#2| |#3|) (-13 (-1214 |#1| (-1189 |#1| |#2| |#3|)) (-1012 (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1210)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) -(-13 (-1214 |#1| (-1189 |#1| |#2| |#3|)) (-1012 (-1219 |#1| |#2| |#3|)) (-10 -8 (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) -((-4313 (((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)) 24))) -(((-1211 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4313 ((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)))) (-1023) (-1023) (-1147) (-1147) |#1| |#2|) (T -1211)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5 *7 *9)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-14 *7 (-1147)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1210 *6 *8 *10)) (-5 *1 (-1211 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1147))))) -(-10 -7 (-15 -4313 ((-1210 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1210 |#1| |#3| |#5|)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) 96) (($ $ (-400 (-536)) (-400 (-536))) 95)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) 103)) (-3841 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 116 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 160 (|has| |#1| (-356)))) (-4324 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3365 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3839 (($ $) 132 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) 169)) (-3843 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 118 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-2889 (($ $ $) 155 (|has| |#1| (-356)))) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 154 (|has| |#1| (-356)))) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 149 (|has| |#1| (-356)))) (-4081 (((-112) $) 162 (|has| |#1| (-356)))) (-3220 (((-112) $) 71)) (-3985 (($) 143 (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) 98) (((-400 (-536)) $ (-400 (-536))) 97)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 114 (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) 99) (($ $ (-400 (-536))) 168)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 158 (|has| |#1| (-356)))) (-4292 (((-112) $) 60)) (-3221 (($ |#1| (-400 (-536))) 59) (($ $ (-1053) (-400 (-536))) 74) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-4297 (($ $) 140 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-2008 (($ (-620 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-3588 (((-1129) $) 9)) (-2729 (($ $) 163 (|has| |#1| (-356)))) (-4167 (($ $) 167 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 166 (-3886 (-12 (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169)) (|has| |#1| (-38 (-400 (-536))))) (-12 (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-38 (-400 (-536)))))))) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3490 (($ (-620 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4087 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 156 (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 150 (|has| |#1| (-356)))) (-4298 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) 152 (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) 102) (($ $ $) 79 (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 153 (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 87 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) 86 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) 85 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 84 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-4302 (((-400 (-536)) $) 62)) (-3844 (($ $) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 120 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-3847 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-3845 (($ $) 138 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 126 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 136 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 124 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 134 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 122 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 91 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) 90 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) 89 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 88 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 113 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) -(((-1212 |#1|) (-138) (-1023)) (T -1212)) -((-4173 (*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| *4)))) (-4 *4 (-1023)) (-4 *1 (-1212 *4)))) (-4131 (*1 *1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-4 *1 (-1212 *3)) (-4 *3 (-1023)))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1212 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) (-4167 (*1 *1 *1 *2) (-3886 (-12 (-5 *2 (-1147)) (-4 *1 (-1212 *3)) (-4 *3 (-1023)) (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) (-4 *3 (-38 (-400 (-536)))))) (-12 (-5 *2 (-1147)) (-4 *1 (-1212 *3)) (-4 *3 (-1023)) (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536))))))))) -(-13 (-1208 |t#1| (-400 (-536))) (-10 -8 (-15 -4173 ($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |t#1|))))) (-15 -4131 ($ $ (-400 (-536)))) (IF (|has| |t#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $)) (IF (|has| |t#1| (-15 -4167 (|t#1| |t#1| (-1147)))) (IF (|has| |t#1| (-15 -3412 ((-620 (-1147)) |t#1|))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1169)) (IF (|has| |t#1| (-934)) (IF (|has| |t#1| (-29 (-536))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-976)) (-6 (-1169))) |%noBranch|) (IF (|has| |t#1| (-356)) (-6 (-356)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-400 (-536))) . T) ((-25) . T) ((-38 #2=(-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-279 $ $) |has| (-400 (-536)) (-1083)) ((-283) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-543) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-626 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) ((-947 |#1| #1# (-1053)) . T) ((-895) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-1029 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536)))) ((-1188) |has| |#1| (-356)) ((-1208 |#1| #1#) . T)) -((-3534 (((-112) $) 12)) (-3503 (((-3 |#3| "failed") $) 17)) (-3502 ((|#3| $) 14))) -(((-1213 |#1| |#2| |#3|) (-10 -8 (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| "failed") |#1|)) (-15 -3534 ((-112) |#1|))) (-1214 |#2| |#3|) (-1023) (-1191 |#2|)) (T -1213)) -NIL -(-10 -8 (-15 -3502 (|#3| |#1|)) (-15 -3503 ((-3 |#3| "failed") |#1|)) (-15 -3534 ((-112) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) 96) (($ $ (-400 (-536)) (-400 (-536))) 95)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) 103)) (-3841 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 116 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 160 (|has| |#1| (-356)))) (-4324 (((-398 $) $) 161 (|has| |#1| (-356)))) (-3365 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) 151 (|has| |#1| (-356)))) (-3839 (($ $) 132 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) 169)) (-3843 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 118 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#2| "failed") $) 180)) (-3502 ((|#2| $) 179)) (-2889 (($ $ $) 155 (|has| |#1| (-356)))) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-4135 (((-400 (-536)) $) 177)) (-2888 (($ $ $) 154 (|has| |#1| (-356)))) (-4136 (($ (-400 (-536)) |#2|) 178)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 149 (|has| |#1| (-356)))) (-4081 (((-112) $) 162 (|has| |#1| (-356)))) (-3220 (((-112) $) 71)) (-3985 (($) 143 (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) 98) (((-400 (-536)) $ (-400 (-536))) 97)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 114 (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) 99) (($ $ (-400 (-536))) 168)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 158 (|has| |#1| (-356)))) (-4292 (((-112) $) 60)) (-3221 (($ |#1| (-400 (-536))) 59) (($ $ (-1053) (-400 (-536))) 74) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-4297 (($ $) 140 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-2008 (($ (-620 $)) 147 (|has| |#1| (-356))) (($ $ $) 146 (|has| |#1| (-356)))) (-4134 ((|#2| $) 176)) (-4132 (((-3 |#2| "failed") $) 174)) (-4133 ((|#2| $) 175)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 163 (|has| |#1| (-356)))) (-4167 (($ $) 167 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 166 (-3886 (-12 (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169)) (|has| |#1| (-38 (-400 (-536))))) (-12 (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-38 (-400 (-536)))))))) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 148 (|has| |#1| (-356)))) (-3490 (($ (-620 $)) 145 (|has| |#1| (-356))) (($ $ $) 144 (|has| |#1| (-356)))) (-4087 (((-398 $) $) 159 (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 156 (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 150 (|has| |#1| (-356)))) (-4298 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) 152 (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) 102) (($ $ $) 79 (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 153 (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 87 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) 86 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) 85 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 84 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-4302 (((-400 (-536)) $) 62)) (-3844 (($ $) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 120 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-3847 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-3845 (($ $) 138 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 126 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 136 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 124 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 134 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 122 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 91 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) 90 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) 89 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 88 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356))) (($ $ $) 165 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 164 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 113 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) -(((-1214 |#1| |#2|) (-138) (-1023) (-1191 |t#1|)) (T -1214)) -((-4302 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1191 *3)) (-5 *2 (-400 (-536))))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-1214 *3 *2)) (-4 *2 (-1191 *3)))) (-4136 (*1 *1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-4 *4 (-1023)) (-4 *1 (-1214 *4 *3)) (-4 *3 (-1191 *4)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1191 *3)) (-5 *2 (-400 (-536))))) (-4134 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3)))) (-4133 (*1 *2 *1) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3)))) (-4132 (*1 *2 *1) (|partial| -12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3))))) -(-13 (-1212 |t#1|) (-1012 |t#2|) (-10 -8 (-15 -4136 ($ (-400 (-536)) |t#2|)) (-15 -4135 ((-400 (-536)) $)) (-15 -4134 (|t#2| $)) (-15 -4302 ((-400 (-536)) $)) (-15 -4312 ($ |t#2|)) (-15 -4133 (|t#2| $)) (-15 -4132 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-400 (-536))) . T) ((-25) . T) ((-38 #2=(-400 (-536))) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))) ((-237) |has| |#1| (-356)) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-279 $ $) |has| (-400 (-536)) (-1083)) ((-283) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-300) |has| |#1| (-356)) ((-356) |has| |#1| (-356)) ((-444) |has| |#1| (-356)) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-543) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-626 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356))) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) ((-947 |#1| #1# (-1053)) . T) ((-895) |has| |#1| (-356)) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-1012 |#2|) . T) ((-1029 #2#) -3886 (|has| |#1| (-356)) (|has| |#1| (-38 (-400 (-536))))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-356)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536)))) ((-1188) |has| |#1| (-356)) ((-1208 |#1| #1#) . T) ((-1212 |#1|) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 96)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) NIL (|has| |#1| (-543)))) (-4125 (($ $ (-400 (-536))) 106) (($ $ (-400 (-536)) (-400 (-536))) 108)) (-4128 (((-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|))) $) 51)) (-3841 (($ $) 180 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 156 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-4129 (($ $) NIL (|has| |#1| (-356)))) (-4324 (((-398 $) $) NIL (|has| |#1| (-356)))) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1700 (((-112) $ $) NIL (|has| |#1| (-356)))) (-3839 (($ $) 176 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 152 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-749) (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#1|)))) 61)) (-3843 (($ $) 184 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 160 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| "failed") $) NIL)) (-3502 ((|#2| $) NIL)) (-2889 (($ $ $) NIL (|has| |#1| (-356)))) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) 79)) (-4135 (((-400 (-536)) $) 13)) (-2888 (($ $ $) NIL (|has| |#1| (-356)))) (-4136 (($ (-400 (-536)) |#2|) 11)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) NIL (|has| |#1| (-356)))) (-4081 (((-112) $) NIL (|has| |#1| (-356)))) (-3220 (((-112) $) 68)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-400 (-536)) $) 103) (((-400 (-536)) $ (-400 (-536))) 104)) (-2497 (((-112) $) NIL)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) 120) (($ $ (-400 (-536))) 118)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-400 (-536))) 31) (($ $ (-1053) (-400 (-536))) NIL) (($ $ (-620 (-1053)) (-620 (-400 (-536)))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) 115)) (-4297 (($ $) 150 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-2008 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4134 ((|#2| $) 12)) (-4132 (((-3 |#2| "failed") $) 41)) (-4133 ((|#2| $) 42)) (-3588 (((-1129) $) NIL)) (-2729 (($ $) 93 (|has| |#1| (-356)))) (-4167 (($ $) 135 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 140 (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))))))) (-3589 (((-1091) $) NIL)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) NIL (|has| |#1| (-356)))) (-3490 (($ (-620 $)) NIL (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-356)))) (-4087 (((-398 $) $) NIL (|has| |#1| (-356)))) (-1698 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-356))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) NIL (|has| |#1| (-356)))) (-4123 (($ $ (-400 (-536))) 112)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-3068 (((-3 (-620 $) "failed") (-620 $) $) NIL (|has| |#1| (-356)))) (-4298 (($ $) 148 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))))) (-1699 (((-749) $) NIL (|has| |#1| (-356)))) (-4154 ((|#1| $ (-400 (-536))) 100) (($ $ $) 86 (|has| (-400 (-536)) (-1083)))) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) NIL (|has| |#1| (-356)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) 127 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-4302 (((-400 (-536)) $) 16)) (-3844 (($ $) 186 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 162 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 182 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 158 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 178 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 154 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 110)) (-4312 (((-838) $) NIL) (($ (-536)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-400 (-536))) 128 (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543)))) (-4035 ((|#1| $ (-400 (-536))) 99)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) 117)) (-4127 ((|#1| $) 98)) (-3847 (($ $) 192 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 168 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) 188 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 164 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 196 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 172 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-400 (-536))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-400 (-536))))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 198 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 174 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 194 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 170 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 190 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 166 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 21 T CONST)) (-2992 (($) 17 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-400 (-536)) |#1|))))) (-3382 (((-112) $ $) 66)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356))) (($ $ $) 92 (|has| |#1| (-356)))) (-4192 (($ $) 131) (($ $ $) 72)) (-4194 (($ $ $) 70)) (** (($ $ (-893)) NIL) (($ $ (-749)) 76) (($ $ (-536)) 145 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 146 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-1215 |#1| |#2|) (-1214 |#1| |#2|) (-1023) (-1191 |#1|)) (T -1215)) -NIL -(-1214 |#1| |#2|) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 34)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL)) (-2173 (($ $) NIL)) (-2171 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 (-536) #1="failed") $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1012 (-536)))) (((-3 (-400 (-536)) #1#) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1012 (-400 (-536))))) (((-3 (-1210 |#2| |#3| |#4|) #1#) $) 20)) (-3502 (((-536) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1012 (-536)))) (((-400 (-536)) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-1012 (-400 (-536))))) (((-1210 |#2| |#3| |#4|) $) NIL)) (-4314 (($ $) 35)) (-3816 (((-3 $ "failed") $) 25)) (-3852 (($ $) NIL (|has| (-1210 |#2| |#3| |#4|) (-444)))) (-1716 (($ $ (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|) $) NIL)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) 11)) (-4292 (((-112) $) NIL)) (-3221 (($ (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) 23)) (-3148 (((-312 |#2| |#3| |#4|) $) NIL)) (-1717 (($ (-1 (-312 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) $) NIL)) (-4313 (($ (-1 (-1210 |#2| |#3| |#4|) (-1210 |#2| |#3| |#4|)) $) NIL)) (-4138 (((-3 (-817 |#2|) "failed") $) 75)) (-3222 (($ $) NIL)) (-3520 (((-1210 |#2| |#3| |#4|) $) 18)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-1911 (((-112) $) NIL)) (-1910 (((-1210 |#2| |#3| |#4|) $) NIL)) (-3815 (((-3 $ "failed") $ (-1210 |#2| |#3| |#4|)) NIL (|has| (-1210 |#2| |#3| |#4|) (-543))) (((-3 $ "failed") $ $) NIL)) (-4137 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-620 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#2|)))))) (|:| |%type| (-1129))) "failed") $) 58)) (-4302 (((-312 |#2| |#3| |#4|) $) 14)) (-3145 (((-1210 |#2| |#3| |#4|) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-444)))) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ (-1210 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-400 (-536))) NIL (-3886 (|has| (-1210 |#2| |#3| |#4|) (-1012 (-400 (-536)))) (|has| (-1210 |#2| |#3| |#4|) (-38 (-400 (-536))))))) (-4172 (((-620 (-1210 |#2| |#3| |#4|)) $) NIL)) (-4035 (((-1210 |#2| |#3| |#4|) $ (-312 |#2| |#3| |#4|)) NIL)) (-3030 (((-3 $ "failed") $) NIL (|has| (-1210 |#2| |#3| |#4|) (-143)))) (-3456 (((-749)) NIL)) (-1715 (($ $ $ (-749)) NIL (|has| (-1210 |#2| |#3| |#4|) (-170)))) (-2172 (((-112) $ $) NIL)) (-2986 (($) 63 T CONST)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ (-1210 |#2| |#3| |#4|)) NIL (|has| (-1210 |#2| |#3| |#4|) (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ (-1210 |#2| |#3| |#4|)) NIL) (($ (-1210 |#2| |#3| |#4|) $) NIL) (($ (-400 (-536)) $) NIL (|has| (-1210 |#2| |#3| |#4|) (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| (-1210 |#2| |#3| |#4|) (-38 (-400 (-536))))))) -(((-1216 |#1| |#2| |#3| |#4|) (-13 (-319 (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-543) (-10 -8 (-15 -4138 ((-3 (-817 |#2|) "failed") $)) (-15 -4137 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-620 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#2|)))))) (|:| |%type| (-1129))) "failed") $)))) (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444)) (-13 (-27) (-1169) (-414 |#1|)) (-1147) |#2|) (T -1216)) -((-4138 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) (-5 *2 (-817 *4)) (-5 *1 (-1216 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4))) (-4137 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) (|:| |%expTerms| (-620 (-2 (|:| |k| (-400 (-536))) (|:| |c| *4)))))) (|:| |%type| (-1129)))) (-5 *1 (-1216 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4)))) -(-13 (-319 (-1210 |#2| |#3| |#4|) (-312 |#2| |#3| |#4|)) (-543) (-10 -8 (-15 -4138 ((-3 (-817 |#2|) "failed") $)) (-15 -4137 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1210 |#2| |#3| |#4|)) (|:| |%expon| (-312 |#2| |#3| |#4|)) (|:| |%expTerms| (-620 (-2 (|:| |k| (-400 (-536))) (|:| |c| |#2|)))))) (|:| |%type| (-1129))) "failed") $)))) -((-3756 ((|#2| $) 29)) (-4149 ((|#2| $) 18)) (-4151 (($ $) 36)) (-4139 (($ $ (-536)) 64)) (-1269 (((-112) $ (-749)) 33)) (-3353 ((|#2| $ |#2|) 61)) (-4140 ((|#2| $ |#2|) 59)) (-4142 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3354 (($ $ (-620 $)) 60)) (-4150 ((|#2| $) 17)) (-4153 (($ $) NIL) (($ $ (-749)) 42)) (-3359 (((-620 $) $) 26)) (-3355 (((-112) $ $) 50)) (-4077 (((-112) $ (-749)) 32)) (-4074 (((-112) $ (-749)) 31)) (-3876 (((-112) $) 28)) (-4152 ((|#2| $) 24) (($ $ (-749)) 46)) (-4154 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3991 (((-112) $) 22)) (-4146 (($ $) 39)) (-4144 (($ $) 65)) (-4147 (((-749) $) 41)) (-4148 (($ $) 40)) (-4156 (($ $ $) 58) (($ |#2| $) NIL)) (-3871 (((-620 $) $) 27)) (-3382 (((-112) $ $) 48)) (-4311 (((-749) $) 35))) -(((-1217 |#1| |#2|) (-10 -8 (-15 -4139 (|#1| |#1| (-536))) (-15 -4142 (|#2| |#1| "last" |#2|)) (-15 -4140 (|#2| |#1| |#2|)) (-15 -4142 (|#1| |#1| "rest" |#1|)) (-15 -4142 (|#2| |#1| "first" |#2|)) (-15 -4144 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -4147 ((-749) |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4149 (|#2| |#1|)) (-15 -4150 (|#2| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "last")) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| "rest")) (-15 -4153 (|#1| |#1|)) (-15 -4154 (|#2| |#1| "first")) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -3353 (|#2| |#1| |#2|)) (-15 -4142 (|#2| |#1| #1="value" |#2|)) (-15 -3354 (|#1| |#1| (-620 |#1|))) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -3756 (|#2| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749)))) (-1218 |#2|) (-1183)) (T -1217)) -NIL -(-10 -8 (-15 -4139 (|#1| |#1| (-536))) (-15 -4142 (|#2| |#1| "last" |#2|)) (-15 -4140 (|#2| |#1| |#2|)) (-15 -4142 (|#1| |#1| "rest" |#1|)) (-15 -4142 (|#2| |#1| "first" |#2|)) (-15 -4144 (|#1| |#1|)) (-15 -4146 (|#1| |#1|)) (-15 -4147 ((-749) |#1|)) (-15 -4148 (|#1| |#1|)) (-15 -4149 (|#2| |#1|)) (-15 -4150 (|#2| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 (|#1| |#1| (-749))) (-15 -4154 (|#2| |#1| "last")) (-15 -4152 (|#2| |#1|)) (-15 -4153 (|#1| |#1| (-749))) (-15 -4154 (|#1| |#1| "rest")) (-15 -4153 (|#1| |#1|)) (-15 -4154 (|#2| |#1| "first")) (-15 -4156 (|#1| |#2| |#1|)) (-15 -4156 (|#1| |#1| |#1|)) (-15 -3353 (|#2| |#1| |#2|)) (-15 -4142 (|#2| |#1| #1="value" |#2|)) (-15 -3354 (|#1| |#1| (-620 |#1|))) (-15 -3355 ((-112) |#1| |#1|)) (-15 -3991 ((-112) |#1|)) (-15 -4154 (|#2| |#1| #1#)) (-15 -3756 (|#2| |#1|)) (-15 -3876 ((-112) |#1|)) (-15 -3359 ((-620 |#1|) |#1|)) (-15 -3871 ((-620 |#1|) |#1|)) (-15 -3382 ((-112) |#1| |#1|)) (-15 -4311 ((-749) |#1|)) (-15 -1269 ((-112) |#1| (-749))) (-15 -4077 ((-112) |#1| (-749))) (-15 -4074 ((-112) |#1| (-749)))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-3756 ((|#1| $) 48)) (-4149 ((|#1| $) 65)) (-4151 (($ $) 67)) (-4139 (($ $ (-536)) 52 (|has| $ (-6 -4349)))) (-1269 (((-112) $ (-749)) 8)) (-3353 ((|#1| $ |#1|) 39 (|has| $ (-6 -4349)))) (-4141 (($ $ $) 56 (|has| $ (-6 -4349)))) (-4140 ((|#1| $ |#1|) 54 (|has| $ (-6 -4349)))) (-4143 ((|#1| $ |#1|) 58 (|has| $ (-6 -4349)))) (-4142 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4349))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4349))) (($ $ "rest" $) 55 (|has| $ (-6 -4349))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4349)))) (-3354 (($ $ (-620 $)) 41 (|has| $ (-6 -4349)))) (-4150 ((|#1| $) 66)) (-3891 (($) 7 T CONST)) (-4153 (($ $) 73) (($ $ (-749)) 71)) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-3359 (((-620 $) $) 50)) (-3355 (((-112) $ $) 42 (|has| |#1| (-1072)))) (-4077 (((-112) $ (-749)) 9)) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35)) (-4074 (((-112) $ (-749)) 10)) (-3358 (((-620 |#1|) $) 45)) (-3876 (((-112) $) 49)) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-4152 ((|#1| $) 70) (($ $ (-749)) 68)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 76) (($ $ (-749)) 74)) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3357 (((-536) $ $) 44)) (-3991 (((-112) $) 46)) (-4146 (($ $) 62)) (-4144 (($ $) 59 (|has| $ (-6 -4349)))) (-4147 (((-749) $) 63)) (-4148 (($ $) 64)) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3754 (($ $) 13)) (-4145 (($ $ $) 61 (|has| $ (-6 -4349))) (($ $ |#1|) 60 (|has| $ (-6 -4349)))) (-4156 (($ $ $) 78) (($ |#1| $) 77)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-3871 (((-620 $) $) 51)) (-3356 (((-112) $ $) 43 (|has| |#1| (-1072)))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-1218 |#1|) (-138) (-1183)) (T -1218)) -((-4156 (*1 *1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4156 (*1 *1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) (-4153 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4154 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) (-4153 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4154 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4152 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4149 (*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4148 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4147 (*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) (-4146 (*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4145 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4145 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4144 (*1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4143 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4141 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4142 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) (-4140 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4142 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) (-4139 (*1 *1 *1 *2) (-12 (-5 *2 (-536)) (|has| *1 (-6 -4349)) (-4 *1 (-1218 *3)) (-4 *3 (-1183))))) -(-13 (-984 |t#1|) (-10 -8 (-15 -4156 ($ $ $)) (-15 -4156 ($ |t#1| $)) (-15 -4155 (|t#1| $)) (-15 -4154 (|t#1| $ "first")) (-15 -4155 ($ $ (-749))) (-15 -4153 ($ $)) (-15 -4154 ($ $ "rest")) (-15 -4153 ($ $ (-749))) (-15 -4152 (|t#1| $)) (-15 -4154 (|t#1| $ "last")) (-15 -4152 ($ $ (-749))) (-15 -4151 ($ $)) (-15 -4150 (|t#1| $)) (-15 -4149 (|t#1| $)) (-15 -4148 ($ $)) (-15 -4147 ((-749) $)) (-15 -4146 ($ $)) (IF (|has| $ (-6 -4349)) (PROGN (-15 -4145 ($ $ $)) (-15 -4145 ($ $ |t#1|)) (-15 -4144 ($ $)) (-15 -4143 (|t#1| $ |t#1|)) (-15 -4142 (|t#1| $ "first" |t#1|)) (-15 -4141 ($ $ $)) (-15 -4142 ($ $ "rest" $)) (-15 -4140 (|t#1| $ |t#1|)) (-15 -4142 (|t#1| $ "last" |t#1|)) (-15 -4139 ($ $ (-536)))) |%noBranch|))) -(((-34) . T) ((-101) |has| |#1| (-1072)) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-595 (-838)))) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-481 |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-984 |#1|) . T) ((-1072) |has| |#1| (-1072)) ((-1183) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-3412 (((-620 (-1053)) $) NIL)) (-4186 (((-1147) $) 87)) (-4166 (((-1198 |#2| |#1|) $ (-749)) 73)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) NIL (|has| |#1| (-543)))) (-2173 (($ $) NIL (|has| |#1| (-543)))) (-2171 (((-112) $) 137 (|has| |#1| (-543)))) (-4125 (($ $ (-749)) 122) (($ $ (-749) (-749)) 124)) (-4128 (((-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 42)) (-3841 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) NIL)) (-3365 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 53) (($ (-1124 |#1|)) NIL)) (-3843 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) NIL T CONST)) (-4159 (($ $) 128)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4171 (($ $) 135)) (-4169 (((-920 |#1|) $ (-749)) 63) (((-920 |#1|) $ (-749) (-749)) 65)) (-3220 (((-112) $) NIL)) (-3985 (($) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $) NIL) (((-749) $ (-749)) NIL)) (-2497 (((-112) $) NIL)) (-4162 (($ $) 112)) (-3339 (($ $ (-536)) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4158 (($ (-536) (-536) $) 130)) (-4131 (($ $ (-893)) 134)) (-4170 (($ (-1 |#1| (-536)) $) 106)) (-4292 (((-112) $) NIL)) (-3221 (($ |#1| (-749)) 15) (($ $ (-1053) (-749)) NIL) (($ $ (-620 (-1053)) (-620 (-749))) NIL)) (-4313 (($ (-1 |#1| |#1|) $) 94)) (-4297 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-4163 (($ $) 110)) (-4164 (($ $) 108)) (-4157 (($ (-536) (-536) $) 132)) (-4167 (($ $) 145 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 151 (-3886 (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169))) (-12 (|has| |#1| (-38 (-400 (-536)))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|)))))) (($ $ (-1226 |#2|)) 146 (|has| |#1| (-38 (-400 (-536)))))) (-3589 (((-1091) $) NIL)) (-4160 (($ $ (-536) (-536)) 116)) (-4123 (($ $ (-749)) 118)) (-3815 (((-3 $ "failed") $ $) NIL (|has| |#1| (-543)))) (-4298 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4161 (($ $) 114)) (-4122 (((-1124 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-4154 ((|#1| $ (-749)) 91) (($ $ $) 126 (|has| (-749) (-1083)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) 103 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $ (-1226 |#2|)) 99)) (-4302 (((-749) $) NIL)) (-3844 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 120)) (-4312 (((-838) $) NIL) (($ (-536)) 24) (($ (-400 (-536))) 143 (|has| |#1| (-38 (-400 (-536))))) (($ $) NIL (|has| |#1| (-543))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1198 |#2| |#1|)) 80) (($ (-1226 |#2|)) 20)) (-4172 (((-1124 |#1|) $) NIL)) (-4035 ((|#1| $ (-749)) 90)) (-3030 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3456 (((-749)) NIL)) (-4127 ((|#1| $) 88)) (-3847 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3845 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-749)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) NIL (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 17 T CONST)) (-2992 (($) 13 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) NIL (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-3382 (((-112) $ $) NIL)) (-4303 (($ $ |#1|) NIL (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) 102)) (-4194 (($ $ $) 18)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ |#1|) 140 (|has| |#1| (-356))) (($ $ $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-400 (-536)) $) NIL (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) NIL (|has| |#1| (-38 (-400 (-536))))))) -(((-1219 |#1| |#2| |#3|) (-13 (-1222 |#1|) (-10 -8 (-15 -4312 ($ (-1198 |#2| |#1|))) (-15 -4166 ((-1198 |#2| |#1|) $ (-749))) (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (-15 -4164 ($ $)) (-15 -4163 ($ $)) (-15 -4162 ($ $)) (-15 -4161 ($ $)) (-15 -4160 ($ $ (-536) (-536))) (-15 -4159 ($ $)) (-15 -4158 ($ (-536) (-536) $)) (-15 -4157 ($ (-536) (-536) $)) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) (-1023) (-1147) |#1|) (T -1219)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) (-5 *1 (-1219 *3 *4 *5)))) (-4166 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1219 *4 *5 *6)) (-4 *4 (-1023)) (-14 *5 (-1147)) (-14 *6 *4))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4165 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *5 *3))) (-4164 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2))) (-4163 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2))) (-4162 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2))) (-4161 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2))) (-4160 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3))) (-4159 (*1 *1 *1) (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2))) (-4158 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3))) (-4157 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3))) (-4167 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3)))) -(-13 (-1222 |#1|) (-10 -8 (-15 -4312 ($ (-1198 |#2| |#1|))) (-15 -4166 ((-1198 |#2| |#1|) $ (-749))) (-15 -4312 ($ (-1226 |#2|))) (-15 -4165 ($ $ (-1226 |#2|))) (-15 -4164 ($ $)) (-15 -4163 ($ $)) (-15 -4162 ($ $)) (-15 -4161 ($ $)) (-15 -4160 ($ $ (-536) (-536))) (-15 -4159 ($ $)) (-15 -4158 ($ (-536) (-536) $)) (-15 -4157 ($ (-536) (-536) $)) (IF (|has| |#1| (-38 (-400 (-536)))) (-15 -4167 ($ $ (-1226 |#2|))) |%noBranch|))) -((-4313 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1220 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4313 (|#4| (-1 |#2| |#1|) |#3|))) (-1023) (-1023) (-1222 |#1|) (-1222 |#2|)) (T -1220)) -((-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1222 *6)) (-5 *1 (-1220 *5 *6 *4 *2)) (-4 *4 (-1222 *5))))) -(-10 -7 (-15 -4313 (|#4| (-1 |#2| |#1|) |#3|))) -((-3534 (((-112) $) 15)) (-3841 (($ $) 92)) (-3997 (($ $) 68)) (-3839 (($ $) 88)) (-3996 (($ $) 64)) (-3843 (($ $) 96)) (-3995 (($ $) 72)) (-4297 (($ $) 62)) (-4298 (($ $) 60)) (-3844 (($ $) 98)) (-3994 (($ $) 74)) (-3842 (($ $) 94)) (-3993 (($ $) 70)) (-3840 (($ $) 90)) (-3992 (($ $) 66)) (-4312 (((-838) $) 48) (($ (-536)) NIL) (($ (-400 (-536))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3847 (($ $) 104)) (-3835 (($ $) 80)) (-3845 (($ $) 100)) (-3833 (($ $) 76)) (-3849 (($ $) 108)) (-3837 (($ $) 84)) (-3850 (($ $) 110)) (-3838 (($ $) 86)) (-3848 (($ $) 106)) (-3836 (($ $) 82)) (-3846 (($ $) 102)) (-3834 (($ $) 78)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-400 (-536))) 58))) -(((-1221 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4297 (|#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893))) (-15 -3534 ((-112) |#1|)) (-15 -4312 ((-838) |#1|))) (-1222 |#2|) (-1023)) (T -1221)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-400 (-536)))) (-15 -3997 (|#1| |#1|)) (-15 -3996 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -3994 (|#1| |#1|)) (-15 -3993 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3836 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3835 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -4297 (|#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4312 (|#1| |#2|)) (-15 -4312 (|#1| |#1|)) (-15 -4312 (|#1| (-400 (-536)))) (-15 -4312 (|#1| (-536))) (-15 ** (|#1| |#1| (-749))) (-15 ** (|#1| |#1| (-893))) (-15 -3534 ((-112) |#1|)) (-15 -4312 ((-838) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-3412 (((-620 (-1053)) $) 72)) (-4186 (((-1147) $) 101)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 49 (|has| |#1| (-543)))) (-2173 (($ $) 50 (|has| |#1| (-543)))) (-2171 (((-112) $) 52 (|has| |#1| (-543)))) (-4125 (($ $ (-749)) 96) (($ $ (-749) (-749)) 95)) (-4128 (((-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|))) $) 103)) (-3841 (($ $) 133 (|has| |#1| (-38 (-400 (-536)))))) (-3997 (($ $) 116 (|has| |#1| (-38 (-400 (-536)))))) (-1367 (((-3 $ "failed") $ $) 19)) (-3365 (($ $) 115 (|has| |#1| (-38 (-400 (-536)))))) (-3839 (($ $) 132 (|has| |#1| (-38 (-400 (-536)))))) (-3996 (($ $) 117 (|has| |#1| (-38 (-400 (-536)))))) (-4173 (($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |#1|)))) 153) (($ (-1124 |#1|)) 151)) (-3843 (($ $) 131 (|has| |#1| (-38 (-400 (-536)))))) (-3995 (($ $) 118 (|has| |#1| (-38 (-400 (-536)))))) (-3891 (($) 17 T CONST)) (-4314 (($ $) 58)) (-3816 (((-3 $ "failed") $) 32)) (-4171 (($ $) 150)) (-4169 (((-920 |#1|) $ (-749)) 148) (((-920 |#1|) $ (-749) (-749)) 147)) (-3220 (((-112) $) 71)) (-3985 (($) 143 (|has| |#1| (-38 (-400 (-536)))))) (-4126 (((-749) $) 98) (((-749) $ (-749)) 97)) (-2497 (((-112) $) 30)) (-3339 (($ $ (-536)) 114 (|has| |#1| (-38 (-400 (-536)))))) (-4131 (($ $ (-893)) 99)) (-4170 (($ (-1 |#1| (-536)) $) 149)) (-4292 (((-112) $) 60)) (-3221 (($ |#1| (-749)) 59) (($ $ (-1053) (-749)) 74) (($ $ (-620 (-1053)) (-620 (-749))) 73)) (-4313 (($ (-1 |#1| |#1|) $) 61)) (-4297 (($ $) 140 (|has| |#1| (-38 (-400 (-536)))))) (-3222 (($ $) 63)) (-3520 ((|#1| $) 64)) (-3588 (((-1129) $) 9)) (-4167 (($ $) 145 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-1147)) 144 (-3886 (-12 (|has| |#1| (-29 (-536))) (|has| |#1| (-934)) (|has| |#1| (-1169)) (|has| |#1| (-38 (-400 (-536))))) (-12 (|has| |#1| (-15 -3412 ((-620 (-1147)) |#1|))) (|has| |#1| (-15 -4167 (|#1| |#1| (-1147)))) (|has| |#1| (-38 (-400 (-536)))))))) (-3589 (((-1091) $) 10)) (-4123 (($ $ (-749)) 93)) (-3815 (((-3 $ "failed") $ $) 48 (|has| |#1| (-543)))) (-4298 (($ $) 141 (|has| |#1| (-38 (-400 (-536)))))) (-4122 (((-1124 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-749)))))) (-4154 ((|#1| $ (-749)) 102) (($ $ $) 79 (|has| (-749) (-1083)))) (-4165 (($ $ (-620 (-1147)) (-620 (-749))) 87 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) 86 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) 85 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) 84 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) 82 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-4302 (((-749) $) 62)) (-3844 (($ $) 130 (|has| |#1| (-38 (-400 (-536)))))) (-3994 (($ $) 119 (|has| |#1| (-38 (-400 (-536)))))) (-3842 (($ $) 129 (|has| |#1| (-38 (-400 (-536)))))) (-3993 (($ $) 120 (|has| |#1| (-38 (-400 (-536)))))) (-3840 (($ $) 128 (|has| |#1| (-38 (-400 (-536)))))) (-3992 (($ $) 121 (|has| |#1| (-38 (-400 (-536)))))) (-3219 (($ $) 70)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ (-400 (-536))) 55 (|has| |#1| (-38 (-400 (-536))))) (($ $) 47 (|has| |#1| (-543))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4172 (((-1124 |#1|) $) 152)) (-4035 ((|#1| $ (-749)) 57)) (-3030 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3456 (((-749)) 28)) (-4127 ((|#1| $) 100)) (-3847 (($ $) 139 (|has| |#1| (-38 (-400 (-536)))))) (-3835 (($ $) 127 (|has| |#1| (-38 (-400 (-536)))))) (-2172 (((-112) $ $) 51 (|has| |#1| (-543)))) (-3845 (($ $) 138 (|has| |#1| (-38 (-400 (-536)))))) (-3833 (($ $) 126 (|has| |#1| (-38 (-400 (-536)))))) (-3849 (($ $) 137 (|has| |#1| (-38 (-400 (-536)))))) (-3837 (($ $) 125 (|has| |#1| (-38 (-400 (-536)))))) (-4124 ((|#1| $ (-749)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-749)))) (|has| |#1| (-15 -4312 (|#1| (-1147))))))) (-3850 (($ $) 136 (|has| |#1| (-38 (-400 (-536)))))) (-3838 (($ $) 124 (|has| |#1| (-38 (-400 (-536)))))) (-3848 (($ $) 135 (|has| |#1| (-38 (-400 (-536)))))) (-3836 (($ $) 123 (|has| |#1| (-38 (-400 (-536)))))) (-3846 (($ $) 134 (|has| |#1| (-38 (-400 (-536)))))) (-3834 (($ $) 122 (|has| |#1| (-38 (-400 (-536)))))) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-2997 (($ $ (-620 (-1147)) (-620 (-749))) 91 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147) (-749)) 90 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-620 (-1147))) 89 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-1147)) 88 (-12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (($ $ (-749)) 83 (|has| |#1| (-15 * (|#1| (-749) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-749) |#1|))))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 56 (|has| |#1| (-356)))) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ |#1|) 146 (|has| |#1| (-356))) (($ $ $) 142 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 113 (|has| |#1| (-38 (-400 (-536)))))) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-400 (-536)) $) 54 (|has| |#1| (-38 (-400 (-536))))) (($ $ (-400 (-536))) 53 (|has| |#1| (-38 (-400 (-536))))))) -(((-1222 |#1|) (-138) (-1023)) (T -1222)) -((-4173 (*1 *1 *2) (-12 (-5 *2 (-1124 (-2 (|:| |k| (-749)) (|:| |c| *3)))) (-4 *3 (-1023)) (-4 *1 (-1222 *3)))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1023)) (-5 *2 (-1124 *3)))) (-4173 (*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-4 *1 (-1222 *3)))) (-4171 (*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023)))) (-4170 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-536))) (-4 *1 (-1222 *3)) (-4 *3 (-1023)))) (-4169 (*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1222 *4)) (-4 *4 (-1023)) (-5 *2 (-920 *4)))) (-4169 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-4 *1 (-1222 *4)) (-4 *4 (-1023)) (-5 *2 (-920 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) (-4167 (*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) (-4167 (*1 *1 *1 *2) (-3886 (-12 (-5 *2 (-1147)) (-4 *1 (-1222 *3)) (-4 *3 (-1023)) (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) (-4 *3 (-38 (-400 (-536)))))) (-12 (-5 *2 (-1147)) (-4 *1 (-1222 *3)) (-4 *3 (-1023)) (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536))))))))) -(-13 (-1208 |t#1| (-749)) (-10 -8 (-15 -4173 ($ (-1124 (-2 (|:| |k| (-749)) (|:| |c| |t#1|))))) (-15 -4172 ((-1124 |t#1|) $)) (-15 -4173 ($ (-1124 |t#1|))) (-15 -4171 ($ $)) (-15 -4170 ($ (-1 |t#1| (-536)) $)) (-15 -4169 ((-920 |t#1|) $ (-749))) (-15 -4169 ((-920 |t#1|) $ (-749) (-749))) (IF (|has| |t#1| (-356)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-400 (-536)))) (PROGN (-15 -4167 ($ $)) (IF (|has| |t#1| (-15 -4167 (|t#1| |t#1| (-1147)))) (IF (|has| |t#1| (-15 -3412 ((-620 (-1147)) |t#1|))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1169)) (IF (|has| |t#1| (-934)) (IF (|has| |t#1| (-29 (-536))) (-15 -4167 ($ $ (-1147))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-976)) (-6 (-1169))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-749)) . T) ((-25) . T) ((-38 #2=(-400 (-536))) |has| |#1| (-38 (-400 (-536)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-543)) ((-35) |has| |#1| (-38 (-400 (-536)))) ((-94) |has| |#1| (-38 (-400 (-536)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-400 (-536)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-227) |has| |#1| (-15 * (|#1| (-749) |#1|))) ((-277) |has| |#1| (-38 (-400 (-536)))) ((-279 $ $) |has| (-749) (-1083)) ((-283) |has| |#1| (-543)) ((-484) |has| |#1| (-38 (-400 (-536)))) ((-543) |has| |#1| (-543)) ((-626 #2#) |has| |#1| (-38 (-400 (-536)))) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #2#) |has| |#1| (-38 (-400 (-536)))) ((-696 |#1|) |has| |#1| (-170)) ((-696 $) |has| |#1| (-543)) ((-705) . T) ((-874 (-1147)) -12 (|has| |#1| (-874 (-1147))) (|has| |#1| (-15 * (|#1| (-749) |#1|)))) ((-947 |#1| #1# (-1053)) . T) ((-976) |has| |#1| (-38 (-400 (-536)))) ((-1029 #2#) |has| |#1| (-38 (-400 (-536)))) ((-1029 |#1|) . T) ((-1029 $) -3886 (|has| |#1| (-543)) (|has| |#1| (-170))) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1169) |has| |#1| (-38 (-400 (-536)))) ((-1172) |has| |#1| (-38 (-400 (-536)))) ((-1208 |#1| #1#) . T)) -((-4176 (((-1 (-1124 |#1|) (-620 (-1124 |#1|))) (-1 |#2| (-620 |#2|))) 24)) (-4175 (((-1 (-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4174 (((-1 (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2|)) 13)) (-4179 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4178 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4180 ((|#2| (-1 |#2| (-620 |#2|)) (-620 |#1|)) 54)) (-4181 (((-620 |#2|) (-620 |#1|) (-620 (-1 |#2| (-620 |#2|)))) 61)) (-4177 ((|#2| |#2| |#2|) 43))) -(((-1223 |#1| |#2|) (-10 -7 (-15 -4174 ((-1 (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2|))) (-15 -4175 ((-1 (-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4176 ((-1 (-1124 |#1|) (-620 (-1124 |#1|))) (-1 |#2| (-620 |#2|)))) (-15 -4177 (|#2| |#2| |#2|)) (-15 -4178 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4179 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4180 (|#2| (-1 |#2| (-620 |#2|)) (-620 |#1|))) (-15 -4181 ((-620 |#2|) (-620 |#1|) (-620 (-1 |#2| (-620 |#2|)))))) (-38 (-400 (-536))) (-1222 |#1|)) (T -1223)) -((-4181 (*1 *2 *3 *4) (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 (-1 *6 (-620 *6)))) (-4 *5 (-38 (-400 (-536)))) (-4 *6 (-1222 *5)) (-5 *2 (-620 *6)) (-5 *1 (-1223 *5 *6)))) (-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-620 *2))) (-5 *4 (-620 *5)) (-4 *5 (-38 (-400 (-536)))) (-4 *2 (-1222 *5)) (-5 *1 (-1223 *5 *2)))) (-4179 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-1223 *4 *2)) (-4 *4 (-38 (-400 (-536)))))) (-4178 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-1223 *4 *2)) (-4 *4 (-38 (-400 (-536)))))) (-4177 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-1222 *3)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-620 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) (-5 *2 (-1 (-1124 *4) (-620 (-1124 *4)))) (-5 *1 (-1223 *4 *5)))) (-4175 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) (-5 *2 (-1 (-1124 *4) (-1124 *4) (-1124 *4))) (-5 *1 (-1223 *4 *5)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1223 *4 *5))))) -(-10 -7 (-15 -4174 ((-1 (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2|))) (-15 -4175 ((-1 (-1124 |#1|) (-1124 |#1|) (-1124 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4176 ((-1 (-1124 |#1|) (-620 (-1124 |#1|))) (-1 |#2| (-620 |#2|)))) (-15 -4177 (|#2| |#2| |#2|)) (-15 -4178 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4179 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4180 (|#2| (-1 |#2| (-620 |#2|)) (-620 |#1|))) (-15 -4181 ((-620 |#2|) (-620 |#1|) (-620 (-1 |#2| (-620 |#2|)))))) -((-4183 ((|#2| |#4| (-749)) 30)) (-4182 ((|#4| |#2|) 25)) (-4185 ((|#4| (-400 |#2|)) 52 (|has| |#1| (-543)))) (-4184 (((-1 |#4| (-620 |#4|)) |#3|) 46))) -(((-1224 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4182 (|#4| |#2|)) (-15 -4183 (|#2| |#4| (-749))) (-15 -4184 ((-1 |#4| (-620 |#4|)) |#3|)) (IF (|has| |#1| (-543)) (-15 -4185 (|#4| (-400 |#2|))) |%noBranch|)) (-1023) (-1205 |#1|) (-636 |#2|) (-1222 |#1|)) (T -1224)) -((-4185 (*1 *2 *3) (-12 (-5 *3 (-400 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-543)) (-4 *4 (-1023)) (-4 *2 (-1222 *4)) (-5 *1 (-1224 *4 *5 *6 *2)) (-4 *6 (-636 *5)))) (-4184 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *5 (-1205 *4)) (-5 *2 (-1 *6 (-620 *6))) (-5 *1 (-1224 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-1222 *4)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *4 (-749)) (-4 *5 (-1023)) (-4 *2 (-1205 *5)) (-5 *1 (-1224 *5 *2 *6 *3)) (-4 *6 (-636 *2)) (-4 *3 (-1222 *5)))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-1023)) (-4 *3 (-1205 *4)) (-4 *2 (-1222 *4)) (-5 *1 (-1224 *4 *3 *5 *2)) (-4 *5 (-636 *3))))) -(-10 -7 (-15 -4182 (|#4| |#2|)) (-15 -4183 (|#2| |#4| (-749))) (-15 -4184 ((-1 |#4| (-620 |#4|)) |#3|)) (IF (|has| |#1| (-543)) (-15 -4185 (|#4| (-400 |#2|))) |%noBranch|)) -NIL -(((-1225) (-138)) (T -1225)) -NIL -(-13 (-10 -7 (-6 -2363))) -((-2893 (((-112) $ $) NIL)) (-4186 (((-1147)) 12)) (-3588 (((-1129) $) 17)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 11) (((-1147) $) 8)) (-3382 (((-112) $ $) 14))) -(((-1226 |#1|) (-13 (-1072) (-595 (-1147)) (-10 -8 (-15 -4312 ((-1147) $)) (-15 -4186 ((-1147))))) (-1147)) (T -1226)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1226 *3)) (-14 *3 *2))) (-4186 (*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1226 *3)) (-14 *3 *2)))) -(-13 (-1072) (-595 (-1147)) (-10 -8 (-15 -4312 ((-1147) $)) (-15 -4186 ((-1147))))) -((-4193 (($ (-749)) 18)) (-4190 (((-667 |#2|) $ $) 40)) (-4187 ((|#2| $) 48)) (-4188 ((|#2| $) 47)) (-4191 ((|#2| $ $) 35)) (-4189 (($ $ $) 44)) (-4192 (($ $) 22) (($ $ $) 28)) (-4194 (($ $ $) 15)) (* (($ (-536) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) -(((-1227 |#1| |#2|) (-10 -8 (-15 -4187 (|#2| |#1|)) (-15 -4188 (|#2| |#1|)) (-15 -4189 (|#1| |#1| |#1|)) (-15 -4190 ((-667 |#2|) |#1| |#1|)) (-15 -4191 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -4193 (|#1| (-749))) (-15 -4194 (|#1| |#1| |#1|))) (-1228 |#2|) (-1183)) (T -1227)) -NIL -(-10 -8 (-15 -4187 (|#2| |#1|)) (-15 -4188 (|#2| |#1|)) (-15 -4189 (|#1| |#1| |#1|)) (-15 -4190 ((-667 |#2|) |#1| |#1|)) (-15 -4191 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-536) |#1|)) (-15 -4192 (|#1| |#1| |#1|)) (-15 -4192 (|#1| |#1|)) (-15 -4193 (|#1| (-749))) (-15 -4194 (|#1| |#1| |#1|))) -((-2893 (((-112) $ $) 19 (|has| |#1| (-1072)))) (-4193 (($ (-749)) 112 (|has| |#1| (-23)))) (-2300 (((-1235) $ (-536) (-536)) 40 (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4349))) (($ $) 88 (-12 (|has| |#1| (-825)) (|has| $ (-6 -4349))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) 8)) (-4142 ((|#1| $ (-536) |#1|) 52 (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) 58 (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4348)))) (-3891 (($) 7 T CONST)) (-2372 (($ $) 90 (|has| $ (-6 -4349)))) (-2373 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-3760 (($ |#1| $) 77 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) 53 (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) 51)) (-3773 (((-536) (-1 (-112) |#1|) $) 97) (((-536) |#1| $) 96 (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) 95 (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) 30 (|has| $ (-6 -4348)))) (-4190 (((-667 |#1|) $ $) 105 (|has| |#1| (-1023)))) (-3972 (($ (-749) |#1|) 69)) (-4077 (((-112) $ (-749)) 9)) (-2302 (((-536) $) 43 (|has| (-536) (-825)))) (-3672 (($ $ $) 87 (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-2303 (((-536) $) 44 (|has| (-536) (-825)))) (-3673 (($ $ $) 86 (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4187 ((|#1| $) 102 (-12 (|has| |#1| (-1023)) (|has| |#1| (-976))))) (-4074 (((-112) $ (-749)) 10)) (-4188 ((|#1| $) 103 (-12 (|has| |#1| (-1023)) (|has| |#1| (-976))))) (-3588 (((-1129) $) 22 (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) 60) (($ $ $ (-536)) 59)) (-2305 (((-620 (-536)) $) 46)) (-2306 (((-112) (-536) $) 47)) (-3589 (((-1091) $) 21 (|has| |#1| (-1072)))) (-4155 ((|#1| $) 42 (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2301 (($ $ |#1|) 41 (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) 26 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) 25 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) 23 (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) 14)) (-2304 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) 48)) (-3757 (((-112) $) 11)) (-3923 (($) 12)) (-4154 ((|#1| $ (-536) |#1|) 50) ((|#1| $ (-536)) 49) (($ $ (-1196 (-536))) 63)) (-4191 ((|#1| $ $) 106 (|has| |#1| (-1023)))) (-2378 (($ $ (-536)) 62) (($ $ (-1196 (-536))) 61)) (-4189 (($ $ $) 104 (|has| |#1| (-1023)))) (-2064 (((-749) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4348))) (((-749) |#1| $) 28 (-12 (|has| |#1| (-1072)) (|has| $ (-6 -4348))))) (-1842 (($ $ $ (-536)) 91 (|has| $ (-6 -4349)))) (-3754 (($ $) 13)) (-4325 (((-525) $) 79 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 70)) (-4156 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-620 $)) 65)) (-4312 (((-838) $) 18 (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) 84 (|has| |#1| (-825)))) (-2892 (((-112) $ $) 83 (|has| |#1| (-825)))) (-3382 (((-112) $ $) 20 (|has| |#1| (-1072)))) (-3012 (((-112) $ $) 85 (|has| |#1| (-825)))) (-3013 (((-112) $ $) 82 (|has| |#1| (-825)))) (-4192 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4194 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-536) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-705))) (($ $ |#1|) 107 (|has| |#1| (-705)))) (-4311 (((-749) $) 6 (|has| $ (-6 -4348))))) -(((-1228 |#1|) (-138) (-1183)) (T -1228)) -((-4194 (*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-25)))) (-4193 (*1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1228 *3)) (-4 *3 (-23)) (-4 *3 (-1183)))) (-4192 (*1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-21)))) (-4192 (*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-4 *1 (-1228 *3)) (-4 *3 (-1183)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) (-4191 (*1 *2 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-1023)))) (-4190 (*1 *2 *1 *1) (-12 (-4 *1 (-1228 *3)) (-4 *3 (-1183)) (-4 *3 (-1023)) (-5 *2 (-667 *3)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-1023)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-976)) (-4 *2 (-1023)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-976)) (-4 *2 (-1023))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4194 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4193 ($ (-749))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4192 ($ $)) (-15 -4192 ($ $ $)) (-15 * ($ (-536) $))) |%noBranch|) (IF (|has| |t#1| (-705)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1023)) (PROGN (-15 -4191 (|t#1| $ $)) (-15 -4190 ((-667 |t#1|) $ $)) (-15 -4189 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-976)) (IF (|has| |t#1| (-1023)) (PROGN (-15 -4188 (|t#1| $)) (-15 -4187 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-101) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-595 (-838)) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825)) (|has| |#1| (-595 (-838)))) ((-149 |#1|) . T) ((-596 (-525)) |has| |#1| (-596 (-525))) ((-279 #1=(-536) |#1|) . T) ((-281 #1# |#1|) . T) ((-302 |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-365 |#1|) . T) ((-481 |#1|) . T) ((-586 #1# |#1|) . T) ((-505 |#1| |#1|) -12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))) ((-629 |#1|) . T) ((-19 |#1|) . T) ((-825) |has| |#1| (-825)) ((-1072) -3886 (|has| |#1| (-1072)) (|has| |#1| (-825))) ((-1183) . T)) -((-2893 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-4193 (($ (-749)) NIL (|has| |#1| (-23)))) (-4195 (($ (-620 |#1|)) 9)) (-2300 (((-1235) $ (-536) (-536)) NIL (|has| $ (-6 -4349)))) (-1843 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-825)))) (-1841 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4349))) (($ $) NIL (-12 (|has| $ (-6 -4349)) (|has| |#1| (-825))))) (-3237 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-825)))) (-1269 (((-112) $ (-749)) NIL)) (-4142 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349))) ((|#1| $ (-1196 (-536)) |#1|) NIL (|has| $ (-6 -4349)))) (-4068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-3891 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4349)))) (-2373 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-3760 (($ |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4197 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4348))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4348)))) (-1632 ((|#1| $ (-536) |#1|) NIL (|has| $ (-6 -4349)))) (-3443 ((|#1| $ (-536)) NIL)) (-3773 (((-536) (-1 (-112) |#1|) $) NIL) (((-536) |#1| $) NIL (|has| |#1| (-1072))) (((-536) |#1| $ (-536)) NIL (|has| |#1| (-1072)))) (-2063 (((-620 |#1|) $) 15 (|has| $ (-6 -4348)))) (-4190 (((-667 |#1|) $ $) NIL (|has| |#1| (-1023)))) (-3972 (($ (-749) |#1|) NIL)) (-4077 (((-112) $ (-749)) NIL)) (-2302 (((-536) $) NIL (|has| (-536) (-825)))) (-3672 (($ $ $) NIL (|has| |#1| (-825)))) (-3867 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-825)))) (-2506 (((-620 |#1|) $) NIL (|has| $ (-6 -4348)))) (-3591 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2303 (((-536) $) NIL (|has| (-536) (-825)))) (-3673 (($ $ $) NIL (|has| |#1| (-825)))) (-2067 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4187 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-4074 (((-112) $ (-749)) NIL)) (-4188 ((|#1| $) NIL (-12 (|has| |#1| (-976)) (|has| |#1| (-1023))))) (-3588 (((-1129) $) NIL (|has| |#1| (-1072)))) (-2377 (($ |#1| $ (-536)) NIL) (($ $ $ (-536)) NIL)) (-2305 (((-620 (-536)) $) NIL)) (-2306 (((-112) (-536) $) NIL)) (-3589 (((-1091) $) NIL (|has| |#1| (-1072)))) (-4155 ((|#1| $) NIL (|has| (-536) (-825)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2301 (($ $ |#1|) NIL (|has| $ (-6 -4349)))) (-2065 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 (-286 |#1|))) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-286 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072)))) (($ $ (-620 |#1|) (-620 |#1|)) NIL (-12 (|has| |#1| (-302 |#1|)) (|has| |#1| (-1072))))) (-1270 (((-112) $ $) NIL)) (-2304 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-2307 (((-620 |#1|) $) NIL)) (-3757 (((-112) $) NIL)) (-3923 (($) NIL)) (-4154 ((|#1| $ (-536) |#1|) NIL) ((|#1| $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-4191 ((|#1| $ $) NIL (|has| |#1| (-1023)))) (-2378 (($ $ (-536)) NIL) (($ $ (-1196 (-536))) NIL)) (-4189 (($ $ $) NIL (|has| |#1| (-1023)))) (-2064 (((-749) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348))) (((-749) |#1| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#1| (-1072))))) (-1842 (($ $ $ (-536)) NIL (|has| $ (-6 -4349)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) 19 (|has| |#1| (-596 (-525))))) (-3879 (($ (-620 |#1|)) 8)) (-4156 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-620 $)) NIL)) (-4312 (((-838) $) NIL (|has| |#1| (-595 (-838))))) (-2066 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4348)))) (-2891 (((-112) $ $) NIL (|has| |#1| (-825)))) (-2892 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3382 (((-112) $ $) NIL (|has| |#1| (-1072)))) (-3012 (((-112) $ $) NIL (|has| |#1| (-825)))) (-3013 (((-112) $ $) NIL (|has| |#1| (-825)))) (-4192 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4194 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-536) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-705))) (($ $ |#1|) NIL (|has| |#1| (-705)))) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1229 |#1|) (-13 (-1228 |#1|) (-10 -8 (-15 -4195 ($ (-620 |#1|))))) (-1183)) (T -1229)) -((-4195 (*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1229 *3))))) -(-13 (-1228 |#1|) (-10 -8 (-15 -4195 ($ (-620 |#1|))))) -((-4196 (((-1229 |#2|) (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|) 13)) (-4197 ((|#2| (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|) 15)) (-4313 (((-3 (-1229 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1229 |#1|)) 28) (((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|)) 18))) -(((-1230 |#1| |#2|) (-10 -7 (-15 -4196 ((-1229 |#2|) (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|)) (-15 -4313 ((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) (-15 -4313 ((-3 (-1229 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1229 |#1|)))) (-1183) (-1183)) (T -1230)) -((-4313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1229 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1229 *6)) (-5 *1 (-1230 *5 *6)))) (-4313 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1229 *6)) (-5 *1 (-1230 *5 *6)))) (-4197 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1229 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) (-5 *1 (-1230 *5 *2)))) (-4196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1229 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-5 *2 (-1229 *5)) (-5 *1 (-1230 *6 *5))))) -(-10 -7 (-15 -4196 ((-1229 |#2|) (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|)) (-15 -4197 (|#2| (-1 |#2| |#1| |#2|) (-1229 |#1|) |#2|)) (-15 -4313 ((-1229 |#2|) (-1 |#2| |#1|) (-1229 |#1|))) (-15 -4313 ((-3 (-1229 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1229 |#1|)))) -((-4198 (((-460) (-620 (-620 (-917 (-219)))) (-620 (-254))) 21) (((-460) (-620 (-620 (-917 (-219))))) 20) (((-460) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254))) 19)) (-4199 (((-1232) (-620 (-620 (-917 (-219)))) (-620 (-254))) 27) (((-1232) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254))) 26)) (-4312 (((-1232) (-460)) 38))) -(((-1231) (-10 -7 (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254)))) (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))))) (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))) (-620 (-254)))) (-15 -4199 ((-1232) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254)))) (-15 -4199 ((-1232) (-620 (-620 (-917 (-219)))) (-620 (-254)))) (-15 -4312 ((-1232) (-460))))) (T -1231)) -((-4312 (*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1232)) (-5 *1 (-1231)))) (-4199 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-1231)))) (-4199 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-848)) (-5 *5 (-893)) (-5 *6 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-1231)))) (-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-620 (-254))) (-5 *2 (-460)) (-5 *1 (-1231)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-460)) (-5 *1 (-1231)))) (-4198 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-848)) (-5 *5 (-893)) (-5 *6 (-620 (-254))) (-5 *2 (-460)) (-5 *1 (-1231))))) -(-10 -7 (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254)))) (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))))) (-15 -4198 ((-460) (-620 (-620 (-917 (-219)))) (-620 (-254)))) (-15 -4199 ((-1232) (-620 (-620 (-917 (-219)))) (-848) (-848) (-893) (-620 (-254)))) (-15 -4199 ((-1232) (-620 (-620 (-917 (-219)))) (-620 (-254)))) (-15 -4312 ((-1232) (-460)))) -((-2893 (((-112) $ $) NIL)) (-4217 (((-1129) $ (-1129)) 90) (((-1129) $ (-1129) (-1129)) 88) (((-1129) $ (-1129) (-620 (-1129))) 87)) (-4213 (($) 59)) (-4200 (((-1235) $ (-460) (-893)) 45)) (-4206 (((-1235) $ (-893) (-1129)) 73) (((-1235) $ (-893) (-848)) 74)) (-4228 (((-1235) $ (-893) (-371) (-371)) 48)) (-4238 (((-1235) $ (-1129)) 69)) (-4201 (((-1235) $ (-893) (-1129)) 78)) (-4202 (((-1235) $ (-893) (-371) (-371)) 49)) (-4239 (((-1235) $ (-893) (-893)) 46)) (-4219 (((-1235) $) 70)) (-4204 (((-1235) $ (-893) (-1129)) 77)) (-4208 (((-1235) $ (-460) (-893)) 31)) (-4205 (((-1235) $ (-893) (-1129)) 76)) (-4241 (((-620 (-254)) $) 23) (($ $ (-620 (-254))) 24)) (-4240 (((-1235) $ (-749) (-749)) 43)) (-4212 (($ $) 60) (($ (-460) (-620 (-254))) 61)) (-3588 (((-1129) $) NIL)) (-4215 (((-536) $) 38)) (-3589 (((-1091) $) NIL)) (-4209 (((-1229 (-3 (-460) "undefined")) $) 37)) (-4210 (((-1229 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4205 (-536)) (|:| -4203 (-536)) (|:| |spline| (-536)) (|:| -4234 (-536)) (|:| |axesColor| (-848)) (|:| -4206 (-536)) (|:| |unitsColor| (-848)) (|:| |showing| (-536)))) $) 36)) (-4211 (((-1235) $ (-893) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-848) (-536) (-848) (-536)) 68)) (-4214 (((-620 (-917 (-219))) $) NIL)) (-4207 (((-460) $ (-893)) 33)) (-4237 (((-1235) $ (-749) (-749) (-893) (-893)) 40)) (-4235 (((-1235) $ (-1129)) 79)) (-4203 (((-1235) $ (-893) (-1129)) 75)) (-4312 (((-838) $) 85)) (-4216 (((-1235) $) 80)) (-4234 (((-1235) $ (-893) (-1129)) 71) (((-1235) $ (-893) (-848)) 72)) (-3382 (((-112) $ $) NIL))) -(((-1232) (-13 (-1072) (-10 -8 (-15 -4214 ((-620 (-917 (-219))) $)) (-15 -4213 ($)) (-15 -4212 ($ $)) (-15 -4241 ((-620 (-254)) $)) (-15 -4241 ($ $ (-620 (-254)))) (-15 -4212 ($ (-460) (-620 (-254)))) (-15 -4211 ((-1235) $ (-893) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-848) (-536) (-848) (-536))) (-15 -4210 ((-1229 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4205 (-536)) (|:| -4203 (-536)) (|:| |spline| (-536)) (|:| -4234 (-536)) (|:| |axesColor| (-848)) (|:| -4206 (-536)) (|:| |unitsColor| (-848)) (|:| |showing| (-536)))) $)) (-15 -4209 ((-1229 (-3 (-460) "undefined")) $)) (-15 -4238 ((-1235) $ (-1129))) (-15 -4208 ((-1235) $ (-460) (-893))) (-15 -4207 ((-460) $ (-893))) (-15 -4234 ((-1235) $ (-893) (-1129))) (-15 -4234 ((-1235) $ (-893) (-848))) (-15 -4206 ((-1235) $ (-893) (-1129))) (-15 -4206 ((-1235) $ (-893) (-848))) (-15 -4205 ((-1235) $ (-893) (-1129))) (-15 -4204 ((-1235) $ (-893) (-1129))) (-15 -4203 ((-1235) $ (-893) (-1129))) (-15 -4235 ((-1235) $ (-1129))) (-15 -4216 ((-1235) $)) (-15 -4237 ((-1235) $ (-749) (-749) (-893) (-893))) (-15 -4202 ((-1235) $ (-893) (-371) (-371))) (-15 -4228 ((-1235) $ (-893) (-371) (-371))) (-15 -4201 ((-1235) $ (-893) (-1129))) (-15 -4240 ((-1235) $ (-749) (-749))) (-15 -4200 ((-1235) $ (-460) (-893))) (-15 -4239 ((-1235) $ (-893) (-893))) (-15 -4217 ((-1129) $ (-1129))) (-15 -4217 ((-1129) $ (-1129) (-1129))) (-15 -4217 ((-1129) $ (-1129) (-620 (-1129)))) (-15 -4219 ((-1235) $)) (-15 -4215 ((-536) $)) (-15 -4312 ((-838) $))))) (T -1232)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1232)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-620 (-917 (-219)))) (-5 *1 (-1232)))) (-4213 (*1 *1) (-5 *1 (-1232))) (-4212 (*1 *1 *1) (-5 *1 (-1232))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1232)))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1232)))) (-4212 (*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-620 (-254))) (-5 *1 (-1232)))) (-4211 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-893)) (-5 *4 (-219)) (-5 *5 (-536)) (-5 *6 (-848)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-1229 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4205 (-536)) (|:| -4203 (-536)) (|:| |spline| (-536)) (|:| -4234 (-536)) (|:| |axesColor| (-848)) (|:| -4206 (-536)) (|:| |unitsColor| (-848)) (|:| |showing| (-536))))) (-5 *1 (-1232)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-1229 (-3 (-460) "undefined"))) (-5 *1 (-1232)))) (-4238 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4208 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4207 (*1 *2 *1 *3) (-12 (-5 *3 (-893)) (-5 *2 (-460)) (-5 *1 (-1232)))) (-4234 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4234 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4205 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4204 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4203 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4235 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4216 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4237 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-749)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4202 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-893)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4228 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-893)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4201 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4240 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4200 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-460)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4239 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4217 (*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1232)))) (-4217 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1232)))) (-4217 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-1232)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1232)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1232))))) -(-13 (-1072) (-10 -8 (-15 -4214 ((-620 (-917 (-219))) $)) (-15 -4213 ($)) (-15 -4212 ($ $)) (-15 -4241 ((-620 (-254)) $)) (-15 -4241 ($ $ (-620 (-254)))) (-15 -4212 ($ (-460) (-620 (-254)))) (-15 -4211 ((-1235) $ (-893) (-219) (-219) (-219) (-219) (-536) (-536) (-536) (-536) (-848) (-536) (-848) (-536))) (-15 -4210 ((-1229 (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)) (|:| -4205 (-536)) (|:| -4203 (-536)) (|:| |spline| (-536)) (|:| -4234 (-536)) (|:| |axesColor| (-848)) (|:| -4206 (-536)) (|:| |unitsColor| (-848)) (|:| |showing| (-536)))) $)) (-15 -4209 ((-1229 (-3 (-460) "undefined")) $)) (-15 -4238 ((-1235) $ (-1129))) (-15 -4208 ((-1235) $ (-460) (-893))) (-15 -4207 ((-460) $ (-893))) (-15 -4234 ((-1235) $ (-893) (-1129))) (-15 -4234 ((-1235) $ (-893) (-848))) (-15 -4206 ((-1235) $ (-893) (-1129))) (-15 -4206 ((-1235) $ (-893) (-848))) (-15 -4205 ((-1235) $ (-893) (-1129))) (-15 -4204 ((-1235) $ (-893) (-1129))) (-15 -4203 ((-1235) $ (-893) (-1129))) (-15 -4235 ((-1235) $ (-1129))) (-15 -4216 ((-1235) $)) (-15 -4237 ((-1235) $ (-749) (-749) (-893) (-893))) (-15 -4202 ((-1235) $ (-893) (-371) (-371))) (-15 -4228 ((-1235) $ (-893) (-371) (-371))) (-15 -4201 ((-1235) $ (-893) (-1129))) (-15 -4240 ((-1235) $ (-749) (-749))) (-15 -4200 ((-1235) $ (-460) (-893))) (-15 -4239 ((-1235) $ (-893) (-893))) (-15 -4217 ((-1129) $ (-1129))) (-15 -4217 ((-1129) $ (-1129) (-1129))) (-15 -4217 ((-1129) $ (-1129) (-620 (-1129)))) (-15 -4219 ((-1235) $)) (-15 -4215 ((-536) $)) (-15 -4312 ((-838) $)))) -((-2893 (((-112) $ $) NIL)) (-4229 (((-1235) $ (-371)) 140) (((-1235) $ (-371) (-371) (-371)) 141)) (-4217 (((-1129) $ (-1129)) 148) (((-1129) $ (-1129) (-1129)) 146) (((-1129) $ (-1129) (-620 (-1129))) 145)) (-4245 (($) 50)) (-4236 (((-1235) $ (-371) (-371) (-371) (-371) (-371)) 116) (((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $) 114) (((-1235) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) 115) (((-1235) $ (-536) (-536) (-371) (-371) (-371)) 117) (((-1235) $ (-371) (-371)) 118) (((-1235) $ (-371) (-371) (-371)) 125)) (-4248 (((-371)) 97) (((-371) (-371)) 98)) (-4250 (((-371)) 92) (((-371) (-371)) 94)) (-4249 (((-371)) 95) (((-371) (-371)) 96)) (-4246 (((-371)) 101) (((-371) (-371)) 102)) (-4247 (((-371)) 99) (((-371) (-371)) 100)) (-4228 (((-1235) $ (-371) (-371)) 142)) (-4238 (((-1235) $ (-1129)) 126)) (-4243 (((-1104 (-219)) $) 51) (($ $ (-1104 (-219))) 52)) (-4224 (((-1235) $ (-1129)) 154)) (-4223 (((-1235) $ (-1129)) 155)) (-4230 (((-1235) $ (-371) (-371)) 124) (((-1235) $ (-536) (-536)) 139)) (-4239 (((-1235) $ (-893) (-893)) 132)) (-4219 (((-1235) $) 112)) (-4227 (((-1235) $ (-1129)) 153)) (-4232 (((-1235) $ (-1129)) 109)) (-4241 (((-620 (-254)) $) 53) (($ $ (-620 (-254))) 54)) (-4240 (((-1235) $ (-749) (-749)) 131)) (-4242 (((-1235) $ (-749) (-917 (-219))) 160)) (-4244 (($ $) 56) (($ (-1104 (-219)) (-1129)) 57) (($ (-1104 (-219)) (-620 (-254))) 58)) (-4221 (((-1235) $ (-371) (-371) (-371)) 106)) (-3588 (((-1129) $) NIL)) (-4215 (((-536) $) 103)) (-4220 (((-1235) $ (-371)) 143)) (-4225 (((-1235) $ (-371)) 158)) (-3589 (((-1091) $) NIL)) (-4226 (((-1235) $ (-371)) 157)) (-4231 (((-1235) $ (-1129)) 111)) (-4237 (((-1235) $ (-749) (-749) (-893) (-893)) 130)) (-4233 (((-1235) $ (-1129)) 108)) (-4235 (((-1235) $ (-1129)) 110)) (-4218 (((-1235) $ (-155) (-155)) 129)) (-4312 (((-838) $) 137)) (-4216 (((-1235) $) 113)) (-4222 (((-1235) $ (-1129)) 156)) (-4234 (((-1235) $ (-1129)) 107)) (-3382 (((-112) $ $) NIL))) -(((-1233) (-13 (-1072) (-10 -8 (-15 -4250 ((-371))) (-15 -4250 ((-371) (-371))) (-15 -4249 ((-371))) (-15 -4249 ((-371) (-371))) (-15 -4248 ((-371))) (-15 -4248 ((-371) (-371))) (-15 -4247 ((-371))) (-15 -4247 ((-371) (-371))) (-15 -4246 ((-371))) (-15 -4246 ((-371) (-371))) (-15 -4245 ($)) (-15 -4244 ($ $)) (-15 -4244 ($ (-1104 (-219)) (-1129))) (-15 -4244 ($ (-1104 (-219)) (-620 (-254)))) (-15 -4243 ((-1104 (-219)) $)) (-15 -4243 ($ $ (-1104 (-219)))) (-15 -4242 ((-1235) $ (-749) (-917 (-219)))) (-15 -4241 ((-620 (-254)) $)) (-15 -4241 ($ $ (-620 (-254)))) (-15 -4240 ((-1235) $ (-749) (-749))) (-15 -4239 ((-1235) $ (-893) (-893))) (-15 -4238 ((-1235) $ (-1129))) (-15 -4237 ((-1235) $ (-749) (-749) (-893) (-893))) (-15 -4236 ((-1235) $ (-371) (-371) (-371) (-371) (-371))) (-15 -4236 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -4236 ((-1235) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4236 ((-1235) $ (-536) (-536) (-371) (-371) (-371))) (-15 -4236 ((-1235) $ (-371) (-371))) (-15 -4236 ((-1235) $ (-371) (-371) (-371))) (-15 -4235 ((-1235) $ (-1129))) (-15 -4234 ((-1235) $ (-1129))) (-15 -4233 ((-1235) $ (-1129))) (-15 -4232 ((-1235) $ (-1129))) (-15 -4231 ((-1235) $ (-1129))) (-15 -4230 ((-1235) $ (-371) (-371))) (-15 -4230 ((-1235) $ (-536) (-536))) (-15 -4229 ((-1235) $ (-371))) (-15 -4229 ((-1235) $ (-371) (-371) (-371))) (-15 -4228 ((-1235) $ (-371) (-371))) (-15 -4227 ((-1235) $ (-1129))) (-15 -4226 ((-1235) $ (-371))) (-15 -4225 ((-1235) $ (-371))) (-15 -4224 ((-1235) $ (-1129))) (-15 -4223 ((-1235) $ (-1129))) (-15 -4222 ((-1235) $ (-1129))) (-15 -4221 ((-1235) $ (-371) (-371) (-371))) (-15 -4220 ((-1235) $ (-371))) (-15 -4219 ((-1235) $)) (-15 -4218 ((-1235) $ (-155) (-155))) (-15 -4217 ((-1129) $ (-1129))) (-15 -4217 ((-1129) $ (-1129) (-1129))) (-15 -4217 ((-1129) $ (-1129) (-620 (-1129)))) (-15 -4216 ((-1235) $)) (-15 -4215 ((-536) $))))) (T -1233)) -((-4250 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4250 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4249 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4249 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4248 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4248 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4247 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4247 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4246 (*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4246 (*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) (-4245 (*1 *1) (-5 *1 (-1233))) (-4244 (*1 *1 *1) (-5 *1 (-1233))) (-4244 (*1 *1 *2 *3) (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-1129)) (-5 *1 (-1233)))) (-4244 (*1 *1 *2 *3) (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-620 (-254))) (-5 *1 (-1233)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1233)))) (-4243 (*1 *1 *1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1233)))) (-4242 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-749)) (-5 *4 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1233)))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1233)))) (-4240 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4239 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4238 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4237 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-749)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4236 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4236 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *1 (-1233)))) (-4236 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4236 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-536)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4236 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4236 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4235 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4233 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4230 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4230 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4229 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4227 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4225 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4224 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4223 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4222 (*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4221 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4220 (*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4218 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4217 (*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1233)))) (-4217 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1233)))) (-4217 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-1233)))) (-4216 (*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1233)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1233))))) -(-13 (-1072) (-10 -8 (-15 -4250 ((-371))) (-15 -4250 ((-371) (-371))) (-15 -4249 ((-371))) (-15 -4249 ((-371) (-371))) (-15 -4248 ((-371))) (-15 -4248 ((-371) (-371))) (-15 -4247 ((-371))) (-15 -4247 ((-371) (-371))) (-15 -4246 ((-371))) (-15 -4246 ((-371) (-371))) (-15 -4245 ($)) (-15 -4244 ($ $)) (-15 -4244 ($ (-1104 (-219)) (-1129))) (-15 -4244 ($ (-1104 (-219)) (-620 (-254)))) (-15 -4243 ((-1104 (-219)) $)) (-15 -4243 ($ $ (-1104 (-219)))) (-15 -4242 ((-1235) $ (-749) (-917 (-219)))) (-15 -4241 ((-620 (-254)) $)) (-15 -4241 ($ $ (-620 (-254)))) (-15 -4240 ((-1235) $ (-749) (-749))) (-15 -4239 ((-1235) $ (-893) (-893))) (-15 -4238 ((-1235) $ (-1129))) (-15 -4237 ((-1235) $ (-749) (-749) (-893) (-893))) (-15 -4236 ((-1235) $ (-371) (-371) (-371) (-371) (-371))) (-15 -4236 ((-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))) $)) (-15 -4236 ((-1235) $ (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) (|:| |deltaX| (-219)) (|:| |deltaY| (-219))))) (-15 -4236 ((-1235) $ (-536) (-536) (-371) (-371) (-371))) (-15 -4236 ((-1235) $ (-371) (-371))) (-15 -4236 ((-1235) $ (-371) (-371) (-371))) (-15 -4235 ((-1235) $ (-1129))) (-15 -4234 ((-1235) $ (-1129))) (-15 -4233 ((-1235) $ (-1129))) (-15 -4232 ((-1235) $ (-1129))) (-15 -4231 ((-1235) $ (-1129))) (-15 -4230 ((-1235) $ (-371) (-371))) (-15 -4230 ((-1235) $ (-536) (-536))) (-15 -4229 ((-1235) $ (-371))) (-15 -4229 ((-1235) $ (-371) (-371) (-371))) (-15 -4228 ((-1235) $ (-371) (-371))) (-15 -4227 ((-1235) $ (-1129))) (-15 -4226 ((-1235) $ (-371))) (-15 -4225 ((-1235) $ (-371))) (-15 -4224 ((-1235) $ (-1129))) (-15 -4223 ((-1235) $ (-1129))) (-15 -4222 ((-1235) $ (-1129))) (-15 -4221 ((-1235) $ (-371) (-371) (-371))) (-15 -4220 ((-1235) $ (-371))) (-15 -4219 ((-1235) $)) (-15 -4218 ((-1235) $ (-155) (-155))) (-15 -4217 ((-1129) $ (-1129))) (-15 -4217 ((-1129) $ (-1129) (-1129))) (-15 -4217 ((-1129) $ (-1129) (-620 (-1129)))) (-15 -4216 ((-1235) $)) (-15 -4215 ((-536) $)))) -((-4259 (((-620 (-1129)) (-620 (-1129))) 94) (((-620 (-1129))) 90)) (-4260 (((-620 (-1129))) 88)) (-4257 (((-620 (-893)) (-620 (-893))) 63) (((-620 (-893))) 60)) (-4256 (((-620 (-749)) (-620 (-749))) 57) (((-620 (-749))) 53)) (-4258 (((-1235)) 65)) (-4262 (((-893) (-893)) 81) (((-893)) 80)) (-4261 (((-893) (-893)) 79) (((-893)) 78)) (-4254 (((-848) (-848)) 75) (((-848)) 74)) (-4264 (((-219)) 85) (((-219) (-371)) 87)) (-4263 (((-893)) 82) (((-893) (-893)) 83)) (-4255 (((-893) (-893)) 77) (((-893)) 76)) (-4251 (((-848) (-848)) 69) (((-848)) 67)) (-4252 (((-848) (-848)) 71) (((-848)) 70)) (-4253 (((-848) (-848)) 73) (((-848)) 72))) -(((-1234) (-10 -7 (-15 -4251 ((-848))) (-15 -4251 ((-848) (-848))) (-15 -4252 ((-848))) (-15 -4252 ((-848) (-848))) (-15 -4253 ((-848))) (-15 -4253 ((-848) (-848))) (-15 -4254 ((-848))) (-15 -4254 ((-848) (-848))) (-15 -4255 ((-893))) (-15 -4255 ((-893) (-893))) (-15 -4256 ((-620 (-749)))) (-15 -4256 ((-620 (-749)) (-620 (-749)))) (-15 -4257 ((-620 (-893)))) (-15 -4257 ((-620 (-893)) (-620 (-893)))) (-15 -4258 ((-1235))) (-15 -4259 ((-620 (-1129)))) (-15 -4259 ((-620 (-1129)) (-620 (-1129)))) (-15 -4260 ((-620 (-1129)))) (-15 -4261 ((-893))) (-15 -4262 ((-893))) (-15 -4261 ((-893) (-893))) (-15 -4262 ((-893) (-893))) (-15 -4263 ((-893) (-893))) (-15 -4263 ((-893))) (-15 -4264 ((-219) (-371))) (-15 -4264 ((-219))))) (T -1234)) -((-4264 (*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1234)))) (-4264 (*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-1234)))) (-4263 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4263 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4262 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4261 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4262 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4261 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4260 (*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234)))) (-4259 (*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234)))) (-4258 (*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1234)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1234)))) (-4257 (*1 *2) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1234)))) (-4256 (*1 *2 *2) (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1234)))) (-4256 (*1 *2) (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1234)))) (-4255 (*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4255 (*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) (-4254 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4254 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4253 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4253 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4252 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4251 (*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) (-4251 (*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234))))) -(-10 -7 (-15 -4251 ((-848))) (-15 -4251 ((-848) (-848))) (-15 -4252 ((-848))) (-15 -4252 ((-848) (-848))) (-15 -4253 ((-848))) (-15 -4253 ((-848) (-848))) (-15 -4254 ((-848))) (-15 -4254 ((-848) (-848))) (-15 -4255 ((-893))) (-15 -4255 ((-893) (-893))) (-15 -4256 ((-620 (-749)))) (-15 -4256 ((-620 (-749)) (-620 (-749)))) (-15 -4257 ((-620 (-893)))) (-15 -4257 ((-620 (-893)) (-620 (-893)))) (-15 -4258 ((-1235))) (-15 -4259 ((-620 (-1129)))) (-15 -4259 ((-620 (-1129)) (-620 (-1129)))) (-15 -4260 ((-620 (-1129)))) (-15 -4261 ((-893))) (-15 -4262 ((-893))) (-15 -4261 ((-893) (-893))) (-15 -4262 ((-893) (-893))) (-15 -4263 ((-893) (-893))) (-15 -4263 ((-893))) (-15 -4264 ((-219) (-371))) (-15 -4264 ((-219)))) -((-4265 (($) 7)) (-4312 (((-838) $) 10))) -(((-1235) (-10 -8 (-15 -4265 ($)) (-15 -4312 ((-838) $)))) (T -1235)) -((-4312 (*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1235)))) (-4265 (*1 *1) (-5 *1 (-1235)))) -(-10 -8 (-15 -4265 ($)) (-15 -4312 ((-838) $))) -((-4303 (($ $ |#2|) 10))) -(((-1236 |#1| |#2|) (-10 -8 (-15 -4303 (|#1| |#1| |#2|))) (-1237 |#2|) (-356)) (T -1236)) -NIL -(-10 -8 (-15 -4303 (|#1| |#1| |#2|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4266 (((-133)) 28)) (-4312 (((-838) $) 11)) (-2986 (($) 18 T CONST)) (-3382 (((-112) $ $) 6)) (-4303 (($ $ |#1|) 29)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1237 |#1|) (-138) (-356)) (T -1237)) -((-4303 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-356)))) (-4266 (*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-356)) (-5 *2 (-133))))) -(-13 (-696 |t#1|) (-10 -8 (-15 -4303 ($ $ |t#1|)) (-15 -4266 ((-133))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-696 |#1|) . T) ((-1029 |#1|) . T) ((-1072) . T)) -((-4271 (((-620 (-1176 |#1|)) (-1147) (-1176 |#1|)) 74)) (-4269 (((-1124 (-1124 (-920 |#1|))) (-1147) (-1124 (-920 |#1|))) 53)) (-4272 (((-1 (-1124 (-1176 |#1|)) (-1124 (-1176 |#1|))) (-749) (-1176 |#1|) (-1124 (-1176 |#1|))) 64)) (-4267 (((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749)) 55)) (-4270 (((-1 (-1141 (-920 |#1|)) (-920 |#1|)) (-1147)) 29)) (-4268 (((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749)) 54))) -(((-1238 |#1|) (-10 -7 (-15 -4267 ((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749))) (-15 -4268 ((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749))) (-15 -4269 ((-1124 (-1124 (-920 |#1|))) (-1147) (-1124 (-920 |#1|)))) (-15 -4270 ((-1 (-1141 (-920 |#1|)) (-920 |#1|)) (-1147))) (-15 -4271 ((-620 (-1176 |#1|)) (-1147) (-1176 |#1|))) (-15 -4272 ((-1 (-1124 (-1176 |#1|)) (-1124 (-1176 |#1|))) (-749) (-1176 |#1|) (-1124 (-1176 |#1|))))) (-356)) (T -1238)) -((-4272 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-749)) (-4 *6 (-356)) (-5 *4 (-1176 *6)) (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1238 *6)) (-5 *5 (-1124 *4)))) (-4271 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-4 *5 (-356)) (-5 *2 (-620 (-1176 *5))) (-5 *1 (-1238 *5)) (-5 *4 (-1176 *5)))) (-4270 (*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1 (-1141 (-920 *4)) (-920 *4))) (-5 *1 (-1238 *4)) (-4 *4 (-356)))) (-4269 (*1 *2 *3 *4) (-12 (-5 *3 (-1147)) (-4 *5 (-356)) (-5 *2 (-1124 (-1124 (-920 *5)))) (-5 *1 (-1238 *5)) (-5 *4 (-1124 (-920 *5))))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-920 *4)) (-1124 (-920 *4)))) (-5 *1 (-1238 *4)) (-4 *4 (-356)))) (-4267 (*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-920 *4)) (-1124 (-920 *4)))) (-5 *1 (-1238 *4)) (-4 *4 (-356))))) -(-10 -7 (-15 -4267 ((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749))) (-15 -4268 ((-1 (-1124 (-920 |#1|)) (-1124 (-920 |#1|))) (-749))) (-15 -4269 ((-1124 (-1124 (-920 |#1|))) (-1147) (-1124 (-920 |#1|)))) (-15 -4270 ((-1 (-1141 (-920 |#1|)) (-920 |#1|)) (-1147))) (-15 -4271 ((-620 (-1176 |#1|)) (-1147) (-1176 |#1|))) (-15 -4272 ((-1 (-1124 (-1176 |#1|)) (-1124 (-1176 |#1|))) (-749) (-1176 |#1|) (-1124 (-1176 |#1|))))) -((-4274 (((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|) 75)) (-4273 (((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|)))) 74))) -(((-1239 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|))) (-343) (-1205 |#1|) (-1205 |#2|) (-403 |#2| |#3|)) (T -1239)) -((-4274 (*1 *2 *3) (-12 (-4 *4 (-343)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 *3)) (-5 *2 (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) (-5 *1 (-1239 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5)))) (-4273 (*1 *2) (-12 (-4 *3 (-343)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-2 (|:| -2123 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) (-5 *1 (-1239 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) -(-10 -7 (-15 -4273 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))))) (-15 -4274 ((-2 (|:| -2123 (-667 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-667 |#2|))) |#2|))) -((-2893 (((-112) $ $) NIL)) (-4275 (((-1106) $) 11)) (-4276 (((-1106) $) 9)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 19) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-1240) (-13 (-1054) (-10 -8 (-15 -4276 ((-1106) $)) (-15 -4275 ((-1106) $))))) (T -1240)) -((-4276 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1240)))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1240))))) -(-13 (-1054) (-10 -8 (-15 -4276 ((-1106) $)) (-15 -4275 ((-1106) $)))) -((-2893 (((-112) $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4277 (((-1106) $) 9)) (-4312 (((-838) $) 17) (((-1152) $) NIL) (($ (-1152)) NIL)) (-3382 (((-112) $ $) NIL))) -(((-1241) (-13 (-1054) (-10 -8 (-15 -4277 ((-1106) $))))) (T -1241)) -((-4277 (*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1241))))) -(-13 (-1054) (-10 -8 (-15 -4277 ((-1106) $)))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 43)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) NIL)) (-2497 (((-112) $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4312 (((-838) $) 64) (($ (-536)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-3456 (((-749)) NIL)) (-4278 (((-1235) (-749)) 16)) (-2986 (($) 27 T CONST)) (-2992 (($) 67 T CONST)) (-3382 (((-112) $ $) 69)) (-4303 (((-3 $ "failed") $ $) NIL (|has| |#1| (-356)))) (-4192 (($ $) 71) (($ $ $) NIL)) (-4194 (($ $ $) 47)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) -(((-1242 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1023) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4312 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -4303 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4312 ($ |#4|)) (-15 -4278 ((-1235) (-749))))) (-1023) (-825) (-771) (-924 |#1| |#3| |#2|) (-620 |#2|) (-620 (-749)) (-749)) (T -1242)) -((-4312 (*1 *2 *1) (-12 (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-1242 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-620 *4)) (-14 *7 (-620 (-749))) (-14 *8 (-749)))) (-4303 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1023)) (-4 *3 (-825)) (-4 *4 (-771)) (-14 *6 (-620 *3)) (-5 *1 (-1242 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-924 *2 *4 *3)) (-14 *7 (-620 (-749))) (-14 *8 (-749)))) (-4312 (*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-620 *4)) (-5 *1 (-1242 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-924 *3 *5 *4)) (-14 *7 (-620 (-749))) (-14 *8 (-749)))) (-4278 (*1 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-1023)) (-4 *5 (-825)) (-4 *6 (-771)) (-14 *8 (-620 *5)) (-5 *2 (-1235)) (-5 *1 (-1242 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-924 *4 *6 *5)) (-14 *9 (-620 *3)) (-14 *10 *3)))) -(-13 (-1023) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4312 (|#4| $)) (IF (|has| |#1| (-356)) (-15 -4303 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4312 ($ |#4|)) (-15 -4278 ((-1235) (-749))))) -((-2893 (((-112) $ $) NIL)) (-4039 (((-620 (-2 (|:| -4216 $) (|:| -1813 (-620 |#4|)))) (-620 |#4|)) NIL)) (-4040 (((-620 $) (-620 |#4|)) 88)) (-3412 (((-620 |#3|) $) NIL)) (-3236 (((-112) $) NIL)) (-3227 (((-112) $) NIL (|has| |#1| (-543)))) (-4051 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-3237 (((-2 (|:| |under| $) (|:| -3460 $) (|:| |upper| $)) $ |#3|) NIL)) (-1269 (((-112) $ (-749)) NIL)) (-4068 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3891 (($) NIL T CONST)) (-3232 (((-112) $) NIL (|has| |#1| (-543)))) (-3234 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3233 (((-112) $ $) NIL (|has| |#1| (-543)))) (-3235 (((-112) $) NIL (|has| |#1| (-543)))) (-4047 (((-620 |#4|) (-620 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3228 (((-620 |#4|) (-620 |#4|) $) 25 (|has| |#1| (-543)))) (-3229 (((-620 |#4|) (-620 |#4|) $) NIL (|has| |#1| (-543)))) (-3503 (((-3 $ "failed") (-620 |#4|)) NIL)) (-3502 (($ (-620 |#4|)) NIL)) (-4153 (((-3 $ #1#) $) 70)) (-4043 ((|#4| |#4| $) 75)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-3760 (($ |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3230 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4052 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4041 ((|#4| |#4| $) NIL)) (-4197 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4348))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4348))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4054 (((-2 (|:| -4216 (-620 |#4|)) (|:| -1813 (-620 |#4|))) $) NIL)) (-2063 (((-620 |#4|) $) NIL (|has| $ (-6 -4348)))) (-4053 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3526 ((|#3| $) 76)) (-4077 (((-112) $ (-749)) NIL)) (-2506 (((-620 |#4|) $) 29 (|has| $ (-6 -4348)))) (-3591 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072))))) (-4281 (((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-620 |#4|)) 35)) (-2067 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4349)))) (-4313 (($ (-1 |#4| |#4|) $) NIL)) (-3242 (((-620 |#3|) $) NIL)) (-3241 (((-112) |#3| $) NIL)) (-4074 (((-112) $ (-749)) NIL)) (-3588 (((-1129) $) NIL)) (-4152 (((-3 |#4| #1#) $) NIL)) (-4055 (((-620 |#4|) $) 50)) (-4049 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4044 ((|#4| |#4| $) 74)) (-4057 (((-112) $ $) 85)) (-3231 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-543)))) (-4050 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4045 ((|#4| |#4| $) NIL)) (-3589 (((-1091) $) NIL)) (-4155 (((-3 |#4| #1#) $) 69)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4037 (((-3 $ #1#) $ |#4|) NIL)) (-4123 (($ $ |#4|) NIL)) (-2065 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4122 (($ $ (-620 |#4|) (-620 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-286 |#4|)) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072)))) (($ $ (-620 (-286 |#4|))) NIL (-12 (|has| |#4| (-302 |#4|)) (|has| |#4| (-1072))))) (-1270 (((-112) $ $) NIL)) (-3757 (((-112) $) 67)) (-3923 (($) 42)) (-4302 (((-749) $) NIL)) (-2064 (((-749) |#4| $) NIL (-12 (|has| $ (-6 -4348)) (|has| |#4| (-1072)))) (((-749) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-3754 (($ $) NIL)) (-4325 (((-525) $) NIL (|has| |#4| (-596 (-525))))) (-3879 (($ (-620 |#4|)) NIL)) (-3238 (($ $ |#3|) NIL)) (-3240 (($ $ |#3|) NIL)) (-4042 (($ $) NIL)) (-3239 (($ $ |#3|) NIL)) (-4312 (((-838) $) NIL) (((-620 |#4|) $) 57)) (-4036 (((-749) $) NIL (|has| |#3| (-361)))) (-4280 (((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-620 |#4|)) 41)) (-4279 (((-620 $) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-620 $) (-620 |#4|)) 66)) (-4056 (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3678 (-620 |#4|))) #1#) (-620 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4048 (((-112) $ (-1 (-112) |#4| (-620 |#4|))) NIL)) (-2066 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4348)))) (-4038 (((-620 |#3|) $) NIL)) (-4288 (((-112) |#3| $) NIL)) (-3382 (((-112) $ $) NIL)) (-4311 (((-749) $) NIL (|has| $ (-6 -4348))))) -(((-1243 |#1| |#2| |#3| |#4|) (-13 (-1178 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4281 ((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4281 ((-3 $ "failed") (-620 |#4|))) (-15 -4280 ((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4280 ((-3 $ "failed") (-620 |#4|))) (-15 -4279 ((-620 $) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4279 ((-620 $) (-620 |#4|))))) (-543) (-771) (-825) (-1037 |#1| |#2| |#3|)) (T -1243)) -((-4281 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1243 *5 *6 *7 *8)))) (-4281 (*1 *1 *2) (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1243 *3 *4 *5 *6)))) (-4280 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1243 *5 *6 *7 *8)))) (-4280 (*1 *1 *2) (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1243 *3 *4 *5 *6)))) (-4279 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-620 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) (-4 *8 (-825)) (-5 *2 (-620 (-1243 *6 *7 *8 *9))) (-5 *1 (-1243 *6 *7 *8 *9)))) (-4279 (*1 *2 *3) (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 (-1243 *4 *5 *6 *7))) (-5 *1 (-1243 *4 *5 *6 *7))))) -(-13 (-1178 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4281 ((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4281 ((-3 $ "failed") (-620 |#4|))) (-15 -4280 ((-3 $ "failed") (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4280 ((-3 $ "failed") (-620 |#4|))) (-15 -4279 ((-620 $) (-620 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4279 ((-620 $) (-620 |#4|))))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-1367 (((-3 $ "failed") $ $) 19)) (-3891 (($) 17 T CONST)) (-3816 (((-3 $ "failed") $) 32)) (-2497 (((-112) $) 30)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#1|) 36)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) -(((-1244 |#1|) (-138) (-1023)) (T -1244)) -((-4312 (*1 *1 *2) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1023))))) -(-13 (-1023) (-111 |t#1| |t#1|) (-10 -8 (-15 -4312 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 |#1|) |has| |#1| (-170)) ((-705) . T) ((-1029 |#1|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T)) -((-2893 (((-112) $ $) 60)) (-3534 (((-112) $) NIL)) (-4289 (((-620 |#1|) $) 45)) (-4301 (($ $ (-749)) 39)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4290 (($ $ (-749)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-3891 (($) NIL T CONST)) (-4294 (($ $ $) 63) (($ $ (-797 |#1|)) 49) (($ $ |#1|) 53)) (-3503 (((-3 (-797 |#1|) "failed") $) NIL)) (-3502 (((-797 |#1|) $) NIL)) (-4314 (($ $) 32)) (-3816 (((-3 $ "failed") $) NIL)) (-4305 (((-112) $) NIL)) (-4304 (($ $) NIL)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ (-797 |#1|) |#2|) 31)) (-4291 (($ $) 33)) (-4296 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 12)) (-4309 (((-797 |#1|) $) NIL)) (-4310 (((-797 |#1|) $) 34)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-4295 (($ $ $) 62) (($ $ (-797 |#1|)) 51) (($ $ |#1|) 55)) (-1860 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3222 (((-797 |#1|) $) 28)) (-3520 ((|#2| $) 30)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4302 (((-749) $) 36)) (-4307 (((-112) $) 40)) (-4306 ((|#2| $) NIL)) (-4312 (((-838) $) NIL) (($ (-797 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-536)) NIL)) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-797 |#1|)) NIL)) (-4308 ((|#2| $ $) 65) ((|#2| $ (-797 |#1|)) NIL)) (-3456 (((-749)) NIL)) (-2986 (($) 13 T CONST)) (-2992 (($) 15 T CONST)) (-2991 (((-620 (-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3382 (((-112) $ $) 38)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 22)) (** (($ $ (-749)) NIL) (($ $ (-893)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-797 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) -(((-1245 |#1| |#2|) (-13 (-377 |#2| (-797 |#1|)) (-1252 |#1| |#2|)) (-825) (-1023)) (T -1245)) -NIL -(-13 (-377 |#2| (-797 |#1|)) (-1252 |#1| |#2|)) -((-4297 ((|#3| |#3| (-749)) 23)) (-4298 ((|#3| |#3| (-749)) 27)) (-4282 ((|#3| |#3| |#3| (-749)) 28))) -(((-1246 |#1| |#2| |#3|) (-10 -7 (-15 -4298 (|#3| |#3| (-749))) (-15 -4297 (|#3| |#3| (-749))) (-15 -4282 (|#3| |#3| |#3| (-749)))) (-13 (-1023) (-696 (-400 (-536)))) (-825) (-1252 |#2| |#1|)) (T -1246)) -((-4282 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4)))) (-4297 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4)))) (-4298 (*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4))))) -(-10 -7 (-15 -4298 (|#3| |#3| (-749))) (-15 -4297 (|#3| |#3| (-749))) (-15 -4282 (|#3| |#3| |#3| (-749)))) -((-4287 (((-112) $) 15)) (-4288 (((-112) $) 14)) (-4283 (($ $) 19) (($ $ (-749)) 20))) -(((-1247 |#1| |#2|) (-10 -8 (-15 -4283 (|#1| |#1| (-749))) (-15 -4283 (|#1| |#1|)) (-15 -4287 ((-112) |#1|)) (-15 -4288 ((-112) |#1|))) (-1248 |#2|) (-356)) (T -1247)) -NIL -(-10 -8 (-15 -4283 (|#1| |#1| (-749))) (-15 -4283 (|#1| |#1|)) (-15 -4287 ((-112) |#1|)) (-15 -4288 ((-112) |#1|))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-2174 (((-2 (|:| -1887 $) (|:| -4335 $) (|:| |associate| $)) $) 39)) (-2173 (($ $) 38)) (-2171 (((-112) $) 36)) (-4287 (((-112) $) 91)) (-4284 (((-749)) 87)) (-1367 (((-3 $ "failed") $ $) 19)) (-4129 (($ $) 70)) (-4324 (((-398 $) $) 69)) (-1700 (((-112) $ $) 57)) (-3891 (($) 17 T CONST)) (-3503 (((-3 |#1| "failed") $) 98)) (-3502 ((|#1| $) 97)) (-2889 (($ $ $) 53)) (-3816 (((-3 $ "failed") $) 32)) (-2888 (($ $ $) 54)) (-3069 (((-2 (|:| -4308 (-620 $)) (|:| -2496 $)) (-620 $)) 49)) (-1881 (($ $ (-749)) 84 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361)))) (($ $) 83 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4081 (((-112) $) 68)) (-4126 (((-810 (-893)) $) 81 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-2497 (((-112) $) 30)) (-1697 (((-3 (-620 $) #1="failed") (-620 $) $) 50)) (-2008 (($ $ $) 44) (($ (-620 $)) 43)) (-3588 (((-1129) $) 9)) (-2729 (($ $) 67)) (-4286 (((-112) $) 90)) (-3589 (((-1091) $) 10)) (-3036 (((-1141 $) (-1141 $) (-1141 $)) 42)) (-3490 (($ $ $) 46) (($ (-620 $)) 45)) (-4087 (((-398 $) $) 71)) (-4285 (((-810 (-893))) 88)) (-1698 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2496 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3815 (((-3 $ "failed") $ $) 40)) (-3068 (((-3 (-620 $) "failed") (-620 $) $) 48)) (-1699 (((-749) $) 56)) (-3209 (((-2 (|:| -2091 $) (|:| -3230 $)) $ $) 55)) (-1882 (((-3 (-749) "failed") $ $) 82 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-4266 (((-133)) 96)) (-4302 (((-810 (-893)) $) 89)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ $) 41) (($ (-400 (-536))) 63) (($ |#1|) 99)) (-3030 (((-3 $ "failed") $) 80 (-3886 (|has| |#1| (-143)) (|has| |#1| (-361))))) (-3456 (((-749)) 28)) (-2172 (((-112) $ $) 37)) (-4288 (((-112) $) 92)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-4283 (($ $) 86 (|has| |#1| (-361))) (($ $ (-749)) 85 (|has| |#1| (-361)))) (-3382 (((-112) $ $) 6)) (-4303 (($ $ $) 62) (($ $ |#1|) 95)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31) (($ $ (-536)) 66)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ $ (-400 (-536))) 65) (($ (-400 (-536)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) -(((-1248 |#1|) (-138) (-356)) (T -1248)) -((-4288 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4287 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4286 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-810 (-893))))) (-4285 (*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-810 (-893))))) (-4284 (*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-749)))) (-4283 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-356)) (-4 *2 (-361)))) (-4283 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-4 *3 (-361))))) -(-13 (-356) (-1012 |t#1|) (-1237 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-395)) |%noBranch|) (-15 -4288 ((-112) $)) (-15 -4287 ((-112) $)) (-15 -4286 ((-112) $)) (-15 -4302 ((-810 (-893)) $)) (-15 -4285 ((-810 (-893)))) (-15 -4284 ((-749))) (IF (|has| |t#1| (-361)) (PROGN (-6 (-395)) (-15 -4283 ($ $)) (-15 -4283 ($ $ (-749)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-400 (-536))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3886 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-595 (-838)) . T) ((-170) . T) ((-237) . T) ((-283) . T) ((-300) . T) ((-356) . T) ((-395) -3886 (|has| |#1| (-361)) (|has| |#1| (-143))) ((-444) . T) ((-543) . T) ((-626 #1#) . T) ((-626 |#1|) . T) ((-626 $) . T) ((-696 #1#) . T) ((-696 |#1|) . T) ((-696 $) . T) ((-705) . T) ((-895) . T) ((-1012 |#1|) . T) ((-1029 #1#) . T) ((-1029 |#1|) . T) ((-1029 $) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1188) . T) ((-1237 |#1|) . T)) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-4289 (((-620 |#1|) $) 38)) (-1367 (((-3 $ "failed") $ $) 19)) (-4290 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-749)) 40 (|has| |#2| (-170)))) (-3891 (($) 17 T CONST)) (-4294 (($ $ |#1|) 52) (($ $ (-797 |#1|)) 51) (($ $ $) 50)) (-3503 (((-3 (-797 |#1|) "failed") $) 62)) (-3502 (((-797 |#1|) $) 61)) (-3816 (((-3 $ "failed") $) 32)) (-4305 (((-112) $) 43)) (-4304 (($ $) 42)) (-2497 (((-112) $) 30)) (-4292 (((-112) $) 48)) (-4293 (($ (-797 |#1|) |#2|) 49)) (-4291 (($ $) 47)) (-4296 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 58)) (-4309 (((-797 |#1|) $) 59)) (-4313 (($ (-1 |#2| |#2|) $) 39)) (-4295 (($ $ |#1|) 55) (($ $ (-797 |#1|)) 54) (($ $ $) 53)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4307 (((-112) $) 45)) (-4306 ((|#2| $) 44)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#2|) 66) (($ (-797 |#1|)) 63) (($ |#1|) 46)) (-4308 ((|#2| $ (-797 |#1|)) 57) ((|#2| $ $) 56)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1249 |#1| |#2|) (-138) (-825) (-1023)) (T -1249)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4309 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-797 *3)))) (-4296 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-2 (|:| |k| (-797 *3)) (|:| |c| *4))))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-797 *4)) (-4 *1 (-1249 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1023)))) (-4308 (*1 *2 *1 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) (-4295 (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) (-4295 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4294 (*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4294 (*1 *1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) (-4294 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4293 (*1 *1 *2 *3) (-12 (-5 *2 (-797 *4)) (-4 *4 (-825)) (-4 *1 (-1249 *4 *3)) (-4 *3 (-1023)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112)))) (-4291 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4312 (*1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112)))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112)))) (-4304 (*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) (-4290 (*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)) (-4 *3 (-170)))) (-4290 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-4 *4 (-170)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) (-4289 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-620 *3))))) -(-13 (-1023) (-1244 |t#2|) (-1012 (-797 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4309 ((-797 |t#1|) $)) (-15 -4296 ((-2 (|:| |k| (-797 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4308 (|t#2| $ (-797 |t#1|))) (-15 -4308 (|t#2| $ $)) (-15 -4295 ($ $ |t#1|)) (-15 -4295 ($ $ (-797 |t#1|))) (-15 -4295 ($ $ $)) (-15 -4294 ($ $ |t#1|)) (-15 -4294 ($ $ (-797 |t#1|))) (-15 -4294 ($ $ $)) (-15 -4293 ($ (-797 |t#1|) |t#2|)) (-15 -4292 ((-112) $)) (-15 -4291 ($ $)) (-15 -4312 ($ |t#1|)) (-15 -4307 ((-112) $)) (-15 -4306 (|t#2| $)) (-15 -4305 ((-112) $)) (-15 -4304 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -4290 ($ $ $)) (-15 -4290 ($ $ (-749)))) |%noBranch|) (-15 -4313 ($ (-1 |t#2| |t#2|) $)) (-15 -4289 ((-620 |t#1|) $)) (IF (|has| |t#2| (-6 -4341)) (-6 -4341) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#2|) . T) ((-626 $) . T) ((-696 |#2|) |has| |#2| (-170)) ((-705) . T) ((-1012 (-797 |#1|)) . T) ((-1029 |#2|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1244 |#2|) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4289 (((-620 |#1|) $) 86)) (-4301 (($ $ (-749)) 89)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4290 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-749)) NIL (|has| |#2| (-170)))) (-3891 (($) NIL T CONST)) (-4294 (($ $ |#1|) NIL) (($ $ (-797 |#1|)) NIL) (($ $ $) NIL)) (-3503 (((-3 (-797 |#1|) #1="failed") $) NIL) (((-3 (-867 |#1|) #1#) $) NIL)) (-3502 (((-797 |#1|) $) NIL) (((-867 |#1|) $) NIL)) (-4314 (($ $) 88)) (-3816 (((-3 $ "failed") $) NIL)) (-4305 (((-112) $) 77)) (-4304 (($ $) 81)) (-4299 (($ $ $ (-749)) 90)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ (-797 |#1|) |#2|) NIL) (($ (-867 |#1|) |#2|) 26)) (-4291 (($ $) 103)) (-4296 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4309 (((-797 |#1|) $) NIL)) (-4310 (((-797 |#1|) $) NIL)) (-4313 (($ (-1 |#2| |#2|) $) NIL)) (-4295 (($ $ |#1|) NIL) (($ $ (-797 |#1|)) NIL) (($ $ $) NIL)) (-4297 (($ $ (-749)) 97 (|has| |#2| (-696 (-400 (-536)))))) (-1860 (((-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3222 (((-867 |#1|) $) 70)) (-3520 ((|#2| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4298 (($ $ (-749)) 94 (|has| |#2| (-696 (-400 (-536)))))) (-4302 (((-749) $) 87)) (-4307 (((-112) $) 71)) (-4306 ((|#2| $) 75)) (-4312 (((-838) $) 57) (($ (-536)) NIL) (($ |#2|) 51) (($ (-797 |#1|)) NIL) (($ |#1|) 59) (($ (-867 |#1|)) NIL) (($ (-642 |#1| |#2|)) 43) (((-1245 |#1| |#2|) $) 64) (((-1254 |#1| |#2|) $) 69)) (-4172 (((-620 |#2|) $) NIL)) (-4035 ((|#2| $ (-867 |#1|)) NIL)) (-4308 ((|#2| $ (-797 |#1|)) NIL) ((|#2| $ $) NIL)) (-3456 (((-749)) NIL)) (-2986 (($) 21 T CONST)) (-2992 (($) 25 T CONST)) (-2991 (((-620 (-2 (|:| |k| (-867 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4300 (((-3 (-642 |#1| |#2|) "failed") $) 102)) (-3382 (((-112) $ $) 65)) (-4192 (($ $) 96) (($ $ $) 95)) (-4194 (($ $ $) 20)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-867 |#1|)) NIL))) -(((-1250 |#1| |#2|) (-13 (-1252 |#1| |#2|) (-377 |#2| (-867 |#1|)) (-10 -8 (-15 -4312 ($ (-642 |#1| |#2|))) (-15 -4312 ((-1245 |#1| |#2|) $)) (-15 -4312 ((-1254 |#1| |#2|) $)) (-15 -4300 ((-3 (-642 |#1| |#2|) "failed") $)) (-15 -4299 ($ $ $ (-749))) (IF (|has| |#2| (-696 (-400 (-536)))) (PROGN (-15 -4298 ($ $ (-749))) (-15 -4297 ($ $ (-749)))) |%noBranch|))) (-825) (-170)) (T -1250)) -((-4312 (*1 *1 *2) (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *1 (-1250 *3 *4)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1254 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4300 (*1 *2 *1) (|partial| -12 (-5 *2 (-642 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4299 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) (-4298 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *4 (-696 (-400 (-536)))) (-4 *3 (-825)) (-4 *4 (-170)))) (-4297 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *4 (-696 (-400 (-536)))) (-4 *3 (-825)) (-4 *4 (-170))))) -(-13 (-1252 |#1| |#2|) (-377 |#2| (-867 |#1|)) (-10 -8 (-15 -4312 ($ (-642 |#1| |#2|))) (-15 -4312 ((-1245 |#1| |#2|) $)) (-15 -4312 ((-1254 |#1| |#2|) $)) (-15 -4300 ((-3 (-642 |#1| |#2|) "failed") $)) (-15 -4299 ($ $ $ (-749))) (IF (|has| |#2| (-696 (-400 (-536)))) (PROGN (-15 -4298 ($ $ (-749))) (-15 -4297 ($ $ (-749)))) |%noBranch|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-4289 (((-620 (-1147)) $) NIL)) (-4317 (($ (-1245 (-1147) |#1|)) NIL)) (-4301 (($ $ (-749)) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4290 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-749)) NIL (|has| |#1| (-170)))) (-3891 (($) NIL T CONST)) (-4294 (($ $ (-1147)) NIL) (($ $ (-797 (-1147))) NIL) (($ $ $) NIL)) (-3503 (((-3 (-797 (-1147)) "failed") $) NIL)) (-3502 (((-797 (-1147)) $) NIL)) (-3816 (((-3 $ "failed") $) NIL)) (-4305 (((-112) $) NIL)) (-4304 (($ $) NIL)) (-2497 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ (-797 (-1147)) |#1|) NIL)) (-4291 (($ $) NIL)) (-4296 (((-2 (|:| |k| (-797 (-1147))) (|:| |c| |#1|)) $) NIL)) (-4309 (((-797 (-1147)) $) NIL)) (-4310 (((-797 (-1147)) $) NIL)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-4295 (($ $ (-1147)) NIL) (($ $ (-797 (-1147))) NIL) (($ $ $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4318 (((-1245 (-1147) |#1|) $) NIL)) (-4302 (((-749) $) NIL)) (-4307 (((-112) $) NIL)) (-4306 ((|#1| $) NIL)) (-4312 (((-838) $) NIL) (($ (-536)) NIL) (($ |#1|) NIL) (($ (-797 (-1147))) NIL) (($ (-1147)) NIL)) (-4308 ((|#1| $ (-797 (-1147))) NIL) ((|#1| $ $) NIL)) (-3456 (((-749)) NIL)) (-2986 (($) NIL T CONST)) (-4316 (((-620 (-2 (|:| |k| (-1147)) (|:| |c| $))) $) NIL)) (-2992 (($) NIL T CONST)) (-3382 (((-112) $ $) NIL)) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) NIL)) (** (($ $ (-893)) NIL) (($ $ (-749)) NIL)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1147) $) NIL))) -(((-1251 |#1|) (-13 (-1252 (-1147) |#1|) (-10 -8 (-15 -4318 ((-1245 (-1147) |#1|) $)) (-15 -4317 ($ (-1245 (-1147) |#1|))) (-15 -4316 ((-620 (-2 (|:| |k| (-1147)) (|:| |c| $))) $)))) (-1023)) (T -1251)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1245 (-1147) *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1023)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1245 (-1147) *3)) (-4 *3 (-1023)) (-5 *1 (-1251 *3)))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |k| (-1147)) (|:| |c| (-1251 *3))))) (-5 *1 (-1251 *3)) (-4 *3 (-1023))))) -(-13 (-1252 #1=(-1147) |#1|) (-10 -8 (-15 -4318 ((-1245 #1# |#1|) $)) (-15 -4317 ($ (-1245 #1# |#1|))) (-15 -4316 ((-620 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) -((-2893 (((-112) $ $) 7)) (-3534 (((-112) $) 16)) (-4289 (((-620 |#1|) $) 38)) (-4301 (($ $ (-749)) 71)) (-1367 (((-3 $ "failed") $ $) 19)) (-4290 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-749)) 40 (|has| |#2| (-170)))) (-3891 (($) 17 T CONST)) (-4294 (($ $ |#1|) 52) (($ $ (-797 |#1|)) 51) (($ $ $) 50)) (-3503 (((-3 (-797 |#1|) "failed") $) 62)) (-3502 (((-797 |#1|) $) 61)) (-3816 (((-3 $ "failed") $) 32)) (-4305 (((-112) $) 43)) (-4304 (($ $) 42)) (-2497 (((-112) $) 30)) (-4292 (((-112) $) 48)) (-4293 (($ (-797 |#1|) |#2|) 49)) (-4291 (($ $) 47)) (-4296 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) 58)) (-4309 (((-797 |#1|) $) 59)) (-4310 (((-797 |#1|) $) 73)) (-4313 (($ (-1 |#2| |#2|) $) 39)) (-4295 (($ $ |#1|) 55) (($ $ (-797 |#1|)) 54) (($ $ $) 53)) (-3588 (((-1129) $) 9)) (-3589 (((-1091) $) 10)) (-4302 (((-749) $) 72)) (-4307 (((-112) $) 45)) (-4306 ((|#2| $) 44)) (-4312 (((-838) $) 11) (($ (-536)) 27) (($ |#2|) 66) (($ (-797 |#1|)) 63) (($ |#1|) 46)) (-4308 ((|#2| $ (-797 |#1|)) 57) ((|#2| $ $) 56)) (-3456 (((-749)) 28)) (-2986 (($) 18 T CONST)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 6)) (-4192 (($ $) 22) (($ $ $) 21)) (-4194 (($ $ $) 14)) (** (($ $ (-893)) 25) (($ $ (-749)) 31)) (* (($ (-893) $) 13) (($ (-749) $) 15) (($ (-536) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) -(((-1252 |#1| |#2|) (-138) (-825) (-1023)) (T -1252)) -((-4310 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-797 *3)))) (-4302 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-749)))) (-4301 (*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023))))) -(-13 (-1249 |t#1| |t#2|) (-10 -8 (-15 -4310 ((-797 |t#1|) $)) (-15 -4302 ((-749) $)) (-15 -4301 ($ $ (-749))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-595 (-838)) . T) ((-626 |#2|) . T) ((-626 $) . T) ((-696 |#2|) |has| |#2| (-170)) ((-705) . T) ((-1012 (-797 |#1|)) . T) ((-1029 |#2|) . T) ((-1023) . T) ((-1030) . T) ((-1083) . T) ((-1072) . T) ((-1244 |#2|) . T) ((-1249 |#1| |#2|) . T)) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) NIL)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3891 (($) NIL T CONST)) (-3503 (((-3 |#2| "failed") $) NIL)) (-3502 ((|#2| $) NIL)) (-4314 (($ $) NIL)) (-3816 (((-3 $ "failed") $) 36)) (-4305 (((-112) $) 30)) (-4304 (($ $) 32)) (-2497 (((-112) $) NIL)) (-2505 (((-749) $) NIL)) (-3149 (((-620 $) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ |#2| |#1|) NIL)) (-4309 ((|#2| $) 19)) (-4310 ((|#2| $) 16)) (-4313 (($ (-1 |#1| |#1|) $) NIL)) (-1860 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3222 ((|#2| $) NIL)) (-3520 ((|#1| $) NIL)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4307 (((-112) $) 27)) (-4306 ((|#1| $) 28)) (-4312 (((-838) $) 55) (($ (-536)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-4172 (((-620 |#1|) $) NIL)) (-4035 ((|#1| $ |#2|) NIL)) (-4308 ((|#1| $ |#2|) 24)) (-3456 (((-749)) 14)) (-2986 (($) 25 T CONST)) (-2992 (($) 11 T CONST)) (-2991 (((-620 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3382 (((-112) $ $) 26)) (-4303 (($ $ |#1|) 57 (|has| |#1| (-356)))) (-4192 (($ $) NIL) (($ $ $) NIL)) (-4194 (($ $ $) 44)) (** (($ $ (-893)) NIL) (($ $ (-749)) 46)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4311 (((-749) $) 15))) -(((-1253 |#1| |#2|) (-13 (-1023) (-1244 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4311 ((-749) $)) (-15 -4312 ($ |#2|)) (-15 -4310 (|#2| $)) (-15 -4309 (|#2| $)) (-15 -4314 ($ $)) (-15 -4308 (|#1| $ |#2|)) (-15 -4307 ((-112) $)) (-15 -4306 (|#1| $)) (-15 -4305 ((-112) $)) (-15 -4304 ($ $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -4303 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4341)) (-6 -4341) |%noBranch|) (IF (|has| |#1| (-6 -4345)) (-6 -4345) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) (-1023) (-821)) (T -1253)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821)))) (-4314 (*1 *1 *1) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821)))) (-4313 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-1253 *3 *4)) (-4 *4 (-821)))) (-4312 (*1 *1 *2) (-12 (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-821)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821)))) (-4310 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023)))) (-4309 (*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023)))) (-4308 (*1 *2 *1 *3) (-12 (-4 *2 (-1023)) (-5 *1 (-1253 *2 *3)) (-4 *3 (-821)))) (-4307 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821)))) (-4306 (*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-1253 *2 *3)) (-4 *3 (-821)))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821)))) (-4304 (*1 *1 *1) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821)))) (-4303 (*1 *1 *1 *2) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1023)) (-4 *3 (-821))))) -(-13 (-1023) (-1244 |#1|) (-377 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4311 ((-749) $)) (-15 -4312 ($ |#2|)) (-15 -4310 (|#2| $)) (-15 -4309 (|#2| $)) (-15 -4314 ($ $)) (-15 -4308 (|#1| $ |#2|)) (-15 -4307 ((-112) $)) (-15 -4306 (|#1| $)) (-15 -4305 ((-112) $)) (-15 -4304 ($ $)) (-15 -4313 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-356)) (-15 -4303 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4341)) (-6 -4341) |%noBranch|) (IF (|has| |#1| (-6 -4345)) (-6 -4345) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|))) -((-2893 (((-112) $ $) 26)) (-3534 (((-112) $) NIL)) (-4289 (((-620 |#1|) $) 120)) (-4317 (($ (-1245 |#1| |#2|)) 44)) (-4301 (($ $ (-749)) 32)) (-1367 (((-3 $ "failed") $ $) NIL)) (-4290 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-749)) 46 (|has| |#2| (-170)))) (-3891 (($) NIL T CONST)) (-4294 (($ $ |#1|) 102) (($ $ (-797 |#1|)) 103) (($ $ $) 25)) (-3503 (((-3 (-797 |#1|) "failed") $) NIL)) (-3502 (((-797 |#1|) $) NIL)) (-3816 (((-3 $ "failed") $) 110)) (-4305 (((-112) $) 105)) (-4304 (($ $) 106)) (-2497 (((-112) $) NIL)) (-4292 (((-112) $) NIL)) (-4293 (($ (-797 |#1|) |#2|) 19)) (-4291 (($ $) NIL)) (-4296 (((-2 (|:| |k| (-797 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4309 (((-797 |#1|) $) 111)) (-4310 (((-797 |#1|) $) 114)) (-4313 (($ (-1 |#2| |#2|) $) 119)) (-4295 (($ $ |#1|) 100) (($ $ (-797 |#1|)) 101) (($ $ $) 56)) (-3588 (((-1129) $) NIL)) (-3589 (((-1091) $) NIL)) (-4318 (((-1245 |#1| |#2|) $) 84)) (-4302 (((-749) $) 117)) (-4307 (((-112) $) 70)) (-4306 ((|#2| $) 28)) (-4312 (((-838) $) 63) (($ (-536)) 77) (($ |#2|) 74) (($ (-797 |#1|)) 17) (($ |#1|) 73)) (-4308 ((|#2| $ (-797 |#1|)) 104) ((|#2| $ $) 27)) (-3456 (((-749)) 108)) (-2986 (($) 14 T CONST)) (-4316 (((-620 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2992 (($) 29 T CONST)) (-3382 (((-112) $ $) 13)) (-4192 (($ $) 88) (($ $ $) 91)) (-4194 (($ $ $) 55)) (** (($ $ (-893)) NIL) (($ $ (-749)) 49)) (* (($ (-893) $) NIL) (($ (-749) $) 47) (($ (-536) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) -(((-1254 |#1| |#2|) (-13 (-1252 |#1| |#2|) (-10 -8 (-15 -4318 ((-1245 |#1| |#2|) $)) (-15 -4317 ($ (-1245 |#1| |#2|))) (-15 -4316 ((-620 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-825) (-1023)) (T -1254)) -((-4318 (*1 *2 *1) (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *1 (-1254 *3 *4)))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-620 (-2 (|:| |k| *3) (|:| |c| (-1254 *3 *4))))) (-5 *1 (-1254 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023))))) -(-13 (-1252 |#1| |#2|) (-10 -8 (-15 -4318 ((-1245 |#1| |#2|) $)) (-15 -4317 ($ (-1245 |#1| |#2|))) (-15 -4316 ((-620 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-4319 (((-620 (-1124 |#1|)) (-1 (-620 (-1124 |#1|)) (-620 (-1124 |#1|))) (-536)) 15) (((-1124 |#1|) (-1 (-1124 |#1|) (-1124 |#1|))) 11))) -(((-1255 |#1|) (-10 -7 (-15 -4319 ((-1124 |#1|) (-1 (-1124 |#1|) (-1124 |#1|)))) (-15 -4319 ((-620 (-1124 |#1|)) (-1 (-620 (-1124 |#1|)) (-620 (-1124 |#1|))) (-536)))) (-1183)) (T -1255)) -((-4319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-620 (-1124 *5)) (-620 (-1124 *5)))) (-5 *4 (-536)) (-5 *2 (-620 (-1124 *5))) (-5 *1 (-1255 *5)) (-4 *5 (-1183)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-1 (-1124 *4) (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1255 *4)) (-4 *4 (-1183))))) -(-10 -7 (-15 -4319 ((-1124 |#1|) (-1 (-1124 |#1|) (-1124 |#1|)))) (-15 -4319 ((-620 (-1124 |#1|)) (-1 (-620 (-1124 |#1|)) (-620 (-1124 |#1|))) (-536)))) -((-4321 (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|))) 148) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112)) 147) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112)) 146) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112) (-112)) 145) (((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-1020 |#1| |#2|)) 130)) (-4320 (((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|))) 72) (((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112)) 71) (((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112) (-112)) 70)) (-4324 (((-620 (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) (-1020 |#1| |#2|)) 61)) (-4322 (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|))) 115) (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112)) 114) (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112)) 113) (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112) (-112)) 112) (((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|)) 107)) (-4323 (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|))) 120) (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112)) 119) (((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112)) 118) (((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|)) 117)) (-4325 (((-620 (-758 |#1| (-839 |#3|))) (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) 98) (((-1141 (-998 (-400 |#1|))) (-1141 |#1|)) 89) (((-920 (-998 (-400 |#1|))) (-758 |#1| (-839 |#3|))) 96) (((-920 (-998 (-400 |#1|))) (-920 |#1|)) 94) (((-758 |#1| (-839 |#3|)) (-758 |#1| (-839 |#2|))) 33))) -(((-1256 |#1| |#2| |#3|) (-10 -7 (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112))) (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-1020 |#1| |#2|))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)))) (-15 -4324 ((-620 (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) (-1020 |#1| |#2|))) (-15 -4325 ((-758 |#1| (-839 |#3|)) (-758 |#1| (-839 |#2|)))) (-15 -4325 ((-920 (-998 (-400 |#1|))) (-920 |#1|))) (-15 -4325 ((-920 (-998 (-400 |#1|))) (-758 |#1| (-839 |#3|)))) (-15 -4325 ((-1141 (-998 (-400 |#1|))) (-1141 |#1|))) (-15 -4325 ((-620 (-758 |#1| (-839 |#3|))) (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))))) (-13 (-823) (-300) (-145) (-994)) (-620 (-1147)) (-620 (-1147))) (T -1256)) -((-4325 (*1 *2 *3) (-12 (-5 *3 (-1117 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6)))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-758 *4 (-839 *6)))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-1141 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-1141 (-998 (-400 *4)))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-758 *4 (-839 *6))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *6 (-620 (-1147))) (-5 *2 (-920 (-998 (-400 *4)))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-920 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-920 (-998 (-400 *4)))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-758 *4 (-839 *5))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *5 (-620 (-1147))) (-5 *2 (-758 *4 (-839 *6))) (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-1117 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4323 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4322 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4322 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4322 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4322 (*1 *2 *3) (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) (-4321 (*1 *2 *3) (-12 (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) (-5 *1 (-1256 *4 *5 *6)) (-5 *3 (-620 (-920 *4))) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4321 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4321 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4321 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) (-4320 (*1 *2 *3) (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-1020 *4 *5))) (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) (-4320 (*1 *2 *3 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) (-4320 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147)))))) -(-10 -7 (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)) (-112))) (-15 -4320 ((-620 (-1020 |#1| |#2|)) (-620 (-920 |#1|)))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-1020 |#1| |#2|))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)) (-112))) (-15 -4321 ((-620 (-2 (|:| -1858 (-1141 |#1|)) (|:| -3570 (-620 (-920 |#1|))))) (-620 (-920 |#1|)))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112))) (-15 -4322 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-1020 |#1| |#2|))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112) (-112))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)) (-112))) (-15 -4323 ((-620 (-620 (-998 (-400 |#1|)))) (-620 (-920 |#1|)))) (-15 -4324 ((-620 (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))) (-1020 |#1| |#2|))) (-15 -4325 ((-758 |#1| (-839 |#3|)) (-758 |#1| (-839 |#2|)))) (-15 -4325 ((-920 (-998 (-400 |#1|))) (-920 |#1|))) (-15 -4325 ((-920 (-998 (-400 |#1|))) (-758 |#1| (-839 |#3|)))) (-15 -4325 ((-1141 (-998 (-400 |#1|))) (-1141 |#1|))) (-15 -4325 ((-620 (-758 |#1| (-839 |#3|))) (-1117 |#1| (-522 (-839 |#3|)) (-839 |#3|) (-758 |#1| (-839 |#3|)))))) -((-4328 (((-3 (-1229 (-400 (-536))) "failed") (-1229 |#1|) |#1|) 21)) (-4326 (((-112) (-1229 |#1|)) 12)) (-4327 (((-3 (-1229 (-536)) "failed") (-1229 |#1|)) 16))) -(((-1257 |#1|) (-10 -7 (-15 -4326 ((-112) (-1229 |#1|))) (-15 -4327 ((-3 (-1229 (-536)) "failed") (-1229 |#1|))) (-15 -4328 ((-3 (-1229 (-400 (-536))) "failed") (-1229 |#1|) |#1|))) (-619 (-536))) (T -1257)) -((-4328 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) (-5 *2 (-1229 (-400 (-536)))) (-5 *1 (-1257 *4)))) (-4327 (*1 *2 *3) (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) (-5 *2 (-1229 (-536))) (-5 *1 (-1257 *4)))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) (-5 *2 (-112)) (-5 *1 (-1257 *4))))) -(-10 -7 (-15 -4326 ((-112) (-1229 |#1|))) (-15 -4327 ((-3 (-1229 (-536)) "failed") (-1229 |#1|))) (-15 -4328 ((-3 (-1229 (-400 (-536))) "failed") (-1229 |#1|) |#1|))) -((-2893 (((-112) $ $) NIL)) (-3534 (((-112) $) 11)) (-1367 (((-3 $ "failed") $ $) NIL)) (-3466 (((-749)) 8)) (-3891 (($) NIL T CONST)) (-3816 (((-3 $ "failed") $) 43)) (-3322 (($) 36)) (-2497 (((-112) $) NIL)) (-3798 (((-3 $ "failed") $) 29)) (-2121 (((-893) $) 15)) (-3588 (((-1129) $) NIL)) (-3799 (($) 25 T CONST)) (-2487 (($ (-893)) 37)) (-3589 (((-1091) $) NIL)) (-4325 (((-536) $) 13)) (-4312 (((-838) $) 22) (($ (-536)) 19)) (-3456 (((-749)) 9)) (-2986 (($) 23 T CONST)) (-2992 (($) 24 T CONST)) (-3382 (((-112) $ $) 27)) (-4192 (($ $) 38) (($ $ $) 35)) (-4194 (($ $ $) 26)) (** (($ $ (-893)) NIL) (($ $ (-749)) 40)) (* (($ (-893) $) NIL) (($ (-749) $) NIL) (($ (-536) $) 32) (($ $ $) 31))) -(((-1258 |#1|) (-13 (-170) (-361) (-596 (-536)) (-1122)) (-893)) (T -1258)) -NIL -(-13 (-170) (-361) (-596 (-536)) (-1122)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3167300 3167305 3167310 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3167285 3167290 3167295 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3167270 3167275 3167280 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3167255 3167260 3167265 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1258 3166431 3167130 3167207 "ZMOD" 3167212 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1257 3165541 3165705 3165914 "ZLINDEP" 3166263 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1256 3154917 3156669 3158628 "ZDSOLVE" 3163683 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1255 3154163 3154304 3154493 "YSTREAM" 3154763 NIL YSTREAM (NIL T) -7 NIL NIL) (-1254 3151974 3153464 3153668 "XRPOLY" 3154006 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1253 3148466 3149749 3150333 "XPR" 3151437 NIL XPR (NIL T T) -8 NIL NIL) (-1252 3146315 3147649 3147704 "XPOLYC" 3147992 NIL XPOLYC (NIL T T) -9 NIL 3148105) (-1251 3144080 3145655 3145859 "XPOLY" 3146155 NIL XPOLY (NIL T) -8 NIL NIL) (-1250 3140500 3142597 3142985 "XPBWPOLY" 3143738 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1249 3135892 3137147 3137202 "XFALG" 3139374 NIL XFALG (NIL T T) -9 NIL 3140163) (-1248 3131879 3134125 3134167 "XF" 3134788 NIL XF (NIL T) -9 NIL 3135188) (-1247 3131500 3131588 3131757 "XF-" 3131762 NIL XF- (NIL T T) -8 NIL NIL) (-1246 3130633 3130737 3130942 "XEXPPKG" 3131392 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1245 3128777 3130483 3130579 "XDPOLY" 3130584 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1244 3127693 3128259 3128302 "XALG" 3128365 NIL XALG (NIL T) -9 NIL 3128485) (-1243 3121189 3125670 3126164 "WUTSET" 3127285 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1242 3119040 3119801 3120154 "WP" 3120970 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1241 3118669 3118862 3118932 "WHILEAST" 3118992 T WHILEAST (NIL) -8 NIL NIL) (-1240 3118168 3118386 3118480 "WHEREAST" 3118597 T WHEREAST (NIL) -8 NIL NIL) (-1239 3117054 3117252 3117547 "WFFINTBS" 3117965 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1238 3114958 3115385 3115847 "WEIER" 3116626 NIL WEIER (NIL T) -7 NIL NIL) (-1237 3114105 3114529 3114571 "VSPACE" 3114707 NIL VSPACE (NIL T) -9 NIL 3114781) (-1236 3113943 3113970 3114061 "VSPACE-" 3114066 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1235 3113689 3113732 3113803 "VOID" 3113894 T VOID (NIL) -8 NIL NIL) (-1234 3110114 3110752 3111489 "VIEWDEF" 3112974 T VIEWDEF (NIL) -7 NIL NIL) (-1233 3099452 3101662 3103835 "VIEW3D" 3107963 T VIEW3D (NIL) -8 NIL NIL) (-1232 3091734 3093363 3094942 "VIEW2D" 3097895 T VIEW2D (NIL) -8 NIL NIL) (-1231 3089870 3090229 3090635 "VIEW" 3091350 T VIEW (NIL) -7 NIL NIL) (-1230 3088447 3088706 3089024 "VECTOR2" 3089600 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1229 3083851 3088217 3088309 "VECTOR" 3088390 NIL VECTOR (NIL T) -8 NIL NIL) (-1228 3077378 3081635 3081678 "VECTCAT" 3082671 NIL VECTCAT (NIL T) -9 NIL 3083257) (-1227 3076392 3076646 3077036 "VECTCAT-" 3077041 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1226 3075873 3076043 3076163 "VARIABLE" 3076307 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1225 3075806 3075811 3075841 "UTYPE" 3075846 T UTYPE (NIL) -9 NIL NIL) (-1224 3074636 3074790 3075052 "UTSODETL" 3075632 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1223 3072076 3072536 3073060 "UTSODE" 3074177 NIL UTSODE (NIL T T) -7 NIL NIL) (-1222 3063449 3068768 3068811 "UTSCAT" 3069923 NIL UTSCAT (NIL T) -9 NIL 3070680) (-1221 3060803 3061519 3062508 "UTSCAT-" 3062513 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1220 3060430 3060473 3060606 "UTS2" 3060754 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1219 3052306 3058056 3058545 "UTS" 3059999 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1218 3046582 3049146 3049189 "URAGG" 3051259 NIL URAGG (NIL T) -9 NIL 3051981) (-1217 3043524 3044386 3045508 "URAGG-" 3045513 NIL URAGG- (NIL T T) -8 NIL NIL) (-1216 3039255 3042138 3042610 "UPXSSING" 3043188 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1215 3032370 3039159 3039231 "UPXSCONS" 3039236 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1214 3022730 3029473 3029535 "UPXSCCA" 3030191 NIL UPXSCCA (NIL T T) -9 NIL 3030433) (-1213 3022368 3022453 3022627 "UPXSCCA-" 3022632 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1212 3012654 3019170 3019213 "UPXSCAT" 3019861 NIL UPXSCAT (NIL T) -9 NIL 3020469) (-1211 3012084 3012163 3012342 "UPXS2" 3012569 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1210 3004058 3011199 3011481 "UPXS" 3011860 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1209 3002715 3002967 3003317 "UPSQFREE" 3003802 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1208 2996633 2999642 2999697 "UPSCAT" 3000858 NIL UPSCAT (NIL T T) -9 NIL 3001632) (-1207 2995837 2996044 2996371 "UPSCAT-" 2996376 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1206 2995464 2995507 2995640 "UPOLYC2" 2995788 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1205 2981588 2989551 2989594 "UPOLYC" 2991695 NIL UPOLYC (NIL T) -9 NIL 2992916) (-1204 2972953 2975366 2978501 "UPOLYC-" 2978506 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1203 2972292 2972399 2972563 "UPMP" 2972842 NIL UPMP (NIL T T) -7 NIL NIL) (-1202 2971845 2971926 2972065 "UPDIVP" 2972205 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1201 2970413 2970662 2970978 "UPDECOMP" 2971594 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1200 2969648 2969760 2969945 "UPCDEN" 2970297 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1199 2969167 2969236 2969385 "UP2" 2969573 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1198 2960664 2968733 2968871 "UP" 2969077 NIL UP (NIL NIL T) -8 NIL NIL) (-1197 2959879 2960006 2960211 "UNISEG2" 2960507 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1196 2958396 2959083 2959360 "UNISEG" 2959637 NIL UNISEG (NIL T) -8 NIL NIL) (-1195 2957456 2957636 2957862 "UNIFACT" 2958212 NIL UNIFACT (NIL T) -7 NIL NIL) (-1194 2945514 2957360 2957432 "ULSCONS" 2957437 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1193 2928334 2940253 2940315 "ULSCCAT" 2941035 NIL ULSCCAT (NIL T T) -9 NIL 2941332) (-1192 2927420 2927653 2928029 "ULSCCAT-" 2928034 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1191 2917483 2923913 2923956 "ULSCAT" 2924819 NIL ULSCAT (NIL T) -9 NIL 2925549) (-1190 2916913 2916992 2917171 "ULS2" 2917398 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1189 2900898 2916090 2916341 "ULS" 2916720 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1188 2899336 2900259 2900289 "UFD" 2900501 T UFD (NIL) -9 NIL 2900615) (-1187 2899130 2899176 2899271 "UFD-" 2899276 NIL UFD- (NIL T) -8 NIL NIL) (-1186 2898212 2898395 2898611 "UDVO" 2898936 T UDVO (NIL) -7 NIL NIL) (-1185 2896028 2896437 2896908 "UDPO" 2897776 NIL UDPO (NIL T) -7 NIL NIL) (-1184 2895815 2895983 2896014 "TYPEAST" 2896019 T TYPEAST (NIL) -8 NIL NIL) (-1183 2895748 2895753 2895783 "TYPE" 2895788 T TYPE (NIL) -9 NIL NIL) (-1182 2894719 2894921 2895161 "TWOFACT" 2895542 NIL TWOFACT (NIL T) -7 NIL NIL) (-1181 2893657 2893994 2894257 "TUPLE" 2894491 NIL TUPLE (NIL T) -8 NIL NIL) (-1180 2891348 2891867 2892406 "TUBETOOL" 2893140 T TUBETOOL (NIL) -7 NIL NIL) (-1179 2890197 2890402 2890643 "TUBE" 2891141 NIL TUBE (NIL T) -8 NIL NIL) (-1178 2878864 2882956 2883053 "TSETCAT" 2888322 NIL TSETCAT (NIL T T T T) -9 NIL 2889853) (-1177 2873598 2875196 2877087 "TSETCAT-" 2877092 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1176 2868362 2872570 2872853 "TS" 2873350 NIL TS (NIL T) -8 NIL NIL) (-1175 2862625 2863471 2864413 "TRMANIP" 2867498 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1174 2862066 2862129 2862292 "TRIMAT" 2862557 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1173 2859862 2860099 2860463 "TRIGMNIP" 2861815 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1172 2859382 2859495 2859525 "TRIGCAT" 2859738 T TRIGCAT (NIL) -9 NIL NIL) (-1171 2859051 2859130 2859271 "TRIGCAT-" 2859276 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1170 2855951 2857911 2858191 "TREE" 2858806 NIL TREE (NIL T) -8 NIL NIL) (-1169 2855225 2855753 2855783 "TRANFUN" 2855818 T TRANFUN (NIL) -9 NIL 2855884) (-1168 2854504 2854695 2854975 "TRANFUN-" 2854980 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1167 2854308 2854340 2854401 "TOPSP" 2854465 T TOPSP (NIL) -7 NIL NIL) (-1166 2853656 2853771 2853925 "TOOLSIGN" 2854189 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1165 2852317 2852833 2853072 "TEXTFILE" 2853439 T TEXTFILE (NIL) -8 NIL NIL) (-1164 2852098 2852129 2852201 "TEX1" 2852280 NIL TEX1 (NIL T) -7 NIL NIL) (-1163 2849963 2850477 2850915 "TEX" 2851682 T TEX (NIL) -8 NIL NIL) (-1162 2849611 2849674 2849764 "TEMUTL" 2849895 T TEMUTL (NIL) -7 NIL NIL) (-1161 2847765 2848045 2848370 "TBCMPPK" 2849334 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1160 2839655 2845925 2845981 "TBAGG" 2846381 NIL TBAGG (NIL T T) -9 NIL 2846592) (-1159 2834725 2836213 2837967 "TBAGG-" 2837972 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1158 2834109 2834216 2834361 "TANEXP" 2834614 NIL TANEXP (NIL T) -7 NIL NIL) (-1157 2833521 2833620 2833758 "TABLEAU" 2834006 NIL TABLEAU (NIL T) -8 NIL NIL) (-1156 2827024 2833378 2833471 "TABLE" 2833476 NIL TABLE (NIL T T) -8 NIL NIL) (-1155 2821632 2822852 2824100 "TABLBUMP" 2825810 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1154 2821060 2821160 2821288 "SYSTEM" 2821526 T SYSTEM (NIL) -7 NIL NIL) (-1153 2817523 2818218 2819001 "SYSSOLP" 2820311 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1152 2813815 2814522 2815256 "SYNTAX" 2816811 T SYNTAX (NIL) -8 NIL NIL) (-1151 2810973 2811575 2812207 "SYMTAB" 2813205 T SYMTAB (NIL) -8 NIL NIL) (-1150 2806246 2807142 2808119 "SYMS" 2810018 T SYMS (NIL) -8 NIL NIL) (-1149 2803528 2805707 2805937 "SYMPOLY" 2806054 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1148 2803045 2803120 2803243 "SYMFUNC" 2803440 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1147 2799022 2800282 2801104 "SYMBOL" 2802245 T SYMBOL (NIL) -8 NIL NIL) (-1146 2792561 2794250 2795970 "SWITCH" 2797324 T SWITCH (NIL) -8 NIL NIL) (-1145 2785831 2791382 2791685 "SUTS" 2792316 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1144 2777804 2784946 2785228 "SUPXS" 2785607 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1143 2776963 2777090 2777307 "SUPFRACF" 2777672 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1142 2776584 2776643 2776756 "SUP2" 2776898 NIL SUP2 (NIL T T) -7 NIL NIL) (-1141 2768153 2776202 2776328 "SUP" 2776493 NIL SUP (NIL T) -8 NIL NIL) (-1140 2766566 2766840 2767203 "SUMRF" 2767852 NIL SUMRF (NIL T) -7 NIL NIL) (-1139 2765880 2765946 2766145 "SUMFS" 2766487 NIL SUMFS (NIL T T) -7 NIL NIL) (-1138 2749905 2765057 2765308 "SULS" 2765687 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1137 2749534 2749727 2749797 "SUCHTAST" 2749857 T SUCHTAST (NIL) -8 NIL NIL) (-1136 2748856 2749059 2749199 "SUCH" 2749442 NIL SUCH (NIL T T) -8 NIL NIL) (-1135 2742750 2743762 2744721 "SUBSPACE" 2747944 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1134 2742180 2742270 2742434 "SUBRESP" 2742638 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1133 2736353 2737473 2738620 "STTFNC" 2741080 NIL STTFNC (NIL T) -7 NIL NIL) (-1132 2729722 2731018 2732329 "STTF" 2735089 NIL STTF (NIL T) -7 NIL NIL) (-1131 2721037 2722904 2724698 "STTAYLOR" 2727963 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1130 2714283 2720901 2720984 "STRTBL" 2720989 NIL STRTBL (NIL T) -8 NIL NIL) (-1129 2709674 2714238 2714269 "STRING" 2714274 T STRING (NIL) -8 NIL NIL) (-1128 2704562 2709047 2709077 "STRICAT" 2709136 T STRICAT (NIL) -9 NIL 2709198) (-1127 2704072 2704149 2704293 "STREAM3" 2704479 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1126 2703054 2703237 2703472 "STREAM2" 2703885 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1125 2702742 2702794 2702887 "STREAM1" 2702996 NIL STREAM1 (NIL T) -7 NIL NIL) (-1124 2695457 2700265 2700885 "STREAM" 2702157 NIL STREAM (NIL T) -8 NIL NIL) (-1123 2694473 2694654 2694885 "STINPROD" 2695273 NIL STINPROD (NIL T) -7 NIL NIL) (-1122 2694051 2694235 2694265 "STEP" 2694345 T STEP (NIL) -9 NIL 2694423) (-1121 2687596 2693950 2694027 "STBL" 2694032 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1120 2682773 2686818 2686861 "STAGG" 2687014 NIL STAGG (NIL T) -9 NIL 2687103) (-1119 2680481 2681081 2681951 "STAGG-" 2681956 NIL STAGG- (NIL T T) -8 NIL NIL) (-1118 2678676 2680251 2680343 "STACK" 2680424 NIL STACK (NIL T) -8 NIL NIL) (-1117 2671428 2676817 2677273 "SREGSET" 2678306 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1116 2663854 2665222 2666735 "SRDCMPK" 2670034 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1115 2656821 2661294 2661324 "SRAGG" 2662627 T SRAGG (NIL) -9 NIL 2663235) (-1114 2655838 2656093 2656472 "SRAGG-" 2656477 NIL SRAGG- (NIL T) -8 NIL NIL) (-1113 2650337 2654785 2655206 "SQMATRIX" 2655464 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1112 2644090 2647057 2647783 "SPLTREE" 2649683 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1111 2640080 2640746 2641392 "SPLNODE" 2643516 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1110 2639127 2639360 2639390 "SPFCAT" 2639834 T SPFCAT (NIL) -9 NIL NIL) (-1109 2637864 2638074 2638338 "SPECOUT" 2638885 T SPECOUT (NIL) -7 NIL NIL) (-1108 2629553 2631297 2631327 "SPADXPT" 2635719 T SPADXPT (NIL) -9 NIL 2637753) (-1107 2629314 2629354 2629423 "SPADPRSR" 2629506 T SPADPRSR (NIL) -7 NIL NIL) (-1106 2627497 2629269 2629300 "SPADAST" 2629305 T SPADAST (NIL) -8 NIL NIL) (-1105 2619468 2621215 2621258 "SPACEC" 2625631 NIL SPACEC (NIL T) -9 NIL 2627447) (-1104 2617639 2619400 2619449 "SPACE3" 2619454 NIL SPACE3 (NIL T) -8 NIL NIL) (-1103 2616391 2616562 2616853 "SORTPAK" 2617444 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1102 2614441 2614744 2615163 "SOLVETRA" 2616055 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1101 2613452 2613674 2613948 "SOLVESER" 2614214 NIL SOLVESER (NIL T) -7 NIL NIL) (-1100 2608672 2609553 2610555 "SOLVERAD" 2612504 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1099 2604487 2605096 2605825 "SOLVEFOR" 2608039 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1098 2598811 2603836 2603933 "SNTSCAT" 2603938 NIL SNTSCAT (NIL T T T T) -9 NIL 2604008) (-1097 2592954 2597134 2597525 "SMTS" 2598501 NIL SMTS (NIL T T T) -8 NIL NIL) (-1096 2587430 2592842 2592919 "SMP" 2592924 NIL SMP (NIL T T) -8 NIL NIL) (-1095 2585589 2585890 2586288 "SMITH" 2587127 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1094 2578570 2582721 2582824 "SMATCAT" 2584178 NIL SMATCAT (NIL NIL T T T) -9 NIL 2584728) (-1093 2575531 2576347 2577518 "SMATCAT-" 2577523 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1092 2573244 2574767 2574810 "SKAGG" 2575071 NIL SKAGG (NIL T) -9 NIL 2575206) (-1091 2569362 2572348 2572626 "SINT" 2572988 T SINT (NIL) -8 NIL NIL) (-1090 2569134 2569172 2569238 "SIMPAN" 2569318 T SIMPAN (NIL) -7 NIL NIL) (-1089 2567993 2568207 2568475 "SIGNRF" 2568900 NIL SIGNRF (NIL T) -7 NIL NIL) (-1088 2566819 2566963 2567247 "SIGNEF" 2567829 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1087 2566152 2566402 2566526 "SIGAST" 2566717 T SIGAST (NIL) -8 NIL NIL) (-1086 2565459 2565687 2565827 "SIG" 2566034 T SIG (NIL) -8 NIL NIL) (-1085 2563149 2563603 2564109 "SHP" 2565000 NIL SHP (NIL T NIL) -7 NIL NIL) (-1084 2557062 2563050 2563126 "SHDP" 2563131 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1083 2556661 2556827 2556857 "SGROUP" 2556950 T SGROUP (NIL) -9 NIL 2557012) (-1082 2556519 2556545 2556618 "SGROUP-" 2556623 NIL SGROUP- (NIL T) -8 NIL NIL) (-1081 2553355 2554052 2554775 "SGCF" 2555818 T SGCF (NIL) -7 NIL NIL) (-1080 2547777 2552802 2552899 "SFRTCAT" 2552904 NIL SFRTCAT (NIL T T T T) -9 NIL 2552943) (-1079 2541201 2542216 2543352 "SFRGCD" 2546760 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1078 2534329 2535400 2536586 "SFQCMPK" 2540134 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1077 2533951 2534040 2534150 "SFORT" 2534270 NIL SFORT (NIL T T) -8 NIL NIL) (-1076 2533096 2533791 2533912 "SEXOF" 2533917 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1075 2527872 2528561 2528656 "SEXCAT" 2532427 NIL SEXCAT (NIL T T T T T) -9 NIL 2533046) (-1074 2527006 2527753 2527821 "SEX" 2527826 T SEX (NIL) -8 NIL NIL) (-1073 2525263 2525723 2526026 "SETMN" 2526749 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1072 2524869 2524995 2525025 "SETCAT" 2525142 T SETCAT (NIL) -9 NIL 2525227) (-1071 2524649 2524701 2524800 "SETCAT-" 2524805 NIL SETCAT- (NIL T) -8 NIL NIL) (-1070 2521036 2523110 2523153 "SETAGG" 2524023 NIL SETAGG (NIL T) -9 NIL 2524363) (-1069 2520494 2520610 2520847 "SETAGG-" 2520852 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1068 2517674 2520428 2520476 "SET" 2520481 NIL SET (NIL T) -8 NIL NIL) (-1067 2517144 2517370 2517471 "SEQAST" 2517595 T SEQAST (NIL) -8 NIL NIL) (-1066 2516348 2516641 2516702 "SEGXCAT" 2516988 NIL SEGXCAT (NIL T T) -9 NIL 2517108) (-1065 2515255 2515468 2515511 "SEGCAT" 2516093 NIL SEGCAT (NIL T) -9 NIL 2516331) (-1064 2514876 2514935 2515048 "SEGBIND2" 2515190 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1063 2513925 2514255 2514455 "SEGBIND" 2514711 NIL SEGBIND (NIL T) -8 NIL NIL) (-1062 2513526 2513726 2513803 "SEGAST" 2513870 T SEGAST (NIL) -8 NIL NIL) (-1061 2512745 2512871 2513075 "SEG2" 2513370 NIL SEG2 (NIL T T) -7 NIL NIL) (-1060 2511801 2512411 2512593 "SEG" 2512598 NIL SEG (NIL T) -8 NIL NIL) (-1059 2511238 2511736 2511783 "SDVAR" 2511788 NIL SDVAR (NIL T) -8 NIL NIL) (-1058 2503569 2511008 2511138 "SDPOL" 2511143 NIL SDPOL (NIL T) -8 NIL NIL) (-1057 2502162 2502428 2502747 "SCPKG" 2503284 NIL SCPKG (NIL T) -7 NIL NIL) (-1056 2501298 2501478 2501678 "SCOPE" 2501984 T SCOPE (NIL) -8 NIL NIL) (-1055 2500519 2500652 2500831 "SCACHE" 2501153 NIL SCACHE (NIL T) -7 NIL NIL) (-1054 2500228 2500388 2500418 "SASTCAT" 2500423 T SASTCAT (NIL) -9 NIL 2500436) (-1053 2499667 2499988 2500073 "SAOS" 2500165 T SAOS (NIL) -8 NIL NIL) (-1052 2499232 2499267 2499440 "SAERFFC" 2499626 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1051 2498825 2498860 2499019 "SAEFACT" 2499191 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1050 2492808 2498722 2498802 "SAE" 2498807 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1049 2491129 2491443 2491844 "RURPK" 2492474 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1048 2489765 2490044 2490356 "RULESET" 2490963 NIL RULESET (NIL T T T) -8 NIL NIL) (-1047 2489404 2489559 2489642 "RULECOLD" 2489717 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1046 2486591 2487094 2487559 "RULE" 2489085 NIL RULE (NIL T T T) -8 NIL NIL) (-1045 2486089 2486308 2486402 "RSTRCAST" 2486519 T RSTRCAST (NIL) -8 NIL NIL) (-1044 2480938 2481732 2482652 "RSETGCD" 2485288 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1043 2470222 2475247 2475344 "RSETCAT" 2479463 NIL RSETCAT (NIL T T T T) -9 NIL 2480560) (-1042 2468149 2468688 2469512 "RSETCAT-" 2469517 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1041 2460536 2461911 2463431 "RSDCMPK" 2466748 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1040 2458541 2458982 2459056 "RRCC" 2460142 NIL RRCC (NIL T T) -9 NIL 2460486) (-1039 2457892 2458066 2458345 "RRCC-" 2458350 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1038 2457362 2457588 2457689 "RPTAST" 2457813 T RPTAST (NIL) -8 NIL NIL) (-1037 2431621 2441175 2441242 "RPOLCAT" 2451906 NIL RPOLCAT (NIL T T T) -9 NIL 2455065) (-1036 2423157 2425483 2428593 "RPOLCAT-" 2428598 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1035 2414206 2421368 2421850 "ROUTINE" 2422697 T ROUTINE (NIL) -8 NIL NIL) (-1034 2410966 2413757 2413906 "ROMAN" 2414079 T ROMAN (NIL) -8 NIL NIL) (-1033 2409243 2409826 2410086 "ROIRC" 2410771 NIL ROIRC (NIL T T) -8 NIL NIL) (-1032 2405698 2407933 2407963 "RNS" 2408267 T RNS (NIL) -9 NIL 2408539) (-1031 2404207 2404590 2405124 "RNS-" 2405199 NIL RNS- (NIL T) -8 NIL NIL) (-1030 2403656 2404038 2404068 "RNG" 2404073 T RNG (NIL) -9 NIL 2404094) (-1029 2403048 2403410 2403453 "RMODULE" 2403515 NIL RMODULE (NIL T) -9 NIL 2403557) (-1028 2401884 2401978 2402314 "RMCAT2" 2402949 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1027 2398589 2401058 2401383 "RMATRIX" 2401618 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1026 2391531 2393765 2393880 "RMATCAT" 2397239 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2398221) (-1025 2390906 2391053 2391360 "RMATCAT-" 2391365 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1024 2390473 2390548 2390676 "RINTERP" 2390825 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1023 2389561 2390081 2390111 "RING" 2390223 T RING (NIL) -9 NIL 2390318) (-1022 2389353 2389397 2389494 "RING-" 2389499 NIL RING- (NIL T) -8 NIL NIL) (-1021 2388194 2388431 2388689 "RIDIST" 2389117 T RIDIST (NIL) -7 NIL NIL) (-1020 2379537 2387662 2387868 "RGCHAIN" 2388042 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1019 2378913 2379293 2379334 "RGBCSPC" 2379392 NIL RGBCSPC (NIL T) -9 NIL 2379444) (-1018 2378097 2378452 2378493 "RGBCMDL" 2378725 NIL RGBCMDL (NIL T) -9 NIL 2378839) (-1017 2377743 2377806 2377909 "RFFACTOR" 2378028 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1016 2377468 2377503 2377600 "RFFACT" 2377702 NIL RFFACT (NIL T) -7 NIL NIL) (-1015 2375585 2375949 2376331 "RFDIST" 2377108 T RFDIST (NIL) -7 NIL NIL) (-1014 2372579 2373193 2373863 "RF" 2374949 NIL RF (NIL T) -7 NIL NIL) (-1013 2372032 2372124 2372287 "RETSOL" 2372481 NIL RETSOL (NIL T T) -7 NIL NIL) (-1012 2371620 2371700 2371743 "RETRACT" 2371936 NIL RETRACT (NIL T) -9 NIL NIL) (-1011 2371469 2371494 2371581 "RETRACT-" 2371586 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1010 2371098 2371291 2371361 "RETAST" 2371421 T RETAST (NIL) -8 NIL NIL) (-1009 2363954 2370751 2370878 "RESULT" 2370993 T RESULT (NIL) -8 NIL NIL) (-1008 2362580 2363223 2363422 "RESRING" 2363857 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1007 2362216 2362265 2362363 "RESLATC" 2362517 NIL RESLATC (NIL T) -7 NIL NIL) (-1006 2361922 2361956 2362063 "REPSQ" 2362175 NIL REPSQ (NIL T) -7 NIL NIL) (-1005 2361620 2361654 2361765 "REPDB" 2361881 NIL REPDB (NIL T) -7 NIL NIL) (-1004 2355530 2356909 2358132 "REP2" 2360432 NIL REP2 (NIL T) -7 NIL NIL) (-1003 2351907 2352588 2353396 "REP1" 2354757 NIL REP1 (NIL T) -7 NIL NIL) (-1002 2349329 2349909 2350511 "REP" 2351327 T REP (NIL) -7 NIL NIL) (-1001 2342082 2347470 2347926 "REGSET" 2348959 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1000 2340895 2341230 2341480 "REF" 2341867 NIL REF (NIL T) -8 NIL NIL) (-999 2340276 2340379 2340544 "REDORDER" 2340779 NIL REDORDER (NIL T T) -7 NIL NIL) (-998 2336327 2339504 2339727 "RECLOS" 2340105 NIL RECLOS (NIL T) -8 NIL NIL) (-997 2335384 2335565 2335778 "REALSOLV" 2336134 T REALSOLV (NIL) -7 NIL NIL) (-996 2331875 2332677 2333559 "REAL0Q" 2334549 NIL REAL0Q (NIL T) -7 NIL NIL) (-995 2327486 2328474 2329533 "REAL0" 2330856 NIL REAL0 (NIL T) -7 NIL NIL) (-994 2327334 2327375 2327403 "REAL" 2327408 T REAL (NIL) -9 NIL 2327443) (-993 2326836 2327055 2327147 "RDUCEAST" 2327262 T RDUCEAST (NIL) -8 NIL NIL) (-992 2326244 2326316 2326521 "RDIV" 2326758 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-991 2325317 2325491 2325702 "RDIST" 2326066 NIL RDIST (NIL T) -7 NIL NIL) (-990 2323918 2324205 2324575 "RDETRS" 2325025 NIL RDETRS (NIL T T) -7 NIL NIL) (-989 2321735 2322189 2322725 "RDETR" 2323460 NIL RDETR (NIL T T) -7 NIL NIL) (-988 2320349 2320627 2321029 "RDEEFS" 2321451 NIL RDEEFS (NIL T T) -7 NIL NIL) (-987 2318847 2319153 2319583 "RDEEF" 2320037 NIL RDEEF (NIL T T) -7 NIL NIL) (-986 2313193 2316055 2316083 "RCFIELD" 2317360 T RCFIELD (NIL) -9 NIL 2318090) (-985 2311262 2311766 2312459 "RCFIELD-" 2312532 NIL RCFIELD- (NIL T) -8 NIL NIL) (-984 2307593 2309378 2309419 "RCAGG" 2310490 NIL RCAGG (NIL T) -9 NIL 2310955) (-983 2307224 2307318 2307478 "RCAGG-" 2307483 NIL RCAGG- (NIL T T) -8 NIL NIL) (-982 2306564 2306676 2306839 "RATRET" 2307108 NIL RATRET (NIL T) -7 NIL NIL) (-981 2306121 2306188 2306307 "RATFACT" 2306492 NIL RATFACT (NIL T) -7 NIL NIL) (-980 2305436 2305556 2305706 "RANDSRC" 2305991 T RANDSRC (NIL) -7 NIL NIL) (-979 2305173 2305217 2305288 "RADUTIL" 2305385 T RADUTIL (NIL) -7 NIL NIL) (-978 2298259 2303916 2304233 "RADIX" 2304888 NIL RADIX (NIL NIL) -8 NIL NIL) (-977 2289926 2298103 2298231 "RADFF" 2298236 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-976 2289578 2289653 2289681 "RADCAT" 2289838 T RADCAT (NIL) -9 NIL NIL) (-975 2289363 2289411 2289508 "RADCAT-" 2289513 NIL RADCAT- (NIL T) -8 NIL NIL) (-974 2287514 2289138 2289227 "QUEUE" 2289307 NIL QUEUE (NIL T) -8 NIL NIL) (-973 2287152 2287195 2287322 "QUATCT2" 2287465 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-972 2281019 2284313 2284353 "QUATCAT" 2285133 NIL QUATCAT (NIL T) -9 NIL 2285899) (-971 2277184 2278214 2279594 "QUATCAT-" 2279688 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-970 2273767 2277121 2277166 "QUAT" 2277171 NIL QUAT (NIL T) -8 NIL NIL) (-969 2271287 2272851 2272892 "QUAGG" 2273267 NIL QUAGG (NIL T) -9 NIL 2273442) (-968 2270919 2271112 2271180 "QQUTAST" 2271239 T QQUTAST (NIL) -8 NIL NIL) (-967 2269844 2270317 2270489 "QFORM" 2270791 NIL QFORM (NIL NIL T) -8 NIL NIL) (-966 2269482 2269525 2269652 "QFCAT2" 2269795 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-965 2260831 2266018 2266058 "QFCAT" 2266716 NIL QFCAT (NIL T) -9 NIL 2267715) (-964 2256439 2257628 2259207 "QFCAT-" 2259301 NIL QFCAT- (NIL T T) -8 NIL NIL) (-963 2255899 2256009 2256139 "QEQUAT" 2256329 T QEQUAT (NIL) -8 NIL NIL) (-962 2249047 2250118 2251302 "QCMPACK" 2254832 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-961 2248292 2248466 2248698 "QALGSET2" 2248867 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-960 2245874 2246293 2246719 "QALGSET" 2247949 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-959 2244565 2244788 2245105 "PWFFINTB" 2245647 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-958 2242764 2242932 2243286 "PUSHVAR" 2244379 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-957 2238682 2239736 2239777 "PTRANFN" 2241661 NIL PTRANFN (NIL T) -9 NIL NIL) (-956 2237084 2237375 2237697 "PTPACK" 2238393 NIL PTPACK (NIL T) -7 NIL NIL) (-955 2236716 2236773 2236882 "PTFUNC2" 2237021 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-954 2231182 2235527 2235568 "PTCAT" 2235941 NIL PTCAT (NIL T) -9 NIL 2236103) (-953 2230840 2230875 2230999 "PSQFR" 2231141 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-952 2229435 2229733 2230067 "PSEUDLIN" 2230538 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-951 2216204 2218569 2220893 "PSETPK" 2227195 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-950 2209248 2211962 2212058 "PSETCAT" 2215079 NIL PSETCAT (NIL T T T T) -9 NIL 2215893) (-949 2207084 2207718 2208539 "PSETCAT-" 2208544 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-948 2206433 2206598 2206626 "PSCURVE" 2206894 T PSCURVE (NIL) -9 NIL 2207061) (-947 2202914 2204396 2204461 "PSCAT" 2205305 NIL PSCAT (NIL T T T) -9 NIL 2205545) (-946 2201977 2202193 2202593 "PSCAT-" 2202598 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-945 2200629 2201262 2201476 "PRTITION" 2201783 T PRTITION (NIL) -8 NIL NIL) (-944 2200131 2200350 2200442 "PRTDAST" 2200557 T PRTDAST (NIL) -8 NIL NIL) (-943 2189229 2191435 2193623 "PRS" 2197993 NIL PRS (NIL T T) -7 NIL NIL) (-942 2187087 2188579 2188619 "PRQAGG" 2188802 NIL PRQAGG (NIL T) -9 NIL 2188904) (-941 2186473 2186702 2186730 "PROPLOG" 2186915 T PROPLOG (NIL) -9 NIL 2187037) (-940 2183643 2184287 2184751 "PROPFRML" 2186041 NIL PROPFRML (NIL T) -8 NIL NIL) (-939 2183103 2183213 2183343 "PROPERTY" 2183533 T PROPERTY (NIL) -8 NIL NIL) (-938 2177188 2181269 2182089 "PRODUCT" 2182329 NIL PRODUCT (NIL T T) -8 NIL NIL) (-937 2176984 2177016 2177075 "PRINT" 2177149 T PRINT (NIL) -7 NIL NIL) (-936 2176324 2176441 2176593 "PRIMES" 2176864 NIL PRIMES (NIL T) -7 NIL NIL) (-935 2174389 2174790 2175256 "PRIMELT" 2175903 NIL PRIMELT (NIL T) -7 NIL NIL) (-934 2174118 2174167 2174195 "PRIMCAT" 2174319 T PRIMCAT (NIL) -9 NIL NIL) (-933 2173125 2173303 2173531 "PRIMARR2" 2173936 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-932 2169286 2173063 2173108 "PRIMARR" 2173113 NIL PRIMARR (NIL T) -8 NIL NIL) (-931 2168929 2168985 2169096 "PREASSOC" 2169224 NIL PREASSOC (NIL T T) -7 NIL NIL) (-930 2166249 2168387 2168621 "PR" 2168740 NIL PR (NIL T T) -8 NIL NIL) (-929 2165724 2165857 2165885 "PPCURVE" 2166090 T PPCURVE (NIL) -9 NIL 2166226) (-928 2165346 2165519 2165602 "PORTNUM" 2165661 T PORTNUM (NIL) -8 NIL NIL) (-927 2162705 2163104 2163696 "POLYROOT" 2164927 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-926 2162088 2162146 2162380 "POLYLIFT" 2162641 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-925 2158363 2158812 2159441 "POLYCATQ" 2161633 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-924 2145416 2150758 2150823 "POLYCAT" 2154337 NIL POLYCAT (NIL T T T) -9 NIL 2156265) (-923 2138923 2140765 2143130 "POLYCAT-" 2143135 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-922 2138510 2138578 2138698 "POLY2UP" 2138849 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-921 2138142 2138199 2138308 "POLY2" 2138447 NIL POLY2 (NIL T T) -7 NIL NIL) (-920 2132118 2137746 2137906 "POLY" 2138015 NIL POLY (NIL T) -8 NIL NIL) (-919 2130803 2131042 2131318 "POLUTIL" 2131892 NIL POLUTIL (NIL T T) -7 NIL NIL) (-918 2129158 2129435 2129766 "POLTOPOL" 2130525 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-917 2124676 2129094 2129140 "POINT" 2129145 NIL POINT (NIL T) -8 NIL NIL) (-916 2122863 2123220 2123595 "PNTHEORY" 2124321 T PNTHEORY (NIL) -7 NIL NIL) (-915 2121282 2121579 2121991 "PMTOOLS" 2122561 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-914 2120875 2120953 2121070 "PMSYM" 2121198 NIL PMSYM (NIL T) -7 NIL NIL) (-913 2120385 2120454 2120628 "PMQFCAT" 2120800 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-912 2119781 2119867 2120028 "PMPREDFS" 2120286 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-911 2119136 2119246 2119402 "PMPRED" 2119658 NIL PMPRED (NIL T) -7 NIL NIL) (-910 2117779 2117987 2118372 "PMPLCAT" 2118898 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-909 2117311 2117390 2117542 "PMLSAGG" 2117694 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-908 2116786 2116862 2117043 "PMKERNEL" 2117229 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-907 2116403 2116478 2116591 "PMINS" 2116705 NIL PMINS (NIL T) -7 NIL NIL) (-906 2115831 2115900 2116116 "PMFS" 2116328 NIL PMFS (NIL T T T) -7 NIL NIL) (-905 2115059 2115177 2115382 "PMDOWN" 2115708 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-904 2114333 2114444 2114607 "PMASSFS" 2114945 NIL PMASSFS (NIL T T) -7 NIL NIL) (-903 2113496 2113655 2113837 "PMASS" 2114171 T PMASS (NIL) -7 NIL NIL) (-902 2113151 2113219 2113313 "PLOTTOOL" 2113422 T PLOTTOOL (NIL) -7 NIL NIL) (-901 2108965 2109999 2110920 "PLOT3D" 2112250 T PLOT3D (NIL) -8 NIL NIL) (-900 2107877 2108054 2108289 "PLOT1" 2108769 NIL PLOT1 (NIL T) -7 NIL NIL) (-899 2102499 2103688 2104836 "PLOT" 2106749 T PLOT (NIL) -8 NIL NIL) (-898 2077893 2082565 2087416 "PLEQN" 2097765 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-897 2077586 2077633 2077736 "PINTERPA" 2077840 NIL PINTERPA (NIL T T) -7 NIL NIL) (-896 2076904 2077026 2077206 "PINTERP" 2077451 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-895 2075336 2076277 2076305 "PID" 2076487 T PID (NIL) -9 NIL 2076621) (-894 2075061 2075098 2075186 "PICOERCE" 2075293 NIL PICOERCE (NIL T) -7 NIL NIL) (-893 2074346 2074867 2074954 "PI" 2074994 T PI (NIL) -8 NIL NIL) (-892 2073666 2073805 2073981 "PGROEB" 2074202 NIL PGROEB (NIL T) -7 NIL NIL) (-891 2069253 2070067 2070972 "PGE" 2072781 T PGE (NIL) -7 NIL NIL) (-890 2067377 2067623 2067989 "PGCD" 2068970 NIL PGCD (NIL T T T T) -7 NIL NIL) (-889 2066715 2066818 2066979 "PFRPAC" 2067261 NIL PFRPAC (NIL T) -7 NIL NIL) (-888 2063397 2065263 2065616 "PFR" 2066394 NIL PFR (NIL T) -8 NIL NIL) (-887 2061786 2062030 2062355 "PFOTOOLS" 2063144 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-886 2060319 2060558 2060909 "PFOQ" 2061543 NIL PFOQ (NIL T T T) -7 NIL NIL) (-885 2058792 2059004 2059367 "PFO" 2060103 NIL PFO (NIL T T T T T) -7 NIL NIL) (-884 2056261 2057498 2057526 "PFECAT" 2058111 T PFECAT (NIL) -9 NIL 2058495) (-883 2055706 2055860 2056074 "PFECAT-" 2056079 NIL PFECAT- (NIL T) -8 NIL NIL) (-882 2054310 2054561 2054862 "PFBRU" 2055455 NIL PFBRU (NIL T T) -7 NIL NIL) (-881 2052177 2052528 2052960 "PFBR" 2053961 NIL PFBR (NIL T T T T) -7 NIL NIL) (-880 2048767 2052066 2052135 "PF" 2052140 NIL PF (NIL NIL) -8 NIL NIL) (-879 2044033 2044974 2045844 "PERMGRP" 2047930 NIL PERMGRP (NIL T) -8 NIL NIL) (-878 2042165 2043096 2043137 "PERMCAT" 2043583 NIL PERMCAT (NIL T) -9 NIL 2043888) (-877 2041818 2041859 2041983 "PERMAN" 2042118 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-876 2037734 2039194 2039870 "PERM" 2041175 NIL PERM (NIL T) -8 NIL NIL) (-875 2035176 2037303 2037434 "PENDTREE" 2037636 NIL PENDTREE (NIL T) -8 NIL NIL) (-874 2033289 2034023 2034064 "PDRING" 2034721 NIL PDRING (NIL T) -9 NIL 2035007) (-873 2032392 2032610 2032972 "PDRING-" 2032977 NIL PDRING- (NIL T T) -8 NIL NIL) (-872 2029533 2030284 2030975 "PDEPROB" 2031721 T PDEPROB (NIL) -8 NIL NIL) (-871 2027080 2027582 2028137 "PDEPACK" 2028998 T PDEPACK (NIL) -7 NIL NIL) (-870 2025992 2026182 2026433 "PDECOMP" 2026879 NIL PDECOMP (NIL T T) -7 NIL NIL) (-869 2023597 2024414 2024442 "PDECAT" 2025229 T PDECAT (NIL) -9 NIL 2025942) (-868 2023348 2023381 2023471 "PCOMP" 2023558 NIL PCOMP (NIL T T) -7 NIL NIL) (-867 2021553 2022149 2022446 "PBWLB" 2023077 NIL PBWLB (NIL T) -8 NIL NIL) (-866 2021185 2021242 2021351 "PATTERN2" 2021490 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-865 2018942 2019330 2019787 "PATTERN1" 2020774 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-864 2011448 2013015 2014353 "PATTERN" 2017625 NIL PATTERN (NIL T) -8 NIL NIL) (-863 2011012 2011079 2011211 "PATRES2" 2011375 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-862 2008407 2008961 2009442 "PATRES" 2010577 NIL PATRES (NIL T T) -8 NIL NIL) (-861 2006290 2006695 2007102 "PATMATCH" 2008074 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-860 2005826 2006009 2006050 "PATMAB" 2006157 NIL PATMAB (NIL T) -9 NIL 2006240) (-859 2004371 2004680 2004938 "PATLRES" 2005631 NIL PATLRES (NIL T T T) -8 NIL NIL) (-858 2003917 2004040 2004081 "PATAB" 2004086 NIL PATAB (NIL T) -9 NIL 2004258) (-857 2001398 2001930 2002503 "PARTPERM" 2003364 T PARTPERM (NIL) -7 NIL NIL) (-856 2001019 2001082 2001184 "PARSURF" 2001329 NIL PARSURF (NIL T) -8 NIL NIL) (-855 2000651 2000708 2000817 "PARSU2" 2000956 NIL PARSU2 (NIL T T) -7 NIL NIL) (-854 2000415 2000455 2000522 "PARSER" 2000604 T PARSER (NIL) -7 NIL NIL) (-853 2000036 2000099 2000201 "PARSCURV" 2000346 NIL PARSCURV (NIL T) -8 NIL NIL) (-852 1999668 1999725 1999834 "PARSC2" 1999973 NIL PARSC2 (NIL T T) -7 NIL NIL) (-851 1999307 1999365 1999462 "PARPCURV" 1999604 NIL PARPCURV (NIL T) -8 NIL NIL) (-850 1998939 1998996 1999105 "PARPC2" 1999244 NIL PARPC2 (NIL T T) -7 NIL NIL) (-849 1998459 1998545 1998664 "PAN2EXPR" 1998840 T PAN2EXPR (NIL) -7 NIL NIL) (-848 1997265 1997580 1997808 "PALETTE" 1998251 T PALETTE (NIL) -8 NIL NIL) (-847 1995733 1996270 1996630 "PAIR" 1996951 NIL PAIR (NIL T T) -8 NIL NIL) (-846 1989662 1994992 1995186 "PADICRC" 1995588 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-845 1982949 1989008 1989192 "PADICRAT" 1989510 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-844 1980196 1981724 1981764 "PADICCT" 1982345 NIL PADICCT (NIL NIL) -9 NIL 1982627) (-843 1978548 1980133 1980178 "PADIC" 1980183 NIL PADIC (NIL NIL) -8 NIL NIL) (-842 1977505 1977705 1977973 "PADEPAC" 1978335 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-841 1976717 1976850 1977056 "PADE" 1977367 NIL PADE (NIL T T T) -7 NIL NIL) (-840 1974767 1975553 1975870 "OWP" 1976484 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-839 1973876 1974372 1974544 "OVAR" 1974635 NIL OVAR (NIL NIL) -8 NIL NIL) (-838 1962783 1964985 1967185 "OUTFORM" 1971696 T OUTFORM (NIL) -8 NIL NIL) (-837 1962204 1962380 1962507 "OUTBFILE" 1962676 T OUTBFILE (NIL) -8 NIL NIL) (-836 1961841 1961924 1961952 "OUTBCON" 1962103 T OUTBCON (NIL) -9 NIL 1962188) (-835 1961681 1961716 1961792 "OUTBCON-" 1961797 NIL OUTBCON- (NIL T) -8 NIL NIL) (-834 1960945 1961066 1961227 "OUT" 1961540 T OUT (NIL) -7 NIL NIL) (-833 1960353 1960674 1960763 "OSI" 1960876 T OSI (NIL) -8 NIL NIL) (-832 1959909 1960221 1960249 "OSGROUP" 1960254 T OSGROUP (NIL) -9 NIL 1960276) (-831 1958654 1958881 1959166 "ORTHPOL" 1959656 NIL ORTHPOL (NIL T) -7 NIL NIL) (-830 1956078 1958313 1958452 "OREUP" 1958597 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-829 1953530 1955769 1955896 "ORESUP" 1956020 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-828 1951058 1951558 1952119 "OREPCTO" 1953019 NIL OREPCTO (NIL T T) -7 NIL NIL) (-827 1944976 1947136 1947177 "OREPCAT" 1949525 NIL OREPCAT (NIL T) -9 NIL 1950629) (-826 1942144 1942919 1943970 "OREPCAT-" 1943975 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-825 1941321 1941593 1941621 "ORDSET" 1941930 T ORDSET (NIL) -9 NIL 1942094) (-824 1940840 1940962 1941155 "ORDSET-" 1941160 NIL ORDSET- (NIL T) -8 NIL NIL) (-823 1939494 1940251 1940279 "ORDRING" 1940481 T ORDRING (NIL) -9 NIL 1940606) (-822 1939139 1939233 1939377 "ORDRING-" 1939382 NIL ORDRING- (NIL T) -8 NIL NIL) (-821 1938545 1938982 1939010 "ORDMON" 1939015 T ORDMON (NIL) -9 NIL 1939036) (-820 1937707 1937854 1938049 "ORDFUNS" 1938394 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-819 1937218 1937577 1937605 "ORDFIN" 1937610 T ORDFIN (NIL) -9 NIL 1937631) (-818 1936484 1936611 1936797 "ORDCOMP2" 1937078 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-817 1933083 1935070 1935479 "ORDCOMP" 1936108 NIL ORDCOMP (NIL T) -8 NIL NIL) (-816 1929590 1930473 1931310 "OPTPROB" 1932266 T OPTPROB (NIL) -8 NIL NIL) (-815 1926392 1927031 1927735 "OPTPACK" 1928906 T OPTPACK (NIL) -7 NIL NIL) (-814 1924105 1924845 1924873 "OPTCAT" 1925692 T OPTCAT (NIL) -9 NIL 1926342) (-813 1923873 1923912 1923978 "OPQUERY" 1924059 T OPQUERY (NIL) -7 NIL NIL) (-812 1921041 1922184 1922688 "OP" 1923402 NIL OP (NIL T) -8 NIL NIL) (-811 1920346 1920461 1920635 "ONECOMP2" 1920913 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-810 1917198 1919143 1919512 "ONECOMP" 1920010 NIL ONECOMP (NIL T) -8 NIL NIL) (-809 1916617 1916723 1916853 "OMSERVER" 1917088 T OMSERVER (NIL) -7 NIL NIL) (-808 1913505 1916057 1916097 "OMSAGG" 1916158 NIL OMSAGG (NIL T) -9 NIL 1916222) (-807 1912128 1912391 1912673 "OMPKG" 1913243 T OMPKG (NIL) -7 NIL NIL) (-806 1910710 1911677 1911846 "OMLO" 1912009 NIL OMLO (NIL T T) -8 NIL NIL) (-805 1909635 1909782 1910009 "OMEXPR" 1910536 NIL OMEXPR (NIL T) -7 NIL NIL) (-804 1908813 1909056 1909216 "OMERRK" 1909495 T OMERRK (NIL) -8 NIL NIL) (-803 1908131 1908359 1908495 "OMERR" 1908697 T OMERR (NIL) -8 NIL NIL) (-802 1907609 1907808 1907916 "OMENC" 1908043 T OMENC (NIL) -8 NIL NIL) (-801 1901504 1902689 1903860 "OMDEV" 1906458 T OMDEV (NIL) -8 NIL NIL) (-800 1900573 1900744 1900938 "OMCONN" 1901330 T OMCONN (NIL) -8 NIL NIL) (-799 1900003 1900106 1900134 "OM" 1900433 T OM (NIL) -9 NIL NIL) (-798 1898659 1899601 1899629 "OINTDOM" 1899634 T OINTDOM (NIL) -9 NIL 1899655) (-797 1894465 1895649 1896365 "OFMONOID" 1897975 NIL OFMONOID (NIL T) -8 NIL NIL) (-796 1893903 1894402 1894447 "ODVAR" 1894452 NIL ODVAR (NIL T) -8 NIL NIL) (-795 1891115 1893400 1893585 "ODR" 1893778 NIL ODR (NIL T T NIL) -8 NIL NIL) (-794 1883500 1890891 1891017 "ODPOL" 1891022 NIL ODPOL (NIL T) -8 NIL NIL) (-793 1877383 1883372 1883477 "ODP" 1883482 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-792 1876149 1876364 1876639 "ODETOOLS" 1877157 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-791 1873118 1873774 1874490 "ODESYS" 1875482 NIL ODESYS (NIL T T) -7 NIL NIL) (-790 1868000 1868908 1869933 "ODERTRIC" 1872193 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-789 1867426 1867508 1867702 "ODERED" 1867912 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-788 1864322 1864868 1865543 "ODERAT" 1866851 NIL ODERAT (NIL T T) -7 NIL NIL) (-787 1861282 1861746 1862343 "ODEPRRIC" 1863851 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-786 1859151 1859720 1860229 "ODEPROB" 1860793 T ODEPROB (NIL) -8 NIL NIL) (-785 1855673 1856156 1856803 "ODEPRIM" 1858630 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-784 1854922 1855024 1855284 "ODEPAL" 1855565 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-783 1851084 1851875 1852739 "ODEPACK" 1854078 T ODEPACK (NIL) -7 NIL NIL) (-782 1850117 1850224 1850453 "ODEINT" 1850973 NIL ODEINT (NIL T T) -7 NIL NIL) (-781 1844218 1845643 1847090 "ODEIFTBL" 1848690 T ODEIFTBL (NIL) -8 NIL NIL) (-780 1839567 1840349 1841304 "ODEEF" 1843381 NIL ODEEF (NIL T T) -7 NIL NIL) (-779 1838902 1838991 1839221 "ODECONST" 1839472 NIL ODECONST (NIL T T T) -7 NIL NIL) (-778 1837053 1837688 1837716 "ODECAT" 1838321 T ODECAT (NIL) -9 NIL 1838852) (-777 1836691 1836734 1836861 "OCTCT2" 1837004 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-776 1833610 1836403 1836522 "OCT" 1836604 NIL OCT (NIL T) -8 NIL NIL) (-775 1832988 1833430 1833458 "OCAMON" 1833463 T OCAMON (NIL) -9 NIL 1833484) (-774 1827856 1830249 1830289 "OC" 1831386 NIL OC (NIL T) -9 NIL 1832244) (-773 1825104 1825845 1826828 "OC-" 1826922 NIL OC- (NIL T T) -8 NIL NIL) (-772 1824661 1824976 1825004 "OASGP" 1825009 T OASGP (NIL) -9 NIL 1825029) (-771 1823948 1824411 1824439 "OAMONS" 1824479 T OAMONS (NIL) -9 NIL 1824522) (-770 1823388 1823795 1823823 "OAMON" 1823828 T OAMON (NIL) -9 NIL 1823848) (-769 1822692 1823184 1823212 "OAGROUP" 1823217 T OAGROUP (NIL) -9 NIL 1823237) (-768 1822382 1822432 1822520 "NUMTUBE" 1822636 NIL NUMTUBE (NIL T) -7 NIL NIL) (-767 1815955 1817473 1819009 "NUMQUAD" 1820866 T NUMQUAD (NIL) -7 NIL NIL) (-766 1811711 1812699 1813724 "NUMODE" 1814950 T NUMODE (NIL) -7 NIL NIL) (-765 1809092 1809946 1809974 "NUMINT" 1810897 T NUMINT (NIL) -9 NIL 1811661) (-764 1808040 1808237 1808455 "NUMFMT" 1808894 T NUMFMT (NIL) -7 NIL NIL) (-763 1794399 1797344 1799876 "NUMERIC" 1805547 NIL NUMERIC (NIL T) -7 NIL NIL) (-762 1788823 1793848 1793943 "NTSCAT" 1793948 NIL NTSCAT (NIL T T T T) -9 NIL 1793987) (-761 1788017 1788182 1788375 "NTPOLFN" 1788662 NIL NTPOLFN (NIL T) -7 NIL NIL) (-760 1787649 1787706 1787815 "NSUP2" 1787954 NIL NSUP2 (NIL T T) -7 NIL NIL) (-759 1775534 1784474 1785286 "NSUP" 1786870 NIL NSUP (NIL T) -8 NIL NIL) (-758 1765579 1775308 1775441 "NSMP" 1775446 NIL NSMP (NIL T T) -8 NIL NIL) (-757 1764011 1764312 1764669 "NREP" 1765267 NIL NREP (NIL T) -7 NIL NIL) (-756 1762602 1762854 1763212 "NPCOEF" 1763754 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-755 1761668 1761783 1761999 "NORMRETR" 1762483 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-754 1759709 1759999 1760408 "NORMPK" 1761376 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-753 1759394 1759422 1759546 "NORMMA" 1759675 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-752 1759183 1759212 1759281 "NONE1" 1759358 NIL NONE1 (NIL T) -7 NIL NIL) (-751 1759010 1759140 1759169 "NONE" 1759174 T NONE (NIL) -8 NIL NIL) (-750 1758493 1758555 1758741 "NODE1" 1758942 NIL NODE1 (NIL T T) -7 NIL NIL) (-749 1756833 1757656 1757911 "NNI" 1758258 T NNI (NIL) -8 NIL NIL) (-748 1755253 1755566 1755930 "NLINSOL" 1756501 NIL NLINSOL (NIL T) -7 NIL NIL) (-747 1751420 1752388 1753310 "NIPROB" 1754351 T NIPROB (NIL) -8 NIL NIL) (-746 1750177 1750411 1750713 "NFINTBAS" 1751182 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-745 1748885 1749116 1749397 "NCODIV" 1749945 NIL NCODIV (NIL T T) -7 NIL NIL) (-744 1748647 1748684 1748759 "NCNTFRAC" 1748842 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-743 1746827 1747191 1747611 "NCEP" 1748272 NIL NCEP (NIL T) -7 NIL NIL) (-742 1745745 1746477 1746505 "NASRING" 1746615 T NASRING (NIL) -9 NIL 1746689) (-741 1745540 1745584 1745678 "NASRING-" 1745683 NIL NASRING- (NIL T) -8 NIL NIL) (-740 1744693 1745192 1745220 "NARNG" 1745337 T NARNG (NIL) -9 NIL 1745428) (-739 1744385 1744452 1744586 "NARNG-" 1744591 NIL NARNG- (NIL T) -8 NIL NIL) (-738 1743264 1743471 1743706 "NAGSP" 1744170 T NAGSP (NIL) -7 NIL NIL) (-737 1734536 1736220 1737893 "NAGS" 1741611 T NAGS (NIL) -7 NIL NIL) (-736 1733084 1733392 1733723 "NAGF07" 1734225 T NAGF07 (NIL) -7 NIL NIL) (-735 1727622 1728913 1730220 "NAGF04" 1731797 T NAGF04 (NIL) -7 NIL NIL) (-734 1720590 1722204 1723837 "NAGF02" 1726009 T NAGF02 (NIL) -7 NIL NIL) (-733 1715814 1716914 1718031 "NAGF01" 1719493 T NAGF01 (NIL) -7 NIL NIL) (-732 1709442 1711008 1712593 "NAGE04" 1714249 T NAGE04 (NIL) -7 NIL NIL) (-731 1700611 1702732 1704862 "NAGE02" 1707332 T NAGE02 (NIL) -7 NIL NIL) (-730 1696564 1697511 1698475 "NAGE01" 1699667 T NAGE01 (NIL) -7 NIL NIL) (-729 1694359 1694893 1695451 "NAGD03" 1696026 T NAGD03 (NIL) -7 NIL NIL) (-728 1686109 1688037 1689991 "NAGD02" 1692425 T NAGD02 (NIL) -7 NIL NIL) (-727 1679920 1681345 1682785 "NAGD01" 1684689 T NAGD01 (NIL) -7 NIL NIL) (-726 1676129 1676951 1677788 "NAGC06" 1679103 T NAGC06 (NIL) -7 NIL NIL) (-725 1674594 1674926 1675282 "NAGC05" 1675793 T NAGC05 (NIL) -7 NIL NIL) (-724 1673970 1674089 1674233 "NAGC02" 1674470 T NAGC02 (NIL) -7 NIL NIL) (-723 1673030 1673587 1673627 "NAALG" 1673706 NIL NAALG (NIL T) -9 NIL 1673767) (-722 1672865 1672894 1672984 "NAALG-" 1672989 NIL NAALG- (NIL T T) -8 NIL NIL) (-721 1666815 1667923 1669110 "MULTSQFR" 1671761 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-720 1666134 1666209 1666393 "MULTFACT" 1666727 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-719 1659357 1663222 1663275 "MTSCAT" 1664345 NIL MTSCAT (NIL T T) -9 NIL 1664859) (-718 1659069 1659123 1659215 "MTHING" 1659297 NIL MTHING (NIL T) -7 NIL NIL) (-717 1658861 1658894 1658954 "MSYSCMD" 1659029 T MSYSCMD (NIL) -7 NIL NIL) (-716 1655956 1658422 1658463 "MSETAGG" 1658468 NIL MSETAGG (NIL T) -9 NIL 1658502) (-715 1652068 1654711 1655031 "MSET" 1655669 NIL MSET (NIL T) -8 NIL NIL) (-714 1647953 1649447 1650192 "MRING" 1651368 NIL MRING (NIL T T) -8 NIL NIL) (-713 1647519 1647586 1647717 "MRF2" 1647880 NIL MRF2 (NIL T T T) -7 NIL NIL) (-712 1647137 1647172 1647316 "MRATFAC" 1647478 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-711 1644749 1645044 1645475 "MPRFF" 1646842 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-710 1638835 1644603 1644700 "MPOLY" 1644705 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-709 1638325 1638360 1638568 "MPCPF" 1638794 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-708 1637839 1637882 1638066 "MPC3" 1638276 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-707 1637034 1637115 1637336 "MPC2" 1637754 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-706 1635335 1635672 1636062 "MONOTOOL" 1636694 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-705 1634586 1634877 1634905 "MONOID" 1635124 T MONOID (NIL) -9 NIL 1635271) (-704 1634132 1634251 1634432 "MONOID-" 1634437 NIL MONOID- (NIL T) -8 NIL NIL) (-703 1625191 1631088 1631147 "MONOGEN" 1631821 NIL MONOGEN (NIL T T) -9 NIL 1632277) (-702 1622430 1623158 1624151 "MONOGEN-" 1624270 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-701 1621289 1621709 1621737 "MONADWU" 1622129 T MONADWU (NIL) -9 NIL 1622367) (-700 1620661 1620820 1621068 "MONADWU-" 1621073 NIL MONADWU- (NIL T) -8 NIL NIL) (-699 1620046 1620264 1620292 "MONAD" 1620499 T MONAD (NIL) -9 NIL 1620611) (-698 1619731 1619809 1619941 "MONAD-" 1619946 NIL MONAD- (NIL T) -8 NIL NIL) (-697 1618047 1618644 1618923 "MOEBIUS" 1619484 NIL MOEBIUS (NIL T) -8 NIL NIL) (-696 1617439 1617817 1617857 "MODULE" 1617862 NIL MODULE (NIL T) -9 NIL 1617888) (-695 1617007 1617103 1617293 "MODULE-" 1617298 NIL MODULE- (NIL T T) -8 NIL NIL) (-694 1614766 1615415 1615742 "MODRING" 1616831 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-693 1611754 1612871 1613392 "MODOP" 1614295 NIL MODOP (NIL T T) -8 NIL NIL) (-692 1609941 1610393 1610734 "MODMONOM" 1611553 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-691 1599689 1608133 1608556 "MODMON" 1609569 NIL MODMON (NIL T T) -8 NIL NIL) (-690 1596906 1598557 1598833 "MODFIELD" 1599564 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-689 1595910 1596187 1596377 "MMLFORM" 1596736 T MMLFORM (NIL) -8 NIL NIL) (-688 1595436 1595479 1595658 "MMAP" 1595861 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-687 1593705 1594438 1594479 "MLO" 1594902 NIL MLO (NIL T) -9 NIL 1595144) (-686 1591072 1591587 1592189 "MLIFT" 1593186 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-685 1590463 1590547 1590701 "MKUCFUNC" 1590983 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-684 1590062 1590132 1590255 "MKRECORD" 1590386 NIL MKRECORD (NIL T T) -7 NIL NIL) (-683 1589110 1589271 1589499 "MKFUNC" 1589873 NIL MKFUNC (NIL T) -7 NIL NIL) (-682 1588498 1588602 1588758 "MKFLCFN" 1588993 NIL MKFLCFN (NIL T) -7 NIL NIL) (-681 1587924 1588291 1588380 "MKCHSET" 1588442 NIL MKCHSET (NIL T) -8 NIL NIL) (-680 1587201 1587303 1587488 "MKBCFUNC" 1587817 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-679 1583945 1586755 1586891 "MINT" 1587085 T MINT (NIL) -8 NIL NIL) (-678 1582757 1583000 1583277 "MHROWRED" 1583700 NIL MHROWRED (NIL T) -7 NIL NIL) (-677 1578192 1581292 1581697 "MFLOAT" 1582372 T MFLOAT (NIL) -8 NIL NIL) (-676 1577549 1577625 1577796 "MFINFACT" 1578104 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-675 1573884 1574727 1575606 "MESH" 1576690 T MESH (NIL) -7 NIL NIL) (-674 1572274 1572586 1572939 "MDDFACT" 1573571 NIL MDDFACT (NIL T) -7 NIL NIL) (-673 1569116 1571433 1571474 "MDAGG" 1571729 NIL MDAGG (NIL T) -9 NIL 1571872) (-672 1558914 1568409 1568616 "MCMPLX" 1568929 T MCMPLX (NIL) -8 NIL NIL) (-671 1558055 1558201 1558401 "MCDEN" 1558763 NIL MCDEN (NIL T T) -7 NIL NIL) (-670 1555945 1556215 1556595 "MCALCFN" 1557785 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-669 1554856 1555029 1555270 "MAYBE" 1555743 NIL MAYBE (NIL T) -8 NIL NIL) (-668 1552468 1552991 1553553 "MATSTOR" 1554327 NIL MATSTOR (NIL T) -7 NIL NIL) (-667 1548473 1551840 1552088 "MATRIX" 1552253 NIL MATRIX (NIL T) -8 NIL NIL) (-666 1544242 1544946 1545682 "MATLIN" 1547830 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-665 1542836 1542989 1543322 "MATCAT2" 1544077 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-664 1532984 1536125 1536202 "MATCAT" 1541085 NIL MATCAT (NIL T T T) -9 NIL 1542502) (-663 1529348 1530361 1531717 "MATCAT-" 1531722 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-662 1527460 1527784 1528168 "MAPPKG3" 1529023 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-661 1526441 1526614 1526836 "MAPPKG2" 1527284 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-660 1524940 1525224 1525551 "MAPPKG1" 1526147 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-659 1524046 1524346 1524523 "MAPPAST" 1524783 T MAPPAST (NIL) -8 NIL NIL) (-658 1523657 1523715 1523838 "MAPHACK3" 1523982 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-657 1523249 1523310 1523424 "MAPHACK2" 1523589 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-656 1522687 1522790 1522932 "MAPHACK1" 1523140 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-655 1520793 1521387 1521691 "MAGMA" 1522415 NIL MAGMA (NIL T) -8 NIL NIL) (-654 1520299 1520517 1520608 "MACROAST" 1520722 T MACROAST (NIL) -8 NIL NIL) (-653 1516766 1518538 1518999 "M3D" 1519871 NIL M3D (NIL T) -8 NIL NIL) (-652 1510923 1515136 1515177 "LZSTAGG" 1515959 NIL LZSTAGG (NIL T) -9 NIL 1516254) (-651 1506896 1508054 1509511 "LZSTAGG-" 1509516 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-650 1504010 1504787 1505274 "LWORD" 1506441 NIL LWORD (NIL T) -8 NIL NIL) (-649 1503613 1503814 1503889 "LSTAST" 1503955 T LSTAST (NIL) -8 NIL NIL) (-648 1496845 1503384 1503518 "LSQM" 1503523 NIL LSQM (NIL NIL T) -8 NIL NIL) (-647 1496069 1496208 1496436 "LSPP" 1496700 NIL LSPP (NIL T T T T) -7 NIL NIL) (-646 1492911 1493568 1494281 "LSMP1" 1495388 NIL LSMP1 (NIL T) -7 NIL NIL) (-645 1490746 1491040 1491489 "LSMP" 1492607 NIL LSMP (NIL T T T T) -7 NIL NIL) (-644 1484674 1489914 1489955 "LSAGG" 1490017 NIL LSAGG (NIL T) -9 NIL 1490095) (-643 1481369 1482293 1483506 "LSAGG-" 1483511 NIL LSAGG- (NIL T T) -8 NIL NIL) (-642 1478995 1480513 1480762 "LPOLY" 1481164 NIL LPOLY (NIL T T) -8 NIL NIL) (-641 1478577 1478662 1478785 "LPEFRAC" 1478904 NIL LPEFRAC (NIL T) -7 NIL NIL) (-640 1478229 1478341 1478369 "LOGIC" 1478480 T LOGIC (NIL) -9 NIL 1478561) (-639 1478091 1478114 1478185 "LOGIC-" 1478190 NIL LOGIC- (NIL T) -8 NIL NIL) (-638 1477284 1477424 1477617 "LODOOPS" 1477947 NIL LODOOPS (NIL T T) -7 NIL NIL) (-637 1475822 1476057 1476410 "LODOF" 1477031 NIL LODOF (NIL T T) -7 NIL NIL) (-636 1472279 1474662 1474703 "LODOCAT" 1475141 NIL LODOCAT (NIL T) -9 NIL 1475352) (-635 1472012 1472070 1472197 "LODOCAT-" 1472202 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-634 1469381 1471853 1471971 "LODO2" 1471976 NIL LODO2 (NIL T T) -8 NIL NIL) (-633 1466865 1469318 1469363 "LODO1" 1469368 NIL LODO1 (NIL T) -8 NIL NIL) (-632 1464337 1466781 1466847 "LODO" 1466852 NIL LODO (NIL T NIL) -8 NIL NIL) (-631 1463197 1463362 1463674 "LODEEF" 1464160 NIL LODEEF (NIL T T T) -7 NIL NIL) (-630 1461544 1462291 1462544 "LO" 1463029 NIL LO (NIL T T T) -8 NIL NIL) (-629 1456830 1459674 1459715 "LNAGG" 1460662 NIL LNAGG (NIL T) -9 NIL 1461106) (-628 1455977 1456191 1456533 "LNAGG-" 1456538 NIL LNAGG- (NIL T T) -8 NIL NIL) (-627 1452140 1452902 1453541 "LMOPS" 1455392 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-626 1451535 1451897 1451938 "LMODULE" 1451999 NIL LMODULE (NIL T) -9 NIL 1452041) (-625 1448781 1451180 1451303 "LMDICT" 1451445 NIL LMDICT (NIL T) -8 NIL NIL) (-624 1448507 1448689 1448749 "LITERAL" 1448754 NIL LITERAL (NIL T) -8 NIL NIL) (-623 1448032 1448106 1448245 "LIST3" 1448427 NIL LIST3 (NIL T T T) -7 NIL NIL) (-622 1446166 1446478 1446877 "LIST2MAP" 1447679 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-621 1445173 1445351 1445579 "LIST2" 1445984 NIL LIST2 (NIL T T) -7 NIL NIL) (-620 1438402 1444119 1444417 "LIST" 1444908 NIL LIST (NIL T) -8 NIL NIL) (-619 1437152 1437788 1437829 "LINEXP" 1438084 NIL LINEXP (NIL T) -9 NIL 1438233) (-618 1435799 1436059 1436356 "LINDEP" 1436904 NIL LINDEP (NIL T T) -7 NIL NIL) (-617 1432637 1433337 1434095 "LIMITRF" 1435073 NIL LIMITRF (NIL T) -7 NIL NIL) (-616 1430936 1431224 1431633 "LIMITPS" 1432339 NIL LIMITPS (NIL T T) -7 NIL NIL) (-615 1429985 1430428 1430468 "LIECAT" 1430608 NIL LIECAT (NIL T) -9 NIL 1430759) (-614 1429826 1429853 1429941 "LIECAT-" 1429946 NIL LIECAT- (NIL T T) -8 NIL NIL) (-613 1424313 1429337 1429565 "LIE" 1429647 NIL LIE (NIL T T) -8 NIL NIL) (-612 1416927 1423762 1423927 "LIB" 1424168 T LIB (NIL) -8 NIL NIL) (-611 1412564 1413445 1414380 "LGROBP" 1416044 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-610 1411404 1412096 1412124 "LFCAT" 1412331 T LFCAT (NIL) -9 NIL 1412470) (-609 1409270 1409544 1409906 "LF" 1411125 NIL LF (NIL T T) -7 NIL NIL) (-608 1406174 1406802 1407490 "LEXTRIPK" 1408634 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-607 1402945 1403744 1404247 "LEXP" 1405754 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-606 1402448 1402666 1402758 "LETAST" 1402873 T LETAST (NIL) -8 NIL NIL) (-605 1400846 1401159 1401560 "LEADCDET" 1402130 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-604 1400036 1400110 1400339 "LAZM3PK" 1400767 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-603 1395006 1398113 1398651 "LAUPOL" 1399548 NIL LAUPOL (NIL T T) -8 NIL NIL) (-602 1394571 1394615 1394783 "LAPLACE" 1394956 NIL LAPLACE (NIL T T) -7 NIL NIL) (-601 1393672 1394222 1394263 "LALG" 1394325 NIL LALG (NIL T) -9 NIL 1394384) (-600 1393386 1393445 1393581 "LALG-" 1393586 NIL LALG- (NIL T T) -8 NIL NIL) (-599 1391360 1392487 1392738 "LA" 1393219 NIL LA (NIL T T T) -8 NIL NIL) (-598 1390160 1390577 1390806 "KTVLOGIC" 1391151 T KTVLOGIC (NIL) -8 NIL NIL) (-597 1389064 1389251 1389550 "KOVACIC" 1389960 NIL KOVACIC (NIL T T) -7 NIL NIL) (-596 1388899 1388923 1388964 "KONVERT" 1389026 NIL KONVERT (NIL T) -9 NIL NIL) (-595 1388734 1388758 1388799 "KOERCE" 1388861 NIL KOERCE (NIL T) -9 NIL NIL) (-594 1388236 1388317 1388447 "KERNEL2" 1388648 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-593 1385970 1386730 1387123 "KERNEL" 1387875 NIL KERNEL (NIL T) -8 NIL NIL) (-592 1379821 1384509 1384563 "KDAGG" 1384940 NIL KDAGG (NIL T T) -9 NIL 1385146) (-591 1379350 1379474 1379679 "KDAGG-" 1379684 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-590 1372527 1379011 1379166 "KAFILE" 1379228 NIL KAFILE (NIL T) -8 NIL NIL) (-589 1367014 1372038 1372266 "JORDAN" 1372348 NIL JORDAN (NIL T T) -8 NIL NIL) (-588 1366420 1366663 1366784 "JOINAST" 1366913 T JOINAST (NIL) -8 NIL NIL) (-587 1366149 1366208 1366295 "JAVACODE" 1366353 T JAVACODE (NIL) -8 NIL NIL) (-586 1362448 1364354 1364408 "IXAGG" 1365337 NIL IXAGG (NIL T T) -9 NIL 1365796) (-585 1361367 1361673 1362092 "IXAGG-" 1362097 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-584 1356947 1361289 1361348 "IVECTOR" 1361353 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-583 1355713 1355950 1356216 "ITUPLE" 1356714 NIL ITUPLE (NIL T) -8 NIL NIL) (-582 1354149 1354326 1354632 "ITRIGMNP" 1355535 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-581 1352894 1353098 1353381 "ITFUN3" 1353925 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-580 1352526 1352583 1352692 "ITFUN2" 1352831 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-579 1350363 1351388 1351687 "ITAYLOR" 1352260 NIL ITAYLOR (NIL T) -8 NIL NIL) (-578 1339345 1344500 1345663 "ISUPS" 1349233 NIL ISUPS (NIL T) -8 NIL NIL) (-577 1338449 1338589 1338825 "ISUMP" 1339192 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-576 1333713 1338250 1338329 "ISTRING" 1338402 NIL ISTRING (NIL NIL) -8 NIL NIL) (-575 1333216 1333434 1333526 "ISAST" 1333641 T ISAST (NIL) -8 NIL NIL) (-574 1332426 1332507 1332723 "IRURPK" 1333130 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-573 1331362 1331563 1331803 "IRSN" 1332206 T IRSN (NIL) -7 NIL NIL) (-572 1329391 1329746 1330182 "IRRF2F" 1331000 NIL IRRF2F (NIL T) -7 NIL NIL) (-571 1329138 1329176 1329252 "IRREDFFX" 1329347 NIL IRREDFFX (NIL T) -7 NIL NIL) (-570 1327753 1328012 1328311 "IROOT" 1328871 NIL IROOT (NIL T) -7 NIL NIL) (-569 1326825 1326938 1327159 "IR2F" 1327636 NIL IR2F (NIL T T) -7 NIL NIL) (-568 1324438 1324933 1325499 "IR2" 1326303 NIL IR2 (NIL T T) -7 NIL NIL) (-567 1321070 1322122 1322814 "IR" 1323778 NIL IR (NIL T) -8 NIL NIL) (-566 1320861 1320895 1320955 "IPRNTPK" 1321030 T IPRNTPK (NIL) -7 NIL NIL) (-565 1317482 1320750 1320819 "IPF" 1320824 NIL IPF (NIL NIL) -8 NIL NIL) (-564 1315847 1317407 1317464 "IPADIC" 1317469 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-563 1315347 1315551 1315661 "IOMODE" 1315757 T IOMODE (NIL) -8 NIL NIL) (-562 1315111 1315251 1315279 "IOBCON" 1315284 T IOBCON (NIL) -9 NIL 1315305) (-561 1314608 1314666 1314856 "INVLAPLA" 1315047 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-560 1304305 1306646 1309020 "INTTR" 1312284 NIL INTTR (NIL T T) -7 NIL NIL) (-559 1300649 1301391 1302255 "INTTOOLS" 1303490 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-558 1300235 1300326 1300443 "INTSLPE" 1300552 T INTSLPE (NIL) -7 NIL NIL) (-557 1298230 1300158 1300217 "INTRVL" 1300222 NIL INTRVL (NIL T) -8 NIL NIL) (-556 1295832 1296344 1296919 "INTRF" 1297715 NIL INTRF (NIL T) -7 NIL NIL) (-555 1295243 1295340 1295482 "INTRET" 1295730 NIL INTRET (NIL T) -7 NIL NIL) (-554 1293240 1293629 1294099 "INTRAT" 1294851 NIL INTRAT (NIL T T) -7 NIL NIL) (-553 1290468 1291051 1291677 "INTPM" 1292725 NIL INTPM (NIL T T) -7 NIL NIL) (-552 1287194 1287786 1288524 "INTPAF" 1289861 NIL INTPAF (NIL T T T) -7 NIL NIL) (-551 1282373 1283335 1284386 "INTPACK" 1286163 T INTPACK (NIL) -7 NIL NIL) (-550 1281625 1281777 1281985 "INTHERTR" 1282215 NIL INTHERTR (NIL T T) -7 NIL NIL) (-549 1281064 1281144 1281332 "INTHERAL" 1281539 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-548 1278910 1279353 1279810 "INTHEORY" 1280627 T INTHEORY (NIL) -7 NIL NIL) (-547 1270276 1271879 1273640 "INTG0" 1277280 NIL INTG0 (NIL T T T) -7 NIL NIL) (-546 1256549 1259914 1263299 "INTFTBL" 1266911 T INTFTBL (NIL) -8 NIL NIL) (-545 1255798 1255936 1256109 "INTFACT" 1256408 NIL INTFACT (NIL T) -7 NIL NIL) (-544 1253189 1253633 1254195 "INTEF" 1255354 NIL INTEF (NIL T T) -7 NIL NIL) (-543 1251691 1252396 1252424 "INTDOM" 1252725 T INTDOM (NIL) -9 NIL 1252932) (-542 1251060 1251234 1251476 "INTDOM-" 1251481 NIL INTDOM- (NIL T) -8 NIL NIL) (-541 1247593 1249479 1249533 "INTCAT" 1250332 NIL INTCAT (NIL T) -9 NIL 1250652) (-540 1247066 1247168 1247296 "INTBIT" 1247485 T INTBIT (NIL) -7 NIL NIL) (-539 1245737 1245891 1246205 "INTALG" 1246911 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-538 1245194 1245284 1245454 "INTAF" 1245641 NIL INTAF (NIL T T) -7 NIL NIL) (-537 1238650 1245004 1245144 "INTABL" 1245149 NIL INTABL (NIL T T T) -8 NIL NIL) (-536 1235564 1238379 1238506 "INT" 1238543 T INT (NIL) -8 NIL NIL) (-535 1230621 1233290 1233318 "INS" 1234252 T INS (NIL) -9 NIL 1234916) (-534 1227861 1228632 1229606 "INS-" 1229679 NIL INS- (NIL T) -8 NIL NIL) (-533 1226709 1226914 1227190 "INPSIGN" 1227636 NIL INPSIGN (NIL T T) -7 NIL NIL) (-532 1225827 1225944 1226141 "INPRODPF" 1226589 NIL INPRODPF (NIL T T) -7 NIL NIL) (-531 1224721 1224838 1225075 "INPRODFF" 1225707 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-530 1223721 1223873 1224133 "INNMFACT" 1224557 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-529 1222918 1223015 1223203 "INMODGCD" 1223620 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-528 1221427 1221671 1221995 "INFSP" 1222663 NIL INFSP (NIL T T T) -7 NIL NIL) (-527 1220611 1220728 1220911 "INFPROD0" 1221307 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-526 1220221 1220281 1220379 "INFORM1" 1220546 NIL INFORM1 (NIL T) -7 NIL NIL) (-525 1217103 1218286 1218801 "INFORM" 1219714 T INFORM (NIL) -8 NIL NIL) (-524 1216626 1216715 1216829 "INFINITY" 1217009 T INFINITY (NIL) -7 NIL NIL) (-523 1215243 1215492 1215813 "INEP" 1216374 NIL INEP (NIL T T T) -7 NIL NIL) (-522 1214519 1215140 1215205 "INDE" 1215210 NIL INDE (NIL T) -8 NIL NIL) (-521 1214083 1214151 1214268 "INCRMAPS" 1214446 NIL INCRMAPS (NIL T) -7 NIL NIL) (-520 1213386 1213579 1213729 "INBFILE" 1213953 T INBFILE (NIL) -8 NIL NIL) (-519 1208697 1209622 1210566 "INBFF" 1212474 NIL INBFF (NIL T) -7 NIL NIL) (-518 1208366 1208442 1208470 "INBCON" 1208603 T INBCON (NIL) -9 NIL 1208681) (-517 1208206 1208241 1208317 "INBCON-" 1208322 NIL INBCON- (NIL T) -8 NIL NIL) (-516 1207708 1207927 1208019 "INAST" 1208134 T INAST (NIL) -8 NIL NIL) (-515 1207162 1207387 1207493 "IMPTAST" 1207622 T IMPTAST (NIL) -8 NIL NIL) (-514 1203655 1207006 1207110 "IMATRIX" 1207115 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-513 1202367 1202490 1202805 "IMATQF" 1203511 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-512 1200587 1200814 1201151 "IMATLIN" 1202123 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-511 1195215 1200511 1200569 "ILIST" 1200574 NIL ILIST (NIL T NIL) -8 NIL NIL) (-510 1193168 1195075 1195188 "IIARRAY2" 1195193 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-509 1188603 1193079 1193143 "IFF" 1193148 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-508 1187977 1188220 1188336 "IFAST" 1188507 T IFAST (NIL) -8 NIL NIL) (-507 1183020 1187269 1187457 "IFARRAY" 1187834 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-506 1182227 1182924 1182997 "IFAMON" 1183002 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-505 1181811 1181876 1181930 "IEVALAB" 1182137 NIL IEVALAB (NIL T T) -9 NIL NIL) (-504 1181486 1181554 1181714 "IEVALAB-" 1181719 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-503 1180763 1181375 1181450 "IDPOAMS" 1181455 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-502 1180097 1180652 1180727 "IDPOAM" 1180732 NIL IDPOAM (NIL T T) -8 NIL NIL) (-501 1179755 1180011 1180074 "IDPO" 1180079 NIL IDPO (NIL T T) -8 NIL NIL) (-500 1178840 1179090 1179143 "IDPC" 1179556 NIL IDPC (NIL T T) -9 NIL 1179705) (-499 1178336 1178732 1178805 "IDPAM" 1178810 NIL IDPAM (NIL T T) -8 NIL NIL) (-498 1177739 1178228 1178301 "IDPAG" 1178306 NIL IDPAG (NIL T T) -8 NIL NIL) (-497 1177469 1177654 1177704 "IDENT" 1177709 T IDENT (NIL) -8 NIL NIL) (-496 1173724 1174572 1175467 "IDECOMP" 1176626 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-495 1166597 1167647 1168694 "IDEAL" 1172760 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-494 1165761 1165873 1166072 "ICDEN" 1166481 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-493 1164860 1165241 1165388 "ICARD" 1165634 T ICARD (NIL) -8 NIL NIL) (-492 1162920 1163233 1163638 "IBPTOOLS" 1164537 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-491 1158554 1162540 1162653 "IBITS" 1162839 NIL IBITS (NIL NIL) -8 NIL NIL) (-490 1155277 1155853 1156548 "IBATOOL" 1157971 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-489 1153057 1153518 1154051 "IBACHIN" 1154812 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-488 1150934 1152903 1153006 "IARRAY2" 1153011 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-487 1147087 1150860 1150917 "IARRAY1" 1150922 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-486 1141091 1145501 1145981 "IAN" 1146627 T IAN (NIL) -8 NIL NIL) (-485 1140602 1140659 1140832 "IALGFACT" 1141028 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-484 1140130 1140243 1140271 "HYPCAT" 1140478 T HYPCAT (NIL) -9 NIL NIL) (-483 1139668 1139785 1139971 "HYPCAT-" 1139976 NIL HYPCAT- (NIL T) -8 NIL NIL) (-482 1139290 1139463 1139546 "HOSTNAME" 1139605 T HOSTNAME (NIL) -8 NIL NIL) (-481 1135969 1137300 1137341 "HOAGG" 1138322 NIL HOAGG (NIL T) -9 NIL 1139001) (-480 1134563 1134962 1135488 "HOAGG-" 1135493 NIL HOAGG- (NIL T T) -8 NIL NIL) (-479 1128472 1134004 1134170 "HEXADEC" 1134417 T HEXADEC (NIL) -8 NIL NIL) (-478 1127220 1127442 1127705 "HEUGCD" 1128249 NIL HEUGCD (NIL T) -7 NIL NIL) (-477 1126323 1127057 1127187 "HELLFDIV" 1127192 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-476 1124551 1126100 1126188 "HEAP" 1126267 NIL HEAP (NIL T) -8 NIL NIL) (-475 1123842 1124103 1124237 "HEADAST" 1124437 T HEADAST (NIL) -8 NIL NIL) (-474 1117769 1123757 1123819 "HDP" 1123824 NIL HDP (NIL NIL T) -8 NIL NIL) (-473 1111551 1117404 1117556 "HDMP" 1117670 NIL HDMP (NIL NIL T) -8 NIL NIL) (-472 1110876 1111015 1111179 "HB" 1111407 T HB (NIL) -7 NIL NIL) (-471 1104375 1110722 1110826 "HASHTBL" 1110831 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-470 1103878 1104096 1104188 "HASAST" 1104303 T HASAST (NIL) -8 NIL NIL) (-469 1101696 1103502 1103683 "HACKPI" 1103717 T HACKPI (NIL) -8 NIL NIL) (-468 1097418 1101549 1101662 "GTSET" 1101667 NIL GTSET (NIL T T T T) -8 NIL NIL) (-467 1090946 1097296 1097394 "GSTBL" 1097399 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-466 1083261 1089977 1090242 "GSERIES" 1090737 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-465 1082428 1082819 1082847 "GROUP" 1083050 T GROUP (NIL) -9 NIL 1083184) (-464 1081794 1081953 1082204 "GROUP-" 1082209 NIL GROUP- (NIL T) -8 NIL NIL) (-463 1080163 1080482 1080869 "GROEBSOL" 1081471 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-462 1079103 1079365 1079416 "GRMOD" 1079945 NIL GRMOD (NIL T T) -9 NIL 1080113) (-461 1078871 1078907 1079035 "GRMOD-" 1079040 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-460 1074196 1075225 1076225 "GRIMAGE" 1077891 T GRIMAGE (NIL) -8 NIL NIL) (-459 1072663 1072923 1073247 "GRDEF" 1073892 T GRDEF (NIL) -7 NIL NIL) (-458 1072107 1072223 1072364 "GRAY" 1072542 T GRAY (NIL) -7 NIL NIL) (-457 1071338 1071718 1071769 "GRALG" 1071922 NIL GRALG (NIL T T) -9 NIL 1072015) (-456 1070999 1071072 1071235 "GRALG-" 1071240 NIL GRALG- (NIL T T T) -8 NIL NIL) (-455 1067803 1070584 1070762 "GPOLSET" 1070906 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-454 1067157 1067214 1067472 "GOSPER" 1067740 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-453 1062916 1063595 1064121 "GMODPOL" 1066856 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-452 1061921 1062105 1062343 "GHENSEL" 1062728 NIL GHENSEL (NIL T T) -7 NIL NIL) (-451 1055972 1056815 1057842 "GENUPS" 1061005 NIL GENUPS (NIL T T) -7 NIL NIL) (-450 1055669 1055720 1055809 "GENUFACT" 1055915 NIL GENUFACT (NIL T) -7 NIL NIL) (-449 1055081 1055158 1055323 "GENPGCD" 1055587 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-448 1054555 1054590 1054803 "GENMFACT" 1055040 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-447 1053123 1053378 1053685 "GENEEZ" 1054298 NIL GENEEZ (NIL T T) -7 NIL NIL) (-446 1047067 1052734 1052896 "GDMP" 1053046 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-445 1036466 1040838 1041944 "GCNAALG" 1046050 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-444 1034928 1035756 1035784 "GCDDOM" 1036039 T GCDDOM (NIL) -9 NIL 1036196) (-443 1034398 1034525 1034740 "GCDDOM-" 1034745 NIL GCDDOM- (NIL T) -8 NIL NIL) (-442 1023018 1025344 1027736 "GBINTERN" 1032089 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-441 1020855 1021147 1021568 "GBF" 1022693 NIL GBF (NIL T T T T) -7 NIL NIL) (-440 1019636 1019801 1020068 "GBEUCLID" 1020671 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-439 1018308 1018493 1018797 "GB" 1019415 NIL GB (NIL T T T T) -7 NIL NIL) (-438 1017657 1017782 1017931 "GAUSSFAC" 1018179 T GAUSSFAC (NIL) -7 NIL NIL) (-437 1016024 1016326 1016640 "GALUTIL" 1017376 NIL GALUTIL (NIL T) -7 NIL NIL) (-436 1014332 1014606 1014930 "GALPOLYU" 1015751 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-435 1011697 1011987 1012394 "GALFACTU" 1014029 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-434 1003503 1005002 1006610 "GALFACT" 1010129 NIL GALFACT (NIL T) -7 NIL NIL) (-433 1000891 1001549 1001577 "FVFUN" 1002733 T FVFUN (NIL) -9 NIL 1003453) (-432 1000157 1000339 1000367 "FVC" 1000658 T FVC (NIL) -9 NIL 1000841) (-431 999799 999954 1000035 "FUNCTION" 1000109 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-430 998617 999100 999303 "FTEM" 999616 T FTEM (NIL) -8 NIL NIL) (-429 996299 996847 997333 "FT" 998151 T FT (NIL) -8 NIL NIL) (-428 994555 994844 995248 "FSUPFACT" 995990 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-427 992952 993241 993573 "FST" 994243 T FST (NIL) -8 NIL NIL) (-426 992123 992229 992424 "FSRED" 992834 NIL FSRED (NIL T T) -7 NIL NIL) (-425 990802 991057 991411 "FSPRMELT" 991838 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-424 987887 988325 988824 "FSPECF" 990365 NIL FSPECF (NIL T T) -7 NIL NIL) (-423 987401 987455 987632 "FSINT" 987828 NIL FSINT (NIL T T) -7 NIL NIL) (-422 985728 986394 986697 "FSERIES" 987180 NIL FSERIES (NIL T T) -8 NIL NIL) (-421 984742 984858 985089 "FSCINT" 985608 NIL FSCINT (NIL T T) -7 NIL NIL) (-420 983784 983927 984154 "FSAGG2" 984595 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-419 980018 982728 982769 "FSAGG" 983139 NIL FSAGG (NIL T) -9 NIL 983398) (-418 977780 978381 979177 "FSAGG-" 979272 NIL FSAGG- (NIL T T) -8 NIL NIL) (-417 975435 975714 976268 "FS2UPS" 977498 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-416 974292 974463 974772 "FS2EXPXP" 975260 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-415 973874 973917 974072 "FS2" 974243 NIL FS2 (NIL T T T T) -7 NIL NIL) (-414 956345 964758 964798 "FS" 968646 NIL FS (NIL T) -9 NIL 970935) (-413 945076 948039 952068 "FS-" 952365 NIL FS- (NIL T T) -8 NIL NIL) (-412 944502 944617 944769 "FRUTIL" 944956 NIL FRUTIL (NIL T) -7 NIL NIL) (-411 939609 942220 942260 "FRNAALG" 943656 NIL FRNAALG (NIL T) -9 NIL 944263) (-410 935338 936392 937650 "FRNAALG-" 938400 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-409 934976 935019 935146 "FRNAAF2" 935289 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-408 933383 933830 934125 "FRMOD" 934788 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-407 932578 932665 932954 "FRIDEAL2" 933290 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-406 930357 930961 931278 "FRIDEAL" 932369 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-405 929606 930013 930054 "FRETRCT" 930059 NIL FRETRCT (NIL T) -9 NIL 930235) (-404 928739 928963 929307 "FRETRCT-" 929312 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-403 925989 927165 927224 "FRAMALG" 928106 NIL FRAMALG (NIL T T) -9 NIL 928398) (-402 924123 924578 925208 "FRAMALG-" 925431 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-401 923759 923816 923923 "FRAC2" 924060 NIL FRAC2 (NIL T T) -7 NIL NIL) (-400 917740 923234 923510 "FRAC" 923515 NIL FRAC (NIL T) -8 NIL NIL) (-399 917376 917433 917540 "FR2" 917677 NIL FR2 (NIL T T) -7 NIL NIL) (-398 908952 912956 914285 "FR" 916079 NIL FR (NIL T) -8 NIL NIL) (-397 903686 906530 906558 "FPS" 907677 T FPS (NIL) -9 NIL 908234) (-396 903135 903244 903408 "FPS-" 903554 NIL FPS- (NIL T) -8 NIL NIL) (-395 900643 902276 902304 "FPC" 902529 T FPC (NIL) -9 NIL 902671) (-394 900436 900476 900573 "FPC-" 900578 NIL FPC- (NIL T) -8 NIL NIL) (-393 899314 899924 899965 "FPATMAB" 899970 NIL FPATMAB (NIL T) -9 NIL 900122) (-392 897014 897490 897916 "FPARFRAC" 898951 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-391 892446 892945 893627 "FORTRAN" 896446 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-390 890122 890684 890712 "FORTFN" 891772 T FORTFN (NIL) -9 NIL 892396) (-389 889886 889936 889964 "FORTCAT" 890023 T FORTCAT (NIL) -9 NIL 890085) (-388 887602 888102 888641 "FORT" 889367 T FORT (NIL) -7 NIL NIL) (-387 887390 887420 887489 "FORMULA1" 887566 NIL FORMULA1 (NIL T) -7 NIL NIL) (-386 885450 885933 886332 "FORMULA" 887011 T FORMULA (NIL) -8 NIL NIL) (-385 884973 885025 885198 "FORDER" 885392 NIL FORDER (NIL T T T T) -7 NIL NIL) (-384 884069 884233 884426 "FOP" 884800 T FOP (NIL) -7 NIL NIL) (-383 882677 883349 883523 "FNLA" 883951 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-382 881345 881734 881762 "FNCAT" 882334 T FNCAT (NIL) -9 NIL 882627) (-381 880911 881304 881332 "FNAME" 881337 T FNAME (NIL) -8 NIL NIL) (-380 879609 880538 880566 "FMTC" 880571 T FMTC (NIL) -9 NIL 880607) (-379 875971 877132 877761 "FMONOID" 879013 NIL FMONOID (NIL T) -8 NIL NIL) (-378 873395 874041 874069 "FMFUN" 875213 T FMFUN (NIL) -9 NIL 875921) (-377 870607 871441 871495 "FMCAT" 872690 NIL FMCAT (NIL T T) -9 NIL 873185) (-376 869876 870057 870085 "FMC" 870375 T FMC (NIL) -9 NIL 870557) (-375 868769 869642 869742 "FM1" 869821 NIL FM1 (NIL T T) -8 NIL NIL) (-374 867988 868511 868660 "FM" 868665 NIL FM (NIL T T) -8 NIL NIL) (-373 865762 866178 866672 "FLOATRP" 867539 NIL FLOATRP (NIL T) -7 NIL NIL) (-372 863200 863700 864278 "FLOATCP" 865229 NIL FLOATCP (NIL T) -7 NIL NIL) (-371 856755 860856 861486 "FLOAT" 862590 T FLOAT (NIL) -8 NIL NIL) (-370 855584 856388 856429 "FLINEXP" 856434 NIL FLINEXP (NIL T) -9 NIL 856527) (-369 854738 854973 855301 "FLINEXP-" 855306 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-368 853814 853958 854182 "FLASORT" 854590 NIL FLASORT (NIL T T) -7 NIL NIL) (-367 851031 851873 851925 "FLALG" 853152 NIL FLALG (NIL T T) -9 NIL 853619) (-366 850073 850216 850443 "FLAGG2" 850884 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-365 843857 847559 847600 "FLAGG" 848862 NIL FLAGG (NIL T) -9 NIL 849514) (-364 842583 842922 843412 "FLAGG-" 843417 NIL FLAGG- (NIL T T) -8 NIL NIL) (-363 839596 840570 840629 "FINRALG" 841757 NIL FINRALG (NIL T T) -9 NIL 842265) (-362 838756 838985 839324 "FINRALG-" 839329 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-361 838162 838375 838403 "FINITE" 838599 T FINITE (NIL) -9 NIL 838706) (-360 830620 832781 832821 "FINAALG" 836488 NIL FINAALG (NIL T) -9 NIL 837941) (-359 825961 827002 828146 "FINAALG-" 829525 NIL FINAALG- (NIL T T) -8 NIL NIL) (-358 824645 824957 825011 "FILECAT" 825695 NIL FILECAT (NIL T T) -9 NIL 825911) (-357 824040 824400 824503 "FILE" 824575 NIL FILE (NIL T) -8 NIL NIL) (-356 821962 823454 823482 "FIELD" 823522 T FIELD (NIL) -9 NIL 823602) (-355 820582 820967 821478 "FIELD-" 821483 NIL FIELD- (NIL T) -8 NIL NIL) (-354 818460 819217 819564 "FGROUP" 820268 NIL FGROUP (NIL T) -8 NIL NIL) (-353 817550 817714 817934 "FGLMICPK" 818292 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-352 813419 817475 817532 "FFX" 817537 NIL FFX (NIL T NIL) -8 NIL NIL) (-351 813020 813081 813216 "FFSLPE" 813352 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-350 812524 812560 812769 "FFPOLY2" 812978 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-349 808517 809296 810092 "FFPOLY" 811760 NIL FFPOLY (NIL T) -7 NIL NIL) (-348 804405 808436 808499 "FFP" 808504 NIL FFP (NIL T NIL) -8 NIL NIL) (-347 799568 803748 803938 "FFNBX" 804259 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-346 794544 798703 798961 "FFNBP" 799422 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-345 789214 793828 794039 "FFNB" 794377 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-344 788046 788244 788559 "FFINTBAS" 789011 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-343 784332 786505 786533 "FFIELDC" 787153 T FFIELDC (NIL) -9 NIL 787529) (-342 782995 783365 783862 "FFIELDC-" 783867 NIL FFIELDC- (NIL T) -8 NIL NIL) (-341 782565 782610 782734 "FFHOM" 782937 NIL FFHOM (NIL T T T) -7 NIL NIL) (-340 780263 780747 781264 "FFF" 782080 NIL FFF (NIL T) -7 NIL NIL) (-339 775918 780005 780106 "FFCGX" 780206 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-338 771587 775650 775757 "FFCGP" 775861 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-337 766807 771314 771422 "FFCG" 771523 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-336 766218 766261 766496 "FFCAT2" 766758 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-335 748285 757312 757398 "FFCAT" 762563 NIL FFCAT (NIL T T T) -9 NIL 764014) (-334 743483 744530 745844 "FFCAT-" 747074 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-333 738918 743394 743458 "FF" 743463 NIL FF (NIL NIL NIL) -8 NIL NIL) (-332 728132 731890 733110 "FEXPR" 737770 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-331 727132 727567 727608 "FEVALAB" 727692 NIL FEVALAB (NIL T) -9 NIL 727953) (-330 726291 726501 726839 "FEVALAB-" 726844 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-329 723357 724072 724187 "FDIVCAT" 725755 NIL FDIVCAT (NIL T T T T) -9 NIL 726192) (-328 723119 723146 723316 "FDIVCAT-" 723321 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-327 722339 722426 722703 "FDIV2" 723026 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-326 720932 721722 721925 "FDIV" 722238 NIL FDIV (NIL T T T T) -8 NIL NIL) (-325 719618 719877 720166 "FCPAK1" 720663 T FCPAK1 (NIL) -7 NIL NIL) (-324 718746 719118 719259 "FCOMP" 719509 NIL FCOMP (NIL T) -8 NIL NIL) (-323 702381 705795 709356 "FC" 715205 T FC (NIL) -8 NIL NIL) (-322 695036 699015 699055 "FAXF" 700857 NIL FAXF (NIL T) -9 NIL 701549) (-321 692315 692970 693795 "FAXF-" 694260 NIL FAXF- (NIL T T) -8 NIL NIL) (-320 687415 691691 691867 "FARRAY" 692172 NIL FARRAY (NIL T) -8 NIL NIL) (-319 682829 684854 684907 "FAMR" 685930 NIL FAMR (NIL T T) -9 NIL 686390) (-318 681719 682021 682456 "FAMR-" 682461 NIL FAMR- (NIL T T T) -8 NIL NIL) (-317 680915 681641 681694 "FAMONOID" 681699 NIL FAMONOID (NIL T) -8 NIL NIL) (-316 678745 679429 679482 "FAMONC" 680423 NIL FAMONC (NIL T T) -9 NIL 680809) (-315 677437 678499 678636 "FAGROUP" 678641 NIL FAGROUP (NIL T) -8 NIL NIL) (-314 675232 675551 675954 "FACUTIL" 677118 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-313 674331 674516 674738 "FACTFUNC" 675042 NIL FACTFUNC (NIL T) -7 NIL NIL) (-312 666738 673582 673794 "EXPUPXS" 674187 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-311 664221 664761 665347 "EXPRTUBE" 666172 T EXPRTUBE (NIL) -7 NIL NIL) (-310 660415 661007 661744 "EXPRODE" 663560 NIL EXPRODE (NIL T T) -7 NIL NIL) (-309 654822 655409 656222 "EXPR2UPS" 659713 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-308 654458 654515 654622 "EXPR2" 654759 NIL EXPR2 (NIL T T) -7 NIL NIL) (-307 639893 653113 653541 "EXPR" 654062 NIL EXPR (NIL T) -8 NIL NIL) (-306 631326 639025 639322 "EXPEXPAN" 639730 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-305 630833 631050 631141 "EXITAST" 631255 T EXITAST (NIL) -8 NIL NIL) (-304 630660 630790 630819 "EXIT" 630824 T EXIT (NIL) -8 NIL NIL) (-303 630287 630349 630462 "EVALCYC" 630592 NIL EVALCYC (NIL T) -7 NIL NIL) (-302 629828 629946 629987 "EVALAB" 630157 NIL EVALAB (NIL T) -9 NIL 630261) (-301 629309 629431 629652 "EVALAB-" 629657 NIL EVALAB- (NIL T T) -8 NIL NIL) (-300 626812 628080 628108 "EUCDOM" 628663 T EUCDOM (NIL) -9 NIL 629013) (-299 625217 625659 626249 "EUCDOM-" 626254 NIL EUCDOM- (NIL T) -8 NIL NIL) (-298 624849 624906 625015 "ESTOOLS2" 625154 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-297 624600 624642 624722 "ESTOOLS1" 624801 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-296 612140 614898 617648 "ESTOOLS" 621870 T ESTOOLS (NIL) -7 NIL NIL) (-295 611885 611917 611999 "ESCONT1" 612102 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-294 608260 609020 609800 "ESCONT" 611125 T ESCONT (NIL) -7 NIL NIL) (-293 607935 607985 608085 "ES2" 608204 NIL ES2 (NIL T T) -7 NIL NIL) (-292 607565 607623 607732 "ES1" 607871 NIL ES1 (NIL T T) -7 NIL NIL) (-291 601490 603218 603246 "ES" 606014 T ES (NIL) -9 NIL 607423) (-290 596437 597724 599541 "ES-" 599705 NIL ES- (NIL T) -8 NIL NIL) (-289 595653 595782 595958 "ERROR" 596281 T ERROR (NIL) -7 NIL NIL) (-288 589158 595512 595603 "EQTBL" 595608 NIL EQTBL (NIL T T) -8 NIL NIL) (-287 588790 588847 588956 "EQ2" 589095 NIL EQ2 (NIL T T) -7 NIL NIL) (-286 581347 584104 585553 "EQ" 587374 NIL -3885 (NIL T) -8 NIL NIL) (-285 576639 577685 578778 "EP" 580286 NIL EP (NIL T) -7 NIL NIL) (-284 575221 575522 575839 "ENV" 576342 T ENV (NIL) -8 NIL NIL) (-283 574420 574940 574968 "ENTIRER" 574973 T ENTIRER (NIL) -9 NIL 575019) (-282 570978 572429 572799 "EMR" 574219 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-281 570122 570307 570361 "ELTAGG" 570741 NIL ELTAGG (NIL T T) -9 NIL 570952) (-280 569841 569903 570044 "ELTAGG-" 570049 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-279 569630 569659 569713 "ELTAB" 569797 NIL ELTAB (NIL T T) -9 NIL NIL) (-278 568756 568902 569101 "ELFUTS" 569481 NIL ELFUTS (NIL T T) -7 NIL NIL) (-277 568498 568554 568582 "ELEMFUN" 568687 T ELEMFUN (NIL) -9 NIL NIL) (-276 568368 568389 568457 "ELEMFUN-" 568462 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-275 563259 566468 566509 "ELAGG" 567449 NIL ELAGG (NIL T) -9 NIL 567912) (-274 561544 561978 562641 "ELAGG-" 562646 NIL ELAGG- (NIL T T) -8 NIL NIL) (-273 560201 560481 560776 "ELABEXPR" 561269 T ELABEXPR (NIL) -8 NIL NIL) (-272 553194 554868 555695 "EFUPXS" 559477 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-271 546771 548445 549255 "EFULS" 552470 NIL EFULS (NIL T T T) -8 NIL NIL) (-270 544193 544551 545030 "EFSTRUC" 546403 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-269 533265 534830 536390 "EF" 542708 NIL EF (NIL T T) -7 NIL NIL) (-268 532366 532750 532899 "EAB" 533136 T EAB (NIL) -8 NIL NIL) (-267 531575 532325 532353 "E04UCFA" 532358 T E04UCFA (NIL) -8 NIL NIL) (-266 530784 531534 531562 "E04NAFA" 531567 T E04NAFA (NIL) -8 NIL NIL) (-265 529993 530743 530771 "E04MBFA" 530776 T E04MBFA (NIL) -8 NIL NIL) (-264 529202 529952 529980 "E04JAFA" 529985 T E04JAFA (NIL) -8 NIL NIL) (-263 528413 529161 529189 "E04GCFA" 529194 T E04GCFA (NIL) -8 NIL NIL) (-262 527624 528372 528400 "E04FDFA" 528405 T E04FDFA (NIL) -8 NIL NIL) (-261 526833 527583 527611 "E04DGFA" 527616 T E04DGFA (NIL) -8 NIL NIL) (-260 521011 522358 523722 "E04AGNT" 525489 T E04AGNT (NIL) -7 NIL NIL) (-259 519735 520215 520255 "DVARCAT" 520730 NIL DVARCAT (NIL T) -9 NIL 520929) (-258 518939 519151 519465 "DVARCAT-" 519470 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-257 511880 518738 518867 "DSMP" 518872 NIL DSMP (NIL T T T) -8 NIL NIL) (-256 511545 511604 511702 "DROPT1" 511815 NIL DROPT1 (NIL T) -7 NIL NIL) (-255 506660 507786 508923 "DROPT0" 510428 T DROPT0 (NIL) -7 NIL NIL) (-254 501470 502605 503673 "DROPT" 505612 T DROPT (NIL) -8 NIL NIL) (-253 499815 500140 500526 "DRAWPT" 501104 T DRAWPT (NIL) -7 NIL NIL) (-252 499448 499501 499619 "DRAWHACK" 499756 NIL DRAWHACK (NIL T) -7 NIL NIL) (-251 498179 498448 498739 "DRAWCX" 499177 T DRAWCX (NIL) -7 NIL NIL) (-250 497695 497763 497914 "DRAWCURV" 498105 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-249 488166 490125 492240 "DRAWCFUN" 495600 T DRAWCFUN (NIL) -7 NIL NIL) (-248 482753 483676 484755 "DRAW" 487140 NIL DRAW (NIL T) -7 NIL NIL) (-247 479566 481448 481489 "DQAGG" 482118 NIL DQAGG (NIL T) -9 NIL 482391) (-246 468121 474782 474865 "DPOLCAT" 476717 NIL DPOLCAT (NIL T T T T) -9 NIL 477262) (-245 463011 464340 466281 "DPOLCAT-" 466286 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-244 456173 462872 462970 "DPMO" 462975 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-243 449238 455953 456120 "DPMM" 456125 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-242 448658 448861 448975 "DOMAIN" 449144 T DOMAIN (NIL) -8 NIL NIL) (-241 442440 448293 448445 "DMP" 448559 NIL DMP (NIL NIL T) -8 NIL NIL) (-240 442040 442096 442240 "DLP" 442378 NIL DLP (NIL T) -7 NIL NIL) (-239 435686 441141 441368 "DLIST" 441845 NIL DLIST (NIL T) -8 NIL NIL) (-238 432533 434541 434582 "DLAGG" 435132 NIL DLAGG (NIL T) -9 NIL 435361) (-237 431383 432013 432041 "DIVRING" 432133 T DIVRING (NIL) -9 NIL 432216) (-236 430620 430810 431110 "DIVRING-" 431115 NIL DIVRING- (NIL T) -8 NIL NIL) (-235 428722 429079 429485 "DISPLAY" 430234 T DISPLAY (NIL) -7 NIL NIL) (-234 427570 427773 428038 "DIRPROD2" 428515 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-233 421519 427484 427547 "DIRPROD" 427552 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-232 411064 417009 417062 "DIRPCAT" 417472 NIL DIRPCAT (NIL NIL T) -9 NIL 418312) (-231 408390 409032 409913 "DIRPCAT-" 410250 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-230 407677 407837 408023 "DIOSP" 408224 T DIOSP (NIL) -7 NIL NIL) (-229 404379 406589 406630 "DIOPS" 407064 NIL DIOPS (NIL T) -9 NIL 407293) (-228 403928 404042 404233 "DIOPS-" 404238 NIL DIOPS- (NIL T T) -8 NIL NIL) (-227 402840 403434 403462 "DIFRING" 403649 T DIFRING (NIL) -9 NIL 403759) (-226 402486 402563 402715 "DIFRING-" 402720 NIL DIFRING- (NIL T) -8 NIL NIL) (-225 400311 401549 401590 "DIFEXT" 401953 NIL DIFEXT (NIL T) -9 NIL 402247) (-224 398596 399024 399690 "DIFEXT-" 399695 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-223 395918 398128 398169 "DIAGG" 398174 NIL DIAGG (NIL T) -9 NIL 398194) (-222 395302 395459 395711 "DIAGG-" 395716 NIL DIAGG- (NIL T T) -8 NIL NIL) (-221 390766 394261 394538 "DHMATRIX" 395071 NIL DHMATRIX (NIL T) -8 NIL NIL) (-220 386378 387287 388297 "DFSFUN" 389776 T DFSFUN (NIL) -7 NIL NIL) (-219 381498 385309 385621 "DFLOAT" 386086 T DFLOAT (NIL) -8 NIL NIL) (-218 379726 380007 380403 "DFINTTLS" 381206 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-217 376791 377747 378147 "DERHAM" 379392 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-216 374640 376566 376655 "DEQUEUE" 376735 NIL DEQUEUE (NIL T) -8 NIL NIL) (-215 373855 373988 374184 "DEGRED" 374502 NIL DEGRED (NIL T T) -7 NIL NIL) (-214 370430 371130 371938 "DEFINTRF" 373128 NIL DEFINTRF (NIL T) -7 NIL NIL) (-213 368069 368510 369081 "DEFINTEF" 369977 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-212 367446 367689 367804 "DEFAST" 367974 T DEFAST (NIL) -8 NIL NIL) (-211 361355 366887 367053 "DECIMAL" 367300 T DECIMAL (NIL) -8 NIL NIL) (-210 358867 359325 359831 "DDFACT" 360899 NIL DDFACT (NIL T T) -7 NIL NIL) (-209 358463 358506 358657 "DBLRESP" 358818 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-208 356173 356507 356876 "DBASE" 358221 NIL DBASE (NIL T) -8 NIL NIL) (-207 355442 355653 355799 "DATABUF" 356072 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-206 354575 355401 355429 "D03FAFA" 355434 T D03FAFA (NIL) -8 NIL NIL) (-205 353709 354534 354562 "D03EEFA" 354567 T D03EEFA (NIL) -8 NIL NIL) (-204 351659 352125 352614 "D03AGNT" 353240 T D03AGNT (NIL) -7 NIL NIL) (-203 350975 351618 351646 "D02EJFA" 351651 T D02EJFA (NIL) -8 NIL NIL) (-202 350291 350934 350962 "D02CJFA" 350967 T D02CJFA (NIL) -8 NIL NIL) (-201 349607 350250 350278 "D02BHFA" 350283 T D02BHFA (NIL) -8 NIL NIL) (-200 348923 349566 349594 "D02BBFA" 349599 T D02BBFA (NIL) -8 NIL NIL) (-199 342121 343709 345315 "D02AGNT" 347337 T D02AGNT (NIL) -7 NIL NIL) (-198 339890 340412 340958 "D01WGTS" 341595 T D01WGTS (NIL) -7 NIL NIL) (-197 338985 339849 339877 "D01TRNS" 339882 T D01TRNS (NIL) -8 NIL NIL) (-196 338080 338944 338972 "D01GBFA" 338977 T D01GBFA (NIL) -8 NIL NIL) (-195 337175 338039 338067 "D01FCFA" 338072 T D01FCFA (NIL) -8 NIL NIL) (-194 336270 337134 337162 "D01ASFA" 337167 T D01ASFA (NIL) -8 NIL NIL) (-193 335365 336229 336257 "D01AQFA" 336262 T D01AQFA (NIL) -8 NIL NIL) (-192 334460 335324 335352 "D01APFA" 335357 T D01APFA (NIL) -8 NIL NIL) (-191 333555 334419 334447 "D01ANFA" 334452 T D01ANFA (NIL) -8 NIL NIL) (-190 332650 333514 333542 "D01AMFA" 333547 T D01AMFA (NIL) -8 NIL NIL) (-189 331745 332609 332637 "D01ALFA" 332642 T D01ALFA (NIL) -8 NIL NIL) (-188 330840 331704 331732 "D01AKFA" 331737 T D01AKFA (NIL) -8 NIL NIL) (-187 329935 330799 330827 "D01AJFA" 330832 T D01AJFA (NIL) -8 NIL NIL) (-186 323232 324783 326344 "D01AGNT" 328394 T D01AGNT (NIL) -7 NIL NIL) (-185 322569 322697 322849 "CYCLOTOM" 323100 T CYCLOTOM (NIL) -7 NIL NIL) (-184 319304 320017 320744 "CYCLES" 321862 T CYCLES (NIL) -7 NIL NIL) (-183 318616 318750 318921 "CVMP" 319165 NIL CVMP (NIL T) -7 NIL NIL) (-182 316387 316645 317021 "CTRIGMNP" 318344 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-181 315898 316087 316186 "CTORCALL" 316308 T CTORCALL (NIL) -8 NIL NIL) (-180 315272 315371 315524 "CSTTOOLS" 315795 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311071 311728 312486 "CRFP" 314584 NIL CRFP (NIL T T) -7 NIL NIL) (-178 310573 310792 310884 "CRCEAST" 310999 T CRCEAST (NIL) -8 NIL NIL) (-177 309620 309805 310033 "CRAPACK" 310377 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309004 309105 309309 "CPMATCH" 309496 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 308729 308757 308863 "CPIMA" 308970 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305093 305765 306483 "COORDSYS" 308064 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 304477 304606 304756 "CONTOUR" 304963 T CONTOUR (NIL) -8 NIL NIL) (-172 300405 302480 302972 "CONTFRAC" 304017 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300285 300306 300334 "CONDUIT" 300371 T CONDUIT (NIL) -9 NIL NIL) (-170 299478 299998 300026 "COMRING" 300031 T COMRING (NIL) -9 NIL 300083) (-169 298559 298836 299020 "COMPPROP" 299314 T COMPPROP (NIL) -8 NIL NIL) (-168 298220 298255 298383 "COMPLPAT" 298518 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 297856 297913 298020 "COMPLEX2" 298157 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-166 287933 297665 297774 "COMPLEX" 297779 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 287651 287686 287784 "COMPFACT" 287892 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272058 282265 282305 "COMPCAT" 283309 NIL COMPCAT (NIL T) -9 NIL 284704) (-163 261594 264511 268131 "COMPCAT-" 268487 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261323 261351 261454 "COMMUPC" 261560 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261118 261151 261210 "COMMONOP" 261284 T COMMONOP (NIL) -7 NIL NIL) (-160 260722 260922 260997 "COMMAAST" 261063 T COMMAAST (NIL) -8 NIL NIL) (-159 260305 260473 260560 "COMM" 260655 T COMM (NIL) -8 NIL NIL) (-158 259554 259748 259776 "COMBOPC" 260114 T COMBOPC (NIL) -9 NIL 260289) (-157 258450 258660 258902 "COMBINAT" 259344 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 254648 255221 255861 "COMBF" 257872 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253434 253764 253999 "COLOR" 254433 T COLOR (NIL) -8 NIL NIL) (-154 252937 253155 253247 "COLONAST" 253362 T COLONAST (NIL) -8 NIL NIL) (-153 252577 252624 252749 "CMPLXRT" 252884 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252052 252277 252376 "CLLCTAST" 252498 T CLLCTAST (NIL) -8 NIL NIL) (-151 247554 248582 249662 "CLIP" 250992 T CLIP (NIL) -7 NIL NIL) (-150 245936 246660 246899 "CLIF" 247381 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242158 244082 244123 "CLAGG" 245052 NIL CLAGG (NIL T) -9 NIL 245588) (-148 240580 241037 241620 "CLAGG-" 241625 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240124 240209 240349 "CINTSLPE" 240489 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237625 238096 238644 "CHVAR" 239652 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 236888 237408 237436 "CHARZ" 237441 T CHARZ (NIL) -9 NIL 237456) (-144 236642 236682 236760 "CHARPOL" 236842 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235789 236342 236370 "CHARNZ" 236417 T CHARNZ (NIL) -9 NIL 236473) (-142 233814 234479 234814 "CHAR" 235474 T CHAR (NIL) -8 NIL NIL) (-141 233540 233601 233629 "CFCAT" 233740 T CFCAT (NIL) -9 NIL NIL) (-140 232785 232896 233078 "CDEN" 233424 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228777 231938 232218 "CCLASS" 232525 T CCLASS (NIL) -8 NIL NIL) (-138 228696 228722 228757 "CATEGORY" 228762 T -10 (NIL) -8 NIL NIL) (-137 228170 228396 228495 "CATAST" 228617 T CATAST (NIL) -8 NIL NIL) (-136 227673 227891 227983 "CASEAST" 228098 T CASEAST (NIL) -8 NIL NIL) (-135 226781 226929 227150 "CARTEN2" 227520 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-134 221833 222810 223563 "CARTEN" 226084 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-133 220175 220983 221240 "CARD" 221596 T CARD (NIL) -8 NIL NIL) (-132 219778 219979 220054 "CAPSLAST" 220120 T CAPSLAST (NIL) -8 NIL NIL) (-131 219150 219478 219506 "CACHSET" 219638 T CACHSET (NIL) -9 NIL 219715) (-130 218646 218942 218970 "CABMON" 219020 T CABMON (NIL) -9 NIL 219076) (-129 214594 218593 218627 "BYTEARY" 218632 T BYTEARY (NIL) -8 NIL NIL) (-128 213521 213949 214145 "BYTE" 214418 T BYTE (NIL) -8 NIL NIL) (-127 211080 213213 213320 "BTREE" 213447 NIL BTREE (NIL T) -8 NIL NIL) (-126 208580 210728 210850 "BTOURN" 210990 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206000 208051 208092 "BTCAT" 208160 NIL BTCAT (NIL T) -9 NIL 208237) (-124 205667 205747 205896 "BTCAT-" 205901 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 200959 204810 204838 "BTAGG" 205060 T BTAGG (NIL) -9 NIL 205221) (-122 200449 200574 200780 "BTAGG-" 200785 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197495 199727 199942 "BSTREE" 200266 NIL BSTREE (NIL T) -8 NIL NIL) (-120 196633 196759 196943 "BRILL" 197351 NIL BRILL (NIL T) -7 NIL NIL) (-119 193335 195361 195402 "BRAGG" 196051 NIL BRAGG (NIL T) -9 NIL 196308) (-118 191867 192272 192826 "BRAGG-" 192831 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185154 191213 191397 "BPADICRT" 191715 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183506 185091 185136 "BPADIC" 185141 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183204 183234 183348 "BOUNDZRO" 183470 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 180825 181269 181789 "BOP1" 182717 NIL BOP1 (NIL T) -7 NIL NIL) (-113 176340 177431 178298 "BOP" 179978 T BOP (NIL) -8 NIL NIL) (-112 175078 175764 175957 "BOOLEAN" 176167 T BOOLEAN (NIL) -8 NIL NIL) (-111 174440 174818 174872 "BMODULE" 174877 NIL BMODULE (NIL T T) -9 NIL 174942) (-110 170270 174238 174311 "BITS" 174387 T BITS (NIL) -8 NIL NIL) (-109 169367 169802 169954 "BINFILE" 170138 T BINFILE (NIL) -8 NIL NIL) (-108 168779 168901 169043 "BINDING" 169245 T BINDING (NIL) -8 NIL NIL) (-107 162692 168223 168388 "BINARY" 168634 T BINARY (NIL) -8 NIL NIL) (-106 160519 161947 161988 "BGAGG" 162248 NIL BGAGG (NIL T) -9 NIL 162385) (-105 160350 160382 160473 "BGAGG-" 160478 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159448 159734 159939 "BFUNCT" 160165 T BFUNCT (NIL) -8 NIL NIL) (-103 158132 158313 158601 "BEZOUT" 159272 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 154651 156984 157314 "BBTREE" 157835 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154385 154438 154466 "BASTYPE" 154585 T BASTYPE (NIL) -9 NIL NIL) (-100 154237 154266 154339 "BASTYPE-" 154344 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 153675 153751 153901 "BALFACT" 154148 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152558 153090 153276 "AUTOMOR" 153520 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152284 152289 152315 "ATTREG" 152320 T ATTREG (NIL) -9 NIL NIL) (-96 150563 150981 151333 "ATTRBUT" 151950 T ATTRBUT (NIL) -8 NIL NIL) (-95 150198 150391 150457 "ATTRAST" 150515 T ATTRAST (NIL) -8 NIL NIL) (-94 149734 149847 149873 "ATRIG" 150074 T ATRIG (NIL) -9 NIL NIL) (-93 149543 149584 149671 "ATRIG-" 149676 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149165 149325 149351 "ASTCAT" 149409 T ASTCAT (NIL) -9 NIL 149472) (-91 148892 148951 149070 "ASTCAT-" 149075 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147089 148668 148756 "ASTACK" 148835 NIL ASTACK (NIL T) -8 NIL NIL) (-89 145594 145891 146256 "ASSOCEQ" 146771 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 144648 145253 145377 "ASP9" 145501 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 143539 144253 144395 "ASP80" 144537 NIL ASP80 (NIL NIL) -8 NIL NIL) (-86 143303 143487 143526 "ASP8" 143531 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 142279 142980 143098 "ASP78" 143216 NIL ASP78 (NIL NIL) -8 NIL NIL) (-84 141270 141959 142076 "ASP77" 142193 NIL ASP77 (NIL NIL) -8 NIL NIL) (-83 140204 140908 141039 "ASP74" 141170 NIL ASP74 (NIL NIL) -8 NIL NIL) (-82 139126 139839 139971 "ASP73" 140103 NIL ASP73 (NIL NIL) -8 NIL NIL) (-81 138047 138761 138893 "ASP7" 139025 NIL ASP7 (NIL NIL) -8 NIL NIL) (-80 137024 137724 137842 "ASP6" 137960 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 135994 136701 136819 "ASP55" 136937 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 134966 135668 135787 "ASP50" 135906 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134076 134667 134777 "ASP49" 134887 NIL ASP49 (NIL NIL) -8 NIL NIL) (-76 132883 133615 133783 "ASP42" 133965 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-75 131682 132416 132586 "ASP41" 132770 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-74 130792 131383 131493 "ASP4" 131603 NIL ASP4 (NIL NIL) -8 NIL NIL) (-73 129764 130469 130587 "ASP35" 130705 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129529 129712 129751 "ASP34" 129756 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129266 129333 129409 "ASP33" 129484 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128183 128901 129033 "ASP31" 129165 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 127948 128131 128170 "ASP30" 128175 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127683 127752 127828 "ASP29" 127903 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127448 127631 127670 "ASP28" 127675 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127213 127396 127435 "ASP27" 127440 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126319 126911 127022 "ASP24" 127133 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125257 125960 126090 "ASP20" 126220 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124223 124931 125050 "ASP19" 125169 NIL ASP19 (NIL NIL) -8 NIL NIL) (-62 123960 124027 124103 "ASP12" 124178 NIL ASP12 (NIL NIL) -8 NIL NIL) (-61 122834 123559 123703 "ASP10" 123847 NIL ASP10 (NIL NIL) -8 NIL NIL) (-60 121944 122535 122645 "ASP1" 122755 NIL ASP1 (NIL NIL) -8 NIL NIL) (-59 119843 121788 121879 "ARRAY2" 121884 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 118875 119048 119269 "ARRAY12" 119666 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-57 114691 118523 118637 "ARRAY1" 118792 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 109050 110921 110996 "ARR2CAT" 113626 NIL ARR2CAT (NIL T T T) -9 NIL 114384) (-55 106484 107228 108182 "ARR2CAT-" 108187 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105232 105384 105690 "APPRULE" 106320 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104883 104931 105050 "APPLYORE" 105178 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 104161 104284 104441 "ANY1" 104757 NIL ANY1 (NIL T) -7 NIL NIL) (-51 103135 103426 103621 "ANY" 103984 T ANY (NIL) -8 NIL NIL) (-50 100700 101572 101899 "ANTISYM" 102859 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100215 100404 100501 "ANON" 100621 T ANON (NIL) -8 NIL NIL) (-48 94358 98756 99209 "AN" 99780 T AN (NIL) -8 NIL NIL) (-47 90739 92093 92144 "AMR" 92892 NIL AMR (NIL T T) -9 NIL 93492) (-46 89851 90072 90435 "AMR-" 90440 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74407 89768 89829 "ALIST" 89834 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71276 74001 74170 "ALGSC" 74325 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67832 68386 68993 "ALGPKG" 70716 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67109 67210 67394 "ALGMFACT" 67718 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62848 63533 64188 "ALGMANIP" 66632 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54265 62474 62624 "ALGFF" 62781 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53461 53592 53771 "ALGFACT" 54123 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52491 53057 53095 "ALGEBRA" 53155 NIL ALGEBRA (NIL T) -9 NIL 53214) (-37 52209 52268 52400 "ALGEBRA-" 52405 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34475 50212 50264 "ALAGG" 50400 NIL ALAGG (NIL T T) -9 NIL 50561) (-35 34011 34124 34150 "AHYP" 34351 T AHYP (NIL) -9 NIL NIL) (-34 32942 33190 33216 "AGG" 33715 T AGG (NIL) -9 NIL 33994) (-33 32376 32538 32752 "AGG-" 32757 NIL AGG- (NIL T) -8 NIL NIL) (-32 30053 30475 30893 "AF" 32018 NIL AF (NIL T T) -7 NIL NIL) (-31 29560 29778 29868 "ADDAST" 29981 T ADDAST (NIL) -8 NIL NIL) (-30 28829 29087 29243 "ACPLOT" 29422 T ACPLOT (NIL) -8 NIL NIL) (-29 18356 26221 26272 "ACFS" 26983 NIL ACFS (NIL T) -9 NIL 27222) (-28 16370 16860 17635 "ACFS-" 17640 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file +((-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-517)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-214)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-656))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-656)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1242))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1242)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-137)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-132)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1089)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-95)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-661)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-510)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1040)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1243))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1243)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-518)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-152)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-651))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-651)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-307))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-307)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1012))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1012)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-178)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-946))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-946)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1047)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1064)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1069)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-608)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1139))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1139)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-154)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-136)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-472)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-577)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-499)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1131)))) (-3929 (*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-538))))) +(-13 (-1056) (-1227) (-10 -8 (-15 -3929 ((-112) $ (|[\|\|]| (-517)))) (-15 -3935 ((-517) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-214)))) (-15 -3935 ((-214) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-656)))) (-15 -3935 ((-656) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1242)))) (-15 -3935 ((-1242) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-137)))) (-15 -3935 ((-137) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-132)))) (-15 -3935 ((-132) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1089)))) (-15 -3935 ((-1089) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-95)))) (-15 -3935 ((-95) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-661)))) (-15 -3935 ((-661) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-510)))) (-15 -3935 ((-510) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1040)))) (-15 -3935 ((-1040) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1243)))) (-15 -3935 ((-1243) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-518)))) (-15 -3935 ((-518) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-152)))) (-15 -3935 ((-152) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-651)))) (-15 -3935 ((-651) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-307)))) (-15 -3935 ((-307) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1012)))) (-15 -3935 ((-1012) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-178)))) (-15 -3935 ((-178) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-946)))) (-15 -3935 ((-946) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1047)))) (-15 -3935 ((-1047) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1064)))) (-15 -3935 ((-1064) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1069)))) (-15 -3935 ((-1069) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-608)))) (-15 -3935 ((-608) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1139)))) (-15 -3935 ((-1139) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-154)))) (-15 -3935 ((-154) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-136)))) (-15 -3935 ((-136) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-472)))) (-15 -3935 ((-472) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-577)))) (-15 -3935 ((-577) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-499)))) (-15 -3935 ((-499) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-1131)))) (-15 -3935 ((-1131) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-538)))) (-15 -3935 ((-538) $)))) +(((-92) . T) ((-101) . T) ((-597 (-840)) . T) ((-597 (-1154)) . T) ((-1074) . T) ((-1056) . T) ((-1227) . T)) +((-3741 (((-1237) (-622 (-840))) 23) (((-1237) (-840)) 22)) (-3740 (((-1237) (-622 (-840))) 21) (((-1237) (-840)) 20)) (-3739 (((-1237) (-622 (-840))) 19) (((-1237) (-840)) 11) (((-1237) (-1131) (-840)) 17))) +(((-1111) (-10 -7 (-15 -3739 ((-1237) (-1131) (-840))) (-15 -3739 ((-1237) (-840))) (-15 -3740 ((-1237) (-840))) (-15 -3741 ((-1237) (-840))) (-15 -3739 ((-1237) (-622 (-840)))) (-15 -3740 ((-1237) (-622 (-840)))) (-15 -3741 ((-1237) (-622 (-840)))))) (T -1111)) +((-3741 (*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *3 (-1131)) (-5 *4 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111))))) +(-10 -7 (-15 -3739 ((-1237) (-1131) (-840))) (-15 -3739 ((-1237) (-840))) (-15 -3740 ((-1237) (-840))) (-15 -3741 ((-1237) (-840))) (-15 -3739 ((-1237) (-622 (-840)))) (-15 -3740 ((-1237) (-622 (-840)))) (-15 -3741 ((-1237) (-622 (-840))))) +((-3745 (($ $ $) 10)) (-3744 (($ $) 9)) (-3748 (($ $ $) 13)) (-3750 (($ $ $) 15)) (-3747 (($ $ $) 12)) (-3749 (($ $ $) 14)) (-3752 (($ $) 17)) (-3751 (($ $) 16)) (-3742 (($ $) 6)) (-3746 (($ $ $) 11) (($ $) 7)) (-3743 (($ $ $) 8))) +(((-1112) (-138)) (T -1112)) +((-3752 (*1 *1 *1) (-4 *1 (-1112))) (-3751 (*1 *1 *1) (-4 *1 (-1112))) (-3750 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3749 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3748 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3747 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3746 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3745 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3744 (*1 *1 *1) (-4 *1 (-1112))) (-3743 (*1 *1 *1 *1) (-4 *1 (-1112))) (-3746 (*1 *1 *1) (-4 *1 (-1112))) (-3742 (*1 *1 *1) (-4 *1 (-1112)))) +(-13 (-10 -8 (-15 -3742 ($ $)) (-15 -3746 ($ $)) (-15 -3743 ($ $ $)) (-15 -3744 ($ $)) (-15 -3745 ($ $ $)) (-15 -3746 ($ $ $)) (-15 -3747 ($ $ $)) (-15 -3748 ($ $ $)) (-15 -3749 ($ $ $)) (-15 -3750 ($ $ $)) (-15 -3751 ($ $)) (-15 -3752 ($ $)))) +((-2898 (((-112) $ $) 41)) (-3761 ((|#1| $) 15)) (-3753 (((-112) $ $ (-1 (-112) |#2| |#2|)) 36)) (-3760 (((-112) $) 17)) (-3758 (($ $ |#1|) 28)) (-3756 (($ $ (-112)) 30)) (-3755 (($ $) 31)) (-3757 (($ $ |#2|) 29)) (-3593 (((-1131) $) NIL)) (-3754 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 35)) (-3594 (((-1093) $) NIL)) (-3762 (((-112) $) 14)) (-3928 (($) 10)) (-3759 (($ $) 27)) (-3884 (($ |#1| |#2| (-112)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1660 |#2|))) 21) (((-622 $) (-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|)))) 24) (((-622 $) |#1| (-622 |#2|)) 26)) (-4282 ((|#2| $) 16)) (-4317 (((-840) $) 50)) (-3387 (((-112) $ $) 39))) +(((-1113 |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -3928 ($)) (-15 -3762 ((-112) $)) (-15 -3761 (|#1| $)) (-15 -4282 (|#2| $)) (-15 -3760 ((-112) $)) (-15 -3884 ($ |#1| |#2| (-112))) (-15 -3884 ($ |#1| |#2|)) (-15 -3884 ($ (-2 (|:| |val| |#1|) (|:| -1660 |#2|)))) (-15 -3884 ((-622 $) (-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|))))) (-15 -3884 ((-622 $) |#1| (-622 |#2|))) (-15 -3759 ($ $)) (-15 -3758 ($ $ |#1|)) (-15 -3757 ($ $ |#2|)) (-15 -3756 ($ $ (-112))) (-15 -3755 ($ $)) (-15 -3754 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3753 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1074) (-34)) (-13 (-1074) (-34))) (T -1113)) +((-3928 (*1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))) (-3761 (*1 *2 *1) (-12 (-4 *2 (-13 (-1074) (-34))) (-5 *1 (-1113 *2 *3)) (-4 *3 (-13 (-1074) (-34))))) (-4282 (*1 *2 *1) (-12 (-4 *2 (-13 (-1074) (-34))) (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1074) (-34))))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))) (-3884 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3884 (*1 *1 *2 *3) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1660 *4))) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1113 *3 *4)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-622 (-2 (|:| |val| *4) (|:| -1660 *5)))) (-4 *4 (-13 (-1074) (-34))) (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-622 (-1113 *4 *5))) (-5 *1 (-1113 *4 *5)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-622 *5)) (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-622 (-1113 *3 *5))) (-5 *1 (-1113 *3 *5)) (-4 *3 (-13 (-1074) (-34))))) (-3759 (*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3758 (*1 *1 *1 *2) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3757 (*1 *1 *1 *2) (-12 (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1074) (-34))) (-4 *2 (-13 (-1074) (-34))))) (-3756 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))) (-3755 (*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3754 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1074) (-34))) (-4 *6 (-13 (-1074) (-34))) (-5 *2 (-112)) (-5 *1 (-1113 *5 *6)))) (-3753 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-112)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-13 (-1074) (-34)))))) +(-13 (-1074) (-10 -8 (-15 -3928 ($)) (-15 -3762 ((-112) $)) (-15 -3761 (|#1| $)) (-15 -4282 (|#2| $)) (-15 -3760 ((-112) $)) (-15 -3884 ($ |#1| |#2| (-112))) (-15 -3884 ($ |#1| |#2|)) (-15 -3884 ($ (-2 (|:| |val| |#1|) (|:| -1660 |#2|)))) (-15 -3884 ((-622 $) (-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|))))) (-15 -3884 ((-622 $) |#1| (-622 |#2|))) (-15 -3759 ($ $)) (-15 -3758 ($ $ |#1|)) (-15 -3757 ($ $ |#2|)) (-15 -3756 ($ $ (-112))) (-15 -3755 ($ $)) (-15 -3754 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3753 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-2898 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1074)))) (-3761 (((-1113 |#1| |#2|) $) 25)) (-3770 (($ $) 76)) (-3766 (((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 85)) (-3763 (($ $ $ (-622 (-1113 |#1| |#2|))) 90) (($ $ $ (-622 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 91)) (-1271 (((-112) $ (-751)) NIL)) (-3358 (((-1113 |#1| |#2|) $ (-1113 |#1| |#2|)) 43 (|has| $ (-6 -4354)))) (-4147 (((-1113 |#1| |#2|) $ #1="value" (-1113 |#1| |#2|)) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-3768 (((-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|))) $) 80)) (-3764 (($ (-1113 |#1| |#2|) $) 39)) (-3765 (($ (-1113 |#1| |#2|) $) 31)) (-2068 (((-622 (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 51)) (-3767 (((-112) (-1113 |#1| |#2|) $) 82)) (-3360 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1074)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 (-1113 |#1| |#2|)) $) 55 (|has| $ (-6 -4353)))) (-3596 (((-112) (-1113 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-1113 |#1| |#2|) (-1074))))) (-2072 (($ (-1 (-1113 |#1| |#2|) (-1113 |#1| |#2|)) $) 47 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-1113 |#1| |#2|) (-1113 |#1| |#2|)) $) 46)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 (-1113 |#1| |#2|)) $) 53)) (-3881 (((-112) $) 42)) (-3593 (((-1131) $) NIL (|has| (-1113 |#1| |#2|) (-1074)))) (-3594 (((-1093) $) NIL (|has| (-1113 |#1| |#2|) (-1074)))) (-3771 (((-3 $ "failed") $) 75)) (-2070 (((-112) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-1113 |#1| |#2|)))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1074)))) (($ $ (-288 (-1113 |#1| |#2|))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1074)))) (($ $ (-1113 |#1| |#2|) (-1113 |#1| |#2|)) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1074)))) (($ $ (-622 (-1113 |#1| |#2|)) (-622 (-1113 |#1| |#2|))) NIL (-12 (|has| (-1113 |#1| |#2|) (-304 (-1113 |#1| |#2|))) (|has| (-1113 |#1| |#2|) (-1074))))) (-1272 (((-112) $ $) 50)) (-3762 (((-112) $) 22)) (-3928 (($) 24)) (-4159 (((-1113 |#1| |#2|) $ #1#) NIL)) (-3362 (((-538) $ $) NIL)) (-3996 (((-112) $) 44)) (-2069 (((-751) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353))) (((-751) (-1113 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-1113 |#1| |#2|) (-1074))))) (-3759 (($ $) 49)) (-3884 (($ (-1113 |#1| |#2|)) 9) (($ |#1| |#2| (-622 $)) 12) (($ |#1| |#2| (-622 (-1113 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-622 |#2|)) 17)) (-3769 (((-622 |#2|) $) 81)) (-4317 (((-840) $) 73 (|has| (-1113 |#1| |#2|) (-597 (-840))))) (-3876 (((-622 $) $) 28)) (-3361 (((-112) $ $) NIL (|has| (-1113 |#1| |#2|) (-1074)))) (-2071 (((-112) (-1 (-112) (-1113 |#1| |#2|)) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 64 (|has| (-1113 |#1| |#2|) (-1074)))) (-4316 (((-751) $) 58 (|has| $ (-6 -4353))))) +(((-1114 |#1| |#2|) (-13 (-986 (-1113 |#1| |#2|)) (-10 -8 (-6 -4354) (-6 -4353) (-15 -3771 ((-3 $ "failed") $)) (-15 -3770 ($ $)) (-15 -3884 ($ (-1113 |#1| |#2|))) (-15 -3884 ($ |#1| |#2| (-622 $))) (-15 -3884 ($ |#1| |#2| (-622 (-1113 |#1| |#2|)))) (-15 -3884 ($ |#1| |#2| |#1| (-622 |#2|))) (-15 -3769 ((-622 |#2|) $)) (-15 -3768 ((-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|))) $)) (-15 -3767 ((-112) (-1113 |#1| |#2|) $)) (-15 -3766 ((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3765 ($ (-1113 |#1| |#2|) $)) (-15 -3764 ($ (-1113 |#1| |#2|) $)) (-15 -3763 ($ $ $ (-622 (-1113 |#1| |#2|)))) (-15 -3763 ($ $ $ (-622 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1074) (-34)) (-13 (-1074) (-34))) (T -1114)) +((-3771 (*1 *1 *1) (|partial| -12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3770 (*1 *1 *1) (-12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3884 (*1 *1 *2) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))) (-3884 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-622 (-1114 *2 *3))) (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) (-3884 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-622 (-1113 *2 *3))) (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))) (-5 *1 (-1114 *2 *3)))) (-3884 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-1074) (-34))) (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34))))) (-3769 (*1 *2 *1) (-12 (-5 *2 (-622 *4)) (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))))) (-3767 (*1 *2 *3 *1) (-12 (-5 *3 (-1113 *4 *5)) (-4 *4 (-13 (-1074) (-34))) (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5)))) (-3766 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1113 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1074) (-34))) (-4 *6 (-13 (-1074) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *5 *6)))) (-3765 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))) (-3764 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))) (-3763 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-622 (-1113 *3 *4))) (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))) (-3763 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1113 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1074) (-34))) (-4 *5 (-13 (-1074) (-34))) (-5 *1 (-1114 *4 *5))))) +(-13 (-986 (-1113 |#1| |#2|)) (-10 -8 (-6 -4354) (-6 -4353) (-15 -3771 ((-3 $ "failed") $)) (-15 -3770 ($ $)) (-15 -3884 ($ (-1113 |#1| |#2|))) (-15 -3884 ($ |#1| |#2| (-622 $))) (-15 -3884 ($ |#1| |#2| (-622 (-1113 |#1| |#2|)))) (-15 -3884 ($ |#1| |#2| |#1| (-622 |#2|))) (-15 -3769 ((-622 |#2|) $)) (-15 -3768 ((-622 (-2 (|:| |val| |#1|) (|:| -1660 |#2|))) $)) (-15 -3767 ((-112) (-1113 |#1| |#2|) $)) (-15 -3766 ((-112) (-1113 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3765 ($ (-1113 |#1| |#2|) $)) (-15 -3764 ($ (-1113 |#1| |#2|) $)) (-15 -3763 ($ $ $ (-622 (-1113 |#1| |#2|)))) (-15 -3763 ($ $ $ (-622 (-1113 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3773 (($ $) NIL)) (-3689 ((|#2| $) NIL)) (-3456 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3772 (($ (-669 |#2|)) 50)) (-3458 (((-112) $) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-3692 (($ |#2|) 10)) (-3896 (($) NIL T CONST)) (-3445 (($ $) 63 (|has| |#2| (-302)))) (-3447 (((-235 |#1| |#2|) $ (-538)) 36)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 |#2| #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) ((|#2| $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) 77)) (-3444 (((-751) $) 65 (|has| |#2| (-545)))) (-3448 ((|#2| $ (-538) (-538)) NIL)) (-2068 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-2502 (((-112) $) NIL)) (-3443 (((-751) $) 67 (|has| |#2| (-545)))) (-3442 (((-622 (-235 |#1| |#2|)) $) 71 (|has| |#2| (-545)))) (-3450 (((-751) $) NIL)) (-3977 (($ |#2|) 20)) (-3449 (((-751) $) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-3686 ((|#2| $) 61 (|has| |#2| (-6 (-4355 #2="*"))))) (-3454 (((-538) $) NIL)) (-3452 (((-538) $) NIL)) (-2511 (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3453 (((-538) $) NIL)) (-3451 (((-538) $) NIL)) (-3459 (($ (-622 (-622 |#2|))) 31)) (-2072 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3956 (((-622 (-622 |#2|)) $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3952 (((-3 $ "failed") $) 74 (|has| |#2| (-358)))) (-3594 (((-1093) $) NIL)) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545)))) (-2070 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ (-538) (-538) |#2|) NIL) ((|#2| $ (-538) (-538)) NIL)) (-4170 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3688 ((|#2| $) NIL)) (-3691 (($ (-622 |#2|)) 44)) (-3457 (((-112) $) NIL)) (-3690 (((-235 |#1| |#2|) $) NIL)) (-3687 ((|#2| $) 59 (|has| |#2| (-6 (-4355 #2#))))) (-2069 (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-3759 (($ $) NIL)) (-4330 (((-527) $) 86 (|has| |#2| (-598 (-527))))) (-3446 (((-235 |#1| |#2|) $ (-538)) 38)) (-4317 (((-840) $) 41) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#2| (-1014 (-402 (-538))))) (($ |#2|) NIL) (((-669 |#2|) $) 46)) (-3461 (((-751)) 18)) (-2071 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3455 (((-112) $) NIL)) (-2991 (($) 12 T CONST)) (-2997 (($) 15 T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-751)) NIL (|has| |#2| (-229))) (($ $) NIL (|has| |#2| (-229)))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) 57) (($ $ (-538)) 76 (|has| |#2| (-358)))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-235 |#1| |#2|) $ (-235 |#1| |#2|)) 53) (((-235 |#1| |#2|) (-235 |#1| |#2|) $) 55)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1115 |#1| |#2|) (-13 (-1096 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-597 (-669 |#2|)) (-10 -8 (-15 -3977 ($ |#2|)) (-15 -3773 ($ $)) (-15 -3772 ($ (-669 |#2|))) (IF (|has| |#2| (-6 (-4355 "*"))) (-6 -4342) |%noBranch|) (IF (|has| |#2| (-6 (-4355 "*"))) (IF (|has| |#2| (-6 -4350)) (-6 -4350) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|))) (-751) (-1025)) (T -1115)) +((-3977 (*1 *1 *2) (-12 (-5 *1 (-1115 *3 *2)) (-14 *3 (-751)) (-4 *2 (-1025)))) (-3773 (*1 *1 *1) (-12 (-5 *1 (-1115 *2 *3)) (-14 *2 (-751)) (-4 *3 (-1025)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1115 *3 *4)) (-14 *3 (-751))))) +(-13 (-1096 |#1| |#2| (-235 |#1| |#2|) (-235 |#1| |#2|)) (-597 (-669 |#2|)) (-10 -8 (-15 -3977 ($ |#2|)) (-15 -3773 ($ $)) (-15 -3772 ($ (-669 |#2|))) (IF (|has| |#2| (-6 (-4355 "*"))) (-6 -4342) |%noBranch|) (IF (|has| |#2| (-6 (-4355 "*"))) (IF (|has| |#2| (-6 -4350)) (-6 -4350) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-598 (-527))) (-6 (-598 (-527))) |%noBranch|))) +((-3786 (($ $) 19)) (-3776 (($ $ (-142)) 10) (($ $ (-139)) 14)) (-3784 (((-112) $ $) 24)) (-3788 (($ $) 17)) (-4159 (((-142) $ (-538) (-142)) NIL) (((-142) $ (-538)) NIL) (($ $ (-1198 (-538))) NIL) (($ $ $) 29)) (-4317 (($ (-142)) 27) (((-840) $) NIL))) +(((-1116 |#1|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -3776 (|#1| |#1| (-139))) (-15 -3776 (|#1| |#1| (-142))) (-15 -4317 (|#1| (-142))) (-15 -3784 ((-112) |#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4159 ((-142) |#1| (-538))) (-15 -4159 ((-142) |#1| (-538) (-142)))) (-1117)) (T -1116)) +NIL +(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -4159 (|#1| |#1| |#1|)) (-15 -3776 (|#1| |#1| (-139))) (-15 -3776 (|#1| |#1| (-142))) (-15 -4317 (|#1| (-142))) (-15 -3784 ((-112) |#1| |#1|)) (-15 -3786 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4159 ((-142) |#1| (-538))) (-15 -4159 ((-142) |#1| (-538) (-142)))) +((-2898 (((-112) $ $) 19 (|has| (-142) (-1074)))) (-3785 (($ $) 120)) (-3786 (($ $) 121)) (-3776 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-3783 (((-112) $ $) 118)) (-3782 (((-112) $ $ (-538)) 117)) (-3777 (((-622 $) $ (-142)) 110) (((-622 $) $ (-139)) 109)) (-1848 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-827)))) (-1846 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| (-142) (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 (((-142) $ (-538) (-142)) 52 (|has| $ (-6 -4354))) (((-142) $ (-1198 (-538)) (-142)) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-3774 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-3779 (($ $ (-1198 (-538)) $) 114)) (-1398 (($ $) 78 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ (-142) $) 77 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4353)))) (-4202 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4353)))) (-1637 (((-142) $ (-538) (-142)) 53 (|has| $ (-6 -4354)))) (-3448 (((-142) $ (-538)) 51)) (-3784 (((-112) $ $) 119)) (-3778 (((-538) (-1 (-112) (-142)) $) 97) (((-538) (-142) $) 96 (|has| (-142) (-1074))) (((-538) (-142) $ (-538)) 95 (|has| (-142) (-1074))) (((-538) $ $ (-538)) 113) (((-538) (-139) $ (-538)) 112)) (-2068 (((-622 (-142)) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) (-142)) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| (-142) (-827)))) (-3872 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-827)))) (-2511 (((-622 (-142)) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| (-142) (-827)))) (-3780 (((-112) $ $ (-142)) 115)) (-3781 (((-751) $ $ (-142)) 116)) (-2072 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3787 (($ $) 122)) (-3788 (($ $) 123)) (-4079 (((-112) $ (-751)) 10)) (-3775 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3593 (((-1131) $) 22 (|has| (-142) (-1074)))) (-2382 (($ (-142) $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| (-142) (-1074)))) (-4160 (((-142) $) 42 (|has| (-538) (-827)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2306 (($ $ (-142)) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-288 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-622 (-142)) (-622 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2312 (((-622 (-142)) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 (((-142) $ (-538) (-142)) 50) (((-142) $ (-538)) 49) (($ $ (-1198 (-538))) 63) (($ $ $) 102)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4353))) (((-751) (-142) $) 28 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| (-142) (-598 (-527))))) (-3884 (($ (-622 (-142))) 70)) (-4161 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (($ (-142)) 111) (((-840) $) 18 (|has| (-142) (-597 (-840))))) (-2071 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 84 (|has| (-142) (-827)))) (-2897 (((-112) $ $) 83 (|has| (-142) (-827)))) (-3387 (((-112) $ $) 20 (|has| (-142) (-1074)))) (-3017 (((-112) $ $) 85 (|has| (-142) (-827)))) (-3018 (((-112) $ $) 82 (|has| (-142) (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-1117) (-138)) (T -1117)) +((-3788 (*1 *1 *1) (-4 *1 (-1117))) (-3787 (*1 *1 *1) (-4 *1 (-1117))) (-3786 (*1 *1 *1) (-4 *1 (-1117))) (-3785 (*1 *1 *1) (-4 *1 (-1117))) (-3784 (*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))) (-3783 (*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112)))) (-3782 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-538)) (-5 *2 (-112)))) (-3781 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-751)))) (-3780 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-112)))) (-3779 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1198 (-538))))) (-3778 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-538)))) (-3778 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-538)) (-5 *3 (-139)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1117)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-622 *1)) (-4 *1 (-1117)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-622 *1)) (-4 *1 (-1117)))) (-3776 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3776 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-3775 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3775 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-3774 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142)))) (-3774 (*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) (-4159 (*1 *1 *1 *1) (-4 *1 (-1117)))) +(-13 (-19 (-142)) (-10 -8 (-15 -3788 ($ $)) (-15 -3787 ($ $)) (-15 -3786 ($ $)) (-15 -3785 ($ $)) (-15 -3784 ((-112) $ $)) (-15 -3783 ((-112) $ $)) (-15 -3782 ((-112) $ $ (-538))) (-15 -3781 ((-751) $ $ (-142))) (-15 -3780 ((-112) $ $ (-142))) (-15 -3779 ($ $ (-1198 (-538)) $)) (-15 -3778 ((-538) $ $ (-538))) (-15 -3778 ((-538) (-139) $ (-538))) (-15 -4317 ($ (-142))) (-15 -3777 ((-622 $) $ (-142))) (-15 -3777 ((-622 $) $ (-139))) (-15 -3776 ($ $ (-142))) (-15 -3776 ($ $ (-139))) (-15 -3775 ($ $ (-142))) (-15 -3775 ($ $ (-139))) (-15 -3774 ($ $ (-142))) (-15 -3774 ($ $ (-139))) (-15 -4159 ($ $ $)))) +(((-34) . T) ((-101) -3891 (|has| (-142) (-1074)) (|has| (-142) (-827))) ((-597 (-840)) -3891 (|has| (-142) (-1074)) (|has| (-142) (-827)) (|has| (-142) (-597 (-840)))) ((-149 #1=(-142)) . T) ((-598 (-527)) |has| (-142) (-598 (-527))) ((-281 #2=(-538) #1#) . T) ((-283 #2# #1#) . T) ((-304 #1#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))) ((-367 #1#) . T) ((-483 #1#) . T) ((-588 #2# #1#) . T) ((-507 #1# #1#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))) ((-631 #1#) . T) ((-19 #1#) . T) ((-827) |has| (-142) (-827)) ((-1074) -3891 (|has| (-142) (-1074)) (|has| (-142) (-827))) ((-1185) . T)) +((-3795 (((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751)) 94)) (-3792 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751)) 54)) (-3796 (((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751)) 85)) (-3790 (((-751) (-622 |#4|) (-622 |#5|)) 27)) (-3793 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751)) 56) (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112)) 58)) (-3794 (((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112)) 76) (((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112)) 77)) (-4330 (((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) 80)) (-3791 (((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|) 53)) (-3789 (((-751) (-622 |#4|) (-622 |#5|)) 19))) +(((-1118 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3789 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3790 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3791 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3795 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751))) (-15 -4330 ((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3796 ((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751)))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|) (-1082 |#1| |#2| |#3| |#4|)) (T -1118)) +((-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *4 (-751)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) (-5 *1 (-1118 *4 *5 *6 *7 *8)))) (-3795 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-622 *11)) (|:| |todo| (-622 (-2 (|:| |val| *3) (|:| -1660 *11)))))) (-5 *6 (-751)) (-5 *2 (-622 (-2 (|:| |val| (-622 *10)) (|:| -1660 *11)))) (-5 *3 (-622 *10)) (-5 *4 (-622 *11)) (-4 *10 (-1039 *7 *8 *9)) (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-5 *1 (-1118 *7 *8 *9 *10 *11)))) (-3794 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3794 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3793 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3793 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3793 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3)))) (-3792 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3792 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) (-3791 (*1 *2 *3 *4) (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-622 *4)) (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) (-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -3789 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3790 ((-751) (-622 |#4|) (-622 |#5|))) (-15 -3791 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3792 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751) (-112))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5| (-751))) (-15 -3793 ((-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) |#4| |#5|)) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112))) (-15 -3794 ((-622 |#5|) (-622 |#4|) (-622 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3795 ((-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-622 |#4|) (-622 |#5|) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-2 (|:| |done| (-622 |#5|)) (|:| |todo| (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))))) (-751))) (-15 -4330 ((-1131) (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|)))) (-15 -3796 ((-1237) (-622 (-2 (|:| |val| (-622 |#4|)) (|:| -1660 |#5|))) (-751)))) +((-2898 (((-112) $ $) NIL)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) NIL)) (-4045 (((-622 $) (-622 |#4|)) 110) (((-622 $) (-622 |#4|) (-112)) 111) (((-622 $) (-622 |#4|) (-112) (-112)) 109) (((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112)) 112)) (-3417 (((-622 |#3|) $) NIL)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4051 ((|#4| |#4| $) NIL)) (-4134 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| $) 84)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) 62)) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) 26 (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3233 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) NIL)) (-3507 (($ (-622 |#4|)) NIL)) (-4158 (((-3 $ #1#) $) 39)) (-4048 ((|#4| |#4| $) 65)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3765 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) NIL)) (-3548 (((-112) |#4| $) NIL)) (-3546 (((-112) |#4| $) NIL)) (-3549 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3797 (((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112)) 124)) (-2068 (((-622 |#4|) $) 16 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3531 ((|#3| $) 33)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#4|) $) 17 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 25 (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-2072 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 21)) (-3247 (((-622 |#3|) $) NIL)) (-3246 (((-112) |#3| $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-3542 (((-3 |#4| (-622 $)) |#4| |#4| $) NIL)) (-3541 (((-622 (-2 (|:| |val| |#4|) (|:| -1660 $))) |#4| |#4| $) 103)) (-4157 (((-3 |#4| #1#) $) 37)) (-3543 (((-622 $) |#4| $) 88)) (-3545 (((-3 (-112) (-622 $)) |#4| $) NIL)) (-3544 (((-622 (-2 (|:| |val| (-112)) (|:| -1660 $))) |#4| $) 98) (((-112) |#4| $) 53)) (-3589 (((-622 $) |#4| $) 107) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) 108) (((-622 $) |#4| (-622 $)) NIL)) (-3798 (((-622 $) (-622 |#4|) (-112) (-112) (-112)) 119)) (-3799 (($ |#4| $) 75) (($ (-622 |#4|) $) 76) (((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 74)) (-4060 (((-622 |#4|) $) NIL)) (-4054 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-4062 (((-112) $ $) NIL)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4050 ((|#4| |#4| $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-3 |#4| #1#) $) 35)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4042 (((-3 $ #1#) $ |#4|) 48)) (-4128 (($ $ |#4|) NIL) (((-622 $) |#4| $) 90) (((-622 $) |#4| (-622 $)) NIL) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) 86)) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 15)) (-3928 (($) 13)) (-4307 (((-751) $) NIL)) (-2069 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) 12)) (-4330 (((-527) $) NIL (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 20)) (-3243 (($ $ |#3|) 42)) (-3245 (($ $ |#3|) 44)) (-4047 (($ $) NIL)) (-3244 (($ $ |#3|) NIL)) (-4317 (((-840) $) 31) (((-622 |#4|) $) 40)) (-4041 (((-751) $) NIL (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) NIL)) (-3540 (((-622 $) |#4| $) 54) (((-622 $) |#4| (-622 $)) NIL) (((-622 $) (-622 |#4|) $) NIL) (((-622 $) (-622 |#4|) (-622 $)) NIL)) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) NIL)) (-3547 (((-112) |#4| $) NIL)) (-4293 (((-112) |#3| $) 61)) (-3387 (((-112) $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1119 |#1| |#2| |#3| |#4|) (-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3799 ((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112))) (-15 -3798 ((-622 $) (-622 |#4|) (-112) (-112) (-112))) (-15 -3797 ((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112))))) (-446) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1119)) +((-3799 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *3))) (-5 *1 (-1119 *5 *6 *7 *3)) (-4 *3 (-1039 *5 *6 *7)))) (-4045 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-4045 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-3798 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8))) (-5 *1 (-1119 *5 *6 *7 *8)))) (-3797 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-622 *8)) (|:| |towers| (-622 (-1119 *5 *6 *7 *8))))) (-5 *1 (-1119 *5 *6 *7 *8)) (-5 *3 (-622 *8))))) +(-13 (-1082 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3799 ((-622 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112))) (-15 -4045 ((-622 $) (-622 |#4|) (-112) (-112) (-112) (-112))) (-15 -3798 ((-622 $) (-622 |#4|) (-112) (-112) (-112))) (-15 -3797 ((-2 (|:| |val| (-622 |#4|)) (|:| |towers| (-622 $))) (-622 |#4|) (-112) (-112))))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3683 ((|#1| $) 34)) (-3800 (($ (-622 |#1|)) 39)) (-1271 (((-112) $ (-751)) NIL)) (-3896 (($) NIL T CONST)) (-3685 ((|#1| |#1| $) 36)) (-3684 ((|#1| $) 32)) (-2068 (((-622 |#1|) $) 18 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 22)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-1333 ((|#1| $) 35)) (-3970 (($ |#1| $) 37)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-1334 ((|#1| $) 33)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 31)) (-3928 (($) 38)) (-3682 (((-751) $) 29)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 27)) (-4317 (((-840) $) 14 (|has| |#1| (-597 (-840))))) (-1335 (($ (-622 |#1|)) NIL)) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 17 (|has| |#1| (-1074)))) (-4316 (((-751) $) 30 (|has| $ (-6 -4353))))) +(((-1120 |#1|) (-13 (-1094 |#1|) (-10 -8 (-15 -3800 ($ (-622 |#1|))))) (-1185)) (T -1120)) +((-3800 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1120 *3))))) +(-13 (-1094 |#1|) (-10 -8 (-15 -3800 ($ (-622 |#1|))))) +((-4147 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ #2="first" |#2|) NIL) (($ $ #3="rest" $) NIL) ((|#2| $ #4="last" |#2|) NIL) ((|#2| $ (-1198 (-538)) |#2|) 44) ((|#2| $ (-538) |#2|) 41)) (-3801 (((-112) $) 12)) (-2072 (($ (-1 |#2| |#2|) $) 39)) (-4160 ((|#2| $) NIL) (($ $ (-751)) 17)) (-2306 (($ $ |#2|) 40)) (-3802 (((-112) $) 11)) (-4159 ((|#2| $ #1#) NIL) ((|#2| $ #2#) NIL) (($ $ #3#) NIL) ((|#2| $ #4#) NIL) (($ $ (-1198 (-538))) 31) ((|#2| $ (-538)) 23) ((|#2| $ (-538) |#2|) NIL)) (-4150 (($ $ $) 47) (($ $ |#2|) NIL)) (-4161 (($ $ $) 33) (($ |#2| $) NIL) (($ (-622 $)) 36) (($ $ |#2|) NIL))) +(((-1121 |#1| |#2|) (-10 -8 (-15 -3801 ((-112) |#1|)) (-15 -3802 ((-112) |#1|)) (-15 -4147 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -2306 (|#1| |#1| |#2|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4147 (|#2| |#1| (-1198 (-538)) |#2|)) (-15 -4147 (|#2| |#1| #1="last" |#2|)) (-15 -4147 (|#1| |#1| #2="rest" |#1|)) (-15 -4147 (|#2| |#1| #3="first" |#2|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -4159 (|#1| |#1| #2#)) (-15 -4160 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| #3#)) (-15 -4160 (|#2| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4147 (|#2| |#1| #4="value" |#2|)) (-15 -4159 (|#2| |#1| #4#)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|))) (-1122 |#2|) (-1185)) (T -1121)) +NIL +(-10 -8 (-15 -3801 ((-112) |#1|)) (-15 -3802 ((-112) |#1|)) (-15 -4147 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538) |#2|)) (-15 -4159 (|#2| |#1| (-538))) (-15 -2306 (|#1| |#1| |#2|)) (-15 -4161 (|#1| |#1| |#2|)) (-15 -4161 (|#1| (-622 |#1|))) (-15 -4159 (|#1| |#1| (-1198 (-538)))) (-15 -4147 (|#2| |#1| (-1198 (-538)) |#2|)) (-15 -4147 (|#2| |#1| #1="last" |#2|)) (-15 -4147 (|#1| |#1| #2="rest" |#1|)) (-15 -4147 (|#2| |#1| #3="first" |#2|)) (-15 -4150 (|#1| |#1| |#2|)) (-15 -4150 (|#1| |#1| |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -4159 (|#1| |#1| #2#)) (-15 -4160 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| #3#)) (-15 -4160 (|#2| |#1|)) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#1|)) (-15 -4147 (|#2| |#1| #4="value" |#2|)) (-15 -4159 (|#2| |#1| #4#)) (-15 -2072 (|#1| (-1 |#2| |#2|) |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-4154 ((|#1| $) 65)) (-4156 (($ $) 67)) (-2305 (((-1237) $ (-538) (-538)) 97 (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 52 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-4146 (($ $ $) 56 (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ #3="rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) 53 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 117 (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) 86 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4353)))) (-4155 ((|#1| $) 66)) (-3896 (($) 7 T CONST)) (-4158 (($ $) 73) (($ $ (-751)) 71)) (-1398 (($ $) 99 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4353))) (($ |#1| $) 100 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1637 ((|#1| $ (-538) |#1|) 85 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 87)) (-3801 (((-112) $) 83)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) 108)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 95 (|has| (-538) (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 94 (|has| (-538) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-4157 ((|#1| $) 70) (($ $ (-751)) 68)) (-2382 (($ $ $ (-538)) 116) (($ |#1| $ (-538)) 115)) (-2310 (((-622 (-538)) $) 92)) (-2311 (((-112) (-538) $) 91)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 76) (($ $ (-751)) 74)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-2306 (($ $ |#1|) 96 (|has| $ (-6 -4354)))) (-3802 (((-112) $) 84)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 90)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) ((|#1| $ #2#) 75) (($ $ #3#) 72) ((|#1| $ #4#) 69) (($ $ (-1198 (-538))) 112) ((|#1| $ (-538)) 89) ((|#1| $ (-538) |#1|) 88)) (-3362 (((-538) $ $) 44)) (-2383 (($ $ (-1198 (-538))) 114) (($ $ (-538)) 113)) (-3996 (((-112) $) 46)) (-4151 (($ $) 62)) (-4149 (($ $) 59 (|has| $ (-6 -4354)))) (-4152 (((-751) $) 63)) (-4153 (($ $) 64)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4330 (((-527) $) 98 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 107)) (-4150 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-4161 (($ $ $) 78) (($ |#1| $) 77) (($ (-622 $)) 110) (($ $ |#1|) 109)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-1122 |#1|) (-138) (-1185)) (T -1122)) +((-3802 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1185)) (-5 *2 (-112))))) +(-13 (-1220 |t#1|) (-631 |t#1|) (-10 -8 (-15 -3802 ((-112) $)) (-15 -3801 ((-112) $)))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T) ((-1220 |#1|) . T)) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) NIL)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) NIL)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1123 |#1| |#2| |#3|) (-1162 |#1| |#2|) (-1074) (-1074) |#2|) (T -1123)) +NIL +(-1162 |#1| |#2|) +((-2898 (((-112) $ $) 7)) (-3803 (((-3 $ "failed") $) 13)) (-3593 (((-1131) $) 9)) (-3804 (($) 14 T CONST)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11)) (-3387 (((-112) $ $) 6))) +(((-1124) (-138)) (T -1124)) +((-3804 (*1 *1) (-4 *1 (-1124))) (-3803 (*1 *1 *1) (|partial| -4 *1 (-1124)))) +(-13 (-1074) (-10 -8 (-15 -3804 ($) -4311) (-15 -3803 ((-3 $ "failed") $)))) +(((-101) . T) ((-597 (-840)) . T) ((-1074) . T)) +((-3807 (((-1126 |#1|) (-1126 |#1|)) 17)) (-3805 (((-1126 |#1|) (-1126 |#1|)) 13)) (-3808 (((-1126 |#1|) (-1126 |#1|) (-538) (-538)) 20)) (-3806 (((-1126 |#1|) (-1126 |#1|)) 15))) +(((-1125 |#1|) (-10 -7 (-15 -3805 ((-1126 |#1|) (-1126 |#1|))) (-15 -3806 ((-1126 |#1|) (-1126 |#1|))) (-15 -3807 ((-1126 |#1|) (-1126 |#1|))) (-15 -3808 ((-1126 |#1|) (-1126 |#1|) (-538) (-538)))) (-13 (-545) (-145))) (T -1125)) +((-3808 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-13 (-545) (-145))) (-5 *1 (-1125 *4)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3))))) +(-10 -7 (-15 -3805 ((-1126 |#1|) (-1126 |#1|))) (-15 -3806 ((-1126 |#1|) (-1126 |#1|))) (-15 -3807 ((-1126 |#1|) (-1126 |#1|))) (-15 -3808 ((-1126 |#1|) (-1126 |#1|) (-538) (-538)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) NIL)) (-4154 ((|#1| $) NIL)) (-4156 (($ $) 52)) (-2305 (((-1237) $ (-538) (-538)) 77 (|has| $ (-6 -4354)))) (-4144 (($ $ (-538)) 111 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-3813 (((-840) $) 41 (|has| |#1| (-1074)))) (-3812 (((-112)) 40 (|has| |#1| (-1074)))) (-3358 ((|#1| $ |#1|) NIL (|has| $ (-6 -4354)))) (-4146 (($ $ $) 99 (|has| $ (-6 -4354))) (($ $ (-538) $) 123)) (-4145 ((|#1| $ |#1|) 108 (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 103 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ #2="first" |#1|) 105 (|has| $ (-6 -4354))) (($ $ #3="rest" $) 107 (|has| $ (-6 -4354))) ((|#1| $ #4="last" |#1|) 110 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 90 (|has| $ (-6 -4354))) ((|#1| $ (-538) |#1|) 56 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 59)) (-4155 ((|#1| $) NIL)) (-3896 (($) NIL T CONST)) (-2398 (($ $) 14)) (-4158 (($ $) 29) (($ $ (-751)) 89)) (-3818 (((-112) (-622 |#1|) $) 117 (|has| |#1| (-1074)))) (-3819 (($ (-622 |#1|)) 113)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) 58)) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3801 (((-112) $) NIL)) (-2068 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3814 (((-1237) (-538) $) 122 (|has| |#1| (-1074)))) (-2397 (((-751) $) 119)) (-3364 (((-622 $) $) NIL)) (-3360 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 64) (($ (-1 |#1| |#1| |#1|) $ $) 68)) (-4079 (((-112) $ (-751)) NIL)) (-3363 (((-622 |#1|) $) NIL)) (-3881 (((-112) $) NIL)) (-2400 (($ $) 91)) (-2401 (((-112) $) 13)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-4157 ((|#1| $) NIL) (($ $ (-751)) NIL)) (-2382 (($ $ $ (-538)) NIL) (($ |#1| $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) 75)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-3811 (($ (-1 |#1|)) 125) (($ (-1 |#1| |#1|) |#1|) 126)) (-2399 ((|#1| $) 10)) (-4160 ((|#1| $) 28) (($ $ (-751)) 50)) (-3817 (((-2 (|:| |cycle?| (-112)) (|:| -2925 (-751)) (|:| |period| (-751))) (-751) $) 25)) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3810 (($ (-1 (-112) |#1|) $) 127)) (-3809 (($ (-1 (-112) |#1|) $) 128)) (-2306 (($ $ |#1|) 69 (|has| $ (-6 -4354)))) (-4128 (($ $ (-538)) 32)) (-3802 (((-112) $) 73)) (-2402 (((-112) $) 12)) (-2403 (((-112) $) 118)) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 20)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) 15)) (-3928 (($) 45)) (-4159 ((|#1| $ #1#) NIL) ((|#1| $ #2#) NIL) (($ $ #3#) NIL) ((|#1| $ #4#) NIL) (($ $ (-1198 (-538))) NIL) ((|#1| $ (-538)) 55) ((|#1| $ (-538) |#1|) NIL)) (-3362 (((-538) $ $) 49)) (-2383 (($ $ (-1198 (-538))) NIL) (($ $ (-538)) NIL)) (-3816 (($ (-1 $)) 48)) (-3996 (((-112) $) 70)) (-4151 (($ $) 71)) (-4149 (($ $) 100 (|has| $ (-6 -4354)))) (-4152 (((-751) $) NIL)) (-4153 (($ $) NIL)) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 44)) (-4330 (((-527) $) NIL (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 54)) (-3815 (($ |#1| $) 98)) (-4150 (($ $ $) 101 (|has| $ (-6 -4354))) (($ $ |#1|) 102 (|has| $ (-6 -4354)))) (-4161 (($ $ $) 79) (($ |#1| $) 46) (($ (-622 $)) 84) (($ $ |#1|) 78)) (-3224 (($ $) 51)) (-4317 (($ (-622 |#1|)) 112) (((-840) $) 42 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) NIL)) (-3361 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 115 (|has| |#1| (-1074)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1126 |#1|) (-13 (-654 |#1|) (-10 -8 (-6 -4354) (-15 -4317 ($ (-622 |#1|))) (-15 -3819 ($ (-622 |#1|))) (IF (|has| |#1| (-1074)) (-15 -3818 ((-112) (-622 |#1|) $)) |%noBranch|) (-15 -3817 ((-2 (|:| |cycle?| (-112)) (|:| -2925 (-751)) (|:| |period| (-751))) (-751) $)) (-15 -3816 ($ (-1 $))) (-15 -3815 ($ |#1| $)) (IF (|has| |#1| (-1074)) (PROGN (-15 -3814 ((-1237) (-538) $)) (-15 -3813 ((-840) $)) (-15 -3812 ((-112)))) |%noBranch|) (-15 -4146 ($ $ (-538) $)) (-15 -3811 ($ (-1 |#1|))) (-15 -3811 ($ (-1 |#1| |#1|) |#1|)) (-15 -3810 ($ (-1 (-112) |#1|) $)) (-15 -3809 ($ (-1 (-112) |#1|) $)))) (-1185)) (T -1126)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) (-3819 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) (-3818 (*1 *2 *3 *1) (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-4 *4 (-1185)) (-5 *2 (-112)) (-5 *1 (-1126 *4)))) (-3817 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2925 (-751)) (|:| |period| (-751)))) (-5 *1 (-1126 *4)) (-4 *4 (-1185)) (-5 *3 (-751)))) (-3816 (*1 *1 *2) (-12 (-5 *2 (-1 (-1126 *3))) (-5 *1 (-1126 *3)) (-4 *3 (-1185)))) (-3815 (*1 *1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-1185)))) (-3814 (*1 *2 *3 *1) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1126 *4)) (-4 *4 (-1074)) (-4 *4 (-1185)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1126 *3)) (-4 *3 (-1074)) (-4 *3 (-1185)))) (-3812 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1126 *3)) (-4 *3 (-1074)) (-4 *3 (-1185)))) (-4146 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1126 *3)) (-4 *3 (-1185)))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) (-3811 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) (-3810 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) (-3809 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3))))) +(-13 (-654 |#1|) (-10 -8 (-6 -4354) (-15 -4317 ($ (-622 |#1|))) (-15 -3819 ($ (-622 |#1|))) (IF (|has| |#1| (-1074)) (-15 -3818 ((-112) (-622 |#1|) $)) |%noBranch|) (-15 -3817 ((-2 (|:| |cycle?| (-112)) (|:| -2925 (-751)) (|:| |period| (-751))) (-751) $)) (-15 -3816 ($ (-1 $))) (-15 -3815 ($ |#1| $)) (IF (|has| |#1| (-1074)) (PROGN (-15 -3814 ((-1237) (-538) $)) (-15 -3813 ((-840) $)) (-15 -3812 ((-112)))) |%noBranch|) (-15 -4146 ($ $ (-538) $)) (-15 -3811 ($ (-1 |#1|))) (-15 -3811 ($ (-1 |#1| |#1|) |#1|)) (-15 -3810 ($ (-1 (-112) |#1|) $)) (-15 -3809 ($ (-1 (-112) |#1|) $)))) +((-4161 (((-1126 |#1|) (-1126 (-1126 |#1|))) 15))) +(((-1127 |#1|) (-10 -7 (-15 -4161 ((-1126 |#1|) (-1126 (-1126 |#1|))))) (-1185)) (T -1127)) +((-4161 (*1 *2 *3) (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1127 *4)) (-4 *4 (-1185))))) +(-10 -7 (-15 -4161 ((-1126 |#1|) (-1126 (-1126 |#1|))))) +((-4201 (((-1126 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|)) 25)) (-4202 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|)) 26)) (-4318 (((-1126 |#2|) (-1 |#2| |#1|) (-1126 |#1|)) 16))) +(((-1128 |#1| |#2|) (-10 -7 (-15 -4318 ((-1126 |#2|) (-1 |#2| |#1|) (-1126 |#1|))) (-15 -4201 ((-1126 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|))) (-15 -4202 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|)))) (-1185) (-1185)) (T -1128)) +((-4202 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1126 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-1128 *5 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1126 *6)) (-4 *6 (-1185)) (-4 *3 (-1185)) (-5 *2 (-1126 *3)) (-5 *1 (-1128 *6 *3)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1126 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1126 *6)) (-5 *1 (-1128 *5 *6))))) +(-10 -7 (-15 -4318 ((-1126 |#2|) (-1 |#2| |#1|) (-1126 |#1|))) (-15 -4201 ((-1126 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|))) (-15 -4202 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1126 |#1|)))) +((-4318 (((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-1126 |#2|)) 21))) +(((-1129 |#1| |#2| |#3|) (-10 -7 (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-1126 |#2|)))) (-1185) (-1185) (-1185)) (T -1129)) +((-4318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1126 *6)) (-5 *5 (-1126 *7)) (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8)) (-5 *1 (-1129 *6 *7 *8))))) +(-10 -7 (-15 -4318 ((-1126 |#3|) (-1 |#3| |#1| |#2|) (-1126 |#1|) (-1126 |#2|)))) +((-2898 (((-112) $ $) 19)) (-3785 (($ $) 120)) (-3786 (($ $) 121)) (-3776 (($ $ (-142)) 108) (($ $ (-139)) 107)) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-3783 (((-112) $ $) 118)) (-3782 (((-112) $ $ (-538)) 117)) (-3898 (($ (-538)) 127)) (-3777 (((-622 $) $ (-142)) 110) (((-622 $) $ (-139)) 109)) (-1848 (((-112) (-1 (-112) (-142) (-142)) $) 98) (((-112) $) 92 (|has| (-142) (-827)))) (-1846 (($ (-1 (-112) (-142) (-142)) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| (-142) (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) (-142) (-142)) $) 99) (($ $) 93 (|has| (-142) (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 (((-142) $ (-538) (-142)) 52 (|has| $ (-6 -4354))) (((-142) $ (-1198 (-538)) (-142)) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-142)) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-3774 (($ $ (-142)) 104) (($ $ (-139)) 103)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-3779 (($ $ (-1198 (-538)) $) 114)) (-1398 (($ $) 78 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ (-142) $) 77 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-142)) $) 74 (|has| $ (-6 -4353)))) (-4202 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) 76 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) 73 (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) 72 (|has| $ (-6 -4353)))) (-1637 (((-142) $ (-538) (-142)) 53 (|has| $ (-6 -4354)))) (-3448 (((-142) $ (-538)) 51)) (-3784 (((-112) $ $) 119)) (-3778 (((-538) (-1 (-112) (-142)) $) 97) (((-538) (-142) $) 96 (|has| (-142) (-1074))) (((-538) (-142) $ (-538)) 95 (|has| (-142) (-1074))) (((-538) $ $ (-538)) 113) (((-538) (-139) $ (-538)) 112)) (-2068 (((-622 (-142)) $) 30 (|has| $ (-6 -4353)))) (-3977 (($ (-751) (-142)) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| (-142) (-827)))) (-3872 (($ (-1 (-112) (-142) (-142)) $ $) 101) (($ $ $) 94 (|has| (-142) (-827)))) (-2511 (((-622 (-142)) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) (-142) $) 27 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| (-142) (-827)))) (-3780 (((-112) $ $ (-142)) 115)) (-3781 (((-751) $ $ (-142)) 116)) (-2072 (($ (-1 (-142) (-142)) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-142) (-142)) $) 35) (($ (-1 (-142) (-142) (-142)) $ $) 64)) (-3787 (($ $) 122)) (-3788 (($ $) 123)) (-4079 (((-112) $ (-751)) 10)) (-3775 (($ $ (-142)) 106) (($ $ (-139)) 105)) (-3593 (((-1131) $) 22)) (-2382 (($ (-142) $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21)) (-4160 (((-142) $) 42 (|has| (-538) (-827)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) 71)) (-2306 (($ $ (-142)) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-142)) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-142)))) 26 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-288 (-142))) 25 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-142) (-142)) 24 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-622 (-142)) (-622 (-142))) 23 (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) (-142) $) 45 (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2312 (((-622 (-142)) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 (((-142) $ (-538) (-142)) 50) (((-142) $ (-538)) 49) (($ $ (-1198 (-538))) 63) (($ $ $) 102)) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-2069 (((-751) (-1 (-112) (-142)) $) 31 (|has| $ (-6 -4353))) (((-751) (-142) $) 28 (-12 (|has| (-142) (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| (-142) (-598 (-527))))) (-3884 (($ (-622 (-142))) 70)) (-4161 (($ $ (-142)) 68) (($ (-142) $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (($ (-142)) 111) (((-840) $) 18)) (-2071 (((-112) (-1 (-112) (-142)) $) 33 (|has| $ (-6 -4353)))) (-2834 (((-1131) $) 131) (((-1131) $ (-112)) 130) (((-1237) (-803) $) 129) (((-1237) (-803) $ (-112)) 128)) (-2896 (((-112) $ $) 84 (|has| (-142) (-827)))) (-2897 (((-112) $ $) 83 (|has| (-142) (-827)))) (-3387 (((-112) $ $) 20)) (-3017 (((-112) $ $) 85 (|has| (-142) (-827)))) (-3018 (((-112) $ $) 82 (|has| (-142) (-827)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-1130) (-138)) (T -1130)) +((-3898 (*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1130))))) +(-13 (-1117) (-1074) (-801) (-10 -8 (-15 -3898 ($ (-538))))) +(((-34) . T) ((-101) . T) ((-597 (-840)) . T) ((-149 #1=(-142)) . T) ((-598 (-527)) |has| (-142) (-598 (-527))) ((-281 #2=(-538) #1#) . T) ((-283 #2# #1#) . T) ((-304 #1#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))) ((-367 #1#) . T) ((-483 #1#) . T) ((-588 #2# #1#) . T) ((-507 #1# #1#) -12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))) ((-631 #1#) . T) ((-19 #1#) . T) ((-801) . T) ((-827) |has| (-142) (-827)) ((-1074) . T) ((-1117) . T) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-3785 (($ $) NIL)) (-3786 (($ $) NIL)) (-3776 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-3783 (((-112) $ $) NIL)) (-3782 (((-112) $ $ (-538)) NIL)) (-3898 (($ (-538)) 7)) (-3777 (((-622 $) $ (-142)) NIL) (((-622 $) $ (-139)) NIL)) (-1848 (((-112) (-1 (-112) (-142) (-142)) $) NIL) (((-112) $) NIL (|has| (-142) (-827)))) (-1846 (($ (-1 (-112) (-142) (-142)) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| (-142) (-827))))) (-3242 (($ (-1 (-112) (-142) (-142)) $) NIL) (($ $) NIL (|has| (-142) (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 (((-142) $ (-538) (-142)) NIL (|has| $ (-6 -4354))) (((-142) $ (-1198 (-538)) (-142)) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-3774 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-3779 (($ $ (-1198 (-538)) $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-3765 (($ (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074)))) (($ (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-142) (-1 (-142) (-142) (-142)) $ (-142) (-142)) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074)))) (((-142) (-1 (-142) (-142) (-142)) $ (-142)) NIL (|has| $ (-6 -4353))) (((-142) (-1 (-142) (-142) (-142)) $) NIL (|has| $ (-6 -4353)))) (-1637 (((-142) $ (-538) (-142)) NIL (|has| $ (-6 -4354)))) (-3448 (((-142) $ (-538)) NIL)) (-3784 (((-112) $ $) NIL)) (-3778 (((-538) (-1 (-112) (-142)) $) NIL) (((-538) (-142) $) NIL (|has| (-142) (-1074))) (((-538) (-142) $ (-538)) NIL (|has| (-142) (-1074))) (((-538) $ $ (-538)) NIL) (((-538) (-139) $ (-538)) NIL)) (-2068 (((-622 (-142)) $) NIL (|has| $ (-6 -4353)))) (-3977 (($ (-751) (-142)) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| (-142) (-827)))) (-3872 (($ (-1 (-112) (-142) (-142)) $ $) NIL) (($ $ $) NIL (|has| (-142) (-827)))) (-2511 (((-622 (-142)) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| (-142) (-827)))) (-3780 (((-112) $ $ (-142)) NIL)) (-3781 (((-751) $ $ (-142)) NIL)) (-2072 (($ (-1 (-142) (-142)) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-142) (-142)) $) NIL) (($ (-1 (-142) (-142) (-142)) $ $) NIL)) (-3787 (($ $) NIL)) (-3788 (($ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3775 (($ $ (-142)) NIL) (($ $ (-139)) NIL)) (-3593 (((-1131) $) NIL)) (-2382 (($ (-142) $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-142) $) NIL (|has| (-538) (-827)))) (-1399 (((-3 (-142) "failed") (-1 (-112) (-142)) $) NIL)) (-2306 (($ $ (-142)) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-142)))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-288 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-142) (-142)) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074)))) (($ $ (-622 (-142)) (-622 (-142))) NIL (-12 (|has| (-142) (-304 (-142))) (|has| (-142) (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-2312 (((-622 (-142)) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 (((-142) $ (-538) (-142)) NIL) (((-142) $ (-538)) NIL) (($ $ (-1198 (-538))) NIL) (($ $ $) NIL)) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-2069 (((-751) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353))) (((-751) (-142) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-142) (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-142) (-598 (-527))))) (-3884 (($ (-622 (-142))) NIL)) (-4161 (($ $ (-142)) NIL) (($ (-142) $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (($ (-142)) NIL) (((-840) $) NIL)) (-2071 (((-112) (-1 (-112) (-142)) $) NIL (|has| $ (-6 -4353)))) (-2834 (((-1131) $) 18) (((-1131) $ (-112)) 20) (((-1237) (-803) $) 21) (((-1237) (-803) $ (-112)) 22)) (-2896 (((-112) $ $) NIL (|has| (-142) (-827)))) (-2897 (((-112) $ $) NIL (|has| (-142) (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| (-142) (-827)))) (-3018 (((-112) $ $) NIL (|has| (-142) (-827)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1131) (-1130)) (T -1131)) +NIL +(-1130) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)) (|has| |#1| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-2305 (((-1237) $ (-1131) (-1131)) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-1131) |#1|) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#1| #1="failed") (-1131) $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#1| #1#) (-1131) $) NIL)) (-3765 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-1131) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-1131)) NIL)) (-2068 (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2511 (((-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-1131) $) NIL (|has| (-1131) (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)) (|has| |#1| (-1074))))) (-2744 (((-622 (-1131)) $) NIL)) (-2315 (((-112) (-1131) $) NIL)) (-1333 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-2310 (((-622 (-1131)) $) NIL)) (-2311 (((-112) (-1131) $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)) (|has| |#1| (-1074))))) (-4160 ((|#1| $) NIL (|has| (-1131) (-827)))) (-1399 (((-3 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) "failed") (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL (-12 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-304 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-1131)) NIL) ((|#1| $ (-1131) |#1|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-597 (-840))) (|has| |#1| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 (-1131)) (|:| -2191 |#1|)) (-1074)) (|has| |#1| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1132 |#1|) (-13 (-1162 (-1131) |#1|) (-10 -7 (-6 -4353))) (-1074)) (T -1132)) +NIL +(-13 (-1162 (-1131) |#1|) (-10 -7 (-6 -4353))) +((-4164 (((-1126 |#1|) (-1126 |#1|)) 77)) (-3821 (((-3 (-1126 |#1|) "failed") (-1126 |#1|)) 37)) (-3832 (((-1126 |#1|) (-402 (-538)) (-1126 |#1|)) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3835 (((-1126 |#1|) |#1| (-1126 |#1|)) 127 (|has| |#1| (-358)))) (-4167 (((-1126 |#1|) (-1126 |#1|)) 90)) (-3823 (((-1126 (-538)) (-538)) 57)) (-3831 (((-1126 |#1|) (-1126 (-1126 |#1|))) 109 (|has| |#1| (-38 (-402 (-538)))))) (-4163 (((-1126 |#1|) (-538) (-538) (-1126 |#1|)) 95)) (-4298 (((-1126 |#1|) |#1| (-538)) 45)) (-3825 (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 60)) (-3833 (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 124 (|has| |#1| (-358)))) (-3830 (((-1126 |#1|) |#1| (-1 (-1126 |#1|))) 108 (|has| |#1| (-38 (-402 (-538)))))) (-3834 (((-1126 |#1|) (-1 |#1| (-538)) |#1| (-1 (-1126 |#1|))) 125 (|has| |#1| (-358)))) (-4168 (((-1126 |#1|) (-1126 |#1|)) 89)) (-4169 (((-1126 |#1|) (-1126 |#1|)) 76)) (-4162 (((-1126 |#1|) (-538) (-538) (-1126 |#1|)) 96)) (-4172 (((-1126 |#1|) |#1| (-1126 |#1|)) 105 (|has| |#1| (-38 (-402 (-538)))))) (-3822 (((-1126 (-538)) (-538)) 56)) (-3824 (((-1126 |#1|) |#1|) 59)) (-4165 (((-1126 |#1|) (-1126 |#1|) (-538) (-538)) 92)) (-3827 (((-1126 |#1|) (-1 |#1| (-538)) (-1126 |#1|)) 66)) (-3820 (((-3 (-1126 |#1|) "failed") (-1126 |#1|) (-1126 |#1|)) 35)) (-4166 (((-1126 |#1|) (-1126 |#1|)) 91)) (-4127 (((-1126 |#1|) (-1126 |#1|) |#1|) 71)) (-3826 (((-1126 |#1|) (-1126 |#1|)) 62)) (-3828 (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 72)) (-4317 (((-1126 |#1|) |#1|) 67)) (-3829 (((-1126 |#1|) (-1126 (-1126 |#1|))) 82)) (-4308 (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 36)) (-4197 (((-1126 |#1|) (-1126 |#1|)) 21) (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 23)) (-4199 (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 17)) (* (((-1126 |#1|) (-1126 |#1|) |#1|) 29) (((-1126 |#1|) |#1| (-1126 |#1|)) 26) (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 27))) +(((-1133 |#1|) (-10 -7 (-15 -4199 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4197 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4197 ((-1126 |#1|) (-1126 |#1|))) (-15 * ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 * ((-1126 |#1|) |#1| (-1126 |#1|))) (-15 * ((-1126 |#1|) (-1126 |#1|) |#1|)) (-15 -3820 ((-3 (-1126 |#1|) "failed") (-1126 |#1|) (-1126 |#1|))) (-15 -4308 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3821 ((-3 (-1126 |#1|) "failed") (-1126 |#1|))) (-15 -4298 ((-1126 |#1|) |#1| (-538))) (-15 -3822 ((-1126 (-538)) (-538))) (-15 -3823 ((-1126 (-538)) (-538))) (-15 -3824 ((-1126 |#1|) |#1|)) (-15 -3825 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3826 ((-1126 |#1|) (-1126 |#1|))) (-15 -3827 ((-1126 |#1|) (-1 |#1| (-538)) (-1126 |#1|))) (-15 -4317 ((-1126 |#1|) |#1|)) (-15 -4127 ((-1126 |#1|) (-1126 |#1|) |#1|)) (-15 -3828 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4169 ((-1126 |#1|) (-1126 |#1|))) (-15 -4164 ((-1126 |#1|) (-1126 |#1|))) (-15 -3829 ((-1126 |#1|) (-1126 (-1126 |#1|)))) (-15 -4168 ((-1126 |#1|) (-1126 |#1|))) (-15 -4167 ((-1126 |#1|) (-1126 |#1|))) (-15 -4166 ((-1126 |#1|) (-1126 |#1|))) (-15 -4165 ((-1126 |#1|) (-1126 |#1|) (-538) (-538))) (-15 -4163 ((-1126 |#1|) (-538) (-538) (-1126 |#1|))) (-15 -4162 ((-1126 |#1|) (-538) (-538) (-1126 |#1|))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ((-1126 |#1|) |#1| (-1126 |#1|))) (-15 -3830 ((-1126 |#1|) |#1| (-1 (-1126 |#1|)))) (-15 -3831 ((-1126 |#1|) (-1126 (-1126 |#1|)))) (-15 -3832 ((-1126 |#1|) (-402 (-538)) (-1126 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -3833 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3834 ((-1126 |#1|) (-1 |#1| (-538)) |#1| (-1 (-1126 |#1|)))) (-15 -3835 ((-1126 |#1|) |#1| (-1126 |#1|)))) |%noBranch|)) (-1025)) (T -1133)) +((-3835 (*1 *2 *3 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3834 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-538))) (-5 *5 (-1 (-1126 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4)))) (-3833 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3832 (*1 *2 *3 *2) (-12 (-5 *2 (-1126 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1025)) (-5 *3 (-402 (-538))) (-5 *1 (-1133 *4)))) (-3831 (*1 *2 *3) (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4)) (-4 *4 (-38 (-402 (-538)))) (-4 *4 (-1025)))) (-3830 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1126 *3))) (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)))) (-4172 (*1 *2 *3 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4162 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-4163 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-4165 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4167 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4168 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4)) (-4 *4 (-1025)))) (-4164 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4169 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3828 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4127 (*1 *2 *2 *3) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4317 (*1 *2 *3) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-3827 (*1 *2 *3 *2) (-12 (-5 *2 (-1126 *4)) (-5 *3 (-1 *4 (-538))) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) (-3826 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3825 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3824 (*1 *2 *3) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-3823 (*1 *2 *3) (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) (-5 *3 (-538)))) (-3822 (*1 *2 *3) (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) (-5 *3 (-538)))) (-4298 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) (-3821 (*1 *2 *2) (|partial| -12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4308 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-3820 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4197 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4197 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) (-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) +(-10 -7 (-15 -4199 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4197 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4197 ((-1126 |#1|) (-1126 |#1|))) (-15 * ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 * ((-1126 |#1|) |#1| (-1126 |#1|))) (-15 * ((-1126 |#1|) (-1126 |#1|) |#1|)) (-15 -3820 ((-3 (-1126 |#1|) "failed") (-1126 |#1|) (-1126 |#1|))) (-15 -4308 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3821 ((-3 (-1126 |#1|) "failed") (-1126 |#1|))) (-15 -4298 ((-1126 |#1|) |#1| (-538))) (-15 -3822 ((-1126 (-538)) (-538))) (-15 -3823 ((-1126 (-538)) (-538))) (-15 -3824 ((-1126 |#1|) |#1|)) (-15 -3825 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3826 ((-1126 |#1|) (-1126 |#1|))) (-15 -3827 ((-1126 |#1|) (-1 |#1| (-538)) (-1126 |#1|))) (-15 -4317 ((-1126 |#1|) |#1|)) (-15 -4127 ((-1126 |#1|) (-1126 |#1|) |#1|)) (-15 -3828 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4169 ((-1126 |#1|) (-1126 |#1|))) (-15 -4164 ((-1126 |#1|) (-1126 |#1|))) (-15 -3829 ((-1126 |#1|) (-1126 (-1126 |#1|)))) (-15 -4168 ((-1126 |#1|) (-1126 |#1|))) (-15 -4167 ((-1126 |#1|) (-1126 |#1|))) (-15 -4166 ((-1126 |#1|) (-1126 |#1|))) (-15 -4165 ((-1126 |#1|) (-1126 |#1|) (-538) (-538))) (-15 -4163 ((-1126 |#1|) (-538) (-538) (-1126 |#1|))) (-15 -4162 ((-1126 |#1|) (-538) (-538) (-1126 |#1|))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ((-1126 |#1|) |#1| (-1126 |#1|))) (-15 -3830 ((-1126 |#1|) |#1| (-1 (-1126 |#1|)))) (-15 -3831 ((-1126 |#1|) (-1126 (-1126 |#1|)))) (-15 -3832 ((-1126 |#1|) (-402 (-538)) (-1126 |#1|)))) |%noBranch|) (IF (|has| |#1| (-358)) (PROGN (-15 -3833 ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3834 ((-1126 |#1|) (-1 |#1| (-538)) |#1| (-1 (-1126 |#1|)))) (-15 -3835 ((-1126 |#1|) |#1| (-1126 |#1|)))) |%noBranch|)) +((-3846 (((-1126 |#1|) (-1126 |#1|)) 100)) (-4002 (((-1126 |#1|) (-1126 |#1|)) 64)) (-3837 (((-2 (|:| -3844 (-1126 |#1|)) (|:| -3845 (-1126 |#1|))) (-1126 |#1|)) 96)) (-3844 (((-1126 |#1|) (-1126 |#1|)) 97)) (-3836 (((-2 (|:| -4001 (-1126 |#1|)) (|:| -3997 (-1126 |#1|))) (-1126 |#1|)) 53)) (-4001 (((-1126 |#1|) (-1126 |#1|)) 54)) (-3848 (((-1126 |#1|) (-1126 |#1|)) 102)) (-4000 (((-1126 |#1|) (-1126 |#1|)) 71)) (-4302 (((-1126 |#1|) (-1126 |#1|)) 39)) (-4303 (((-1126 |#1|) (-1126 |#1|)) 36)) (-3849 (((-1126 |#1|) (-1126 |#1|)) 103)) (-3999 (((-1126 |#1|) (-1126 |#1|)) 72)) (-3847 (((-1126 |#1|) (-1126 |#1|)) 101)) (-3998 (((-1126 |#1|) (-1126 |#1|)) 67)) (-3845 (((-1126 |#1|) (-1126 |#1|)) 98)) (-3997 (((-1126 |#1|) (-1126 |#1|)) 55)) (-3852 (((-1126 |#1|) (-1126 |#1|)) 111)) (-3840 (((-1126 |#1|) (-1126 |#1|)) 86)) (-3850 (((-1126 |#1|) (-1126 |#1|)) 105)) (-3838 (((-1126 |#1|) (-1126 |#1|)) 82)) (-3854 (((-1126 |#1|) (-1126 |#1|)) 115)) (-3842 (((-1126 |#1|) (-1126 |#1|)) 90)) (-3855 (((-1126 |#1|) (-1126 |#1|)) 117)) (-3843 (((-1126 |#1|) (-1126 |#1|)) 92)) (-3853 (((-1126 |#1|) (-1126 |#1|)) 113)) (-3841 (((-1126 |#1|) (-1126 |#1|)) 88)) (-3851 (((-1126 |#1|) (-1126 |#1|)) 107)) (-3839 (((-1126 |#1|) (-1126 |#1|)) 84)) (** (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 40))) +(((-1134 |#1|) (-10 -7 (-15 -4303 ((-1126 |#1|) (-1126 |#1|))) (-15 -4302 ((-1126 |#1|) (-1126 |#1|))) (-15 ** ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3836 ((-2 (|:| -4001 (-1126 |#1|)) (|:| -3997 (-1126 |#1|))) (-1126 |#1|))) (-15 -4001 ((-1126 |#1|) (-1126 |#1|))) (-15 -3997 ((-1126 |#1|) (-1126 |#1|))) (-15 -4002 ((-1126 |#1|) (-1126 |#1|))) (-15 -3998 ((-1126 |#1|) (-1126 |#1|))) (-15 -4000 ((-1126 |#1|) (-1126 |#1|))) (-15 -3999 ((-1126 |#1|) (-1126 |#1|))) (-15 -3838 ((-1126 |#1|) (-1126 |#1|))) (-15 -3839 ((-1126 |#1|) (-1126 |#1|))) (-15 -3840 ((-1126 |#1|) (-1126 |#1|))) (-15 -3841 ((-1126 |#1|) (-1126 |#1|))) (-15 -3842 ((-1126 |#1|) (-1126 |#1|))) (-15 -3843 ((-1126 |#1|) (-1126 |#1|))) (-15 -3837 ((-2 (|:| -3844 (-1126 |#1|)) (|:| -3845 (-1126 |#1|))) (-1126 |#1|))) (-15 -3844 ((-1126 |#1|) (-1126 |#1|))) (-15 -3845 ((-1126 |#1|) (-1126 |#1|))) (-15 -3846 ((-1126 |#1|) (-1126 |#1|))) (-15 -3847 ((-1126 |#1|) (-1126 |#1|))) (-15 -3848 ((-1126 |#1|) (-1126 |#1|))) (-15 -3849 ((-1126 |#1|) (-1126 |#1|))) (-15 -3850 ((-1126 |#1|) (-1126 |#1|))) (-15 -3851 ((-1126 |#1|) (-1126 |#1|))) (-15 -3852 ((-1126 |#1|) (-1126 |#1|))) (-15 -3853 ((-1126 |#1|) (-1126 |#1|))) (-15 -3854 ((-1126 |#1|) (-1126 |#1|))) (-15 -3855 ((-1126 |#1|) (-1126 |#1|)))) (-38 (-402 (-538)))) (T -1134)) +((-3855 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3850 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3837 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-538)))) (-5 *2 (-2 (|:| -3844 (-1126 *4)) (|:| -3845 (-1126 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-1126 *4)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-4000 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3998 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-3836 (*1 *2 *3) (-12 (-4 *4 (-38 (-402 (-538)))) (-5 *2 (-2 (|:| -4001 (-1126 *4)) (|:| -3997 (-1126 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-1126 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) (-4303 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3))))) +(-10 -7 (-15 -4303 ((-1126 |#1|) (-1126 |#1|))) (-15 -4302 ((-1126 |#1|) (-1126 |#1|))) (-15 ** ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -3836 ((-2 (|:| -4001 (-1126 |#1|)) (|:| -3997 (-1126 |#1|))) (-1126 |#1|))) (-15 -4001 ((-1126 |#1|) (-1126 |#1|))) (-15 -3997 ((-1126 |#1|) (-1126 |#1|))) (-15 -4002 ((-1126 |#1|) (-1126 |#1|))) (-15 -3998 ((-1126 |#1|) (-1126 |#1|))) (-15 -4000 ((-1126 |#1|) (-1126 |#1|))) (-15 -3999 ((-1126 |#1|) (-1126 |#1|))) (-15 -3838 ((-1126 |#1|) (-1126 |#1|))) (-15 -3839 ((-1126 |#1|) (-1126 |#1|))) (-15 -3840 ((-1126 |#1|) (-1126 |#1|))) (-15 -3841 ((-1126 |#1|) (-1126 |#1|))) (-15 -3842 ((-1126 |#1|) (-1126 |#1|))) (-15 -3843 ((-1126 |#1|) (-1126 |#1|))) (-15 -3837 ((-2 (|:| -3844 (-1126 |#1|)) (|:| -3845 (-1126 |#1|))) (-1126 |#1|))) (-15 -3844 ((-1126 |#1|) (-1126 |#1|))) (-15 -3845 ((-1126 |#1|) (-1126 |#1|))) (-15 -3846 ((-1126 |#1|) (-1126 |#1|))) (-15 -3847 ((-1126 |#1|) (-1126 |#1|))) (-15 -3848 ((-1126 |#1|) (-1126 |#1|))) (-15 -3849 ((-1126 |#1|) (-1126 |#1|))) (-15 -3850 ((-1126 |#1|) (-1126 |#1|))) (-15 -3851 ((-1126 |#1|) (-1126 |#1|))) (-15 -3852 ((-1126 |#1|) (-1126 |#1|))) (-15 -3853 ((-1126 |#1|) (-1126 |#1|))) (-15 -3854 ((-1126 |#1|) (-1126 |#1|))) (-15 -3855 ((-1126 |#1|) (-1126 |#1|)))) +((-3846 (((-1126 |#1|) (-1126 |#1|)) 57)) (-4002 (((-1126 |#1|) (-1126 |#1|)) 39)) (-3844 (((-1126 |#1|) (-1126 |#1|)) 53)) (-4001 (((-1126 |#1|) (-1126 |#1|)) 35)) (-3848 (((-1126 |#1|) (-1126 |#1|)) 60)) (-4000 (((-1126 |#1|) (-1126 |#1|)) 42)) (-4302 (((-1126 |#1|) (-1126 |#1|)) 31)) (-4303 (((-1126 |#1|) (-1126 |#1|)) 27)) (-3849 (((-1126 |#1|) (-1126 |#1|)) 61)) (-3999 (((-1126 |#1|) (-1126 |#1|)) 43)) (-3847 (((-1126 |#1|) (-1126 |#1|)) 58)) (-3998 (((-1126 |#1|) (-1126 |#1|)) 40)) (-3845 (((-1126 |#1|) (-1126 |#1|)) 55)) (-3997 (((-1126 |#1|) (-1126 |#1|)) 37)) (-3852 (((-1126 |#1|) (-1126 |#1|)) 65)) (-3840 (((-1126 |#1|) (-1126 |#1|)) 47)) (-3850 (((-1126 |#1|) (-1126 |#1|)) 63)) (-3838 (((-1126 |#1|) (-1126 |#1|)) 45)) (-3854 (((-1126 |#1|) (-1126 |#1|)) 68)) (-3842 (((-1126 |#1|) (-1126 |#1|)) 50)) (-3855 (((-1126 |#1|) (-1126 |#1|)) 69)) (-3843 (((-1126 |#1|) (-1126 |#1|)) 51)) (-3853 (((-1126 |#1|) (-1126 |#1|)) 67)) (-3841 (((-1126 |#1|) (-1126 |#1|)) 49)) (-3851 (((-1126 |#1|) (-1126 |#1|)) 66)) (-3839 (((-1126 |#1|) (-1126 |#1|)) 48)) (** (((-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) 33))) +(((-1135 |#1|) (-10 -7 (-15 -4303 ((-1126 |#1|) (-1126 |#1|))) (-15 -4302 ((-1126 |#1|) (-1126 |#1|))) (-15 ** ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4001 ((-1126 |#1|) (-1126 |#1|))) (-15 -3997 ((-1126 |#1|) (-1126 |#1|))) (-15 -4002 ((-1126 |#1|) (-1126 |#1|))) (-15 -3998 ((-1126 |#1|) (-1126 |#1|))) (-15 -4000 ((-1126 |#1|) (-1126 |#1|))) (-15 -3999 ((-1126 |#1|) (-1126 |#1|))) (-15 -3838 ((-1126 |#1|) (-1126 |#1|))) (-15 -3839 ((-1126 |#1|) (-1126 |#1|))) (-15 -3840 ((-1126 |#1|) (-1126 |#1|))) (-15 -3841 ((-1126 |#1|) (-1126 |#1|))) (-15 -3842 ((-1126 |#1|) (-1126 |#1|))) (-15 -3843 ((-1126 |#1|) (-1126 |#1|))) (-15 -3844 ((-1126 |#1|) (-1126 |#1|))) (-15 -3845 ((-1126 |#1|) (-1126 |#1|))) (-15 -3846 ((-1126 |#1|) (-1126 |#1|))) (-15 -3847 ((-1126 |#1|) (-1126 |#1|))) (-15 -3848 ((-1126 |#1|) (-1126 |#1|))) (-15 -3849 ((-1126 |#1|) (-1126 |#1|))) (-15 -3850 ((-1126 |#1|) (-1126 |#1|))) (-15 -3851 ((-1126 |#1|) (-1126 |#1|))) (-15 -3852 ((-1126 |#1|) (-1126 |#1|))) (-15 -3853 ((-1126 |#1|) (-1126 |#1|))) (-15 -3854 ((-1126 |#1|) (-1126 |#1|))) (-15 -3855 ((-1126 |#1|) (-1126 |#1|)))) (-38 (-402 (-538)))) (T -1135)) +((-3855 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3851 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3850 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3849 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3848 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3847 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3846 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3845 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3842 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3840 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3839 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-4000 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3998 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-4002 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-3997 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-4001 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) (-4303 (*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) +(-10 -7 (-15 -4303 ((-1126 |#1|) (-1126 |#1|))) (-15 -4302 ((-1126 |#1|) (-1126 |#1|))) (-15 ** ((-1126 |#1|) (-1126 |#1|) (-1126 |#1|))) (-15 -4001 ((-1126 |#1|) (-1126 |#1|))) (-15 -3997 ((-1126 |#1|) (-1126 |#1|))) (-15 -4002 ((-1126 |#1|) (-1126 |#1|))) (-15 -3998 ((-1126 |#1|) (-1126 |#1|))) (-15 -4000 ((-1126 |#1|) (-1126 |#1|))) (-15 -3999 ((-1126 |#1|) (-1126 |#1|))) (-15 -3838 ((-1126 |#1|) (-1126 |#1|))) (-15 -3839 ((-1126 |#1|) (-1126 |#1|))) (-15 -3840 ((-1126 |#1|) (-1126 |#1|))) (-15 -3841 ((-1126 |#1|) (-1126 |#1|))) (-15 -3842 ((-1126 |#1|) (-1126 |#1|))) (-15 -3843 ((-1126 |#1|) (-1126 |#1|))) (-15 -3844 ((-1126 |#1|) (-1126 |#1|))) (-15 -3845 ((-1126 |#1|) (-1126 |#1|))) (-15 -3846 ((-1126 |#1|) (-1126 |#1|))) (-15 -3847 ((-1126 |#1|) (-1126 |#1|))) (-15 -3848 ((-1126 |#1|) (-1126 |#1|))) (-15 -3849 ((-1126 |#1|) (-1126 |#1|))) (-15 -3850 ((-1126 |#1|) (-1126 |#1|))) (-15 -3851 ((-1126 |#1|) (-1126 |#1|))) (-15 -3852 ((-1126 |#1|) (-1126 |#1|))) (-15 -3853 ((-1126 |#1|) (-1126 |#1|))) (-15 -3854 ((-1126 |#1|) (-1126 |#1|))) (-15 -3855 ((-1126 |#1|) (-1126 |#1|)))) +((-3856 (((-934 |#2|) |#2| |#2|) 35)) (-3857 ((|#2| |#2| |#1|) 19 (|has| |#1| (-302))))) +(((-1136 |#1| |#2|) (-10 -7 (-15 -3856 ((-934 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -3857 (|#2| |#2| |#1|)) |%noBranch|)) (-545) (-1207 |#1|)) (T -1136)) +((-3857 (*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-4 *3 (-545)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1207 *3)))) (-3856 (*1 *2 *3 *3) (-12 (-4 *4 (-545)) (-5 *2 (-934 *3)) (-5 *1 (-1136 *4 *3)) (-4 *3 (-1207 *4))))) +(-10 -7 (-15 -3856 ((-934 |#2|) |#2| |#2|)) (IF (|has| |#1| (-302)) (-15 -3857 (|#2| |#2| |#1|)) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-3865 (($ $ (-622 (-751))) 67)) (-4248 (($) 26)) (-3874 (($ $) 42)) (-4111 (((-622 $) $) 51)) (-3880 (((-112) $) 16)) (-3858 (((-622 (-919 |#2|)) $) 74)) (-3859 (($ $) 68)) (-3875 (((-751) $) 37)) (-3977 (($) 25)) (-3868 (($ $ (-622 (-751)) (-919 |#2|)) 60) (($ $ (-622 (-751)) (-751)) 61) (($ $ (-751) (-919 |#2|)) 63)) (-3872 (($ $ $) 48) (($ (-622 $)) 50)) (-3860 (((-751) $) 75)) (-3881 (((-112) $) 15)) (-3593 (((-1131) $) NIL)) (-3879 (((-112) $) 18)) (-3594 (((-1093) $) NIL)) (-3861 (((-169) $) 73)) (-3864 (((-919 |#2|) $) 69)) (-3863 (((-751) $) 70)) (-3862 (((-112) $) 72)) (-3866 (($ $ (-622 (-751)) (-169)) 66)) (-3873 (($ $) 43)) (-4317 (((-840) $) 86)) (-3867 (($ $ (-622 (-751)) (-112)) 65)) (-3876 (((-622 $) $) 11)) (-3877 (($ $ (-751)) 36)) (-3878 (($ $) 32)) (-3869 (($ $ $ (-919 |#2|) (-751)) 56)) (-3870 (($ $ (-919 |#2|)) 55)) (-3871 (($ $ (-622 (-751)) (-919 |#2|)) 54) (($ $ (-622 (-751)) (-751)) 58) (((-751) $ (-919 |#2|)) 59)) (-3387 (((-112) $ $) 80))) +(((-1137 |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -3881 ((-112) $)) (-15 -3880 ((-112) $)) (-15 -3879 ((-112) $)) (-15 -3977 ($)) (-15 -4248 ($)) (-15 -3878 ($ $)) (-15 -3877 ($ $ (-751))) (-15 -3876 ((-622 $) $)) (-15 -3875 ((-751) $)) (-15 -3874 ($ $)) (-15 -3873 ($ $)) (-15 -3872 ($ $ $)) (-15 -3872 ($ (-622 $))) (-15 -4111 ((-622 $) $)) (-15 -3871 ($ $ (-622 (-751)) (-919 |#2|))) (-15 -3870 ($ $ (-919 |#2|))) (-15 -3869 ($ $ $ (-919 |#2|) (-751))) (-15 -3868 ($ $ (-622 (-751)) (-919 |#2|))) (-15 -3871 ($ $ (-622 (-751)) (-751))) (-15 -3868 ($ $ (-622 (-751)) (-751))) (-15 -3871 ((-751) $ (-919 |#2|))) (-15 -3868 ($ $ (-751) (-919 |#2|))) (-15 -3867 ($ $ (-622 (-751)) (-112))) (-15 -3866 ($ $ (-622 (-751)) (-169))) (-15 -3865 ($ $ (-622 (-751)))) (-15 -3864 ((-919 |#2|) $)) (-15 -3863 ((-751) $)) (-15 -3862 ((-112) $)) (-15 -3861 ((-169) $)) (-15 -3860 ((-751) $)) (-15 -3859 ($ $)) (-15 -3858 ((-622 (-919 |#2|)) $)))) (-895) (-1025)) (T -1137)) +((-3881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3977 (*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-4248 (*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3878 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3877 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3874 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3873 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3872 (*1 *1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3872 (*1 *1 *2) (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-4111 (*1 *2 *1) (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3871 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))) (-3870 (*1 *1 *1 *2) (-12 (-5 *2 (-919 *4)) (-4 *4 (-1025)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)))) (-3869 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-919 *5)) (-5 *3 (-751)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))) (-3868 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))) (-3871 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1025)))) (-3868 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1025)))) (-3871 (*1 *2 *1 *3) (-12 (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *2 (-751)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))) (-3868 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)))) (-3867 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-112)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1025)))) (-3866 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-751))) (-5 *3 (-169)) (-5 *1 (-1137 *4 *5)) (-14 *4 (-895)) (-4 *5 (-1025)))) (-3865 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-919 *4)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3863 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3861 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025)))) (-3859 (*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-622 (-919 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025))))) +(-13 (-1074) (-10 -8 (-15 -3881 ((-112) $)) (-15 -3880 ((-112) $)) (-15 -3879 ((-112) $)) (-15 -3977 ($)) (-15 -4248 ($)) (-15 -3878 ($ $)) (-15 -3877 ($ $ (-751))) (-15 -3876 ((-622 $) $)) (-15 -3875 ((-751) $)) (-15 -3874 ($ $)) (-15 -3873 ($ $)) (-15 -3872 ($ $ $)) (-15 -3872 ($ (-622 $))) (-15 -4111 ((-622 $) $)) (-15 -3871 ($ $ (-622 (-751)) (-919 |#2|))) (-15 -3870 ($ $ (-919 |#2|))) (-15 -3869 ($ $ $ (-919 |#2|) (-751))) (-15 -3868 ($ $ (-622 (-751)) (-919 |#2|))) (-15 -3871 ($ $ (-622 (-751)) (-751))) (-15 -3868 ($ $ (-622 (-751)) (-751))) (-15 -3871 ((-751) $ (-919 |#2|))) (-15 -3868 ($ $ (-751) (-919 |#2|))) (-15 -3867 ($ $ (-622 (-751)) (-112))) (-15 -3866 ($ $ (-622 (-751)) (-169))) (-15 -3865 ($ $ (-622 (-751)))) (-15 -3864 ((-919 |#2|) $)) (-15 -3863 ((-751) $)) (-15 -3862 ((-112) $)) (-15 -3861 ((-169) $)) (-15 -3860 ((-751) $)) (-15 -3859 ($ $)) (-15 -3858 ((-622 (-919 |#2|)) $)))) +((-2898 (((-112) $ $) NIL)) (-3882 ((|#2| $) 11)) (-3883 ((|#1| $) 10)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3884 (($ |#1| |#2|) 9)) (-4317 (((-840) $) 16)) (-3387 (((-112) $ $) NIL))) +(((-1138 |#1| |#2|) (-13 (-1074) (-10 -8 (-15 -3884 ($ |#1| |#2|)) (-15 -3883 (|#1| $)) (-15 -3882 (|#2| $)))) (-1074) (-1074)) (T -1138)) +((-3884 (*1 *1 *2 *3) (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3883 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-1138 *2 *3)) (-4 *3 (-1074)))) (-3882 (*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-1138 *3 *2)) (-4 *3 (-1074))))) +(-13 (-1074) (-10 -8 (-15 -3884 ($ |#1| |#2|)) (-15 -3883 (|#1| $)) (-15 -3882 (|#2| $)))) +((-2898 (((-112) $ $) NIL)) (-3885 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-1139) (-13 (-1056) (-10 -8 (-15 -3885 ((-1108) $))))) (T -1139)) +((-3885 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1139))))) +(-13 (-1056) (-10 -8 (-15 -3885 ((-1108) $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 11)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-2178 (($ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-2176 (((-112) $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-4130 (($ $ (-538)) NIL) (($ $ (-538) (-538)) 66)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) NIL)) (-4091 (((-1147 |#1| |#2| |#3|) $) 36)) (-4088 (((-3 (-1147 |#1| |#2| |#3|) "failed") $) 29)) (-4089 (((-1147 |#1| |#2| |#3|) $) 30)) (-3846 (($ $) 107 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 83 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) 103 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 79 (|has| |#1| (-38 (-402 (-538)))))) (-3986 (((-538) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) 111 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 87 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-1147 |#1| |#2| |#3|) #2="failed") $) 31) (((-3 (-1149) #2#) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-3 (-402 (-538)) #2#) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358)))) (((-3 (-538) #2#) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))))) (-3507 (((-1147 |#1| |#2| |#3|) $) 131) (((-1149) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-402 (-538)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358)))) (((-538) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))))) (-4090 (($ $) 34) (($ (-538) $) 35)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-1147 |#1| |#2| |#3|)) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-1147 |#1| |#2| |#3|))) (|:| |vec| (-1231 (-1147 |#1| |#2| |#3|)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-621 (-538))) (|has| |#1| (-358)))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-621 (-538))) (|has| |#1| (-358))))) (-3821 (((-3 $ "failed") $) 48)) (-4087 (((-402 (-922 |#1|)) $ (-538)) 65 (|has| |#1| (-545))) (((-402 (-922 |#1|)) $ (-538) (-538)) 67 (|has| |#1| (-545)))) (-3327 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3537 (((-112) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3225 (((-112) $) 25)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-862 (-538))) (|has| |#1| (-358)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-862 (-373))) (|has| |#1| (-358))))) (-4131 (((-538) $) NIL) (((-538) $ (-538)) 24)) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL (|has| |#1| (-358)))) (-3331 (((-1147 |#1| |#2| |#3|) $) 38 (|has| |#1| (-358)))) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3803 (((-3 $ "failed") $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))))) (-3538 (((-112) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-4136 (($ $ (-895)) NIL)) (-4175 (($ (-1 |#1| (-538)) $) NIL)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-538)) 18) (($ $ (-1055) (-538)) NIL) (($ $ (-622 (-1055)) (-622 (-538))) NIL)) (-3677 (($ $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3678 (($ $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-4302 (($ $) 72 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4138 (($ (-538) (-1147 |#1| |#2| |#3|)) 33)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) 70 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 71 (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3463 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3465 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-538)) 145)) (-3820 (((-3 $ "failed") $ $) 49 (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) 73 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-538))))) (($ $ (-1149) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-1149)) (-622 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-507 (-1149) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-288 (-1147 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-288 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-1147 |#1| |#2| |#3|)) (-622 (-1147 |#1| |#2| |#3|))) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-304 (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-538)) NIL) (($ $ $) 54 (|has| (-538) (-1085))) (($ $ (-1147 |#1| |#2| |#3|)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-281 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1228 |#2|)) 51) (($ $ (-751)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) 50 (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-3328 (($ $) NIL (|has| |#1| (-358)))) (-3330 (((-1147 |#1| |#2| |#3|) $) 41 (|has| |#1| (-358)))) (-4307 (((-538) $) 37)) (-3849 (($ $) 113 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 89 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 109 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 85 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 105 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 81 (|has| |#1| (-38 (-402 (-538)))))) (-4330 (((-527) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-527))) (|has| |#1| (-358)))) (((-373) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-996)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-996)) (|has| |#1| (-358)))) (((-866 (-373)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-866 (-373)))) (|has| |#1| (-358)))) (((-866 (-538)) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-598 (-866 (-538)))) (|has| |#1| (-358))))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) 149) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1147 |#1| |#2| |#3|)) 27) (($ (-1228 |#2|)) 23) (($ (-1149)) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (($ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545)))) (($ (-402 (-538))) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-538))))))) (-4040 ((|#1| $ (-538)) 68)) (-3035 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 12)) (-3466 (((-1147 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3852 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 95 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-3850 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 91 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 99 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-538)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 101 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 97 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 93 (|has| |#1| (-38 (-402 (-538)))))) (-3742 (($ $) NIL (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2991 (($) 20 T CONST)) (-2997 (($) 16 T CONST)) (-3002 (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-2896 (((-112) $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2897 (((-112) $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3018 (((-112) $ $) NIL (-3891 (-12 (|has| (-1147 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1147 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 44 (|has| |#1| (-358))) (($ (-1147 |#1| |#2| |#3|) (-1147 |#1| |#2| |#3|)) 45 (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 21)) (** (($ $ (-895)) NIL) (($ $ (-751)) 53) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) 74 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 128 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1147 |#1| |#2| |#3|)) 43 (|has| |#1| (-358))) (($ (-1147 |#1| |#2| |#3|) $) 42 (|has| |#1| (-358))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-1140 |#1| |#2| |#3|) (-13 (-1195 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1140)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))) +(-13 (-1195 |#1| (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) +((-3886 ((|#2| |#2| (-1065 |#2|)) 26) ((|#2| |#2| (-1149)) 28))) +(((-1141 |#1| |#2|) (-10 -7 (-15 -3886 (|#2| |#2| (-1149))) (-15 -3886 (|#2| |#2| (-1065 |#2|)))) (-13 (-545) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-416 |#1|) (-158) (-27) (-1171))) (T -1141)) +((-3886 (*1 *2 *2 *3) (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-416 *4) (-158) (-27) (-1171))) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1141 *4 *2)))) (-3886 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-416 *4) (-158) (-27) (-1171)))))) +(-10 -7 (-15 -3886 (|#2| |#2| (-1149))) (-15 -3886 (|#2| |#2| (-1065 |#2|)))) +((-3886 (((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1065 (-402 (-922 |#1|)))) 31) (((-402 (-922 |#1|)) (-922 |#1|) (-1065 (-922 |#1|))) 44) (((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1149)) 33) (((-402 (-922 |#1|)) (-922 |#1|) (-1149)) 36))) +(((-1142 |#1|) (-10 -7 (-15 -3886 ((-402 (-922 |#1|)) (-922 |#1|) (-1149))) (-15 -3886 ((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1149))) (-15 -3886 ((-402 (-922 |#1|)) (-922 |#1|) (-1065 (-922 |#1|)))) (-15 -3886 ((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1065 (-402 (-922 |#1|)))))) (-13 (-545) (-827) (-1014 (-538)))) (T -1142)) +((-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-3 *3 (-309 *5))) (-5 *1 (-1142 *5)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1065 (-922 *5))) (-5 *3 (-922 *5)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-402 *3)) (-5 *1 (-1142 *5)))) (-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-3 (-402 (-922 *5)) (-309 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-402 (-922 *5))))) (-3886 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-402 (-922 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-922 *5))))) +(-10 -7 (-15 -3886 ((-402 (-922 |#1|)) (-922 |#1|) (-1149))) (-15 -3886 ((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1149))) (-15 -3886 ((-402 (-922 |#1|)) (-922 |#1|) (-1065 (-922 |#1|)))) (-15 -3886 ((-3 (-402 (-922 |#1|)) (-309 |#1|)) (-402 (-922 |#1|)) (-1065 (-402 (-922 |#1|)))))) +((-2898 (((-112) $ $) 137)) (-3539 (((-112) $) 27)) (-4126 (((-1231 |#1|) $ (-751)) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4124 (($ (-1143 |#1|)) NIL)) (-3419 (((-1143 $) $ (-1055)) 58) (((-1143 |#1|) $) 47)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) 132 (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1055))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4115 (($ $ $) 126 (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) 71 (|has| |#1| (-886)))) (-4134 (($ $) NIL (|has| |#1| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 91 (|has| |#1| (-886)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-4120 (($ $ (-751)) 39)) (-4119 (($ $ (-751)) 40)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-446)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#1| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-1055) #2#) $) NIL)) (-3507 ((|#1| $) NIL) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-1055) $) NIL)) (-4116 (($ $ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $ $) 128 (|has| |#1| (-170)))) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) 56)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) NIL) (((-669 |#1|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4118 (($ $ $) 104)) (-4113 (($ $ $) NIL (|has| |#1| (-545)))) (-4112 (((-2 (|:| -4313 |#1|) (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-3857 (($ $) 133 (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-751) $) 45)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1055) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1055) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-3887 (((-840) $ (-840)) 117)) (-4131 (((-751) $ $) NIL (|has| |#1| (-545)))) (-2502 (((-112) $) 30)) (-2510 (((-751) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#1| (-1124)))) (-3420 (($ (-1143 |#1|) (-1055)) 49) (($ (-1143 $) (-1055)) 65)) (-4136 (($ $ (-751)) 32)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) 63) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1055)) NIL) (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 121)) (-3153 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-1722 (($ (-1 (-751) (-751)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4125 (((-1143 |#1|) $) NIL)) (-3418 (((-3 (-1055) #4="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) 52)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) NIL (|has| |#1| (-446)))) (-3593 (((-1131) $) NIL)) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) 38)) (-3156 (((-3 (-622 $) #4#) $) NIL)) (-3155 (((-3 (-622 $) #4#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1055)) (|:| -2493 (-751))) #4#) $) NIL)) (-4172 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) NIL (|has| |#1| (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) 31)) (-1915 ((|#1| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 79 (|has| |#1| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-446))) (($ $ $) 135 (|has| |#1| (-446)))) (-4098 (($ $ (-751) |#1| $) 99)) (-3038 (((-400 (-1143 $)) (-1143 $)) 77 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 76 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 84 (|has| |#1| (-886)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1055) |#1|) NIL) (($ $ (-622 (-1055)) (-622 |#1|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-622 (-1055)) (-622 $)) NIL)) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#1| (-545))) ((|#1| (-402 $) |#1|) NIL (|has| |#1| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#1| (-545)))) (-4123 (((-3 $ #5="failed") $ (-751)) 35)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 138 (|has| |#1| (-358)))) (-4117 (($ $ (-1055)) NIL (|has| |#1| (-170))) ((|#1| $) 124 (|has| |#1| (-170)))) (-4170 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-4307 (((-751) $) 54) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1055) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) 130 (|has| |#1| (-446))) (($ $ (-1055)) NIL (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-886))))) (-4114 (((-3 $ #5#) $ $) NIL (|has| |#1| (-545))) (((-3 (-402 $) #5#) (-402 $) $) NIL (|has| |#1| (-545)))) (-4317 (((-840) $) 118) (($ (-538)) NIL) (($ |#1|) 53) (($ (-1055)) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) 25 (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 15 T CONST)) (-2997 (($) 16 T CONST)) (-3002 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) 96)) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 139 (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 66)) (** (($ $ (-895)) 14) (($ $ (-751)) 12)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 24) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1143 |#1|) (-13 (-1207 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-840))) (-15 -4098 ($ $ (-751) |#1| $)))) (-1025)) (T -1143)) +((-3887 (*1 *2 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-1143 *3)) (-4 *3 (-1025)))) (-4098 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1143 *3)) (-4 *3 (-1025))))) +(-13 (-1207 |#1|) (-10 -8 (-15 -3887 ((-840) $ (-840))) (-15 -4098 ($ $ (-751) |#1| $)))) +((-4318 (((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|)) 13))) +(((-1144 |#1| |#2|) (-10 -7 (-15 -4318 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|)))) (-1025) (-1025)) (T -1144)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-5 *2 (-1143 *6)) (-5 *1 (-1144 *5 *6))))) +(-10 -7 (-15 -4318 ((-1143 |#2|) (-1 |#2| |#1|) (-1143 |#1|)))) +((-4329 (((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|))) 51)) (-4092 (((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|))) 52))) +(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4092 ((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|)))) (-15 -4329 ((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|))))) (-773) (-827) (-446) (-926 |#3| |#1| |#2|)) (T -1145)) +((-4329 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-400 (-1143 (-402 *7)))) (-5 *1 (-1145 *4 *5 *6 *7)) (-5 *3 (-1143 (-402 *7))))) (-4092 (*1 *2 *3) (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-400 (-1143 (-402 *7)))) (-5 *1 (-1145 *4 *5 *6 *7)) (-5 *3 (-1143 (-402 *7)))))) +(-10 -7 (-15 -4092 ((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|)))) (-15 -4329 ((-400 (-1143 (-402 |#4|))) (-1143 (-402 |#4|))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 11)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) NIL) (($ $ (-402 (-538)) (-402 (-538))) NIL)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) NIL)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-1140 |#1| |#2| |#3|) #1="failed") $) 33) (((-3 (-1147 |#1| |#2| |#3|) #1#) $) 36)) (-3507 (((-1140 |#1| |#2| |#3|) $) NIL) (((-1147 |#1| |#2| |#3|) $) NIL)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4140 (((-402 (-538)) $) 55)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4141 (($ (-402 (-538)) (-1140 |#1| |#2| |#3|)) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) NIL) (((-402 (-538)) $ (-402 (-538))) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) NIL) (($ $ (-402 (-538))) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-402 (-538))) 20) (($ $ (-1055) (-402 (-538))) NIL) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4139 (((-1140 |#1| |#2| |#3|) $) 41)) (-4137 (((-3 (-1140 |#1| |#2| |#3|) "failed") $) NIL)) (-4138 (((-1140 |#1| |#2| |#3|) $) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) 39 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 40 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) NIL) (($ $ $) NIL (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $ (-1228 |#2|)) 38)) (-4307 (((-402 (-538)) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) 58) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1140 |#1| |#2| |#3|)) 30) (($ (-1147 |#1| |#2| |#3|)) 31) (($ (-1228 |#2|)) 26) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 12)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 22 T CONST)) (-2997 (($) 16 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 24)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-1146 |#1| |#2| |#3|) (-13 (-1216 |#1| (-1140 |#1| |#2| |#3|)) (-1014 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1146)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))) +(-13 (-1216 |#1| (-1140 |#1| |#2| |#3|)) (-1014 (-1147 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 125)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 116)) (-4171 (((-1200 |#2| |#1|) $ (-751)) 63)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-751)) 79) (($ $ (-751) (-751)) 76)) (-4133 (((-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 102)) (-3846 (($ $) 169 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 145 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) 165 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 115) (($ (-1126 |#1|)) 110)) (-3848 (($ $) 173 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 149 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) 23)) (-4176 (($ $) 26)) (-4174 (((-922 |#1|) $ (-751)) 75) (((-922 |#1|) $ (-751) (-751)) 77)) (-3225 (((-112) $) 120)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $) 122) (((-751) $ (-751)) 124)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) NIL)) (-4175 (($ (-1 |#1| (-538)) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) 13) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-4172 (($ $) 129 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-4128 (($ $ (-751)) 15)) (-3820 (((-3 $ "failed") $ $) 24 (|has| |#1| (-545)))) (-4303 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-4159 ((|#1| $ (-751)) 119) (($ $ $) 128 (|has| (-751) (-1085)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $ (-1228 |#2|)) 29)) (-4307 (((-751) $) NIL)) (-3849 (($ $) 175 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 151 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 171 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 147 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 167 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 143 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) 201) (($ (-538)) NIL) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 126 (|has| |#1| (-170))) (($ (-1200 |#2| |#1|)) 51) (($ (-1228 |#2|)) 32)) (-4177 (((-1126 |#1|) $) 98)) (-4040 ((|#1| $ (-751)) 118)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 54)) (-3852 (($ $) 181 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 157 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) 177 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 153 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 185 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 161 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-751)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 187 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 163 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 183 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 159 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 179 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 155 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 17 T CONST)) (-2997 (($) 19 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) 194)) (-4199 (($ $ $) 31)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ |#1|) 198 (|has| |#1| (-358))) (($ $ $) 134 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 137 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-1147 |#1| |#2| |#3|) (-13 (-1224 |#1|) (-10 -8 (-15 -4317 ($ (-1200 |#2| |#1|))) (-15 -4171 ((-1200 |#2| |#1|) $ (-751))) (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1147)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-1147 *3 *4 *5)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1147 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))) +(-13 (-1224 |#1|) (-10 -8 (-15 -4317 ($ (-1200 |#2| |#1|))) (-15 -4171 ((-1200 |#2| |#1|) $ (-751))) (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) +((-4317 (((-840) $) 27) (($ (-1149)) 29)) (-3891 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 40)) (-3888 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 33) (($ $) 34)) (-3895 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 35)) (-3893 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 37)) (-3894 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 36)) (-3892 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 38)) (-3890 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $))) 39))) +(((-1148) (-13 (-597 (-840)) (-10 -8 (-15 -4317 ($ (-1149))) (-15 -3895 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3894 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3893 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3892 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3891 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3890 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3888 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3888 ($ $))))) (T -1148)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1148)))) (-3895 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3894 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3893 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3892 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3891 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3890 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3888 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) (-5 *1 (-1148)))) (-3888 (*1 *1 *1) (-5 *1 (-1148)))) +(-13 (-597 (-840)) (-10 -8 (-15 -4317 ($ (-1149))) (-15 -3895 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3894 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3893 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3892 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3891 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3890 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)) (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3888 ($ (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) (|:| CF (-309 (-166 (-373)))) (|:| |switch| $)))) (-15 -3888 ($ $)))) +((-2898 (((-112) $ $) NIL)) (-3900 (($ $ (-622 (-840))) 59)) (-3901 (($ $ (-622 (-840))) 57)) (-3898 (((-1131) $) 84)) (-3903 (((-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840)))) $) 87)) (-3904 (((-112) $) 22)) (-3902 (($ $ (-622 (-622 (-840)))) 56) (($ $ (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840))))) 82)) (-3896 (($) 124 T CONST)) (-3906 (((-1237)) 106)) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 66) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 73)) (-3977 (($) 95) (($ $) 101)) (-3905 (($ $) 83)) (-3677 (($ $ $) NIL)) (-3678 (($ $ $) NIL)) (-3897 (((-622 $) $) 107)) (-3593 (((-1131) $) 90)) (-3594 (((-1093) $) NIL)) (-4159 (($ $ (-622 (-840))) 58)) (-4330 (((-527) $) 46) (((-1149) $) 47) (((-866 (-538)) $) 77) (((-866 (-373)) $) 75)) (-4317 (((-840) $) 53) (($ (-1131)) 48)) (-3899 (($ $ (-622 (-840))) 60)) (-2834 (((-1131) $) 33) (((-1131) $ (-112)) 34) (((-1237) (-803) $) 35) (((-1237) (-803) $ (-112)) 36)) (-2896 (((-112) $ $) NIL)) (-2897 (((-112) $ $) NIL)) (-3387 (((-112) $ $) 49)) (-3017 (((-112) $ $) NIL)) (-3018 (((-112) $ $) 50))) +(((-1149) (-13 (-827) (-598 (-527)) (-801) (-598 (-1149)) (-598 (-866 (-538))) (-598 (-866 (-373))) (-862 (-538)) (-862 (-373)) (-10 -8 (-15 -3977 ($)) (-15 -3977 ($ $)) (-15 -3906 ((-1237))) (-15 -4317 ($ (-1131))) (-15 -3905 ($ $)) (-15 -3904 ((-112) $)) (-15 -3903 ((-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840)))) $)) (-15 -3902 ($ $ (-622 (-622 (-840))))) (-15 -3902 ($ $ (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840)))))) (-15 -3901 ($ $ (-622 (-840)))) (-15 -3900 ($ $ (-622 (-840)))) (-15 -3899 ($ $ (-622 (-840)))) (-15 -4159 ($ $ (-622 (-840)))) (-15 -3898 ((-1131) $)) (-15 -3897 ((-622 $) $)) (-15 -3896 ($) -4311)))) (T -1149)) +((-3977 (*1 *1) (-5 *1 (-1149))) (-3977 (*1 *1 *1) (-5 *1 (-1149))) (-3906 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1149)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))) (-3905 (*1 *1 *1) (-5 *1 (-1149))) (-3904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149)))) (-3903 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840))))) (-5 *1 (-1149)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-622 (-840)))) (-5 *1 (-1149)))) (-3902 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840))))) (-5 *1 (-1149)))) (-3901 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))) (-3900 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))) (-3899 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1149)))) (-3896 (*1 *1) (-5 *1 (-1149)))) +(-13 (-827) (-598 (-527)) (-801) (-598 (-1149)) (-598 (-866 (-538))) (-598 (-866 (-373))) (-862 (-538)) (-862 (-373)) (-10 -8 (-15 -3977 ($)) (-15 -3977 ($ $)) (-15 -3906 ((-1237))) (-15 -4317 ($ (-1131))) (-15 -3905 ($ $)) (-15 -3904 ((-112) $)) (-15 -3903 ((-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840)))) $)) (-15 -3902 ($ $ (-622 (-622 (-840))))) (-15 -3902 ($ $ (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) (|:| |args| (-622 (-840)))))) (-15 -3901 ($ $ (-622 (-840)))) (-15 -3900 ($ $ (-622 (-840)))) (-15 -3899 ($ $ (-622 (-840)))) (-15 -4159 ($ $ (-622 (-840)))) (-15 -3898 ((-1131) $)) (-15 -3897 ((-622 $) $)) (-15 -3896 ($) -4311))) +((-3907 (((-1231 |#1|) |#1| (-895)) 16) (((-1231 |#1|) (-622 |#1|)) 20))) +(((-1150 |#1|) (-10 -7 (-15 -3907 ((-1231 |#1|) (-622 |#1|))) (-15 -3907 ((-1231 |#1|) |#1| (-895)))) (-1025)) (T -1150)) +((-3907 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-1231 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1025)))) (-3907 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-1025)) (-5 *2 (-1231 *4)) (-5 *1 (-1150 *4))))) +(-10 -7 (-15 -3907 ((-1231 |#1|) (-622 |#1|))) (-15 -3907 ((-1231 |#1|) |#1| (-895)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| |#1| (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| |#1| (-1014 (-402 (-538))))) (((-3 |#1| #1#) $) NIL)) (-3507 (((-538) $) NIL (|has| |#1| (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| |#1| (-1014 (-402 (-538))))) ((|#1| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-3857 (($ $) NIL (|has| |#1| (-446)))) (-1721 (($ $ |#1| (-947) $) NIL)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-947)) NIL)) (-3153 (((-947) $) NIL)) (-1722 (($ (-1 (-947) (-947)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#1| $) NIL)) (-4098 (($ $ (-947) |#1| $) NIL (-12 (|has| (-947) (-130)) (|has| |#1| (-545))))) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-545)))) (-4307 (((-947) $) NIL)) (-3150 ((|#1| $) NIL (|has| |#1| (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) NIL) (($ (-402 (-538))) NIL (-3891 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-1014 (-402 (-538))))))) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ (-947)) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#1| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-2991 (($) 9 T CONST)) (-2997 (($) 14 T CONST)) (-3387 (((-112) $ $) 16)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 19)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-1151 |#1|) (-13 (-321 |#1| (-947)) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| (-947) (-130)) (-15 -4098 ($ $ (-947) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025)) (T -1151)) +((-4098 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-947)) (-4 *2 (-130)) (-5 *1 (-1151 *3)) (-4 *3 (-545)) (-4 *3 (-1025))))) +(-13 (-321 |#1| #1=(-947)) (-10 -8 (IF (|has| |#1| (-545)) (IF (|has| #1# (-130)) (-15 -4098 ($ $ #1# |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) +((-3908 (((-1153) (-1149) $) 25)) (-3918 (($) 29)) (-3910 (((-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) (-1149) $) 22)) (-3912 (((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1#)) $) 41) (((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) 42) (((-1237) (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) 43)) (-3920 (((-1237) (-1149)) 58)) (-3911 (((-1237) (-1149) $) 55) (((-1237) (-1149)) 56) (((-1237)) 57)) (-3916 (((-1237) (-1149)) 37)) (-3914 (((-1149)) 36)) (-3928 (($) 34)) (-3927 (((-431) (-1149) (-431) (-1149) $) 45) (((-431) (-622 (-1149)) (-431) (-1149) $) 49) (((-431) (-1149) (-431)) 46) (((-431) (-1149) (-431) (-1149)) 50)) (-3915 (((-1149)) 35)) (-4317 (((-840) $) 28)) (-3917 (((-1237)) 30) (((-1237) (-1149)) 33)) (-3909 (((-622 (-1149)) (-1149) $) 24)) (-3913 (((-1237) (-1149) (-622 (-1149)) $) 38) (((-1237) (-1149) (-622 (-1149))) 39) (((-1237) (-622 (-1149))) 40))) +(((-1152) (-13 (-597 (-840)) (-10 -8 (-15 -3918 ($)) (-15 -3917 ((-1237))) (-15 -3917 ((-1237) (-1149))) (-15 -3927 ((-431) (-1149) (-431) (-1149) $)) (-15 -3927 ((-431) (-622 (-1149)) (-431) (-1149) $)) (-15 -3927 ((-431) (-1149) (-431))) (-15 -3927 ((-431) (-1149) (-431) (-1149))) (-15 -3916 ((-1237) (-1149))) (-15 -3915 ((-1149))) (-15 -3914 ((-1149))) (-15 -3913 ((-1237) (-1149) (-622 (-1149)) $)) (-15 -3913 ((-1237) (-1149) (-622 (-1149)))) (-15 -3913 ((-1237) (-622 (-1149)))) (-15 -3912 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) $)) (-15 -3912 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1#)))) (-15 -3912 ((-1237) (-3 (|:| |fst| (-429)) (|:| -4270 #1#)))) (-15 -3911 ((-1237) (-1149) $)) (-15 -3911 ((-1237) (-1149))) (-15 -3911 ((-1237))) (-15 -3920 ((-1237) (-1149))) (-15 -3928 ($)) (-15 -3910 ((-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-1149) $)) (-15 -3909 ((-622 (-1149)) (-1149) $)) (-15 -3908 ((-1153) (-1149) $))))) (T -1152)) +((-3918 (*1 *1) (-5 *1 (-1152))) (-3917 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3927 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-3927 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-431)) (-5 *3 (-622 (-1149))) (-5 *4 (-1149)) (-5 *1 (-1152)))) (-3927 (*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-3927 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152)))) (-3916 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3915 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))) (-3914 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152)))) (-3913 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3913 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3912 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void"))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3912 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3911 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3911 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3920 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) (-3928 (*1 *1) (-5 *1 (-1152))) (-3910 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *1 (-1152)))) (-3909 (*1 *2 *3 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1152)) (-5 *3 (-1149)))) (-3908 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1153)) (-5 *1 (-1152))))) +(-13 (-597 (-840)) (-10 -8 (-15 -3918 ($)) (-15 -3917 ((-1237))) (-15 -3917 ((-1237) (-1149))) (-15 -3927 ((-431) (-1149) (-431) (-1149) $)) (-15 -3927 ((-431) (-622 (-1149)) (-431) (-1149) $)) (-15 -3927 ((-431) (-1149) (-431))) (-15 -3927 ((-431) (-1149) (-431) (-1149))) (-15 -3916 ((-1237) (-1149))) (-15 -3915 ((-1149))) (-15 -3914 ((-1149))) (-15 -3913 ((-1237) (-1149) (-622 (-1149)) $)) (-15 -3913 ((-1237) (-1149) (-622 (-1149)))) (-15 -3913 ((-1237) (-622 (-1149)))) (-15 -3912 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1="void")) $)) (-15 -3912 ((-1237) (-1149) (-3 (|:| |fst| (-429)) (|:| -4270 #1#)))) (-15 -3912 ((-1237) (-3 (|:| |fst| (-429)) (|:| -4270 #1#)))) (-15 -3911 ((-1237) (-1149) $)) (-15 -3911 ((-1237) (-1149))) (-15 -3911 ((-1237))) (-15 -3920 ((-1237) (-1149))) (-15 -3928 ($)) (-15 -3910 ((-3 (|:| |fst| (-429)) (|:| -4270 #1#)) (-1149) $)) (-15 -3909 ((-622 (-1149)) (-1149) $)) (-15 -3908 ((-1153) (-1149) $)))) +((-3922 (((-622 (-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538))))))))) $) 59)) (-3924 (((-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538)))))))) (-429) $) 43)) (-3919 (($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-431))))) 17)) (-3920 (((-1237) $) 67)) (-3925 (((-622 (-1149)) $) 22)) (-3921 (((-1076) $) 55)) (-3926 (((-431) (-1149) $) 27)) (-3923 (((-622 (-1149)) $) 30)) (-3928 (($) 19)) (-3927 (((-431) (-622 (-1149)) (-431) $) 25) (((-431) (-1149) (-431) $) 24)) (-4317 (((-840) $) 9) (((-1158 (-1149) (-431)) $) 13))) +(((-1153) (-13 (-597 (-840)) (-10 -8 (-15 -4317 ((-1158 (-1149) (-431)) $)) (-15 -3928 ($)) (-15 -3927 ((-431) (-622 (-1149)) (-431) $)) (-15 -3927 ((-431) (-1149) (-431) $)) (-15 -3926 ((-431) (-1149) $)) (-15 -3925 ((-622 (-1149)) $)) (-15 -3924 ((-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538)))))))) (-429) $)) (-15 -3923 ((-622 (-1149)) $)) (-15 -3922 ((-622 (-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538))))))))) $)) (-15 -3921 ((-1076) $)) (-15 -3920 ((-1237) $)) (-15 -3919 ($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-431))))))))) (T -1153)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-1158 (-1149) (-431))) (-5 *1 (-1153)))) (-3928 (*1 *1) (-5 *1 (-1153))) (-3927 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-622 (-1149))) (-5 *1 (-1153)))) (-3927 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1153)))) (-3926 (*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-431)) (-5 *1 (-1153)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1153)))) (-3924 (*1 *2 *3 *1) (-12 (-5 *3 (-429)) (-5 *2 (-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538))))))))) (-5 *1 (-1153)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1153)))) (-3922 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538)))))))))) (-5 *1 (-1153)))) (-3921 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1153)))) (-3920 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1153)))) (-3919 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-431))))) (-5 *1 (-1153))))) +(-13 (-597 (-840)) (-10 -8 (-15 -4317 ((-1158 (-1149) (-431)) $)) (-15 -3928 ($)) (-15 -3927 ((-431) (-622 (-1149)) (-431) $)) (-15 -3927 ((-431) (-1149) (-431) $)) (-15 -3926 ((-431) (-1149) $)) (-15 -3925 ((-622 (-1149)) $)) (-15 -3924 ((-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538)))))))) (-429) $)) (-15 -3923 ((-622 (-1149)) $)) (-15 -3922 ((-622 (-622 (-3 (|:| -3905 (-1149)) (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538))))))))) $)) (-15 -3921 ((-1076) $)) (-15 -3920 ((-1237) $)) (-15 -3919 ($ (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-431)))))))) +((-2898 (((-112) $ $) NIL)) (-3933 (((-112) $) 48)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3932 (((-3 (-538) (-221) (-1149) (-1131) $) $) 56)) (-3931 (((-622 $) $) 61)) (-4330 (((-1076) $) 30) (($ (-1076)) 31)) (-3930 (((-112) $) 58)) (-4317 (((-840) $) 29) (($ (-538)) 32) (((-538) $) 34) (($ (-221)) 35) (((-221) $) 37) (($ (-1149)) 38) (((-1149) $) 40) (($ (-1131)) 41) (((-1131) $) 43)) (-3929 (((-112) $ (|[\|\|]| (-538))) 13) (((-112) $ (|[\|\|]| (-221))) 17) (((-112) $ (|[\|\|]| (-1149))) 25) (((-112) $ (|[\|\|]| (-1131))) 21)) (-3934 (($ (-1149) (-622 $)) 45) (($ $ (-622 $)) 46)) (-3935 (((-538) $) 33) (((-221) $) 36) (((-1149) $) 39) (((-1131) $) 42)) (-3387 (((-112) $ $) 8))) +(((-1154) (-13 (-1227) (-1074) (-10 -8 (-15 -4330 ((-1076) $)) (-15 -4330 ($ (-1076))) (-15 -4317 ($ (-538))) (-15 -4317 ((-538) $)) (-15 -3935 ((-538) $)) (-15 -4317 ($ (-221))) (-15 -4317 ((-221) $)) (-15 -3935 ((-221) $)) (-15 -4317 ($ (-1149))) (-15 -4317 ((-1149) $)) (-15 -3935 ((-1149) $)) (-15 -4317 ($ (-1131))) (-15 -4317 ((-1131) $)) (-15 -3935 ((-1131) $)) (-15 -3934 ($ (-1149) (-622 $))) (-15 -3934 ($ $ (-622 $))) (-15 -3933 ((-112) $)) (-15 -3932 ((-3 (-538) (-221) (-1149) (-1131) $) $)) (-15 -3931 ((-622 $) $)) (-15 -3930 ((-112) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-538)))) (-15 -3929 ((-112) $ (|[\|\|]| (-221)))) (-15 -3929 ((-112) $ (|[\|\|]| (-1149)))) (-15 -3929 ((-112) $ (|[\|\|]| (-1131))))))) (T -1154)) +((-4330 (*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1154)))) (-4330 (*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1154)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1154)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1154)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1154)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-3935 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) (-3934 (*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-1154))) (-5 *1 (-1154)))) (-3934 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1154)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-3 (-538) (-221) (-1149) (-1131) (-1154))) (-5 *1 (-1154)))) (-3931 (*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1154)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1149))) (-5 *2 (-112)) (-5 *1 (-1154)))) (-3929 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)) (-5 *1 (-1154))))) +(-13 (-1227) (-1074) (-10 -8 (-15 -4330 ((-1076) $)) (-15 -4330 ($ (-1076))) (-15 -4317 ($ (-538))) (-15 -4317 ((-538) $)) (-15 -3935 ((-538) $)) (-15 -4317 ($ (-221))) (-15 -4317 ((-221) $)) (-15 -3935 ((-221) $)) (-15 -4317 ($ (-1149))) (-15 -4317 ((-1149) $)) (-15 -3935 ((-1149) $)) (-15 -4317 ($ (-1131))) (-15 -4317 ((-1131) $)) (-15 -3935 ((-1131) $)) (-15 -3934 ($ (-1149) (-622 $))) (-15 -3934 ($ $ (-622 $))) (-15 -3933 ((-112) $)) (-15 -3932 ((-3 (-538) (-221) (-1149) (-1131) $) $)) (-15 -3931 ((-622 $) $)) (-15 -3930 ((-112) $)) (-15 -3929 ((-112) $ (|[\|\|]| (-538)))) (-15 -3929 ((-112) $ (|[\|\|]| (-221)))) (-15 -3929 ((-112) $ (|[\|\|]| (-1149)))) (-15 -3929 ((-112) $ (|[\|\|]| (-1131)))))) +((-3937 (((-622 (-622 (-922 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149))) 57)) (-3936 (((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|)))) 69) (((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|))) 65) (((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149)) 70) (((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149)) 64) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|))))) 93) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|)))) 92) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149))) 94) (((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|))) (-622 (-1149))) 91))) +(((-1155 |#1|) (-10 -7 (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|))))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|)))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|))))) (-15 -3937 ((-622 (-622 (-922 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149))))) (-545)) (T -1155)) +((-3937 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-922 *5)))) (-5 *1 (-1155 *5)))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *4))))) (-5 *1 (-1155 *4)) (-5 *3 (-288 (-402 (-922 *4)))))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *4))))) (-5 *1 (-1155 *4)) (-5 *3 (-402 (-922 *4))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *5))))) (-5 *1 (-1155 *5)) (-5 *3 (-288 (-402 (-922 *5)))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *5))))) (-5 *1 (-1155 *5)) (-5 *3 (-402 (-922 *5))))) (-3936 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-1155 *4)) (-5 *3 (-622 (-288 (-402 (-922 *4))))))) (-3936 (*1 *2 *3) (-12 (-5 *3 (-622 (-402 (-922 *4)))) (-4 *4 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-1155 *4)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *4 (-622 (-1149))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-1155 *5)) (-5 *3 (-622 (-288 (-402 (-922 *5))))))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-1155 *5))))) +(-10 -7 (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|))) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|)))) (-622 (-1149)))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-402 (-922 |#1|))))) (-15 -3936 ((-622 (-622 (-288 (-402 (-922 |#1|))))) (-622 (-288 (-402 (-922 |#1|)))))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|)) (-1149))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|))) (-1149))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-402 (-922 |#1|)))) (-15 -3936 ((-622 (-288 (-402 (-922 |#1|)))) (-288 (-402 (-922 |#1|))))) (-15 -3937 ((-622 (-622 (-922 |#1|))) (-622 (-402 (-922 |#1|))) (-622 (-1149))))) +((-3938 (((-1131)) 7)) (-3940 (((-1131)) 9)) (-3941 (((-1237) (-1131)) 11)) (-3939 (((-1131)) 8))) +(((-1156) (-10 -7 (-15 -3938 ((-1131))) (-15 -3939 ((-1131))) (-15 -3940 ((-1131))) (-15 -3941 ((-1237) (-1131))))) (T -1156)) +((-3941 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1156)))) (-3940 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))) (-3939 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156)))) (-3938 (*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156))))) +(-10 -7 (-15 -3938 ((-1131))) (-15 -3939 ((-1131))) (-15 -3940 ((-1131))) (-15 -3941 ((-1237) (-1131)))) +((-3945 (((-622 (-622 |#1|)) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|)))) 38)) (-3948 (((-622 (-622 (-622 |#1|))) (-622 (-622 |#1|))) 24)) (-3949 (((-1159 (-622 |#1|)) (-622 |#1|)) 34)) (-3951 (((-622 (-622 |#1|)) (-622 |#1|)) 30)) (-3954 (((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 (-622 (-622 |#1|)))) 37)) (-3953 (((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 |#1|) (-622 (-622 (-622 |#1|))) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|)))) 36)) (-3950 (((-622 (-622 |#1|)) (-622 (-622 |#1|))) 28)) (-3952 (((-622 |#1|) (-622 |#1|)) 31)) (-3944 (((-622 (-622 (-622 |#1|))) (-622 |#1|) (-622 (-622 (-622 |#1|)))) 18)) (-3943 (((-622 (-622 (-622 |#1|))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 (-622 |#1|)))) 16)) (-3942 (((-2 (|:| |fs| (-112)) (|:| |sd| (-622 |#1|)) (|:| |td| (-622 (-622 |#1|)))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 |#1|))) 14)) (-3946 (((-622 (-622 |#1|)) (-622 (-622 (-622 |#1|)))) 39)) (-3947 (((-622 (-622 |#1|)) (-1159 (-622 |#1|))) 41))) +(((-1157 |#1|) (-10 -7 (-15 -3942 ((-2 (|:| |fs| (-112)) (|:| |sd| (-622 |#1|)) (|:| |td| (-622 (-622 |#1|)))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 |#1|)))) (-15 -3943 ((-622 (-622 (-622 |#1|))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 (-622 |#1|))))) (-15 -3944 ((-622 (-622 (-622 |#1|))) (-622 |#1|) (-622 (-622 (-622 |#1|))))) (-15 -3945 ((-622 (-622 |#1|)) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))))) (-15 -3946 ((-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))))) (-15 -3947 ((-622 (-622 |#1|)) (-1159 (-622 |#1|)))) (-15 -3948 ((-622 (-622 (-622 |#1|))) (-622 (-622 |#1|)))) (-15 -3949 ((-1159 (-622 |#1|)) (-622 |#1|))) (-15 -3950 ((-622 (-622 |#1|)) (-622 (-622 |#1|)))) (-15 -3951 ((-622 (-622 |#1|)) (-622 |#1|))) (-15 -3952 ((-622 |#1|) (-622 |#1|))) (-15 -3953 ((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 |#1|) (-622 (-622 (-622 |#1|))) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|))))) (-15 -3954 ((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 (-622 (-622 |#1|)))))) (-827)) (T -1157)) +((-3954 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-2 (|:| |f1| (-622 *4)) (|:| |f2| (-622 (-622 (-622 *4)))) (|:| |f3| (-622 (-622 *4))) (|:| |f4| (-622 (-622 (-622 *4)))))) (-5 *1 (-1157 *4)) (-5 *3 (-622 (-622 (-622 *4)))))) (-3953 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-827)) (-5 *3 (-622 *6)) (-5 *5 (-622 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-622 *5)) (|:| |f3| *5) (|:| |f4| (-622 *5)))) (-5 *1 (-1157 *6)) (-5 *4 (-622 *5)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-1157 *3)))) (-3951 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-622 (-622 *4))) (-5 *1 (-1157 *4)) (-5 *3 (-622 *4)))) (-3950 (*1 *2 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-827)) (-5 *1 (-1157 *3)))) (-3949 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-1159 (-622 *4))) (-5 *1 (-1157 *4)) (-5 *3 (-622 *4)))) (-3948 (*1 *2 *3) (-12 (-4 *4 (-827)) (-5 *2 (-622 (-622 (-622 *4)))) (-5 *1 (-1157 *4)) (-5 *3 (-622 (-622 *4))))) (-3947 (*1 *2 *3) (-12 (-5 *3 (-1159 (-622 *4))) (-4 *4 (-827)) (-5 *2 (-622 (-622 *4))) (-5 *1 (-1157 *4)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-622 (-622 (-622 *4)))) (-5 *2 (-622 (-622 *4))) (-5 *1 (-1157 *4)) (-4 *4 (-827)))) (-3945 (*1 *2 *2 *3) (-12 (-5 *3 (-622 (-622 (-622 *4)))) (-5 *2 (-622 (-622 *4))) (-4 *4 (-827)) (-5 *1 (-1157 *4)))) (-3944 (*1 *2 *3 *2) (-12 (-5 *2 (-622 (-622 (-622 *4)))) (-5 *3 (-622 *4)) (-4 *4 (-827)) (-5 *1 (-1157 *4)))) (-3943 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-622 (-622 (-622 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-622 *5)) (-4 *5 (-827)) (-5 *1 (-1157 *5)))) (-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-827)) (-5 *4 (-622 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-622 *4)))) (-5 *1 (-1157 *6)) (-5 *5 (-622 *4))))) +(-10 -7 (-15 -3942 ((-2 (|:| |fs| (-112)) (|:| |sd| (-622 |#1|)) (|:| |td| (-622 (-622 |#1|)))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 |#1|)))) (-15 -3943 ((-622 (-622 (-622 |#1|))) (-1 (-112) |#1| |#1|) (-622 |#1|) (-622 (-622 (-622 |#1|))))) (-15 -3944 ((-622 (-622 (-622 |#1|))) (-622 |#1|) (-622 (-622 (-622 |#1|))))) (-15 -3945 ((-622 (-622 |#1|)) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))))) (-15 -3946 ((-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))))) (-15 -3947 ((-622 (-622 |#1|)) (-1159 (-622 |#1|)))) (-15 -3948 ((-622 (-622 (-622 |#1|))) (-622 (-622 |#1|)))) (-15 -3949 ((-1159 (-622 |#1|)) (-622 |#1|))) (-15 -3950 ((-622 (-622 |#1|)) (-622 (-622 |#1|)))) (-15 -3951 ((-622 (-622 |#1|)) (-622 |#1|))) (-15 -3952 ((-622 |#1|) (-622 |#1|))) (-15 -3953 ((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 |#1|) (-622 (-622 (-622 |#1|))) (-622 (-622 |#1|)) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|))) (-622 (-622 (-622 |#1|))))) (-15 -3954 ((-2 (|:| |f1| (-622 |#1|)) (|:| |f2| (-622 (-622 (-622 |#1|)))) (|:| |f3| (-622 (-622 |#1|))) (|:| |f4| (-622 (-622 (-622 |#1|))))) (-622 (-622 (-622 |#1|)))))) +((-2898 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-3960 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2305 (((-1237) $ |#1| |#1|) NIL (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#2| $ |#1| |#2|) NIL)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) NIL)) (-3896 (($) NIL T CONST)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) NIL)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) NIL)) (-2307 ((|#1| $) NIL (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-622 |#2|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2308 ((|#1| $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-2744 (((-622 |#1|) $) NIL)) (-2315 (((-112) |#1| $) NIL)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2310 (((-622 |#1|) $) NIL)) (-2311 (((-112) |#1| $) NIL)) (-3594 (((-1093) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4160 ((|#2| $) NIL (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL)) (-2306 (($ $ |#2|) NIL (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1523 (($) NIL) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) NIL (-12 (|has| $ (-6 -4353)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (((-751) |#2| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074)))) (((-751) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-4317 (((-840) $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) NIL)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) NIL (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) NIL (-3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1158 |#1| |#2|) (-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) (-1074) (-1074)) (T -1158)) +NIL +(-13 (-1162 |#1| |#2|) (-10 -7 (-6 -4353))) +((-3955 (($ (-622 (-622 |#1|))) 10)) (-3956 (((-622 (-622 |#1|)) $) 11)) (-4317 (((-840) $) 26))) +(((-1159 |#1|) (-10 -8 (-15 -3955 ($ (-622 (-622 |#1|)))) (-15 -3956 ((-622 (-622 |#1|)) $)) (-15 -4317 ((-840) $))) (-1074)) (T -1159)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1074)))) (-3955 (*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-1159 *3))))) +(-10 -8 (-15 -3955 ($ (-622 (-622 |#1|)))) (-15 -3956 ((-622 (-622 |#1|)) $)) (-15 -4317 ((-840) $))) +((-3957 ((|#1| (-622 |#1|)) 32)) (-3959 ((|#1| |#1| (-538)) 18)) (-3958 (((-1143 |#1|) |#1| (-895)) 15))) +(((-1160 |#1|) (-10 -7 (-15 -3957 (|#1| (-622 |#1|))) (-15 -3958 ((-1143 |#1|) |#1| (-895))) (-15 -3959 (|#1| |#1| (-538)))) (-358)) (T -1160)) +((-3959 (*1 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-1160 *2)) (-4 *2 (-358)))) (-3958 (*1 *2 *3 *4) (-12 (-5 *4 (-895)) (-5 *2 (-1143 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-358)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-1160 *2)) (-4 *2 (-358))))) +(-10 -7 (-15 -3957 (|#1| (-622 |#1|))) (-15 -3958 ((-1143 |#1|) |#1| (-895))) (-15 -3959 (|#1| |#1| (-538)))) +((-3960 (($) 10) (($ (-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)))) 14)) (-3764 (($ (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) 61) (($ (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2068 (((-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) 39) (((-622 |#3|) $) 41)) (-2072 (($ (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-4318 (($ (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1333 (((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) 54)) (-3970 (($ (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) 16)) (-2310 (((-622 |#2|) $) 19)) (-2311 (((-112) |#2| $) 59)) (-1399 (((-3 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) "failed") (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) 58)) (-1334 (((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) 63)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 67)) (-2312 (((-622 |#3|) $) 43)) (-4159 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) NIL) (((-751) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) $) NIL) (((-751) |#3| $) NIL) (((-751) (-1 (-112) |#3|) $) 68)) (-4317 (((-840) $) 27)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 65)) (-3387 (((-112) $ $) 49))) +(((-1161 |#1| |#2| |#3|) (-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3960 (|#1| (-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))))) (-15 -3960 (|#1|)) (-15 -4318 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2072 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#3|) |#1|)) (-15 -2068 ((-622 |#3|) |#1|)) (-15 -2069 ((-751) |#3| |#1|)) (-15 -4159 (|#3| |#1| |#2| |#3|)) (-15 -4159 (|#3| |#1| |#2|)) (-15 -2312 ((-622 |#3|) |#1|)) (-15 -2311 ((-112) |#2| |#1|)) (-15 -2310 ((-622 |#2|) |#1|)) (-15 -3764 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3764 (|#1| (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -3764 (|#1| (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -1399 ((-3 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) "failed") (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -1333 ((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -3970 (|#1| (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -1334 ((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -2069 ((-751) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -2068 ((-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2069 ((-751) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2070 ((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2071 ((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2072 (|#1| (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -4318 (|#1| (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|))) (-1162 |#2| |#3|) (-1074) (-1074)) (T -1161)) +NIL +(-10 -8 (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4318 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3960 (|#1| (-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))))) (-15 -3960 (|#1|)) (-15 -4318 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2072 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2071 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2070 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2069 ((-751) (-1 (-112) |#3|) |#1|)) (-15 -2068 ((-622 |#3|) |#1|)) (-15 -2069 ((-751) |#3| |#1|)) (-15 -4159 (|#3| |#1| |#2| |#3|)) (-15 -4159 (|#3| |#1| |#2|)) (-15 -2312 ((-622 |#3|) |#1|)) (-15 -2311 ((-112) |#2| |#1|)) (-15 -2310 ((-622 |#2|) |#1|)) (-15 -3764 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3764 (|#1| (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -3764 (|#1| (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -1399 ((-3 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) "failed") (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -1333 ((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -3970 (|#1| (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -1334 ((-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -2069 ((-751) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) |#1|)) (-15 -2068 ((-622 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2069 ((-751) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2070 ((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2071 ((-112) (-1 (-112) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -2072 (|#1| (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|)) (-15 -4318 (|#1| (-1 (-2 (|:| -4220 |#2|) (|:| -2191 |#3|)) (-2 (|:| -4220 |#2|) (|:| -2191 |#3|))) |#1|))) +((-2898 (((-112) $ $) 19 (-3891 (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-3960 (($) 72) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 71)) (-2305 (((-1237) $ |#1| |#1|) 99 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#2| $ |#1| |#2|) 73)) (-1631 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 45 (|has| $ (-6 -4353)))) (-4073 (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 55 (|has| $ (-6 -4353)))) (-2314 (((-3 |#2| #1="failed") |#1| $) 61)) (-3896 (($) 7 T CONST)) (-1398 (($ $) 58 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353))))) (-3764 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 47 (|has| $ (-6 -4353))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 46 (|has| $ (-6 -4353))) (((-3 |#2| #1#) |#1| $) 62)) (-3765 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 57 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 54 (|has| $ (-6 -4353)))) (-4202 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 56 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 53 (|has| $ (-6 -4353))) (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 52 (|has| $ (-6 -4353)))) (-1637 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4354)))) (-3448 ((|#2| $ |#1|) 88)) (-2068 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 30 (|has| $ (-6 -4353))) (((-622 |#2|) $) 79 (|has| $ (-6 -4353)))) (-4082 (((-112) $ (-751)) 9)) (-2307 ((|#1| $) 96 (|has| |#1| (-827)))) (-2511 (((-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 29 (|has| $ (-6 -4353))) (((-622 |#2|) $) 80 (|has| $ (-6 -4353)))) (-3596 (((-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353))))) (-2308 ((|#1| $) 95 (|has| |#1| (-827)))) (-2072 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 34 (|has| $ (-6 -4354))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4354)))) (-4318 (($ (-1 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-4079 (((-112) $ (-751)) 10)) (-3593 (((-1131) $) 22 (-3891 (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-2744 (((-622 |#1|) $) 63)) (-2315 (((-112) |#1| $) 64)) (-1333 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 39)) (-3970 (($ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 40)) (-2310 (((-622 |#1|) $) 93)) (-2311 (((-112) |#1| $) 92)) (-3594 (((-1093) $) 21 (-3891 (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-4160 ((|#2| $) 97 (|has| |#1| (-827)))) (-1399 (((-3 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) "failed") (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 51)) (-2306 (($ $ |#2|) 98 (|has| $ (-6 -4354)))) (-1334 (((-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 41)) (-2070 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 32 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))))) 26 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-288 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 25 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) 24 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 23 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)))) (($ $ (-622 |#2|) (-622 |#2|)) 86 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-288 |#2|)) 84 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074)))) (($ $ (-622 (-288 |#2|))) 83 (-12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4353)) (|has| |#2| (-1074))))) (-2312 (((-622 |#2|) $) 91)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1523 (($) 49) (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 48)) (-2069 (((-751) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 31 (|has| $ (-6 -4353))) (((-751) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| $ (-6 -4353)))) (((-751) |#2| $) 81 (-12 (|has| |#2| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4353)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 59 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))))) (-3884 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 50)) (-4317 (((-840) $) 18 (-3891 (|has| |#2| (-597 (-840))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840)))))) (-1335 (($ (-622 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) 42)) (-2071 (((-112) (-1 (-112) (-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) $) 33 (|has| $ (-6 -4353))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (-3891 (|has| |#2| (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-1162 |#1| |#2|) (-138) (-1074) (-1074)) (T -1162)) +((-4147 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))) (-3960 (*1 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) (-3960 (*1 *1 *2) (-12 (-5 *2 (-622 (-2 (|:| -4220 *3) (|:| -2191 *4)))) (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *1 (-1162 *3 *4)))) (-4318 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) +(-13 (-594 |t#1| |t#2|) (-588 |t#1| |t#2|) (-10 -8 (-15 -4147 (|t#2| $ |t#1| |t#2|)) (-15 -3960 ($)) (-15 -3960 ($ (-622 (-2 (|:| -4220 |t#1|) (|:| -2191 |t#2|))))) (-15 -4318 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-106 #1=(-2 (|:| -4220 |#1|) (|:| -2191 |#2|))) . T) ((-101) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))) ((-597 (-840)) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-597 (-840))) (|has| |#2| (-1074)) (|has| |#2| (-597 (-840)))) ((-149 #1#) . T) ((-598 (-527)) |has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-598 (-527))) ((-225 #1#) . T) ((-231 #1#) . T) ((-281 |#1| |#2|) . T) ((-283 |#1| |#2|) . T) ((-304 #1#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-304 |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-483 #1#) . T) ((-483 |#2|) . T) ((-588 |#1| |#2|) . T) ((-507 #1# #1#) -12 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-304 (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)))) (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074))) ((-507 |#2| |#2|) -12 (|has| |#2| (-304 |#2|)) (|has| |#2| (-1074))) ((-594 |#1| |#2|) . T) ((-1074) -3891 (|has| (-2 (|:| -4220 |#1|) (|:| -2191 |#2|)) (-1074)) (|has| |#2| (-1074))) ((-1185) . T)) +((-3966 (((-112)) 24)) (-3963 (((-1237) (-1131)) 26)) (-3967 (((-112)) 36)) (-3964 (((-1237)) 34)) (-3962 (((-1237) (-1131) (-1131)) 25)) (-3968 (((-112)) 37)) (-3970 (((-1237) |#1| |#2|) 44)) (-3961 (((-1237)) 20)) (-3969 (((-3 |#2| "failed") |#1|) 42)) (-3965 (((-1237)) 35))) +(((-1163 |#1| |#2|) (-10 -7 (-15 -3961 ((-1237))) (-15 -3962 ((-1237) (-1131) (-1131))) (-15 -3963 ((-1237) (-1131))) (-15 -3964 ((-1237))) (-15 -3965 ((-1237))) (-15 -3966 ((-112))) (-15 -3967 ((-112))) (-15 -3968 ((-112))) (-15 -3969 ((-3 |#2| "failed") |#1|)) (-15 -3970 ((-1237) |#1| |#2|))) (-1074) (-1074)) (T -1163)) +((-3970 (*1 *2 *3 *4) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3969 (*1 *2 *3) (|partial| -12 (-4 *2 (-1074)) (-5 *1 (-1163 *3 *2)) (-4 *3 (-1074)))) (-3968 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3967 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3966 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3965 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3964 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)))) (-3962 (*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)))) (-3961 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) +(-10 -7 (-15 -3961 ((-1237))) (-15 -3962 ((-1237) (-1131) (-1131))) (-15 -3963 ((-1237) (-1131))) (-15 -3964 ((-1237))) (-15 -3965 ((-1237))) (-15 -3966 ((-112))) (-15 -3967 ((-112))) (-15 -3968 ((-112))) (-15 -3969 ((-3 |#2| "failed") |#1|)) (-15 -3970 ((-1237) |#1| |#2|))) +((-3972 (((-1131) (-1131)) 18)) (-3971 (((-51) (-1131)) 21))) +(((-1164) (-10 -7 (-15 -3971 ((-51) (-1131))) (-15 -3972 ((-1131) (-1131))))) (T -1164)) +((-3972 (*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1164)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-1164))))) +(-10 -7 (-15 -3971 ((-51) (-1131))) (-15 -3972 ((-1131) (-1131)))) +((-2898 (((-112) $ $) NIL)) (-3978 (((-622 (-1131)) $) 34)) (-3974 (((-622 (-1131)) $ (-622 (-1131))) 37)) (-3973 (((-622 (-1131)) $ (-622 (-1131))) 36)) (-3975 (((-622 (-1131)) $ (-622 (-1131))) 38)) (-3976 (((-622 (-1131)) $) 33)) (-3977 (($) 22)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3979 (((-622 (-1131)) $) 35)) (-3980 (((-1237) $ (-538)) 29) (((-1237) $) 30)) (-4330 (($ (-840) (-538)) 26) (($ (-840) (-538) (-840)) NIL)) (-4317 (((-840) $) 40) (($ (-840)) 24)) (-3387 (((-112) $ $) NIL))) +(((-1165) (-13 (-1074) (-10 -8 (-15 -4317 ($ (-840))) (-15 -4330 ($ (-840) (-538))) (-15 -4330 ($ (-840) (-538) (-840))) (-15 -3980 ((-1237) $ (-538))) (-15 -3980 ((-1237) $)) (-15 -3979 ((-622 (-1131)) $)) (-15 -3978 ((-622 (-1131)) $)) (-15 -3977 ($)) (-15 -3976 ((-622 (-1131)) $)) (-15 -3975 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3974 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3973 ((-622 (-1131)) $ (-622 (-1131))))))) (T -1165)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-1165)))) (-4330 (*1 *1 *2 *3) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-1165)))) (-4330 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-1165)))) (-3980 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1165)))) (-3980 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1165)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))) (-3978 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))) (-3977 (*1 *1) (-5 *1 (-1165))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))) (-3975 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))) (-3974 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165)))) (-3973 (*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165))))) +(-13 (-1074) (-10 -8 (-15 -4317 ($ (-840))) (-15 -4330 ($ (-840) (-538))) (-15 -4330 ($ (-840) (-538) (-840))) (-15 -3980 ((-1237) $ (-538))) (-15 -3980 ((-1237) $)) (-15 -3979 ((-622 (-1131)) $)) (-15 -3978 ((-622 (-1131)) $)) (-15 -3977 ($)) (-15 -3976 ((-622 (-1131)) $)) (-15 -3975 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3974 ((-622 (-1131)) $ (-622 (-1131)))) (-15 -3973 ((-622 (-1131)) $ (-622 (-1131)))))) +((-4317 (((-1165) |#1|) 11))) +(((-1166 |#1|) (-10 -7 (-15 -4317 ((-1165) |#1|))) (-1074)) (T -1166)) +((-4317 (*1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *1 (-1166 *3)) (-4 *3 (-1074))))) +(-10 -7 (-15 -4317 ((-1165) |#1|))) +((-2898 (((-112) $ $) NIL)) (-3985 (((-1131) $ (-1131)) 17) (((-1131) $) 16)) (-1813 (((-1131) $ (-1131)) 15)) (-1817 (($ $ (-1131)) NIL)) (-3983 (((-3 (-1131) "failed") $) 11)) (-3984 (((-1131) $) 8)) (-3982 (((-3 (-1131) "failed") $) 12)) (-1814 (((-1131) $) 9)) (-1818 (($ (-383)) NIL) (($ (-383) (-1131)) NIL)) (-3905 (((-383) $) NIL)) (-3593 (((-1131) $) NIL)) (-1815 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-3981 (((-112) $) 18)) (-4317 (((-840) $) NIL)) (-1816 (($ $) NIL)) (-3387 (((-112) $ $) NIL))) +(((-1167) (-13 (-360 (-383) (-1131)) (-10 -8 (-15 -3985 ((-1131) $ (-1131))) (-15 -3985 ((-1131) $)) (-15 -3984 ((-1131) $)) (-15 -3983 ((-3 (-1131) "failed") $)) (-15 -3982 ((-3 (-1131) "failed") $)) (-15 -3981 ((-112) $))))) (T -1167)) +((-3985 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-3983 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-3982 (*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167))))) +(-13 (-360 (-383) (-1131)) (-10 -8 (-15 -3985 ((-1131) $ (-1131))) (-15 -3985 ((-1131) $)) (-15 -3984 ((-1131) $)) (-15 -3983 ((-3 (-1131) "failed") $)) (-15 -3982 ((-3 (-1131) "failed") $)) (-15 -3981 ((-112) $)))) +((-3986 (((-3 (-538) "failed") |#1|) 19)) (-3987 (((-3 (-538) "failed") |#1|) 14)) (-3988 (((-538) (-1131)) 28))) +(((-1168 |#1|) (-10 -7 (-15 -3986 ((-3 (-538) "failed") |#1|)) (-15 -3987 ((-3 (-538) "failed") |#1|)) (-15 -3988 ((-538) (-1131)))) (-1025)) (T -1168)) +((-3988 (*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-538)) (-5 *1 (-1168 *4)) (-4 *4 (-1025)))) (-3987 (*1 *2 *3) (|partial| -12 (-5 *2 (-538)) (-5 *1 (-1168 *3)) (-4 *3 (-1025)))) (-3986 (*1 *2 *3) (|partial| -12 (-5 *2 (-538)) (-5 *1 (-1168 *3)) (-4 *3 (-1025))))) +(-10 -7 (-15 -3986 ((-3 (-538) "failed") |#1|)) (-15 -3987 ((-3 (-538) "failed") |#1|)) (-15 -3988 ((-538) (-1131)))) +((-3989 (((-1106 (-221))) 9))) +(((-1169) (-10 -7 (-15 -3989 ((-1106 (-221)))))) (T -1169)) +((-3989 (*1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1169))))) +(-10 -7 (-15 -3989 ((-1106 (-221))))) +((-3990 (($) 11)) (-3852 (($ $) 35)) (-3850 (($ $) 33)) (-3838 (($ $) 25)) (-3854 (($ $) 17)) (-3855 (($ $) 15)) (-3853 (($ $) 19)) (-3841 (($ $) 30)) (-3851 (($ $) 34)) (-3839 (($ $) 29))) +(((-1170 |#1|) (-10 -8 (-15 -3990 (|#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3839 (|#1| |#1|))) (-1171)) (T -1170)) +NIL +(-10 -8 (-15 -3990 (|#1|)) (-15 -3852 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3839 (|#1| |#1|))) +((-3846 (($ $) 26)) (-4002 (($ $) 11)) (-3844 (($ $) 27)) (-4001 (($ $) 10)) (-3848 (($ $) 28)) (-4000 (($ $) 9)) (-3990 (($) 16)) (-4302 (($ $) 19)) (-4303 (($ $) 18)) (-3849 (($ $) 29)) (-3999 (($ $) 8)) (-3847 (($ $) 30)) (-3998 (($ $) 7)) (-3845 (($ $) 31)) (-3997 (($ $) 6)) (-3852 (($ $) 20)) (-3840 (($ $) 32)) (-3850 (($ $) 21)) (-3838 (($ $) 33)) (-3854 (($ $) 22)) (-3842 (($ $) 34)) (-3855 (($ $) 23)) (-3843 (($ $) 35)) (-3853 (($ $) 24)) (-3841 (($ $) 36)) (-3851 (($ $) 25)) (-3839 (($ $) 37)) (** (($ $ $) 17))) +(((-1171) (-138)) (T -1171)) +((-3990 (*1 *1) (-4 *1 (-1171)))) +(-13 (-1174) (-94) (-486) (-35) (-279) (-10 -8 (-15 -3990 ($)))) +(((-35) . T) ((-94) . T) ((-279) . T) ((-486) . T) ((-1174) . T)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3761 ((|#1| $) 17)) (-3995 (($ |#1| (-622 $)) 23) (($ (-622 |#1|)) 27) (($ |#1|) 25)) (-1271 (((-112) $ (-751)) 48)) (-3358 ((|#1| $ |#1|) 14 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 13 (|has| $ (-6 -4354)))) (-3896 (($) NIL T CONST)) (-2068 (((-622 |#1|) $) 52 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 43)) (-3360 (((-112) $ $) 33 (|has| |#1| (-1074)))) (-4082 (((-112) $ (-751)) 41)) (-2511 (((-622 |#1|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 51 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2072 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 22)) (-4079 (((-112) $ (-751)) 40)) (-3363 (((-622 |#1|) $) 37)) (-3881 (((-112) $) 36)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-2070 (((-112) (-1 (-112) |#1|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 74)) (-3762 (((-112) $) 9)) (-3928 (($) 10)) (-4159 ((|#1| $ #1#) NIL)) (-3362 (((-538) $ $) 32)) (-3991 (((-622 $) $) 59)) (-3992 (((-112) $ $) 77)) (-3993 (((-622 $) $) 72)) (-3994 (($ $) 73)) (-3996 (((-112) $) 56)) (-2069 (((-751) (-1 (-112) |#1|) $) 20 (|has| $ (-6 -4353))) (((-751) |#1| $) 16 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3759 (($ $) 58)) (-4317 (((-840) $) 61 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 12)) (-3361 (((-112) $ $) 29 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 49 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 28 (|has| |#1| (-1074)))) (-4316 (((-751) $) 39 (|has| $ (-6 -4353))))) +(((-1172 |#1|) (-13 (-986 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -3995 ($ |#1| (-622 $))) (-15 -3995 ($ (-622 |#1|))) (-15 -3995 ($ |#1|)) (-15 -3996 ((-112) $)) (-15 -3994 ($ $)) (-15 -3993 ((-622 $) $)) (-15 -3992 ((-112) $ $)) (-15 -3991 ((-622 $) $)))) (-1074)) (T -1172)) +((-3996 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))) (-3995 (*1 *1 *2 *3) (-12 (-5 *3 (-622 (-1172 *2))) (-5 *1 (-1172 *2)) (-4 *2 (-1074)))) (-3995 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-1172 *3)))) (-3995 (*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1074)))) (-3994 (*1 *1 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1074)))) (-3993 (*1 *2 *1) (-12 (-5 *2 (-622 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))) (-3992 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1074)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-622 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1074))))) +(-13 (-986 |#1|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -3995 ($ |#1| (-622 $))) (-15 -3995 ($ (-622 |#1|))) (-15 -3995 ($ |#1|)) (-15 -3996 ((-112) $)) (-15 -3994 ($ $)) (-15 -3993 ((-622 $) $)) (-15 -3992 ((-112) $ $)) (-15 -3991 ((-622 $) $)))) +((-4002 (($ $) 15)) (-4000 (($ $) 12)) (-3999 (($ $) 10)) (-3998 (($ $) 17))) +(((-1173 |#1|) (-10 -8 (-15 -3998 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -4002 (|#1| |#1|))) (-1174)) (T -1173)) +NIL +(-10 -8 (-15 -3998 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -4002 (|#1| |#1|))) +((-4002 (($ $) 11)) (-4001 (($ $) 10)) (-4000 (($ $) 9)) (-3999 (($ $) 8)) (-3998 (($ $) 7)) (-3997 (($ $) 6))) +(((-1174) (-138)) (T -1174)) +((-4002 (*1 *1 *1) (-4 *1 (-1174))) (-4001 (*1 *1 *1) (-4 *1 (-1174))) (-4000 (*1 *1 *1) (-4 *1 (-1174))) (-3999 (*1 *1 *1) (-4 *1 (-1174))) (-3998 (*1 *1 *1) (-4 *1 (-1174))) (-3997 (*1 *1 *1) (-4 *1 (-1174)))) +(-13 (-10 -8 (-15 -3997 ($ $)) (-15 -3998 ($ $)) (-15 -3999 ($ $)) (-15 -4000 ($ $)) (-15 -4001 ($ $)) (-15 -4002 ($ $)))) +((-4005 ((|#2| |#2|) 88)) (-4008 (((-112) |#2|) 26)) (-4006 ((|#2| |#2|) 30)) (-4007 ((|#2| |#2|) 32)) (-4003 ((|#2| |#2| (-1149)) 83) ((|#2| |#2|) 84)) (-4009 (((-166 |#2|) |#2|) 28)) (-4004 ((|#2| |#2| (-1149)) 85) ((|#2| |#2|) 86))) +(((-1175 |#1| |#2|) (-10 -7 (-15 -4003 (|#2| |#2|)) (-15 -4003 (|#2| |#2| (-1149))) (-15 -4004 (|#2| |#2|)) (-15 -4004 (|#2| |#2| (-1149))) (-15 -4005 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 ((-112) |#2|)) (-15 -4009 ((-166 |#2|) |#2|))) (-13 (-446) (-827) (-1014 (-538)) (-621 (-538))) (-13 (-27) (-1171) (-416 |#1|))) (T -1175)) +((-4009 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-166 *3)) (-5 *1 (-1175 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4008 (*1 *2 *3) (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-112)) (-5 *1 (-1175 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) (-4006 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) (-4005 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) (-4004 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) (-4003 (*1 *2 *2 *3) (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3)))))) +(-10 -7 (-15 -4003 (|#2| |#2|)) (-15 -4003 (|#2| |#2| (-1149))) (-15 -4004 (|#2| |#2|)) (-15 -4004 (|#2| |#2| (-1149))) (-15 -4005 (|#2| |#2|)) (-15 -4006 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -4008 ((-112) |#2|)) (-15 -4009 ((-166 |#2|) |#2|))) +((-4010 ((|#4| |#4| |#1|) 27)) (-4011 ((|#4| |#4| |#1|) 28))) +(((-1176 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4010 (|#4| |#4| |#1|)) (-15 -4011 (|#4| |#4| |#1|))) (-545) (-367 |#1|) (-367 |#1|) (-666 |#1| |#2| |#3|)) (T -1176)) +((-4011 (*1 *2 *2 *3) (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) (-4010 (*1 *2 *2 *3) (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))) +(-10 -7 (-15 -4010 (|#4| |#4| |#1|)) (-15 -4011 (|#4| |#4| |#1|))) +((-4029 ((|#2| |#2|) 133)) (-4031 ((|#2| |#2|) 130)) (-4028 ((|#2| |#2|) 121)) (-4030 ((|#2| |#2|) 118)) (-4027 ((|#2| |#2|) 126)) (-4026 ((|#2| |#2|) 114)) (-4015 ((|#2| |#2|) 43)) (-4014 ((|#2| |#2|) 94)) (-4012 ((|#2| |#2|) 74)) (-4025 ((|#2| |#2|) 128)) (-4024 ((|#2| |#2|) 116)) (-4037 ((|#2| |#2|) 138)) (-4035 ((|#2| |#2|) 136)) (-4036 ((|#2| |#2|) 137)) (-4034 ((|#2| |#2|) 135)) (-4013 ((|#2| |#2|) 148)) (-4038 ((|#2| |#2|) 30 (-12 (|has| |#2| (-598 (-866 |#1|))) (|has| |#2| (-862 |#1|)) (|has| |#1| (-598 (-866 |#1|))) (|has| |#1| (-862 |#1|))))) (-4016 ((|#2| |#2|) 75)) (-4017 ((|#2| |#2|) 139)) (-4323 ((|#2| |#2|) 140)) (-4023 ((|#2| |#2|) 127)) (-4022 ((|#2| |#2|) 115)) (-4021 ((|#2| |#2|) 134)) (-4033 ((|#2| |#2|) 132)) (-4020 ((|#2| |#2|) 122)) (-4032 ((|#2| |#2|) 120)) (-4019 ((|#2| |#2|) 124)) (-4018 ((|#2| |#2|) 112))) +(((-1177 |#1| |#2|) (-10 -7 (-15 -4323 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -4030 (|#2| |#2|)) (-15 -4031 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (-15 -4033 (|#2| |#2|)) (-15 -4034 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -4037 (|#2| |#2|)) (IF (|has| |#1| (-862 |#1|)) (IF (|has| |#1| (-598 (-866 |#1|))) (IF (|has| |#2| (-598 (-866 |#1|))) (IF (|has| |#2| (-862 |#1|)) (-15 -4038 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-827) (-446)) (-13 (-416 |#1|) (-1171))) (T -1177)) +((-4038 (*1 *2 *2) (-12 (-4 *3 (-598 (-866 *3))) (-4 *3 (-862 *3)) (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-598 (-866 *3))) (-4 *2 (-862 *3)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4037 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4035 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4034 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4033 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4032 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4031 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4030 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4029 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4028 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4027 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4025 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4023 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4022 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4021 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4020 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4019 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4017 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4016 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4015 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4014 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4012 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171))))) (-4323 (*1 *2 *2) (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-13 (-416 *3) (-1171)))))) +(-10 -7 (-15 -4323 (|#2| |#2|)) (-15 -4012 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4014 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -4016 (|#2| |#2|)) (-15 -4017 (|#2| |#2|)) (-15 -4018 (|#2| |#2|)) (-15 -4019 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)) (-15 -4021 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -4023 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -4025 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -4027 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -4030 (|#2| |#2|)) (-15 -4031 (|#2| |#2|)) (-15 -4032 (|#2| |#2|)) (-15 -4033 (|#2| |#2|)) (-15 -4034 (|#2| |#2|)) (-15 -4035 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (-15 -4037 (|#2| |#2|)) (IF (|has| |#1| (-862 |#1|)) (IF (|has| |#1| (-598 (-866 |#1|))) (IF (|has| |#2| (-598 (-866 |#1|))) (IF (|has| |#2| (-862 |#1|)) (-15 -4038 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1149)) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4174 (((-922 |#1|) $ (-751)) 17) (((-922 |#1|) $ (-751) (-751)) NIL)) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $ (-1149)) NIL) (((-751) $ (-1149) (-751)) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4297 (((-112) $) NIL)) (-3226 (($ $ (-622 (-1149)) (-622 (-524 (-1149)))) NIL) (($ $ (-1149) (-524 (-1149))) NIL) (($ |#1| (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-4172 (($ $ (-1149)) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149) |#1|) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-4039 (($ (-1 $) (-1149) |#1|) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4128 (($ $ (-751)) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (($ $ (-1149) $) NIL) (($ $ (-622 (-1149)) (-622 $)) NIL) (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL)) (-4170 (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-4307 (((-524 (-1149)) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ $) NIL (|has| |#1| (-545))) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-1149)) NIL) (($ (-922 |#1|)) NIL)) (-4040 ((|#1| $ (-524 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (((-922 |#1|) $ (-751)) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) NIL T CONST)) (-2997 (($) NIL T CONST)) (-3002 (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1178 |#1|) (-13 (-721 |#1| (-1149)) (-10 -8 (-15 -4040 ((-922 |#1|) $ (-751))) (-15 -4317 ($ (-1149))) (-15 -4317 ($ (-922 |#1|))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $ (-1149) |#1|)) (-15 -4039 ($ (-1 $) (-1149) |#1|))) |%noBranch|))) (-1025)) (T -1178)) +((-4040 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-922 *4)) (-5 *1 (-1178 *4)) (-4 *4 (-1025)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1178 *3)) (-4 *3 (-1025)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-5 *1 (-1178 *3)))) (-4172 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *1 (-1178 *3)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)))) (-4039 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1178 *4))) (-5 *3 (-1149)) (-5 *1 (-1178 *4)) (-4 *4 (-38 (-402 (-538)))) (-4 *4 (-1025))))) +(-13 (-721 |#1| (-1149)) (-10 -8 (-15 -4040 ((-922 |#1|) $ (-751))) (-15 -4317 ($ (-1149))) (-15 -4317 ($ (-922 |#1|))) (IF (|has| |#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $ (-1149) |#1|)) (-15 -4039 ($ (-1 $) (-1149) |#1|))) |%noBranch|))) +((-4056 (((-112) |#5| $) 60) (((-112) $) 102)) (-4051 ((|#5| |#5| $) 75)) (-4073 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4052 (((-622 |#5|) (-622 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 73)) (-3508 (((-3 $ "failed") (-622 |#5|)) 126)) (-4158 (((-3 $ "failed") $) 112)) (-4048 ((|#5| |#5| $) 94)) (-4057 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 31)) (-4046 ((|#5| |#5| $) 98)) (-4202 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 69)) (-4059 (((-2 (|:| -4221 (-622 |#5|)) (|:| -1818 (-622 |#5|))) $) 55)) (-4058 (((-112) |#5| $) 58) (((-112) $) 103)) (-3531 ((|#4| $) 108)) (-4157 (((-3 |#5| "failed") $) 110)) (-4060 (((-622 |#5|) $) 49)) (-4054 (((-112) |#5| $) 67) (((-112) $) 107)) (-4049 ((|#5| |#5| $) 81)) (-4062 (((-112) $ $) 27)) (-4055 (((-112) |#5| $) 63) (((-112) $) 105)) (-4050 ((|#5| |#5| $) 78)) (-4160 (((-3 |#5| "failed") $) 109)) (-4128 (($ $ |#5|) 127)) (-4307 (((-751) $) 52)) (-3884 (($ (-622 |#5|)) 124)) (-3243 (($ $ |#4|) 122)) (-3245 (($ $ |#4|) 121)) (-4047 (($ $) 120)) (-4317 (((-840) $) NIL) (((-622 |#5|) $) 113)) (-4041 (((-751) $) 130)) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 45)) (-4053 (((-112) $ (-1 (-112) |#5| (-622 |#5|))) 100)) (-4043 (((-622 |#4|) $) 115)) (-4293 (((-112) |#4| $) 118)) (-3387 (((-112) $ $) 19))) +(((-1179 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4041 ((-751) |#1|)) (-15 -4128 (|#1| |#1| |#5|)) (-15 -4073 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4293 ((-112) |#4| |#1|)) (-15 -4043 ((-622 |#4|) |#1|)) (-15 -4158 ((-3 |#1| "failed") |#1|)) (-15 -4157 ((-3 |#5| "failed") |#1|)) (-15 -4160 ((-3 |#5| "failed") |#1|)) (-15 -4046 (|#5| |#5| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 -4048 (|#5| |#5| |#1|)) (-15 -4049 (|#5| |#5| |#1|)) (-15 -4050 (|#5| |#5| |#1|)) (-15 -4051 (|#5| |#5| |#1|)) (-15 -4052 ((-622 |#5|) (-622 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4202 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4054 ((-112) |#1|)) (-15 -4055 ((-112) |#1|)) (-15 -4056 ((-112) |#1|)) (-15 -4053 ((-112) |#1| (-1 (-112) |#5| (-622 |#5|)))) (-15 -4054 ((-112) |#5| |#1|)) (-15 -4055 ((-112) |#5| |#1|)) (-15 -4056 ((-112) |#5| |#1|)) (-15 -4057 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4058 ((-112) |#1|)) (-15 -4058 ((-112) |#5| |#1|)) (-15 -4059 ((-2 (|:| -4221 (-622 |#5|)) (|:| -1818 (-622 |#5|))) |#1|)) (-15 -4307 ((-751) |#1|)) (-15 -4060 ((-622 |#5|) |#1|)) (-15 -4061 ((-3 (-2 (|:| |bas| |#1|) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4061 ((-3 (-2 (|:| |bas| |#1|) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4062 ((-112) |#1| |#1|)) (-15 -3243 (|#1| |#1| |#4|)) (-15 -3245 (|#1| |#1| |#4|)) (-15 -3531 (|#4| |#1|)) (-15 -3508 ((-3 |#1| "failed") (-622 |#5|))) (-15 -4317 ((-622 |#5|) |#1|)) (-15 -3884 (|#1| (-622 |#5|))) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4073 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) (-1180 |#2| |#3| |#4| |#5|) (-545) (-773) (-827) (-1039 |#2| |#3| |#4|)) (T -1179)) +NIL +(-10 -8 (-15 -4041 ((-751) |#1|)) (-15 -4128 (|#1| |#1| |#5|)) (-15 -4073 ((-3 |#5| "failed") |#1| |#4|)) (-15 -4293 ((-112) |#4| |#1|)) (-15 -4043 ((-622 |#4|) |#1|)) (-15 -4158 ((-3 |#1| "failed") |#1|)) (-15 -4157 ((-3 |#5| "failed") |#1|)) (-15 -4160 ((-3 |#5| "failed") |#1|)) (-15 -4046 (|#5| |#5| |#1|)) (-15 -4047 (|#1| |#1|)) (-15 -4048 (|#5| |#5| |#1|)) (-15 -4049 (|#5| |#5| |#1|)) (-15 -4050 (|#5| |#5| |#1|)) (-15 -4051 (|#5| |#5| |#1|)) (-15 -4052 ((-622 |#5|) (-622 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4202 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -4054 ((-112) |#1|)) (-15 -4055 ((-112) |#1|)) (-15 -4056 ((-112) |#1|)) (-15 -4053 ((-112) |#1| (-1 (-112) |#5| (-622 |#5|)))) (-15 -4054 ((-112) |#5| |#1|)) (-15 -4055 ((-112) |#5| |#1|)) (-15 -4056 ((-112) |#5| |#1|)) (-15 -4057 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -4058 ((-112) |#1|)) (-15 -4058 ((-112) |#5| |#1|)) (-15 -4059 ((-2 (|:| -4221 (-622 |#5|)) (|:| -1818 (-622 |#5|))) |#1|)) (-15 -4307 ((-751) |#1|)) (-15 -4060 ((-622 |#5|) |#1|)) (-15 -4061 ((-3 (-2 (|:| |bas| |#1|) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -4061 ((-3 (-2 (|:| |bas| |#1|) (|:| -3683 (-622 |#5|))) "failed") (-622 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4062 ((-112) |#1| |#1|)) (-15 -3243 (|#1| |#1| |#4|)) (-15 -3245 (|#1| |#1| |#4|)) (-15 -3531 (|#4| |#1|)) (-15 -3508 ((-3 |#1| "failed") (-622 |#5|))) (-15 -4317 ((-622 |#5|) |#1|)) (-15 -3884 (|#1| (-622 |#5|))) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4073 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -4202 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4317 ((-840) |#1|)) (-15 -3387 ((-112) |#1| |#1|))) +((-2898 (((-112) $ $) 7)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) 85)) (-4045 (((-622 $) (-622 |#4|)) 86)) (-3417 (((-622 |#3|) $) 33)) (-3241 (((-112) $) 26)) (-3232 (((-112) $) 17 (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) 101) (((-112) $) 97)) (-4051 ((|#4| |#4| $) 92)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) 27)) (-1271 (((-112) $ (-751)) 44)) (-4073 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4353))) (((-3 |#4| "failed") $ |#3|) 79)) (-3896 (($) 45 T CONST)) (-3237 (((-112) $) 22 (|has| |#1| (-545)))) (-3239 (((-112) $ $) 24 (|has| |#1| (-545)))) (-3238 (((-112) $ $) 23 (|has| |#1| (-545)))) (-3240 (((-112) $) 25 (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-3233 (((-622 |#4|) (-622 |#4|) $) 18 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) 19 (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) 36)) (-3507 (($ (-622 |#4|)) 35)) (-4158 (((-3 $ "failed") $) 82)) (-4048 ((|#4| |#4| $) 89)) (-1398 (($ $) 68 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#4| $) 67 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-4046 ((|#4| |#4| $) 87)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) 105)) (-2068 (((-622 |#4|) $) 52 (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) 104) (((-112) $) 103)) (-3531 ((|#3| $) 34)) (-4082 (((-112) $ (-751)) 43)) (-2511 (((-622 |#4|) $) 53 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) 47)) (-3247 (((-622 |#3|) $) 32)) (-3246 (((-112) |#3| $) 31)) (-4079 (((-112) $ (-751)) 42)) (-3593 (((-1131) $) 9)) (-4157 (((-3 |#4| "failed") $) 83)) (-4060 (((-622 |#4|) $) 107)) (-4054 (((-112) |#4| $) 99) (((-112) $) 95)) (-4049 ((|#4| |#4| $) 90)) (-4062 (((-112) $ $) 110)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) 100) (((-112) $) 96)) (-4050 ((|#4| |#4| $) 91)) (-3594 (((-1093) $) 10)) (-4160 (((-3 |#4| "failed") $) 84)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-4042 (((-3 $ "failed") $ |#4|) 78)) (-4128 (($ $ |#4|) 77)) (-2070 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) 59 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) 57 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) 56 (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) 38)) (-3762 (((-112) $) 41)) (-3928 (($) 40)) (-4307 (((-751) $) 106)) (-2069 (((-751) |#4| $) 54 (-12 (|has| |#4| (-1074)) (|has| $ (-6 -4353)))) (((-751) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4353)))) (-3759 (($ $) 39)) (-4330 (((-527) $) 69 (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) 60)) (-3243 (($ $ |#3|) 28)) (-3245 (($ $ |#3|) 30)) (-4047 (($ $) 88)) (-3244 (($ $ |#3|) 29)) (-4317 (((-840) $) 11) (((-622 |#4|) $) 37)) (-4041 (((-751) $) 76 (|has| |#3| (-363)))) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) "failed") (-622 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) "failed") (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) 98)) (-2071 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) 81)) (-4293 (((-112) |#3| $) 80)) (-3387 (((-112) $ $) 6)) (-4316 (((-751) $) 46 (|has| $ (-6 -4353))))) +(((-1180 |#1| |#2| |#3| |#4|) (-138) (-545) (-773) (-827) (-1039 |t#1| |t#2| |t#3|)) (T -1180)) +((-4062 (*1 *2 *1 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-4061 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3683 (-622 *8)))) (-5 *3 (-622 *8)) (-4 *1 (-1180 *5 *6 *7 *8)))) (-4061 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3683 (-622 *9)))) (-5 *3 (-622 *9)) (-4 *1 (-1180 *6 *7 *8 *9)))) (-4060 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *6)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-751)))) (-4059 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-2 (|:| -4221 (-622 *6)) (|:| -1818 (-622 *6)))))) (-4058 (*1 *2 *3 *1) (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-4058 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-4057 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1180 *5 *6 *7 *3)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112)))) (-4056 (*1 *2 *3 *1) (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-4055 (*1 *2 *3 *1) (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-4054 (*1 *2 *3 *1) (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-4053 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-622 *7))) (-4 *1 (-1180 *4 *5 *6 *7)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)))) (-4056 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-4054 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) (-4202 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1180 *5 *6 *7 *2)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *2 (-1039 *5 *6 *7)))) (-4052 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-622 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1180 *5 *6 *7 *8)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)))) (-4051 (*1 *2 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4050 (*1 *2 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4049 (*1 *2 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4048 (*1 *2 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4047 (*1 *1 *1) (-12 (-4 *1 (-1180 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))) (-4046 (*1 *2 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4045 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1180 *4 *5 *6 *7)))) (-4044 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-622 (-2 (|:| -4221 *1) (|:| -1818 (-622 *7))))) (-5 *3 (-622 *7)) (-4 *1 (-1180 *4 *5 *6 *7)))) (-4160 (*1 *2 *1) (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4157 (*1 *2 *1) (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4158 (*1 *1 *1) (|partial| -12 (-4 *1 (-1180 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))) (-4043 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5)))) (-4293 (*1 *2 *3 *1) (-12 (-4 *1 (-1180 *4 *5 *3 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))) (-4073 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1180 *4 *5 *3 *2)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *2 (-1039 *4 *5 *3)))) (-4042 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4128 (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *5 (-363)) (-5 *2 (-751))))) +(-13 (-952 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4353) (-6 -4354) (-15 -4062 ((-112) $ $)) (-15 -4061 ((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |t#4|))) "failed") (-622 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4061 ((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |t#4|))) "failed") (-622 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4060 ((-622 |t#4|) $)) (-15 -4307 ((-751) $)) (-15 -4059 ((-2 (|:| -4221 (-622 |t#4|)) (|:| -1818 (-622 |t#4|))) $)) (-15 -4058 ((-112) |t#4| $)) (-15 -4058 ((-112) $)) (-15 -4057 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4056 ((-112) |t#4| $)) (-15 -4055 ((-112) |t#4| $)) (-15 -4054 ((-112) |t#4| $)) (-15 -4053 ((-112) $ (-1 (-112) |t#4| (-622 |t#4|)))) (-15 -4056 ((-112) $)) (-15 -4055 ((-112) $)) (-15 -4054 ((-112) $)) (-15 -4202 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4052 ((-622 |t#4|) (-622 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4051 (|t#4| |t#4| $)) (-15 -4050 (|t#4| |t#4| $)) (-15 -4049 (|t#4| |t#4| $)) (-15 -4048 (|t#4| |t#4| $)) (-15 -4047 ($ $)) (-15 -4046 (|t#4| |t#4| $)) (-15 -4045 ((-622 $) (-622 |t#4|))) (-15 -4044 ((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |t#4|)))) (-622 |t#4|))) (-15 -4160 ((-3 |t#4| "failed") $)) (-15 -4157 ((-3 |t#4| "failed") $)) (-15 -4158 ((-3 $ "failed") $)) (-15 -4043 ((-622 |t#3|) $)) (-15 -4293 ((-112) |t#3| $)) (-15 -4073 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4042 ((-3 $ "failed") $ |t#4|)) (-15 -4128 ($ $ |t#4|)) (IF (|has| |t#3| (-363)) (-15 -4041 ((-751) $)) |%noBranch|))) +(((-34) . T) ((-101) . T) ((-597 (-622 |#4|)) . T) ((-597 (-840)) . T) ((-149 |#4|) . T) ((-598 (-527)) |has| |#4| (-598 (-527))) ((-304 |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-483 |#4|) . T) ((-507 |#4| |#4|) -12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))) ((-952 |#1| |#2| |#3| |#4|) . T) ((-1074) . T) ((-1185) . T)) +((-4068 (($ |#1| (-622 (-622 (-919 (-221)))) (-112)) 19)) (-4067 (((-112) $ (-112)) 18)) (-4066 (((-112) $) 17)) (-4064 (((-622 (-622 (-919 (-221)))) $) 13)) (-4063 ((|#1| $) 8)) (-4065 (((-112) $) 15))) +(((-1181 |#1|) (-10 -8 (-15 -4063 (|#1| $)) (-15 -4064 ((-622 (-622 (-919 (-221)))) $)) (-15 -4065 ((-112) $)) (-15 -4066 ((-112) $)) (-15 -4067 ((-112) $ (-112))) (-15 -4068 ($ |#1| (-622 (-622 (-919 (-221)))) (-112)))) (-950)) (T -1181)) +((-4068 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-112)) (-5 *1 (-1181 *2)) (-4 *2 (-950)))) (-4067 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-4066 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-4065 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-1181 *3)) (-4 *3 (-950)))) (-4063 (*1 *2 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-950))))) +(-10 -8 (-15 -4063 (|#1| $)) (-15 -4064 ((-622 (-622 (-919 (-221)))) $)) (-15 -4065 ((-112) $)) (-15 -4066 ((-112) $)) (-15 -4067 ((-112) $ (-112))) (-15 -4068 ($ |#1| (-622 (-622 (-919 (-221)))) (-112)))) +((-4070 (((-919 (-221)) (-919 (-221))) 25)) (-4069 (((-919 (-221)) (-221) (-221) (-221) (-221)) 10)) (-4072 (((-622 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-622 (-622 (-221)))) 37)) (-4196 (((-221) (-919 (-221)) (-919 (-221))) 21)) (-4194 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 22)) (-4071 (((-622 (-622 (-221))) (-538)) 31)) (-4197 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 20)) (-4199 (((-919 (-221)) (-919 (-221)) (-919 (-221))) 19)) (* (((-919 (-221)) (-221) (-919 (-221))) 18))) +(((-1182) (-10 -7 (-15 -4069 ((-919 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-919 (-221)) (-221) (-919 (-221)))) (-15 -4199 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4197 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4196 ((-221) (-919 (-221)) (-919 (-221)))) (-15 -4194 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4070 ((-919 (-221)) (-919 (-221)))) (-15 -4071 ((-622 (-622 (-221))) (-538))) (-15 -4072 ((-622 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-622 (-622 (-221))))))) (T -1182)) +((-4072 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-622 (-622 (-221)))) (-5 *4 (-221)) (-5 *2 (-622 (-919 *4))) (-5 *1 (-1182)) (-5 *3 (-919 *4)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *2 (-622 (-622 (-221)))) (-5 *1 (-1182)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-4194 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-4196 (*1 *2 *3 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-221)) (-5 *1 (-1182)))) (-4197 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (-4199 (*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-919 (-221))) (-5 *3 (-221)) (-5 *1 (-1182)))) (-4069 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)) (-5 *3 (-221))))) +(-10 -7 (-15 -4069 ((-919 (-221)) (-221) (-221) (-221) (-221))) (-15 * ((-919 (-221)) (-221) (-919 (-221)))) (-15 -4199 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4197 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4196 ((-221) (-919 (-221)) (-919 (-221)))) (-15 -4194 ((-919 (-221)) (-919 (-221)) (-919 (-221)))) (-15 -4070 ((-919 (-221)) (-919 (-221)))) (-15 -4071 ((-622 (-622 (-221))) (-538))) (-15 -4072 ((-622 (-919 (-221))) (-919 (-221)) (-919 (-221)) (-919 (-221)) (-221) (-622 (-622 (-221)))))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4073 ((|#1| $ (-751)) 13)) (-4193 (((-751) $) 12)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4317 (((-934 |#1|) $) 10) (($ (-934 |#1|)) 9) (((-840) $) 23 (|has| |#1| (-597 (-840))))) (-3387 (((-112) $ $) 16 (|has| |#1| (-1074))))) +(((-1183 |#1|) (-13 (-597 (-934 |#1|)) (-10 -8 (-15 -4317 ($ (-934 |#1|))) (-15 -4073 (|#1| $ (-751))) (-15 -4193 ((-751) $)) (IF (|has| |#1| (-597 (-840))) (-6 (-597 (-840))) |%noBranch|) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|))) (-1185)) (T -1183)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-934 *3)) (-4 *3 (-1185)) (-5 *1 (-1183 *3)))) (-4073 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-1183 *2)) (-4 *2 (-1185)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1183 *3)) (-4 *3 (-1185))))) +(-13 (-597 (-934 |#1|)) (-10 -8 (-15 -4317 ($ (-934 |#1|))) (-15 -4073 (|#1| $ (-751))) (-15 -4193 ((-751) $)) (IF (|has| |#1| (-597 (-840))) (-6 (-597 (-840))) |%noBranch|) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|))) +((-4076 (((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)) (-538)) 80)) (-4074 (((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|))) 74)) (-4075 (((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|))) 59))) +(((-1184 |#1|) (-10 -7 (-15 -4074 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)))) (-15 -4075 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)))) (-15 -4076 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)) (-538)))) (-345)) (T -1184)) +((-4076 (*1 *2 *3 *4) (-12 (-5 *4 (-538)) (-4 *5 (-345)) (-5 *2 (-400 (-1143 (-1143 *5)))) (-5 *1 (-1184 *5)) (-5 *3 (-1143 (-1143 *5))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-400 (-1143 (-1143 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1143 (-1143 *4))))) (-4074 (*1 *2 *3) (-12 (-4 *4 (-345)) (-5 *2 (-400 (-1143 (-1143 *4)))) (-5 *1 (-1184 *4)) (-5 *3 (-1143 (-1143 *4)))))) +(-10 -7 (-15 -4074 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)))) (-15 -4075 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)))) (-15 -4076 ((-400 (-1143 (-1143 |#1|))) (-1143 (-1143 |#1|)) (-538)))) +NIL +(((-1185) (-138)) (T -1185)) +NIL +(-13 (-10 -7 (-6 -2368))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 9) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-1186) (-1056)) (T -1186)) +NIL +(-1056) +((-4080 (((-112)) 15)) (-4077 (((-1237) (-622 |#1|) (-622 |#1|)) 19) (((-1237) (-622 |#1|)) 20)) (-4082 (((-112) |#1| |#1|) 32 (|has| |#1| (-827)))) (-4079 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 27) (((-3 (-112) "failed") |#1| |#1|) 25)) (-4081 ((|#1| (-622 |#1|)) 33 (|has| |#1| (-827))) ((|#1| (-622 |#1|) (-1 (-112) |#1| |#1|)) 28)) (-4078 (((-2 (|:| -3580 (-622 |#1|)) (|:| -3579 (-622 |#1|)))) 17))) +(((-1187 |#1|) (-10 -7 (-15 -4077 ((-1237) (-622 |#1|))) (-15 -4077 ((-1237) (-622 |#1|) (-622 |#1|))) (-15 -4078 ((-2 (|:| -3580 (-622 |#1|)) (|:| -3579 (-622 |#1|))))) (-15 -4079 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4079 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4081 (|#1| (-622 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4080 ((-112))) (IF (|has| |#1| (-827)) (PROGN (-15 -4081 (|#1| (-622 |#1|))) (-15 -4082 ((-112) |#1| |#1|))) |%noBranch|)) (-1074)) (T -1187)) +((-4082 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-827)) (-4 *3 (-1074)))) (-4081 (*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-827)) (-5 *1 (-1187 *2)))) (-4080 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1074)))) (-4081 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1187 *2)) (-4 *2 (-1074)))) (-4079 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1074)) (-5 *2 (-112)) (-5 *1 (-1187 *3)))) (-4079 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1074)))) (-4078 (*1 *2) (-12 (-5 *2 (-2 (|:| -3580 (-622 *3)) (|:| -3579 (-622 *3)))) (-5 *1 (-1187 *3)) (-4 *3 (-1074)))) (-4077 (*1 *2 *3 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-5 *2 (-1237)) (-5 *1 (-1187 *4)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-5 *2 (-1237)) (-5 *1 (-1187 *4))))) +(-10 -7 (-15 -4077 ((-1237) (-622 |#1|))) (-15 -4077 ((-1237) (-622 |#1|) (-622 |#1|))) (-15 -4078 ((-2 (|:| -3580 (-622 |#1|)) (|:| -3579 (-622 |#1|))))) (-15 -4079 ((-3 (-112) "failed") |#1| |#1|)) (-15 -4079 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4081 (|#1| (-622 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4080 ((-112))) (IF (|has| |#1| (-827)) (PROGN (-15 -4081 (|#1| (-622 |#1|))) (-15 -4082 ((-112) |#1| |#1|))) |%noBranch|)) +((-4083 (((-1237) (-622 (-1149)) (-622 (-1149))) 13) (((-1237) (-622 (-1149))) 11)) (-4085 (((-1237)) 14)) (-4084 (((-2 (|:| -3579 (-622 (-1149))) (|:| -3580 (-622 (-1149))))) 18))) +(((-1188) (-10 -7 (-15 -4083 ((-1237) (-622 (-1149)))) (-15 -4083 ((-1237) (-622 (-1149)) (-622 (-1149)))) (-15 -4084 ((-2 (|:| -3579 (-622 (-1149))) (|:| -3580 (-622 (-1149)))))) (-15 -4085 ((-1237))))) (T -1188)) +((-4085 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1188)))) (-4084 (*1 *2) (-12 (-5 *2 (-2 (|:| -3579 (-622 (-1149))) (|:| -3580 (-622 (-1149))))) (-5 *1 (-1188)))) (-4083 (*1 *2 *3 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188))))) +(-10 -7 (-15 -4083 ((-1237) (-622 (-1149)))) (-15 -4083 ((-1237) (-622 (-1149)) (-622 (-1149)))) (-15 -4084 ((-2 (|:| -3579 (-622 (-1149))) (|:| -3580 (-622 (-1149)))))) (-15 -4085 ((-1237)))) +((-4134 (($ $) 17)) (-4086 (((-112) $) 24))) +(((-1189 |#1|) (-10 -8 (-15 -4134 (|#1| |#1|)) (-15 -4086 ((-112) |#1|))) (-1190)) (T -1189)) +NIL +(-10 -8 (-15 -4134 (|#1| |#1|)) (-15 -4086 ((-112) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 49)) (-4329 (((-400 $) $) 50)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-4086 (((-112) $) 51)) (-2502 (((-112) $) 30)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-4092 (((-400 $) $) 48)) (-3820 (((-3 $ "failed") $ $) 40)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41)) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24))) +(((-1190) (-138)) (T -1190)) +((-4086 (*1 *2 *1) (-12 (-4 *1 (-1190)) (-5 *2 (-112)))) (-4329 (*1 *2 *1) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1190)))) (-4134 (*1 *1 *1) (-4 *1 (-1190))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1190))))) +(-13 (-446) (-10 -8 (-15 -4086 ((-112) $)) (-15 -4329 ((-400 $) $)) (-15 -4134 ($ $)) (-15 -4092 ((-400 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-101) . T) ((-111 $ $) . T) ((-130) . T) ((-597 (-840)) . T) ((-170) . T) ((-285) . T) ((-446) . T) ((-545) . T) ((-628 $) . T) ((-698 $) . T) ((-707) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3464 (((-1221 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 10)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-2178 (($ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-2176 (((-112) $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-4130 (($ $ (-538)) NIL) (($ $ (-538) (-538)) NIL)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) NIL)) (-4091 (((-1221 |#1| |#2| |#3|) $) NIL)) (-4088 (((-3 (-1221 |#1| |#2| |#3|) "failed") $) NIL)) (-4089 (((-1221 |#1| |#2| |#3|) $) NIL)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3986 (((-538) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-1221 |#1| |#2| |#3|) #2="failed") $) NIL) (((-3 (-1149) #2#) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-3 (-402 (-538)) #2#) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358)))) (((-3 (-538) #2#) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))))) (-3507 (((-1221 |#1| |#2| |#3|) $) NIL) (((-1149) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (((-402 (-538)) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358)))) (((-538) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))))) (-4090 (($ $) NIL) (($ (-538) $) NIL)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-1221 |#1| |#2| |#3|)) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-1221 |#1| |#2| |#3|))) (|:| |vec| (-1231 (-1221 |#1| |#2| |#3|)))) (-669 $) (-1231 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-621 (-538))) (|has| |#1| (-358)))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-621 (-538))) (|has| |#1| (-358))))) (-3821 (((-3 $ "failed") $) NIL)) (-4087 (((-402 (-922 |#1|)) $ (-538)) NIL (|has| |#1| (-545))) (((-402 (-922 |#1|)) $ (-538) (-538)) NIL (|has| |#1| (-545)))) (-3327 (($) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3537 (((-112) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3129 (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-862 (-538))) (|has| |#1| (-358)))) (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-862 (-373))) (|has| |#1| (-358))))) (-4131 (((-538) $) NIL) (((-538) $ (-538)) NIL)) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL (|has| |#1| (-358)))) (-3331 (((-1221 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3803 (((-3 $ "failed") $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))))) (-3538 (((-112) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-4136 (($ $ (-895)) NIL)) (-4175 (($ (-1 |#1| (-538)) $) NIL)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-538)) 17) (($ $ (-1055) (-538)) NIL) (($ $ (-622 (-1055)) (-622 (-538))) NIL)) (-3677 (($ $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3678 (($ $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-358)))) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4138 (($ (-538) (-1221 |#1| |#2| |#3|)) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) 25 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 26 (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1124)) (|has| |#1| (-358))) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3463 (($ $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-302)) (|has| |#1| (-358))))) (-3465 (((-1221 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-538)) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-538))))) (($ $ (-1149) (-1221 |#1| |#2| |#3|)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-507 (-1149) (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-1149)) (-622 (-1221 |#1| |#2| |#3|))) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-507 (-1149) (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-288 (-1221 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-288 (-1221 |#1| |#2| |#3|))) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358)))) (($ $ (-622 (-1221 |#1| |#2| |#3|)) (-622 (-1221 |#1| |#2| |#3|))) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-304 (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-538)) NIL) (($ $ $) NIL (|has| (-538) (-1085))) (($ $ (-1221 |#1| |#2| |#3|)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-281 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|))) (|has| |#1| (-358))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-1 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-1228 |#2|)) 24) (($ $ (-751)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) 23 (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-3328 (($ $) NIL (|has| |#1| (-358)))) (-3330 (((-1221 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358)))) (-4307 (((-538) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4330 (((-527) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-598 (-527))) (|has| |#1| (-358)))) (((-373) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-996)) (|has| |#1| (-358)))) (((-221) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-996)) (|has| |#1| (-358)))) (((-866 (-373)) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-598 (-866 (-373)))) (|has| |#1| (-358)))) (((-866 (-538)) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-598 (-866 (-538)))) (|has| |#1| (-358))))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1221 |#1| |#2| |#3|)) NIL) (($ (-1228 |#2|)) 22) (($ (-1149)) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-1149))) (|has| |#1| (-358)))) (($ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545)))) (($ (-402 (-538))) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-1014 (-538))) (|has| |#1| (-358))) (|has| |#1| (-38 (-402 (-538))))))) (-4040 ((|#1| $ (-538)) NIL)) (-3035 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| $ (-143)) (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-143)) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 11)) (-3466 (((-1221 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-537)) (|has| |#1| (-358))))) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-886)) (|has| |#1| (-358))) (|has| |#1| (-545))))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-538)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3742 (($ $) NIL (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))))) (-2991 (($) 19 T CONST)) (-2997 (($) 15 T CONST)) (-3002 (($ $ (-1 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|))) NIL (|has| |#1| (-358))) (($ $ (-1 (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-2896 (((-112) $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-2897 (((-112) $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-3018 (((-112) $ $) NIL (-3891 (-12 (|has| (-1221 |#1| |#2| |#3|) (-800)) (|has| |#1| (-358))) (-12 (|has| (-1221 |#1| |#2| |#3|) (-827)) (|has| |#1| (-358)))))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358))) (($ (-1221 |#1| |#2| |#3|) (-1221 |#1| |#2| |#3|)) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 20)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1221 |#1| |#2| |#3|)) NIL (|has| |#1| (-358))) (($ (-1221 |#1| |#2| |#3|) $) NIL (|has| |#1| (-358))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-1191 |#1| |#2| |#3|) (-13 (-1195 |#1| (-1221 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1191)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))) +(-13 (-1195 |#1| (-1221 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) +((-4318 (((-1191 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1191 |#1| |#3| |#5|)) 23))) +(((-1192 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4318 ((-1191 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1191 |#1| |#3| |#5|)))) (-1025) (-1025) (-1149) (-1149) |#1| |#2|) (T -1192)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5 *7 *9)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1191 *6 *8 *10)) (-5 *1 (-1192 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1149))))) +(-10 -7 (-15 -4318 ((-1191 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1191 |#1| |#3| |#5|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ (-538)) 96) (($ $ (-538) (-538)) 95)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) 103)) (-3846 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 116 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 160 (|has| |#1| (-358)))) (-4329 (((-400 $) $) 161 (|has| |#1| (-358)))) (-3370 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3844 (($ $) 132 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) 171)) (-3848 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 118 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-2894 (($ $ $) 155 (|has| |#1| (-358)))) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-4087 (((-402 (-922 |#1|)) $ (-538)) 169 (|has| |#1| (-545))) (((-402 (-922 |#1|)) $ (-538) (-538)) 168 (|has| |#1| (-545)))) (-2893 (($ $ $) 154 (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 149 (|has| |#1| (-358)))) (-4086 (((-112) $) 162 (|has| |#1| (-358)))) (-3225 (((-112) $) 71)) (-3990 (($) 143 (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-538) $) 98) (((-538) $ (-538)) 97)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 114 (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) 99)) (-4175 (($ (-1 |#1| (-538)) $) 170)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 158 (|has| |#1| (-358)))) (-4297 (((-112) $) 60)) (-3226 (($ |#1| (-538)) 59) (($ $ (-1055) (-538)) 74) (($ $ (-622 (-1055)) (-622 (-538))) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-4302 (($ $) 140 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-2013 (($ (-622 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 163 (|has| |#1| (-358)))) (-4172 (($ $) 167 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 166 (-3891 (-12 (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-538))))) (-12 (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-538)))))))) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 148 (|has| |#1| (-358)))) (-3495 (($ (-622 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-4092 (((-400 $) $) 159 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 156 (|has| |#1| (-358)))) (-4128 (($ $ (-538)) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 150 (|has| |#1| (-358)))) (-4303 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-538)))))) (-1704 (((-751) $) 152 (|has| |#1| (-358)))) (-4159 ((|#1| $ (-538)) 102) (($ $ $) 79 (|has| (-538) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 153 (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (-4307 (((-538) $) 62)) (-3849 (($ $) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 120 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 128 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545)))) (-4040 ((|#1| $ (-538)) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-3852 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-3850 (($ $) 138 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 126 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-538)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 136 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 124 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 134 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 122 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 113 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538))))))) +(((-1193 |#1|) (-138) (-1025)) (T -1193)) +((-4178 (*1 *1 *2) (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-4 *3 (-1025)) (-4 *1 (-1193 *3)))) (-4175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-538))) (-4 *1 (-1193 *3)) (-4 *3 (-1025)))) (-4087 (*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1193 *4)) (-4 *4 (-1025)) (-4 *4 (-545)) (-5 *2 (-402 (-922 *4))))) (-4087 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-4 *1 (-1193 *4)) (-4 *4 (-1025)) (-4 *4 (-545)) (-5 *2 (-402 (-922 *4))))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-1193 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))) (-4172 (*1 *1 *1 *2) (-3891 (-12 (-5 *2 (-1149)) (-4 *1 (-1193 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-538)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1193 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3417 ((-622 *2) *3))) (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538))))))))) +(-13 (-1210 |t#1| (-538)) (-10 -8 (-15 -4178 ($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |t#1|))))) (-15 -4175 ($ (-1 |t#1| (-538)) $)) (IF (|has| |t#1| (-545)) (PROGN (-15 -4087 ((-402 (-922 |t#1|)) $ (-538))) (-15 -4087 ((-402 (-922 |t#1|)) $ (-538) (-538)))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $)) (IF (|has| |t#1| (-15 -4172 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3417 ((-622 (-1149)) |t#1|))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-936)) (IF (|has| |t#1| (-29 (-538))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-538)) . T) ((-25) . T) ((-38 #2=(-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-538) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-281 $ $) |has| (-538) (-1085)) ((-285) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-545) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-628 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) ((-949 |#1| #1# (-1055)) . T) ((-897) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-1031 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #1#) . T)) +((-3539 (((-112) $) 12)) (-3508 (((-3 |#3| #1="failed") $) 17) (((-3 (-1149) #1#) $) NIL) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 (-538) #1#) $) NIL)) (-3507 ((|#3| $) 14) (((-1149) $) NIL) (((-402 (-538)) $) NIL) (((-538) $) NIL))) +(((-1194 |#1| |#2| |#3|) (-10 -8 (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| #1#) |#1|)) (-15 -3539 ((-112) |#1|))) (-1195 |#2| |#3|) (-1025) (-1224 |#2|)) (T -1194)) +NIL +(-10 -8 (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1="failed") |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -3507 ((-1149) |#1|)) (-15 -3508 ((-3 (-1149) #1#) |#1|)) (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| #1#) |#1|)) (-15 -3539 ((-112) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3464 ((|#2| $) 228 (-3191 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ (-538)) 96) (($ $ (-538) (-538)) 95)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) 103)) (-4091 ((|#2| $) 264)) (-4088 (((-3 |#2| "failed") $) 260)) (-4089 ((|#2| $) 261)) (-3846 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 116 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-3040 (((-400 (-1143 $)) (-1143 $)) 237 (-3191 (|has| |#2| (-886)) (|has| |#1| (-358))))) (-4134 (($ $) 160 (|has| |#1| (-358)))) (-4329 (((-400 $) $) 161 (|has| |#1| (-358)))) (-3370 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 234 (-3191 (|has| |#2| (-886)) (|has| |#1| (-358))))) (-1705 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3844 (($ $) 132 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-3986 (((-538) $) 246 (-3191 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) 171)) (-3848 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 118 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#2| #2="failed") $) 267) (((-3 (-538) #2#) $) 256 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#1| (-358)))) (((-3 (-402 (-538)) #2#) $) 254 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#1| (-358)))) (((-3 (-1149) #2#) $) 239 (-3191 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-3507 ((|#2| $) 266) (((-538) $) 257 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#1| (-358)))) (((-402 (-538)) $) 255 (-3191 (|has| |#2| (-1014 (-538))) (|has| |#1| (-358)))) (((-1149) $) 240 (-3191 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358))))) (-4090 (($ $) 263) (($ (-538) $) 262)) (-2894 (($ $ $) 155 (|has| |#1| (-358)))) (-4319 (($ $) 58)) (-2362 (((-669 |#2|) (-669 $)) 218 (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) 217 (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 216 (-3191 (|has| |#2| (-621 (-538))) (|has| |#1| (-358)))) (((-669 (-538)) (-669 $)) 215 (-3191 (|has| |#2| (-621 (-538))) (|has| |#1| (-358))))) (-3821 (((-3 $ "failed") $) 32)) (-4087 (((-402 (-922 |#1|)) $ (-538)) 169 (|has| |#1| (-545))) (((-402 (-922 |#1|)) $ (-538) (-538)) 168 (|has| |#1| (-545)))) (-3327 (($) 230 (-3191 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-2893 (($ $ $) 154 (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 149 (|has| |#1| (-358)))) (-4086 (((-112) $) 162 (|has| |#1| (-358)))) (-3537 (((-112) $) 244 (-3191 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-3225 (((-112) $) 71)) (-3990 (($) 143 (|has| |#1| (-38 (-402 (-538)))))) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 222 (-3191 (|has| |#2| (-862 (-373))) (|has| |#1| (-358)))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 221 (-3191 (|has| |#2| (-862 (-538))) (|has| |#1| (-358))))) (-4131 (((-538) $) 98) (((-538) $ (-538)) 97)) (-2502 (((-112) $) 30)) (-3329 (($ $) 226 (|has| |#1| (-358)))) (-3331 ((|#2| $) 224 (|has| |#1| (-358)))) (-3344 (($ $ (-538)) 114 (|has| |#1| (-38 (-402 (-538)))))) (-3803 (((-3 $ "failed") $) 258 (-3191 (|has| |#2| (-1124)) (|has| |#1| (-358))))) (-3538 (((-112) $) 245 (-3191 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-4136 (($ $ (-895)) 99)) (-4175 (($ (-1 |#1| (-538)) $) 170)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) 158 (|has| |#1| (-358)))) (-4297 (((-112) $) 60)) (-3226 (($ |#1| (-538)) 59) (($ $ (-1055) (-538)) 74) (($ $ (-622 (-1055)) (-622 (-538))) 73)) (-3677 (($ $ $) 248 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-3678 (($ $ $) 249 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-4318 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-358)))) (-4302 (($ $) 140 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-2013 (($ (-622 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-4138 (($ (-538) |#2|) 265)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 163 (|has| |#1| (-358)))) (-4172 (($ $) 167 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 166 (-3891 (-12 (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-538))))) (-12 (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-538)))))))) (-3804 (($) 259 (-3191 (|has| |#2| (-1124)) (|has| |#1| (-358))) CONST)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 148 (|has| |#1| (-358)))) (-3495 (($ (-622 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-3463 (($ $) 229 (-3191 (|has| |#2| (-302)) (|has| |#1| (-358))))) (-3465 ((|#2| $) 232 (-3191 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-3038 (((-400 (-1143 $)) (-1143 $)) 235 (-3191 (|has| |#2| (-886)) (|has| |#1| (-358))))) (-3039 (((-400 (-1143 $)) (-1143 $)) 236 (-3191 (|has| |#2| (-886)) (|has| |#1| (-358))))) (-4092 (((-400 $) $) 159 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 156 (|has| |#1| (-358)))) (-4128 (($ $ (-538)) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 150 (|has| |#1| (-358)))) (-4303 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-538))))) (($ $ (-1149) |#2|) 209 (-3191 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-622 (-1149)) (-622 |#2|)) 208 (-3191 (|has| |#2| (-507 (-1149) |#2|)) (|has| |#1| (-358)))) (($ $ (-622 (-288 |#2|))) 207 (-3191 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-288 |#2|)) 206 (-3191 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ |#2| |#2|) 205 (-3191 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358)))) (($ $ (-622 |#2|) (-622 |#2|)) 204 (-3191 (|has| |#2| (-304 |#2|)) (|has| |#1| (-358))))) (-1704 (((-751) $) 152 (|has| |#1| (-358)))) (-4159 ((|#1| $ (-538)) 102) (($ $ $) 79 (|has| (-538) (-1085))) (($ $ |#2|) 203 (-3191 (|has| |#2| (-281 |#2| |#2|)) (|has| |#1| (-358))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 153 (|has| |#1| (-358)))) (-4170 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) 213 (|has| |#1| (-358))) (($ $ (-751)) 82 (-3891 (-3191 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) 80 (-3891 (-3191 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) 87 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) 86 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) 85 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) 84 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-3328 (($ $) 227 (|has| |#1| (-358)))) (-3330 ((|#2| $) 225 (|has| |#1| (-358)))) (-4307 (((-538) $) 62)) (-3849 (($ $) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 120 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 128 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-4330 (((-221) $) 243 (-3191 (|has| |#2| (-996)) (|has| |#1| (-358)))) (((-373) $) 242 (-3191 (|has| |#2| (-996)) (|has| |#1| (-358)))) (((-527) $) 241 (-3191 (|has| |#2| (-598 (-527))) (|has| |#1| (-358)))) (((-866 (-373)) $) 220 (-3191 (|has| |#2| (-598 (-866 (-373)))) (|has| |#1| (-358)))) (((-866 (-538)) $) 219 (-3191 (|has| |#2| (-598 (-866 (-538)))) (|has| |#1| (-358))))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 233 (-3191 (-3191 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#1| (-358))))) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 268) (($ (-1149)) 238 (-3191 (|has| |#2| (-1014 (-1149))) (|has| |#1| (-358)))) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545)))) (-4040 ((|#1| $ (-538)) 57)) (-3035 (((-3 $ "failed") $) 46 (-3891 (-3191 (-3891 (|has| |#2| (-143)) (-3191 (|has| $ (-143)) (|has| |#2| (-886)))) (|has| |#1| (-358))) (|has| |#1| (-143))))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-3466 ((|#2| $) 231 (-3191 (|has| |#2| (-537)) (|has| |#1| (-358))))) (-3852 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-3850 (($ $) 138 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 126 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-538)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 136 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 124 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 134 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 122 (|has| |#1| (-38 (-402 (-538)))))) (-3742 (($ $) 247 (-3191 (|has| |#2| (-800)) (|has| |#1| (-358))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) 211 (|has| |#1| (-358))) (($ $ (-751)) 83 (-3891 (-3191 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) 81 (-3891 (-3191 (|has| |#2| (-229)) (|has| |#1| (-358))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) 91 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149) (-751)) 90 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-622 (-1149))) 89 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))))) (($ $ (-1149)) 88 (-3891 (-3191 (|has| |#2| (-876 (-1149))) (|has| |#1| (-358))) (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))))) (-2896 (((-112) $ $) 251 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-2897 (((-112) $ $) 252 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 250 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-3018 (((-112) $ $) 253 (-3191 (|has| |#2| (-827)) (|has| |#1| (-358))))) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358))) (($ |#2| |#2|) 223 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 113 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-358))) (($ |#2| $) 201 (|has| |#1| (-358))) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538))))))) +(((-1195 |#1| |#2|) (-138) (-1025) (-1224 |t#1|)) (T -1195)) +((-4307 (*1 *2 *1) (-12 (-4 *1 (-1195 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1224 *3)) (-5 *2 (-538)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1195 *3 *2)) (-4 *2 (-1224 *3)))) (-4138 (*1 *1 *2 *3) (-12 (-5 *2 (-538)) (-4 *4 (-1025)) (-4 *1 (-1195 *4 *3)) (-4 *3 (-1224 *4)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3)))) (-4090 (*1 *1 *1) (-12 (-4 *1 (-1195 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1224 *2)))) (-4090 (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-4 *1 (-1195 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1224 *3)))) (-4089 (*1 *2 *1) (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3)))) (-4088 (*1 *2 *1) (|partial| -12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3))))) +(-13 (-1193 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -4138 ($ (-538) |t#2|)) (-15 -4307 ((-538) $)) (-15 -4091 (|t#2| $)) (-15 -4090 ($ $)) (-15 -4090 ($ (-538) $)) (-15 -4317 ($ |t#2|)) (-15 -4089 (|t#2| $)) (-15 -4088 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-358)) (-6 (-967 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-538)) . T) ((-25) . T) ((-38 #2=(-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 |#2|) |has| |#1| (-358)) ((-38 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-358)) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) -3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-143))) (|has| |#1| (-143))) ((-145) -3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-598 (-221)) -12 (|has| |#1| (-358)) (|has| |#2| (-996))) ((-598 (-373)) -12 (|has| |#1| (-358)) (|has| |#2| (-996))) ((-598 (-527)) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-527)))) ((-598 (-866 (-373))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-373))))) ((-598 (-866 (-538))) -12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-538))))) ((-227 |#2|) |has| |#1| (-358)) ((-229) -3891 (|has| |#1| (-15 * (|#1| (-538) |#1|))) (-12 (|has| |#1| (-358)) (|has| |#2| (-229)))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-281 |#2| $) -12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))) ((-281 $ $) |has| (-538) (-1085)) ((-285) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-358) |has| |#1| (-358)) ((-333 |#2|) |has| |#1| (-358)) ((-372 |#2|) |has| |#1| (-358)) ((-395 |#2|) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-507 (-1149) |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|))) ((-507 |#2| |#2|) -12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))) ((-545) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-628 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-628 |#1|) . T) ((-628 |#2|) |has| |#1| (-358)) ((-628 $) . T) ((-621 (-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-621 (-538)))) ((-621 |#2|) |has| |#1| (-358)) ((-698 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 |#2|) |has| |#1| (-358)) ((-698 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-707) . T) ((-771) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-772) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-774) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-777) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-800) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-825) -12 (|has| |#1| (-358)) (|has| |#2| (-800))) ((-827) -3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-827))) (-12 (|has| |#1| (-358)) (|has| |#2| (-800)))) ((-876 (-1149)) -3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149))))) ((-862 (-373)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-373)))) ((-862 (-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-862 (-538)))) ((-860 |#2|) |has| |#1| (-358)) ((-886) -12 (|has| |#1| (-358)) (|has| |#2| (-886))) ((-949 |#1| #1# (-1055)) . T) ((-897) |has| |#1| (-358)) ((-967 |#2|) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-996) -12 (|has| |#1| (-358)) (|has| |#2| (-996))) ((-1014 (-402 (-538))) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538)))) ((-1014 (-538)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538)))) ((-1014 (-1149)) -12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))) ((-1014 |#2|) . T) ((-1031 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-1031 |#1|) . T) ((-1031 |#2|) |has| |#1| (-358)) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) -12 (|has| |#1| (-358)) (|has| |#2| (-1124))) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))) ((-1185) |has| |#1| (-358)) ((-1190) |has| |#1| (-358)) ((-1193 |#1|) . T) ((-1210 |#1| #1#) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 70)) (-3464 ((|#2| $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-302))))) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 88)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-538)) 97) (($ $ (-538) (-538)) 99)) (-4133 (((-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|))) $) 47)) (-4091 ((|#2| $) 11)) (-4088 (((-3 |#2| "failed") $) 30)) (-4089 ((|#2| $) 31)) (-3846 (($ $) 192 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 168 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-886))))) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-886))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) 188 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 164 (|has| |#1| (-38 (-402 (-538)))))) (-3986 (((-538) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-800))))) (-4178 (($ (-1126 (-2 (|:| |k| (-538)) (|:| |c| |#1|)))) 57)) (-3848 (($ $) 196 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 172 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) 144) (((-3 (-538) #2#) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538))))) (((-3 (-402 (-538)) #2#) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538))))) (((-3 (-1149) #2#) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))))) (-3507 ((|#2| $) 143) (((-538) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538))))) (((-402 (-538)) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-538))))) (((-1149) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149)))))) (-4090 (($ $) 61) (($ (-538) $) 24)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-2362 (((-669 |#2|) (-669 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL (|has| |#1| (-358))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-621 (-538))))) (((-669 (-538)) (-669 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-621 (-538)))))) (-3821 (((-3 $ "failed") $) 77)) (-4087 (((-402 (-922 |#1|)) $ (-538)) 112 (|has| |#1| (-545))) (((-402 (-922 |#1|)) $ (-538) (-538)) 114 (|has| |#1| (-545)))) (-3327 (($) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-537))))) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3537 (((-112) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-800))))) (-3225 (((-112) $) 64)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-862 (-538)))))) (-4131 (((-538) $) 93) (((-538) $ (-538)) 95)) (-2502 (((-112) $) NIL)) (-3329 (($ $) NIL (|has| |#1| (-358)))) (-3331 ((|#2| $) 151 (|has| |#1| (-358)))) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3803 (((-3 $ "failed") $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1124))))) (-3538 (((-112) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-800))))) (-4136 (($ $ (-895)) 136)) (-4175 (($ (-1 |#1| (-538)) $) 132)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-538)) 19) (($ $ (-1055) (-538)) NIL) (($ $ (-622 (-1055)) (-622 (-538))) NIL)) (-3677 (($ $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-3678 (($ $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-4318 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-358)))) (-4302 (($ $) 162 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4138 (($ (-538) |#2|) 10)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 145 (|has| |#1| (-358)))) (-4172 (($ $) 214 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 219 (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))))))) (-3804 (($) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1124))) CONST)) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-3463 (($ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-302))))) (-3465 ((|#2| $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-537))))) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-886))))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-886))))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-538)) 126)) (-3820 (((-3 $ "failed") $ $) 116 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) 160 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-538))))) (($ $ (-1149) |#2|) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|)))) (($ $ (-622 (-1149)) (-622 |#2|)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-507 (-1149) |#2|)))) (($ $ (-622 (-288 |#2|))) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|)))) (($ $ (-288 |#2|)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|)))) (($ $ (-622 |#2|) (-622 |#2|)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-304 |#2|))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-538)) 91) (($ $ $) 79 (|has| (-538) (-1085))) (($ $ |#2|) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-281 |#2| |#2|))))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) 137 (-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-1149)) 140 (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149))))))) (-3328 (($ $) NIL (|has| |#1| (-358)))) (-3330 ((|#2| $) 152 (|has| |#1| (-358)))) (-4307 (((-538) $) 12)) (-3849 (($ $) 198 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 174 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 194 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 170 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 190 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 166 (|has| |#1| (-38 (-402 (-538)))))) (-4330 (((-221) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-996)))) (((-373) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-996)))) (((-527) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-598 (-527))))) (((-866 (-373)) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-598 (-866 (-538))))))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#1| (-358)) (|has| |#2| (-886))))) (-3224 (($ $) 124)) (-4317 (((-840) $) 245) (($ (-538)) 23) (($ |#1|) 21 (|has| |#1| (-170))) (($ |#2|) 20) (($ (-1149)) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-1014 (-1149))))) (($ (-402 (-538))) 155 (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-538)) 74)) (-3035 (((-3 $ "failed") $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#1| (-358)) (|has| |#2| (-886))) (|has| |#1| (-143)) (-12 (|has| |#1| (-358)) (|has| |#2| (-143)))))) (-3461 (((-751)) 142)) (-4132 ((|#1| $) 90)) (-3466 ((|#2| $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-537))))) (-3852 (($ $) 204 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 180 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) 200 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 176 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 208 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 184 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-538)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-538)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 210 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 186 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 206 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 182 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 202 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 178 (|has| |#1| (-38 (-402 (-538)))))) (-3742 (($ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-800))))) (-2991 (($) 13 T CONST)) (-2997 (($) 17 T CONST)) (-3002 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-358))) (($ $ (-1 |#2| |#2|) (-751)) NIL (|has| |#1| (-358))) (($ $ (-751)) NIL (-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $) NIL (-3891 (-12 (|has| |#1| (-358)) (|has| |#2| (-229))) (|has| |#1| (-15 * (|#1| (-538) |#1|))))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-1149) (-751)) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-622 (-1149))) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149)))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-538) |#1|)))) (-12 (|has| |#1| (-358)) (|has| |#2| (-876 (-1149))))))) (-2896 (((-112) $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-2897 (((-112) $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-3387 (((-112) $ $) 63)) (-3017 (((-112) $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-3018 (((-112) $ $) NIL (-12 (|has| |#1| (-358)) (|has| |#2| (-827))))) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 149 (|has| |#1| (-358))) (($ |#2| |#2|) 150 (|has| |#1| (-358)))) (-4197 (($ $) 213) (($ $ $) 68)) (-4199 (($ $ $) 66)) (** (($ $ (-895)) NIL) (($ $ (-751)) 73) (($ $ (-538)) 146 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 158 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-358))) (($ |#2| $) 147 (|has| |#1| (-358))) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-1196 |#1| |#2|) (-1195 |#1| |#2|) (-1025) (-1224 |#1|)) (T -1196)) +NIL +(-1195 |#1| |#2|) +((-4094 (((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112)) 12)) (-4093 (((-400 |#1|) |#1|) 22)) (-4092 (((-400 |#1|) |#1|) 21))) +(((-1197 |#1|) (-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1|)) (-15 -4094 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112)))) (-1207 (-538))) (T -1197)) +((-4094 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538))))) (-4093 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538))))) (-4092 (*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538)))))) +(-10 -7 (-15 -4092 ((-400 |#1|) |#1|)) (-15 -4093 ((-400 |#1|) |#1|)) (-15 -4094 ((-2 (|:| |contp| (-538)) (|:| -2767 (-622 (-2 (|:| |irr| |#1|) (|:| -2487 (-538)))))) |#1| (-112)))) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4096 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-4318 (((-1126 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-825)))) (-3580 ((|#1| $) 14)) (-3582 ((|#1| $) 10)) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-3578 (((-538) $) 18)) (-3579 ((|#1| $) 17)) (-3581 ((|#1| $) 11)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4095 (((-112) $) 16)) (-4323 (((-1126 |#1|) $) 38 (|has| |#1| (-825))) (((-1126 |#1|) (-622 $)) 37 (|has| |#1| (-825)))) (-4330 (($ |#1|) 25)) (-4317 (($ (-1062 |#1|)) 24) (((-840) $) 34 (|has| |#1| (-1074)))) (-4097 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3583 (($ $ (-538)) 13)) (-3387 (((-112) $ $) 27 (|has| |#1| (-1074))))) +(((-1198 |#1|) (-13 (-1067 |#1|) (-10 -8 (-15 -4097 ($ |#1|)) (-15 -4096 ($ |#1|)) (-15 -4317 ($ (-1062 |#1|))) (-15 -4095 ((-112) $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-1126 |#1|))) |%noBranch|))) (-1185)) (T -1198)) +((-4097 (*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1185)))) (-4096 (*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1185)))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1062 *3)) (-4 *3 (-1185)) (-5 *1 (-1198 *3)))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1185))))) +(-13 (-1067 |#1|) (-10 -8 (-15 -4097 ($ |#1|)) (-15 -4096 ($ |#1|)) (-15 -4317 ($ (-1062 |#1|))) (-15 -4095 ((-112) $)) (IF (|has| |#1| (-1074)) (-6 (-1074)) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-1068 |#1| (-1126 |#1|))) |%noBranch|))) +((-4318 (((-1126 |#2|) (-1 |#2| |#1|) (-1198 |#1|)) 23 (|has| |#1| (-825))) (((-1198 |#2|) (-1 |#2| |#1|) (-1198 |#1|)) 17))) +(((-1199 |#1| |#2|) (-10 -7 (-15 -4318 ((-1198 |#2|) (-1 |#2| |#1|) (-1198 |#1|))) (IF (|has| |#1| (-825)) (-15 -4318 ((-1126 |#2|) (-1 |#2| |#1|) (-1198 |#1|))) |%noBranch|)) (-1185) (-1185)) (T -1199)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1198 *5)) (-4 *5 (-825)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1126 *6)) (-5 *1 (-1199 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1198 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1198 *6)) (-5 *1 (-1199 *5 *6))))) +(-10 -7 (-15 -4318 ((-1198 |#2|) (-1 |#2| |#1|) (-1198 |#1|))) (IF (|has| |#1| (-825)) (-15 -4318 ((-1126 |#2|) (-1 |#2| |#1|) (-1198 |#1|))) |%noBranch|)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4126 (((-1231 |#2|) $ (-751)) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4124 (($ (-1143 |#2|)) NIL)) (-3419 (((-1143 $) $ (-1055)) NIL) (((-1143 |#2|) $) NIL)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#2| (-545)))) (-2178 (($ $) NIL (|has| |#2| (-545)))) (-2176 (((-112) $) NIL (|has| |#2| (-545)))) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1055))) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4115 (($ $ $) NIL (|has| |#2| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4134 (($ $) NIL (|has| |#2| (-446)))) (-4329 (((-400 $) $) NIL (|has| |#2| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-1705 (((-112) $ $) NIL (|has| |#2| (-358)))) (-4120 (($ $ (-751)) NIL)) (-4119 (($ $ (-751)) NIL)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-446)))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| #2="failed") $) NIL) (((-3 (-402 (-538)) #2#) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) NIL (|has| |#2| (-1014 (-538)))) (((-3 (-1055) #2#) $) NIL)) (-3507 ((|#2| $) NIL) (((-402 (-538)) $) NIL (|has| |#2| (-1014 (-402 (-538))))) (((-538) $) NIL (|has| |#2| (-1014 (-538)))) (((-1055) $) NIL)) (-4116 (($ $ $ (-1055)) NIL (|has| |#2| (-170))) ((|#2| $ $) NIL (|has| |#2| (-170)))) (-2894 (($ $ $) NIL (|has| |#2| (-358)))) (-4319 (($ $) NIL)) (-2362 (((-669 (-538)) (-669 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) NIL (|has| |#2| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#2|)) (|:| |vec| (-1231 |#2|))) (-669 $) (-1231 $)) NIL) (((-669 |#2|) (-669 $)) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-2893 (($ $ $) NIL (|has| |#2| (-358)))) (-4118 (($ $ $) NIL)) (-4113 (($ $ $) NIL (|has| |#2| (-545)))) (-4112 (((-2 (|:| -4313 |#2|) (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#2| (-358)))) (-3857 (($ $) NIL (|has| |#2| (-446))) (($ $ (-1055)) NIL (|has| |#2| (-446)))) (-3151 (((-622 $) $) NIL)) (-4086 (((-112) $) NIL (|has| |#2| (-886)))) (-1721 (($ $ |#2| (-751) $) NIL)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) NIL (-12 (|has| (-1055) (-862 (-373))) (|has| |#2| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) NIL (-12 (|has| (-1055) (-862 (-538))) (|has| |#2| (-862 (-538)))))) (-4131 (((-751) $ $) NIL (|has| |#2| (-545)))) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3803 (((-3 $ "failed") $) NIL (|has| |#2| (-1124)))) (-3420 (($ (-1143 |#2|) (-1055)) NIL) (($ (-1143 $) (-1055)) NIL)) (-4136 (($ $ (-751)) NIL)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) NIL (|has| |#2| (-358)))) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-3226 (($ |#2| (-751)) 17) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1055)) NIL) (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL)) (-3153 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-3677 (($ $ $) NIL (|has| |#2| (-827)))) (-3678 (($ $ $) NIL (|has| |#2| (-827)))) (-1722 (($ (-1 (-751) (-751)) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-4125 (((-1143 |#2|) $) NIL)) (-3418 (((-3 (-1055) #4="failed") $) NIL)) (-3227 (($ $) NIL)) (-3525 ((|#2| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-3593 (((-1131) $) NIL)) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) NIL)) (-3156 (((-3 (-622 $) #4#) $) NIL)) (-3155 (((-3 (-622 $) #4#) $) NIL)) (-3157 (((-3 (-2 (|:| |var| (-1055)) (|:| -2493 (-751))) #4#) $) NIL)) (-4172 (($ $) NIL (|has| |#2| (-38 (-402 (-538)))))) (-3804 (($) NIL (|has| |#2| (-1124)) CONST)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 ((|#2| $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#2| (-446)))) (-3495 (($ (-622 $)) NIL (|has| |#2| (-446))) (($ $ $) NIL (|has| |#2| (-446)))) (-4098 (($ $ (-751) |#2| $) NIL)) (-3038 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) NIL (|has| |#2| (-886)))) (-4092 (((-400 $) $) NIL (|has| |#2| (-886)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) NIL (|has| |#2| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#2| (-358)))) (-3820 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-545))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#2| (-358)))) (-4127 (($ $ (-622 (-288 $))) NIL) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1055) |#2|) NIL) (($ $ (-622 (-1055)) (-622 |#2|)) NIL) (($ $ (-1055) $) NIL) (($ $ (-622 (-1055)) (-622 $)) NIL)) (-1704 (((-751) $) NIL (|has| |#2| (-358)))) (-4159 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) NIL (|has| |#2| (-545))) ((|#2| (-402 $) |#2|) NIL (|has| |#2| (-358))) (((-402 $) $ (-402 $)) NIL (|has| |#2| (-545)))) (-4123 (((-3 $ #5="failed") $ (-751)) NIL)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#2| (-358)))) (-4117 (($ $ (-1055)) NIL (|has| |#2| (-170))) ((|#2| $) NIL (|has| |#2| (-170)))) (-4170 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-4307 (((-751) $) NIL) (((-751) $ (-1055)) NIL) (((-622 (-751)) $ (-622 (-1055))) NIL)) (-4330 (((-866 (-373)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-373)))) (|has| |#2| (-598 (-866 (-373)))))) (((-866 (-538)) $) NIL (-12 (|has| (-1055) (-598 (-866 (-538)))) (|has| |#2| (-598 (-866 (-538)))))) (((-527) $) NIL (-12 (|has| (-1055) (-598 (-527))) (|has| |#2| (-598 (-527)))))) (-3150 ((|#2| $) NIL (|has| |#2| (-446))) (($ $ (-1055)) NIL (|has| |#2| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) NIL (-12 (|has| $ (-143)) (|has| |#2| (-886))))) (-4114 (((-3 $ #5#) $ $) NIL (|has| |#2| (-545))) (((-3 (-402 $) #5#) (-402 $) $) NIL (|has| |#2| (-545)))) (-4317 (((-840) $) 13) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-1055)) NIL) (($ (-1228 |#1|)) 19) (($ (-402 (-538))) NIL (-3891 (|has| |#2| (-38 (-402 (-538)))) (|has| |#2| (-1014 (-402 (-538)))))) (($ $) NIL (|has| |#2| (-545)))) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-751)) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3035 (((-3 $ #1#) $) NIL (-3891 (-12 (|has| $ (-143)) (|has| |#2| (-886))) (|has| |#2| (-143))))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| |#2| (-170)))) (-2177 (((-112) $ $) NIL (|has| |#2| (-545)))) (-2991 (($) NIL T CONST)) (-2997 (($) 14 T CONST)) (-3002 (($ $ (-1055)) NIL) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) NIL) (($ $ (-1149)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1149) (-751)) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) NIL (|has| |#2| (-876 (-1149)))) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2896 (((-112) $ $) NIL (|has| |#2| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3387 (((-112) $ $) NIL)) (-3017 (((-112) $ $) NIL (|has| |#2| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#2| (-827)))) (-4308 (($ $ |#2|) NIL (|has| |#2| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-402 (-538))) NIL (|has| |#2| (-38 (-402 (-538))))) (($ (-402 (-538)) $) NIL (|has| |#2| (-38 (-402 (-538))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1200 |#1| |#2|) (-13 (-1207 |#2|) (-10 -8 (-15 -4317 ($ (-1228 |#1|))) (-15 -4098 ($ $ (-751) |#2| $)))) (-1149) (-1025)) (T -1200)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-1200 *3 *4)) (-4 *4 (-1025)))) (-4098 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1200 *4 *3)) (-14 *4 (-1149)) (-4 *3 (-1025))))) +(-13 (-1207 |#2|) (-10 -8 (-15 -4317 ($ (-1228 |#1|))) (-15 -4098 ($ $ (-751) |#2| $)))) +((-4318 (((-1200 |#3| |#4|) (-1 |#4| |#2|) (-1200 |#1| |#2|)) 15))) +(((-1201 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 ((-1200 |#3| |#4|) (-1 |#4| |#2|) (-1200 |#1| |#2|)))) (-1149) (-1025) (-1149) (-1025)) (T -1201)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1200 *5 *6)) (-14 *5 (-1149)) (-4 *6 (-1025)) (-4 *8 (-1025)) (-5 *2 (-1200 *7 *8)) (-5 *1 (-1201 *5 *6 *7 *8)) (-14 *7 (-1149))))) +(-10 -7 (-15 -4318 ((-1200 |#3| |#4|) (-1 |#4| |#2|) (-1200 |#1| |#2|)))) +((-4101 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-4099 ((|#1| |#3|) 13)) (-4100 ((|#3| |#3|) 19))) +(((-1202 |#1| |#2| |#3|) (-10 -7 (-15 -4099 (|#1| |#3|)) (-15 -4100 (|#3| |#3|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-545) (-967 |#1|) (-1207 |#2|)) (T -1202)) +((-4101 (*1 *2 *3) (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1202 *4 *5 *3)) (-4 *3 (-1207 *5)))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-545)) (-4 *4 (-967 *3)) (-5 *1 (-1202 *3 *4 *2)) (-4 *2 (-1207 *4)))) (-4099 (*1 *2 *3) (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-1202 *2 *4 *3)) (-4 *3 (-1207 *4))))) +(-10 -7 (-15 -4099 (|#1| |#3|)) (-15 -4100 (|#3| |#3|)) (-15 -4101 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-4103 (((-3 |#2| "failed") |#2| (-751) |#1|) 29)) (-4102 (((-3 |#2| "failed") |#2| (-751)) 30)) (-4105 (((-3 (-2 (|:| -3473 |#2|) (|:| -3472 |#2|)) "failed") |#2|) 43)) (-4106 (((-622 |#2|) |#2|) 45)) (-4104 (((-3 |#2| "failed") |#2| |#2|) 40))) +(((-1203 |#1| |#2|) (-10 -7 (-15 -4102 ((-3 |#2| "failed") |#2| (-751))) (-15 -4103 ((-3 |#2| "failed") |#2| (-751) |#1|)) (-15 -4104 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4105 ((-3 (-2 (|:| -3473 |#2|) (|:| -3472 |#2|)) "failed") |#2|)) (-15 -4106 ((-622 |#2|) |#2|))) (-13 (-545) (-145)) (-1207 |#1|)) (T -1203)) +((-4106 (*1 *2 *3) (-12 (-4 *4 (-13 (-545) (-145))) (-5 *2 (-622 *3)) (-5 *1 (-1203 *4 *3)) (-4 *3 (-1207 *4)))) (-4105 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-545) (-145))) (-5 *2 (-2 (|:| -3473 *3) (|:| -3472 *3))) (-5 *1 (-1203 *4 *3)) (-4 *3 (-1207 *4)))) (-4104 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1203 *3 *2)) (-4 *2 (-1207 *3)))) (-4103 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-545) (-145))) (-5 *1 (-1203 *4 *2)) (-4 *2 (-1207 *4)))) (-4102 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-545) (-145))) (-5 *1 (-1203 *4 *2)) (-4 *2 (-1207 *4))))) +(-10 -7 (-15 -4102 ((-3 |#2| "failed") |#2| (-751))) (-15 -4103 ((-3 |#2| "failed") |#2| (-751) |#1|)) (-15 -4104 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4105 ((-3 (-2 (|:| -3473 |#2|) (|:| -3472 |#2|)) "failed") |#2|)) (-15 -4106 ((-622 |#2|) |#2|))) +((-4107 (((-3 (-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) "failed") |#2| |#2|) 32))) +(((-1204 |#1| |#2|) (-10 -7 (-15 -4107 ((-3 (-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) "failed") |#2| |#2|))) (-545) (-1207 |#1|)) (T -1204)) +((-4107 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-1204 *4 *3)) (-4 *3 (-1207 *4))))) +(-10 -7 (-15 -4107 ((-3 (-2 (|:| -2096 |#2|) (|:| -3235 |#2|)) "failed") |#2| |#2|))) +((-4108 ((|#2| |#2| |#2|) 19)) (-4109 ((|#2| |#2| |#2|) 30)) (-4110 ((|#2| |#2| |#2| (-751) (-751)) 36))) +(((-1205 |#1| |#2|) (-10 -7 (-15 -4108 (|#2| |#2| |#2|)) (-15 -4109 (|#2| |#2| |#2|)) (-15 -4110 (|#2| |#2| |#2| (-751) (-751)))) (-1025) (-1207 |#1|)) (T -1205)) +((-4110 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-1205 *4 *2)) (-4 *2 (-1207 *4)))) (-4109 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1207 *3)))) (-4108 (*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1207 *3))))) +(-10 -7 (-15 -4108 (|#2| |#2| |#2|)) (-15 -4109 (|#2| |#2| |#2|)) (-15 -4110 (|#2| |#2| |#2| (-751) (-751)))) +((-4126 (((-1231 |#2|) $ (-751)) 114)) (-3417 (((-622 (-1055)) $) 15)) (-4124 (($ (-1143 |#2|)) 67)) (-3152 (((-751) $) NIL) (((-751) $ (-622 (-1055))) 18)) (-3040 (((-400 (-1143 $)) (-1143 $)) 185)) (-4134 (($ $) 175)) (-4329 (((-400 $) $) 173)) (-3037 (((-3 (-622 (-1143 $)) "failed") (-622 (-1143 $)) (-1143 $)) 82)) (-4120 (($ $ (-751)) 71)) (-4119 (($ $ (-751)) 73)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3508 (((-3 |#2| #1="failed") $) 117) (((-3 (-402 (-538)) #1#) $) NIL) (((-3 (-538) #1#) $) NIL) (((-3 (-1055) #1#) $) NIL)) (-3507 ((|#2| $) 115) (((-402 (-538)) $) NIL) (((-538) $) NIL) (((-1055) $) NIL)) (-4113 (($ $ $) 151)) (-4112 (((-2 (|:| -4313 |#2|) (|:| -2096 $) (|:| -3235 $)) $ $) 153)) (-4131 (((-751) $ $) 170)) (-3803 (((-3 $ "failed") $) 123)) (-3226 (($ |#2| (-751)) NIL) (($ $ (-1055) (-751)) 47) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-3153 (((-751) $) NIL) (((-751) $ (-1055)) 42) (((-622 (-751)) $ (-622 (-1055))) 43)) (-4125 (((-1143 |#2|) $) 59)) (-3418 (((-3 (-1055) "failed") $) 40)) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) 70)) (-4172 (($ $) 197)) (-3804 (($) 119)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 182)) (-3038 (((-400 (-1143 $)) (-1143 $)) 88)) (-3039 (((-400 (-1143 $)) (-1143 $)) 86)) (-4092 (((-400 $) $) 107)) (-4127 (($ $ (-622 (-288 $))) 39) (($ $ (-288 $)) NIL) (($ $ $ $) NIL) (($ $ (-622 $) (-622 $)) NIL) (($ $ (-1055) |#2|) 31) (($ $ (-622 (-1055)) (-622 |#2|)) 28) (($ $ (-1055) $) 25) (($ $ (-622 (-1055)) (-622 $)) 23)) (-1704 (((-751) $) 188)) (-4159 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-402 $) (-402 $) (-402 $)) 147) ((|#2| (-402 $) |#2|) 187) (((-402 $) $ (-402 $)) 169)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 191)) (-4170 (($ $ (-1055)) 140) (($ $ (-622 (-1055))) NIL) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL) (($ $ (-751)) NIL) (($ $) 138) (($ $ (-1149)) NIL) (($ $ (-622 (-1149))) NIL) (($ $ (-1149) (-751)) NIL) (($ $ (-622 (-1149)) (-622 (-751))) NIL) (($ $ (-1 |#2| |#2|) (-751)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-4307 (((-751) $) NIL) (((-751) $ (-1055)) 16) (((-622 (-751)) $ (-622 (-1055))) 20)) (-3150 ((|#2| $) NIL) (($ $ (-1055)) 125)) (-4114 (((-3 $ "failed") $ $) 161) (((-3 (-402 $) "failed") (-402 $) $) 157)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#2|) NIL) (($ (-1055)) 51) (($ (-402 (-538))) NIL) (($ $) NIL))) +(((-1206 |#1| |#2|) (-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -4159 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -1704 ((-751) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -4159 (|#2| (-402 |#1|) |#2|)) (-15 -4111 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4112 ((-2 (|:| -4313 |#2|) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -4113 (|#1| |#1| |#1|)) (-15 -4114 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -4114 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4131 ((-751) |#1| |#1|)) (-15 -4159 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4119 (|#1| |#1| (-751))) (-15 -4120 (|#1| |#1| (-751))) (-15 -4121 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| (-751))) (-15 -4124 (|#1| (-1143 |#2|))) (-15 -4125 ((-1143 |#2|) |#1|)) (-15 -4126 ((-1231 |#2|) |#1| (-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#2| |#1| |#2|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3040 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3150 (|#1| |#1| (-1055))) (-15 -3417 ((-622 (-1055)) |#1|)) (-15 -3152 ((-751) |#1| (-622 (-1055)))) (-15 -3152 ((-751) |#1|)) (-15 -3226 (|#1| |#1| (-622 (-1055)) (-622 (-751)))) (-15 -3226 (|#1| |#1| (-1055) (-751))) (-15 -3153 ((-622 (-751)) |#1| (-622 (-1055)))) (-15 -3153 ((-751) |#1| (-1055))) (-15 -3418 ((-3 (-1055) "failed") |#1|)) (-15 -4307 ((-622 (-751)) |#1| (-622 (-1055)))) (-15 -4307 ((-751) |#1| (-1055))) (-15 -3507 ((-1055) |#1|)) (-15 -3508 ((-3 (-1055) #1="failed") |#1|)) (-15 -4317 (|#1| (-1055))) (-15 -4127 (|#1| |#1| (-622 (-1055)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-1055) |#1|)) (-15 -4127 (|#1| |#1| (-622 (-1055)) (-622 |#2|))) (-15 -4127 (|#1| |#1| (-1055) |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4307 ((-751) |#1|)) (-15 -3226 (|#1| |#2| (-751))) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3153 ((-751) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4170 (|#1| |#1| (-622 (-1055)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1055) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1055)))) (-15 -4170 (|#1| |#1| (-1055))) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) (-1207 |#2|) (-1025)) (T -1206)) +NIL +(-10 -8 (-15 -4317 (|#1| |#1|)) (-15 -3041 ((-1143 |#1|) (-1143 |#1|) (-1143 |#1|))) (-15 -4329 ((-400 |#1|) |#1|)) (-15 -4134 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -3804 (|#1|)) (-15 -3803 ((-3 |#1| "failed") |#1|)) (-15 -4159 ((-402 |#1|) |#1| (-402 |#1|))) (-15 -1704 ((-751) |#1|)) (-15 -3214 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -4172 (|#1| |#1|)) (-15 -4159 (|#2| (-402 |#1|) |#2|)) (-15 -4111 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4112 ((-2 (|:| -4313 |#2|) (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| |#1|)) (-15 -4113 (|#1| |#1| |#1|)) (-15 -4114 ((-3 (-402 |#1|) "failed") (-402 |#1|) |#1|)) (-15 -4114 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4131 ((-751) |#1| |#1|)) (-15 -4159 ((-402 |#1|) (-402 |#1|) (-402 |#1|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4119 (|#1| |#1| (-751))) (-15 -4120 (|#1| |#1| (-751))) (-15 -4121 ((-2 (|:| -2096 |#1|) (|:| -3235 |#1|)) |#1| (-751))) (-15 -4124 (|#1| (-1143 |#2|))) (-15 -4125 ((-1143 |#2|) |#1|)) (-15 -4126 ((-1231 |#2|) |#1| (-751))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4170 (|#1| |#1| (-1 |#2| |#2|) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1149) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1149)))) (-15 -4170 (|#1| |#1| (-1149))) (-15 -4170 (|#1| |#1|)) (-15 -4170 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| |#1|)) (-15 -4159 (|#2| |#1| |#2|)) (-15 -4092 ((-400 |#1|) |#1|)) (-15 -3040 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3039 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3038 ((-400 (-1143 |#1|)) (-1143 |#1|))) (-15 -3037 ((-3 (-622 (-1143 |#1|)) "failed") (-622 (-1143 |#1|)) (-1143 |#1|))) (-15 -3150 (|#1| |#1| (-1055))) (-15 -3417 ((-622 (-1055)) |#1|)) (-15 -3152 ((-751) |#1| (-622 (-1055)))) (-15 -3152 ((-751) |#1|)) (-15 -3226 (|#1| |#1| (-622 (-1055)) (-622 (-751)))) (-15 -3226 (|#1| |#1| (-1055) (-751))) (-15 -3153 ((-622 (-751)) |#1| (-622 (-1055)))) (-15 -3153 ((-751) |#1| (-1055))) (-15 -3418 ((-3 (-1055) "failed") |#1|)) (-15 -4307 ((-622 (-751)) |#1| (-622 (-1055)))) (-15 -4307 ((-751) |#1| (-1055))) (-15 -3507 ((-1055) |#1|)) (-15 -3508 ((-3 (-1055) #1="failed") |#1|)) (-15 -4317 (|#1| (-1055))) (-15 -4127 (|#1| |#1| (-622 (-1055)) (-622 |#1|))) (-15 -4127 (|#1| |#1| (-1055) |#1|)) (-15 -4127 (|#1| |#1| (-622 (-1055)) (-622 |#2|))) (-15 -4127 (|#1| |#1| (-1055) |#2|)) (-15 -4127 (|#1| |#1| (-622 |#1|) (-622 |#1|))) (-15 -4127 (|#1| |#1| |#1| |#1|)) (-15 -4127 (|#1| |#1| (-288 |#1|))) (-15 -4127 (|#1| |#1| (-622 (-288 |#1|)))) (-15 -4307 ((-751) |#1|)) (-15 -3226 (|#1| |#2| (-751))) (-15 -3507 ((-538) |#1|)) (-15 -3508 ((-3 (-538) #1#) |#1|)) (-15 -3507 ((-402 (-538)) |#1|)) (-15 -3508 ((-3 (-402 (-538)) #1#) |#1|)) (-15 -4317 (|#1| |#2|)) (-15 -3508 ((-3 |#2| #1#) |#1|)) (-15 -3507 (|#2| |#1|)) (-15 -3153 ((-751) |#1|)) (-15 -3150 (|#2| |#1|)) (-15 -4170 (|#1| |#1| (-622 (-1055)) (-622 (-751)))) (-15 -4170 (|#1| |#1| (-1055) (-751))) (-15 -4170 (|#1| |#1| (-622 (-1055)))) (-15 -4170 (|#1| |#1| (-1055))) (-15 -4317 (|#1| (-538))) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-4126 (((-1231 |#1|) $ (-751)) 236)) (-3417 (((-622 (-1055)) $) 108)) (-4124 (($ (-1143 |#1|)) 234)) (-3419 (((-1143 $) $ (-1055)) 123) (((-1143 |#1|) $) 122)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 85 (|has| |#1| (-545)))) (-2178 (($ $) 86 (|has| |#1| (-545)))) (-2176 (((-112) $) 88 (|has| |#1| (-545)))) (-3152 (((-751) $) 110) (((-751) $ (-622 (-1055))) 109)) (-1368 (((-3 $ "failed") $ $) 19)) (-4115 (($ $ $) 221 (|has| |#1| (-545)))) (-3040 (((-400 (-1143 $)) (-1143 $)) 98 (|has| |#1| (-886)))) (-4134 (($ $) 96 (|has| |#1| (-446)))) (-4329 (((-400 $) $) 95 (|has| |#1| (-446)))) (-3037 (((-3 (-622 (-1143 $)) #1="failed") (-622 (-1143 $)) (-1143 $)) 101 (|has| |#1| (-886)))) (-1705 (((-112) $ $) 206 (|has| |#1| (-358)))) (-4120 (($ $ (-751)) 229)) (-4119 (($ $ (-751)) 228)) (-4111 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-446)))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| #2="failed") $) 162) (((-3 (-402 (-538)) #2#) $) 160 (|has| |#1| (-1014 (-402 (-538))))) (((-3 (-538) #2#) $) 158 (|has| |#1| (-1014 (-538)))) (((-3 (-1055) #2#) $) 134)) (-3507 ((|#1| $) 163) (((-402 (-538)) $) 159 (|has| |#1| (-1014 (-402 (-538))))) (((-538) $) 157 (|has| |#1| (-1014 (-538)))) (((-1055) $) 133)) (-4116 (($ $ $ (-1055)) 106 (|has| |#1| (-170))) ((|#1| $ $) 224 (|has| |#1| (-170)))) (-2894 (($ $ $) 210 (|has| |#1| (-358)))) (-4319 (($ $) 152)) (-2362 (((-669 (-538)) (-669 $)) 132 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 (-538))) (|:| |vec| (-1231 (-538)))) (-669 $) (-1231 $)) 131 (|has| |#1| (-621 (-538)))) (((-2 (|:| -1700 (-669 |#1|)) (|:| |vec| (-1231 |#1|))) (-669 $) (-1231 $)) 130) (((-669 |#1|) (-669 $)) 129)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 209 (|has| |#1| (-358)))) (-4118 (($ $ $) 227)) (-4113 (($ $ $) 218 (|has| |#1| (-545)))) (-4112 (((-2 (|:| -4313 |#1|) (|:| -2096 $) (|:| -3235 $)) $ $) 217 (|has| |#1| (-545)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 204 (|has| |#1| (-358)))) (-3857 (($ $) 174 (|has| |#1| (-446))) (($ $ (-1055)) 103 (|has| |#1| (-446)))) (-3151 (((-622 $) $) 107)) (-4086 (((-112) $) 94 (|has| |#1| (-886)))) (-1721 (($ $ |#1| (-751) $) 170)) (-3129 (((-864 (-373) $) $ (-866 (-373)) (-864 (-373) $)) 82 (-12 (|has| (-1055) (-862 (-373))) (|has| |#1| (-862 (-373))))) (((-864 (-538) $) $ (-866 (-538)) (-864 (-538) $)) 81 (-12 (|has| (-1055) (-862 (-538))) (|has| |#1| (-862 (-538)))))) (-4131 (((-751) $ $) 222 (|has| |#1| (-545)))) (-2502 (((-112) $) 30)) (-2510 (((-751) $) 167)) (-3803 (((-3 $ "failed") $) 202 (|has| |#1| (-1124)))) (-3420 (($ (-1143 |#1|) (-1055)) 115) (($ (-1143 $) (-1055)) 114)) (-4136 (($ $ (-751)) 233)) (-1702 (((-3 (-622 $) #3="failed") (-622 $) $) 213 (|has| |#1| (-358)))) (-3154 (((-622 $) $) 124)) (-4297 (((-112) $) 150)) (-3226 (($ |#1| (-751)) 151) (($ $ (-1055) (-751)) 117) (($ $ (-622 (-1055)) (-622 (-751))) 116)) (-4122 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $ (-1055)) 118) (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 231)) (-3153 (((-751) $) 168) (((-751) $ (-1055)) 120) (((-622 (-751)) $ (-622 (-1055))) 119)) (-3677 (($ $ $) 77 (|has| |#1| (-827)))) (-3678 (($ $ $) 76 (|has| |#1| (-827)))) (-1722 (($ (-1 (-751) (-751)) $) 169)) (-4318 (($ (-1 |#1| |#1|) $) 149)) (-4125 (((-1143 |#1|) $) 235)) (-3418 (((-3 (-1055) #4="failed") $) 121)) (-3227 (($ $) 147)) (-3525 ((|#1| $) 146)) (-2013 (($ (-622 $)) 92 (|has| |#1| (-446))) (($ $ $) 91 (|has| |#1| (-446)))) (-3593 (((-1131) $) 9)) (-4121 (((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751)) 230)) (-3156 (((-3 (-622 $) #4#) $) 112)) (-3155 (((-3 (-622 $) #4#) $) 113)) (-3157 (((-3 (-2 (|:| |var| (-1055)) (|:| -2493 (-751))) #4#) $) 111)) (-4172 (($ $) 214 (|has| |#1| (-38 (-402 (-538)))))) (-3804 (($) 201 (|has| |#1| (-1124)) CONST)) (-3594 (((-1093) $) 10)) (-1916 (((-112) $) 164)) (-1915 ((|#1| $) 165)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 93 (|has| |#1| (-446)))) (-3495 (($ (-622 $)) 90 (|has| |#1| (-446))) (($ $ $) 89 (|has| |#1| (-446)))) (-3038 (((-400 (-1143 $)) (-1143 $)) 100 (|has| |#1| (-886)))) (-3039 (((-400 (-1143 $)) (-1143 $)) 99 (|has| |#1| (-886)))) (-4092 (((-400 $) $) 97 (|has| |#1| (-886)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 212 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 211 (|has| |#1| (-358)))) (-3820 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-545))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 205 (|has| |#1| (-358)))) (-4127 (($ $ (-622 (-288 $))) 143) (($ $ (-288 $)) 142) (($ $ $ $) 141) (($ $ (-622 $) (-622 $)) 140) (($ $ (-1055) |#1|) 139) (($ $ (-622 (-1055)) (-622 |#1|)) 138) (($ $ (-1055) $) 137) (($ $ (-622 (-1055)) (-622 $)) 136)) (-1704 (((-751) $) 207 (|has| |#1| (-358)))) (-4159 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-402 $) (-402 $) (-402 $)) 223 (|has| |#1| (-545))) ((|#1| (-402 $) |#1|) 215 (|has| |#1| (-358))) (((-402 $) $ (-402 $)) 203 (|has| |#1| (-545)))) (-4123 (((-3 $ "failed") $ (-751)) 232)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 208 (|has| |#1| (-358)))) (-4117 (($ $ (-1055)) 105 (|has| |#1| (-170))) ((|#1| $) 225 (|has| |#1| (-170)))) (-4170 (($ $ (-1055)) 40) (($ $ (-622 (-1055))) 39) (($ $ (-1055) (-751)) 38) (($ $ (-622 (-1055)) (-622 (-751))) 37) (($ $ (-751)) 251) (($ $) 249) (($ $ (-1149)) 248 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 247 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 246 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 245 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-4307 (((-751) $) 148) (((-751) $ (-1055)) 128) (((-622 (-751)) $ (-622 (-1055))) 127)) (-4330 (((-866 (-373)) $) 80 (-12 (|has| (-1055) (-598 (-866 (-373)))) (|has| |#1| (-598 (-866 (-373)))))) (((-866 (-538)) $) 79 (-12 (|has| (-1055) (-598 (-866 (-538)))) (|has| |#1| (-598 (-866 (-538)))))) (((-527) $) 78 (-12 (|has| (-1055) (-598 (-527))) (|has| |#1| (-598 (-527)))))) (-3150 ((|#1| $) 173 (|has| |#1| (-446))) (($ $ (-1055)) 104 (|has| |#1| (-446)))) (-3036 (((-3 (-1231 $) #1#) (-669 $)) 102 (-3191 (|has| $ (-143)) (|has| |#1| (-886))))) (-4114 (((-3 $ "failed") $ $) 220 (|has| |#1| (-545))) (((-3 (-402 $) "failed") (-402 $) $) 219 (|has| |#1| (-545)))) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 161) (($ (-1055)) 135) (($ (-402 (-538))) 70 (-3891 (|has| |#1| (-1014 (-402 (-538)))) (|has| |#1| (-38 (-402 (-538)))))) (($ $) 83 (|has| |#1| (-545)))) (-4177 (((-622 |#1|) $) 166)) (-4040 ((|#1| $ (-751)) 153) (($ $ (-1055) (-751)) 126) (($ $ (-622 (-1055)) (-622 (-751))) 125)) (-3035 (((-3 $ #1#) $) 71 (-3891 (-3191 (|has| $ (-143)) (|has| |#1| (-886))) (|has| |#1| (-143))))) (-3461 (((-751)) 28)) (-1720 (($ $ $ (-751)) 171 (|has| |#1| (-170)))) (-2177 (((-112) $ $) 87 (|has| |#1| (-545)))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-1055)) 36) (($ $ (-622 (-1055))) 35) (($ $ (-1055) (-751)) 34) (($ $ (-622 (-1055)) (-622 (-751))) 33) (($ $ (-751)) 252) (($ $) 250) (($ $ (-1149)) 244 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149))) 243 (|has| |#1| (-876 (-1149)))) (($ $ (-1149) (-751)) 242 (|has| |#1| (-876 (-1149)))) (($ $ (-622 (-1149)) (-622 (-751))) 241 (|has| |#1| (-876 (-1149)))) (($ $ (-1 |#1| |#1|) (-751)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2896 (((-112) $ $) 74 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 73 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 6)) (-3017 (((-112) $ $) 75 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 72 (|has| |#1| (-827)))) (-4308 (($ $ |#1|) 154 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 156 (|has| |#1| (-38 (-402 (-538))))) (($ (-402 (-538)) $) 155 (|has| |#1| (-38 (-402 (-538))))) (($ |#1| $) 145) (($ $ |#1|) 144))) +(((-1207 |#1|) (-138) (-1025)) (T -1207)) +((-4126 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1207 *4)) (-4 *4 (-1025)) (-5 *2 (-1231 *4)))) (-4125 (*1 *2 *1) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-5 *2 (-1143 *3)))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1025)) (-4 *1 (-1207 *3)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) (-4123 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) (-4122 (*1 *2 *1 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1207 *3)))) (-4121 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1207 *4)))) (-4120 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) (-4118 (*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)))) (-4170 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) (-4117 (*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))) (-4116 (*1 *2 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-170)))) (-4159 (*1 *2 *2 *2) (-12 (-5 *2 (-402 *1)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-4 *3 (-545)))) (-4131 (*1 *2 *1 *1) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-4 *3 (-545)) (-5 *2 (-751)))) (-4115 (*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))) (-4114 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))) (-4114 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-4 *3 (-545)))) (-4113 (*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))) (-4112 (*1 *2 *1 *1) (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| -4313 *3) (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1207 *3)))) (-4111 (*1 *2 *1 *1) (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1207 *3)))) (-4159 (*1 *2 *3 *2) (-12 (-5 *3 (-402 *1)) (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538))))))) +(-13 (-926 |t#1| (-751) (-1055)) (-281 |t#1| |t#1|) (-281 $ $) (-229) (-227 |t#1|) (-10 -8 (-15 -4126 ((-1231 |t#1|) $ (-751))) (-15 -4125 ((-1143 |t#1|) $)) (-15 -4124 ($ (-1143 |t#1|))) (-15 -4136 ($ $ (-751))) (-15 -4123 ((-3 $ "failed") $ (-751))) (-15 -4122 ((-2 (|:| -2096 $) (|:| -3235 $)) $ $)) (-15 -4121 ((-2 (|:| -2096 $) (|:| -3235 $)) $ (-751))) (-15 -4120 ($ $ (-751))) (-15 -4119 ($ $ (-751))) (-15 -4118 ($ $ $)) (-15 -4170 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1124)) (-6 (-1124)) |%noBranch|) (IF (|has| |t#1| (-170)) (PROGN (-15 -4117 (|t#1| $)) (-15 -4116 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-6 (-281 (-402 $) (-402 $))) (-15 -4159 ((-402 $) (-402 $) (-402 $))) (-15 -4131 ((-751) $ $)) (-15 -4115 ($ $ $)) (-15 -4114 ((-3 $ "failed") $ $)) (-15 -4114 ((-3 (-402 $) "failed") (-402 $) $)) (-15 -4113 ($ $ $)) (-15 -4112 ((-2 (|:| -4313 |t#1|) (|:| -2096 $) (|:| -3235 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-446)) (-15 -4111 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-358)) (PROGN (-6 (-302)) (-6 -4349) (-15 -4159 (|t#1| (-402 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-538)))) (-15 -4172 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-751)) . T) ((-25) . T) ((-38 #2=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-598 (-527)) -12 (|has| |#1| (-598 (-527))) (|has| (-1055) (-598 (-527)))) ((-598 (-866 (-373))) -12 (|has| |#1| (-598 (-866 (-373)))) (|has| (-1055) (-598 (-866 (-373))))) ((-598 (-866 (-538))) -12 (|has| |#1| (-598 (-866 (-538)))) (|has| (-1055) (-598 (-866 (-538))))) ((-227 |#1|) . T) ((-229) . T) ((-281 (-402 $) (-402 $)) |has| |#1| (-545)) ((-281 |#1| |#1|) . T) ((-281 $ $) . T) ((-285) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-304 $) . T) ((-321 |#1| #1#) . T) ((-372 |#1|) . T) ((-407 |#1|) . T) ((-446) -3891 (|has| |#1| (-886)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-507 #3=(-1055) |#1|) . T) ((-507 #3# $) . T) ((-507 $ $) . T) ((-545) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-628 #2#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-621 (-538)) |has| |#1| (-621 (-538))) ((-621 |#1|) . T) ((-698 #2#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358))) ((-707) . T) ((-827) |has| |#1| (-827)) ((-876 #3#) . T) ((-876 (-1149)) |has| |#1| (-876 (-1149))) ((-862 (-373)) -12 (|has| |#1| (-862 (-373))) (|has| (-1055) (-862 (-373)))) ((-862 (-538)) -12 (|has| |#1| (-862 (-538))) (|has| (-1055) (-862 (-538)))) ((-926 |#1| #1# #3#) . T) ((-886) |has| |#1| (-886)) ((-897) |has| |#1| (-358)) ((-1014 (-402 (-538))) |has| |#1| (-1014 (-402 (-538)))) ((-1014 (-538)) |has| |#1| (-1014 (-538))) ((-1014 #3#) . T) ((-1014 |#1|) . T) ((-1031 #2#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-886)) (|has| |#1| (-545)) (|has| |#1| (-446)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1124) |has| |#1| (-1124)) ((-1190) |has| |#1| (-886))) +((-4318 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1208 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|))) (-1025) (-1207 |#1|) (-1025) (-1207 |#3|)) (T -1208)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1207 *6)) (-5 *1 (-1208 *5 *4 *6 *2)) (-4 *4 (-1207 *5))))) +(-10 -7 (-15 -4318 (|#4| (-1 |#3| |#1|) |#2|))) +((-3417 (((-622 (-1055)) $) 28)) (-4319 (($ $) 25)) (-3226 (($ |#2| |#3|) NIL) (($ $ (-1055) |#3|) 22) (($ $ (-622 (-1055)) (-622 |#3|)) 21)) (-3227 (($ $) 14)) (-3525 ((|#2| $) 12)) (-4307 ((|#3| $) 10))) +(((-1209 |#1| |#2| |#3|) (-10 -8 (-15 -3417 ((-622 (-1055)) |#1|)) (-15 -3226 (|#1| |#1| (-622 (-1055)) (-622 |#3|))) (-15 -3226 (|#1| |#1| (-1055) |#3|)) (-15 -4319 (|#1| |#1|)) (-15 -3226 (|#1| |#2| |#3|)) (-15 -4307 (|#3| |#1|)) (-15 -3227 (|#1| |#1|)) (-15 -3525 (|#2| |#1|))) (-1210 |#2| |#3|) (-1025) (-772)) (T -1209)) +NIL +(-10 -8 (-15 -3417 ((-622 (-1055)) |#1|)) (-15 -3226 (|#1| |#1| (-622 (-1055)) (-622 |#3|))) (-15 -3226 (|#1| |#1| (-1055) |#3|)) (-15 -4319 (|#1| |#1|)) (-15 -3226 (|#1| |#2| |#3|)) (-15 -4307 (|#3| |#1|)) (-15 -3227 (|#1| |#1|)) (-15 -3525 (|#2| |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4133 (((-1126 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-3225 (((-112) $) 71)) (-4131 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2502 (((-112) $) 30)) (-4136 (($ $ (-895)) 99)) (-4297 (((-112) $) 60)) (-3226 (($ |#1| |#2|) 59) (($ $ (-1055) |#2|) 74) (($ $ (-622 (-1055)) (-622 |#2|)) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4128 (($ $ |#2|) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4159 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1085)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-622 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-4307 ((|#2| $) 62)) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4040 ((|#1| $ |#2|) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-4129 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-622 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538))))))) +(((-1210 |#1| |#2|) (-138) (-1025) (-772)) (T -1210)) +((-4133 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-1126 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4159 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-1149)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4131 (*1 *2 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4130 (*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4130 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4129 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4317 (*2 (-1149)))) (-4 *2 (-1025)))) (-4128 (*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) (-4127 (*1 *2 *1 *3) (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1126 *3))))) +(-13 (-949 |t#1| |t#2| (-1055)) (-10 -8 (-15 -4133 ((-1126 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4159 (|t#1| $ |t#2|)) (-15 -4191 ((-1149) $)) (-15 -4132 (|t#1| $)) (-15 -4136 ($ $ (-895))) (-15 -4131 (|t#2| $)) (-15 -4131 (|t#2| $ |t#2|)) (-15 -4130 ($ $ |t#2|)) (-15 -4130 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4317 (|t#1| (-1149)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4129 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4128 ($ $ |t#2|)) (IF (|has| |t#2| (-1085)) (-6 (-281 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-229)) (IF (|has| |t#1| (-876 (-1149))) (-6 (-876 (-1149))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4127 ((-1126 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #1=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-101) . T) ((-111 #1# #1#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-281 $ $) |has| |#2| (-1085)) ((-285) |has| |#1| (-545)) ((-545) |has| |#1| (-545)) ((-628 #1#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-949 |#1| |#2| (-1055)) . T) ((-1031 #1#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-4134 ((|#2| |#2|) 12)) (-4329 (((-400 |#2|) |#2|) 14)) (-4135 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-538))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-538)))) 30))) +(((-1211 |#1| |#2|) (-10 -7 (-15 -4329 ((-400 |#2|) |#2|)) (-15 -4134 (|#2| |#2|)) (-15 -4135 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-538))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-538)))))) (-545) (-13 (-1207 |#1|) (-545) (-10 -8 (-15 -3495 ($ $ $))))) (T -1211)) +((-4135 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-538)))) (-4 *4 (-13 (-1207 *3) (-545) (-10 -8 (-15 -3495 ($ $ $))))) (-4 *3 (-545)) (-5 *1 (-1211 *3 *4)))) (-4134 (*1 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-1211 *3 *2)) (-4 *2 (-13 (-1207 *3) (-545) (-10 -8 (-15 -3495 ($ $ $))))))) (-4329 (*1 *2 *3) (-12 (-4 *4 (-545)) (-5 *2 (-400 *3)) (-5 *1 (-1211 *4 *3)) (-4 *3 (-13 (-1207 *4) (-545) (-10 -8 (-15 -3495 ($ $ $)))))))) +(-10 -7 (-15 -4329 ((-400 |#2|) |#2|)) (-15 -4134 (|#2| |#2|)) (-15 -4135 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-538))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-538)))))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 11)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) NIL) (($ $ (-402 (-538)) (-402 (-538))) NIL)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) NIL)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-1191 |#1| |#2| |#3|) #1="failed") $) 19) (((-3 (-1221 |#1| |#2| |#3|) #1#) $) 22)) (-3507 (((-1191 |#1| |#2| |#3|) $) NIL) (((-1221 |#1| |#2| |#3|) $) NIL)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4140 (((-402 (-538)) $) 57)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4141 (($ (-402 (-538)) (-1191 |#1| |#2| |#3|)) NIL)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) NIL) (((-402 (-538)) $ (-402 (-538))) NIL)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) NIL) (($ $ (-402 (-538))) NIL)) (-1702 (((-3 (-622 $) #2="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-402 (-538))) 30) (($ $ (-1055) (-402 (-538))) NIL) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4139 (((-1191 |#1| |#2| |#3|) $) 60)) (-4137 (((-3 (-1191 |#1| |#2| |#3|) "failed") $) NIL)) (-4138 (((-1191 |#1| |#2| |#3|) $) NIL)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) NIL (|has| |#1| (-358)))) (-4172 (($ $) 39 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) NIL (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 40 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) NIL)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) NIL) (($ $ $) NIL (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $ (-1228 |#2|)) 38)) (-4307 (((-402 (-538)) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) NIL)) (-4317 (((-840) $) 89) (($ (-538)) NIL) (($ |#1|) NIL (|has| |#1| (-170))) (($ (-1191 |#1| |#2| |#3|)) 16) (($ (-1221 |#1| |#2| |#3|)) 17) (($ (-1228 |#2|)) 36) (($ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 12)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 32 T CONST)) (-2997 (($) 26 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 34)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ (-538)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-1212 |#1| |#2| |#3|) (-13 (-1216 |#1| (-1191 |#1| |#2| |#3|)) (-1014 (-1221 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1212)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))) +(-13 (-1216 |#1| (-1191 |#1| |#2| |#3|)) (-1014 (-1221 |#1| |#2| |#3|)) (-10 -8 (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) +((-4318 (((-1212 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1212 |#1| |#3| |#5|)) 24))) +(((-1213 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4318 ((-1212 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1212 |#1| |#3| |#5|)))) (-1025) (-1025) (-1149) (-1149) |#1| |#2|) (T -1213)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1212 *5 *7 *9)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1212 *6 *8 *10)) (-5 *1 (-1213 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1149))))) +(-10 -7 (-15 -4318 ((-1212 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1212 |#1| |#3| |#5|)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) 96) (($ $ (-402 (-538)) (-402 (-538))) 95)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) 103)) (-3846 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 116 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 160 (|has| |#1| (-358)))) (-4329 (((-400 $) $) 161 (|has| |#1| (-358)))) (-3370 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3844 (($ $) 132 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) 169)) (-3848 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 118 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-2894 (($ $ $) 155 (|has| |#1| (-358)))) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 154 (|has| |#1| (-358)))) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 149 (|has| |#1| (-358)))) (-4086 (((-112) $) 162 (|has| |#1| (-358)))) (-3225 (((-112) $) 71)) (-3990 (($) 143 (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) 98) (((-402 (-538)) $ (-402 (-538))) 97)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 114 (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) 99) (($ $ (-402 (-538))) 168)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 158 (|has| |#1| (-358)))) (-4297 (((-112) $) 60)) (-3226 (($ |#1| (-402 (-538))) 59) (($ $ (-1055) (-402 (-538))) 74) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-4302 (($ $) 140 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-2013 (($ (-622 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-3593 (((-1131) $) 9)) (-2734 (($ $) 163 (|has| |#1| (-358)))) (-4172 (($ $) 167 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 166 (-3891 (-12 (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-538))))) (-12 (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-538)))))))) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 148 (|has| |#1| (-358)))) (-3495 (($ (-622 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-4092 (((-400 $) $) 159 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 156 (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 150 (|has| |#1| (-358)))) (-4303 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) 152 (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) 102) (($ $ $) 79 (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 153 (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-4307 (((-402 (-538)) $) 62)) (-3849 (($ $) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 120 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 128 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-3852 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-3850 (($ $) 138 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 126 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 136 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 124 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 134 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 122 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 113 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538))))))) +(((-1214 |#1|) (-138) (-1025)) (T -1214)) +((-4178 (*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| *4)))) (-4 *4 (-1025)) (-4 *1 (-1214 *4)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-4 *1 (-1214 *3)) (-4 *3 (-1025)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))) (-4172 (*1 *1 *1 *2) (-3891 (-12 (-5 *2 (-1149)) (-4 *1 (-1214 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-538)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1214 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3417 ((-622 *2) *3))) (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538))))))))) +(-13 (-1210 |t#1| (-402 (-538))) (-10 -8 (-15 -4178 ($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |t#1|))))) (-15 -4136 ($ $ (-402 (-538)))) (IF (|has| |t#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $)) (IF (|has| |t#1| (-15 -4172 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3417 ((-622 (-1149)) |t#1|))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-936)) (IF (|has| |t#1| (-29 (-538))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|) (IF (|has| |t#1| (-358)) (-6 (-358)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-402 (-538))) . T) ((-25) . T) ((-38 #2=(-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-281 $ $) |has| (-402 (-538)) (-1085)) ((-285) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-545) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-628 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) ((-949 |#1| #1# (-1055)) . T) ((-897) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-1031 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #1#) . T)) +((-3539 (((-112) $) 12)) (-3508 (((-3 |#3| "failed") $) 17)) (-3507 ((|#3| $) 14))) +(((-1215 |#1| |#2| |#3|) (-10 -8 (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| "failed") |#1|)) (-15 -3539 ((-112) |#1|))) (-1216 |#2| |#3|) (-1025) (-1193 |#2|)) (T -1215)) +NIL +(-10 -8 (-15 -3507 (|#3| |#1|)) (-15 -3508 ((-3 |#3| "failed") |#1|)) (-15 -3539 ((-112) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) 96) (($ $ (-402 (-538)) (-402 (-538))) 95)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) 103)) (-3846 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 116 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 160 (|has| |#1| (-358)))) (-4329 (((-400 $) $) 161 (|has| |#1| (-358)))) (-3370 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) 151 (|has| |#1| (-358)))) (-3844 (($ $) 132 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) 169)) (-3848 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 118 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#2| "failed") $) 180)) (-3507 ((|#2| $) 179)) (-2894 (($ $ $) 155 (|has| |#1| (-358)))) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-4140 (((-402 (-538)) $) 177)) (-2893 (($ $ $) 154 (|has| |#1| (-358)))) (-4141 (($ (-402 (-538)) |#2|) 178)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 149 (|has| |#1| (-358)))) (-4086 (((-112) $) 162 (|has| |#1| (-358)))) (-3225 (((-112) $) 71)) (-3990 (($) 143 (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) 98) (((-402 (-538)) $ (-402 (-538))) 97)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 114 (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) 99) (($ $ (-402 (-538))) 168)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 158 (|has| |#1| (-358)))) (-4297 (((-112) $) 60)) (-3226 (($ |#1| (-402 (-538))) 59) (($ $ (-1055) (-402 (-538))) 74) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-4302 (($ $) 140 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-2013 (($ (-622 $)) 147 (|has| |#1| (-358))) (($ $ $) 146 (|has| |#1| (-358)))) (-4139 ((|#2| $) 176)) (-4137 (((-3 |#2| "failed") $) 174)) (-4138 ((|#2| $) 175)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 163 (|has| |#1| (-358)))) (-4172 (($ $) 167 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 166 (-3891 (-12 (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-538))))) (-12 (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-538)))))))) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 148 (|has| |#1| (-358)))) (-3495 (($ (-622 $)) 145 (|has| |#1| (-358))) (($ $ $) 144 (|has| |#1| (-358)))) (-4092 (((-400 $) $) 159 (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 157 (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 156 (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 150 (|has| |#1| (-358)))) (-4303 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) 152 (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) 102) (($ $ $) 79 (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 153 (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-4307 (((-402 (-538)) $) 62)) (-3849 (($ $) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 120 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 128 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 45 (|has| |#1| (-170))) (($ |#2|) 181) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-3852 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-3850 (($ $) 138 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 126 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 136 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 124 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 134 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 122 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358))) (($ $ $) 165 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 164 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 113 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538))))))) +(((-1216 |#1| |#2|) (-138) (-1025) (-1193 |t#1|)) (T -1216)) +((-4307 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1193 *3)) (-5 *2 (-402 (-538))))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1216 *3 *2)) (-4 *2 (-1193 *3)))) (-4141 (*1 *1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-4 *4 (-1025)) (-4 *1 (-1216 *4 *3)) (-4 *3 (-1193 *4)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1193 *3)) (-5 *2 (-402 (-538))))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3)))) (-4137 (*1 *2 *1) (|partial| -12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3))))) +(-13 (-1214 |t#1|) (-1014 |t#2|) (-10 -8 (-15 -4141 ($ (-402 (-538)) |t#2|)) (-15 -4140 ((-402 (-538)) $)) (-15 -4139 (|t#2| $)) (-15 -4307 ((-402 (-538)) $)) (-15 -4317 ($ |t#2|)) (-15 -4138 (|t#2| $)) (-15 -4137 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-402 (-538))) . T) ((-25) . T) ((-38 #2=(-402 (-538))) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))) ((-239) |has| |#1| (-358)) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-281 $ $) |has| (-402 (-538)) (-1085)) ((-285) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-302) |has| |#1| (-358)) ((-358) |has| |#1| (-358)) ((-446) |has| |#1| (-358)) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-545) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-628 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358))) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) ((-949 |#1| #1# (-1055)) . T) ((-897) |has| |#1| (-358)) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-1014 |#2|) . T) ((-1031 #2#) -3891 (|has| |#1| (-358)) (|has| |#1| (-38 (-402 (-538))))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-358)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))) ((-1190) |has| |#1| (-358)) ((-1210 |#1| #1#) . T) ((-1214 |#1|) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 96)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) NIL (|has| |#1| (-545)))) (-4130 (($ $ (-402 (-538))) 106) (($ $ (-402 (-538)) (-402 (-538))) 108)) (-4133 (((-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|))) $) 51)) (-3846 (($ $) 180 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 156 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-4134 (($ $) NIL (|has| |#1| (-358)))) (-4329 (((-400 $) $) NIL (|has| |#1| (-358)))) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1705 (((-112) $ $) NIL (|has| |#1| (-358)))) (-3844 (($ $) 176 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 152 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-751) (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#1|)))) 61)) (-3848 (($ $) 184 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 160 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| "failed") $) NIL)) (-3507 ((|#2| $) NIL)) (-2894 (($ $ $) NIL (|has| |#1| (-358)))) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) 79)) (-4140 (((-402 (-538)) $) 13)) (-2893 (($ $ $) NIL (|has| |#1| (-358)))) (-4141 (($ (-402 (-538)) |#2|) 11)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) NIL (|has| |#1| (-358)))) (-4086 (((-112) $) NIL (|has| |#1| (-358)))) (-3225 (((-112) $) 68)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-402 (-538)) $) 103) (((-402 (-538)) $ (-402 (-538))) 104)) (-2502 (((-112) $) NIL)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) 120) (($ $ (-402 (-538))) 118)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-402 (-538))) 31) (($ $ (-1055) (-402 (-538))) NIL) (($ $ (-622 (-1055)) (-622 (-402 (-538)))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) 115)) (-4302 (($ $) 150 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-2013 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4139 ((|#2| $) 12)) (-4137 (((-3 |#2| "failed") $) 41)) (-4138 ((|#2| $) 42)) (-3593 (((-1131) $) NIL)) (-2734 (($ $) 93 (|has| |#1| (-358)))) (-4172 (($ $) 135 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 140 (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))))))) (-3594 (((-1093) $) NIL)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) NIL (|has| |#1| (-358)))) (-3495 (($ (-622 $)) NIL (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-358)))) (-4092 (((-400 $) $) NIL (|has| |#1| (-358)))) (-1703 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-358))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) NIL (|has| |#1| (-358)))) (-4128 (($ $ (-402 (-538))) 112)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-3073 (((-3 (-622 $) "failed") (-622 $) $) NIL (|has| |#1| (-358)))) (-4303 (($ $) 148 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))))) (-1704 (((-751) $) NIL (|has| |#1| (-358)))) (-4159 ((|#1| $ (-402 (-538))) 100) (($ $ $) 86 (|has| (-402 (-538)) (-1085)))) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) NIL (|has| |#1| (-358)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) 127 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-4307 (((-402 (-538)) $) 16)) (-3849 (($ $) 186 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 162 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 182 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 158 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 178 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 154 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 110)) (-4317 (((-840) $) NIL) (($ (-538)) 35) (($ |#1|) 27 (|has| |#1| (-170))) (($ |#2|) 32) (($ (-402 (-538))) 128 (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545)))) (-4040 ((|#1| $ (-402 (-538))) 99)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) 117)) (-4132 ((|#1| $) 98)) (-3852 (($ $) 192 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 168 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) 188 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 164 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 196 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 172 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-402 (-538))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-402 (-538))))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 198 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 174 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 194 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 170 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 190 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 166 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 21 T CONST)) (-2997 (($) 17 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-402 (-538)) |#1|))))) (-3387 (((-112) $ $) 66)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358))) (($ $ $) 92 (|has| |#1| (-358)))) (-4197 (($ $) 131) (($ $ $) 72)) (-4199 (($ $ $) 70)) (** (($ $ (-895)) NIL) (($ $ (-751)) 76) (($ $ (-538)) 145 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 146 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-1217 |#1| |#2|) (-1216 |#1| |#2|) (-1025) (-1193 |#1|)) (T -1217)) +NIL +(-1216 |#1| |#2|) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 34)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL)) (-2178 (($ $) NIL)) (-2176 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 (-538) #1="failed") $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1014 (-538)))) (((-3 (-402 (-538)) #1#) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1014 (-402 (-538))))) (((-3 (-1212 |#2| |#3| |#4|) #1#) $) 20)) (-3507 (((-538) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1014 (-538)))) (((-402 (-538)) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-1014 (-402 (-538))))) (((-1212 |#2| |#3| |#4|) $) NIL)) (-4319 (($ $) 35)) (-3821 (((-3 $ "failed") $) 25)) (-3857 (($ $) NIL (|has| (-1212 |#2| |#3| |#4|) (-446)))) (-1721 (($ $ (-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|) $) NIL)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) 11)) (-4297 (((-112) $) NIL)) (-3226 (($ (-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) 23)) (-3153 (((-314 |#2| |#3| |#4|) $) NIL)) (-1722 (($ (-1 (-314 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) $) NIL)) (-4318 (($ (-1 (-1212 |#2| |#3| |#4|) (-1212 |#2| |#3| |#4|)) $) NIL)) (-4143 (((-3 (-819 |#2|) "failed") $) 75)) (-3227 (($ $) NIL)) (-3525 (((-1212 |#2| |#3| |#4|) $) 18)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-1916 (((-112) $) NIL)) (-1915 (((-1212 |#2| |#3| |#4|) $) NIL)) (-3820 (((-3 $ "failed") $ (-1212 |#2| |#3| |#4|)) NIL (|has| (-1212 |#2| |#3| |#4|) (-545))) (((-3 $ "failed") $ $) NIL)) (-4142 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-622 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $) 58)) (-4307 (((-314 |#2| |#3| |#4|) $) 14)) (-3150 (((-1212 |#2| |#3| |#4|) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-446)))) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ (-1212 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-402 (-538))) NIL (-3891 (|has| (-1212 |#2| |#3| |#4|) (-1014 (-402 (-538)))) (|has| (-1212 |#2| |#3| |#4|) (-38 (-402 (-538))))))) (-4177 (((-622 (-1212 |#2| |#3| |#4|)) $) NIL)) (-4040 (((-1212 |#2| |#3| |#4|) $ (-314 |#2| |#3| |#4|)) NIL)) (-3035 (((-3 $ "failed") $) NIL (|has| (-1212 |#2| |#3| |#4|) (-143)))) (-3461 (((-751)) NIL)) (-1720 (($ $ $ (-751)) NIL (|has| (-1212 |#2| |#3| |#4|) (-170)))) (-2177 (((-112) $ $) NIL)) (-2991 (($) 63 T CONST)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ (-1212 |#2| |#3| |#4|)) NIL (|has| (-1212 |#2| |#3| |#4|) (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ (-1212 |#2| |#3| |#4|)) NIL) (($ (-1212 |#2| |#3| |#4|) $) NIL) (($ (-402 (-538)) $) NIL (|has| (-1212 |#2| |#3| |#4|) (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| (-1212 |#2| |#3| |#4|) (-38 (-402 (-538))))))) +(((-1218 |#1| |#2| |#3| |#4|) (-13 (-321 (-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-545) (-10 -8 (-15 -4143 ((-3 (-819 |#2|) "failed") $)) (-15 -4142 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-622 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $)))) (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446)) (-13 (-27) (-1171) (-416 |#1|)) (-1149) |#2|) (T -1218)) +((-4143 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) (-5 *2 (-819 *4)) (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4))) (-4142 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 *4 *5 *6)) (|:| |%expon| (-314 *4 *5 *6)) (|:| |%expTerms| (-622 (-2 (|:| |k| (-402 (-538))) (|:| |c| *4)))))) (|:| |%type| (-1131)))) (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4)))) +(-13 (-321 (-1212 |#2| |#3| |#4|) (-314 |#2| |#3| |#4|)) (-545) (-10 -8 (-15 -4143 ((-3 (-819 |#2|) "failed") $)) (-15 -4142 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1212 |#2| |#3| |#4|)) (|:| |%expon| (-314 |#2| |#3| |#4|)) (|:| |%expTerms| (-622 (-2 (|:| |k| (-402 (-538))) (|:| |c| |#2|)))))) (|:| |%type| (-1131))) "failed") $)))) +((-3761 ((|#2| $) 29)) (-4154 ((|#2| $) 18)) (-4156 (($ $) 36)) (-4144 (($ $ (-538)) 64)) (-1271 (((-112) $ (-751)) 33)) (-3358 ((|#2| $ |#2|) 61)) (-4145 ((|#2| $ |#2|) 59)) (-4147 ((|#2| $ #1="value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3359 (($ $ (-622 $)) 60)) (-4155 ((|#2| $) 17)) (-4158 (($ $) NIL) (($ $ (-751)) 42)) (-3364 (((-622 $) $) 26)) (-3360 (((-112) $ $) 50)) (-4082 (((-112) $ (-751)) 32)) (-4079 (((-112) $ (-751)) 31)) (-3881 (((-112) $) 28)) (-4157 ((|#2| $) 24) (($ $ (-751)) 46)) (-4159 ((|#2| $ #1#) NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3996 (((-112) $) 22)) (-4151 (($ $) 39)) (-4149 (($ $) 65)) (-4152 (((-751) $) 41)) (-4153 (($ $) 40)) (-4161 (($ $ $) 58) (($ |#2| $) NIL)) (-3876 (((-622 $) $) 27)) (-3387 (((-112) $ $) 48)) (-4316 (((-751) $) 35))) +(((-1219 |#1| |#2|) (-10 -8 (-15 -4144 (|#1| |#1| (-538))) (-15 -4147 (|#2| |#1| "last" |#2|)) (-15 -4145 (|#2| |#1| |#2|)) (-15 -4147 (|#1| |#1| "rest" |#1|)) (-15 -4147 (|#2| |#1| "first" |#2|)) (-15 -4149 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 ((-751) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4154 (|#2| |#1|)) (-15 -4155 (|#2| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "last")) (-15 -4157 (|#2| |#1|)) (-15 -4158 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| "rest")) (-15 -4158 (|#1| |#1|)) (-15 -4159 (|#2| |#1| "first")) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#1|)) (-15 -3358 (|#2| |#1| |#2|)) (-15 -4147 (|#2| |#1| #1="value" |#2|)) (-15 -3359 (|#1| |#1| (-622 |#1|))) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -3761 (|#2| |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751)))) (-1220 |#2|) (-1185)) (T -1219)) +NIL +(-10 -8 (-15 -4144 (|#1| |#1| (-538))) (-15 -4147 (|#2| |#1| "last" |#2|)) (-15 -4145 (|#2| |#1| |#2|)) (-15 -4147 (|#1| |#1| "rest" |#1|)) (-15 -4147 (|#2| |#1| "first" |#2|)) (-15 -4149 (|#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -4152 ((-751) |#1|)) (-15 -4153 (|#1| |#1|)) (-15 -4154 (|#2| |#1|)) (-15 -4155 (|#2| |#1|)) (-15 -4156 (|#1| |#1|)) (-15 -4157 (|#1| |#1| (-751))) (-15 -4159 (|#2| |#1| "last")) (-15 -4157 (|#2| |#1|)) (-15 -4158 (|#1| |#1| (-751))) (-15 -4159 (|#1| |#1| "rest")) (-15 -4158 (|#1| |#1|)) (-15 -4159 (|#2| |#1| "first")) (-15 -4161 (|#1| |#2| |#1|)) (-15 -4161 (|#1| |#1| |#1|)) (-15 -3358 (|#2| |#1| |#2|)) (-15 -4147 (|#2| |#1| #1="value" |#2|)) (-15 -3359 (|#1| |#1| (-622 |#1|))) (-15 -3360 ((-112) |#1| |#1|)) (-15 -3996 ((-112) |#1|)) (-15 -4159 (|#2| |#1| #1#)) (-15 -3761 (|#2| |#1|)) (-15 -3881 ((-112) |#1|)) (-15 -3364 ((-622 |#1|) |#1|)) (-15 -3876 ((-622 |#1|) |#1|)) (-15 -3387 ((-112) |#1| |#1|)) (-15 -4316 ((-751) |#1|)) (-15 -1271 ((-112) |#1| (-751))) (-15 -4082 ((-112) |#1| (-751))) (-15 -4079 ((-112) |#1| (-751)))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-3761 ((|#1| $) 48)) (-4154 ((|#1| $) 65)) (-4156 (($ $) 67)) (-4144 (($ $ (-538)) 52 (|has| $ (-6 -4354)))) (-1271 (((-112) $ (-751)) 8)) (-3358 ((|#1| $ |#1|) 39 (|has| $ (-6 -4354)))) (-4146 (($ $ $) 56 (|has| $ (-6 -4354)))) (-4145 ((|#1| $ |#1|) 54 (|has| $ (-6 -4354)))) (-4148 ((|#1| $ |#1|) 58 (|has| $ (-6 -4354)))) (-4147 ((|#1| $ #1="value" |#1|) 40 (|has| $ (-6 -4354))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4354))) (($ $ "rest" $) 55 (|has| $ (-6 -4354))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4354)))) (-3359 (($ $ (-622 $)) 41 (|has| $ (-6 -4354)))) (-4155 ((|#1| $) 66)) (-3896 (($) 7 T CONST)) (-4158 (($ $) 73) (($ $ (-751)) 71)) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-3364 (((-622 $) $) 50)) (-3360 (((-112) $ $) 42 (|has| |#1| (-1074)))) (-4082 (((-112) $ (-751)) 9)) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35)) (-4079 (((-112) $ (-751)) 10)) (-3363 (((-622 |#1|) $) 45)) (-3881 (((-112) $) 49)) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-4157 ((|#1| $) 70) (($ $ (-751)) 68)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 76) (($ $ (-751)) 74)) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ #1#) 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3362 (((-538) $ $) 44)) (-3996 (((-112) $) 46)) (-4151 (($ $) 62)) (-4149 (($ $) 59 (|has| $ (-6 -4354)))) (-4152 (((-751) $) 63)) (-4153 (($ $) 64)) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3759 (($ $) 13)) (-4150 (($ $ $) 61 (|has| $ (-6 -4354))) (($ $ |#1|) 60 (|has| $ (-6 -4354)))) (-4161 (($ $ $) 78) (($ |#1| $) 77)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-3876 (((-622 $) $) 51)) (-3361 (((-112) $ $) 43 (|has| |#1| (-1074)))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-1220 |#1|) (-138) (-1185)) (T -1220)) +((-4161 (*1 *1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4161 (*1 *1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4160 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) (-4158 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) (-4158 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) (-4157 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4159 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4157 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) (-4156 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4155 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4154 (*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4153 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-1220 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4150 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4150 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4149 (*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4148 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4146 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4147 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) (-4145 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4147 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) (-4144 (*1 *1 *1 *2) (-12 (-5 *2 (-538)) (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) (-4 *3 (-1185))))) +(-13 (-986 |t#1|) (-10 -8 (-15 -4161 ($ $ $)) (-15 -4161 ($ |t#1| $)) (-15 -4160 (|t#1| $)) (-15 -4159 (|t#1| $ "first")) (-15 -4160 ($ $ (-751))) (-15 -4158 ($ $)) (-15 -4159 ($ $ "rest")) (-15 -4158 ($ $ (-751))) (-15 -4157 (|t#1| $)) (-15 -4159 (|t#1| $ "last")) (-15 -4157 ($ $ (-751))) (-15 -4156 ($ $)) (-15 -4155 (|t#1| $)) (-15 -4154 (|t#1| $)) (-15 -4153 ($ $)) (-15 -4152 ((-751) $)) (-15 -4151 ($ $)) (IF (|has| $ (-6 -4354)) (PROGN (-15 -4150 ($ $ $)) (-15 -4150 ($ $ |t#1|)) (-15 -4149 ($ $)) (-15 -4148 (|t#1| $ |t#1|)) (-15 -4147 (|t#1| $ "first" |t#1|)) (-15 -4146 ($ $ $)) (-15 -4147 ($ $ "rest" $)) (-15 -4145 (|t#1| $ |t#1|)) (-15 -4147 (|t#1| $ "last" |t#1|)) (-15 -4144 ($ $ (-538)))) |%noBranch|))) +(((-34) . T) ((-101) |has| |#1| (-1074)) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-597 (-840)))) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-483 |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-986 |#1|) . T) ((-1074) |has| |#1| (-1074)) ((-1185) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-3417 (((-622 (-1055)) $) NIL)) (-4191 (((-1149) $) 87)) (-4171 (((-1200 |#2| |#1|) $ (-751)) 73)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) NIL (|has| |#1| (-545)))) (-2178 (($ $) NIL (|has| |#1| (-545)))) (-2176 (((-112) $) 137 (|has| |#1| (-545)))) (-4130 (($ $ (-751)) 122) (($ $ (-751) (-751)) 124)) (-4133 (((-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 42)) (-3846 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) NIL)) (-3370 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 53) (($ (-1126 |#1|)) NIL)) (-3848 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) NIL T CONST)) (-4164 (($ $) 128)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4176 (($ $) 135)) (-4174 (((-922 |#1|) $ (-751)) 63) (((-922 |#1|) $ (-751) (-751)) 65)) (-3225 (((-112) $) NIL)) (-3990 (($) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $) NIL) (((-751) $ (-751)) NIL)) (-2502 (((-112) $) NIL)) (-4167 (($ $) 112)) (-3344 (($ $ (-538)) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4163 (($ (-538) (-538) $) 130)) (-4136 (($ $ (-895)) 134)) (-4175 (($ (-1 |#1| (-538)) $) 106)) (-4297 (((-112) $) NIL)) (-3226 (($ |#1| (-751)) 15) (($ $ (-1055) (-751)) NIL) (($ $ (-622 (-1055)) (-622 (-751))) NIL)) (-4318 (($ (-1 |#1| |#1|) $) 94)) (-4302 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-4168 (($ $) 110)) (-4169 (($ $) 108)) (-4162 (($ (-538) (-538) $) 132)) (-4172 (($ $) 145 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 151 (-3891 (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171))) (-12 (|has| |#1| (-38 (-402 (-538)))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|)))))) (($ $ (-1228 |#2|)) 146 (|has| |#1| (-38 (-402 (-538)))))) (-3594 (((-1093) $) NIL)) (-4165 (($ $ (-538) (-538)) 116)) (-4128 (($ $ (-751)) 118)) (-3820 (((-3 $ "failed") $ $) NIL (|has| |#1| (-545)))) (-4303 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4166 (($ $) 114)) (-4127 (((-1126 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-4159 ((|#1| $ (-751)) 91) (($ $ $) 126 (|has| (-751) (-1085)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) 103 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $ (-1228 |#2|)) 99)) (-4307 (((-751) $) NIL)) (-3849 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 120)) (-4317 (((-840) $) NIL) (($ (-538)) 24) (($ (-402 (-538))) 143 (|has| |#1| (-38 (-402 (-538))))) (($ $) NIL (|has| |#1| (-545))) (($ |#1|) 23 (|has| |#1| (-170))) (($ (-1200 |#2| |#1|)) 80) (($ (-1228 |#2|)) 20)) (-4177 (((-1126 |#1|) $) NIL)) (-4040 ((|#1| $ (-751)) 90)) (-3035 (((-3 $ "failed") $) NIL (|has| |#1| (-143)))) (-3461 (((-751)) NIL)) (-4132 ((|#1| $) 88)) (-3852 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3850 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-751)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) NIL (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 17 T CONST)) (-2997 (($) 13 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) NIL (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-3387 (((-112) $ $) NIL)) (-4308 (($ $ |#1|) NIL (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) 102)) (-4199 (($ $ $) 18)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ |#1|) 140 (|has| |#1| (-358))) (($ $ $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-402 (-538)) $) NIL (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) NIL (|has| |#1| (-38 (-402 (-538))))))) +(((-1221 |#1| |#2| |#3|) (-13 (-1224 |#1|) (-10 -8 (-15 -4317 ($ (-1200 |#2| |#1|))) (-15 -4171 ((-1200 |#2| |#1|) $ (-751))) (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (-15 -4169 ($ $)) (-15 -4168 ($ $)) (-15 -4167 ($ $)) (-15 -4166 ($ $)) (-15 -4165 ($ $ (-538) (-538))) (-15 -4164 ($ $)) (-15 -4163 ($ (-538) (-538) $)) (-15 -4162 ($ (-538) (-538) $)) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) (-1025) (-1149) |#1|) (T -1221)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) (-5 *1 (-1221 *3 *4 *5)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1221 *4 *5 *6)) (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))) (-4317 (*1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4170 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *5 *3))) (-4169 (*1 *1 *1) (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-4168 (*1 *1 *1) (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-4167 (*1 *1 *1) (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-4166 (*1 *1 *1) (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-4165 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-4164 (*1 *1 *1) (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2))) (-4163 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-4162 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3))) (-4172 (*1 *1 *1 *2) (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3)))) +(-13 (-1224 |#1|) (-10 -8 (-15 -4317 ($ (-1200 |#2| |#1|))) (-15 -4171 ((-1200 |#2| |#1|) $ (-751))) (-15 -4317 ($ (-1228 |#2|))) (-15 -4170 ($ $ (-1228 |#2|))) (-15 -4169 ($ $)) (-15 -4168 ($ $)) (-15 -4167 ($ $)) (-15 -4166 ($ $)) (-15 -4165 ($ $ (-538) (-538))) (-15 -4164 ($ $)) (-15 -4163 ($ (-538) (-538) $)) (-15 -4162 ($ (-538) (-538) $)) (IF (|has| |#1| (-38 (-402 (-538)))) (-15 -4172 ($ $ (-1228 |#2|))) |%noBranch|))) +((-4318 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1222 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4318 (|#4| (-1 |#2| |#1|) |#3|))) (-1025) (-1025) (-1224 |#1|) (-1224 |#2|)) (T -1222)) +((-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1224 *6)) (-5 *1 (-1222 *5 *6 *4 *2)) (-4 *4 (-1224 *5))))) +(-10 -7 (-15 -4318 (|#4| (-1 |#2| |#1|) |#3|))) +((-3539 (((-112) $) 15)) (-3846 (($ $) 92)) (-4002 (($ $) 68)) (-3844 (($ $) 88)) (-4001 (($ $) 64)) (-3848 (($ $) 96)) (-4000 (($ $) 72)) (-4302 (($ $) 62)) (-4303 (($ $) 60)) (-3849 (($ $) 98)) (-3999 (($ $) 74)) (-3847 (($ $) 94)) (-3998 (($ $) 70)) (-3845 (($ $) 90)) (-3997 (($ $) 66)) (-4317 (((-840) $) 48) (($ (-538)) NIL) (($ (-402 (-538))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3852 (($ $) 104)) (-3840 (($ $) 80)) (-3850 (($ $) 100)) (-3838 (($ $) 76)) (-3854 (($ $) 108)) (-3842 (($ $) 84)) (-3855 (($ $) 110)) (-3843 (($ $) 86)) (-3853 (($ $) 106)) (-3841 (($ $) 82)) (-3851 (($ $) 102)) (-3839 (($ $) 78)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-402 (-538))) 58))) +(((-1223 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -4002 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895))) (-15 -3539 ((-112) |#1|)) (-15 -4317 ((-840) |#1|))) (-1224 |#2|) (-1025)) (T -1223)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-402 (-538)))) (-15 -4002 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4000 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3998 (|#1| |#1|)) (-15 -3997 (|#1| |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3843 (|#1| |#1|)) (-15 -3842 (|#1| |#1|)) (-15 -3838 (|#1| |#1|)) (-15 -3840 (|#1| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -3844 (|#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3851 (|#1| |#1|)) (-15 -3853 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -3854 (|#1| |#1|)) (-15 -3850 (|#1| |#1|)) (-15 -3852 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -4303 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4317 (|#1| |#2|)) (-15 -4317 (|#1| |#1|)) (-15 -4317 (|#1| (-402 (-538)))) (-15 -4317 (|#1| (-538))) (-15 ** (|#1| |#1| (-751))) (-15 ** (|#1| |#1| (-895))) (-15 -3539 ((-112) |#1|)) (-15 -4317 ((-840) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-3417 (((-622 (-1055)) $) 72)) (-4191 (((-1149) $) 101)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 49 (|has| |#1| (-545)))) (-2178 (($ $) 50 (|has| |#1| (-545)))) (-2176 (((-112) $) 52 (|has| |#1| (-545)))) (-4130 (($ $ (-751)) 96) (($ $ (-751) (-751)) 95)) (-4133 (((-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|))) $) 103)) (-3846 (($ $) 133 (|has| |#1| (-38 (-402 (-538)))))) (-4002 (($ $) 116 (|has| |#1| (-38 (-402 (-538)))))) (-1368 (((-3 $ "failed") $ $) 19)) (-3370 (($ $) 115 (|has| |#1| (-38 (-402 (-538)))))) (-3844 (($ $) 132 (|has| |#1| (-38 (-402 (-538)))))) (-4001 (($ $) 117 (|has| |#1| (-38 (-402 (-538)))))) (-4178 (($ (-1126 (-2 (|:| |k| (-751)) (|:| |c| |#1|)))) 153) (($ (-1126 |#1|)) 151)) (-3848 (($ $) 131 (|has| |#1| (-38 (-402 (-538)))))) (-4000 (($ $) 118 (|has| |#1| (-38 (-402 (-538)))))) (-3896 (($) 17 T CONST)) (-4319 (($ $) 58)) (-3821 (((-3 $ "failed") $) 32)) (-4176 (($ $) 150)) (-4174 (((-922 |#1|) $ (-751)) 148) (((-922 |#1|) $ (-751) (-751)) 147)) (-3225 (((-112) $) 71)) (-3990 (($) 143 (|has| |#1| (-38 (-402 (-538)))))) (-4131 (((-751) $) 98) (((-751) $ (-751)) 97)) (-2502 (((-112) $) 30)) (-3344 (($ $ (-538)) 114 (|has| |#1| (-38 (-402 (-538)))))) (-4136 (($ $ (-895)) 99)) (-4175 (($ (-1 |#1| (-538)) $) 149)) (-4297 (((-112) $) 60)) (-3226 (($ |#1| (-751)) 59) (($ $ (-1055) (-751)) 74) (($ $ (-622 (-1055)) (-622 (-751))) 73)) (-4318 (($ (-1 |#1| |#1|) $) 61)) (-4302 (($ $) 140 (|has| |#1| (-38 (-402 (-538)))))) (-3227 (($ $) 63)) (-3525 ((|#1| $) 64)) (-3593 (((-1131) $) 9)) (-4172 (($ $) 145 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-1149)) 144 (-3891 (-12 (|has| |#1| (-29 (-538))) (|has| |#1| (-936)) (|has| |#1| (-1171)) (|has| |#1| (-38 (-402 (-538))))) (-12 (|has| |#1| (-15 -3417 ((-622 (-1149)) |#1|))) (|has| |#1| (-15 -4172 (|#1| |#1| (-1149)))) (|has| |#1| (-38 (-402 (-538)))))))) (-3594 (((-1093) $) 10)) (-4128 (($ $ (-751)) 93)) (-3820 (((-3 $ "failed") $ $) 48 (|has| |#1| (-545)))) (-4303 (($ $) 141 (|has| |#1| (-38 (-402 (-538)))))) (-4127 (((-1126 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-751)))))) (-4159 ((|#1| $ (-751)) 102) (($ $ $) 79 (|has| (-751) (-1085)))) (-4170 (($ $ (-622 (-1149)) (-622 (-751))) 87 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) 86 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) 85 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) 84 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) 82 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-4307 (((-751) $) 62)) (-3849 (($ $) 130 (|has| |#1| (-38 (-402 (-538)))))) (-3999 (($ $) 119 (|has| |#1| (-38 (-402 (-538)))))) (-3847 (($ $) 129 (|has| |#1| (-38 (-402 (-538)))))) (-3998 (($ $) 120 (|has| |#1| (-38 (-402 (-538)))))) (-3845 (($ $) 128 (|has| |#1| (-38 (-402 (-538)))))) (-3997 (($ $) 121 (|has| |#1| (-38 (-402 (-538)))))) (-3224 (($ $) 70)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ (-402 (-538))) 55 (|has| |#1| (-38 (-402 (-538))))) (($ $) 47 (|has| |#1| (-545))) (($ |#1|) 45 (|has| |#1| (-170)))) (-4177 (((-1126 |#1|) $) 152)) (-4040 ((|#1| $ (-751)) 57)) (-3035 (((-3 $ "failed") $) 46 (|has| |#1| (-143)))) (-3461 (((-751)) 28)) (-4132 ((|#1| $) 100)) (-3852 (($ $) 139 (|has| |#1| (-38 (-402 (-538)))))) (-3840 (($ $) 127 (|has| |#1| (-38 (-402 (-538)))))) (-2177 (((-112) $ $) 51 (|has| |#1| (-545)))) (-3850 (($ $) 138 (|has| |#1| (-38 (-402 (-538)))))) (-3838 (($ $) 126 (|has| |#1| (-38 (-402 (-538)))))) (-3854 (($ $) 137 (|has| |#1| (-38 (-402 (-538)))))) (-3842 (($ $) 125 (|has| |#1| (-38 (-402 (-538)))))) (-4129 ((|#1| $ (-751)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-751)))) (|has| |#1| (-15 -4317 (|#1| (-1149))))))) (-3855 (($ $) 136 (|has| |#1| (-38 (-402 (-538)))))) (-3843 (($ $) 124 (|has| |#1| (-38 (-402 (-538)))))) (-3853 (($ $) 135 (|has| |#1| (-38 (-402 (-538)))))) (-3841 (($ $) 123 (|has| |#1| (-38 (-402 (-538)))))) (-3851 (($ $) 134 (|has| |#1| (-38 (-402 (-538)))))) (-3839 (($ $) 122 (|has| |#1| (-38 (-402 (-538)))))) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3002 (($ $ (-622 (-1149)) (-622 (-751))) 91 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149) (-751)) 90 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-622 (-1149))) 89 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-1149)) 88 (-12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (($ $ (-751)) 83 (|has| |#1| (-15 * (|#1| (-751) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-751) |#1|))))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 56 (|has| |#1| (-358)))) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ |#1|) 146 (|has| |#1| (-358))) (($ $ $) 142 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 113 (|has| |#1| (-38 (-402 (-538)))))) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-402 (-538)) $) 54 (|has| |#1| (-38 (-402 (-538))))) (($ $ (-402 (-538))) 53 (|has| |#1| (-38 (-402 (-538))))))) +(((-1224 |#1|) (-138) (-1025)) (T -1224)) +((-4178 (*1 *1 *2) (-12 (-5 *2 (-1126 (-2 (|:| |k| (-751)) (|:| |c| *3)))) (-4 *3 (-1025)) (-4 *1 (-1224 *3)))) (-4177 (*1 *2 *1) (-12 (-4 *1 (-1224 *3)) (-4 *3 (-1025)) (-5 *2 (-1126 *3)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-4 *1 (-1224 *3)))) (-4176 (*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)))) (-4175 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-538))) (-4 *1 (-1224 *3)) (-4 *3 (-1025)))) (-4174 (*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1224 *4)) (-4 *4 (-1025)) (-5 *2 (-922 *4)))) (-4174 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-4 *1 (-1224 *4)) (-4 *4 (-1025)) (-5 *2 (-922 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) (-4172 (*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))) (-4172 (*1 *1 *1 *2) (-3891 (-12 (-5 *2 (-1149)) (-4 *1 (-1224 *3)) (-4 *3 (-1025)) (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171)) (-4 *3 (-38 (-402 (-538)))))) (-12 (-5 *2 (-1149)) (-4 *1 (-1224 *3)) (-4 *3 (-1025)) (-12 (|has| *3 (-15 -3417 ((-622 *2) *3))) (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538))))))))) +(-13 (-1210 |t#1| (-751)) (-10 -8 (-15 -4178 ($ (-1126 (-2 (|:| |k| (-751)) (|:| |c| |t#1|))))) (-15 -4177 ((-1126 |t#1|) $)) (-15 -4178 ($ (-1126 |t#1|))) (-15 -4176 ($ $)) (-15 -4175 ($ (-1 |t#1| (-538)) $)) (-15 -4174 ((-922 |t#1|) $ (-751))) (-15 -4174 ((-922 |t#1|) $ (-751) (-751))) (IF (|has| |t#1| (-358)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-402 (-538)))) (PROGN (-15 -4172 ($ $)) (IF (|has| |t#1| (-15 -4172 (|t#1| |t#1| (-1149)))) (IF (|has| |t#1| (-15 -3417 ((-622 (-1149)) |t#1|))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1171)) (IF (|has| |t#1| (-936)) (IF (|has| |t#1| (-29 (-538))) (-15 -4172 ($ $ (-1149))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-978)) (-6 (-1171))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #1=(-751)) . T) ((-25) . T) ((-38 #2=(-402 (-538))) |has| |#1| (-38 (-402 (-538)))) ((-38 |#1|) |has| |#1| (-170)) ((-38 $) |has| |#1| (-545)) ((-35) |has| |#1| (-38 (-402 (-538)))) ((-94) |has| |#1| (-38 (-402 (-538)))) ((-101) . T) ((-111 #2# #2#) |has| |#1| (-38 (-402 (-538)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-130) . T) ((-143) |has| |#1| (-143)) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-229) |has| |#1| (-15 * (|#1| (-751) |#1|))) ((-279) |has| |#1| (-38 (-402 (-538)))) ((-281 $ $) |has| (-751) (-1085)) ((-285) |has| |#1| (-545)) ((-486) |has| |#1| (-38 (-402 (-538)))) ((-545) |has| |#1| (-545)) ((-628 #2#) |has| |#1| (-38 (-402 (-538)))) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #2#) |has| |#1| (-38 (-402 (-538)))) ((-698 |#1|) |has| |#1| (-170)) ((-698 $) |has| |#1| (-545)) ((-707) . T) ((-876 (-1149)) -12 (|has| |#1| (-876 (-1149))) (|has| |#1| (-15 * (|#1| (-751) |#1|)))) ((-949 |#1| #1# (-1055)) . T) ((-978) |has| |#1| (-38 (-402 (-538)))) ((-1031 #2#) |has| |#1| (-38 (-402 (-538)))) ((-1031 |#1|) . T) ((-1031 $) -3891 (|has| |#1| (-545)) (|has| |#1| (-170))) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1171) |has| |#1| (-38 (-402 (-538)))) ((-1174) |has| |#1| (-38 (-402 (-538)))) ((-1210 |#1| #1#) . T)) +((-4181 (((-1 (-1126 |#1|) (-622 (-1126 |#1|))) (-1 |#2| (-622 |#2|))) 24)) (-4180 (((-1 (-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4179 (((-1 (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2|)) 13)) (-4184 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4183 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4185 ((|#2| (-1 |#2| (-622 |#2|)) (-622 |#1|)) 54)) (-4186 (((-622 |#2|) (-622 |#1|) (-622 (-1 |#2| (-622 |#2|)))) 61)) (-4182 ((|#2| |#2| |#2|) 43))) +(((-1225 |#1| |#2|) (-10 -7 (-15 -4179 ((-1 (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2|))) (-15 -4180 ((-1 (-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4181 ((-1 (-1126 |#1|) (-622 (-1126 |#1|))) (-1 |#2| (-622 |#2|)))) (-15 -4182 (|#2| |#2| |#2|)) (-15 -4183 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4184 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4185 (|#2| (-1 |#2| (-622 |#2|)) (-622 |#1|))) (-15 -4186 ((-622 |#2|) (-622 |#1|) (-622 (-1 |#2| (-622 |#2|)))))) (-38 (-402 (-538))) (-1224 |#1|)) (T -1225)) +((-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 (-1 *6 (-622 *6)))) (-4 *5 (-38 (-402 (-538)))) (-4 *6 (-1224 *5)) (-5 *2 (-622 *6)) (-5 *1 (-1225 *5 *6)))) (-4185 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-622 *2))) (-5 *4 (-622 *5)) (-4 *5 (-38 (-402 (-538)))) (-4 *2 (-1224 *5)) (-5 *1 (-1225 *5 *2)))) (-4184 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1224 *4)) (-5 *1 (-1225 *4 *2)) (-4 *4 (-38 (-402 (-538)))))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1224 *4)) (-5 *1 (-1225 *4 *2)) (-4 *4 (-38 (-402 (-538)))))) (-4182 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1224 *3)))) (-4181 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-622 *5))) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538)))) (-5 *2 (-1 (-1126 *4) (-622 (-1126 *4)))) (-5 *1 (-1225 *4 *5)))) (-4180 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538)))) (-5 *2 (-1 (-1126 *4) (-1126 *4) (-1126 *4))) (-5 *1 (-1225 *4 *5)))) (-4179 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538)))) (-5 *2 (-1 (-1126 *4) (-1126 *4))) (-5 *1 (-1225 *4 *5))))) +(-10 -7 (-15 -4179 ((-1 (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2|))) (-15 -4180 ((-1 (-1126 |#1|) (-1126 |#1|) (-1126 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4181 ((-1 (-1126 |#1|) (-622 (-1126 |#1|))) (-1 |#2| (-622 |#2|)))) (-15 -4182 (|#2| |#2| |#2|)) (-15 -4183 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4184 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4185 (|#2| (-1 |#2| (-622 |#2|)) (-622 |#1|))) (-15 -4186 ((-622 |#2|) (-622 |#1|) (-622 (-1 |#2| (-622 |#2|)))))) +((-4188 ((|#2| |#4| (-751)) 30)) (-4187 ((|#4| |#2|) 25)) (-4190 ((|#4| (-402 |#2|)) 52 (|has| |#1| (-545)))) (-4189 (((-1 |#4| (-622 |#4|)) |#3|) 46))) +(((-1226 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4187 (|#4| |#2|)) (-15 -4188 (|#2| |#4| (-751))) (-15 -4189 ((-1 |#4| (-622 |#4|)) |#3|)) (IF (|has| |#1| (-545)) (-15 -4190 (|#4| (-402 |#2|))) |%noBranch|)) (-1025) (-1207 |#1|) (-638 |#2|) (-1224 |#1|)) (T -1226)) +((-4190 (*1 *2 *3) (-12 (-5 *3 (-402 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-545)) (-4 *4 (-1025)) (-4 *2 (-1224 *4)) (-5 *1 (-1226 *4 *5 *6 *2)) (-4 *6 (-638 *5)))) (-4189 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *5 (-1207 *4)) (-5 *2 (-1 *6 (-622 *6))) (-5 *1 (-1226 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-1224 *4)))) (-4188 (*1 *2 *3 *4) (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-4 *2 (-1207 *5)) (-5 *1 (-1226 *5 *2 *6 *3)) (-4 *6 (-638 *2)) (-4 *3 (-1224 *5)))) (-4187 (*1 *2 *3) (-12 (-4 *4 (-1025)) (-4 *3 (-1207 *4)) (-4 *2 (-1224 *4)) (-5 *1 (-1226 *4 *3 *5 *2)) (-4 *5 (-638 *3))))) +(-10 -7 (-15 -4187 (|#4| |#2|)) (-15 -4188 (|#2| |#4| (-751))) (-15 -4189 ((-1 |#4| (-622 |#4|)) |#3|)) (IF (|has| |#1| (-545)) (-15 -4190 (|#4| (-402 |#2|))) |%noBranch|)) +NIL +(((-1227) (-138)) (T -1227)) +NIL +(-13 (-10 -7 (-6 -2368))) +((-2898 (((-112) $ $) NIL)) (-4191 (((-1149)) 12)) (-3593 (((-1131) $) 17)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 11) (((-1149) $) 8)) (-3387 (((-112) $ $) 14))) +(((-1228 |#1|) (-13 (-1074) (-597 (-1149)) (-10 -8 (-15 -4317 ((-1149) $)) (-15 -4191 ((-1149))))) (-1149)) (T -1228)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2))) (-4191 (*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2)))) +(-13 (-1074) (-597 (-1149)) (-10 -8 (-15 -4317 ((-1149) $)) (-15 -4191 ((-1149))))) +((-4198 (($ (-751)) 18)) (-4195 (((-669 |#2|) $ $) 40)) (-4192 ((|#2| $) 48)) (-4193 ((|#2| $) 47)) (-4196 ((|#2| $ $) 35)) (-4194 (($ $ $) 44)) (-4197 (($ $) 22) (($ $ $) 28)) (-4199 (($ $ $) 15)) (* (($ (-538) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30))) +(((-1229 |#1| |#2|) (-10 -8 (-15 -4192 (|#2| |#1|)) (-15 -4193 (|#2| |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4195 ((-669 |#2|) |#1| |#1|)) (-15 -4196 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -4198 (|#1| (-751))) (-15 -4199 (|#1| |#1| |#1|))) (-1230 |#2|) (-1185)) (T -1229)) +NIL +(-10 -8 (-15 -4192 (|#2| |#1|)) (-15 -4193 (|#2| |#1|)) (-15 -4194 (|#1| |#1| |#1|)) (-15 -4195 ((-669 |#2|) |#1| |#1|)) (-15 -4196 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-538) |#1|)) (-15 -4197 (|#1| |#1| |#1|)) (-15 -4197 (|#1| |#1|)) (-15 -4198 (|#1| (-751))) (-15 -4199 (|#1| |#1| |#1|))) +((-2898 (((-112) $ $) 19 (|has| |#1| (-1074)))) (-4198 (($ (-751)) 112 (|has| |#1| (-23)))) (-2305 (((-1237) $ (-538) (-538)) 40 (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4354))) (($ $) 88 (-12 (|has| |#1| (-827)) (|has| $ (-6 -4354))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) 8)) (-4147 ((|#1| $ (-538) |#1|) 52 (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) 58 (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4353)))) (-3896 (($) 7 T CONST)) (-2377 (($ $) 90 (|has| $ (-6 -4354)))) (-2378 (($ $) 100)) (-1398 (($ $) 78 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-3765 (($ |#1| $) 77 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) 53 (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) 51)) (-3778 (((-538) (-1 (-112) |#1|) $) 97) (((-538) |#1| $) 96 (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) 95 (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) 30 (|has| $ (-6 -4353)))) (-4195 (((-669 |#1|) $ $) 105 (|has| |#1| (-1025)))) (-3977 (($ (-751) |#1|) 69)) (-4082 (((-112) $ (-751)) 9)) (-2307 (((-538) $) 43 (|has| (-538) (-827)))) (-3677 (($ $ $) 87 (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-2308 (((-538) $) 44 (|has| (-538) (-827)))) (-3678 (($ $ $) 86 (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-4192 ((|#1| $) 102 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-4079 (((-112) $ (-751)) 10)) (-4193 ((|#1| $) 103 (-12 (|has| |#1| (-1025)) (|has| |#1| (-978))))) (-3593 (((-1131) $) 22 (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) 60) (($ $ $ (-538)) 59)) (-2310 (((-622 (-538)) $) 46)) (-2311 (((-112) (-538) $) 47)) (-3594 (((-1093) $) 21 (|has| |#1| (-1074)))) (-4160 ((|#1| $) 42 (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-2306 (($ $ |#1|) 41 (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) 26 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) 25 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) 23 (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) 14)) (-2309 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) 48)) (-3762 (((-112) $) 11)) (-3928 (($) 12)) (-4159 ((|#1| $ (-538) |#1|) 50) ((|#1| $ (-538)) 49) (($ $ (-1198 (-538))) 63)) (-4196 ((|#1| $ $) 106 (|has| |#1| (-1025)))) (-2383 (($ $ (-538)) 62) (($ $ (-1198 (-538))) 61)) (-4194 (($ $ $) 104 (|has| |#1| (-1025)))) (-2069 (((-751) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4353))) (((-751) |#1| $) 28 (-12 (|has| |#1| (-1074)) (|has| $ (-6 -4353))))) (-1847 (($ $ $ (-538)) 91 (|has| $ (-6 -4354)))) (-3759 (($ $) 13)) (-4330 (((-527) $) 79 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 70)) (-4161 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-622 $)) 65)) (-4317 (((-840) $) 18 (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) 84 (|has| |#1| (-827)))) (-2897 (((-112) $ $) 83 (|has| |#1| (-827)))) (-3387 (((-112) $ $) 20 (|has| |#1| (-1074)))) (-3017 (((-112) $ $) 85 (|has| |#1| (-827)))) (-3018 (((-112) $ $) 82 (|has| |#1| (-827)))) (-4197 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4199 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-538) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-707))) (($ $ |#1|) 107 (|has| |#1| (-707)))) (-4316 (((-751) $) 6 (|has| $ (-6 -4353))))) +(((-1230 |#1|) (-138) (-1185)) (T -1230)) +((-4199 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-25)))) (-4198 (*1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1230 *3)) (-4 *3 (-23)) (-4 *3 (-1185)))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-21)))) (-4197 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-4 *1 (-1230 *3)) (-4 *3 (-1185)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))) (-4196 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-1025)))) (-4195 (*1 *2 *1 *1) (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1185)) (-4 *3 (-1025)) (-5 *2 (-669 *3)))) (-4194 (*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-1025)))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-978)) (-4 *2 (-1025)))) (-4192 (*1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-978)) (-4 *2 (-1025))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4199 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4198 ($ (-751))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4197 ($ $)) (-15 -4197 ($ $ $)) (-15 * ($ (-538) $))) |%noBranch|) (IF (|has| |t#1| (-707)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1025)) (PROGN (-15 -4196 (|t#1| $ $)) (-15 -4195 ((-669 |t#1|) $ $)) (-15 -4194 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-1025)) (PROGN (-15 -4193 (|t#1| $)) (-15 -4192 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-101) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-597 (-840)) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827)) (|has| |#1| (-597 (-840)))) ((-149 |#1|) . T) ((-598 (-527)) |has| |#1| (-598 (-527))) ((-281 #1=(-538) |#1|) . T) ((-283 #1# |#1|) . T) ((-304 |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-367 |#1|) . T) ((-483 |#1|) . T) ((-588 #1# |#1|) . T) ((-507 |#1| |#1|) -12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))) ((-631 |#1|) . T) ((-19 |#1|) . T) ((-827) |has| |#1| (-827)) ((-1074) -3891 (|has| |#1| (-1074)) (|has| |#1| (-827))) ((-1185) . T)) +((-2898 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-4198 (($ (-751)) NIL (|has| |#1| (-23)))) (-4200 (($ (-622 |#1|)) 9)) (-2305 (((-1237) $ (-538) (-538)) NIL (|has| $ (-6 -4354)))) (-1848 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-827)))) (-1846 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4354))) (($ $) NIL (-12 (|has| $ (-6 -4354)) (|has| |#1| (-827))))) (-3242 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-827)))) (-1271 (((-112) $ (-751)) NIL)) (-4147 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354))) ((|#1| $ (-1198 (-538)) |#1|) NIL (|has| $ (-6 -4354)))) (-4073 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-3896 (($) NIL T CONST)) (-2377 (($ $) NIL (|has| $ (-6 -4354)))) (-2378 (($ $) NIL)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-3765 (($ |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4202 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4353))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4353)))) (-1637 ((|#1| $ (-538) |#1|) NIL (|has| $ (-6 -4354)))) (-3448 ((|#1| $ (-538)) NIL)) (-3778 (((-538) (-1 (-112) |#1|) $) NIL) (((-538) |#1| $) NIL (|has| |#1| (-1074))) (((-538) |#1| $ (-538)) NIL (|has| |#1| (-1074)))) (-2068 (((-622 |#1|) $) 15 (|has| $ (-6 -4353)))) (-4195 (((-669 |#1|) $ $) NIL (|has| |#1| (-1025)))) (-3977 (($ (-751) |#1|) NIL)) (-4082 (((-112) $ (-751)) NIL)) (-2307 (((-538) $) NIL (|has| (-538) (-827)))) (-3677 (($ $ $) NIL (|has| |#1| (-827)))) (-3872 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-827)))) (-2511 (((-622 |#1|) $) NIL (|has| $ (-6 -4353)))) (-3596 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2308 (((-538) $) NIL (|has| (-538) (-827)))) (-3678 (($ $ $) NIL (|has| |#1| (-827)))) (-2072 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4192 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-4079 (((-112) $ (-751)) NIL)) (-4193 ((|#1| $) NIL (-12 (|has| |#1| (-978)) (|has| |#1| (-1025))))) (-3593 (((-1131) $) NIL (|has| |#1| (-1074)))) (-2382 (($ |#1| $ (-538)) NIL) (($ $ $ (-538)) NIL)) (-2310 (((-622 (-538)) $) NIL)) (-2311 (((-112) (-538) $) NIL)) (-3594 (((-1093) $) NIL (|has| |#1| (-1074)))) (-4160 ((|#1| $) NIL (|has| (-538) (-827)))) (-1399 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2306 (($ $ |#1|) NIL (|has| $ (-6 -4354)))) (-2070 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 (-288 |#1|))) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-288 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074)))) (($ $ (-622 |#1|) (-622 |#1|)) NIL (-12 (|has| |#1| (-304 |#1|)) (|has| |#1| (-1074))))) (-1272 (((-112) $ $) NIL)) (-2309 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-2312 (((-622 |#1|) $) NIL)) (-3762 (((-112) $) NIL)) (-3928 (($) NIL)) (-4159 ((|#1| $ (-538) |#1|) NIL) ((|#1| $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-4196 ((|#1| $ $) NIL (|has| |#1| (-1025)))) (-2383 (($ $ (-538)) NIL) (($ $ (-1198 (-538))) NIL)) (-4194 (($ $ $) NIL (|has| |#1| (-1025)))) (-2069 (((-751) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353))) (((-751) |#1| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#1| (-1074))))) (-1847 (($ $ $ (-538)) NIL (|has| $ (-6 -4354)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) 19 (|has| |#1| (-598 (-527))))) (-3884 (($ (-622 |#1|)) 8)) (-4161 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-622 $)) NIL)) (-4317 (((-840) $) NIL (|has| |#1| (-597 (-840))))) (-2071 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4353)))) (-2896 (((-112) $ $) NIL (|has| |#1| (-827)))) (-2897 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3387 (((-112) $ $) NIL (|has| |#1| (-1074)))) (-3017 (((-112) $ $) NIL (|has| |#1| (-827)))) (-3018 (((-112) $ $) NIL (|has| |#1| (-827)))) (-4197 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4199 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-538) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-707))) (($ $ |#1|) NIL (|has| |#1| (-707)))) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1231 |#1|) (-13 (-1230 |#1|) (-10 -8 (-15 -4200 ($ (-622 |#1|))))) (-1185)) (T -1231)) +((-4200 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1231 *3))))) +(-13 (-1230 |#1|) (-10 -8 (-15 -4200 ($ (-622 |#1|))))) +((-4201 (((-1231 |#2|) (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|) 13)) (-4202 ((|#2| (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|) 15)) (-4318 (((-3 (-1231 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1231 |#1|)) 28) (((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|)) 18))) +(((-1232 |#1| |#2|) (-10 -7 (-15 -4201 ((-1231 |#2|) (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|)) (-15 -4318 ((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) (-15 -4318 ((-3 (-1231 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1231 |#1|)))) (-1185) (-1185)) (T -1232)) +((-4318 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1231 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1231 *6)) (-5 *1 (-1232 *5 *6)))) (-4318 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1231 *6)) (-5 *1 (-1232 *5 *6)))) (-4202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1231 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-1232 *5 *2)))) (-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1231 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-5 *2 (-1231 *5)) (-5 *1 (-1232 *6 *5))))) +(-10 -7 (-15 -4201 ((-1231 |#2|) (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|)) (-15 -4202 (|#2| (-1 |#2| |#1| |#2|) (-1231 |#1|) |#2|)) (-15 -4318 ((-1231 |#2|) (-1 |#2| |#1|) (-1231 |#1|))) (-15 -4318 ((-3 (-1231 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1231 |#1|)))) +((-4203 (((-462) (-622 (-622 (-919 (-221)))) (-622 (-256))) 21) (((-462) (-622 (-622 (-919 (-221))))) 20) (((-462) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256))) 19)) (-4204 (((-1234) (-622 (-622 (-919 (-221)))) (-622 (-256))) 27) (((-1234) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256))) 26)) (-4317 (((-1234) (-462)) 38))) +(((-1233) (-10 -7 (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256)))) (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))))) (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))) (-622 (-256)))) (-15 -4204 ((-1234) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256)))) (-15 -4204 ((-1234) (-622 (-622 (-919 (-221)))) (-622 (-256)))) (-15 -4317 ((-1234) (-462))))) (T -1233)) +((-4317 (*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1234)) (-5 *1 (-1233)))) (-4204 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-1233)))) (-4204 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-895)) (-5 *6 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-1233)))) (-4203 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-622 (-256))) (-5 *2 (-462)) (-5 *1 (-1233)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-462)) (-5 *1 (-1233)))) (-4203 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-895)) (-5 *6 (-622 (-256))) (-5 *2 (-462)) (-5 *1 (-1233))))) +(-10 -7 (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256)))) (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))))) (-15 -4203 ((-462) (-622 (-622 (-919 (-221)))) (-622 (-256)))) (-15 -4204 ((-1234) (-622 (-622 (-919 (-221)))) (-850) (-850) (-895) (-622 (-256)))) (-15 -4204 ((-1234) (-622 (-622 (-919 (-221)))) (-622 (-256)))) (-15 -4317 ((-1234) (-462)))) +((-2898 (((-112) $ $) NIL)) (-4222 (((-1131) $ (-1131)) 90) (((-1131) $ (-1131) (-1131)) 88) (((-1131) $ (-1131) (-622 (-1131))) 87)) (-4218 (($) 59)) (-4205 (((-1237) $ (-462) (-895)) 45)) (-4211 (((-1237) $ (-895) (-1131)) 73) (((-1237) $ (-895) (-850)) 74)) (-4233 (((-1237) $ (-895) (-373) (-373)) 48)) (-4243 (((-1237) $ (-1131)) 69)) (-4206 (((-1237) $ (-895) (-1131)) 78)) (-4207 (((-1237) $ (-895) (-373) (-373)) 49)) (-4244 (((-1237) $ (-895) (-895)) 46)) (-4224 (((-1237) $) 70)) (-4209 (((-1237) $ (-895) (-1131)) 77)) (-4213 (((-1237) $ (-462) (-895)) 31)) (-4210 (((-1237) $ (-895) (-1131)) 76)) (-4246 (((-622 (-256)) $) 23) (($ $ (-622 (-256))) 24)) (-4245 (((-1237) $ (-751) (-751)) 43)) (-4217 (($ $) 60) (($ (-462) (-622 (-256))) 61)) (-3593 (((-1131) $) NIL)) (-4220 (((-538) $) 38)) (-3594 (((-1093) $) NIL)) (-4214 (((-1231 (-3 (-462) "undefined")) $) 37)) (-4215 (((-1231 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -4210 (-538)) (|:| -4208 (-538)) (|:| |spline| (-538)) (|:| -4239 (-538)) (|:| |axesColor| (-850)) (|:| -4211 (-538)) (|:| |unitsColor| (-850)) (|:| |showing| (-538)))) $) 36)) (-4216 (((-1237) $ (-895) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-850) (-538) (-850) (-538)) 68)) (-4219 (((-622 (-919 (-221))) $) NIL)) (-4212 (((-462) $ (-895)) 33)) (-4242 (((-1237) $ (-751) (-751) (-895) (-895)) 40)) (-4240 (((-1237) $ (-1131)) 79)) (-4208 (((-1237) $ (-895) (-1131)) 75)) (-4317 (((-840) $) 85)) (-4221 (((-1237) $) 80)) (-4239 (((-1237) $ (-895) (-1131)) 71) (((-1237) $ (-895) (-850)) 72)) (-3387 (((-112) $ $) NIL))) +(((-1234) (-13 (-1074) (-10 -8 (-15 -4219 ((-622 (-919 (-221))) $)) (-15 -4218 ($)) (-15 -4217 ($ $)) (-15 -4246 ((-622 (-256)) $)) (-15 -4246 ($ $ (-622 (-256)))) (-15 -4217 ($ (-462) (-622 (-256)))) (-15 -4216 ((-1237) $ (-895) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-850) (-538) (-850) (-538))) (-15 -4215 ((-1231 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -4210 (-538)) (|:| -4208 (-538)) (|:| |spline| (-538)) (|:| -4239 (-538)) (|:| |axesColor| (-850)) (|:| -4211 (-538)) (|:| |unitsColor| (-850)) (|:| |showing| (-538)))) $)) (-15 -4214 ((-1231 (-3 (-462) "undefined")) $)) (-15 -4243 ((-1237) $ (-1131))) (-15 -4213 ((-1237) $ (-462) (-895))) (-15 -4212 ((-462) $ (-895))) (-15 -4239 ((-1237) $ (-895) (-1131))) (-15 -4239 ((-1237) $ (-895) (-850))) (-15 -4211 ((-1237) $ (-895) (-1131))) (-15 -4211 ((-1237) $ (-895) (-850))) (-15 -4210 ((-1237) $ (-895) (-1131))) (-15 -4209 ((-1237) $ (-895) (-1131))) (-15 -4208 ((-1237) $ (-895) (-1131))) (-15 -4240 ((-1237) $ (-1131))) (-15 -4221 ((-1237) $)) (-15 -4242 ((-1237) $ (-751) (-751) (-895) (-895))) (-15 -4207 ((-1237) $ (-895) (-373) (-373))) (-15 -4233 ((-1237) $ (-895) (-373) (-373))) (-15 -4206 ((-1237) $ (-895) (-1131))) (-15 -4245 ((-1237) $ (-751) (-751))) (-15 -4205 ((-1237) $ (-462) (-895))) (-15 -4244 ((-1237) $ (-895) (-895))) (-15 -4222 ((-1131) $ (-1131))) (-15 -4222 ((-1131) $ (-1131) (-1131))) (-15 -4222 ((-1131) $ (-1131) (-622 (-1131)))) (-15 -4224 ((-1237) $)) (-15 -4220 ((-538) $)) (-15 -4317 ((-840) $))))) (T -1234)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1234)))) (-4219 (*1 *2 *1) (-12 (-5 *2 (-622 (-919 (-221)))) (-5 *1 (-1234)))) (-4218 (*1 *1) (-5 *1 (-1234))) (-4217 (*1 *1 *1) (-5 *1 (-1234))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1234)))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1234)))) (-4217 (*1 *1 *2 *3) (-12 (-5 *2 (-462)) (-5 *3 (-622 (-256))) (-5 *1 (-1234)))) (-4216 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-895)) (-5 *4 (-221)) (-5 *5 (-538)) (-5 *6 (-850)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4215 (*1 *2 *1) (-12 (-5 *2 (-1231 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -4210 (-538)) (|:| -4208 (-538)) (|:| |spline| (-538)) (|:| -4239 (-538)) (|:| |axesColor| (-850)) (|:| -4211 (-538)) (|:| |unitsColor| (-850)) (|:| |showing| (-538))))) (-5 *1 (-1234)))) (-4214 (*1 *2 *1) (-12 (-5 *2 (-1231 (-3 (-462) "undefined"))) (-5 *1 (-1234)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4213 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4212 (*1 *2 *1 *3) (-12 (-5 *3 (-895)) (-5 *2 (-462)) (-5 *1 (-1234)))) (-4239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4239 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4211 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4211 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4210 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4209 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4208 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4242 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-751)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4207 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-895)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4233 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-895)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4245 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4205 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-462)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4244 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4222 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) (-4222 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) (-4222 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1234)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1234))))) +(-13 (-1074) (-10 -8 (-15 -4219 ((-622 (-919 (-221))) $)) (-15 -4218 ($)) (-15 -4217 ($ $)) (-15 -4246 ((-622 (-256)) $)) (-15 -4246 ($ $ (-622 (-256)))) (-15 -4217 ($ (-462) (-622 (-256)))) (-15 -4216 ((-1237) $ (-895) (-221) (-221) (-221) (-221) (-538) (-538) (-538) (-538) (-850) (-538) (-850) (-538))) (-15 -4215 ((-1231 (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)) (|:| -4210 (-538)) (|:| -4208 (-538)) (|:| |spline| (-538)) (|:| -4239 (-538)) (|:| |axesColor| (-850)) (|:| -4211 (-538)) (|:| |unitsColor| (-850)) (|:| |showing| (-538)))) $)) (-15 -4214 ((-1231 (-3 (-462) "undefined")) $)) (-15 -4243 ((-1237) $ (-1131))) (-15 -4213 ((-1237) $ (-462) (-895))) (-15 -4212 ((-462) $ (-895))) (-15 -4239 ((-1237) $ (-895) (-1131))) (-15 -4239 ((-1237) $ (-895) (-850))) (-15 -4211 ((-1237) $ (-895) (-1131))) (-15 -4211 ((-1237) $ (-895) (-850))) (-15 -4210 ((-1237) $ (-895) (-1131))) (-15 -4209 ((-1237) $ (-895) (-1131))) (-15 -4208 ((-1237) $ (-895) (-1131))) (-15 -4240 ((-1237) $ (-1131))) (-15 -4221 ((-1237) $)) (-15 -4242 ((-1237) $ (-751) (-751) (-895) (-895))) (-15 -4207 ((-1237) $ (-895) (-373) (-373))) (-15 -4233 ((-1237) $ (-895) (-373) (-373))) (-15 -4206 ((-1237) $ (-895) (-1131))) (-15 -4245 ((-1237) $ (-751) (-751))) (-15 -4205 ((-1237) $ (-462) (-895))) (-15 -4244 ((-1237) $ (-895) (-895))) (-15 -4222 ((-1131) $ (-1131))) (-15 -4222 ((-1131) $ (-1131) (-1131))) (-15 -4222 ((-1131) $ (-1131) (-622 (-1131)))) (-15 -4224 ((-1237) $)) (-15 -4220 ((-538) $)) (-15 -4317 ((-840) $)))) +((-2898 (((-112) $ $) NIL)) (-4234 (((-1237) $ (-373)) 140) (((-1237) $ (-373) (-373) (-373)) 141)) (-4222 (((-1131) $ (-1131)) 148) (((-1131) $ (-1131) (-1131)) 146) (((-1131) $ (-1131) (-622 (-1131))) 145)) (-4250 (($) 50)) (-4241 (((-1237) $ (-373) (-373) (-373) (-373) (-373)) 116) (((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $) 114) (((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) 115) (((-1237) $ (-538) (-538) (-373) (-373) (-373)) 117) (((-1237) $ (-373) (-373)) 118) (((-1237) $ (-373) (-373) (-373)) 125)) (-4253 (((-373)) 97) (((-373) (-373)) 98)) (-4255 (((-373)) 92) (((-373) (-373)) 94)) (-4254 (((-373)) 95) (((-373) (-373)) 96)) (-4251 (((-373)) 101) (((-373) (-373)) 102)) (-4252 (((-373)) 99) (((-373) (-373)) 100)) (-4233 (((-1237) $ (-373) (-373)) 142)) (-4243 (((-1237) $ (-1131)) 126)) (-4248 (((-1106 (-221)) $) 51) (($ $ (-1106 (-221))) 52)) (-4229 (((-1237) $ (-1131)) 154)) (-4228 (((-1237) $ (-1131)) 155)) (-4235 (((-1237) $ (-373) (-373)) 124) (((-1237) $ (-538) (-538)) 139)) (-4244 (((-1237) $ (-895) (-895)) 132)) (-4224 (((-1237) $) 112)) (-4232 (((-1237) $ (-1131)) 153)) (-4237 (((-1237) $ (-1131)) 109)) (-4246 (((-622 (-256)) $) 53) (($ $ (-622 (-256))) 54)) (-4245 (((-1237) $ (-751) (-751)) 131)) (-4247 (((-1237) $ (-751) (-919 (-221))) 160)) (-4249 (($ $) 56) (($ (-1106 (-221)) (-1131)) 57) (($ (-1106 (-221)) (-622 (-256))) 58)) (-4226 (((-1237) $ (-373) (-373) (-373)) 106)) (-3593 (((-1131) $) NIL)) (-4220 (((-538) $) 103)) (-4225 (((-1237) $ (-373)) 143)) (-4230 (((-1237) $ (-373)) 158)) (-3594 (((-1093) $) NIL)) (-4231 (((-1237) $ (-373)) 157)) (-4236 (((-1237) $ (-1131)) 111)) (-4242 (((-1237) $ (-751) (-751) (-895) (-895)) 130)) (-4238 (((-1237) $ (-1131)) 108)) (-4240 (((-1237) $ (-1131)) 110)) (-4223 (((-1237) $ (-155) (-155)) 129)) (-4317 (((-840) $) 137)) (-4221 (((-1237) $) 113)) (-4227 (((-1237) $ (-1131)) 156)) (-4239 (((-1237) $ (-1131)) 107)) (-3387 (((-112) $ $) NIL))) +(((-1235) (-13 (-1074) (-10 -8 (-15 -4255 ((-373))) (-15 -4255 ((-373) (-373))) (-15 -4254 ((-373))) (-15 -4254 ((-373) (-373))) (-15 -4253 ((-373))) (-15 -4253 ((-373) (-373))) (-15 -4252 ((-373))) (-15 -4252 ((-373) (-373))) (-15 -4251 ((-373))) (-15 -4251 ((-373) (-373))) (-15 -4250 ($)) (-15 -4249 ($ $)) (-15 -4249 ($ (-1106 (-221)) (-1131))) (-15 -4249 ($ (-1106 (-221)) (-622 (-256)))) (-15 -4248 ((-1106 (-221)) $)) (-15 -4248 ($ $ (-1106 (-221)))) (-15 -4247 ((-1237) $ (-751) (-919 (-221)))) (-15 -4246 ((-622 (-256)) $)) (-15 -4246 ($ $ (-622 (-256)))) (-15 -4245 ((-1237) $ (-751) (-751))) (-15 -4244 ((-1237) $ (-895) (-895))) (-15 -4243 ((-1237) $ (-1131))) (-15 -4242 ((-1237) $ (-751) (-751) (-895) (-895))) (-15 -4241 ((-1237) $ (-373) (-373) (-373) (-373) (-373))) (-15 -4241 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -4241 ((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4241 ((-1237) $ (-538) (-538) (-373) (-373) (-373))) (-15 -4241 ((-1237) $ (-373) (-373))) (-15 -4241 ((-1237) $ (-373) (-373) (-373))) (-15 -4240 ((-1237) $ (-1131))) (-15 -4239 ((-1237) $ (-1131))) (-15 -4238 ((-1237) $ (-1131))) (-15 -4237 ((-1237) $ (-1131))) (-15 -4236 ((-1237) $ (-1131))) (-15 -4235 ((-1237) $ (-373) (-373))) (-15 -4235 ((-1237) $ (-538) (-538))) (-15 -4234 ((-1237) $ (-373))) (-15 -4234 ((-1237) $ (-373) (-373) (-373))) (-15 -4233 ((-1237) $ (-373) (-373))) (-15 -4232 ((-1237) $ (-1131))) (-15 -4231 ((-1237) $ (-373))) (-15 -4230 ((-1237) $ (-373))) (-15 -4229 ((-1237) $ (-1131))) (-15 -4228 ((-1237) $ (-1131))) (-15 -4227 ((-1237) $ (-1131))) (-15 -4226 ((-1237) $ (-373) (-373) (-373))) (-15 -4225 ((-1237) $ (-373))) (-15 -4224 ((-1237) $)) (-15 -4223 ((-1237) $ (-155) (-155))) (-15 -4222 ((-1131) $ (-1131))) (-15 -4222 ((-1131) $ (-1131) (-1131))) (-15 -4222 ((-1131) $ (-1131) (-622 (-1131)))) (-15 -4221 ((-1237) $)) (-15 -4220 ((-538) $))))) (T -1235)) +((-4255 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4255 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4254 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4254 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4253 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4253 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4252 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4251 (*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4251 (*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) (-4250 (*1 *1) (-5 *1 (-1235))) (-4249 (*1 *1 *1) (-5 *1 (-1235))) (-4249 (*1 *1 *2 *3) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1131)) (-5 *1 (-1235)))) (-4249 (*1 *1 *2 *3) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-622 (-256))) (-5 *1 (-1235)))) (-4248 (*1 *2 *1) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1235)))) (-4248 (*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1235)))) (-4247 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-751)) (-5 *4 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1235)))) (-4246 (*1 *1 *1 *2) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1235)))) (-4245 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4244 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4242 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-751)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4241 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4241 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *1 (-1235)))) (-4241 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4241 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-538)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4241 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4241 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4239 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4238 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4237 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4236 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4235 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4235 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4234 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4233 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4232 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4231 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4228 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4227 (*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4226 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4225 (*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4224 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4222 (*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1235)))) (-4222 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1235)))) (-4222 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1235)))) (-4221 (*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1235)))) (-4220 (*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1235))))) +(-13 (-1074) (-10 -8 (-15 -4255 ((-373))) (-15 -4255 ((-373) (-373))) (-15 -4254 ((-373))) (-15 -4254 ((-373) (-373))) (-15 -4253 ((-373))) (-15 -4253 ((-373) (-373))) (-15 -4252 ((-373))) (-15 -4252 ((-373) (-373))) (-15 -4251 ((-373))) (-15 -4251 ((-373) (-373))) (-15 -4250 ($)) (-15 -4249 ($ $)) (-15 -4249 ($ (-1106 (-221)) (-1131))) (-15 -4249 ($ (-1106 (-221)) (-622 (-256)))) (-15 -4248 ((-1106 (-221)) $)) (-15 -4248 ($ $ (-1106 (-221)))) (-15 -4247 ((-1237) $ (-751) (-919 (-221)))) (-15 -4246 ((-622 (-256)) $)) (-15 -4246 ($ $ (-622 (-256)))) (-15 -4245 ((-1237) $ (-751) (-751))) (-15 -4244 ((-1237) $ (-895) (-895))) (-15 -4243 ((-1237) $ (-1131))) (-15 -4242 ((-1237) $ (-751) (-751) (-895) (-895))) (-15 -4241 ((-1237) $ (-373) (-373) (-373) (-373) (-373))) (-15 -4241 ((-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))) $)) (-15 -4241 ((-1237) $ (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) (|:| |deltaX| (-221)) (|:| |deltaY| (-221))))) (-15 -4241 ((-1237) $ (-538) (-538) (-373) (-373) (-373))) (-15 -4241 ((-1237) $ (-373) (-373))) (-15 -4241 ((-1237) $ (-373) (-373) (-373))) (-15 -4240 ((-1237) $ (-1131))) (-15 -4239 ((-1237) $ (-1131))) (-15 -4238 ((-1237) $ (-1131))) (-15 -4237 ((-1237) $ (-1131))) (-15 -4236 ((-1237) $ (-1131))) (-15 -4235 ((-1237) $ (-373) (-373))) (-15 -4235 ((-1237) $ (-538) (-538))) (-15 -4234 ((-1237) $ (-373))) (-15 -4234 ((-1237) $ (-373) (-373) (-373))) (-15 -4233 ((-1237) $ (-373) (-373))) (-15 -4232 ((-1237) $ (-1131))) (-15 -4231 ((-1237) $ (-373))) (-15 -4230 ((-1237) $ (-373))) (-15 -4229 ((-1237) $ (-1131))) (-15 -4228 ((-1237) $ (-1131))) (-15 -4227 ((-1237) $ (-1131))) (-15 -4226 ((-1237) $ (-373) (-373) (-373))) (-15 -4225 ((-1237) $ (-373))) (-15 -4224 ((-1237) $)) (-15 -4223 ((-1237) $ (-155) (-155))) (-15 -4222 ((-1131) $ (-1131))) (-15 -4222 ((-1131) $ (-1131) (-1131))) (-15 -4222 ((-1131) $ (-1131) (-622 (-1131)))) (-15 -4221 ((-1237) $)) (-15 -4220 ((-538) $)))) +((-4264 (((-622 (-1131)) (-622 (-1131))) 94) (((-622 (-1131))) 90)) (-4265 (((-622 (-1131))) 88)) (-4262 (((-622 (-895)) (-622 (-895))) 63) (((-622 (-895))) 60)) (-4261 (((-622 (-751)) (-622 (-751))) 57) (((-622 (-751))) 53)) (-4263 (((-1237)) 65)) (-4267 (((-895) (-895)) 81) (((-895)) 80)) (-4266 (((-895) (-895)) 79) (((-895)) 78)) (-4259 (((-850) (-850)) 75) (((-850)) 74)) (-4269 (((-221)) 85) (((-221) (-373)) 87)) (-4268 (((-895)) 82) (((-895) (-895)) 83)) (-4260 (((-895) (-895)) 77) (((-895)) 76)) (-4256 (((-850) (-850)) 69) (((-850)) 67)) (-4257 (((-850) (-850)) 71) (((-850)) 70)) (-4258 (((-850) (-850)) 73) (((-850)) 72))) +(((-1236) (-10 -7 (-15 -4256 ((-850))) (-15 -4256 ((-850) (-850))) (-15 -4257 ((-850))) (-15 -4257 ((-850) (-850))) (-15 -4258 ((-850))) (-15 -4258 ((-850) (-850))) (-15 -4259 ((-850))) (-15 -4259 ((-850) (-850))) (-15 -4260 ((-895))) (-15 -4260 ((-895) (-895))) (-15 -4261 ((-622 (-751)))) (-15 -4261 ((-622 (-751)) (-622 (-751)))) (-15 -4262 ((-622 (-895)))) (-15 -4262 ((-622 (-895)) (-622 (-895)))) (-15 -4263 ((-1237))) (-15 -4264 ((-622 (-1131)))) (-15 -4264 ((-622 (-1131)) (-622 (-1131)))) (-15 -4265 ((-622 (-1131)))) (-15 -4266 ((-895))) (-15 -4267 ((-895))) (-15 -4266 ((-895) (-895))) (-15 -4267 ((-895) (-895))) (-15 -4268 ((-895) (-895))) (-15 -4268 ((-895))) (-15 -4269 ((-221) (-373))) (-15 -4269 ((-221))))) (T -1236)) +((-4269 (*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1236)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-221)) (-5 *1 (-1236)))) (-4268 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4268 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4267 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4266 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4267 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4266 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4265 (*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236)))) (-4264 (*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236)))) (-4264 (*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236)))) (-4263 (*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1236)))) (-4262 (*1 *2 *2) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1236)))) (-4262 (*1 *2) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1236)))) (-4261 (*1 *2 *2) (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1236)))) (-4261 (*1 *2) (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1236)))) (-4260 (*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4260 (*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) (-4259 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4259 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4258 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4258 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4257 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4256 (*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) (-4256 (*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236))))) +(-10 -7 (-15 -4256 ((-850))) (-15 -4256 ((-850) (-850))) (-15 -4257 ((-850))) (-15 -4257 ((-850) (-850))) (-15 -4258 ((-850))) (-15 -4258 ((-850) (-850))) (-15 -4259 ((-850))) (-15 -4259 ((-850) (-850))) (-15 -4260 ((-895))) (-15 -4260 ((-895) (-895))) (-15 -4261 ((-622 (-751)))) (-15 -4261 ((-622 (-751)) (-622 (-751)))) (-15 -4262 ((-622 (-895)))) (-15 -4262 ((-622 (-895)) (-622 (-895)))) (-15 -4263 ((-1237))) (-15 -4264 ((-622 (-1131)))) (-15 -4264 ((-622 (-1131)) (-622 (-1131)))) (-15 -4265 ((-622 (-1131)))) (-15 -4266 ((-895))) (-15 -4267 ((-895))) (-15 -4266 ((-895) (-895))) (-15 -4267 ((-895) (-895))) (-15 -4268 ((-895) (-895))) (-15 -4268 ((-895))) (-15 -4269 ((-221) (-373))) (-15 -4269 ((-221)))) +((-4270 (($) 7)) (-4317 (((-840) $) 10))) +(((-1237) (-10 -8 (-15 -4270 ($)) (-15 -4317 ((-840) $)))) (T -1237)) +((-4317 (*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1237)))) (-4270 (*1 *1) (-5 *1 (-1237)))) +(-10 -8 (-15 -4270 ($)) (-15 -4317 ((-840) $))) +((-4308 (($ $ |#2|) 10))) +(((-1238 |#1| |#2|) (-10 -8 (-15 -4308 (|#1| |#1| |#2|))) (-1239 |#2|) (-358)) (T -1238)) +NIL +(-10 -8 (-15 -4308 (|#1| |#1| |#2|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4271 (((-133)) 28)) (-4317 (((-840) $) 11)) (-2991 (($) 18 T CONST)) (-3387 (((-112) $ $) 6)) (-4308 (($ $ |#1|) 29)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1239 |#1|) (-138) (-358)) (T -1239)) +((-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-358)))) (-4271 (*1 *2) (-12 (-4 *1 (-1239 *3)) (-4 *3 (-358)) (-5 *2 (-133))))) +(-13 (-698 |t#1|) (-10 -8 (-15 -4308 ($ $ |t#1|)) (-15 -4271 ((-133))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-698 |#1|) . T) ((-1031 |#1|) . T) ((-1074) . T)) +((-4276 (((-622 (-1178 |#1|)) (-1149) (-1178 |#1|)) 74)) (-4274 (((-1126 (-1126 (-922 |#1|))) (-1149) (-1126 (-922 |#1|))) 53)) (-4277 (((-1 (-1126 (-1178 |#1|)) (-1126 (-1178 |#1|))) (-751) (-1178 |#1|) (-1126 (-1178 |#1|))) 64)) (-4272 (((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751)) 55)) (-4275 (((-1 (-1143 (-922 |#1|)) (-922 |#1|)) (-1149)) 29)) (-4273 (((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751)) 54))) +(((-1240 |#1|) (-10 -7 (-15 -4272 ((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751))) (-15 -4273 ((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751))) (-15 -4274 ((-1126 (-1126 (-922 |#1|))) (-1149) (-1126 (-922 |#1|)))) (-15 -4275 ((-1 (-1143 (-922 |#1|)) (-922 |#1|)) (-1149))) (-15 -4276 ((-622 (-1178 |#1|)) (-1149) (-1178 |#1|))) (-15 -4277 ((-1 (-1126 (-1178 |#1|)) (-1126 (-1178 |#1|))) (-751) (-1178 |#1|) (-1126 (-1178 |#1|))))) (-358)) (T -1240)) +((-4277 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-751)) (-4 *6 (-358)) (-5 *4 (-1178 *6)) (-5 *2 (-1 (-1126 *4) (-1126 *4))) (-5 *1 (-1240 *6)) (-5 *5 (-1126 *4)))) (-4276 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-622 (-1178 *5))) (-5 *1 (-1240 *5)) (-5 *4 (-1178 *5)))) (-4275 (*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1 (-1143 (-922 *4)) (-922 *4))) (-5 *1 (-1240 *4)) (-4 *4 (-358)))) (-4274 (*1 *2 *3 *4) (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-1126 (-1126 (-922 *5)))) (-5 *1 (-1240 *5)) (-5 *4 (-1126 (-922 *5))))) (-4273 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1126 (-922 *4)) (-1126 (-922 *4)))) (-5 *1 (-1240 *4)) (-4 *4 (-358)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1126 (-922 *4)) (-1126 (-922 *4)))) (-5 *1 (-1240 *4)) (-4 *4 (-358))))) +(-10 -7 (-15 -4272 ((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751))) (-15 -4273 ((-1 (-1126 (-922 |#1|)) (-1126 (-922 |#1|))) (-751))) (-15 -4274 ((-1126 (-1126 (-922 |#1|))) (-1149) (-1126 (-922 |#1|)))) (-15 -4275 ((-1 (-1143 (-922 |#1|)) (-922 |#1|)) (-1149))) (-15 -4276 ((-622 (-1178 |#1|)) (-1149) (-1178 |#1|))) (-15 -4277 ((-1 (-1126 (-1178 |#1|)) (-1126 (-1178 |#1|))) (-751) (-1178 |#1|) (-1126 (-1178 |#1|))))) +((-4279 (((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|) 75)) (-4278 (((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|)))) 74))) +(((-1241 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|))) (-345) (-1207 |#1|) (-1207 |#2|) (-405 |#2| |#3|)) (T -1241)) +((-4279 (*1 *2 *3) (-12 (-4 *4 (-345)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 *3)) (-5 *2 (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) (-5 *1 (-1241 *4 *3 *5 *6)) (-4 *6 (-405 *3 *5)))) (-4278 (*1 *2) (-12 (-4 *3 (-345)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-2 (|:| -2128 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4)))) (-5 *1 (-1241 *3 *4 *5 *6)) (-4 *6 (-405 *4 *5))))) +(-10 -7 (-15 -4278 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))))) (-15 -4279 ((-2 (|:| -2128 (-669 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-669 |#2|))) |#2|))) +((-2898 (((-112) $ $) NIL)) (-4280 (((-1108) $) 11)) (-4281 (((-1108) $) 9)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 19) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-1242) (-13 (-1056) (-10 -8 (-15 -4281 ((-1108) $)) (-15 -4280 ((-1108) $))))) (T -1242)) +((-4281 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242))))) +(-13 (-1056) (-10 -8 (-15 -4281 ((-1108) $)) (-15 -4280 ((-1108) $)))) +((-2898 (((-112) $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4282 (((-1108) $) 9)) (-4317 (((-840) $) 17) (((-1154) $) NIL) (($ (-1154)) NIL)) (-3387 (((-112) $ $) NIL))) +(((-1243) (-13 (-1056) (-10 -8 (-15 -4282 ((-1108) $))))) (T -1243)) +((-4282 (*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1243))))) +(-13 (-1056) (-10 -8 (-15 -4282 ((-1108) $)))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 43)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) NIL)) (-2502 (((-112) $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4317 (((-840) $) 64) (($ (-538)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-170)))) (-3461 (((-751)) NIL)) (-4283 (((-1237) (-751)) 16)) (-2991 (($) 27 T CONST)) (-2997 (($) 67 T CONST)) (-3387 (((-112) $ $) 69)) (-4308 (((-3 $ "failed") $ $) NIL (|has| |#1| (-358)))) (-4197 (($ $) 71) (($ $ $) NIL)) (-4199 (($ $ $) 47)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-170))) (($ $ |#1|) NIL (|has| |#1| (-170))))) +(((-1244 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4317 (|#4| $)) (IF (|has| |#1| (-358)) (-15 -4308 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4317 ($ |#4|)) (-15 -4283 ((-1237) (-751))))) (-1025) (-827) (-773) (-926 |#1| |#3| |#2|) (-622 |#2|) (-622 (-751)) (-751)) (T -1244)) +((-4317 (*1 *2 *1) (-12 (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-622 *4)) (-14 *7 (-622 (-751))) (-14 *8 (-751)))) (-4308 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-773)) (-14 *6 (-622 *3)) (-5 *1 (-1244 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-926 *2 *4 *3)) (-14 *7 (-622 (-751))) (-14 *8 (-751)))) (-4317 (*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-622 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-926 *3 *5 *4)) (-14 *7 (-622 (-751))) (-14 *8 (-751)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) (-14 *8 (-622 *5)) (-5 *2 (-1237)) (-5 *1 (-1244 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-926 *4 *6 *5)) (-14 *9 (-622 *3)) (-14 *10 *3)))) +(-13 (-1025) (-10 -8 (IF (|has| |#1| (-170)) (-6 (-38 |#1|)) |%noBranch|) (-15 -4317 (|#4| $)) (IF (|has| |#1| (-358)) (-15 -4308 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4317 ($ |#4|)) (-15 -4283 ((-1237) (-751))))) +((-2898 (((-112) $ $) NIL)) (-4044 (((-622 (-2 (|:| -4221 $) (|:| -1818 (-622 |#4|)))) (-622 |#4|)) NIL)) (-4045 (((-622 $) (-622 |#4|)) 88)) (-3417 (((-622 |#3|) $) NIL)) (-3241 (((-112) $) NIL)) (-3232 (((-112) $) NIL (|has| |#1| (-545)))) (-4056 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4051 ((|#4| |#4| $) NIL)) (-3242 (((-2 (|:| |under| $) (|:| -3465 $) (|:| |upper| $)) $ |#3|) NIL)) (-1271 (((-112) $ (-751)) NIL)) (-4073 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353))) (((-3 |#4| #1="failed") $ |#3|) NIL)) (-3896 (($) NIL T CONST)) (-3237 (((-112) $) NIL (|has| |#1| (-545)))) (-3239 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3238 (((-112) $ $) NIL (|has| |#1| (-545)))) (-3240 (((-112) $) NIL (|has| |#1| (-545)))) (-4052 (((-622 |#4|) (-622 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 28)) (-3233 (((-622 |#4|) (-622 |#4|) $) 25 (|has| |#1| (-545)))) (-3234 (((-622 |#4|) (-622 |#4|) $) NIL (|has| |#1| (-545)))) (-3508 (((-3 $ "failed") (-622 |#4|)) NIL)) (-3507 (($ (-622 |#4|)) NIL)) (-4158 (((-3 $ #1#) $) 70)) (-4048 ((|#4| |#4| $) 75)) (-1398 (($ $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-3765 (($ |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3235 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4057 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4046 ((|#4| |#4| $) NIL)) (-4202 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4353))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4353))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4059 (((-2 (|:| -4221 (-622 |#4|)) (|:| -1818 (-622 |#4|))) $) NIL)) (-2068 (((-622 |#4|) $) NIL (|has| $ (-6 -4353)))) (-4058 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3531 ((|#3| $) 76)) (-4082 (((-112) $ (-751)) NIL)) (-2511 (((-622 |#4|) $) 29 (|has| $ (-6 -4353)))) (-3596 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074))))) (-4286 (((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-622 |#4|)) 35)) (-2072 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4354)))) (-4318 (($ (-1 |#4| |#4|) $) NIL)) (-3247 (((-622 |#3|) $) NIL)) (-3246 (((-112) |#3| $) NIL)) (-4079 (((-112) $ (-751)) NIL)) (-3593 (((-1131) $) NIL)) (-4157 (((-3 |#4| #1#) $) NIL)) (-4060 (((-622 |#4|) $) 50)) (-4054 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4049 ((|#4| |#4| $) 74)) (-4062 (((-112) $ $) 85)) (-3236 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-545)))) (-4055 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4050 ((|#4| |#4| $) NIL)) (-3594 (((-1093) $) NIL)) (-4160 (((-3 |#4| #1#) $) 69)) (-1399 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-4042 (((-3 $ #1#) $ |#4|) NIL)) (-4128 (($ $ |#4|) NIL)) (-2070 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4127 (($ $ (-622 |#4|) (-622 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-288 |#4|)) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074)))) (($ $ (-622 (-288 |#4|))) NIL (-12 (|has| |#4| (-304 |#4|)) (|has| |#4| (-1074))))) (-1272 (((-112) $ $) NIL)) (-3762 (((-112) $) 67)) (-3928 (($) 42)) (-4307 (((-751) $) NIL)) (-2069 (((-751) |#4| $) NIL (-12 (|has| $ (-6 -4353)) (|has| |#4| (-1074)))) (((-751) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-3759 (($ $) NIL)) (-4330 (((-527) $) NIL (|has| |#4| (-598 (-527))))) (-3884 (($ (-622 |#4|)) NIL)) (-3243 (($ $ |#3|) NIL)) (-3245 (($ $ |#3|) NIL)) (-4047 (($ $) NIL)) (-3244 (($ $ |#3|) NIL)) (-4317 (((-840) $) NIL) (((-622 |#4|) $) 57)) (-4041 (((-751) $) NIL (|has| |#3| (-363)))) (-4285 (((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-622 |#4|)) 41)) (-4284 (((-622 $) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-622 $) (-622 |#4|)) 66)) (-4061 (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -3683 (-622 |#4|))) #1#) (-622 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4053 (((-112) $ (-1 (-112) |#4| (-622 |#4|))) NIL)) (-2071 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4353)))) (-4043 (((-622 |#3|) $) NIL)) (-4293 (((-112) |#3| $) NIL)) (-3387 (((-112) $ $) NIL)) (-4316 (((-751) $) NIL (|has| $ (-6 -4353))))) +(((-1245 |#1| |#2| |#3| |#4|) (-13 (-1180 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4286 ((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4286 ((-3 $ "failed") (-622 |#4|))) (-15 -4285 ((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4285 ((-3 $ "failed") (-622 |#4|))) (-15 -4284 ((-622 $) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4284 ((-622 $) (-622 |#4|))))) (-545) (-773) (-827) (-1039 |#1| |#2| |#3|)) (T -1245)) +((-4286 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))) (-4286 (*1 *1 *2) (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6)))) (-4285 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8)))) (-4285 (*1 *1 *2) (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6)))) (-4284 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-622 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-622 (-1245 *6 *7 *8 *9))) (-5 *1 (-1245 *6 *7 *8 *9)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 (-1245 *4 *5 *6 *7))) (-5 *1 (-1245 *4 *5 *6 *7))))) +(-13 (-1180 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4286 ((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4286 ((-3 $ "failed") (-622 |#4|))) (-15 -4285 ((-3 $ "failed") (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4285 ((-3 $ "failed") (-622 |#4|))) (-15 -4284 ((-622 $) (-622 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4284 ((-622 $) (-622 |#4|))))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-1368 (((-3 $ "failed") $ $) 19)) (-3896 (($) 17 T CONST)) (-3821 (((-3 $ "failed") $) 32)) (-2502 (((-112) $) 30)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#1|) 36)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37))) +(((-1246 |#1|) (-138) (-1025)) (T -1246)) +((-4317 (*1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1025))))) +(-13 (-1025) (-111 |t#1| |t#1|) (-10 -8 (-15 -4317 ($ |t#1|)) (IF (|has| |t#1| (-170)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-170)) ((-101) . T) ((-111 |#1| |#1|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 |#1|) |has| |#1| (-170)) ((-707) . T) ((-1031 |#1|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T)) +((-2898 (((-112) $ $) 60)) (-3539 (((-112) $) NIL)) (-4294 (((-622 |#1|) $) 45)) (-4306 (($ $ (-751)) 39)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4295 (($ $ (-751)) 18 (|has| |#2| (-170))) (($ $ $) 19 (|has| |#2| (-170)))) (-3896 (($) NIL T CONST)) (-4299 (($ $ $) 63) (($ $ (-799 |#1|)) 49) (($ $ |#1|) 53)) (-3508 (((-3 (-799 |#1|) "failed") $) NIL)) (-3507 (((-799 |#1|) $) NIL)) (-4319 (($ $) 32)) (-3821 (((-3 $ "failed") $) NIL)) (-4310 (((-112) $) NIL)) (-4309 (($ $) NIL)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ (-799 |#1|) |#2|) 31)) (-4296 (($ $) 33)) (-4301 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 12)) (-4314 (((-799 |#1|) $) NIL)) (-4315 (((-799 |#1|) $) 34)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-4300 (($ $ $) 62) (($ $ (-799 |#1|)) 51) (($ $ |#1|) 55)) (-1865 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3227 (((-799 |#1|) $) 28)) (-3525 ((|#2| $) 30)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4307 (((-751) $) 36)) (-4312 (((-112) $) 40)) (-4311 ((|#2| $) NIL)) (-4317 (((-840) $) NIL) (($ (-799 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-538)) NIL)) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-799 |#1|)) NIL)) (-4313 ((|#2| $ $) 65) ((|#2| $ (-799 |#1|)) NIL)) (-3461 (((-751)) NIL)) (-2991 (($) 13 T CONST)) (-2997 (($) 15 T CONST)) (-2996 (((-622 (-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3387 (((-112) $ $) 38)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 22)) (** (($ $ (-751)) NIL) (($ $ (-895)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-799 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL))) +(((-1247 |#1| |#2|) (-13 (-379 |#2| (-799 |#1|)) (-1254 |#1| |#2|)) (-827) (-1025)) (T -1247)) +NIL +(-13 (-379 |#2| (-799 |#1|)) (-1254 |#1| |#2|)) +((-4302 ((|#3| |#3| (-751)) 23)) (-4303 ((|#3| |#3| (-751)) 27)) (-4287 ((|#3| |#3| |#3| (-751)) 28))) +(((-1248 |#1| |#2| |#3|) (-10 -7 (-15 -4303 (|#3| |#3| (-751))) (-15 -4302 (|#3| |#3| (-751))) (-15 -4287 (|#3| |#3| |#3| (-751)))) (-13 (-1025) (-698 (-402 (-538)))) (-827) (-1254 |#2| |#1|)) (T -1248)) +((-4287 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4)))) (-4302 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4)))) (-4303 (*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827)) (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4))))) +(-10 -7 (-15 -4303 (|#3| |#3| (-751))) (-15 -4302 (|#3| |#3| (-751))) (-15 -4287 (|#3| |#3| |#3| (-751)))) +((-4292 (((-112) $) 15)) (-4293 (((-112) $) 14)) (-4288 (($ $) 19) (($ $ (-751)) 20))) +(((-1249 |#1| |#2|) (-10 -8 (-15 -4288 (|#1| |#1| (-751))) (-15 -4288 (|#1| |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4293 ((-112) |#1|))) (-1250 |#2|) (-358)) (T -1249)) +NIL +(-10 -8 (-15 -4288 (|#1| |#1| (-751))) (-15 -4288 (|#1| |#1|)) (-15 -4292 ((-112) |#1|)) (-15 -4293 ((-112) |#1|))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-2179 (((-2 (|:| -1892 $) (|:| -4340 $) (|:| |associate| $)) $) 39)) (-2178 (($ $) 38)) (-2176 (((-112) $) 36)) (-4292 (((-112) $) 91)) (-4289 (((-751)) 87)) (-1368 (((-3 $ "failed") $ $) 19)) (-4134 (($ $) 70)) (-4329 (((-400 $) $) 69)) (-1705 (((-112) $ $) 57)) (-3896 (($) 17 T CONST)) (-3508 (((-3 |#1| "failed") $) 98)) (-3507 ((|#1| $) 97)) (-2894 (($ $ $) 53)) (-3821 (((-3 $ "failed") $) 32)) (-2893 (($ $ $) 54)) (-3074 (((-2 (|:| -4313 (-622 $)) (|:| -2501 $)) (-622 $)) 49)) (-1886 (($ $ (-751)) 84 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363)))) (($ $) 83 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4086 (((-112) $) 68)) (-4131 (((-812 (-895)) $) 81 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-2502 (((-112) $) 30)) (-1702 (((-3 (-622 $) #1="failed") (-622 $) $) 50)) (-2013 (($ $ $) 44) (($ (-622 $)) 43)) (-3593 (((-1131) $) 9)) (-2734 (($ $) 67)) (-4291 (((-112) $) 90)) (-3594 (((-1093) $) 10)) (-3041 (((-1143 $) (-1143 $) (-1143 $)) 42)) (-3495 (($ $ $) 46) (($ (-622 $)) 45)) (-4092 (((-400 $) $) 71)) (-4290 (((-812 (-895))) 88)) (-1703 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2501 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 51)) (-3820 (((-3 $ "failed") $ $) 40)) (-3073 (((-3 (-622 $) "failed") (-622 $) $) 48)) (-1704 (((-751) $) 56)) (-3214 (((-2 (|:| -2096 $) (|:| -3235 $)) $ $) 55)) (-1887 (((-3 (-751) "failed") $ $) 82 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-4271 (((-133)) 96)) (-4307 (((-812 (-895)) $) 89)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ $) 41) (($ (-402 (-538))) 63) (($ |#1|) 99)) (-3035 (((-3 $ "failed") $) 80 (-3891 (|has| |#1| (-143)) (|has| |#1| (-363))))) (-3461 (((-751)) 28)) (-2177 (((-112) $ $) 37)) (-4293 (((-112) $) 92)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-4288 (($ $) 86 (|has| |#1| (-363))) (($ $ (-751)) 85 (|has| |#1| (-363)))) (-3387 (((-112) $ $) 6)) (-4308 (($ $ $) 62) (($ $ |#1|) 95)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31) (($ $ (-538)) 66)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ $ (-402 (-538))) 65) (($ (-402 (-538)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93))) +(((-1250 |#1|) (-138) (-358)) (T -1250)) +((-4293 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4292 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4291 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-812 (-895))))) (-4290 (*1 *2) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-812 (-895))))) (-4289 (*1 *2) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-751)))) (-4288 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-358)) (-4 *2 (-363)))) (-4288 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-4 *3 (-363))))) +(-13 (-358) (-1014 |t#1|) (-1239 |t#1|) (-10 -8 (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-143)) (-6 (-397)) |%noBranch|) (-15 -4293 ((-112) $)) (-15 -4292 ((-112) $)) (-15 -4291 ((-112) $)) (-15 -4307 ((-812 (-895)) $)) (-15 -4290 ((-812 (-895)))) (-15 -4289 ((-751))) (IF (|has| |t#1| (-363)) (PROGN (-6 (-397)) (-15 -4288 ($ $)) (-15 -4288 ($ $ (-751)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #1=(-402 (-538))) . T) ((-38 $) . T) ((-101) . T) ((-111 #1# #1#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-130) . T) ((-143) -3891 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-145) |has| |#1| (-145)) ((-597 (-840)) . T) ((-170) . T) ((-239) . T) ((-285) . T) ((-302) . T) ((-358) . T) ((-397) -3891 (|has| |#1| (-363)) (|has| |#1| (-143))) ((-446) . T) ((-545) . T) ((-628 #1#) . T) ((-628 |#1|) . T) ((-628 $) . T) ((-698 #1#) . T) ((-698 |#1|) . T) ((-698 $) . T) ((-707) . T) ((-897) . T) ((-1014 |#1|) . T) ((-1031 #1#) . T) ((-1031 |#1|) . T) ((-1031 $) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1190) . T) ((-1239 |#1|) . T)) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-4294 (((-622 |#1|) $) 38)) (-1368 (((-3 $ "failed") $ $) 19)) (-4295 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-751)) 40 (|has| |#2| (-170)))) (-3896 (($) 17 T CONST)) (-4299 (($ $ |#1|) 52) (($ $ (-799 |#1|)) 51) (($ $ $) 50)) (-3508 (((-3 (-799 |#1|) "failed") $) 62)) (-3507 (((-799 |#1|) $) 61)) (-3821 (((-3 $ "failed") $) 32)) (-4310 (((-112) $) 43)) (-4309 (($ $) 42)) (-2502 (((-112) $) 30)) (-4297 (((-112) $) 48)) (-4298 (($ (-799 |#1|) |#2|) 49)) (-4296 (($ $) 47)) (-4301 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 58)) (-4314 (((-799 |#1|) $) 59)) (-4318 (($ (-1 |#2| |#2|) $) 39)) (-4300 (($ $ |#1|) 55) (($ $ (-799 |#1|)) 54) (($ $ $) 53)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4312 (((-112) $) 45)) (-4311 ((|#2| $) 44)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#2|) 66) (($ (-799 |#1|)) 63) (($ |#1|) 46)) (-4313 ((|#2| $ (-799 |#1|)) 57) ((|#2| $ $) 56)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1251 |#1| |#2|) (-138) (-827) (-1025)) (T -1251)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4314 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-2 (|:| |k| (-799 *3)) (|:| |c| *4))))) (-4313 (*1 *2 *1 *3) (-12 (-5 *3 (-799 *4)) (-4 *1 (-1251 *4 *2)) (-4 *4 (-827)) (-4 *2 (-1025)))) (-4313 (*1 *2 *1 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (-4300 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4300 (*1 *1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4300 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4299 (*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4299 (*1 *1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4299 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4298 (*1 *1 *2 *3) (-12 (-5 *2 (-799 *4)) (-4 *4 (-827)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1025)))) (-4297 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-4296 (*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4317 (*1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4312 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) (-4310 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) (-4309 (*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) (-4295 (*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)) (-4 *3 (-170)))) (-4295 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-4 *4 (-170)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4294 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-622 *3))))) +(-13 (-1025) (-1246 |t#2|) (-1014 (-799 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4314 ((-799 |t#1|) $)) (-15 -4301 ((-2 (|:| |k| (-799 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4313 (|t#2| $ (-799 |t#1|))) (-15 -4313 (|t#2| $ $)) (-15 -4300 ($ $ |t#1|)) (-15 -4300 ($ $ (-799 |t#1|))) (-15 -4300 ($ $ $)) (-15 -4299 ($ $ |t#1|)) (-15 -4299 ($ $ (-799 |t#1|))) (-15 -4299 ($ $ $)) (-15 -4298 ($ (-799 |t#1|) |t#2|)) (-15 -4297 ((-112) $)) (-15 -4296 ($ $)) (-15 -4317 ($ |t#1|)) (-15 -4312 ((-112) $)) (-15 -4311 (|t#2| $)) (-15 -4310 ((-112) $)) (-15 -4309 ($ $)) (IF (|has| |t#2| (-170)) (PROGN (-15 -4295 ($ $ $)) (-15 -4295 ($ $ (-751)))) |%noBranch|) (-15 -4318 ($ (-1 |t#2| |t#2|) $)) (-15 -4294 ((-622 |t#1|) $)) (IF (|has| |t#2| (-6 -4346)) (-6 -4346) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#2|) . T) ((-628 $) . T) ((-698 |#2|) |has| |#2| (-170)) ((-707) . T) ((-1014 (-799 |#1|)) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1246 |#2|) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4294 (((-622 |#1|) $) 86)) (-4306 (($ $ (-751)) 89)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4295 (($ $ $) NIL (|has| |#2| (-170))) (($ $ (-751)) NIL (|has| |#2| (-170)))) (-3896 (($) NIL T CONST)) (-4299 (($ $ |#1|) NIL) (($ $ (-799 |#1|)) NIL) (($ $ $) NIL)) (-3508 (((-3 (-799 |#1|) #1="failed") $) NIL) (((-3 (-869 |#1|) #1#) $) NIL)) (-3507 (((-799 |#1|) $) NIL) (((-869 |#1|) $) NIL)) (-4319 (($ $) 88)) (-3821 (((-3 $ "failed") $) NIL)) (-4310 (((-112) $) 77)) (-4309 (($ $) 81)) (-4304 (($ $ $ (-751)) 90)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ (-799 |#1|) |#2|) NIL) (($ (-869 |#1|) |#2|) 26)) (-4296 (($ $) 103)) (-4301 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4314 (((-799 |#1|) $) NIL)) (-4315 (((-799 |#1|) $) NIL)) (-4318 (($ (-1 |#2| |#2|) $) NIL)) (-4300 (($ $ |#1|) NIL) (($ $ (-799 |#1|)) NIL) (($ $ $) NIL)) (-4302 (($ $ (-751)) 97 (|has| |#2| (-698 (-402 (-538)))))) (-1865 (((-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3227 (((-869 |#1|) $) 70)) (-3525 ((|#2| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4303 (($ $ (-751)) 94 (|has| |#2| (-698 (-402 (-538)))))) (-4307 (((-751) $) 87)) (-4312 (((-112) $) 71)) (-4311 ((|#2| $) 75)) (-4317 (((-840) $) 57) (($ (-538)) NIL) (($ |#2|) 51) (($ (-799 |#1|)) NIL) (($ |#1|) 59) (($ (-869 |#1|)) NIL) (($ (-644 |#1| |#2|)) 43) (((-1247 |#1| |#2|) $) 64) (((-1256 |#1| |#2|) $) 69)) (-4177 (((-622 |#2|) $) NIL)) (-4040 ((|#2| $ (-869 |#1|)) NIL)) (-4313 ((|#2| $ (-799 |#1|)) NIL) ((|#2| $ $) NIL)) (-3461 (((-751)) NIL)) (-2991 (($) 21 T CONST)) (-2997 (($) 25 T CONST)) (-2996 (((-622 (-2 (|:| |k| (-869 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4305 (((-3 (-644 |#1| |#2|) "failed") $) 102)) (-3387 (((-112) $ $) 65)) (-4197 (($ $) 96) (($ $ $) 95)) (-4199 (($ $ $) 20)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-869 |#1|)) NIL))) +(((-1252 |#1| |#2|) (-13 (-1254 |#1| |#2|) (-379 |#2| (-869 |#1|)) (-10 -8 (-15 -4317 ($ (-644 |#1| |#2|))) (-15 -4317 ((-1247 |#1| |#2|) $)) (-15 -4317 ((-1256 |#1| |#2|) $)) (-15 -4305 ((-3 (-644 |#1| |#2|) "failed") $)) (-15 -4304 ($ $ $ (-751))) (IF (|has| |#2| (-698 (-402 (-538)))) (PROGN (-15 -4303 ($ $ (-751))) (-15 -4302 ($ $ (-751)))) |%noBranch|))) (-827) (-170)) (T -1252)) +((-4317 (*1 *1 *2) (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *1 (-1252 *3 *4)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4305 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4304 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) (-4303 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-538)))) (-4 *3 (-827)) (-4 *4 (-170)))) (-4302 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-538)))) (-4 *3 (-827)) (-4 *4 (-170))))) +(-13 (-1254 |#1| |#2|) (-379 |#2| (-869 |#1|)) (-10 -8 (-15 -4317 ($ (-644 |#1| |#2|))) (-15 -4317 ((-1247 |#1| |#2|) $)) (-15 -4317 ((-1256 |#1| |#2|) $)) (-15 -4305 ((-3 (-644 |#1| |#2|) "failed") $)) (-15 -4304 ($ $ $ (-751))) (IF (|has| |#2| (-698 (-402 (-538)))) (PROGN (-15 -4303 ($ $ (-751))) (-15 -4302 ($ $ (-751)))) |%noBranch|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-4294 (((-622 (-1149)) $) NIL)) (-4322 (($ (-1247 (-1149) |#1|)) NIL)) (-4306 (($ $ (-751)) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4295 (($ $ $) NIL (|has| |#1| (-170))) (($ $ (-751)) NIL (|has| |#1| (-170)))) (-3896 (($) NIL T CONST)) (-4299 (($ $ (-1149)) NIL) (($ $ (-799 (-1149))) NIL) (($ $ $) NIL)) (-3508 (((-3 (-799 (-1149)) "failed") $) NIL)) (-3507 (((-799 (-1149)) $) NIL)) (-3821 (((-3 $ "failed") $) NIL)) (-4310 (((-112) $) NIL)) (-4309 (($ $) NIL)) (-2502 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ (-799 (-1149)) |#1|) NIL)) (-4296 (($ $) NIL)) (-4301 (((-2 (|:| |k| (-799 (-1149))) (|:| |c| |#1|)) $) NIL)) (-4314 (((-799 (-1149)) $) NIL)) (-4315 (((-799 (-1149)) $) NIL)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-4300 (($ $ (-1149)) NIL) (($ $ (-799 (-1149))) NIL) (($ $ $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4323 (((-1247 (-1149) |#1|) $) NIL)) (-4307 (((-751) $) NIL)) (-4312 (((-112) $) NIL)) (-4311 ((|#1| $) NIL)) (-4317 (((-840) $) NIL) (($ (-538)) NIL) (($ |#1|) NIL) (($ (-799 (-1149))) NIL) (($ (-1149)) NIL)) (-4313 ((|#1| $ (-799 (-1149))) NIL) ((|#1| $ $) NIL)) (-3461 (((-751)) NIL)) (-2991 (($) NIL T CONST)) (-4321 (((-622 (-2 (|:| |k| (-1149)) (|:| |c| $))) $) NIL)) (-2997 (($) NIL T CONST)) (-3387 (((-112) $ $) NIL)) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) NIL)) (** (($ $ (-895)) NIL) (($ $ (-751)) NIL)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1149) $) NIL))) +(((-1253 |#1|) (-13 (-1254 (-1149) |#1|) (-10 -8 (-15 -4323 ((-1247 (-1149) |#1|) $)) (-15 -4322 ($ (-1247 (-1149) |#1|))) (-15 -4321 ((-622 (-2 (|:| |k| (-1149)) (|:| |c| $))) $)))) (-1025)) (T -1253)) +((-4323 (*1 *2 *1) (-12 (-5 *2 (-1247 (-1149) *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1025)))) (-4322 (*1 *1 *2) (-12 (-5 *2 (-1247 (-1149) *3)) (-4 *3 (-1025)) (-5 *1 (-1253 *3)))) (-4321 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |k| (-1149)) (|:| |c| (-1253 *3))))) (-5 *1 (-1253 *3)) (-4 *3 (-1025))))) +(-13 (-1254 #1=(-1149) |#1|) (-10 -8 (-15 -4323 ((-1247 #1# |#1|) $)) (-15 -4322 ($ (-1247 #1# |#1|))) (-15 -4321 ((-622 (-2 (|:| |k| #1#) (|:| |c| $))) $)))) +((-2898 (((-112) $ $) 7)) (-3539 (((-112) $) 16)) (-4294 (((-622 |#1|) $) 38)) (-4306 (($ $ (-751)) 71)) (-1368 (((-3 $ "failed") $ $) 19)) (-4295 (($ $ $) 41 (|has| |#2| (-170))) (($ $ (-751)) 40 (|has| |#2| (-170)))) (-3896 (($) 17 T CONST)) (-4299 (($ $ |#1|) 52) (($ $ (-799 |#1|)) 51) (($ $ $) 50)) (-3508 (((-3 (-799 |#1|) "failed") $) 62)) (-3507 (((-799 |#1|) $) 61)) (-3821 (((-3 $ "failed") $) 32)) (-4310 (((-112) $) 43)) (-4309 (($ $) 42)) (-2502 (((-112) $) 30)) (-4297 (((-112) $) 48)) (-4298 (($ (-799 |#1|) |#2|) 49)) (-4296 (($ $) 47)) (-4301 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) 58)) (-4314 (((-799 |#1|) $) 59)) (-4315 (((-799 |#1|) $) 73)) (-4318 (($ (-1 |#2| |#2|) $) 39)) (-4300 (($ $ |#1|) 55) (($ $ (-799 |#1|)) 54) (($ $ $) 53)) (-3593 (((-1131) $) 9)) (-3594 (((-1093) $) 10)) (-4307 (((-751) $) 72)) (-4312 (((-112) $) 45)) (-4311 ((|#2| $) 44)) (-4317 (((-840) $) 11) (($ (-538)) 27) (($ |#2|) 66) (($ (-799 |#1|)) 63) (($ |#1|) 46)) (-4313 ((|#2| $ (-799 |#1|)) 57) ((|#2| $ $) 56)) (-3461 (((-751)) 28)) (-2991 (($) 18 T CONST)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 6)) (-4197 (($ $) 22) (($ $ $) 21)) (-4199 (($ $ $) 14)) (** (($ $ (-895)) 25) (($ $ (-751)) 31)) (* (($ (-895) $) 13) (($ (-751) $) 15) (($ (-538) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60))) +(((-1254 |#1| |#2|) (-138) (-827) (-1025)) (T -1254)) +((-4315 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-751)))) (-4306 (*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))))) +(-13 (-1251 |t#1| |t#2|) (-10 -8 (-15 -4315 ((-799 |t#1|) $)) (-15 -4307 ((-751) $)) (-15 -4306 ($ $ (-751))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-170)) ((-101) . T) ((-111 |#2| |#2|) . T) ((-130) . T) ((-597 (-840)) . T) ((-628 |#2|) . T) ((-628 $) . T) ((-698 |#2|) |has| |#2| (-170)) ((-707) . T) ((-1014 (-799 |#1|)) . T) ((-1031 |#2|) . T) ((-1025) . T) ((-1032) . T) ((-1085) . T) ((-1074) . T) ((-1246 |#2|) . T) ((-1251 |#1| |#2|) . T)) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) NIL)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3896 (($) NIL T CONST)) (-3508 (((-3 |#2| "failed") $) NIL)) (-3507 ((|#2| $) NIL)) (-4319 (($ $) NIL)) (-3821 (((-3 $ "failed") $) 36)) (-4310 (((-112) $) 30)) (-4309 (($ $) 32)) (-2502 (((-112) $) NIL)) (-2510 (((-751) $) NIL)) (-3154 (((-622 $) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ |#2| |#1|) NIL)) (-4314 ((|#2| $) 19)) (-4315 ((|#2| $) 16)) (-4318 (($ (-1 |#1| |#1|) $) NIL)) (-1865 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3227 ((|#2| $) NIL)) (-3525 ((|#1| $) NIL)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4312 (((-112) $) 27)) (-4311 ((|#1| $) 28)) (-4317 (((-840) $) 55) (($ (-538)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-4177 (((-622 |#1|) $) NIL)) (-4040 ((|#1| $ |#2|) NIL)) (-4313 ((|#1| $ |#2|) 24)) (-3461 (((-751)) 14)) (-2991 (($) 25 T CONST)) (-2997 (($) 11 T CONST)) (-2996 (((-622 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3387 (((-112) $ $) 26)) (-4308 (($ $ |#1|) 57 (|has| |#1| (-358)))) (-4197 (($ $) NIL) (($ $ $) NIL)) (-4199 (($ $ $) 44)) (** (($ $ (-895)) NIL) (($ $ (-751)) 46)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4316 (((-751) $) 15))) +(((-1255 |#1| |#2|) (-13 (-1025) (-1246 |#1|) (-379 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4316 ((-751) $)) (-15 -4317 ($ |#2|)) (-15 -4315 (|#2| $)) (-15 -4314 (|#2| $)) (-15 -4319 ($ $)) (-15 -4313 (|#1| $ |#2|)) (-15 -4312 ((-112) $)) (-15 -4311 (|#1| $)) (-15 -4310 ((-112) $)) (-15 -4309 ($ $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -4308 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|) (IF (|has| |#1| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) (-1025) (-823)) (T -1255)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-4319 (*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-4318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-1255 *3 *4)) (-4 *4 (-823)))) (-4317 (*1 *1 *2) (-12 (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-823)))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-4315 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))) (-4314 (*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)))) (-4313 (*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-4311 (*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823)))) (-4309 (*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823)))) (-4308 (*1 *1 *1 *2) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-823))))) +(-13 (-1025) (-1246 |#1|) (-379 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4316 ((-751) $)) (-15 -4317 ($ |#2|)) (-15 -4315 (|#2| $)) (-15 -4314 (|#2| $)) (-15 -4319 ($ $)) (-15 -4313 (|#1| $ |#2|)) (-15 -4312 ((-112) $)) (-15 -4311 (|#1| $)) (-15 -4310 ((-112) $)) (-15 -4309 ($ $)) (-15 -4318 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-358)) (-15 -4308 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4346)) (-6 -4346) |%noBranch|) (IF (|has| |#1| (-6 -4350)) (-6 -4350) |%noBranch|) (IF (|has| |#1| (-6 -4351)) (-6 -4351) |%noBranch|))) +((-2898 (((-112) $ $) 26)) (-3539 (((-112) $) NIL)) (-4294 (((-622 |#1|) $) 120)) (-4322 (($ (-1247 |#1| |#2|)) 44)) (-4306 (($ $ (-751)) 32)) (-1368 (((-3 $ "failed") $ $) NIL)) (-4295 (($ $ $) 48 (|has| |#2| (-170))) (($ $ (-751)) 46 (|has| |#2| (-170)))) (-3896 (($) NIL T CONST)) (-4299 (($ $ |#1|) 102) (($ $ (-799 |#1|)) 103) (($ $ $) 25)) (-3508 (((-3 (-799 |#1|) "failed") $) NIL)) (-3507 (((-799 |#1|) $) NIL)) (-3821 (((-3 $ "failed") $) 110)) (-4310 (((-112) $) 105)) (-4309 (($ $) 106)) (-2502 (((-112) $) NIL)) (-4297 (((-112) $) NIL)) (-4298 (($ (-799 |#1|) |#2|) 19)) (-4296 (($ $) NIL)) (-4301 (((-2 (|:| |k| (-799 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4314 (((-799 |#1|) $) 111)) (-4315 (((-799 |#1|) $) 114)) (-4318 (($ (-1 |#2| |#2|) $) 119)) (-4300 (($ $ |#1|) 100) (($ $ (-799 |#1|)) 101) (($ $ $) 56)) (-3593 (((-1131) $) NIL)) (-3594 (((-1093) $) NIL)) (-4323 (((-1247 |#1| |#2|) $) 84)) (-4307 (((-751) $) 117)) (-4312 (((-112) $) 70)) (-4311 ((|#2| $) 28)) (-4317 (((-840) $) 63) (($ (-538)) 77) (($ |#2|) 74) (($ (-799 |#1|)) 17) (($ |#1|) 73)) (-4313 ((|#2| $ (-799 |#1|)) 104) ((|#2| $ $) 27)) (-3461 (((-751)) 108)) (-2991 (($) 14 T CONST)) (-4321 (((-622 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-2997 (($) 29 T CONST)) (-3387 (((-112) $ $) 13)) (-4197 (($ $) 88) (($ $ $) 91)) (-4199 (($ $ $) 55)) (** (($ $ (-895)) NIL) (($ $ (-751)) 49)) (* (($ (-895) $) NIL) (($ (-751) $) 47) (($ (-538) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82))) +(((-1256 |#1| |#2|) (-13 (-1254 |#1| |#2|) (-10 -8 (-15 -4323 ((-1247 |#1| |#2|) $)) (-15 -4322 ($ (-1247 |#1| |#2|))) (-15 -4321 ((-622 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-827) (-1025)) (T -1256)) +((-4323 (*1 *2 *1) (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) (-4322 (*1 *1 *2) (-12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *1 (-1256 *3 *4)))) (-4321 (*1 *2 *1) (-12 (-5 *2 (-622 (-2 (|:| |k| *3) (|:| |c| (-1256 *3 *4))))) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))))) +(-13 (-1254 |#1| |#2|) (-10 -8 (-15 -4323 ((-1247 |#1| |#2|) $)) (-15 -4322 ($ (-1247 |#1| |#2|))) (-15 -4321 ((-622 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-4324 (((-622 (-1126 |#1|)) (-1 (-622 (-1126 |#1|)) (-622 (-1126 |#1|))) (-538)) 15) (((-1126 |#1|) (-1 (-1126 |#1|) (-1126 |#1|))) 11))) +(((-1257 |#1|) (-10 -7 (-15 -4324 ((-1126 |#1|) (-1 (-1126 |#1|) (-1126 |#1|)))) (-15 -4324 ((-622 (-1126 |#1|)) (-1 (-622 (-1126 |#1|)) (-622 (-1126 |#1|))) (-538)))) (-1185)) (T -1257)) +((-4324 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-622 (-1126 *5)) (-622 (-1126 *5)))) (-5 *4 (-538)) (-5 *2 (-622 (-1126 *5))) (-5 *1 (-1257 *5)) (-4 *5 (-1185)))) (-4324 (*1 *2 *3) (-12 (-5 *3 (-1 (-1126 *4) (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1257 *4)) (-4 *4 (-1185))))) +(-10 -7 (-15 -4324 ((-1126 |#1|) (-1 (-1126 |#1|) (-1126 |#1|)))) (-15 -4324 ((-622 (-1126 |#1|)) (-1 (-622 (-1126 |#1|)) (-622 (-1126 |#1|))) (-538)))) +((-4326 (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|))) 148) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112)) 147) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112)) 146) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112) (-112)) 145) (((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-1022 |#1| |#2|)) 130)) (-4325 (((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|))) 72) (((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112)) 71) (((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112) (-112)) 70)) (-4329 (((-622 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|)) 61)) (-4327 (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|))) 115) (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112)) 114) (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112)) 113) (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112) (-112)) 112) (((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|)) 107)) (-4328 (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|))) 120) (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112)) 119) (((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112)) 118) (((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|)) 117)) (-4330 (((-622 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) 98) (((-1143 (-1000 (-402 |#1|))) (-1143 |#1|)) 89) (((-922 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|))) 96) (((-922 (-1000 (-402 |#1|))) (-922 |#1|)) 94) (((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|))) 33))) +(((-1258 |#1| |#2| |#3|) (-10 -7 (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112))) (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-1022 |#1| |#2|))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)))) (-15 -4329 ((-622 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|))) (-15 -4330 ((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|)))) (-15 -4330 ((-922 (-1000 (-402 |#1|))) (-922 |#1|))) (-15 -4330 ((-922 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|)))) (-15 -4330 ((-1143 (-1000 (-402 |#1|))) (-1143 |#1|))) (-15 -4330 ((-622 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))))) (-13 (-825) (-302) (-145) (-996)) (-622 (-1149)) (-622 (-1149))) (T -1258)) +((-4330 (*1 *2 *3) (-12 (-5 *3 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6)))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-760 *4 (-841 *6)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-1143 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-1143 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-760 *4 (-841 *6))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *6 (-622 (-1149))) (-5 *2 (-922 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-922 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-922 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-760 *4 (-841 *5))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *5 (-622 (-1149))) (-5 *2 (-760 *4 (-841 *6))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4328 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4328 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4327 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4327 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4327 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4327 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) (-4326 (*1 *2 *3) (-12 (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4)))))) (-5 *1 (-1258 *4 *5 *6)) (-5 *3 (-622 (-922 *4))) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4326 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4326 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4326 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4326 (*1 *2 *3) (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4)))))) (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-1022 *4 *5))) (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) (-4325 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149)))))) +(-10 -7 (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)) (-112))) (-15 -4325 ((-622 (-1022 |#1| |#2|)) (-622 (-922 |#1|)))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-1022 |#1| |#2|))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)) (-112))) (-15 -4326 ((-622 (-2 (|:| -1863 (-1143 |#1|)) (|:| -3575 (-622 (-922 |#1|))))) (-622 (-922 |#1|)))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112))) (-15 -4327 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-1022 |#1| |#2|))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112) (-112))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)) (-112))) (-15 -4328 ((-622 (-622 (-1000 (-402 |#1|)))) (-622 (-922 |#1|)))) (-15 -4329 ((-622 (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))) (-1022 |#1| |#2|))) (-15 -4330 ((-760 |#1| (-841 |#3|)) (-760 |#1| (-841 |#2|)))) (-15 -4330 ((-922 (-1000 (-402 |#1|))) (-922 |#1|))) (-15 -4330 ((-922 (-1000 (-402 |#1|))) (-760 |#1| (-841 |#3|)))) (-15 -4330 ((-1143 (-1000 (-402 |#1|))) (-1143 |#1|))) (-15 -4330 ((-622 (-760 |#1| (-841 |#3|))) (-1119 |#1| (-524 (-841 |#3|)) (-841 |#3|) (-760 |#1| (-841 |#3|)))))) +((-4333 (((-3 (-1231 (-402 (-538))) "failed") (-1231 |#1|) |#1|) 21)) (-4331 (((-112) (-1231 |#1|)) 12)) (-4332 (((-3 (-1231 (-538)) "failed") (-1231 |#1|)) 16))) +(((-1259 |#1|) (-10 -7 (-15 -4331 ((-112) (-1231 |#1|))) (-15 -4332 ((-3 (-1231 (-538)) "failed") (-1231 |#1|))) (-15 -4333 ((-3 (-1231 (-402 (-538))) "failed") (-1231 |#1|) |#1|))) (-621 (-538))) (T -1259)) +((-4333 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538))) (-5 *2 (-1231 (-402 (-538)))) (-5 *1 (-1259 *4)))) (-4332 (*1 *2 *3) (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538))) (-5 *2 (-1231 (-538))) (-5 *1 (-1259 *4)))) (-4331 (*1 *2 *3) (-12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538))) (-5 *2 (-112)) (-5 *1 (-1259 *4))))) +(-10 -7 (-15 -4331 ((-112) (-1231 |#1|))) (-15 -4332 ((-3 (-1231 (-538)) "failed") (-1231 |#1|))) (-15 -4333 ((-3 (-1231 (-402 (-538))) "failed") (-1231 |#1|) |#1|))) +((-2898 (((-112) $ $) NIL)) (-3539 (((-112) $) 11)) (-1368 (((-3 $ "failed") $ $) NIL)) (-3471 (((-751)) 8)) (-3896 (($) NIL T CONST)) (-3821 (((-3 $ "failed") $) 43)) (-3327 (($) 36)) (-2502 (((-112) $) NIL)) (-3803 (((-3 $ "failed") $) 29)) (-2126 (((-895) $) 15)) (-3593 (((-1131) $) NIL)) (-3804 (($) 25 T CONST)) (-2492 (($ (-895)) 37)) (-3594 (((-1093) $) NIL)) (-4330 (((-538) $) 13)) (-4317 (((-840) $) 22) (($ (-538)) 19)) (-3461 (((-751)) 9)) (-2991 (($) 23 T CONST)) (-2997 (($) 24 T CONST)) (-3387 (((-112) $ $) 27)) (-4197 (($ $) 38) (($ $ $) 35)) (-4199 (($ $ $) 26)) (** (($ $ (-895)) NIL) (($ $ (-751)) 40)) (* (($ (-895) $) NIL) (($ (-751) $) NIL) (($ (-538) $) 32) (($ $ $) 31))) +(((-1260 |#1|) (-13 (-170) (-363) (-598 (-538)) (-1124)) (-895)) (T -1260)) +NIL +(-13 (-170) (-363) (-598 (-538)) (-1124)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3168410 3168415 3168420 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3168395 3168400 3168405 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3168380 3168385 3168390 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3168365 3168370 3168375 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1260 3167541 3168240 3168317 "ZMOD" 3168322 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1259 3166651 3166815 3167024 "ZLINDEP" 3167373 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1258 3155979 3157743 3159714 "ZDSOLVE" 3164781 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1257 3155225 3155366 3155555 "YSTREAM" 3155825 NIL YSTREAM (NIL T) -7 NIL NIL) (-1256 3153036 3154526 3154730 "XRPOLY" 3155068 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1255 3149528 3150811 3151395 "XPR" 3152499 NIL XPR (NIL T T) -8 NIL NIL) (-1254 3147377 3148711 3148766 "XPOLYC" 3149054 NIL XPOLYC (NIL T T) -9 NIL 3149167) (-1253 3145142 3146717 3146921 "XPOLY" 3147217 NIL XPOLY (NIL T) -8 NIL NIL) (-1252 3141562 3143659 3144047 "XPBWPOLY" 3144800 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1251 3136954 3138209 3138264 "XFALG" 3140436 NIL XFALG (NIL T T) -9 NIL 3141225) (-1250 3132941 3135187 3135229 "XF" 3135850 NIL XF (NIL T) -9 NIL 3136250) (-1249 3132562 3132650 3132819 "XF-" 3132824 NIL XF- (NIL T T) -8 NIL NIL) (-1248 3131695 3131799 3132004 "XEXPPKG" 3132454 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1247 3129839 3131545 3131641 "XDPOLY" 3131646 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1246 3128755 3129321 3129364 "XALG" 3129427 NIL XALG (NIL T) -9 NIL 3129547) (-1245 3122251 3126732 3127226 "WUTSET" 3128347 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1244 3120102 3120863 3121216 "WP" 3122032 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1243 3119731 3119924 3119994 "WHILEAST" 3120054 T WHILEAST (NIL) -8 NIL NIL) (-1242 3119230 3119448 3119542 "WHEREAST" 3119659 T WHEREAST (NIL) -8 NIL NIL) (-1241 3118116 3118314 3118609 "WFFINTBS" 3119027 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1240 3116020 3116447 3116909 "WEIER" 3117688 NIL WEIER (NIL T) -7 NIL NIL) (-1239 3115167 3115591 3115633 "VSPACE" 3115769 NIL VSPACE (NIL T) -9 NIL 3115843) (-1238 3115005 3115032 3115123 "VSPACE-" 3115128 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1237 3114751 3114794 3114865 "VOID" 3114956 T VOID (NIL) -8 NIL NIL) (-1236 3111176 3111814 3112551 "VIEWDEF" 3114036 T VIEWDEF (NIL) -7 NIL NIL) (-1235 3100514 3102724 3104897 "VIEW3D" 3109025 T VIEW3D (NIL) -8 NIL NIL) (-1234 3092796 3094425 3096004 "VIEW2D" 3098957 T VIEW2D (NIL) -8 NIL NIL) (-1233 3090932 3091291 3091697 "VIEW" 3092412 T VIEW (NIL) -7 NIL NIL) (-1232 3089509 3089768 3090086 "VECTOR2" 3090662 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1231 3084913 3089279 3089371 "VECTOR" 3089452 NIL VECTOR (NIL T) -8 NIL NIL) (-1230 3078440 3082697 3082740 "VECTCAT" 3083733 NIL VECTCAT (NIL T) -9 NIL 3084319) (-1229 3077454 3077708 3078098 "VECTCAT-" 3078103 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1228 3076935 3077105 3077225 "VARIABLE" 3077369 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1227 3076868 3076873 3076903 "UTYPE" 3076908 T UTYPE (NIL) -9 NIL NIL) (-1226 3075698 3075852 3076114 "UTSODETL" 3076694 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1225 3073138 3073598 3074122 "UTSODE" 3075239 NIL UTSODE (NIL T T) -7 NIL NIL) (-1224 3064511 3069830 3069873 "UTSCAT" 3070985 NIL UTSCAT (NIL T) -9 NIL 3071742) (-1223 3061865 3062581 3063570 "UTSCAT-" 3063575 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1222 3061492 3061535 3061668 "UTS2" 3061816 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1221 3053368 3059118 3059607 "UTS" 3061061 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1220 3047644 3050208 3050251 "URAGG" 3052321 NIL URAGG (NIL T) -9 NIL 3053043) (-1219 3044586 3045448 3046570 "URAGG-" 3046575 NIL URAGG- (NIL T T) -8 NIL NIL) (-1218 3040317 3043200 3043672 "UPXSSING" 3044250 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1217 3033432 3040221 3040293 "UPXSCONS" 3040298 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1216 3023792 3030535 3030597 "UPXSCCA" 3031253 NIL UPXSCCA (NIL T T) -9 NIL 3031495) (-1215 3023430 3023515 3023689 "UPXSCCA-" 3023694 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1214 3013716 3020232 3020275 "UPXSCAT" 3020923 NIL UPXSCAT (NIL T) -9 NIL 3021531) (-1213 3013146 3013225 3013404 "UPXS2" 3013631 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1212 3005120 3012261 3012543 "UPXS" 3012922 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1211 3003777 3004029 3004379 "UPSQFREE" 3004864 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1210 2997695 3000704 3000759 "UPSCAT" 3001920 NIL UPSCAT (NIL T T) -9 NIL 3002694) (-1209 2996899 2997106 2997433 "UPSCAT-" 2997438 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1208 2996526 2996569 2996702 "UPOLYC2" 2996850 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1207 2982650 2990613 2990656 "UPOLYC" 2992757 NIL UPOLYC (NIL T) -9 NIL 2993978) (-1206 2974015 2976428 2979563 "UPOLYC-" 2979568 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1205 2973354 2973461 2973625 "UPMP" 2973904 NIL UPMP (NIL T T) -7 NIL NIL) (-1204 2972907 2972988 2973127 "UPDIVP" 2973267 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1203 2971475 2971724 2972040 "UPDECOMP" 2972656 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1202 2970710 2970822 2971007 "UPCDEN" 2971359 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1201 2970229 2970298 2970447 "UP2" 2970635 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1200 2961726 2969795 2969933 "UP" 2970139 NIL UP (NIL NIL T) -8 NIL NIL) (-1199 2960941 2961068 2961273 "UNISEG2" 2961569 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1198 2959458 2960145 2960422 "UNISEG" 2960699 NIL UNISEG (NIL T) -8 NIL NIL) (-1197 2958518 2958698 2958924 "UNIFACT" 2959274 NIL UNIFACT (NIL T) -7 NIL NIL) (-1196 2946576 2958422 2958494 "ULSCONS" 2958499 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1195 2929396 2941315 2941377 "ULSCCAT" 2942097 NIL ULSCCAT (NIL T T) -9 NIL 2942394) (-1194 2928482 2928715 2929091 "ULSCCAT-" 2929096 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1193 2918545 2924975 2925018 "ULSCAT" 2925881 NIL ULSCAT (NIL T) -9 NIL 2926611) (-1192 2917975 2918054 2918233 "ULS2" 2918460 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1191 2901960 2917152 2917403 "ULS" 2917782 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1190 2900398 2901321 2901351 "UFD" 2901563 T UFD (NIL) -9 NIL 2901677) (-1189 2900192 2900238 2900333 "UFD-" 2900338 NIL UFD- (NIL T) -8 NIL NIL) (-1188 2899274 2899457 2899673 "UDVO" 2899998 T UDVO (NIL) -7 NIL NIL) (-1187 2897090 2897499 2897970 "UDPO" 2898838 NIL UDPO (NIL T) -7 NIL NIL) (-1186 2896877 2897045 2897076 "TYPEAST" 2897081 T TYPEAST (NIL) -8 NIL NIL) (-1185 2896810 2896815 2896845 "TYPE" 2896850 T TYPE (NIL) -9 NIL NIL) (-1184 2895781 2895983 2896223 "TWOFACT" 2896604 NIL TWOFACT (NIL T) -7 NIL NIL) (-1183 2894719 2895056 2895319 "TUPLE" 2895553 NIL TUPLE (NIL T) -8 NIL NIL) (-1182 2892410 2892929 2893468 "TUBETOOL" 2894202 T TUBETOOL (NIL) -7 NIL NIL) (-1181 2891259 2891464 2891705 "TUBE" 2892203 NIL TUBE (NIL T) -8 NIL NIL) (-1180 2879926 2884018 2884115 "TSETCAT" 2889384 NIL TSETCAT (NIL T T T T) -9 NIL 2890915) (-1179 2874660 2876258 2878149 "TSETCAT-" 2878154 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1178 2869424 2873632 2873915 "TS" 2874412 NIL TS (NIL T) -8 NIL NIL) (-1177 2863687 2864533 2865475 "TRMANIP" 2868560 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1176 2863128 2863191 2863354 "TRIMAT" 2863619 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1175 2860924 2861161 2861525 "TRIGMNIP" 2862877 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1174 2860444 2860557 2860587 "TRIGCAT" 2860800 T TRIGCAT (NIL) -9 NIL NIL) (-1173 2860113 2860192 2860333 "TRIGCAT-" 2860338 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1172 2857013 2858973 2859253 "TREE" 2859868 NIL TREE (NIL T) -8 NIL NIL) (-1171 2856287 2856815 2856845 "TRANFUN" 2856880 T TRANFUN (NIL) -9 NIL 2856946) (-1170 2855566 2855757 2856037 "TRANFUN-" 2856042 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1169 2855370 2855402 2855463 "TOPSP" 2855527 T TOPSP (NIL) -7 NIL NIL) (-1168 2854718 2854833 2854987 "TOOLSIGN" 2855251 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1167 2853379 2853895 2854134 "TEXTFILE" 2854501 T TEXTFILE (NIL) -8 NIL NIL) (-1166 2853160 2853191 2853263 "TEX1" 2853342 NIL TEX1 (NIL T) -7 NIL NIL) (-1165 2851025 2851539 2851977 "TEX" 2852744 T TEX (NIL) -8 NIL NIL) (-1164 2850673 2850736 2850826 "TEMUTL" 2850957 T TEMUTL (NIL) -7 NIL NIL) (-1163 2848827 2849107 2849432 "TBCMPPK" 2850396 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1162 2840717 2846987 2847043 "TBAGG" 2847443 NIL TBAGG (NIL T T) -9 NIL 2847654) (-1161 2835787 2837275 2839029 "TBAGG-" 2839034 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1160 2835171 2835278 2835423 "TANEXP" 2835676 NIL TANEXP (NIL T) -7 NIL NIL) (-1159 2834583 2834682 2834820 "TABLEAU" 2835068 NIL TABLEAU (NIL T) -8 NIL NIL) (-1158 2828086 2834440 2834533 "TABLE" 2834538 NIL TABLE (NIL T T) -8 NIL NIL) (-1157 2822694 2823914 2825162 "TABLBUMP" 2826872 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1156 2822122 2822222 2822350 "SYSTEM" 2822588 T SYSTEM (NIL) -7 NIL NIL) (-1155 2818585 2819280 2820063 "SYSSOLP" 2821373 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1154 2814877 2815584 2816318 "SYNTAX" 2817873 T SYNTAX (NIL) -8 NIL NIL) (-1153 2812035 2812637 2813269 "SYMTAB" 2814267 T SYMTAB (NIL) -8 NIL NIL) (-1152 2807308 2808204 2809181 "SYMS" 2811080 T SYMS (NIL) -8 NIL NIL) (-1151 2804590 2806769 2806999 "SYMPOLY" 2807116 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1150 2804107 2804182 2804305 "SYMFUNC" 2804502 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1149 2800084 2801344 2802166 "SYMBOL" 2803307 T SYMBOL (NIL) -8 NIL NIL) (-1148 2793623 2795312 2797032 "SWITCH" 2798386 T SWITCH (NIL) -8 NIL NIL) (-1147 2786893 2792444 2792747 "SUTS" 2793378 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1146 2778866 2786008 2786290 "SUPXS" 2786669 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1145 2778025 2778152 2778369 "SUPFRACF" 2778734 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1144 2777646 2777705 2777818 "SUP2" 2777960 NIL SUP2 (NIL T T) -7 NIL NIL) (-1143 2769215 2777264 2777390 "SUP" 2777555 NIL SUP (NIL T) -8 NIL NIL) (-1142 2767628 2767902 2768265 "SUMRF" 2768914 NIL SUMRF (NIL T) -7 NIL NIL) (-1141 2766942 2767008 2767207 "SUMFS" 2767549 NIL SUMFS (NIL T T) -7 NIL NIL) (-1140 2750967 2766119 2766370 "SULS" 2766749 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1139 2750596 2750789 2750859 "SUCHTAST" 2750919 T SUCHTAST (NIL) -8 NIL NIL) (-1138 2749918 2750121 2750261 "SUCH" 2750504 NIL SUCH (NIL T T) -8 NIL NIL) (-1137 2743812 2744824 2745783 "SUBSPACE" 2749006 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1136 2743242 2743332 2743496 "SUBRESP" 2743700 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1135 2737415 2738535 2739682 "STTFNC" 2742142 NIL STTFNC (NIL T) -7 NIL NIL) (-1134 2730784 2732080 2733391 "STTF" 2736151 NIL STTF (NIL T) -7 NIL NIL) (-1133 2722099 2723966 2725760 "STTAYLOR" 2729025 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1132 2715345 2721963 2722046 "STRTBL" 2722051 NIL STRTBL (NIL T) -8 NIL NIL) (-1131 2710736 2715300 2715331 "STRING" 2715336 T STRING (NIL) -8 NIL NIL) (-1130 2705624 2710109 2710139 "STRICAT" 2710198 T STRICAT (NIL) -9 NIL 2710260) (-1129 2705134 2705211 2705355 "STREAM3" 2705541 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1128 2704116 2704299 2704534 "STREAM2" 2704947 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1127 2703804 2703856 2703949 "STREAM1" 2704058 NIL STREAM1 (NIL T) -7 NIL NIL) (-1126 2696519 2701327 2701947 "STREAM" 2703219 NIL STREAM (NIL T) -8 NIL NIL) (-1125 2695535 2695716 2695947 "STINPROD" 2696335 NIL STINPROD (NIL T) -7 NIL NIL) (-1124 2695113 2695297 2695327 "STEP" 2695407 T STEP (NIL) -9 NIL 2695485) (-1123 2688658 2695012 2695089 "STBL" 2695094 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1122 2683835 2687880 2687923 "STAGG" 2688076 NIL STAGG (NIL T) -9 NIL 2688165) (-1121 2681543 2682143 2683013 "STAGG-" 2683018 NIL STAGG- (NIL T T) -8 NIL NIL) (-1120 2679738 2681313 2681405 "STACK" 2681486 NIL STACK (NIL T) -8 NIL NIL) (-1119 2672490 2677879 2678335 "SREGSET" 2679368 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1118 2664916 2666284 2667797 "SRDCMPK" 2671096 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1117 2657883 2662356 2662386 "SRAGG" 2663689 T SRAGG (NIL) -9 NIL 2664297) (-1116 2656900 2657155 2657534 "SRAGG-" 2657539 NIL SRAGG- (NIL T) -8 NIL NIL) (-1115 2651399 2655847 2656268 "SQMATRIX" 2656526 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1114 2645152 2648119 2648845 "SPLTREE" 2650745 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1113 2641142 2641808 2642454 "SPLNODE" 2644578 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1112 2640189 2640422 2640452 "SPFCAT" 2640896 T SPFCAT (NIL) -9 NIL NIL) (-1111 2638926 2639136 2639400 "SPECOUT" 2639947 T SPECOUT (NIL) -7 NIL NIL) (-1110 2630615 2632359 2632389 "SPADXPT" 2636781 T SPADXPT (NIL) -9 NIL 2638815) (-1109 2630376 2630416 2630485 "SPADPRSR" 2630568 T SPADPRSR (NIL) -7 NIL NIL) (-1108 2628559 2630331 2630362 "SPADAST" 2630367 T SPADAST (NIL) -8 NIL NIL) (-1107 2620530 2622277 2622320 "SPACEC" 2626693 NIL SPACEC (NIL T) -9 NIL 2628509) (-1106 2618701 2620462 2620511 "SPACE3" 2620516 NIL SPACE3 (NIL T) -8 NIL NIL) (-1105 2617453 2617624 2617915 "SORTPAK" 2618506 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1104 2615503 2615806 2616225 "SOLVETRA" 2617117 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1103 2614514 2614736 2615010 "SOLVESER" 2615276 NIL SOLVESER (NIL T) -7 NIL NIL) (-1102 2609734 2610615 2611617 "SOLVERAD" 2613566 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1101 2605549 2606158 2606887 "SOLVEFOR" 2609101 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1100 2599873 2604898 2604995 "SNTSCAT" 2605000 NIL SNTSCAT (NIL T T T T) -9 NIL 2605070) (-1099 2594016 2598196 2598587 "SMTS" 2599563 NIL SMTS (NIL T T T) -8 NIL NIL) (-1098 2588492 2593904 2593981 "SMP" 2593986 NIL SMP (NIL T T) -8 NIL NIL) (-1097 2586651 2586952 2587350 "SMITH" 2588189 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1096 2579632 2583783 2583886 "SMATCAT" 2585240 NIL SMATCAT (NIL NIL T T T) -9 NIL 2585790) (-1095 2576593 2577409 2578580 "SMATCAT-" 2578585 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1094 2574306 2575829 2575872 "SKAGG" 2576133 NIL SKAGG (NIL T) -9 NIL 2576268) (-1093 2570424 2573410 2573688 "SINT" 2574050 T SINT (NIL) -8 NIL NIL) (-1092 2570196 2570234 2570300 "SIMPAN" 2570380 T SIMPAN (NIL) -7 NIL NIL) (-1091 2569055 2569269 2569537 "SIGNRF" 2569962 NIL SIGNRF (NIL T) -7 NIL NIL) (-1090 2567881 2568025 2568309 "SIGNEF" 2568891 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1089 2567214 2567464 2567588 "SIGAST" 2567779 T SIGAST (NIL) -8 NIL NIL) (-1088 2566521 2566749 2566889 "SIG" 2567096 T SIG (NIL) -8 NIL NIL) (-1087 2564211 2564665 2565171 "SHP" 2566062 NIL SHP (NIL T NIL) -7 NIL NIL) (-1086 2558124 2564112 2564188 "SHDP" 2564193 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1085 2557723 2557889 2557919 "SGROUP" 2558012 T SGROUP (NIL) -9 NIL 2558074) (-1084 2557581 2557607 2557680 "SGROUP-" 2557685 NIL SGROUP- (NIL T) -8 NIL NIL) (-1083 2554417 2555114 2555837 "SGCF" 2556880 T SGCF (NIL) -7 NIL NIL) (-1082 2548839 2553864 2553961 "SFRTCAT" 2553966 NIL SFRTCAT (NIL T T T T) -9 NIL 2554005) (-1081 2542263 2543278 2544414 "SFRGCD" 2547822 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1080 2535391 2536462 2537648 "SFQCMPK" 2541196 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1079 2535013 2535102 2535212 "SFORT" 2535332 NIL SFORT (NIL T T) -8 NIL NIL) (-1078 2534158 2534853 2534974 "SEXOF" 2534979 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1077 2528934 2529623 2529718 "SEXCAT" 2533489 NIL SEXCAT (NIL T T T T T) -9 NIL 2534108) (-1076 2528068 2528815 2528883 "SEX" 2528888 T SEX (NIL) -8 NIL NIL) (-1075 2526325 2526785 2527088 "SETMN" 2527811 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1074 2525931 2526057 2526087 "SETCAT" 2526204 T SETCAT (NIL) -9 NIL 2526289) (-1073 2525711 2525763 2525862 "SETCAT-" 2525867 NIL SETCAT- (NIL T) -8 NIL NIL) (-1072 2522098 2524172 2524215 "SETAGG" 2525085 NIL SETAGG (NIL T) -9 NIL 2525425) (-1071 2521556 2521672 2521909 "SETAGG-" 2521914 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1070 2518736 2521490 2521538 "SET" 2521543 NIL SET (NIL T) -8 NIL NIL) (-1069 2518206 2518432 2518533 "SEQAST" 2518657 T SEQAST (NIL) -8 NIL NIL) (-1068 2517410 2517703 2517764 "SEGXCAT" 2518050 NIL SEGXCAT (NIL T T) -9 NIL 2518170) (-1067 2516317 2516530 2516573 "SEGCAT" 2517155 NIL SEGCAT (NIL T) -9 NIL 2517393) (-1066 2515938 2515997 2516110 "SEGBIND2" 2516252 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1065 2514987 2515317 2515517 "SEGBIND" 2515773 NIL SEGBIND (NIL T) -8 NIL NIL) (-1064 2514588 2514788 2514865 "SEGAST" 2514932 T SEGAST (NIL) -8 NIL NIL) (-1063 2513807 2513933 2514137 "SEG2" 2514432 NIL SEG2 (NIL T T) -7 NIL NIL) (-1062 2512863 2513473 2513655 "SEG" 2513660 NIL SEG (NIL T) -8 NIL NIL) (-1061 2512300 2512798 2512845 "SDVAR" 2512850 NIL SDVAR (NIL T) -8 NIL NIL) (-1060 2504631 2512070 2512200 "SDPOL" 2512205 NIL SDPOL (NIL T) -8 NIL NIL) (-1059 2503224 2503490 2503809 "SCPKG" 2504346 NIL SCPKG (NIL T) -7 NIL NIL) (-1058 2502360 2502540 2502740 "SCOPE" 2503046 T SCOPE (NIL) -8 NIL NIL) (-1057 2501581 2501714 2501893 "SCACHE" 2502215 NIL SCACHE (NIL T) -7 NIL NIL) (-1056 2501290 2501450 2501480 "SASTCAT" 2501485 T SASTCAT (NIL) -9 NIL 2501498) (-1055 2500729 2501050 2501135 "SAOS" 2501227 T SAOS (NIL) -8 NIL NIL) (-1054 2500294 2500329 2500502 "SAERFFC" 2500688 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1053 2499887 2499922 2500081 "SAEFACT" 2500253 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1052 2493870 2499784 2499864 "SAE" 2499869 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1051 2492191 2492505 2492906 "RURPK" 2493536 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1050 2490827 2491106 2491418 "RULESET" 2492025 NIL RULESET (NIL T T T) -8 NIL NIL) (-1049 2490466 2490621 2490704 "RULECOLD" 2490779 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1048 2487653 2488156 2488621 "RULE" 2490147 NIL RULE (NIL T T T) -8 NIL NIL) (-1047 2487151 2487370 2487464 "RSTRCAST" 2487581 T RSTRCAST (NIL) -8 NIL NIL) (-1046 2482000 2482794 2483714 "RSETGCD" 2486350 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1045 2471284 2476309 2476406 "RSETCAT" 2480525 NIL RSETCAT (NIL T T T T) -9 NIL 2481622) (-1044 2469211 2469750 2470574 "RSETCAT-" 2470579 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1043 2461598 2462973 2464493 "RSDCMPK" 2467810 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1042 2459603 2460044 2460118 "RRCC" 2461204 NIL RRCC (NIL T T) -9 NIL 2461548) (-1041 2458954 2459128 2459407 "RRCC-" 2459412 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1040 2458424 2458650 2458751 "RPTAST" 2458875 T RPTAST (NIL) -8 NIL NIL) (-1039 2432683 2442237 2442304 "RPOLCAT" 2452968 NIL RPOLCAT (NIL T T T) -9 NIL 2456127) (-1038 2424219 2426545 2429655 "RPOLCAT-" 2429660 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-1037 2415268 2422430 2422912 "ROUTINE" 2423759 T ROUTINE (NIL) -8 NIL NIL) (-1036 2412028 2414819 2414968 "ROMAN" 2415141 T ROMAN (NIL) -8 NIL NIL) (-1035 2410305 2410888 2411148 "ROIRC" 2411833 NIL ROIRC (NIL T T) -8 NIL NIL) (-1034 2406760 2408995 2409025 "RNS" 2409329 T RNS (NIL) -9 NIL 2409601) (-1033 2405269 2405652 2406186 "RNS-" 2406261 NIL RNS- (NIL T) -8 NIL NIL) (-1032 2404718 2405100 2405130 "RNG" 2405135 T RNG (NIL) -9 NIL 2405156) (-1031 2404110 2404472 2404515 "RMODULE" 2404577 NIL RMODULE (NIL T) -9 NIL 2404619) (-1030 2402946 2403040 2403376 "RMCAT2" 2404011 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-1029 2399651 2402120 2402445 "RMATRIX" 2402680 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-1028 2392593 2394827 2394942 "RMATCAT" 2398301 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2399283) (-1027 2391968 2392115 2392422 "RMATCAT-" 2392427 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-1026 2391535 2391610 2391738 "RINTERP" 2391887 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-1025 2390623 2391143 2391173 "RING" 2391285 T RING (NIL) -9 NIL 2391380) (-1024 2390415 2390459 2390556 "RING-" 2390561 NIL RING- (NIL T) -8 NIL NIL) (-1023 2389256 2389493 2389751 "RIDIST" 2390179 T RIDIST (NIL) -7 NIL NIL) (-1022 2380599 2388724 2388930 "RGCHAIN" 2389104 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-1021 2379975 2380355 2380396 "RGBCSPC" 2380454 NIL RGBCSPC (NIL T) -9 NIL 2380506) (-1020 2379159 2379514 2379555 "RGBCMDL" 2379787 NIL RGBCMDL (NIL T) -9 NIL 2379901) (-1019 2378805 2378868 2378971 "RFFACTOR" 2379090 NIL RFFACTOR (NIL T) -7 NIL NIL) (-1018 2378530 2378565 2378662 "RFFACT" 2378764 NIL RFFACT (NIL T) -7 NIL NIL) (-1017 2376647 2377011 2377393 "RFDIST" 2378170 T RFDIST (NIL) -7 NIL NIL) (-1016 2373641 2374255 2374925 "RF" 2376011 NIL RF (NIL T) -7 NIL NIL) (-1015 2373094 2373186 2373349 "RETSOL" 2373543 NIL RETSOL (NIL T T) -7 NIL NIL) (-1014 2372682 2372762 2372805 "RETRACT" 2372998 NIL RETRACT (NIL T) -9 NIL NIL) (-1013 2372531 2372556 2372643 "RETRACT-" 2372648 NIL RETRACT- (NIL T T) -8 NIL NIL) (-1012 2372160 2372353 2372423 "RETAST" 2372483 T RETAST (NIL) -8 NIL NIL) (-1011 2365016 2371813 2371940 "RESULT" 2372055 T RESULT (NIL) -8 NIL NIL) (-1010 2363642 2364285 2364484 "RESRING" 2364919 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-1009 2363278 2363327 2363425 "RESLATC" 2363579 NIL RESLATC (NIL T) -7 NIL NIL) (-1008 2362984 2363018 2363125 "REPSQ" 2363237 NIL REPSQ (NIL T) -7 NIL NIL) (-1007 2362682 2362716 2362827 "REPDB" 2362943 NIL REPDB (NIL T) -7 NIL NIL) (-1006 2356592 2357971 2359194 "REP2" 2361494 NIL REP2 (NIL T) -7 NIL NIL) (-1005 2352969 2353650 2354458 "REP1" 2355819 NIL REP1 (NIL T) -7 NIL NIL) (-1004 2350391 2350971 2351573 "REP" 2352389 T REP (NIL) -7 NIL NIL) (-1003 2343144 2348532 2348988 "REGSET" 2350021 NIL REGSET (NIL T T T T) -8 NIL NIL) (-1002 2341957 2342292 2342542 "REF" 2342929 NIL REF (NIL T) -8 NIL NIL) (-1001 2341334 2341437 2341604 "REDORDER" 2341841 NIL REDORDER (NIL T T) -7 NIL NIL) (-1000 2337376 2340553 2340778 "RECLOS" 2341163 NIL RECLOS (NIL T) -8 NIL NIL) (-999 2336433 2336614 2336827 "REALSOLV" 2337183 T REALSOLV (NIL) -7 NIL NIL) (-998 2332924 2333726 2334608 "REAL0Q" 2335598 NIL REAL0Q (NIL T) -7 NIL NIL) (-997 2328535 2329523 2330582 "REAL0" 2331905 NIL REAL0 (NIL T) -7 NIL NIL) (-996 2328383 2328424 2328452 "REAL" 2328457 T REAL (NIL) -9 NIL 2328492) (-995 2327885 2328104 2328196 "RDUCEAST" 2328311 T RDUCEAST (NIL) -8 NIL NIL) (-994 2327293 2327365 2327570 "RDIV" 2327807 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-993 2326366 2326540 2326751 "RDIST" 2327115 NIL RDIST (NIL T) -7 NIL NIL) (-992 2324967 2325254 2325624 "RDETRS" 2326074 NIL RDETRS (NIL T T) -7 NIL NIL) (-991 2322784 2323238 2323774 "RDETR" 2324509 NIL RDETR (NIL T T) -7 NIL NIL) (-990 2321398 2321676 2322078 "RDEEFS" 2322500 NIL RDEEFS (NIL T T) -7 NIL NIL) (-989 2319896 2320202 2320632 "RDEEF" 2321086 NIL RDEEF (NIL T T) -7 NIL NIL) (-988 2314242 2317104 2317132 "RCFIELD" 2318409 T RCFIELD (NIL) -9 NIL 2319139) (-987 2312311 2312815 2313508 "RCFIELD-" 2313581 NIL RCFIELD- (NIL T) -8 NIL NIL) (-986 2308642 2310427 2310468 "RCAGG" 2311539 NIL RCAGG (NIL T) -9 NIL 2312004) (-985 2308273 2308367 2308527 "RCAGG-" 2308532 NIL RCAGG- (NIL T T) -8 NIL NIL) (-984 2307613 2307725 2307888 "RATRET" 2308157 NIL RATRET (NIL T) -7 NIL NIL) (-983 2307170 2307237 2307356 "RATFACT" 2307541 NIL RATFACT (NIL T) -7 NIL NIL) (-982 2306485 2306605 2306755 "RANDSRC" 2307040 T RANDSRC (NIL) -7 NIL NIL) (-981 2306222 2306266 2306337 "RADUTIL" 2306434 T RADUTIL (NIL) -7 NIL NIL) (-980 2299308 2304965 2305282 "RADIX" 2305937 NIL RADIX (NIL NIL) -8 NIL NIL) (-979 2290975 2299152 2299280 "RADFF" 2299285 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-978 2290627 2290702 2290730 "RADCAT" 2290887 T RADCAT (NIL) -9 NIL NIL) (-977 2290412 2290460 2290557 "RADCAT-" 2290562 NIL RADCAT- (NIL T) -8 NIL NIL) (-976 2288563 2290187 2290276 "QUEUE" 2290356 NIL QUEUE (NIL T) -8 NIL NIL) (-975 2288201 2288244 2288371 "QUATCT2" 2288514 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-974 2282068 2285362 2285402 "QUATCAT" 2286182 NIL QUATCAT (NIL T) -9 NIL 2286948) (-973 2278233 2279263 2280643 "QUATCAT-" 2280737 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-972 2274816 2278170 2278215 "QUAT" 2278220 NIL QUAT (NIL T) -8 NIL NIL) (-971 2272336 2273900 2273941 "QUAGG" 2274316 NIL QUAGG (NIL T) -9 NIL 2274491) (-970 2271968 2272161 2272229 "QQUTAST" 2272288 T QQUTAST (NIL) -8 NIL NIL) (-969 2270893 2271366 2271538 "QFORM" 2271840 NIL QFORM (NIL NIL T) -8 NIL NIL) (-968 2270531 2270574 2270701 "QFCAT2" 2270844 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-967 2261880 2267067 2267107 "QFCAT" 2267765 NIL QFCAT (NIL T) -9 NIL 2268764) (-966 2257488 2258677 2260256 "QFCAT-" 2260350 NIL QFCAT- (NIL T T) -8 NIL NIL) (-965 2256948 2257058 2257188 "QEQUAT" 2257378 T QEQUAT (NIL) -8 NIL NIL) (-964 2250096 2251167 2252351 "QCMPACK" 2255881 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-963 2249341 2249515 2249747 "QALGSET2" 2249916 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-962 2246923 2247342 2247768 "QALGSET" 2248998 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-961 2245614 2245837 2246154 "PWFFINTB" 2246696 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-960 2243813 2243981 2244335 "PUSHVAR" 2245428 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-959 2239731 2240785 2240826 "PTRANFN" 2242710 NIL PTRANFN (NIL T) -9 NIL NIL) (-958 2238133 2238424 2238746 "PTPACK" 2239442 NIL PTPACK (NIL T) -7 NIL NIL) (-957 2237765 2237822 2237931 "PTFUNC2" 2238070 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-956 2232231 2236576 2236617 "PTCAT" 2236990 NIL PTCAT (NIL T) -9 NIL 2237152) (-955 2231889 2231924 2232048 "PSQFR" 2232190 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-954 2230484 2230782 2231116 "PSEUDLIN" 2231587 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-953 2217253 2219618 2221942 "PSETPK" 2228244 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-952 2210297 2213011 2213107 "PSETCAT" 2216128 NIL PSETCAT (NIL T T T T) -9 NIL 2216942) (-951 2208133 2208767 2209588 "PSETCAT-" 2209593 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-950 2207482 2207647 2207675 "PSCURVE" 2207943 T PSCURVE (NIL) -9 NIL 2208110) (-949 2203963 2205445 2205510 "PSCAT" 2206354 NIL PSCAT (NIL T T T) -9 NIL 2206594) (-948 2203026 2203242 2203642 "PSCAT-" 2203647 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-947 2201678 2202311 2202525 "PRTITION" 2202832 T PRTITION (NIL) -8 NIL NIL) (-946 2201180 2201399 2201491 "PRTDAST" 2201606 T PRTDAST (NIL) -8 NIL NIL) (-945 2190278 2192484 2194672 "PRS" 2199042 NIL PRS (NIL T T) -7 NIL NIL) (-944 2188136 2189628 2189668 "PRQAGG" 2189851 NIL PRQAGG (NIL T) -9 NIL 2189953) (-943 2187522 2187751 2187779 "PROPLOG" 2187964 T PROPLOG (NIL) -9 NIL 2188086) (-942 2184692 2185336 2185800 "PROPFRML" 2187090 NIL PROPFRML (NIL T) -8 NIL NIL) (-941 2184152 2184262 2184392 "PROPERTY" 2184582 T PROPERTY (NIL) -8 NIL NIL) (-940 2178237 2182318 2183138 "PRODUCT" 2183378 NIL PRODUCT (NIL T T) -8 NIL NIL) (-939 2178033 2178065 2178124 "PRINT" 2178198 T PRINT (NIL) -7 NIL NIL) (-938 2177373 2177490 2177642 "PRIMES" 2177913 NIL PRIMES (NIL T) -7 NIL NIL) (-937 2175438 2175839 2176305 "PRIMELT" 2176952 NIL PRIMELT (NIL T) -7 NIL NIL) (-936 2175167 2175216 2175244 "PRIMCAT" 2175368 T PRIMCAT (NIL) -9 NIL NIL) (-935 2174174 2174352 2174580 "PRIMARR2" 2174985 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-934 2170335 2174112 2174157 "PRIMARR" 2174162 NIL PRIMARR (NIL T) -8 NIL NIL) (-933 2169978 2170034 2170145 "PREASSOC" 2170273 NIL PREASSOC (NIL T T) -7 NIL NIL) (-932 2167298 2169436 2169670 "PR" 2169789 NIL PR (NIL T T) -8 NIL NIL) (-931 2166773 2166906 2166934 "PPCURVE" 2167139 T PPCURVE (NIL) -9 NIL 2167275) (-930 2166395 2166568 2166651 "PORTNUM" 2166710 T PORTNUM (NIL) -8 NIL NIL) (-929 2163754 2164153 2164745 "POLYROOT" 2165976 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-928 2163137 2163195 2163429 "POLYLIFT" 2163690 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-927 2159412 2159861 2160490 "POLYCATQ" 2162682 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-926 2146465 2151807 2151872 "POLYCAT" 2155386 NIL POLYCAT (NIL T T T) -9 NIL 2157314) (-925 2139972 2141814 2144179 "POLYCAT-" 2144184 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-924 2139559 2139627 2139747 "POLY2UP" 2139898 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-923 2139191 2139248 2139357 "POLY2" 2139496 NIL POLY2 (NIL T T) -7 NIL NIL) (-922 2133167 2138795 2138955 "POLY" 2139064 NIL POLY (NIL T) -8 NIL NIL) (-921 2131852 2132091 2132367 "POLUTIL" 2132941 NIL POLUTIL (NIL T T) -7 NIL NIL) (-920 2130207 2130484 2130815 "POLTOPOL" 2131574 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-919 2125725 2130143 2130189 "POINT" 2130194 NIL POINT (NIL T) -8 NIL NIL) (-918 2123912 2124269 2124644 "PNTHEORY" 2125370 T PNTHEORY (NIL) -7 NIL NIL) (-917 2122331 2122628 2123040 "PMTOOLS" 2123610 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-916 2121924 2122002 2122119 "PMSYM" 2122247 NIL PMSYM (NIL T) -7 NIL NIL) (-915 2121434 2121503 2121677 "PMQFCAT" 2121849 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-914 2120830 2120916 2121077 "PMPREDFS" 2121335 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-913 2120185 2120295 2120451 "PMPRED" 2120707 NIL PMPRED (NIL T) -7 NIL NIL) (-912 2118828 2119036 2119421 "PMPLCAT" 2119947 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-911 2118360 2118439 2118591 "PMLSAGG" 2118743 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-910 2117835 2117911 2118092 "PMKERNEL" 2118278 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-909 2117452 2117527 2117640 "PMINS" 2117754 NIL PMINS (NIL T) -7 NIL NIL) (-908 2116880 2116949 2117165 "PMFS" 2117377 NIL PMFS (NIL T T T) -7 NIL NIL) (-907 2116108 2116226 2116431 "PMDOWN" 2116757 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-906 2115382 2115493 2115656 "PMASSFS" 2115994 NIL PMASSFS (NIL T T) -7 NIL NIL) (-905 2114545 2114704 2114886 "PMASS" 2115220 T PMASS (NIL) -7 NIL NIL) (-904 2114200 2114268 2114362 "PLOTTOOL" 2114471 T PLOTTOOL (NIL) -7 NIL NIL) (-903 2110014 2111048 2111969 "PLOT3D" 2113299 T PLOT3D (NIL) -8 NIL NIL) (-902 2108926 2109103 2109338 "PLOT1" 2109818 NIL PLOT1 (NIL T) -7 NIL NIL) (-901 2103548 2104737 2105885 "PLOT" 2107798 T PLOT (NIL) -8 NIL NIL) (-900 2078942 2083614 2088465 "PLEQN" 2098814 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-899 2078635 2078682 2078785 "PINTERPA" 2078889 NIL PINTERPA (NIL T T) -7 NIL NIL) (-898 2077953 2078075 2078255 "PINTERP" 2078500 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-897 2076385 2077326 2077354 "PID" 2077536 T PID (NIL) -9 NIL 2077670) (-896 2076110 2076147 2076235 "PICOERCE" 2076342 NIL PICOERCE (NIL T) -7 NIL NIL) (-895 2075395 2075916 2076003 "PI" 2076043 T PI (NIL) -8 NIL NIL) (-894 2074715 2074854 2075030 "PGROEB" 2075251 NIL PGROEB (NIL T) -7 NIL NIL) (-893 2070302 2071116 2072021 "PGE" 2073830 T PGE (NIL) -7 NIL NIL) (-892 2068426 2068672 2069038 "PGCD" 2070019 NIL PGCD (NIL T T T T) -7 NIL NIL) (-891 2067764 2067867 2068028 "PFRPAC" 2068310 NIL PFRPAC (NIL T) -7 NIL NIL) (-890 2064446 2066312 2066665 "PFR" 2067443 NIL PFR (NIL T) -8 NIL NIL) (-889 2062835 2063079 2063404 "PFOTOOLS" 2064193 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-888 2061368 2061607 2061958 "PFOQ" 2062592 NIL PFOQ (NIL T T T) -7 NIL NIL) (-887 2059841 2060053 2060416 "PFO" 2061152 NIL PFO (NIL T T T T T) -7 NIL NIL) (-886 2057310 2058547 2058575 "PFECAT" 2059160 T PFECAT (NIL) -9 NIL 2059544) (-885 2056755 2056909 2057123 "PFECAT-" 2057128 NIL PFECAT- (NIL T) -8 NIL NIL) (-884 2055359 2055610 2055911 "PFBRU" 2056504 NIL PFBRU (NIL T T) -7 NIL NIL) (-883 2053226 2053577 2054009 "PFBR" 2055010 NIL PFBR (NIL T T T T) -7 NIL NIL) (-882 2049816 2053115 2053184 "PF" 2053189 NIL PF (NIL NIL) -8 NIL NIL) (-881 2045082 2046023 2046893 "PERMGRP" 2048979 NIL PERMGRP (NIL T) -8 NIL NIL) (-880 2043214 2044145 2044186 "PERMCAT" 2044632 NIL PERMCAT (NIL T) -9 NIL 2044937) (-879 2042867 2042908 2043032 "PERMAN" 2043167 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-878 2038783 2040243 2040919 "PERM" 2042224 NIL PERM (NIL T) -8 NIL NIL) (-877 2036225 2038352 2038483 "PENDTREE" 2038685 NIL PENDTREE (NIL T) -8 NIL NIL) (-876 2034338 2035072 2035113 "PDRING" 2035770 NIL PDRING (NIL T) -9 NIL 2036056) (-875 2033441 2033659 2034021 "PDRING-" 2034026 NIL PDRING- (NIL T T) -8 NIL NIL) (-874 2030582 2031333 2032024 "PDEPROB" 2032770 T PDEPROB (NIL) -8 NIL NIL) (-873 2028129 2028631 2029186 "PDEPACK" 2030047 T PDEPACK (NIL) -7 NIL NIL) (-872 2027041 2027231 2027482 "PDECOMP" 2027928 NIL PDECOMP (NIL T T) -7 NIL NIL) (-871 2024646 2025463 2025491 "PDECAT" 2026278 T PDECAT (NIL) -9 NIL 2026991) (-870 2024397 2024430 2024520 "PCOMP" 2024607 NIL PCOMP (NIL T T) -7 NIL NIL) (-869 2022602 2023198 2023495 "PBWLB" 2024126 NIL PBWLB (NIL T) -8 NIL NIL) (-868 2022234 2022291 2022400 "PATTERN2" 2022539 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-867 2019991 2020379 2020836 "PATTERN1" 2021823 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-866 2012497 2014064 2015402 "PATTERN" 2018674 NIL PATTERN (NIL T) -8 NIL NIL) (-865 2012061 2012128 2012260 "PATRES2" 2012424 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-864 2009456 2010010 2010491 "PATRES" 2011626 NIL PATRES (NIL T T) -8 NIL NIL) (-863 2007339 2007744 2008151 "PATMATCH" 2009123 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-862 2006875 2007058 2007099 "PATMAB" 2007206 NIL PATMAB (NIL T) -9 NIL 2007289) (-861 2005420 2005729 2005987 "PATLRES" 2006680 NIL PATLRES (NIL T T T) -8 NIL NIL) (-860 2004966 2005089 2005130 "PATAB" 2005135 NIL PATAB (NIL T) -9 NIL 2005307) (-859 2002447 2002979 2003552 "PARTPERM" 2004413 T PARTPERM (NIL) -7 NIL NIL) (-858 2002068 2002131 2002233 "PARSURF" 2002378 NIL PARSURF (NIL T) -8 NIL NIL) (-857 2001700 2001757 2001866 "PARSU2" 2002005 NIL PARSU2 (NIL T T) -7 NIL NIL) (-856 2001464 2001504 2001571 "PARSER" 2001653 T PARSER (NIL) -7 NIL NIL) (-855 2001085 2001148 2001250 "PARSCURV" 2001395 NIL PARSCURV (NIL T) -8 NIL NIL) (-854 2000717 2000774 2000883 "PARSC2" 2001022 NIL PARSC2 (NIL T T) -7 NIL NIL) (-853 2000356 2000414 2000511 "PARPCURV" 2000653 NIL PARPCURV (NIL T) -8 NIL NIL) (-852 1999988 2000045 2000154 "PARPC2" 2000293 NIL PARPC2 (NIL T T) -7 NIL NIL) (-851 1999508 1999594 1999713 "PAN2EXPR" 1999889 T PAN2EXPR (NIL) -7 NIL NIL) (-850 1998314 1998629 1998857 "PALETTE" 1999300 T PALETTE (NIL) -8 NIL NIL) (-849 1996782 1997319 1997679 "PAIR" 1998000 NIL PAIR (NIL T T) -8 NIL NIL) (-848 1990711 1996041 1996235 "PADICRC" 1996637 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-847 1983998 1990057 1990241 "PADICRAT" 1990559 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-846 1981245 1982773 1982813 "PADICCT" 1983394 NIL PADICCT (NIL NIL) -9 NIL 1983676) (-845 1979597 1981182 1981227 "PADIC" 1981232 NIL PADIC (NIL NIL) -8 NIL NIL) (-844 1978554 1978754 1979022 "PADEPAC" 1979384 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-843 1977766 1977899 1978105 "PADE" 1978416 NIL PADE (NIL T T T) -7 NIL NIL) (-842 1975816 1976602 1976919 "OWP" 1977533 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-841 1974925 1975421 1975593 "OVAR" 1975684 NIL OVAR (NIL NIL) -8 NIL NIL) (-840 1963832 1966034 1968234 "OUTFORM" 1972745 T OUTFORM (NIL) -8 NIL NIL) (-839 1963253 1963429 1963556 "OUTBFILE" 1963725 T OUTBFILE (NIL) -8 NIL NIL) (-838 1962890 1962973 1963001 "OUTBCON" 1963152 T OUTBCON (NIL) -9 NIL 1963237) (-837 1962730 1962765 1962841 "OUTBCON-" 1962846 NIL OUTBCON- (NIL T) -8 NIL NIL) (-836 1961994 1962115 1962276 "OUT" 1962589 T OUT (NIL) -7 NIL NIL) (-835 1961402 1961723 1961812 "OSI" 1961925 T OSI (NIL) -8 NIL NIL) (-834 1960958 1961270 1961298 "OSGROUP" 1961303 T OSGROUP (NIL) -9 NIL 1961325) (-833 1959703 1959930 1960215 "ORTHPOL" 1960705 NIL ORTHPOL (NIL T) -7 NIL NIL) (-832 1957127 1959362 1959501 "OREUP" 1959646 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-831 1954579 1956818 1956945 "ORESUP" 1957069 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-830 1952107 1952607 1953168 "OREPCTO" 1954068 NIL OREPCTO (NIL T T) -7 NIL NIL) (-829 1946025 1948185 1948226 "OREPCAT" 1950574 NIL OREPCAT (NIL T) -9 NIL 1951678) (-828 1943193 1943968 1945019 "OREPCAT-" 1945024 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-827 1942370 1942642 1942670 "ORDSET" 1942979 T ORDSET (NIL) -9 NIL 1943143) (-826 1941889 1942011 1942204 "ORDSET-" 1942209 NIL ORDSET- (NIL T) -8 NIL NIL) (-825 1940543 1941300 1941328 "ORDRING" 1941530 T ORDRING (NIL) -9 NIL 1941655) (-824 1940188 1940282 1940426 "ORDRING-" 1940431 NIL ORDRING- (NIL T) -8 NIL NIL) (-823 1939594 1940031 1940059 "ORDMON" 1940064 T ORDMON (NIL) -9 NIL 1940085) (-822 1938756 1938903 1939098 "ORDFUNS" 1939443 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-821 1938267 1938626 1938654 "ORDFIN" 1938659 T ORDFIN (NIL) -9 NIL 1938680) (-820 1937533 1937660 1937846 "ORDCOMP2" 1938127 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-819 1934132 1936119 1936528 "ORDCOMP" 1937157 NIL ORDCOMP (NIL T) -8 NIL NIL) (-818 1930639 1931522 1932359 "OPTPROB" 1933315 T OPTPROB (NIL) -8 NIL NIL) (-817 1927441 1928080 1928784 "OPTPACK" 1929955 T OPTPACK (NIL) -7 NIL NIL) (-816 1925154 1925894 1925922 "OPTCAT" 1926741 T OPTCAT (NIL) -9 NIL 1927391) (-815 1924922 1924961 1925027 "OPQUERY" 1925108 T OPQUERY (NIL) -7 NIL NIL) (-814 1922090 1923233 1923737 "OP" 1924451 NIL OP (NIL T) -8 NIL NIL) (-813 1921395 1921510 1921684 "ONECOMP2" 1921962 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-812 1918247 1920192 1920561 "ONECOMP" 1921059 NIL ONECOMP (NIL T) -8 NIL NIL) (-811 1917666 1917772 1917902 "OMSERVER" 1918137 T OMSERVER (NIL) -7 NIL NIL) (-810 1914554 1917106 1917146 "OMSAGG" 1917207 NIL OMSAGG (NIL T) -9 NIL 1917271) (-809 1913177 1913440 1913722 "OMPKG" 1914292 T OMPKG (NIL) -7 NIL NIL) (-808 1911759 1912726 1912895 "OMLO" 1913058 NIL OMLO (NIL T T) -8 NIL NIL) (-807 1910684 1910831 1911058 "OMEXPR" 1911585 NIL OMEXPR (NIL T) -7 NIL NIL) (-806 1909862 1910105 1910265 "OMERRK" 1910544 T OMERRK (NIL) -8 NIL NIL) (-805 1909180 1909408 1909544 "OMERR" 1909746 T OMERR (NIL) -8 NIL NIL) (-804 1908658 1908857 1908965 "OMENC" 1909092 T OMENC (NIL) -8 NIL NIL) (-803 1902553 1903738 1904909 "OMDEV" 1907507 T OMDEV (NIL) -8 NIL NIL) (-802 1901622 1901793 1901987 "OMCONN" 1902379 T OMCONN (NIL) -8 NIL NIL) (-801 1901052 1901155 1901183 "OM" 1901482 T OM (NIL) -9 NIL NIL) (-800 1899708 1900650 1900678 "OINTDOM" 1900683 T OINTDOM (NIL) -9 NIL 1900704) (-799 1895514 1896698 1897414 "OFMONOID" 1899024 NIL OFMONOID (NIL T) -8 NIL NIL) (-798 1894952 1895451 1895496 "ODVAR" 1895501 NIL ODVAR (NIL T) -8 NIL NIL) (-797 1892164 1894449 1894634 "ODR" 1894827 NIL ODR (NIL T T NIL) -8 NIL NIL) (-796 1884549 1891940 1892066 "ODPOL" 1892071 NIL ODPOL (NIL T) -8 NIL NIL) (-795 1878432 1884421 1884526 "ODP" 1884531 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-794 1877198 1877413 1877688 "ODETOOLS" 1878206 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-793 1874167 1874823 1875539 "ODESYS" 1876531 NIL ODESYS (NIL T T) -7 NIL NIL) (-792 1869049 1869957 1870982 "ODERTRIC" 1873242 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-791 1868475 1868557 1868751 "ODERED" 1868961 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-790 1865371 1865917 1866592 "ODERAT" 1867900 NIL ODERAT (NIL T T) -7 NIL NIL) (-789 1862331 1862795 1863392 "ODEPRRIC" 1864900 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-788 1860200 1860769 1861278 "ODEPROB" 1861842 T ODEPROB (NIL) -8 NIL NIL) (-787 1856722 1857205 1857852 "ODEPRIM" 1859679 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-786 1855971 1856073 1856333 "ODEPAL" 1856614 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-785 1852133 1852924 1853788 "ODEPACK" 1855127 T ODEPACK (NIL) -7 NIL NIL) (-784 1851166 1851273 1851502 "ODEINT" 1852022 NIL ODEINT (NIL T T) -7 NIL NIL) (-783 1845267 1846692 1848139 "ODEIFTBL" 1849739 T ODEIFTBL (NIL) -8 NIL NIL) (-782 1840616 1841398 1842353 "ODEEF" 1844430 NIL ODEEF (NIL T T) -7 NIL NIL) (-781 1839951 1840040 1840270 "ODECONST" 1840521 NIL ODECONST (NIL T T T) -7 NIL NIL) (-780 1838102 1838737 1838765 "ODECAT" 1839370 T ODECAT (NIL) -9 NIL 1839901) (-779 1837740 1837783 1837910 "OCTCT2" 1838053 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-778 1834659 1837452 1837571 "OCT" 1837653 NIL OCT (NIL T) -8 NIL NIL) (-777 1834037 1834479 1834507 "OCAMON" 1834512 T OCAMON (NIL) -9 NIL 1834533) (-776 1828905 1831298 1831338 "OC" 1832435 NIL OC (NIL T) -9 NIL 1833293) (-775 1826153 1826894 1827877 "OC-" 1827971 NIL OC- (NIL T T) -8 NIL NIL) (-774 1825710 1826025 1826053 "OASGP" 1826058 T OASGP (NIL) -9 NIL 1826078) (-773 1824997 1825460 1825488 "OAMONS" 1825528 T OAMONS (NIL) -9 NIL 1825571) (-772 1824437 1824844 1824872 "OAMON" 1824877 T OAMON (NIL) -9 NIL 1824897) (-771 1823741 1824233 1824261 "OAGROUP" 1824266 T OAGROUP (NIL) -9 NIL 1824286) (-770 1823431 1823481 1823569 "NUMTUBE" 1823685 NIL NUMTUBE (NIL T) -7 NIL NIL) (-769 1817004 1818522 1820058 "NUMQUAD" 1821915 T NUMQUAD (NIL) -7 NIL NIL) (-768 1812760 1813748 1814773 "NUMODE" 1815999 T NUMODE (NIL) -7 NIL NIL) (-767 1810141 1810995 1811023 "NUMINT" 1811946 T NUMINT (NIL) -9 NIL 1812710) (-766 1809089 1809286 1809504 "NUMFMT" 1809943 T NUMFMT (NIL) -7 NIL NIL) (-765 1795448 1798393 1800925 "NUMERIC" 1806596 NIL NUMERIC (NIL T) -7 NIL NIL) (-764 1789872 1794897 1794992 "NTSCAT" 1794997 NIL NTSCAT (NIL T T T T) -9 NIL 1795036) (-763 1789066 1789231 1789424 "NTPOLFN" 1789711 NIL NTPOLFN (NIL T) -7 NIL NIL) (-762 1788698 1788755 1788864 "NSUP2" 1789003 NIL NSUP2 (NIL T T) -7 NIL NIL) (-761 1776583 1785523 1786335 "NSUP" 1787919 NIL NSUP (NIL T) -8 NIL NIL) (-760 1766628 1776357 1776490 "NSMP" 1776495 NIL NSMP (NIL T T) -8 NIL NIL) (-759 1765060 1765361 1765718 "NREP" 1766316 NIL NREP (NIL T) -7 NIL NIL) (-758 1763651 1763903 1764261 "NPCOEF" 1764803 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-757 1762717 1762832 1763048 "NORMRETR" 1763532 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-756 1760758 1761048 1761457 "NORMPK" 1762425 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-755 1760443 1760471 1760595 "NORMMA" 1760724 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-754 1760232 1760261 1760330 "NONE1" 1760407 NIL NONE1 (NIL T) -7 NIL NIL) (-753 1760059 1760189 1760218 "NONE" 1760223 T NONE (NIL) -8 NIL NIL) (-752 1759542 1759604 1759790 "NODE1" 1759991 NIL NODE1 (NIL T T) -7 NIL NIL) (-751 1757882 1758705 1758960 "NNI" 1759307 T NNI (NIL) -8 NIL NIL) (-750 1756302 1756615 1756979 "NLINSOL" 1757550 NIL NLINSOL (NIL T) -7 NIL NIL) (-749 1752469 1753437 1754359 "NIPROB" 1755400 T NIPROB (NIL) -8 NIL NIL) (-748 1751226 1751460 1751762 "NFINTBAS" 1752231 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-747 1749934 1750165 1750446 "NCODIV" 1750994 NIL NCODIV (NIL T T) -7 NIL NIL) (-746 1749696 1749733 1749808 "NCNTFRAC" 1749891 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-745 1747876 1748240 1748660 "NCEP" 1749321 NIL NCEP (NIL T) -7 NIL NIL) (-744 1746794 1747526 1747554 "NASRING" 1747664 T NASRING (NIL) -9 NIL 1747738) (-743 1746589 1746633 1746727 "NASRING-" 1746732 NIL NASRING- (NIL T) -8 NIL NIL) (-742 1745742 1746241 1746269 "NARNG" 1746386 T NARNG (NIL) -9 NIL 1746477) (-741 1745434 1745501 1745635 "NARNG-" 1745640 NIL NARNG- (NIL T) -8 NIL NIL) (-740 1744313 1744520 1744755 "NAGSP" 1745219 T NAGSP (NIL) -7 NIL NIL) (-739 1735585 1737269 1738942 "NAGS" 1742660 T NAGS (NIL) -7 NIL NIL) (-738 1734133 1734441 1734772 "NAGF07" 1735274 T NAGF07 (NIL) -7 NIL NIL) (-737 1728671 1729962 1731269 "NAGF04" 1732846 T NAGF04 (NIL) -7 NIL NIL) (-736 1721639 1723253 1724886 "NAGF02" 1727058 T NAGF02 (NIL) -7 NIL NIL) (-735 1716863 1717963 1719080 "NAGF01" 1720542 T NAGF01 (NIL) -7 NIL NIL) (-734 1710491 1712057 1713642 "NAGE04" 1715298 T NAGE04 (NIL) -7 NIL NIL) (-733 1701660 1703781 1705911 "NAGE02" 1708381 T NAGE02 (NIL) -7 NIL NIL) (-732 1697613 1698560 1699524 "NAGE01" 1700716 T NAGE01 (NIL) -7 NIL NIL) (-731 1695408 1695942 1696500 "NAGD03" 1697075 T NAGD03 (NIL) -7 NIL NIL) (-730 1687158 1689086 1691040 "NAGD02" 1693474 T NAGD02 (NIL) -7 NIL NIL) (-729 1680969 1682394 1683834 "NAGD01" 1685738 T NAGD01 (NIL) -7 NIL NIL) (-728 1677178 1678000 1678837 "NAGC06" 1680152 T NAGC06 (NIL) -7 NIL NIL) (-727 1675643 1675975 1676331 "NAGC05" 1676842 T NAGC05 (NIL) -7 NIL NIL) (-726 1675019 1675138 1675282 "NAGC02" 1675519 T NAGC02 (NIL) -7 NIL NIL) (-725 1674079 1674636 1674676 "NAALG" 1674755 NIL NAALG (NIL T) -9 NIL 1674816) (-724 1673914 1673943 1674033 "NAALG-" 1674038 NIL NAALG- (NIL T T) -8 NIL NIL) (-723 1667864 1668972 1670159 "MULTSQFR" 1672810 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-722 1667183 1667258 1667442 "MULTFACT" 1667776 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-721 1660406 1664271 1664324 "MTSCAT" 1665394 NIL MTSCAT (NIL T T) -9 NIL 1665908) (-720 1660118 1660172 1660264 "MTHING" 1660346 NIL MTHING (NIL T) -7 NIL NIL) (-719 1659910 1659943 1660003 "MSYSCMD" 1660078 T MSYSCMD (NIL) -7 NIL NIL) (-718 1657005 1659471 1659512 "MSETAGG" 1659517 NIL MSETAGG (NIL T) -9 NIL 1659551) (-717 1653117 1655760 1656080 "MSET" 1656718 NIL MSET (NIL T) -8 NIL NIL) (-716 1649002 1650496 1651241 "MRING" 1652417 NIL MRING (NIL T T) -8 NIL NIL) (-715 1648568 1648635 1648766 "MRF2" 1648929 NIL MRF2 (NIL T T T) -7 NIL NIL) (-714 1648186 1648221 1648365 "MRATFAC" 1648527 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-713 1645798 1646093 1646524 "MPRFF" 1647891 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-712 1639884 1645652 1645749 "MPOLY" 1645754 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-711 1639374 1639409 1639617 "MPCPF" 1639843 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-710 1638888 1638931 1639115 "MPC3" 1639325 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-709 1638083 1638164 1638385 "MPC2" 1638803 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-708 1636384 1636721 1637111 "MONOTOOL" 1637743 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-707 1635635 1635926 1635954 "MONOID" 1636173 T MONOID (NIL) -9 NIL 1636320) (-706 1635181 1635300 1635481 "MONOID-" 1635486 NIL MONOID- (NIL T) -8 NIL NIL) (-705 1626240 1632137 1632196 "MONOGEN" 1632870 NIL MONOGEN (NIL T T) -9 NIL 1633326) (-704 1623479 1624207 1625200 "MONOGEN-" 1625319 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-703 1622338 1622758 1622786 "MONADWU" 1623178 T MONADWU (NIL) -9 NIL 1623416) (-702 1621710 1621869 1622117 "MONADWU-" 1622122 NIL MONADWU- (NIL T) -8 NIL NIL) (-701 1621095 1621313 1621341 "MONAD" 1621548 T MONAD (NIL) -9 NIL 1621660) (-700 1620780 1620858 1620990 "MONAD-" 1620995 NIL MONAD- (NIL T) -8 NIL NIL) (-699 1619096 1619693 1619972 "MOEBIUS" 1620533 NIL MOEBIUS (NIL T) -8 NIL NIL) (-698 1618488 1618866 1618906 "MODULE" 1618911 NIL MODULE (NIL T) -9 NIL 1618937) (-697 1618056 1618152 1618342 "MODULE-" 1618347 NIL MODULE- (NIL T T) -8 NIL NIL) (-696 1615815 1616464 1616791 "MODRING" 1617880 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-695 1612803 1613920 1614441 "MODOP" 1615344 NIL MODOP (NIL T T) -8 NIL NIL) (-694 1610990 1611442 1611783 "MODMONOM" 1612602 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-693 1600738 1609182 1609605 "MODMON" 1610618 NIL MODMON (NIL T T) -8 NIL NIL) (-692 1597955 1599606 1599882 "MODFIELD" 1600613 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-691 1596959 1597236 1597426 "MMLFORM" 1597785 T MMLFORM (NIL) -8 NIL NIL) (-690 1596485 1596528 1596707 "MMAP" 1596910 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-689 1594754 1595487 1595528 "MLO" 1595951 NIL MLO (NIL T) -9 NIL 1596193) (-688 1592121 1592636 1593238 "MLIFT" 1594235 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-687 1591512 1591596 1591750 "MKUCFUNC" 1592032 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-686 1591111 1591181 1591304 "MKRECORD" 1591435 NIL MKRECORD (NIL T T) -7 NIL NIL) (-685 1590159 1590320 1590548 "MKFUNC" 1590922 NIL MKFUNC (NIL T) -7 NIL NIL) (-684 1589547 1589651 1589807 "MKFLCFN" 1590042 NIL MKFLCFN (NIL T) -7 NIL NIL) (-683 1588973 1589340 1589429 "MKCHSET" 1589491 NIL MKCHSET (NIL T) -8 NIL NIL) (-682 1588250 1588352 1588537 "MKBCFUNC" 1588866 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-681 1584994 1587804 1587940 "MINT" 1588134 T MINT (NIL) -8 NIL NIL) (-680 1583806 1584049 1584326 "MHROWRED" 1584749 NIL MHROWRED (NIL T) -7 NIL NIL) (-679 1579241 1582341 1582746 "MFLOAT" 1583421 T MFLOAT (NIL) -8 NIL NIL) (-678 1578598 1578674 1578845 "MFINFACT" 1579153 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-677 1574933 1575776 1576655 "MESH" 1577739 T MESH (NIL) -7 NIL NIL) (-676 1573323 1573635 1573988 "MDDFACT" 1574620 NIL MDDFACT (NIL T) -7 NIL NIL) (-675 1570165 1572482 1572523 "MDAGG" 1572778 NIL MDAGG (NIL T) -9 NIL 1572921) (-674 1559963 1569458 1569665 "MCMPLX" 1569978 T MCMPLX (NIL) -8 NIL NIL) (-673 1559104 1559250 1559450 "MCDEN" 1559812 NIL MCDEN (NIL T T) -7 NIL NIL) (-672 1556994 1557264 1557644 "MCALCFN" 1558834 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-671 1555905 1556078 1556319 "MAYBE" 1556792 NIL MAYBE (NIL T) -8 NIL NIL) (-670 1553517 1554040 1554602 "MATSTOR" 1555376 NIL MATSTOR (NIL T) -7 NIL NIL) (-669 1549522 1552889 1553137 "MATRIX" 1553302 NIL MATRIX (NIL T) -8 NIL NIL) (-668 1545291 1545995 1546731 "MATLIN" 1548879 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-667 1543885 1544038 1544371 "MATCAT2" 1545126 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-666 1534033 1537174 1537251 "MATCAT" 1542134 NIL MATCAT (NIL T T T) -9 NIL 1543551) (-665 1530397 1531410 1532766 "MATCAT-" 1532771 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-664 1528509 1528833 1529217 "MAPPKG3" 1530072 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-663 1527490 1527663 1527885 "MAPPKG2" 1528333 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-662 1525989 1526273 1526600 "MAPPKG1" 1527196 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-661 1525095 1525395 1525572 "MAPPAST" 1525832 T MAPPAST (NIL) -8 NIL NIL) (-660 1524706 1524764 1524887 "MAPHACK3" 1525031 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-659 1524298 1524359 1524473 "MAPHACK2" 1524638 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-658 1523736 1523839 1523981 "MAPHACK1" 1524189 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-657 1521842 1522436 1522740 "MAGMA" 1523464 NIL MAGMA (NIL T) -8 NIL NIL) (-656 1521348 1521566 1521657 "MACROAST" 1521771 T MACROAST (NIL) -8 NIL NIL) (-655 1517815 1519587 1520048 "M3D" 1520920 NIL M3D (NIL T) -8 NIL NIL) (-654 1511972 1516185 1516226 "LZSTAGG" 1517008 NIL LZSTAGG (NIL T) -9 NIL 1517303) (-653 1507945 1509103 1510560 "LZSTAGG-" 1510565 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-652 1505059 1505836 1506323 "LWORD" 1507490 NIL LWORD (NIL T) -8 NIL NIL) (-651 1504662 1504863 1504938 "LSTAST" 1505004 T LSTAST (NIL) -8 NIL NIL) (-650 1497894 1504433 1504567 "LSQM" 1504572 NIL LSQM (NIL NIL T) -8 NIL NIL) (-649 1497118 1497257 1497485 "LSPP" 1497749 NIL LSPP (NIL T T T T) -7 NIL NIL) (-648 1493960 1494617 1495330 "LSMP1" 1496437 NIL LSMP1 (NIL T) -7 NIL NIL) (-647 1491795 1492089 1492538 "LSMP" 1493656 NIL LSMP (NIL T T T T) -7 NIL NIL) (-646 1485723 1490963 1491004 "LSAGG" 1491066 NIL LSAGG (NIL T) -9 NIL 1491144) (-645 1482418 1483342 1484555 "LSAGG-" 1484560 NIL LSAGG- (NIL T T) -8 NIL NIL) (-644 1480044 1481562 1481811 "LPOLY" 1482213 NIL LPOLY (NIL T T) -8 NIL NIL) (-643 1479626 1479711 1479834 "LPEFRAC" 1479953 NIL LPEFRAC (NIL T) -7 NIL NIL) (-642 1479278 1479390 1479418 "LOGIC" 1479529 T LOGIC (NIL) -9 NIL 1479610) (-641 1479140 1479163 1479234 "LOGIC-" 1479239 NIL LOGIC- (NIL T) -8 NIL NIL) (-640 1478333 1478473 1478666 "LODOOPS" 1478996 NIL LODOOPS (NIL T T) -7 NIL NIL) (-639 1476871 1477106 1477459 "LODOF" 1478080 NIL LODOF (NIL T T) -7 NIL NIL) (-638 1473328 1475711 1475752 "LODOCAT" 1476190 NIL LODOCAT (NIL T) -9 NIL 1476401) (-637 1473061 1473119 1473246 "LODOCAT-" 1473251 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-636 1470430 1472902 1473020 "LODO2" 1473025 NIL LODO2 (NIL T T) -8 NIL NIL) (-635 1467914 1470367 1470412 "LODO1" 1470417 NIL LODO1 (NIL T) -8 NIL NIL) (-634 1465386 1467830 1467896 "LODO" 1467901 NIL LODO (NIL T NIL) -8 NIL NIL) (-633 1464246 1464411 1464723 "LODEEF" 1465209 NIL LODEEF (NIL T T T) -7 NIL NIL) (-632 1462593 1463340 1463593 "LO" 1464078 NIL LO (NIL T T T) -8 NIL NIL) (-631 1457879 1460723 1460764 "LNAGG" 1461711 NIL LNAGG (NIL T) -9 NIL 1462155) (-630 1457026 1457240 1457582 "LNAGG-" 1457587 NIL LNAGG- (NIL T T) -8 NIL NIL) (-629 1453189 1453951 1454590 "LMOPS" 1456441 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-628 1452584 1452946 1452987 "LMODULE" 1453048 NIL LMODULE (NIL T) -9 NIL 1453090) (-627 1449830 1452229 1452352 "LMDICT" 1452494 NIL LMDICT (NIL T) -8 NIL NIL) (-626 1449556 1449738 1449798 "LITERAL" 1449803 NIL LITERAL (NIL T) -8 NIL NIL) (-625 1449081 1449155 1449294 "LIST3" 1449476 NIL LIST3 (NIL T T T) -7 NIL NIL) (-624 1447215 1447527 1447926 "LIST2MAP" 1448728 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-623 1446222 1446400 1446628 "LIST2" 1447033 NIL LIST2 (NIL T T) -7 NIL NIL) (-622 1439451 1445168 1445466 "LIST" 1445957 NIL LIST (NIL T) -8 NIL NIL) (-621 1438201 1438837 1438878 "LINEXP" 1439133 NIL LINEXP (NIL T) -9 NIL 1439282) (-620 1436848 1437108 1437405 "LINDEP" 1437953 NIL LINDEP (NIL T T) -7 NIL NIL) (-619 1433686 1434386 1435144 "LIMITRF" 1436122 NIL LIMITRF (NIL T) -7 NIL NIL) (-618 1431985 1432273 1432682 "LIMITPS" 1433388 NIL LIMITPS (NIL T T) -7 NIL NIL) (-617 1431034 1431477 1431517 "LIECAT" 1431657 NIL LIECAT (NIL T) -9 NIL 1431808) (-616 1430875 1430902 1430990 "LIECAT-" 1430995 NIL LIECAT- (NIL T T) -8 NIL NIL) (-615 1425362 1430386 1430614 "LIE" 1430696 NIL LIE (NIL T T) -8 NIL NIL) (-614 1417976 1424811 1424976 "LIB" 1425217 T LIB (NIL) -8 NIL NIL) (-613 1413613 1414494 1415429 "LGROBP" 1417093 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-612 1412453 1413145 1413173 "LFCAT" 1413380 T LFCAT (NIL) -9 NIL 1413519) (-611 1410319 1410593 1410955 "LF" 1412174 NIL LF (NIL T T) -7 NIL NIL) (-610 1407223 1407851 1408539 "LEXTRIPK" 1409683 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-609 1403994 1404793 1405296 "LEXP" 1406803 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-608 1403497 1403715 1403807 "LETAST" 1403922 T LETAST (NIL) -8 NIL NIL) (-607 1401895 1402208 1402609 "LEADCDET" 1403179 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-606 1401085 1401159 1401388 "LAZM3PK" 1401816 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-605 1396055 1399162 1399700 "LAUPOL" 1400597 NIL LAUPOL (NIL T T) -8 NIL NIL) (-604 1395620 1395664 1395832 "LAPLACE" 1396005 NIL LAPLACE (NIL T T) -7 NIL NIL) (-603 1394721 1395271 1395312 "LALG" 1395374 NIL LALG (NIL T) -9 NIL 1395433) (-602 1394435 1394494 1394630 "LALG-" 1394635 NIL LALG- (NIL T T) -8 NIL NIL) (-601 1392409 1393536 1393787 "LA" 1394268 NIL LA (NIL T T T) -8 NIL NIL) (-600 1391209 1391626 1391855 "KTVLOGIC" 1392200 T KTVLOGIC (NIL) -8 NIL NIL) (-599 1390113 1390300 1390599 "KOVACIC" 1391009 NIL KOVACIC (NIL T T) -7 NIL NIL) (-598 1389948 1389972 1390013 "KONVERT" 1390075 NIL KONVERT (NIL T) -9 NIL NIL) (-597 1389783 1389807 1389848 "KOERCE" 1389910 NIL KOERCE (NIL T) -9 NIL NIL) (-596 1389285 1389366 1389496 "KERNEL2" 1389697 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-595 1387019 1387779 1388172 "KERNEL" 1388924 NIL KERNEL (NIL T) -8 NIL NIL) (-594 1380870 1385558 1385612 "KDAGG" 1385989 NIL KDAGG (NIL T T) -9 NIL 1386195) (-593 1380399 1380523 1380728 "KDAGG-" 1380733 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-592 1373576 1380060 1380215 "KAFILE" 1380277 NIL KAFILE (NIL T) -8 NIL NIL) (-591 1368063 1373087 1373315 "JORDAN" 1373397 NIL JORDAN (NIL T T) -8 NIL NIL) (-590 1367469 1367712 1367833 "JOINAST" 1367962 T JOINAST (NIL) -8 NIL NIL) (-589 1367198 1367257 1367344 "JAVACODE" 1367402 T JAVACODE (NIL) -8 NIL NIL) (-588 1363497 1365403 1365457 "IXAGG" 1366386 NIL IXAGG (NIL T T) -9 NIL 1366845) (-587 1362416 1362722 1363141 "IXAGG-" 1363146 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-586 1357996 1362338 1362397 "IVECTOR" 1362402 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-585 1356762 1356999 1357265 "ITUPLE" 1357763 NIL ITUPLE (NIL T) -8 NIL NIL) (-584 1355198 1355375 1355681 "ITRIGMNP" 1356584 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-583 1353943 1354147 1354430 "ITFUN3" 1354974 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-582 1353575 1353632 1353741 "ITFUN2" 1353880 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-581 1351412 1352437 1352736 "ITAYLOR" 1353309 NIL ITAYLOR (NIL T) -8 NIL NIL) (-580 1340394 1345549 1346712 "ISUPS" 1350282 NIL ISUPS (NIL T) -8 NIL NIL) (-579 1339498 1339638 1339874 "ISUMP" 1340241 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-578 1334762 1339299 1339378 "ISTRING" 1339451 NIL ISTRING (NIL NIL) -8 NIL NIL) (-577 1334265 1334483 1334575 "ISAST" 1334690 T ISAST (NIL) -8 NIL NIL) (-576 1333475 1333556 1333772 "IRURPK" 1334179 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-575 1332411 1332612 1332852 "IRSN" 1333255 T IRSN (NIL) -7 NIL NIL) (-574 1330440 1330795 1331231 "IRRF2F" 1332049 NIL IRRF2F (NIL T) -7 NIL NIL) (-573 1330187 1330225 1330301 "IRREDFFX" 1330396 NIL IRREDFFX (NIL T) -7 NIL NIL) (-572 1328802 1329061 1329360 "IROOT" 1329920 NIL IROOT (NIL T) -7 NIL NIL) (-571 1327874 1327987 1328208 "IR2F" 1328685 NIL IR2F (NIL T T) -7 NIL NIL) (-570 1325487 1325982 1326548 "IR2" 1327352 NIL IR2 (NIL T T) -7 NIL NIL) (-569 1322119 1323171 1323863 "IR" 1324827 NIL IR (NIL T) -8 NIL NIL) (-568 1321910 1321944 1322004 "IPRNTPK" 1322079 T IPRNTPK (NIL) -7 NIL NIL) (-567 1318531 1321799 1321868 "IPF" 1321873 NIL IPF (NIL NIL) -8 NIL NIL) (-566 1316896 1318456 1318513 "IPADIC" 1318518 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-565 1316396 1316600 1316710 "IOMODE" 1316806 T IOMODE (NIL) -8 NIL NIL) (-564 1316160 1316300 1316328 "IOBCON" 1316333 T IOBCON (NIL) -9 NIL 1316354) (-563 1315657 1315715 1315905 "INVLAPLA" 1316096 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-562 1305354 1307695 1310069 "INTTR" 1313333 NIL INTTR (NIL T T) -7 NIL NIL) (-561 1301698 1302440 1303304 "INTTOOLS" 1304539 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-560 1301284 1301375 1301492 "INTSLPE" 1301601 T INTSLPE (NIL) -7 NIL NIL) (-559 1299279 1301207 1301266 "INTRVL" 1301271 NIL INTRVL (NIL T) -8 NIL NIL) (-558 1296881 1297393 1297968 "INTRF" 1298764 NIL INTRF (NIL T) -7 NIL NIL) (-557 1296292 1296389 1296531 "INTRET" 1296779 NIL INTRET (NIL T) -7 NIL NIL) (-556 1294289 1294678 1295148 "INTRAT" 1295900 NIL INTRAT (NIL T T) -7 NIL NIL) (-555 1291517 1292100 1292726 "INTPM" 1293774 NIL INTPM (NIL T T) -7 NIL NIL) (-554 1288243 1288835 1289573 "INTPAF" 1290910 NIL INTPAF (NIL T T T) -7 NIL NIL) (-553 1283422 1284384 1285435 "INTPACK" 1287212 T INTPACK (NIL) -7 NIL NIL) (-552 1282674 1282826 1283034 "INTHERTR" 1283264 NIL INTHERTR (NIL T T) -7 NIL NIL) (-551 1282113 1282193 1282381 "INTHERAL" 1282588 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-550 1279959 1280402 1280859 "INTHEORY" 1281676 T INTHEORY (NIL) -7 NIL NIL) (-549 1271325 1272928 1274689 "INTG0" 1278329 NIL INTG0 (NIL T T T) -7 NIL NIL) (-548 1257598 1260963 1264348 "INTFTBL" 1267960 T INTFTBL (NIL) -8 NIL NIL) (-547 1256847 1256985 1257158 "INTFACT" 1257457 NIL INTFACT (NIL T) -7 NIL NIL) (-546 1254238 1254682 1255244 "INTEF" 1256403 NIL INTEF (NIL T T) -7 NIL NIL) (-545 1252740 1253445 1253473 "INTDOM" 1253774 T INTDOM (NIL) -9 NIL 1253981) (-544 1252109 1252283 1252525 "INTDOM-" 1252530 NIL INTDOM- (NIL T) -8 NIL NIL) (-543 1248642 1250528 1250582 "INTCAT" 1251381 NIL INTCAT (NIL T) -9 NIL 1251701) (-542 1248115 1248217 1248345 "INTBIT" 1248534 T INTBIT (NIL) -7 NIL NIL) (-541 1246786 1246940 1247254 "INTALG" 1247960 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-540 1246243 1246333 1246503 "INTAF" 1246690 NIL INTAF (NIL T T) -7 NIL NIL) (-539 1239699 1246053 1246193 "INTABL" 1246198 NIL INTABL (NIL T T T) -8 NIL NIL) (-538 1236613 1239428 1239555 "INT" 1239592 T INT (NIL) -8 NIL NIL) (-537 1231670 1234339 1234367 "INS" 1235301 T INS (NIL) -9 NIL 1235965) (-536 1228910 1229681 1230655 "INS-" 1230728 NIL INS- (NIL T) -8 NIL NIL) (-535 1227758 1227963 1228239 "INPSIGN" 1228685 NIL INPSIGN (NIL T T) -7 NIL NIL) (-534 1226876 1226993 1227190 "INPRODPF" 1227638 NIL INPRODPF (NIL T T) -7 NIL NIL) (-533 1225770 1225887 1226124 "INPRODFF" 1226756 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-532 1224770 1224922 1225182 "INNMFACT" 1225606 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-531 1223967 1224064 1224252 "INMODGCD" 1224669 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-530 1222476 1222720 1223044 "INFSP" 1223712 NIL INFSP (NIL T T T) -7 NIL NIL) (-529 1221660 1221777 1221960 "INFPROD0" 1222356 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-528 1221270 1221330 1221428 "INFORM1" 1221595 NIL INFORM1 (NIL T) -7 NIL NIL) (-527 1218152 1219335 1219850 "INFORM" 1220763 T INFORM (NIL) -8 NIL NIL) (-526 1217675 1217764 1217878 "INFINITY" 1218058 T INFINITY (NIL) -7 NIL NIL) (-525 1216292 1216541 1216862 "INEP" 1217423 NIL INEP (NIL T T T) -7 NIL NIL) (-524 1215568 1216189 1216254 "INDE" 1216259 NIL INDE (NIL T) -8 NIL NIL) (-523 1215132 1215200 1215317 "INCRMAPS" 1215495 NIL INCRMAPS (NIL T) -7 NIL NIL) (-522 1214435 1214628 1214778 "INBFILE" 1215002 T INBFILE (NIL) -8 NIL NIL) (-521 1209746 1210671 1211615 "INBFF" 1213523 NIL INBFF (NIL T) -7 NIL NIL) (-520 1209415 1209491 1209519 "INBCON" 1209652 T INBCON (NIL) -9 NIL 1209730) (-519 1209255 1209290 1209366 "INBCON-" 1209371 NIL INBCON- (NIL T) -8 NIL NIL) (-518 1208757 1208976 1209068 "INAST" 1209183 T INAST (NIL) -8 NIL NIL) (-517 1208211 1208436 1208542 "IMPTAST" 1208671 T IMPTAST (NIL) -8 NIL NIL) (-516 1204704 1208055 1208159 "IMATRIX" 1208164 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-515 1203416 1203539 1203854 "IMATQF" 1204560 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-514 1201636 1201863 1202200 "IMATLIN" 1203172 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-513 1196264 1201560 1201618 "ILIST" 1201623 NIL ILIST (NIL T NIL) -8 NIL NIL) (-512 1194217 1196124 1196237 "IIARRAY2" 1196242 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-511 1189652 1194128 1194192 "IFF" 1194197 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-510 1189026 1189269 1189385 "IFAST" 1189556 T IFAST (NIL) -8 NIL NIL) (-509 1184069 1188318 1188506 "IFARRAY" 1188883 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-508 1183276 1183973 1184046 "IFAMON" 1184051 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-507 1182860 1182925 1182979 "IEVALAB" 1183186 NIL IEVALAB (NIL T T) -9 NIL NIL) (-506 1182535 1182603 1182763 "IEVALAB-" 1182768 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-505 1181812 1182424 1182499 "IDPOAMS" 1182504 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-504 1181146 1181701 1181776 "IDPOAM" 1181781 NIL IDPOAM (NIL T T) -8 NIL NIL) (-503 1180804 1181060 1181123 "IDPO" 1181128 NIL IDPO (NIL T T) -8 NIL NIL) (-502 1179889 1180139 1180192 "IDPC" 1180605 NIL IDPC (NIL T T) -9 NIL 1180754) (-501 1179385 1179781 1179854 "IDPAM" 1179859 NIL IDPAM (NIL T T) -8 NIL NIL) (-500 1178788 1179277 1179350 "IDPAG" 1179355 NIL IDPAG (NIL T T) -8 NIL NIL) (-499 1178518 1178703 1178753 "IDENT" 1178758 T IDENT (NIL) -8 NIL NIL) (-498 1174773 1175621 1176516 "IDECOMP" 1177675 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-497 1167646 1168696 1169743 "IDEAL" 1173809 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-496 1166810 1166922 1167121 "ICDEN" 1167530 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-495 1165909 1166290 1166437 "ICARD" 1166683 T ICARD (NIL) -8 NIL NIL) (-494 1163969 1164282 1164687 "IBPTOOLS" 1165586 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-493 1159603 1163589 1163702 "IBITS" 1163888 NIL IBITS (NIL NIL) -8 NIL NIL) (-492 1156326 1156902 1157597 "IBATOOL" 1159020 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-491 1154106 1154567 1155100 "IBACHIN" 1155861 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-490 1151983 1153952 1154055 "IARRAY2" 1154060 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-489 1148136 1151909 1151966 "IARRAY1" 1151971 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-488 1142140 1146550 1147030 "IAN" 1147676 T IAN (NIL) -8 NIL NIL) (-487 1141651 1141708 1141881 "IALGFACT" 1142077 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-486 1141179 1141292 1141320 "HYPCAT" 1141527 T HYPCAT (NIL) -9 NIL NIL) (-485 1140717 1140834 1141020 "HYPCAT-" 1141025 NIL HYPCAT- (NIL T) -8 NIL NIL) (-484 1140339 1140512 1140595 "HOSTNAME" 1140654 T HOSTNAME (NIL) -8 NIL NIL) (-483 1137018 1138349 1138390 "HOAGG" 1139371 NIL HOAGG (NIL T) -9 NIL 1140050) (-482 1135612 1136011 1136537 "HOAGG-" 1136542 NIL HOAGG- (NIL T T) -8 NIL NIL) (-481 1129521 1135053 1135219 "HEXADEC" 1135466 T HEXADEC (NIL) -8 NIL NIL) (-480 1128269 1128491 1128754 "HEUGCD" 1129298 NIL HEUGCD (NIL T) -7 NIL NIL) (-479 1127372 1128106 1128236 "HELLFDIV" 1128241 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-478 1125600 1127149 1127237 "HEAP" 1127316 NIL HEAP (NIL T) -8 NIL NIL) (-477 1124891 1125152 1125286 "HEADAST" 1125486 T HEADAST (NIL) -8 NIL NIL) (-476 1118818 1124806 1124868 "HDP" 1124873 NIL HDP (NIL NIL T) -8 NIL NIL) (-475 1112600 1118453 1118605 "HDMP" 1118719 NIL HDMP (NIL NIL T) -8 NIL NIL) (-474 1111925 1112064 1112228 "HB" 1112456 T HB (NIL) -7 NIL NIL) (-473 1105424 1111771 1111875 "HASHTBL" 1111880 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-472 1104927 1105145 1105237 "HASAST" 1105352 T HASAST (NIL) -8 NIL NIL) (-471 1102745 1104551 1104732 "HACKPI" 1104766 T HACKPI (NIL) -8 NIL NIL) (-470 1098467 1102598 1102711 "GTSET" 1102716 NIL GTSET (NIL T T T T) -8 NIL NIL) (-469 1091995 1098345 1098443 "GSTBL" 1098448 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-468 1084310 1091026 1091291 "GSERIES" 1091786 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-467 1083477 1083868 1083896 "GROUP" 1084099 T GROUP (NIL) -9 NIL 1084233) (-466 1082843 1083002 1083253 "GROUP-" 1083258 NIL GROUP- (NIL T) -8 NIL NIL) (-465 1081212 1081531 1081918 "GROEBSOL" 1082520 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-464 1080152 1080414 1080465 "GRMOD" 1080994 NIL GRMOD (NIL T T) -9 NIL 1081162) (-463 1079920 1079956 1080084 "GRMOD-" 1080089 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-462 1075245 1076274 1077274 "GRIMAGE" 1078940 T GRIMAGE (NIL) -8 NIL NIL) (-461 1073712 1073972 1074296 "GRDEF" 1074941 T GRDEF (NIL) -7 NIL NIL) (-460 1073156 1073272 1073413 "GRAY" 1073591 T GRAY (NIL) -7 NIL NIL) (-459 1072387 1072767 1072818 "GRALG" 1072971 NIL GRALG (NIL T T) -9 NIL 1073064) (-458 1072048 1072121 1072284 "GRALG-" 1072289 NIL GRALG- (NIL T T T) -8 NIL NIL) (-457 1068852 1071633 1071811 "GPOLSET" 1071955 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-456 1068206 1068263 1068521 "GOSPER" 1068789 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-455 1063965 1064644 1065170 "GMODPOL" 1067905 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-454 1062970 1063154 1063392 "GHENSEL" 1063777 NIL GHENSEL (NIL T T) -7 NIL NIL) (-453 1057021 1057864 1058891 "GENUPS" 1062054 NIL GENUPS (NIL T T) -7 NIL NIL) (-452 1056718 1056769 1056858 "GENUFACT" 1056964 NIL GENUFACT (NIL T) -7 NIL NIL) (-451 1056130 1056207 1056372 "GENPGCD" 1056636 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-450 1055604 1055639 1055852 "GENMFACT" 1056089 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-449 1054172 1054427 1054734 "GENEEZ" 1055347 NIL GENEEZ (NIL T T) -7 NIL NIL) (-448 1048116 1053783 1053945 "GDMP" 1054095 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-447 1037515 1041887 1042993 "GCNAALG" 1047099 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-446 1035977 1036805 1036833 "GCDDOM" 1037088 T GCDDOM (NIL) -9 NIL 1037245) (-445 1035447 1035574 1035789 "GCDDOM-" 1035794 NIL GCDDOM- (NIL T) -8 NIL NIL) (-444 1024067 1026393 1028785 "GBINTERN" 1033138 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-443 1021904 1022196 1022617 "GBF" 1023742 NIL GBF (NIL T T T T) -7 NIL NIL) (-442 1020685 1020850 1021117 "GBEUCLID" 1021720 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-441 1019357 1019542 1019846 "GB" 1020464 NIL GB (NIL T T T T) -7 NIL NIL) (-440 1018706 1018831 1018980 "GAUSSFAC" 1019228 T GAUSSFAC (NIL) -7 NIL NIL) (-439 1017073 1017375 1017689 "GALUTIL" 1018425 NIL GALUTIL (NIL T) -7 NIL NIL) (-438 1015381 1015655 1015979 "GALPOLYU" 1016800 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-437 1012746 1013036 1013443 "GALFACTU" 1015078 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-436 1004552 1006051 1007659 "GALFACT" 1011178 NIL GALFACT (NIL T) -7 NIL NIL) (-435 1001940 1002598 1002626 "FVFUN" 1003782 T FVFUN (NIL) -9 NIL 1004502) (-434 1001206 1001388 1001416 "FVC" 1001707 T FVC (NIL) -9 NIL 1001890) (-433 1000848 1001003 1001084 "FUNCTION" 1001158 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-432 999666 1000149 1000352 "FTEM" 1000665 T FTEM (NIL) -8 NIL NIL) (-431 997348 997896 998382 "FT" 999200 T FT (NIL) -8 NIL NIL) (-430 995604 995893 996297 "FSUPFACT" 997039 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-429 994001 994290 994622 "FST" 995292 T FST (NIL) -8 NIL NIL) (-428 993172 993278 993473 "FSRED" 993883 NIL FSRED (NIL T T) -7 NIL NIL) (-427 991851 992106 992460 "FSPRMELT" 992887 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-426 988936 989374 989873 "FSPECF" 991414 NIL FSPECF (NIL T T) -7 NIL NIL) (-425 988450 988504 988681 "FSINT" 988877 NIL FSINT (NIL T T) -7 NIL NIL) (-424 986777 987443 987746 "FSERIES" 988229 NIL FSERIES (NIL T T) -8 NIL NIL) (-423 985791 985907 986138 "FSCINT" 986657 NIL FSCINT (NIL T T) -7 NIL NIL) (-422 984833 984976 985203 "FSAGG2" 985644 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-421 981067 983777 983818 "FSAGG" 984188 NIL FSAGG (NIL T) -9 NIL 984447) (-420 978829 979430 980226 "FSAGG-" 980321 NIL FSAGG- (NIL T T) -8 NIL NIL) (-419 976484 976763 977317 "FS2UPS" 978547 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-418 975341 975512 975821 "FS2EXPXP" 976309 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-417 974923 974966 975121 "FS2" 975292 NIL FS2 (NIL T T T T) -7 NIL NIL) (-416 957394 965807 965847 "FS" 969695 NIL FS (NIL T) -9 NIL 971984) (-415 946125 949088 953117 "FS-" 953414 NIL FS- (NIL T T) -8 NIL NIL) (-414 945551 945666 945818 "FRUTIL" 946005 NIL FRUTIL (NIL T) -7 NIL NIL) (-413 940658 943269 943309 "FRNAALG" 944705 NIL FRNAALG (NIL T) -9 NIL 945312) (-412 936387 937441 938699 "FRNAALG-" 939449 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-411 936025 936068 936195 "FRNAAF2" 936338 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-410 934432 934879 935174 "FRMOD" 935837 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-409 933627 933714 934003 "FRIDEAL2" 934339 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-408 931406 932010 932327 "FRIDEAL" 933418 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-407 930655 931062 931103 "FRETRCT" 931108 NIL FRETRCT (NIL T) -9 NIL 931284) (-406 929788 930012 930356 "FRETRCT-" 930361 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-405 927038 928214 928273 "FRAMALG" 929155 NIL FRAMALG (NIL T T) -9 NIL 929447) (-404 925172 925627 926257 "FRAMALG-" 926480 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-403 924808 924865 924972 "FRAC2" 925109 NIL FRAC2 (NIL T T) -7 NIL NIL) (-402 918789 924283 924559 "FRAC" 924564 NIL FRAC (NIL T) -8 NIL NIL) (-401 918425 918482 918589 "FR2" 918726 NIL FR2 (NIL T T) -7 NIL NIL) (-400 910001 914005 915334 "FR" 917128 NIL FR (NIL T) -8 NIL NIL) (-399 904735 907579 907607 "FPS" 908726 T FPS (NIL) -9 NIL 909283) (-398 904184 904293 904457 "FPS-" 904603 NIL FPS- (NIL T) -8 NIL NIL) (-397 901692 903325 903353 "FPC" 903578 T FPC (NIL) -9 NIL 903720) (-396 901485 901525 901622 "FPC-" 901627 NIL FPC- (NIL T) -8 NIL NIL) (-395 900363 900973 901014 "FPATMAB" 901019 NIL FPATMAB (NIL T) -9 NIL 901171) (-394 898063 898539 898965 "FPARFRAC" 900000 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-393 893495 893994 894676 "FORTRAN" 897495 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-392 891171 891733 891761 "FORTFN" 892821 T FORTFN (NIL) -9 NIL 893445) (-391 890935 890985 891013 "FORTCAT" 891072 T FORTCAT (NIL) -9 NIL 891134) (-390 888651 889151 889690 "FORT" 890416 T FORT (NIL) -7 NIL NIL) (-389 888439 888469 888538 "FORMULA1" 888615 NIL FORMULA1 (NIL T) -7 NIL NIL) (-388 886499 886982 887381 "FORMULA" 888060 T FORMULA (NIL) -8 NIL NIL) (-387 886022 886074 886247 "FORDER" 886441 NIL FORDER (NIL T T T T) -7 NIL NIL) (-386 885118 885282 885475 "FOP" 885849 T FOP (NIL) -7 NIL NIL) (-385 883726 884398 884572 "FNLA" 885000 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-384 882394 882783 882811 "FNCAT" 883383 T FNCAT (NIL) -9 NIL 883676) (-383 881960 882353 882381 "FNAME" 882386 T FNAME (NIL) -8 NIL NIL) (-382 880658 881587 881615 "FMTC" 881620 T FMTC (NIL) -9 NIL 881656) (-381 877020 878181 878810 "FMONOID" 880062 NIL FMONOID (NIL T) -8 NIL NIL) (-380 874444 875090 875118 "FMFUN" 876262 T FMFUN (NIL) -9 NIL 876970) (-379 871656 872490 872544 "FMCAT" 873739 NIL FMCAT (NIL T T) -9 NIL 874234) (-378 870925 871106 871134 "FMC" 871424 T FMC (NIL) -9 NIL 871606) (-377 869818 870691 870791 "FM1" 870870 NIL FM1 (NIL T T) -8 NIL NIL) (-376 869037 869560 869709 "FM" 869714 NIL FM (NIL T T) -8 NIL NIL) (-375 866811 867227 867721 "FLOATRP" 868588 NIL FLOATRP (NIL T) -7 NIL NIL) (-374 864249 864749 865327 "FLOATCP" 866278 NIL FLOATCP (NIL T) -7 NIL NIL) (-373 857804 861905 862535 "FLOAT" 863639 T FLOAT (NIL) -8 NIL NIL) (-372 856633 857437 857478 "FLINEXP" 857483 NIL FLINEXP (NIL T) -9 NIL 857576) (-371 855787 856022 856350 "FLINEXP-" 856355 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-370 854863 855007 855231 "FLASORT" 855639 NIL FLASORT (NIL T T) -7 NIL NIL) (-369 852080 852922 852974 "FLALG" 854201 NIL FLALG (NIL T T) -9 NIL 854668) (-368 851122 851265 851492 "FLAGG2" 851933 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-367 844906 848608 848649 "FLAGG" 849911 NIL FLAGG (NIL T) -9 NIL 850563) (-366 843632 843971 844461 "FLAGG-" 844466 NIL FLAGG- (NIL T T) -8 NIL NIL) (-365 840645 841619 841678 "FINRALG" 842806 NIL FINRALG (NIL T T) -9 NIL 843314) (-364 839805 840034 840373 "FINRALG-" 840378 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-363 839211 839424 839452 "FINITE" 839648 T FINITE (NIL) -9 NIL 839755) (-362 831669 833830 833870 "FINAALG" 837537 NIL FINAALG (NIL T) -9 NIL 838990) (-361 827010 828051 829195 "FINAALG-" 830574 NIL FINAALG- (NIL T T) -8 NIL NIL) (-360 825694 826006 826060 "FILECAT" 826744 NIL FILECAT (NIL T T) -9 NIL 826960) (-359 825089 825449 825552 "FILE" 825624 NIL FILE (NIL T) -8 NIL NIL) (-358 823011 824503 824531 "FIELD" 824571 T FIELD (NIL) -9 NIL 824651) (-357 821631 822016 822527 "FIELD-" 822532 NIL FIELD- (NIL T) -8 NIL NIL) (-356 819509 820266 820613 "FGROUP" 821317 NIL FGROUP (NIL T) -8 NIL NIL) (-355 818599 818763 818983 "FGLMICPK" 819341 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-354 814468 818524 818581 "FFX" 818586 NIL FFX (NIL T NIL) -8 NIL NIL) (-353 814069 814130 814265 "FFSLPE" 814401 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-352 813573 813609 813818 "FFPOLY2" 814027 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-351 809566 810345 811141 "FFPOLY" 812809 NIL FFPOLY (NIL T) -7 NIL NIL) (-350 805454 809485 809548 "FFP" 809553 NIL FFP (NIL T NIL) -8 NIL NIL) (-349 800617 804797 804987 "FFNBX" 805308 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-348 795593 799752 800010 "FFNBP" 800471 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-347 790263 794877 795088 "FFNB" 795426 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-346 789095 789293 789608 "FFINTBAS" 790060 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-345 785381 787554 787582 "FFIELDC" 788202 T FFIELDC (NIL) -9 NIL 788578) (-344 784044 784414 784911 "FFIELDC-" 784916 NIL FFIELDC- (NIL T) -8 NIL NIL) (-343 783614 783659 783783 "FFHOM" 783986 NIL FFHOM (NIL T T T) -7 NIL NIL) (-342 781312 781796 782313 "FFF" 783129 NIL FFF (NIL T) -7 NIL NIL) (-341 776967 781054 781155 "FFCGX" 781255 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-340 772636 776699 776806 "FFCGP" 776910 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-339 767856 772363 772471 "FFCG" 772572 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-338 767267 767310 767545 "FFCAT2" 767807 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-337 749334 758361 758447 "FFCAT" 763612 NIL FFCAT (NIL T T T) -9 NIL 765063) (-336 744532 745579 746893 "FFCAT-" 748123 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-335 739967 744443 744507 "FF" 744512 NIL FF (NIL NIL NIL) -8 NIL NIL) (-334 729181 732939 734159 "FEXPR" 738819 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-333 728181 728616 728657 "FEVALAB" 728741 NIL FEVALAB (NIL T) -9 NIL 729002) (-332 727340 727550 727888 "FEVALAB-" 727893 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-331 724406 725121 725236 "FDIVCAT" 726804 NIL FDIVCAT (NIL T T T T) -9 NIL 727241) (-330 724168 724195 724365 "FDIVCAT-" 724370 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-329 723388 723475 723752 "FDIV2" 724075 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-328 721981 722771 722974 "FDIV" 723287 NIL FDIV (NIL T T T T) -8 NIL NIL) (-327 720667 720926 721215 "FCPAK1" 721712 T FCPAK1 (NIL) -7 NIL NIL) (-326 719795 720167 720308 "FCOMP" 720558 NIL FCOMP (NIL T) -8 NIL NIL) (-325 703430 706844 710405 "FC" 716254 T FC (NIL) -8 NIL NIL) (-324 696085 700064 700104 "FAXF" 701906 NIL FAXF (NIL T) -9 NIL 702598) (-323 693364 694019 694844 "FAXF-" 695309 NIL FAXF- (NIL T T) -8 NIL NIL) (-322 688464 692740 692916 "FARRAY" 693221 NIL FARRAY (NIL T) -8 NIL NIL) (-321 683878 685903 685956 "FAMR" 686979 NIL FAMR (NIL T T) -9 NIL 687439) (-320 682768 683070 683505 "FAMR-" 683510 NIL FAMR- (NIL T T T) -8 NIL NIL) (-319 681964 682690 682743 "FAMONOID" 682748 NIL FAMONOID (NIL T) -8 NIL NIL) (-318 679794 680478 680531 "FAMONC" 681472 NIL FAMONC (NIL T T) -9 NIL 681858) (-317 678486 679548 679685 "FAGROUP" 679690 NIL FAGROUP (NIL T) -8 NIL NIL) (-316 676281 676600 677003 "FACUTIL" 678167 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-315 675380 675565 675787 "FACTFUNC" 676091 NIL FACTFUNC (NIL T) -7 NIL NIL) (-314 667787 674631 674843 "EXPUPXS" 675236 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-313 665270 665810 666396 "EXPRTUBE" 667221 T EXPRTUBE (NIL) -7 NIL NIL) (-312 661464 662056 662793 "EXPRODE" 664609 NIL EXPRODE (NIL T T) -7 NIL NIL) (-311 655871 656458 657271 "EXPR2UPS" 660762 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-310 655507 655564 655671 "EXPR2" 655808 NIL EXPR2 (NIL T T) -7 NIL NIL) (-309 640942 654162 654590 "EXPR" 655111 NIL EXPR (NIL T) -8 NIL NIL) (-308 632375 640074 640371 "EXPEXPAN" 640779 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-307 631882 632099 632190 "EXITAST" 632304 T EXITAST (NIL) -8 NIL NIL) (-306 631709 631839 631868 "EXIT" 631873 T EXIT (NIL) -8 NIL NIL) (-305 631336 631398 631511 "EVALCYC" 631641 NIL EVALCYC (NIL T) -7 NIL NIL) (-304 630877 630995 631036 "EVALAB" 631206 NIL EVALAB (NIL T) -9 NIL 631310) (-303 630358 630480 630701 "EVALAB-" 630706 NIL EVALAB- (NIL T T) -8 NIL NIL) (-302 627861 629129 629157 "EUCDOM" 629712 T EUCDOM (NIL) -9 NIL 630062) (-301 626266 626708 627298 "EUCDOM-" 627303 NIL EUCDOM- (NIL T) -8 NIL NIL) (-300 625898 625955 626064 "ESTOOLS2" 626203 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-299 625649 625691 625771 "ESTOOLS1" 625850 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-298 613189 615947 618697 "ESTOOLS" 622919 T ESTOOLS (NIL) -7 NIL NIL) (-297 612934 612966 613048 "ESCONT1" 613151 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-296 609309 610069 610849 "ESCONT" 612174 T ESCONT (NIL) -7 NIL NIL) (-295 608984 609034 609134 "ES2" 609253 NIL ES2 (NIL T T) -7 NIL NIL) (-294 608614 608672 608781 "ES1" 608920 NIL ES1 (NIL T T) -7 NIL NIL) (-293 602539 604267 604295 "ES" 607063 T ES (NIL) -9 NIL 608472) (-292 597486 598773 600590 "ES-" 600754 NIL ES- (NIL T) -8 NIL NIL) (-291 596702 596831 597007 "ERROR" 597330 T ERROR (NIL) -7 NIL NIL) (-290 590207 596561 596652 "EQTBL" 596657 NIL EQTBL (NIL T T) -8 NIL NIL) (-289 589839 589896 590005 "EQ2" 590144 NIL EQ2 (NIL T T) -7 NIL NIL) (-288 582396 585153 586602 "EQ" 588423 NIL -3890 (NIL T) -8 NIL NIL) (-287 577688 578734 579827 "EP" 581335 NIL EP (NIL T) -7 NIL NIL) (-286 576270 576571 576888 "ENV" 577391 T ENV (NIL) -8 NIL NIL) (-285 575469 575989 576017 "ENTIRER" 576022 T ENTIRER (NIL) -9 NIL 576068) (-284 572027 573478 573848 "EMR" 575268 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-283 571171 571356 571410 "ELTAGG" 571790 NIL ELTAGG (NIL T T) -9 NIL 572001) (-282 570890 570952 571093 "ELTAGG-" 571098 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-281 570679 570708 570762 "ELTAB" 570846 NIL ELTAB (NIL T T) -9 NIL NIL) (-280 569805 569951 570150 "ELFUTS" 570530 NIL ELFUTS (NIL T T) -7 NIL NIL) (-279 569547 569603 569631 "ELEMFUN" 569736 T ELEMFUN (NIL) -9 NIL NIL) (-278 569417 569438 569506 "ELEMFUN-" 569511 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-277 564308 567517 567558 "ELAGG" 568498 NIL ELAGG (NIL T) -9 NIL 568961) (-276 562593 563027 563690 "ELAGG-" 563695 NIL ELAGG- (NIL T T) -8 NIL NIL) (-275 561250 561530 561825 "ELABEXPR" 562318 T ELABEXPR (NIL) -8 NIL NIL) (-274 554243 555917 556744 "EFUPXS" 560526 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-273 547820 549494 550304 "EFULS" 553519 NIL EFULS (NIL T T T) -8 NIL NIL) (-272 545242 545600 546079 "EFSTRUC" 547452 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-271 534314 535879 537439 "EF" 543757 NIL EF (NIL T T) -7 NIL NIL) (-270 533415 533799 533948 "EAB" 534185 T EAB (NIL) -8 NIL NIL) (-269 532624 533374 533402 "E04UCFA" 533407 T E04UCFA (NIL) -8 NIL NIL) (-268 531833 532583 532611 "E04NAFA" 532616 T E04NAFA (NIL) -8 NIL NIL) (-267 531042 531792 531820 "E04MBFA" 531825 T E04MBFA (NIL) -8 NIL NIL) (-266 530251 531001 531029 "E04JAFA" 531034 T E04JAFA (NIL) -8 NIL NIL) (-265 529462 530210 530238 "E04GCFA" 530243 T E04GCFA (NIL) -8 NIL NIL) (-264 528673 529421 529449 "E04FDFA" 529454 T E04FDFA (NIL) -8 NIL NIL) (-263 527882 528632 528660 "E04DGFA" 528665 T E04DGFA (NIL) -8 NIL NIL) (-262 522060 523407 524771 "E04AGNT" 526538 T E04AGNT (NIL) -7 NIL NIL) (-261 520784 521264 521304 "DVARCAT" 521779 NIL DVARCAT (NIL T) -9 NIL 521978) (-260 519988 520200 520514 "DVARCAT-" 520519 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-259 512929 519787 519916 "DSMP" 519921 NIL DSMP (NIL T T T) -8 NIL NIL) (-258 512594 512653 512751 "DROPT1" 512864 NIL DROPT1 (NIL T) -7 NIL NIL) (-257 507709 508835 509972 "DROPT0" 511477 T DROPT0 (NIL) -7 NIL NIL) (-256 502519 503654 504722 "DROPT" 506661 T DROPT (NIL) -8 NIL NIL) (-255 500864 501189 501575 "DRAWPT" 502153 T DRAWPT (NIL) -7 NIL NIL) (-254 500497 500550 500668 "DRAWHACK" 500805 NIL DRAWHACK (NIL T) -7 NIL NIL) (-253 499228 499497 499788 "DRAWCX" 500226 T DRAWCX (NIL) -7 NIL NIL) (-252 498744 498812 498963 "DRAWCURV" 499154 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-251 489215 491174 493289 "DRAWCFUN" 496649 T DRAWCFUN (NIL) -7 NIL NIL) (-250 483802 484725 485804 "DRAW" 488189 NIL DRAW (NIL T) -7 NIL NIL) (-249 480615 482497 482538 "DQAGG" 483167 NIL DQAGG (NIL T) -9 NIL 483440) (-248 469170 475831 475914 "DPOLCAT" 477766 NIL DPOLCAT (NIL T T T T) -9 NIL 478311) (-247 464060 465389 467330 "DPOLCAT-" 467335 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-246 457222 463921 464019 "DPMO" 464024 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-245 450287 457002 457169 "DPMM" 457174 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-244 449707 449910 450024 "DOMAIN" 450193 T DOMAIN (NIL) -8 NIL NIL) (-243 443489 449342 449494 "DMP" 449608 NIL DMP (NIL NIL T) -8 NIL NIL) (-242 443089 443145 443289 "DLP" 443427 NIL DLP (NIL T) -7 NIL NIL) (-241 436735 442190 442417 "DLIST" 442894 NIL DLIST (NIL T) -8 NIL NIL) (-240 433582 435590 435631 "DLAGG" 436181 NIL DLAGG (NIL T) -9 NIL 436410) (-239 432432 433062 433090 "DIVRING" 433182 T DIVRING (NIL) -9 NIL 433265) (-238 431669 431859 432159 "DIVRING-" 432164 NIL DIVRING- (NIL T) -8 NIL NIL) (-237 429771 430128 430534 "DISPLAY" 431283 T DISPLAY (NIL) -7 NIL NIL) (-236 428619 428822 429087 "DIRPROD2" 429564 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-235 422568 428533 428596 "DIRPROD" 428601 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-234 412113 418058 418111 "DIRPCAT" 418521 NIL DIRPCAT (NIL NIL T) -9 NIL 419361) (-233 409439 410081 410962 "DIRPCAT-" 411299 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-232 408726 408886 409072 "DIOSP" 409273 T DIOSP (NIL) -7 NIL NIL) (-231 405428 407638 407679 "DIOPS" 408113 NIL DIOPS (NIL T) -9 NIL 408342) (-230 404977 405091 405282 "DIOPS-" 405287 NIL DIOPS- (NIL T T) -8 NIL NIL) (-229 403889 404483 404511 "DIFRING" 404698 T DIFRING (NIL) -9 NIL 404808) (-228 403535 403612 403764 "DIFRING-" 403769 NIL DIFRING- (NIL T) -8 NIL NIL) (-227 401360 402598 402639 "DIFEXT" 403002 NIL DIFEXT (NIL T) -9 NIL 403296) (-226 399645 400073 400739 "DIFEXT-" 400744 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-225 396967 399177 399218 "DIAGG" 399223 NIL DIAGG (NIL T) -9 NIL 399243) (-224 396351 396508 396760 "DIAGG-" 396765 NIL DIAGG- (NIL T T) -8 NIL NIL) (-223 391815 395310 395587 "DHMATRIX" 396120 NIL DHMATRIX (NIL T) -8 NIL NIL) (-222 387427 388336 389346 "DFSFUN" 390825 T DFSFUN (NIL) -7 NIL NIL) (-221 382547 386358 386670 "DFLOAT" 387135 T DFLOAT (NIL) -8 NIL NIL) (-220 380775 381056 381452 "DFINTTLS" 382255 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-219 377840 378796 379196 "DERHAM" 380441 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-218 375689 377615 377704 "DEQUEUE" 377784 NIL DEQUEUE (NIL T) -8 NIL NIL) (-217 374904 375037 375233 "DEGRED" 375551 NIL DEGRED (NIL T T) -7 NIL NIL) (-216 371479 372179 372987 "DEFINTRF" 374177 NIL DEFINTRF (NIL T) -7 NIL NIL) (-215 369118 369559 370130 "DEFINTEF" 371026 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-214 368495 368738 368853 "DEFAST" 369023 T DEFAST (NIL) -8 NIL NIL) (-213 362404 367936 368102 "DECIMAL" 368349 T DECIMAL (NIL) -8 NIL NIL) (-212 359916 360374 360880 "DDFACT" 361948 NIL DDFACT (NIL T T) -7 NIL NIL) (-211 359512 359555 359706 "DBLRESP" 359867 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-210 357222 357556 357925 "DBASE" 359270 NIL DBASE (NIL T) -8 NIL NIL) (-209 356491 356702 356848 "DATABUF" 357121 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-208 355624 356450 356478 "D03FAFA" 356483 T D03FAFA (NIL) -8 NIL NIL) (-207 354758 355583 355611 "D03EEFA" 355616 T D03EEFA (NIL) -8 NIL NIL) (-206 352708 353174 353663 "D03AGNT" 354289 T D03AGNT (NIL) -7 NIL NIL) (-205 352024 352667 352695 "D02EJFA" 352700 T D02EJFA (NIL) -8 NIL NIL) (-204 351340 351983 352011 "D02CJFA" 352016 T D02CJFA (NIL) -8 NIL NIL) (-203 350656 351299 351327 "D02BHFA" 351332 T D02BHFA (NIL) -8 NIL NIL) (-202 349972 350615 350643 "D02BBFA" 350648 T D02BBFA (NIL) -8 NIL NIL) (-201 343170 344758 346364 "D02AGNT" 348386 T D02AGNT (NIL) -7 NIL NIL) (-200 340939 341461 342007 "D01WGTS" 342644 T D01WGTS (NIL) -7 NIL NIL) (-199 340034 340898 340926 "D01TRNS" 340931 T D01TRNS (NIL) -8 NIL NIL) (-198 339129 339993 340021 "D01GBFA" 340026 T D01GBFA (NIL) -8 NIL NIL) (-197 338224 339088 339116 "D01FCFA" 339121 T D01FCFA (NIL) -8 NIL NIL) (-196 337319 338183 338211 "D01ASFA" 338216 T D01ASFA (NIL) -8 NIL NIL) (-195 336414 337278 337306 "D01AQFA" 337311 T D01AQFA (NIL) -8 NIL NIL) (-194 335509 336373 336401 "D01APFA" 336406 T D01APFA (NIL) -8 NIL NIL) (-193 334604 335468 335496 "D01ANFA" 335501 T D01ANFA (NIL) -8 NIL NIL) (-192 333699 334563 334591 "D01AMFA" 334596 T D01AMFA (NIL) -8 NIL NIL) (-191 332794 333658 333686 "D01ALFA" 333691 T D01ALFA (NIL) -8 NIL NIL) (-190 331889 332753 332781 "D01AKFA" 332786 T D01AKFA (NIL) -8 NIL NIL) (-189 330984 331848 331876 "D01AJFA" 331881 T D01AJFA (NIL) -8 NIL NIL) (-188 324281 325832 327393 "D01AGNT" 329443 T D01AGNT (NIL) -7 NIL NIL) (-187 323618 323746 323898 "CYCLOTOM" 324149 T CYCLOTOM (NIL) -7 NIL NIL) (-186 320353 321066 321793 "CYCLES" 322911 T CYCLES (NIL) -7 NIL NIL) (-185 319665 319799 319970 "CVMP" 320214 NIL CVMP (NIL T) -7 NIL NIL) (-184 317436 317694 318070 "CTRIGMNP" 319393 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-183 316972 317167 317268 "CTORKIND" 317355 T CTORKIND (NIL) -8 NIL NIL) (-182 316483 316672 316771 "CTORCALL" 316893 T CTORCALL (NIL) -8 NIL NIL) (-181 315898 316106 316220 "CTOR" 316389 T CTOR (NIL) -8 NIL NIL) (-180 315272 315371 315524 "CSTTOOLS" 315795 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-179 311071 311728 312486 "CRFP" 314584 NIL CRFP (NIL T T) -7 NIL NIL) (-178 310573 310792 310884 "CRCEAST" 310999 T CRCEAST (NIL) -8 NIL NIL) (-177 309620 309805 310033 "CRAPACK" 310377 NIL CRAPACK (NIL T) -7 NIL NIL) (-176 309004 309105 309309 "CPMATCH" 309496 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-175 308729 308757 308863 "CPIMA" 308970 NIL CPIMA (NIL T T T) -7 NIL NIL) (-174 305093 305765 306483 "COORDSYS" 308064 NIL COORDSYS (NIL T) -7 NIL NIL) (-173 304477 304606 304756 "CONTOUR" 304963 T CONTOUR (NIL) -8 NIL NIL) (-172 300405 302480 302972 "CONTFRAC" 304017 NIL CONTFRAC (NIL T) -8 NIL NIL) (-171 300285 300306 300334 "CONDUIT" 300371 T CONDUIT (NIL) -9 NIL NIL) (-170 299478 299998 300026 "COMRING" 300031 T COMRING (NIL) -9 NIL 300083) (-169 298559 298836 299020 "COMPPROP" 299314 T COMPPROP (NIL) -8 NIL NIL) (-168 298220 298255 298383 "COMPLPAT" 298518 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-167 297856 297913 298020 "COMPLEX2" 298157 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-166 287933 297665 297774 "COMPLEX" 297779 NIL COMPLEX (NIL T) -8 NIL NIL) (-165 287651 287686 287784 "COMPFACT" 287892 NIL COMPFACT (NIL T T) -7 NIL NIL) (-164 272058 282265 282305 "COMPCAT" 283309 NIL COMPCAT (NIL T) -9 NIL 284704) (-163 261594 264511 268131 "COMPCAT-" 268487 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-162 261323 261351 261454 "COMMUPC" 261560 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-161 261118 261151 261210 "COMMONOP" 261284 T COMMONOP (NIL) -7 NIL NIL) (-160 260722 260922 260997 "COMMAAST" 261063 T COMMAAST (NIL) -8 NIL NIL) (-159 260305 260473 260560 "COMM" 260655 T COMM (NIL) -8 NIL NIL) (-158 259554 259748 259776 "COMBOPC" 260114 T COMBOPC (NIL) -9 NIL 260289) (-157 258450 258660 258902 "COMBINAT" 259344 NIL COMBINAT (NIL T) -7 NIL NIL) (-156 254648 255221 255861 "COMBF" 257872 NIL COMBF (NIL T T) -7 NIL NIL) (-155 253434 253764 253999 "COLOR" 254433 T COLOR (NIL) -8 NIL NIL) (-154 252937 253155 253247 "COLONAST" 253362 T COLONAST (NIL) -8 NIL NIL) (-153 252577 252624 252749 "CMPLXRT" 252884 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-152 252052 252277 252376 "CLLCTAST" 252498 T CLLCTAST (NIL) -8 NIL NIL) (-151 247554 248582 249662 "CLIP" 250992 T CLIP (NIL) -7 NIL NIL) (-150 245936 246660 246899 "CLIF" 247381 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-149 242158 244082 244123 "CLAGG" 245052 NIL CLAGG (NIL T) -9 NIL 245588) (-148 240580 241037 241620 "CLAGG-" 241625 NIL CLAGG- (NIL T T) -8 NIL NIL) (-147 240124 240209 240349 "CINTSLPE" 240489 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-146 237625 238096 238644 "CHVAR" 239652 NIL CHVAR (NIL T T T) -7 NIL NIL) (-145 236888 237408 237436 "CHARZ" 237441 T CHARZ (NIL) -9 NIL 237456) (-144 236642 236682 236760 "CHARPOL" 236842 NIL CHARPOL (NIL T) -7 NIL NIL) (-143 235789 236342 236370 "CHARNZ" 236417 T CHARNZ (NIL) -9 NIL 236473) (-142 233814 234479 234814 "CHAR" 235474 T CHAR (NIL) -8 NIL NIL) (-141 233540 233601 233629 "CFCAT" 233740 T CFCAT (NIL) -9 NIL NIL) (-140 232785 232896 233078 "CDEN" 233424 NIL CDEN (NIL T T T) -7 NIL NIL) (-139 228777 231938 232218 "CCLASS" 232525 T CCLASS (NIL) -8 NIL NIL) (-138 228696 228722 228757 "CATEGORY" 228762 T -10 (NIL) -8 NIL NIL) (-137 228170 228396 228495 "CATAST" 228617 T CATAST (NIL) -8 NIL NIL) (-136 227673 227891 227983 "CASEAST" 228098 T CASEAST (NIL) -8 NIL NIL) (-135 226781 226929 227150 "CARTEN2" 227520 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-134 221833 222810 223563 "CARTEN" 226084 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-133 220175 220983 221240 "CARD" 221596 T CARD (NIL) -8 NIL NIL) (-132 219778 219979 220054 "CAPSLAST" 220120 T CAPSLAST (NIL) -8 NIL NIL) (-131 219150 219478 219506 "CACHSET" 219638 T CACHSET (NIL) -9 NIL 219715) (-130 218646 218942 218970 "CABMON" 219020 T CABMON (NIL) -9 NIL 219076) (-129 214594 218593 218627 "BYTEARY" 218632 T BYTEARY (NIL) -8 NIL NIL) (-128 213521 213949 214145 "BYTE" 214418 T BYTE (NIL) -8 NIL NIL) (-127 211080 213213 213320 "BTREE" 213447 NIL BTREE (NIL T) -8 NIL NIL) (-126 208580 210728 210850 "BTOURN" 210990 NIL BTOURN (NIL T) -8 NIL NIL) (-125 206000 208051 208092 "BTCAT" 208160 NIL BTCAT (NIL T) -9 NIL 208237) (-124 205667 205747 205896 "BTCAT-" 205901 NIL BTCAT- (NIL T T) -8 NIL NIL) (-123 200959 204810 204838 "BTAGG" 205060 T BTAGG (NIL) -9 NIL 205221) (-122 200449 200574 200780 "BTAGG-" 200785 NIL BTAGG- (NIL T) -8 NIL NIL) (-121 197495 199727 199942 "BSTREE" 200266 NIL BSTREE (NIL T) -8 NIL NIL) (-120 196633 196759 196943 "BRILL" 197351 NIL BRILL (NIL T) -7 NIL NIL) (-119 193335 195361 195402 "BRAGG" 196051 NIL BRAGG (NIL T) -9 NIL 196308) (-118 191867 192272 192826 "BRAGG-" 192831 NIL BRAGG- (NIL T T) -8 NIL NIL) (-117 185154 191213 191397 "BPADICRT" 191715 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-116 183506 185091 185136 "BPADIC" 185141 NIL BPADIC (NIL NIL) -8 NIL NIL) (-115 183204 183234 183348 "BOUNDZRO" 183470 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-114 180825 181269 181789 "BOP1" 182717 NIL BOP1 (NIL T) -7 NIL NIL) (-113 176340 177431 178298 "BOP" 179978 T BOP (NIL) -8 NIL NIL) (-112 175078 175764 175957 "BOOLEAN" 176167 T BOOLEAN (NIL) -8 NIL NIL) (-111 174440 174818 174872 "BMODULE" 174877 NIL BMODULE (NIL T T) -9 NIL 174942) (-110 170270 174238 174311 "BITS" 174387 T BITS (NIL) -8 NIL NIL) (-109 169367 169802 169954 "BINFILE" 170138 T BINFILE (NIL) -8 NIL NIL) (-108 168779 168901 169043 "BINDING" 169245 T BINDING (NIL) -8 NIL NIL) (-107 162692 168223 168388 "BINARY" 168634 T BINARY (NIL) -8 NIL NIL) (-106 160519 161947 161988 "BGAGG" 162248 NIL BGAGG (NIL T) -9 NIL 162385) (-105 160350 160382 160473 "BGAGG-" 160478 NIL BGAGG- (NIL T T) -8 NIL NIL) (-104 159448 159734 159939 "BFUNCT" 160165 T BFUNCT (NIL) -8 NIL NIL) (-103 158132 158313 158601 "BEZOUT" 159272 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-102 154651 156984 157314 "BBTREE" 157835 NIL BBTREE (NIL T) -8 NIL NIL) (-101 154385 154438 154466 "BASTYPE" 154585 T BASTYPE (NIL) -9 NIL NIL) (-100 154237 154266 154339 "BASTYPE-" 154344 NIL BASTYPE- (NIL T) -8 NIL NIL) (-99 153675 153751 153901 "BALFACT" 154148 NIL BALFACT (NIL T T) -7 NIL NIL) (-98 152558 153090 153276 "AUTOMOR" 153520 NIL AUTOMOR (NIL T) -8 NIL NIL) (-97 152284 152289 152315 "ATTREG" 152320 T ATTREG (NIL) -9 NIL NIL) (-96 150563 150981 151333 "ATTRBUT" 151950 T ATTRBUT (NIL) -8 NIL NIL) (-95 150198 150391 150457 "ATTRAST" 150515 T ATTRAST (NIL) -8 NIL NIL) (-94 149734 149847 149873 "ATRIG" 150074 T ATRIG (NIL) -9 NIL NIL) (-93 149543 149584 149671 "ATRIG-" 149676 NIL ATRIG- (NIL T) -8 NIL NIL) (-92 149165 149325 149351 "ASTCAT" 149409 T ASTCAT (NIL) -9 NIL 149472) (-91 148892 148951 149070 "ASTCAT-" 149075 NIL ASTCAT- (NIL T) -8 NIL NIL) (-90 147089 148668 148756 "ASTACK" 148835 NIL ASTACK (NIL T) -8 NIL NIL) (-89 145594 145891 146256 "ASSOCEQ" 146771 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-88 144648 145253 145377 "ASP9" 145501 NIL ASP9 (NIL NIL) -8 NIL NIL) (-87 143539 144253 144395 "ASP80" 144537 NIL ASP80 (NIL NIL) -8 NIL NIL) (-86 143303 143487 143526 "ASP8" 143531 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 142279 142980 143098 "ASP78" 143216 NIL ASP78 (NIL NIL) -8 NIL NIL) (-84 141270 141959 142076 "ASP77" 142193 NIL ASP77 (NIL NIL) -8 NIL NIL) (-83 140204 140908 141039 "ASP74" 141170 NIL ASP74 (NIL NIL) -8 NIL NIL) (-82 139126 139839 139971 "ASP73" 140103 NIL ASP73 (NIL NIL) -8 NIL NIL) (-81 138047 138761 138893 "ASP7" 139025 NIL ASP7 (NIL NIL) -8 NIL NIL) (-80 137024 137724 137842 "ASP6" 137960 NIL ASP6 (NIL NIL) -8 NIL NIL) (-79 135994 136701 136819 "ASP55" 136937 NIL ASP55 (NIL NIL) -8 NIL NIL) (-78 134966 135668 135787 "ASP50" 135906 NIL ASP50 (NIL NIL) -8 NIL NIL) (-77 134076 134667 134777 "ASP49" 134887 NIL ASP49 (NIL NIL) -8 NIL NIL) (-76 132883 133615 133783 "ASP42" 133965 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-75 131682 132416 132586 "ASP41" 132770 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-74 130792 131383 131493 "ASP4" 131603 NIL ASP4 (NIL NIL) -8 NIL NIL) (-73 129764 130469 130587 "ASP35" 130705 NIL ASP35 (NIL NIL) -8 NIL NIL) (-72 129529 129712 129751 "ASP34" 129756 NIL ASP34 (NIL NIL) -8 NIL NIL) (-71 129266 129333 129409 "ASP33" 129484 NIL ASP33 (NIL NIL) -8 NIL NIL) (-70 128183 128901 129033 "ASP31" 129165 NIL ASP31 (NIL NIL) -8 NIL NIL) (-69 127948 128131 128170 "ASP30" 128175 NIL ASP30 (NIL NIL) -8 NIL NIL) (-68 127683 127752 127828 "ASP29" 127903 NIL ASP29 (NIL NIL) -8 NIL NIL) (-67 127448 127631 127670 "ASP28" 127675 NIL ASP28 (NIL NIL) -8 NIL NIL) (-66 127213 127396 127435 "ASP27" 127440 NIL ASP27 (NIL NIL) -8 NIL NIL) (-65 126319 126911 127022 "ASP24" 127133 NIL ASP24 (NIL NIL) -8 NIL NIL) (-64 125257 125960 126090 "ASP20" 126220 NIL ASP20 (NIL NIL) -8 NIL NIL) (-63 124223 124931 125050 "ASP19" 125169 NIL ASP19 (NIL NIL) -8 NIL NIL) (-62 123960 124027 124103 "ASP12" 124178 NIL ASP12 (NIL NIL) -8 NIL NIL) (-61 122834 123559 123703 "ASP10" 123847 NIL ASP10 (NIL NIL) -8 NIL NIL) (-60 121944 122535 122645 "ASP1" 122755 NIL ASP1 (NIL NIL) -8 NIL NIL) (-59 119843 121788 121879 "ARRAY2" 121884 NIL ARRAY2 (NIL T) -8 NIL NIL) (-58 118875 119048 119269 "ARRAY12" 119666 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-57 114691 118523 118637 "ARRAY1" 118792 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 109050 110921 110996 "ARR2CAT" 113626 NIL ARR2CAT (NIL T T T) -9 NIL 114384) (-55 106484 107228 108182 "ARR2CAT-" 108187 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-54 105232 105384 105690 "APPRULE" 106320 NIL APPRULE (NIL T T T) -7 NIL NIL) (-53 104883 104931 105050 "APPLYORE" 105178 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-52 104161 104284 104441 "ANY1" 104757 NIL ANY1 (NIL T) -7 NIL NIL) (-51 103135 103426 103621 "ANY" 103984 T ANY (NIL) -8 NIL NIL) (-50 100700 101572 101899 "ANTISYM" 102859 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-49 100215 100404 100501 "ANON" 100621 T ANON (NIL) -8 NIL NIL) (-48 94358 98756 99209 "AN" 99780 T AN (NIL) -8 NIL NIL) (-47 90739 92093 92144 "AMR" 92892 NIL AMR (NIL T T) -9 NIL 93492) (-46 89851 90072 90435 "AMR-" 90440 NIL AMR- (NIL T T T) -8 NIL NIL) (-45 74407 89768 89829 "ALIST" 89834 NIL ALIST (NIL T T) -8 NIL NIL) (-44 71276 74001 74170 "ALGSC" 74325 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-43 67832 68386 68993 "ALGPKG" 70716 NIL ALGPKG (NIL T T) -7 NIL NIL) (-42 67109 67210 67394 "ALGMFACT" 67718 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-41 62848 63533 64188 "ALGMANIP" 66632 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-40 54265 62474 62624 "ALGFF" 62781 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-39 53461 53592 53771 "ALGFACT" 54123 NIL ALGFACT (NIL T) -7 NIL NIL) (-38 52491 53057 53095 "ALGEBRA" 53155 NIL ALGEBRA (NIL T) -9 NIL 53214) (-37 52209 52268 52400 "ALGEBRA-" 52405 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-36 34475 50212 50264 "ALAGG" 50400 NIL ALAGG (NIL T T) -9 NIL 50561) (-35 34011 34124 34150 "AHYP" 34351 T AHYP (NIL) -9 NIL NIL) (-34 32942 33190 33216 "AGG" 33715 T AGG (NIL) -9 NIL 33994) (-33 32376 32538 32752 "AGG-" 32757 NIL AGG- (NIL T) -8 NIL NIL) (-32 30053 30475 30893 "AF" 32018 NIL AF (NIL T T) -7 NIL NIL) (-31 29560 29778 29868 "ADDAST" 29981 T ADDAST (NIL) -8 NIL NIL) (-30 28829 29087 29243 "ACPLOT" 29422 T ACPLOT (NIL) -8 NIL NIL) (-29 18356 26221 26272 "ACFS" 26983 NIL ACFS (NIL T) -9 NIL 27222) (-28 16370 16860 17635 "ACFS-" 17640 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12697 14589 14615 "ACF" 15494 T ACF (NIL) -9 NIL 15906) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index c684054d..b3ed780e 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,3962 +1,3962 @@ -(730437 . 3432414587) +(730693 . 3432506633) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) - (-5 *2 (-1229 (-400 (-536)))) (-5 *1 (-1257 *4))))) + (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538))) + (-5 *2 (-1231 (-402 (-538)))) (-5 *1 (-1259 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) - (-5 *2 (-1229 (-536))) (-5 *1 (-1257 *4))))) + (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538))) + (-5 *2 (-1231 (-538))) (-5 *1 (-1259 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 *4)) (-4 *4 (-619 (-536))) (-5 *2 (-112)) - (-5 *1 (-1257 *4))))) + (-12 (-5 *3 (-1231 *4)) (-4 *4 (-621 (-538))) (-5 *2 (-112)) + (-5 *1 (-1259 *4))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-596 *2) (-170))) (-5 *2 (-864 *4)) (-5 *1 (-168 *4 *5 *3)) - (-4 *4 (-1072)) (-4 *3 (-164 *5)))) + (-12 (-4 *5 (-13 (-598 *2) (-170))) (-5 *2 (-866 *4)) (-5 *1 (-168 *4 *5 *3)) + (-4 *4 (-1074)) (-4 *3 (-164 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-1060 (-817 (-371))))) - (-5 *2 (-620 (-1060 (-817 (-219))))) (-5 *1 (-296)))) - ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-371)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-386)))) + (-12 (-5 *3 (-622 (-1062 (-819 (-373))))) + (-5 *2 (-622 (-1062 (-819 (-221))))) (-5 *1 (-298)))) + ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-373)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-388)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) - (-4 *4 (-1205 *3)))) + (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4)) + (-4 *4 (-1207 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) - (-5 *2 (-1229 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 *3)))) + (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) + (-5 *2 (-1231 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-398 *1)) (-4 *1 (-414 *3)) (-4 *3 (-543)) (-4 *3 (-825)))) + (-12 (-5 *2 (-400 *1)) (-4 *1 (-416 *3)) (-4 *3 (-545)) (-4 *3 (-827)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-455 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-525)))) - ((*1 *2 *1) (-12 (-4 *1 (-596 *2)) (-4 *2 (-1183)))) - ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1205 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-954 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1034)))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-457 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-527)))) + ((*1 *2 *1) (-12 (-4 *1 (-598 *2)) (-4 *2 (-1185)))) + ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1207 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036)))) ((*1 *1 *2) - (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) - (-4 *5 (-596 (-1147))) (-4 *4 (-771)) (-4 *5 (-825)))) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) + (-4 *5 (-598 (-1149))) (-4 *4 (-773)) (-4 *5 (-827)))) ((*1 *1 *2) - (-3886 - (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) - (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) - (-4 *5 (-596 (-1147)))) - (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) - (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825))))) + (-3891 + (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) + (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) + (-4 *5 (-598 (-1149)))) + (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) + (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827))))) ((*1 *1 *2) - (-12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) - (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825)))) + (-12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5)) + (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) - (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1129)) - (-5 *1 (-1041 *4 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1053)))) - ((*1 *1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) + (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) + (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) + (-5 *1 (-1043 *4 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1055)))) + ((*1 *1 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) ((*1 *1 *2) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *2)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *2)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) ((*1 *1 *2) - (-12 (-4 *1 (-1075 *3 *4 *5 *2 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *2 (-1072)) (-4 *6 (-1072)))) + (-12 (-4 *1 (-1077 *3 *4 *5 *2 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *2 (-1074)) (-4 *6 (-1074)))) ((*1 *1 *2) - (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *2 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) + (-12 (-4 *1 (-1077 *3 *4 *2 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *2 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) ((*1 *1 *2) - (-12 (-4 *1 (-1075 *3 *2 *4 *5 *6)) (-4 *3 (-1072)) (-4 *2 (-1072)) - (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) + (-12 (-4 *1 (-1077 *3 *2 *4 *5 *6)) (-4 *3 (-1074)) (-4 *2 (-1074)) + (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) ((*1 *1 *2) - (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) - (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)))) + (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074)) + (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 *1)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) - (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)))) + (-12 (-5 *2 (-622 *1)) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) + (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)))) ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) - (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1080 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1129)) - (-5 *1 (-1116 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1152)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-1163)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-838)) (-5 *3 (-536)) (-5 *1 (-1163)))) + (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) + (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1082 *4 *5 *6 *7)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1131)) + (-5 *1 (-1118 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1076)) (-5 *1 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1154)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-1165)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-840)) (-5 *3 (-538)) (-5 *1 (-1165)))) ((*1 *2 *3) - (-12 (-5 *3 (-758 *4 (-839 *5))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-14 *5 (-620 (-1147))) (-5 *2 (-758 *4 (-839 *6))) (-5 *1 (-1256 *4 *5 *6)) - (-14 *6 (-620 (-1147))))) + (-12 (-5 *3 (-760 *4 (-841 *5))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-14 *5 (-622 (-1149))) (-5 *2 (-760 *4 (-841 *6))) (-5 *1 (-1258 *4 *5 *6)) + (-14 *6 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-5 *3 (-920 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-920 (-998 (-400 *4)))) (-5 *1 (-1256 *4 *5 *6)) - (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) + (-12 (-5 *3 (-922 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-922 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) + (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-5 *3 (-758 *4 (-839 *6))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-14 *6 (-620 (-1147))) (-5 *2 (-920 (-998 (-400 *4)))) - (-5 *1 (-1256 *4 *5 *6)) (-14 *5 (-620 (-1147))))) + (-12 (-5 *3 (-760 *4 (-841 *6))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-14 *6 (-622 (-1149))) (-5 *2 (-922 (-1000 (-402 *4)))) + (-5 *1 (-1258 *4 *5 *6)) (-14 *5 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-1141 (-998 (-400 *4)))) (-5 *1 (-1256 *4 *5 *6)) - (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147))))) + (-12 (-5 *3 (-1143 *4)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-1143 (-1000 (-402 *4)))) (-5 *1 (-1258 *4 *5 *6)) + (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-5 *3 (-1117 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6)))) - (-4 *4 (-13 (-823) (-300) (-145) (-994))) (-14 *6 (-620 (-1147))) - (-5 *2 (-620 (-758 *4 (-839 *6)))) (-5 *1 (-1256 *4 *5 *6)) - (-14 *5 (-620 (-1147)))))) -(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535)))) + (-12 (-5 *3 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6)))) + (-4 *4 (-13 (-825) (-302) (-145) (-996))) (-14 *6 (-622 (-1149))) + (-5 *2 (-622 (-760 *4 (-841 *6)))) (-5 *1 (-1258 *4 *5 *6)) + (-14 *5 (-622 (-1149)))))) +(((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537)))) ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) - (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-924 *6 *4 *5)))) + (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3)) + (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-926 *6 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-4 *7 (-924 *6 *4 *5)) - (-5 *2 (-398 (-1141 *7))) (-5 *1 (-721 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) + (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-4 *7 (-926 *6 *4 *5)) + (-5 *2 (-400 (-1143 *7))) (-5 *1 (-723 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) ((*1 *2 *1) - (-12 (-4 *3 (-444)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-398 *1)) (-4 *1 (-924 *3 *4 *5)))) + (-12 (-4 *3 (-446)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-400 *1)) (-4 *1 (-926 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-444)) (-5 *2 (-398 *3)) - (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4)))) + (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-446)) (-5 *2 (-400 *3)) + (-5 *1 (-955 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-924 *6 *4 *5)) - (-5 *2 (-398 (-1141 (-400 *7)))) (-5 *1 (-1143 *4 *5 *6 *7)) - (-5 *3 (-1141 (-400 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1188)))) + (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-926 *6 *4 *5)) + (-5 *2 (-400 (-1143 (-402 *7)))) (-5 *1 (-1145 *4 *5 *6 *7)) + (-5 *3 (-1143 (-402 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1190)))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-398 *3)) (-5 *1 (-1209 *4 *3)) - (-4 *3 (-13 (-1205 *4) (-543) (-10 -8 (-15 -3490 ($ $ $))))))) + (-12 (-4 *4 (-545)) (-5 *2 (-400 *3)) (-5 *1 (-1211 *4 *3)) + (-4 *3 (-13 (-1207 *4) (-545) (-10 -8 (-15 -3495 ($ $ $))))))) ((*1 *2 *3) - (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-14 *5 (-620 (-1147))) - (-5 *2 (-620 (-1117 *4 (-522 (-839 *6)) (-839 *6) (-758 *4 (-839 *6))))) - (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) - (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) + (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-14 *5 (-622 (-1149))) + (-5 *2 (-622 (-1119 *4 (-524 (-841 *6)) (-841 *6) (-760 *4 (-841 *6))))) + (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-622 (-1000 (-402 *4))))) + (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) - (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) - (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) + (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) + (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) + (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) - (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147)))))) + (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) + (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-620 (-1147))) - (-5 *2 (-620 (-620 (-371)))) (-5 *1 (-997)) (-5 *5 (-371)))) + (-12 (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-622 (-1149))) + (-5 *2 (-622 (-622 (-373)))) (-5 *1 (-999)) (-5 *5 (-373)))) ((*1 *2 *3) - (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-14 *5 (-620 (-1147))) (-5 *2 (-620 (-620 (-998 (-400 *4))))) - (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) + (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-14 *5 (-622 (-1149))) (-5 *2 (-622 (-622 (-1000 (-402 *4))))) + (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) - (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) + (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) + (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) - (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-620 (-998 (-400 *5))))) (-5 *1 (-1256 *5 *6 *7)) - (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) + (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) + (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-622 (-1000 (-402 *5))))) (-5 *1 (-1258 *5 *6 *7)) + (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-620 (-998 (-400 *4))))) (-5 *1 (-1256 *4 *5 *6)) - (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1020 *4 *5)) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-14 *5 (-620 (-1147))) - (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) - (-5 *1 (-1256 *4 *5 *6)) (-14 *6 (-620 (-1147))))) + (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-622 (-1000 (-402 *4))))) (-5 *1 (-1258 *4 *5 *6)) + (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1022 *4 *5)) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-14 *5 (-622 (-1149))) + (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4)))))) + (-5 *1 (-1258 *4 *5 *6)) (-14 *6 (-622 (-1149))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) - (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) - (-14 *7 (-620 (-1147))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) + (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))) + (-14 *7 (-622 (-1149))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) - (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) - (-14 *7 (-620 (-1147))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) - (-5 *1 (-1256 *5 *6 *7)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))) - (-14 *7 (-620 (-1147))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) + (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))) + (-14 *7 (-622 (-1149))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) + (-5 *1 (-1258 *5 *6 *7)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))) + (-14 *7 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) - (-5 *1 (-1256 *4 *5 *6)) (-5 *3 (-620 (-920 *4))) (-14 *5 (-620 (-1147))) - (-14 *6 (-620 (-1147)))))) + (-12 (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4)))))) + (-5 *1 (-1258 *4 *5 *6)) (-5 *3 (-622 (-922 *4))) (-14 *5 (-622 (-1149))) + (-14 *6 (-622 (-1149)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-1020 *5 *6))) - (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) + (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-1022 *5 *6))) + (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-823) (-300) (-145) (-994))) (-5 *2 (-620 (-1020 *5 *6))) - (-5 *1 (-1256 *5 *6 *7)) (-14 *6 (-620 (-1147))) (-14 *7 (-620 (-1147))))) + (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-825) (-302) (-145) (-996))) (-5 *2 (-622 (-1022 *5 *6))) + (-5 *1 (-1258 *5 *6 *7)) (-14 *6 (-622 (-1149))) (-14 *7 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-823) (-300) (-145) (-994))) - (-5 *2 (-620 (-1020 *4 *5))) (-5 *1 (-1256 *4 *5 *6)) - (-14 *5 (-620 (-1147))) (-14 *6 (-620 (-1147)))))) + (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-825) (-302) (-145) (-996))) + (-5 *2 (-622 (-1022 *4 *5))) (-5 *1 (-1258 *4 *5 *6)) + (-14 *5 (-622 (-1149))) (-14 *6 (-622 (-1149)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1124 *4) (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1255 *4)) - (-4 *4 (-1183)))) + (-12 (-5 *3 (-1 (-1126 *4) (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1257 *4)) + (-4 *4 (-1185)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-620 (-1124 *5)) (-620 (-1124 *5)))) (-5 *4 (-536)) - (-5 *2 (-620 (-1124 *5))) (-5 *1 (-1255 *5)) (-4 *5 (-1183))))) + (-12 (-5 *3 (-1 (-622 (-1126 *5)) (-622 (-1126 *5)))) (-5 *4 (-538)) + (-5 *2 (-622 (-1126 *5))) (-5 *1 (-1257 *5)) (-4 *5 (-1185))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-893)) (-4 *6 (-13 (-543) (-825))) (-5 *2 (-620 (-307 *6))) - (-5 *1 (-215 *5 *6)) (-5 *3 (-307 *6)) (-4 *5 (-1023)))) - ((*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543)))) + (-12 (-5 *4 (-895)) (-4 *6 (-13 (-545) (-827))) (-5 *2 (-622 (-309 *6))) + (-5 *1 (-217 *5 *6)) (-5 *3 (-309 *6)) (-4 *5 (-1025)))) + ((*1 *2 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545)))) ((*1 *2 *3) - (-12 (-5 *3 (-567 *5)) (-4 *5 (-13 (-29 *4) (-1169))) - (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-620 *5)) - (-5 *1 (-569 *4 *5)))) + (-12 (-5 *3 (-569 *5)) (-4 *5 (-13 (-29 *4) (-1171))) + (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-622 *5)) + (-5 *1 (-571 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-567 (-400 (-920 *4)))) - (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) - (-5 *2 (-620 (-307 *4))) (-5 *1 (-572 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1066 *3 *2)) (-4 *3 (-823)) (-4 *2 (-1120 *3)))) + (-12 (-5 *3 (-569 (-402 (-922 *4)))) + (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) + (-5 *2 (-622 (-309 *4))) (-5 *1 (-574 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1122 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 *1)) (-4 *1 (-1066 *4 *2)) (-4 *4 (-823)) - (-4 *2 (-1120 *4)))) + (-12 (-5 *3 (-622 *1)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) + (-4 *2 (-1122 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171))))) ((*1 *2 *1) - (-12 (-5 *2 (-1245 (-1147) *3)) (-5 *1 (-1251 *3)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-1247 (-1149) *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1025)))) ((*1 *2 *1) - (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-1254 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-1023))))) + (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) + (-4 *4 (-1025))))) (((*1 *1 *2) - (-12 (-5 *2 (-1245 (-1147) *3)) (-4 *3 (-1023)) (-5 *1 (-1251 *3)))) + (-12 (-5 *2 (-1247 (-1149) *3)) (-4 *3 (-1025)) (-5 *1 (-1253 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) - (-5 *1 (-1254 *3 *4))))) + (-12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) + (-5 *1 (-1256 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| |k| (-1147)) (|:| |c| (-1251 *3))))) - (-5 *1 (-1251 *3)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-622 (-2 (|:| |k| (-1149)) (|:| |c| (-1253 *3))))) + (-5 *1 (-1253 *3)) (-4 *3 (-1025)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| |k| *3) (|:| |c| (-1254 *3 *4))))) - (-5 *1 (-1254 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-536)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-749)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-893)))) + (-12 (-5 *2 (-622 (-2 (|:| |k| *3) (|:| |c| (-1256 *3 *4))))) + (-5 *1 (-1256 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-538)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-751)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-895)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-155)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-155)))) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-155)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-155)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169))) (-5 *1 (-221 *3)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1083)) (-4 *2 (-1183)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1083)) (-4 *2 (-1183)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-130)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1072)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1072)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-375 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-825)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1072)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) + (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171))) (-5 *1 (-223 *3)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1085)) (-4 *2 (-1185)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1085)) (-4 *2 (-1185)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-130)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1074)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1074)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-377 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *6 (-232 (-4311 *3) (-749))) + (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-4316 *3) (-751))) (-14 *7 - (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) - (-2 (|:| -2487 *5) (|:| -2488 *6)))) - (-5 *1 (-453 *3 *4 *5 *6 *7 *2)) (-4 *5 (-825)) - (-4 *2 (-924 *4 *6 (-839 *3))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6)) + (-2 (|:| -2492 *5) (|:| -2493 *6)))) + (-5 *1 (-455 *3 *4 *5 *6 *7 *2)) (-4 *5 (-827)) + (-4 *2 (-926 *4 *6 (-841 *3))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-924 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-525))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1023)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-579 *2)) (-4 *2 (-1023)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) - (-4 *7 (-1072)) (-5 *2 (-1 *7 *5)) (-5 *1 (-662 *5 *6 *7)))) + (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) + (-4 *5 (-926 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-527))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-581 *2)) (-4 *2 (-1025)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1032)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-4 *7 (-1074)) (-5 *2 (-1 *7 *5)) (-5 *1 (-664 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-664 *3 *2 *4)) (-4 *3 (-1023)) (-4 *2 (-365 *3)) - (-4 *4 (-365 *3)))) + (-12 (-4 *1 (-666 *3 *2 *4)) (-4 *3 (-1025)) (-4 *2 (-367 *3)) + (-4 *4 (-367 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-664 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *2 (-365 *3)))) + (-12 (-4 *1 (-666 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *2 (-367 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-699))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-701))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) + ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-543)) - (-5 *1 (-943 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-1030)))) - ((*1 *1 *1 *1) (-4 *1 (-1083))) + (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-545)) + (-5 *1 (-945 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1032)))) + ((*1 *1 *1 *1) (-4 *1 (-1085))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *2 *5)) (-4 *4 (-1023)) (-4 *2 (-232 *3 *4)) - (-4 *5 (-232 *3 *4)))) + (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *2 (-234 *3 *4)) + (-4 *5 (-234 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1094 *3 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) - (-4 *2 (-232 *3 *4)))) + (-12 (-4 *1 (-1096 *3 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) + (-4 *2 (-234 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-5 *1 (-1097 *3 *4 *2)) - (-4 *2 (-924 *3 (-522 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-917 (-219))) (-5 *3 (-219)) (-5 *1 (-1180)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-705)))) + (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) + (-4 *2 (-926 *3 (-524 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-919 (-221))) (-5 *3 (-221)) (-5 *1 (-1182)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-707)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-536)) (-4 *1 (-1228 *3)) (-4 *3 (-1183)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1023)) (-14 *3 (-620 (-1147))))) + (-12 (-5 *2 (-538)) (-4 *1 (-1230 *3)) (-4 *3 (-1185)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-622 (-1149))))) ((*1 *1 *1) - (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) - (-14 *3 (-620 (-1147))))) - ((*1 *1 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1072)))) + (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) + (-14 *3 (-622 (-1149))))) + ((*1 *1 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1074)))) ((*1 *1 *1) - (-12 (-14 *2 (-620 (-1147))) (-4 *3 (-170)) (-4 *5 (-232 (-4311 *2) (-749))) + (-12 (-14 *2 (-622 (-1149))) (-4 *3 (-170)) (-4 *5 (-234 (-4316 *2) (-751))) (-14 *6 - (-1 (-112) (-2 (|:| -2487 *4) (|:| -2488 *5)) - (-2 (|:| -2487 *4) (|:| -2488 *5)))) - (-5 *1 (-453 *2 *3 *4 *5 *6 *7)) (-4 *4 (-825)) - (-4 *7 (-924 *3 *5 (-839 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-825)))) - ((*1 *1 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1023)))) + (-1 (-112) (-2 (|:| -2492 *4) (|:| -2493 *5)) + (-2 (|:| -2492 *4) (|:| -2493 *5)))) + (-5 *1 (-455 *2 *3 *4 *5 *6 *7)) (-4 *4 (-827)) + (-4 *7 (-926 *3 *5 (-841 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-827)))) + ((*1 *1 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) ((*1 *1 *1) - (-12 (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1023)) (-4 *3 (-705)))) - ((*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) + (-12 (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1025)) (-4 *3 (-707)))) + ((*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821))))) + (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) + ((*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-620 (-1147))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-622 (-1149))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-57 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-536)) - (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-538)) + (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-166 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-5 *2 (-166 *6)) (-5 *1 (-167 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-307 *3) (-307 *3))) (-4 *3 (-13 (-1023) (-825))) - (-5 *1 (-217 *3 *4)) (-14 *4 (-620 (-1147))))) + (-12 (-5 *2 (-1 (-309 *3) (-309 *3))) (-4 *3 (-13 (-1025) (-827))) + (-5 *1 (-219 *3 *4)) (-14 *4 (-622 (-1149))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-233 *5 *6)) (-14 *5 (-749)) (-4 *6 (-1183)) - (-4 *7 (-1183)) (-5 *2 (-233 *5 *7)) (-5 *1 (-234 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-286 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-235 *5 *6)) (-14 *5 (-751)) (-4 *6 (-1185)) + (-4 *7 (-1185)) (-5 *2 (-235 *5 *7)) (-5 *1 (-236 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-288 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-286 *6)) (-5 *1 (-287 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-593 *1)) (-4 *1 (-291)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-288 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-288 *6)) (-5 *1 (-289 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-595 *1)) (-4 *1 (-293)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1129)) (-5 *5 (-593 *6)) (-4 *6 (-291)) - (-4 *2 (-1183)) (-5 *1 (-292 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1131)) (-5 *5 (-595 *6)) (-4 *6 (-293)) + (-4 *2 (-1185)) (-5 *1 (-294 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-593 *5)) (-4 *5 (-291)) (-4 *2 (-291)) - (-5 *1 (-293 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-595 *5)) (-4 *5 (-293)) (-4 *2 (-293)) + (-5 *1 (-295 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-667 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) - (-5 *2 (-667 *6)) (-5 *1 (-298 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-669 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) + (-5 *2 (-669 *6)) (-5 *1 (-300 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-307 *5)) (-4 *5 (-825)) (-4 *6 (-825)) - (-5 *2 (-307 *6)) (-5 *1 (-308 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-309 *5)) (-4 *5 (-827)) (-4 *6 (-827)) + (-5 *2 (-309 *6)) (-5 *1 (-310 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-326 *5 *6 *7 *8)) (-4 *5 (-356)) - (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) - (-4 *9 (-356)) (-4 *10 (-1205 *9)) (-4 *11 (-1205 (-400 *10))) - (-5 *2 (-326 *9 *10 *11 *12)) (-5 *1 (-327 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-335 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-331 *3)) (-4 *3 (-1072)))) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-328 *5 *6 *7 *8)) (-4 *5 (-358)) + (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) + (-4 *9 (-358)) (-4 *10 (-1207 *9)) (-4 *11 (-1207 (-402 *10))) + (-5 *2 (-328 *9 *10 *11 *12)) (-5 *1 (-329 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-337 *9 *10 *11)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-333 *3)) (-4 *3 (-1074)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1188)) (-4 *8 (-1188)) (-4 *6 (-1205 *5)) - (-4 *7 (-1205 (-400 *6))) (-4 *9 (-1205 *8)) (-4 *2 (-335 *8 *9 *10)) - (-5 *1 (-336 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-335 *5 *6 *7)) - (-4 *10 (-1205 (-400 *9))))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1190)) (-4 *8 (-1190)) (-4 *6 (-1207 *5)) + (-4 *7 (-1207 (-402 *6))) (-4 *9 (-1207 *8)) (-4 *2 (-337 *8 *9 *10)) + (-5 *1 (-338 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-337 *5 *6 *7)) + (-4 *10 (-1207 (-402 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *2 (-365 *6)) - (-5 *1 (-366 *5 *4 *6 *2)) (-4 *4 (-365 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *2 (-367 *6)) + (-5 *1 (-368 *5 *4 *6 *2)) (-4 *4 (-367 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) - (-4 *4 (-1072)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-543)) (-5 *1 (-398 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) + (-4 *4 (-1074)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-545)) (-5 *1 (-400 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-398 *5)) (-4 *5 (-543)) (-4 *6 (-543)) - (-5 *2 (-398 *6)) (-5 *1 (-399 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-543)) (-4 *6 (-543)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-400 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-5 *2 (-400 *6)) (-5 *1 (-401 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-406 *5 *6 *7 *8)) (-4 *5 (-300)) - (-4 *6 (-965 *5)) (-4 *7 (-1205 *6)) (-4 *8 (-13 (-403 *6 *7) (-1012 *6))) - (-4 *9 (-300)) (-4 *10 (-965 *9)) (-4 *11 (-1205 *10)) - (-5 *2 (-406 *9 *10 *11 *12)) (-5 *1 (-407 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-403 *10 *11) (-1012 *10))))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-402 *5)) (-4 *5 (-545)) (-4 *6 (-545)) + (-5 *2 (-402 *6)) (-5 *1 (-403 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-408 *5 *6 *7 *8)) (-4 *5 (-302)) + (-4 *6 (-967 *5)) (-4 *7 (-1207 *6)) (-4 *8 (-13 (-405 *6 *7) (-1014 *6))) + (-4 *9 (-302)) (-4 *10 (-967 *9)) (-4 *11 (-1207 *10)) + (-5 *2 (-408 *9 *10 *11 *12)) (-5 *1 (-409 *5 *6 *7 *8 *9 *10 *11 *12)) + (-4 *12 (-13 (-405 *10 *11) (-1014 *10))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-411 *6)) - (-5 *1 (-409 *4 *5 *2 *6)) (-4 *4 (-411 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-413 *6)) + (-5 *1 (-411 *4 *5 *2 *6)) (-4 *4 (-413 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1023) (-825))) - (-4 *6 (-13 (-1023) (-825))) (-4 *2 (-414 *6)) (-5 *1 (-415 *5 *4 *6 *2)) - (-4 *4 (-414 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1025) (-827))) + (-4 *6 (-13 (-1025) (-827))) (-4 *2 (-416 *6)) (-5 *1 (-417 *5 *4 *6 *2)) + (-4 *4 (-416 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-419 *6)) - (-5 *1 (-420 *5 *4 *6 *2)) (-4 *4 (-419 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3)) (-4 *3 (-1183)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-421 *6)) + (-5 *1 (-422 *5 *4 *6 *2)) (-4 *4 (-421 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-483 *3)) (-4 *3 (-1185)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-500 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-825)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-502 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-827)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-567 *5)) (-4 *5 (-356)) (-4 *6 (-356)) - (-5 *2 (-567 *6)) (-5 *1 (-568 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-569 *5)) (-4 *5 (-358)) (-4 *6 (-358)) + (-5 *2 (-569 *6)) (-5 *1 (-570 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2246 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-356)) - (-4 *6 (-356)) (-5 *2 (-2 (|:| -2246 *6) (|:| |coeff| *6))) - (-5 *1 (-568 *5 *6)))) + (-5 *4 (-3 (-2 (|:| -2251 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-358)) + (-4 *6 (-358)) (-5 *2 (-2 (|:| -2251 *6) (|:| |coeff| *6))) + (-5 *1 (-570 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-356)) - (-4 *2 (-356)) (-5 *1 (-568 *5 *2)))) + (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-358)) + (-4 *2 (-358)) (-5 *1 (-570 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) - (-4 *5 (-356)) (-4 *6 (-356)) + (-4 *5 (-358)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-568 *5 *6)))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-570 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-583 *6)) (-5 *1 (-580 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-585 *6)) (-5 *1 (-582 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) - (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-583 *8)) - (-5 *1 (-581 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-585 *7)) + (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-585 *8)) + (-5 *1 (-583 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-583 *7)) - (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) - (-5 *1 (-581 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1126 *6)) (-5 *5 (-585 *7)) + (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8)) + (-5 *1 (-583 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-1124 *7)) - (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) - (-5 *1 (-581 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-585 *6)) (-5 *5 (-1126 *7)) + (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8)) + (-5 *1 (-583 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-620 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-620 *6)) (-5 *1 (-621 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-622 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-622 *6)) (-5 *1 (-623 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-620 *6)) (-5 *5 (-620 *7)) - (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-620 *8)) - (-5 *1 (-623 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-622 *6)) (-5 *5 (-622 *7)) + (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-622 *8)) + (-5 *1 (-625 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1023)) (-4 *8 (-1023)) (-4 *6 (-365 *5)) - (-4 *7 (-365 *5)) (-4 *2 (-664 *8 *9 *10)) - (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-664 *5 *6 *7)) - (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-367 *5)) + (-4 *7 (-367 *5)) (-4 *2 (-666 *8 *9 *10)) + (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-666 *5 *6 *7)) + (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1023)) - (-4 *8 (-1023)) (-4 *6 (-365 *5)) (-4 *7 (-365 *5)) (-4 *2 (-664 *8 *9 *10)) - (-5 *1 (-665 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-664 *5 *6 *7)) - (-4 *9 (-365 *8)) (-4 *10 (-365 *8)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1025)) + (-4 *8 (-1025)) (-4 *6 (-367 *5)) (-4 *7 (-367 *5)) (-4 *2 (-666 *8 *9 *10)) + (-5 *1 (-667 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-666 *5 *6 *7)) + (-4 *9 (-367 *8)) (-4 *10 (-367 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-543)) (-4 *7 (-543)) (-4 *6 (-1205 *5)) - (-4 *2 (-1205 (-400 *8))) (-5 *1 (-688 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1205 (-400 *6))) (-4 *8 (-1205 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-545)) (-4 *7 (-545)) (-4 *6 (-1207 *5)) + (-4 *2 (-1207 (-402 *8))) (-5 *1 (-690 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1207 (-402 *6))) (-4 *8 (-1207 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1023)) (-4 *9 (-1023)) (-4 *5 (-825)) - (-4 *6 (-771)) (-4 *2 (-924 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-771)) (-4 *4 (-924 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1025)) (-4 *9 (-1025)) (-4 *5 (-827)) + (-4 *6 (-773)) (-4 *2 (-926 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-773)) (-4 *4 (-926 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-825)) (-4 *6 (-825)) (-4 *7 (-771)) - (-4 *9 (-1023)) (-4 *2 (-924 *9 *8 *6)) (-5 *1 (-708 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-771)) (-4 *4 (-924 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-827)) (-4 *6 (-827)) (-4 *7 (-773)) + (-4 *9 (-1025)) (-4 *2 (-926 *9 *8 *6)) (-5 *1 (-710 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-773)) (-4 *4 (-926 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5 *7)) (-4 *5 (-1023)) (-4 *6 (-1023)) - (-4 *7 (-705)) (-5 *2 (-714 *6 *7)) (-5 *1 (-713 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-716 *5 *7)) (-4 *5 (-1025)) (-4 *6 (-1025)) + (-4 *7 (-707)) (-5 *2 (-716 *6 *7)) (-5 *1 (-715 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-714 *3 *4)) (-4 *4 (-705)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-716 *3 *4)) (-4 *4 (-707)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-759 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) - (-5 *2 (-759 *6)) (-5 *1 (-760 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-761 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) + (-5 *2 (-761 *6)) (-5 *1 (-762 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-774 *6)) - (-5 *1 (-777 *4 *5 *2 *6)) (-4 *4 (-774 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-776 *6)) + (-5 *1 (-779 *4 *5 *2 *6)) (-4 *4 (-776 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) - (-5 *2 (-810 *6)) (-5 *1 (-811 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-5 *2 (-812 *6)) (-5 *1 (-813 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-810 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1072)) - (-4 *6 (-1072)) (-5 *1 (-811 *5 *6)))) + (-12 (-5 *2 (-812 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1074)) + (-4 *6 (-1074)) (-5 *1 (-813 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) - (-5 *2 (-817 *6)) (-5 *1 (-818 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-5 *2 (-819 *6)) (-5 *1 (-820 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-817 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1072)) - (-4 *6 (-1072)) (-5 *1 (-818 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-851 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-851 *6)) (-5 *1 (-850 *5 *6)))) + (-12 (-5 *2 (-819 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-819 *5)) (-4 *5 (-1074)) + (-4 *6 (-1074)) (-5 *1 (-820 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-853 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-853 *6)) (-5 *1 (-852 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-856 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-856 *6)) (-5 *1 (-855 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-855 *6)) (-5 *1 (-854 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-862 *5 *6)) (-4 *5 (-1072)) (-4 *6 (-1072)) - (-4 *7 (-1072)) (-5 *2 (-862 *5 *7)) (-5 *1 (-863 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-858 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-858 *6)) (-5 *1 (-857 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) - (-5 *2 (-864 *6)) (-5 *1 (-866 *5 *6)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-864 *5 *6)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-4 *7 (-1074)) (-5 *2 (-864 *5 *7)) (-5 *1 (-865 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-920 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) - (-5 *2 (-920 *6)) (-5 *1 (-921 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-5 *2 (-866 *6)) (-5 *1 (-868 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-922 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) + (-5 *2 (-922 *6)) (-5 *1 (-923 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-825)) (-4 *8 (-1023)) - (-4 *6 (-771)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-827)) (-4 *8 (-1025)) + (-4 *6 (-773)) (-4 *2 - (-13 (-1072) - (-10 -8 (-15 -4194 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-749)))))) - (-5 *1 (-926 *6 *7 *8 *5 *2)) (-4 *5 (-924 *8 *6 *7)))) + (-13 (-1074) + (-10 -8 (-15 -4199 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-751)))))) + (-5 *1 (-928 *6 *7 *8 *5 *2)) (-4 *5 (-926 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-932 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-932 *6)) (-5 *1 (-933 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-934 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-934 *6)) (-5 *1 (-935 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-917 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) - (-5 *2 (-917 *6)) (-5 *1 (-955 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-919 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) + (-5 *2 (-919 *6)) (-5 *1 (-957 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-920 *4))) (-4 *4 (-1023)) (-4 *2 (-924 (-920 *4) *5 *6)) - (-4 *5 (-771)) + (-12 (-5 *3 (-1 *2 (-922 *4))) (-4 *4 (-1025)) (-4 *2 (-926 (-922 *4) *5 *6)) + (-4 *5 (-773)) (-4 *6 - (-13 (-825) - (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147)))))) - (-5 *1 (-958 *4 *5 *6 *2)))) + (-13 (-827) + (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149)))))) + (-5 *1 (-960 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-543)) (-4 *6 (-543)) (-4 *2 (-965 *6)) - (-5 *1 (-966 *5 *6 *4 *2)) (-4 *4 (-965 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-545)) (-4 *6 (-545)) (-4 *2 (-967 *6)) + (-5 *1 (-968 *5 *6 *4 *2)) (-4 *4 (-967 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-972 *6)) - (-5 *1 (-973 *4 *5 *2 *6)) (-4 *4 (-972 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-170)) (-4 *6 (-170)) (-4 *2 (-974 *6)) + (-5 *1 (-975 *4 *5 *2 *6)) (-4 *4 (-974 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1023)) (-4 *10 (-1023)) (-14 *5 (-749)) - (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) - (-4 *2 (-1026 *5 *6 *10 *11 *12)) - (-5 *1 (-1028 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1026 *5 *6 *7 *8 *9)) (-4 *11 (-232 *6 *10)) - (-4 *12 (-232 *5 *10)))) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1025)) (-4 *10 (-1025)) (-14 *5 (-751)) + (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) + (-4 *2 (-1028 *5 *6 *10 *11 *12)) + (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *11 (-234 *6 *10)) + (-4 *12 (-234 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-1060 *6)) (-5 *1 (-1061 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-1062 *6)) (-5 *1 (-1063 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1060 *5)) (-4 *5 (-823)) (-4 *5 (-1183)) - (-4 *6 (-1183)) (-5 *2 (-620 *6)) (-5 *1 (-1061 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1062 *5)) (-4 *5 (-825)) (-4 *5 (-1185)) + (-4 *6 (-1185)) (-5 *2 (-622 *6)) (-5 *1 (-1063 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1063 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-1063 *6)) (-5 *1 (-1064 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1065 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-1065 *6)) (-5 *1 (-1066 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1066 *4 *2)) (-4 *4 (-823)) - (-4 *2 (-1120 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1068 *4 *2)) (-4 *4 (-825)) + (-4 *2 (-1122 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1124 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-1124 *6)) (-5 *1 (-1126 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1126 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-1126 *6)) (-5 *1 (-1128 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1124 *6)) (-5 *5 (-1124 *7)) - (-4 *6 (-1183)) (-4 *7 (-1183)) (-4 *8 (-1183)) (-5 *2 (-1124 *8)) - (-5 *1 (-1127 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1126 *6)) (-5 *5 (-1126 *7)) + (-4 *6 (-1185)) (-4 *7 (-1185)) (-4 *8 (-1185)) (-5 *2 (-1126 *8)) + (-5 *1 (-1129 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1141 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) - (-5 *2 (-1141 *6)) (-5 *1 (-1142 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1143 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) + (-5 *2 (-1143 *6)) (-5 *1 (-1144 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1160 *3 *4)) (-4 *3 (-1072)) - (-4 *4 (-1072)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-1074)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1189 *5 *7 *9)) (-4 *5 (-1023)) - (-4 *6 (-1023)) (-14 *7 (-1147)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1189 *6 *8 *10)) (-5 *1 (-1190 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1147)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5 *7 *9)) (-4 *5 (-1025)) + (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1191 *6 *8 *10)) (-5 *1 (-1192 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1149)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-1196 *6)) (-5 *1 (-1197 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1198 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-1198 *6)) (-5 *1 (-1199 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1196 *5)) (-4 *5 (-823)) (-4 *5 (-1183)) - (-4 *6 (-1183)) (-5 *2 (-1124 *6)) (-5 *1 (-1197 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1198 *5)) (-4 *5 (-825)) (-4 *5 (-1185)) + (-4 *6 (-1185)) (-5 *2 (-1126 *6)) (-5 *1 (-1199 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1198 *5 *6)) (-14 *5 (-1147)) - (-4 *6 (-1023)) (-4 *8 (-1023)) (-5 *2 (-1198 *7 *8)) - (-5 *1 (-1199 *5 *6 *7 *8)) (-14 *7 (-1147)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1200 *5 *6)) (-14 *5 (-1149)) + (-4 *6 (-1025)) (-4 *8 (-1025)) (-5 *2 (-1200 *7 *8)) + (-5 *1 (-1201 *5 *6 *7 *8)) (-14 *7 (-1149)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1205 *6)) - (-5 *1 (-1206 *5 *4 *6 *2)) (-4 *4 (-1205 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1207 *6)) + (-5 *1 (-1208 *5 *4 *6 *2)) (-4 *4 (-1207 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1210 *5 *7 *9)) (-4 *5 (-1023)) - (-4 *6 (-1023)) (-14 *7 (-1147)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1210 *6 *8 *10)) (-5 *1 (-1211 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1147)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1212 *5 *7 *9)) (-4 *5 (-1025)) + (-4 *6 (-1025)) (-14 *7 (-1149)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1212 *6 *8 *10)) (-5 *1 (-1213 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1149)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1023)) (-4 *6 (-1023)) (-4 *2 (-1222 *6)) - (-5 *1 (-1220 *5 *6 *4 *2)) (-4 *4 (-1222 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1025)) (-4 *6 (-1025)) (-4 *2 (-1224 *6)) + (-5 *1 (-1222 *5 *6 *4 *2)) (-4 *4 (-1224 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-1183)) (-4 *6 (-1183)) - (-5 *2 (-1229 *6)) (-5 *1 (-1230 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-1185)) (-4 *6 (-1185)) + (-5 *2 (-1231 *6)) (-5 *1 (-1232 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1229 *5)) - (-4 *5 (-1183)) (-4 *6 (-1183)) (-5 *2 (-1229 *6)) (-5 *1 (-1230 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1231 *5)) + (-4 *5 (-1185)) (-4 *6 (-1185)) (-5 *2 (-1231 *6)) (-5 *1 (-1232 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-1023)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) + (-4 *4 (-1025)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-1253 *3 *4)) - (-4 *4 (-821))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-1255 *3 *4)) + (-4 *4 (-823))))) (((*1 *1 *2) (-12 (-4 *1 (-38 *2)) (-4 *2 (-170)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 *3)) (-4 *3 (-356)) (-14 *6 (-1229 (-667 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))))) - ((*1 *1 *2) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1183)))) + (-12 (-5 *2 (-1231 *3)) (-4 *3 (-358)) (-14 *6 (-1231 (-669 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))))) + ((*1 *1 *2) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-332 (-3879 'X) (-3879) (-677))) (-5 *1 (-60 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-334 (-3884 'X) (-3884) (-679))) (-5 *1 (-60 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879 'JINT 'X 'ELAM) (-3879) (-677)))) - (-5 *1 (-61 *3)) (-14 *3 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884 'JINT 'X 'ELAM) (-3884) (-679)))) + (-5 *1 (-61 *3)) (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 'XC) (-677)))) (-5 *1 (-63 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 'XC) (-679)))) (-5 *1 (-63 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-667 (-332 (-3879) (-3879 'X 'HESS) (-677)))) (-5 *1 (-64 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-669 (-334 (-3884) (-3884 'X 'HESS) (-679)))) (-5 *1 (-64 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-332 (-3879) (-3879 'XC) (-677))) (-5 *1 (-65 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-334 (-3884) (-3884 'XC) (-679))) (-5 *1 (-65 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879 'X) (-3879 '-4319) (-677)))) (-5 *1 (-70 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884 'X) (-3884 '-4324) (-679)))) (-5 *1 (-70 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 'X) (-677)))) (-5 *1 (-73 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 'X) (-679)))) (-5 *1 (-73 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-332 (-3879) (-3879 'X) (-677))) (-5 *1 (-74 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-334 (-3884) (-3884 'X) (-679))) (-5 *1 (-74 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879 'X 'EPS) (-3879 '-4319) (-677)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1147)) (-14 *4 (-1147)) (-14 *5 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884 'X 'EPS) (-3884 '-4324) (-679)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879 'EPS) (-3879 'YA 'YB) (-677)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1147)) (-14 *4 (-1147)) (-14 *5 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884 'EPS) (-3884 'YA 'YB) (-679)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1149)) (-14 *4 (-1149)) (-14 *5 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-332 (-3879) (-3879 'X) (-677))) (-5 *1 (-77 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-334 (-3884) (-3884 'X) (-679))) (-5 *1 (-77 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 'XC) (-677)))) (-5 *1 (-78 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 'XC) (-679)))) (-5 *1 (-78 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 'X) (-677)))) (-5 *1 (-79 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 'X) (-679)))) (-5 *1 (-79 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879) (-3879 'X) (-677)))) (-5 *1 (-80 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884) (-3884 'X) (-679)))) (-5 *1 (-80 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879 'X) (-3879 '-4319) (-677)))) (-5 *1 (-81 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884 'X) (-3884 '-4324) (-679)))) (-5 *1 (-81 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879 'X '-4319) (-3879) (-677)))) (-5 *1 (-82 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884 'X '-4324) (-3884) (-679)))) (-5 *1 (-82 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-667 (-332 (-3879 'X '-4319) (-3879) (-677)))) (-5 *1 (-83 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-669 (-334 (-3884 'X '-4324) (-3884) (-679)))) (-5 *1 (-83 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-667 (-332 (-3879 'X) (-3879) (-677)))) (-5 *1 (-84 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-669 (-334 (-3884 'X) (-3884) (-679)))) (-5 *1 (-84 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-332 (-3879 'X) (-3879) (-677)))) (-5 *1 (-85 *3)) - (-14 *3 (-1147)))) + (-12 (-5 *2 (-1231 (-334 (-3884 'X) (-3884) (-679)))) (-5 *1 (-85 *3)) + (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-667 (-332 (-3879 'XL 'XR 'ELAM) (-3879) (-677)))) - (-5 *1 (-87 *3)) (-14 *3 (-1147)))) + (-12 (-5 *2 (-669 (-334 (-3884 'XL 'XR 'ELAM) (-3884) (-679)))) + (-5 *1 (-87 *3)) (-14 *3 (-1149)))) ((*1 *1 *2) - (-12 (-5 *2 (-332 (-3879 'X) (-3879 '-4319) (-677))) (-5 *1 (-88 *3)) - (-14 *3 (-1147)))) - ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-92)))) - ((*1 *2 *1) (-12 (-5 *2 (-978 2)) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107)))) + (-12 (-5 *2 (-334 (-3884 'X) (-3884 '-4324) (-679))) (-5 *1 (-88 *3)) + (-14 *3 (-1149)))) + ((*1 *1 *2) (-12 (-5 *2 (-1154)) (-4 *1 (-92)))) + ((*1 *2 *1) (-12 (-5 *2 (-980 2)) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-128)))) - ((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-128)))) + ((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-128)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) - (-14 *4 (-749)) (-4 *5 (-170)))) + (-12 (-5 *2 (-622 (-134 *3 *4 *5))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) + (-14 *4 (-751)) (-4 *5 (-170)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) - (-14 *4 (-749)))) + (-12 (-5 *2 (-622 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) + (-14 *4 (-751)))) ((*1 *1 *2) - (-12 (-5 *2 (-1113 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) - (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)))) + (-12 (-5 *2 (-1115 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) + (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)))) ((*1 *1 *2) - (-12 (-5 *2 (-233 *4 *5)) (-14 *4 (-749)) (-4 *5 (-170)) - (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)))) + (-12 (-5 *2 (-235 *4 *5)) (-14 *4 (-751)) (-4 *5 (-170)) + (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)))) ((*1 *2 *3) - (-12 (-5 *3 (-1229 (-667 *4))) (-4 *4 (-170)) - (-5 *2 (-1229 (-667 (-400 (-920 *4))))) (-5 *1 (-183 *4)))) + (-12 (-5 *3 (-1231 (-669 *4))) (-4 *4 (-170)) + (-5 *2 (-1231 (-669 (-402 (-922 *4))))) (-5 *1 (-185 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 *3)) + (-12 (-5 *2 (-622 *3)) (-4 *3 - (-13 (-825) - (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) - (-15 -2082 ((-1235) $))))) - (-5 *1 (-208 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-978 10)) (-5 *1 (-211)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-239 *3)) (-4 *3 (-825)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3)))) + (-13 (-827) + (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) + (-15 -2087 ((-1237) $))))) + (-5 *1 (-210 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-980 10)) (-5 *1 (-213)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-241 *3)) (-4 *3 (-827)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1063 (-307 *4))) (-4 *4 (-13 (-825) (-543) (-596 (-371)))) - (-5 *2 (-1063 (-371))) (-5 *1 (-252 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-268)))) + (-12 (-5 *3 (-1065 (-309 *4))) (-4 *4 (-13 (-827) (-545) (-598 (-373)))) + (-5 *2 (-1065 (-373))) (-5 *1 (-254 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-270)))) ((*1 *2 *1) - (-12 (-4 *2 (-1205 *3)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) + (-12 (-4 *2 (-1207 *3)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *3 (-170)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1210 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) - (-14 *5 (-1147)) (-14 *6 *4) - (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) - (-5 *1 (-306 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-323)))) + (-12 (-5 *2 (-1212 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3))) + (-14 *5 (-1149)) (-14 *6 *4) + (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) + (-5 *1 (-308 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-325)))) ((*1 *2 *1) - (-12 (-5 *2 (-307 *5)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) - (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + (-12 (-5 *2 (-309 *5)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) + (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *3 *4 *2)) - (-4 *3 (-322 *4)))) + (-12 (-4 *4 (-345)) (-4 *2 (-324 *4)) (-5 *1 (-343 *3 *4 *2)) + (-4 *3 (-324 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *2 (-322 *4)) (-5 *1 (-341 *2 *4 *3)) - (-4 *3 (-322 *4)))) + (-12 (-4 *4 (-345)) (-4 *2 (-324 *4)) (-5 *1 (-343 *2 *4 *3)) + (-4 *3 (-324 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) - (-5 *2 (-1254 *3 *4)))) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) + (-5 *2 (-1256 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) - (-5 *2 (-1245 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) - (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-376)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-677))) (-4 *1 (-376)))) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) + (-5 *2 (-1247 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-378)))) - ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) - ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382)))) - ((*1 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-386)))) - ((*1 *2 *3) (-12 (-5 *2 (-386)) (-5 *1 (-387 *3)) (-4 *3 (-1072)))) + ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-378)))) + ((*1 *1 *2) (-12 (-5 *2 (-669 (-679))) (-4 *1 (-378)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) - (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-390)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) + (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-380)))) + ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-388)))) + ((*1 *2 *3) (-12 (-5 *2 (-388)) (-5 *1 (-389 *3)) (-4 *3 (-1074)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-166 (-371))))) (-5 *1 (-391 *3 *4 *5 *6)) - (-14 *3 (-1147)) (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) - (-14 *5 (-620 (-1147))) (-14 *6 (-1151)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) + (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-392)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-288 (-309 (-166 (-373))))) (-5 *1 (-393 *3 *4 *5 *6)) + (-14 *3 (-1149)) (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void"))) + (-14 *5 (-622 (-1149))) (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-536)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-288 (-309 (-373)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-288 (-309 (-538)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 (-371))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-309 (-166 (-373)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 (-536))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-309 (-373))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-672)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-309 (-538))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-677)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-288 (-309 (-674)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-286 (-307 (-679)))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-288 (-309 (-679)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 (-672))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-288 (-309 (-681)))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 (-677))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-309 (-674))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 (-679))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-309 (-679))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) - (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-309 (-681))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 (-323))) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) + (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-323)) (-5 *1 (-391 *3 *4 *5 *6)) (-14 *3 (-1147)) - (-14 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-14 *5 (-620 (-1147))) - (-14 *6 (-1151)))) + (-12 (-5 *2 (-622 (-325))) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-400 (-920 (-400 *3)))) (-4 *3 (-543)) (-4 *3 (-825)) - (-4 *1 (-414 *3)))) + (-12 (-5 *2 (-325)) (-5 *1 (-393 *3 *4 *5 *6)) (-14 *3 (-1149)) + (-14 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-14 *5 (-622 (-1149))) + (-14 *6 (-1153)))) ((*1 *1 *2) - (-12 (-5 *2 (-920 (-400 *3))) (-4 *3 (-543)) (-4 *3 (-825)) - (-4 *1 (-414 *3)))) + (-12 (-5 *2 (-402 (-922 (-402 *3)))) (-4 *3 (-545)) (-4 *3 (-827)) + (-4 *1 (-416 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-400 *3)) (-4 *3 (-543)) (-4 *3 (-825)) (-4 *1 (-414 *3)))) + (-12 (-5 *2 (-922 (-402 *3))) (-4 *3 (-545)) (-4 *3 (-827)) + (-4 *1 (-416 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1096 *3 (-593 *1))) (-4 *3 (-1023)) (-4 *3 (-825)) - (-4 *1 (-414 *3)))) + (-12 (-5 *2 (-402 *3)) (-4 *3 (-545)) (-4 *3 (-827)) (-4 *1 (-416 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-324 *4)) (-4 *4 (-13 (-825) (-21))) (-5 *1 (-422 *3 *4)) - (-4 *3 (-13 (-170) (-38 (-400 (-536))))))) + (-12 (-5 *2 (-1098 *3 (-595 *1))) (-4 *3 (-1025)) (-4 *3 (-827)) + (-4 *1 (-416 *3)))) ((*1 *1 *2) - (-12 (-5 *1 (-422 *2 *3)) (-4 *2 (-13 (-170) (-38 (-400 (-536))))) - (-4 *3 (-13 (-825) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-427)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-427)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-427)))) - ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-427)))) - ((*1 *1 *2) (-12 (-5 *2 (-427)) (-5 *1 (-429)))) - ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-429)))) + (-12 (-5 *2 (-326 *4)) (-4 *4 (-13 (-827) (-21))) (-5 *1 (-424 *3 *4)) + (-4 *3 (-13 (-170) (-38 (-402 (-538))))))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) - (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-432)))) - ((*1 *1 *2) (-12 (-5 *2 (-1229 (-677))) (-4 *1 (-432)))) + (-12 (-5 *1 (-424 *2 *3)) (-4 *2 (-13 (-170) (-38 (-402 (-538))))) + (-4 *3 (-13 (-827) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-429)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-429)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-429)))) + ((*1 *1 *2) (-12 (-5 *2 (-429)) (-5 *1 (-431)))) + ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-431)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1151)) (|:| -1725 (-620 (-323))))) - (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-323)) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-4 *1 (-433)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) + (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1231 (-679))) (-4 *1 (-434)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-400 (-920 *3)))) (-4 *3 (-170)) - (-14 *6 (-1229 (-667 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-14 *4 (-893)) - (-14 *5 (-620 (-1147))))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-460)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1153)) (|:| -1730 (-622 (-325))))) + (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-325)) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-4 *1 (-435)))) ((*1 *1 *2) - (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) - (-5 *1 (-466 *3 *4 *5)))) + (-12 (-5 *2 (-1231 (-402 (-922 *3)))) (-4 *3 (-170)) + (-14 *6 (-1231 (-669 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-14 *4 (-895)) + (-14 *5 (-622 (-1149))))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-462)))) ((*1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-5 *2 (-978 16)) (-5 *1 (-479)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479)))) - ((*1 *1 *2) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) - ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-493)))) + (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) + (-5 *1 (-468 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-515)))) - ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-587)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-588)))) - ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-589 *3 *2)) (-4 *2 (-723 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-595 *2)) (-4 *2 (-1183)))) - ((*1 *1 *2) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1023)))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-5 *2 (-980 16)) (-5 *1 (-481)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481)))) + ((*1 *1 *2) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-495)))) + ((*1 *1 *2) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-517)))) + ((*1 *1 *2) (-12 (-5 *2 (-128)) (-5 *1 (-589)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-590)))) + ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-591 *3 *2)) (-4 *2 (-725 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1185)))) + ((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1025)))) ((*1 *2 *1) - (-12 (-5 *2 (-1250 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) + (-12 (-5 *2 (-1252 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) + (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) ((*1 *2 *1) - (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) - ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-613 *3 *2)) (-4 *2 (-723 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-655 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) + (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) + (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) + ((*1 *1 *2) (-12 (-4 *3 (-170)) (-5 *1 (-615 *3 *2)) (-4 *2 (-725 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-657 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) ((*1 *2 *1) - (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-5 *1 (-653 *3)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-5 *1 (-655 *3)) (-4 *3 (-1074)))) ((*1 *1 *2) - (-12 (-5 *2 (-932 (-932 (-932 *3)))) (-4 *3 (-1072)) (-5 *1 (-653 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) - ((*1 *1 *2) (-12 (-5 *2 (-1086)) (-5 *1 (-659)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-934 (-934 (-934 *3)))) (-4 *3 (-1074)) (-5 *1 (-655 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) + ((*1 *1 *2) (-12 (-5 *2 (-1088)) (-5 *1 (-661)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1074)))) ((*1 *1 *2) - (-12 (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *2)) (-4 *4 (-365 *3)) - (-4 *2 (-365 *3)))) - ((*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) - ((*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) - ((*1 *2 *1) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-672)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-679))) (-5 *1 (-672)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-677))) (-5 *1 (-672)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-536))) (-5 *1 (-672)))) - ((*1 *1 *2) (-12 (-5 *2 (-166 (-371))) (-5 *1 (-672)))) - ((*1 *1 *2) (-12 (-5 *2 (-679)) (-5 *1 (-677)))) - ((*1 *2 *1) (-12 (-5 *2 (-371)) (-5 *1 (-677)))) - ((*1 *2 *3) (-12 (-5 *3 (-307 (-536))) (-5 *2 (-307 (-679))) (-5 *1 (-679)))) - ((*1 *1 *2) (-12 (-5 *1 (-681 *2)) (-4 *2 (-1072)))) - ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689)))) + (-12 (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *2)) (-4 *4 (-367 *3)) + (-4 *2 (-367 *3)))) + ((*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))) + ((*1 *1 *2) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))) + ((*1 *2 *1) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-674)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-681))) (-5 *1 (-674)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-679))) (-5 *1 (-674)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-538))) (-5 *1 (-674)))) + ((*1 *1 *2) (-12 (-5 *2 (-166 (-373))) (-5 *1 (-674)))) + ((*1 *1 *2) (-12 (-5 *2 (-681)) (-5 *1 (-679)))) + ((*1 *2 *1) (-12 (-5 *2 (-373)) (-5 *1 (-679)))) + ((*1 *2 *3) (-12 (-5 *3 (-309 (-538))) (-5 *2 (-309 (-681))) (-5 *1 (-681)))) + ((*1 *1 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1074)))) + ((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691)))) ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-170)) (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2487 *3) (|:| -2488 *4))) (-5 *1 (-692 *3 *4 *5)) - (-4 *3 (-825)) (-4 *4 (-1072)) (-14 *5 (-1 (-112) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -2492 *3) (|:| -2493 *4))) (-5 *1 (-694 *3 *4 *5)) + (-4 *3 (-827)) (-4 *4 (-1074)) (-14 *5 (-1 (-112) *2 *2)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| -2487 *3) (|:| -2488 *4))) (-4 *3 (-825)) - (-4 *4 (-1072)) (-5 *1 (-692 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) + (-12 (-5 *2 (-2 (|:| -2492 *3) (|:| -2493 *4))) (-4 *3 (-827)) + (-4 *4 (-1074)) (-5 *1 (-694 *3 *4 *5)) (-14 *5 (-1 (-112) *2 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-170)) (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 (-2 (|:| -4308 *3) (|:| -4293 *4)))) (-4 *3 (-1023)) - (-4 *4 (-705)) (-5 *1 (-714 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-742)))) + (-12 (-5 *2 (-622 (-2 (|:| -4313 *3) (|:| -4298 *4)))) (-4 *3 (-1025)) + (-4 *4 (-707)) (-5 *1 (-716 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-744)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (|:| |mdnia| - (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) - (-5 *1 (-747)))) + (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) + (-5 *1 (-749)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *1 (-747)))) + (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *1 (-749)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *1 (-747)))) - ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-747)))) - ((*1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-752 *3)) (-4 *3 (-1183)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *1 (-749)))) + ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-749)))) + ((*1 *2 *3) (-12 (-5 *2 (-753)) (-5 *1 (-754 *3)) (-4 *3 (-1185)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *1 (-786)))) - ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-786)))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *1 (-788)))) + ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-788)))) ((*1 *2 *1) - (-12 (-4 *2 (-874 *3)) (-5 *1 (-795 *3 *2 *4)) (-4 *3 (-1072)) (-14 *4 *3))) + (-12 (-4 *2 (-876 *3)) (-5 *1 (-797 *3 *2 *4)) (-4 *3 (-1074)) (-14 *4 *3))) ((*1 *1 *2) - (-12 (-4 *3 (-1072)) (-14 *4 *3) (-5 *1 (-795 *3 *2 *4)) (-4 *2 (-874 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-804)))) + (-12 (-4 *3 (-1074)) (-14 *4 *3) (-5 *1 (-797 *3 *2 *4)) (-4 *2 (-876 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-806)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) - (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) - (|:| |ub| (-620 (-817 (-219)))))) + (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) + (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) + (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| - (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) - (-5 *1 (-816)))) + (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) + (-5 *1 (-818)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) - (-5 *1 (-816)))) + (-12 (-5 *2 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) + (-5 *1 (-818)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) - (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) - (|:| |ub| (-620 (-817 (-219)))))) - (-5 *1 (-816)))) - ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-816)))) + (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) + (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) + (|:| |ub| (-622 (-819 (-221)))))) + (-5 *1 (-818)))) + ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-818)))) ((*1 *1 *2) - (-12 (-5 *2 (-1226 *3)) (-14 *3 (-1147)) (-5 *1 (-830 *3 *4 *5 *6)) - (-4 *4 (-1023)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-833)))) + (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-832 *3 *4 *5 *6)) + (-4 *4 (-1025)) (-14 *5 (-98 *4)) (-14 *6 (-1 *4 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-835)))) ((*1 *1 *2) - (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-5 *1 (-840 *3 *4 *5 *6)) - (-14 *4 (-620 (-1147))) (-14 *5 (-620 (-749))) (-14 *6 (-749)))) + (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-5 *1 (-842 *3 *4 *5 *6)) + (-14 *4 (-622 (-1149))) (-14 *5 (-622 (-751))) (-14 *6 (-751)))) ((*1 *2 *1) - (-12 (-5 *2 (-920 *3)) (-5 *1 (-840 *3 *4 *5 *6)) (-4 *3 (-1023)) - (-14 *4 (-620 (-1147))) (-14 *5 (-620 (-749))) (-14 *6 (-749)))) - ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) - ((*1 *2 *3) (-12 (-5 *3 (-920 (-48))) (-5 *2 (-307 (-536))) (-5 *1 (-849)))) + (-12 (-5 *2 (-922 *3)) (-5 *1 (-842 *3 *4 *5 *6)) (-4 *3 (-1025)) + (-14 *4 (-622 (-1149))) (-14 *5 (-622 (-751))) (-14 *6 (-751)))) + ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) + ((*1 *2 *3) (-12 (-5 *3 (-922 (-48))) (-5 *2 (-309 (-538))) (-5 *1 (-851)))) ((*1 *2 *3) - (-12 (-5 *3 (-400 (-920 (-48)))) (-5 *2 (-307 (-536))) (-5 *1 (-849)))) - ((*1 *1 *2) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-797 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) + (-12 (-5 *3 (-402 (-922 (-48)))) (-5 *2 (-309 (-538))) (-5 *1 (-851)))) + ((*1 *1 *2) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-799 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-620 (-307 (-219)))) + (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| - (-620 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) - (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) - (|:| |dFinish| (-667 (-219)))))) - (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) - (|:| |tol| (-219)))) - (-5 *1 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-1170 *3)) (-5 *1 (-875 *3)) (-4 *3 (-1072)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-876 *3))) (-4 *3 (-1072)) (-5 *1 (-879 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-398 *3))) (-4 *3 (-300)) (-5 *1 (-888 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300)))) + (-622 + (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) + (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) + (|:| |dFinish| (-669 (-221)))))) + (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) + (|:| |tol| (-221)))) + (-5 *1 (-874)))) + ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-874)))) + ((*1 *2 *1) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-877 *3)) (-4 *3 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-878 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-878 *3))) (-4 *3 (-1074)) (-5 *1 (-881 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-402 (-400 *3))) (-4 *3 (-302)) (-5 *1 (-890 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302)))) ((*1 *2 *3) - (-12 (-5 *3 (-469)) (-5 *2 (-307 *4)) (-5 *1 (-894 *4)) - (-4 *4 (-13 (-825) (-543))))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) - ((*1 *1 *2) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-945)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) - ((*1 *2 *3) (-12 (-5 *2 (-1235)) (-5 *1 (-1007 *3)) (-4 *3 (-1183)))) - ((*1 *2 *3) (-12 (-5 *3 (-304)) (-5 *1 (-1007 *2)) (-4 *2 (-1183)))) + (-12 (-5 *3 (-471)) (-5 *2 (-309 *4)) (-5 *1 (-896 *4)) + (-4 *4 (-13 (-827) (-545))))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) + ((*1 *1 *2) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-947)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) + ((*1 *2 *3) (-12 (-5 *2 (-1237)) (-5 *1 (-1009 *3)) (-4 *3 (-1185)))) + ((*1 *2 *3) (-12 (-5 *3 (-306)) (-5 *1 (-1009 *2)) (-4 *2 (-1185)))) ((*1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-924 *3 *4 *5)) (-14 *6 (-620 *2)))) - ((*1 *1 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1183)))) - ((*1 *2 *3) (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-1014 *3)) (-4 *3 (-543)))) - ((*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1023)))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-926 *3 *4 *5)) (-14 *6 (-622 *2)))) + ((*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1185)))) + ((*1 *2 *3) (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-1016 *3)) (-4 *3 (-545)))) + ((*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1025)))) ((*1 *2 *1) - (-12 (-5 *2 (-667 *5)) (-5 *1 (-1027 *3 *4 *5)) (-14 *3 (-749)) - (-14 *4 (-749)) (-4 *5 (-1023)))) + (-12 (-5 *2 (-669 *5)) (-5 *1 (-1029 *3 *4 *5)) (-14 *3 (-751)) + (-14 *4 (-751)) (-4 *5 (-1025)))) ((*1 *1 *2) - (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-5 *1 (-1097 *3 *4 *2)) - (-4 *2 (-924 *3 (-522 *4) *4)))) + (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-5 *1 (-1099 *3 *4 *2)) + (-4 *2 (-926 *3 (-524 *4) *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-1023)) (-4 *2 (-825)) (-5 *1 (-1097 *3 *2 *4)) - (-4 *4 (-924 *3 (-522 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-838)))) - ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1115)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023)))) + (-12 (-4 *3 (-1025)) (-4 *2 (-827)) (-5 *1 (-1099 *3 *2 *4)) + (-4 *4 (-926 *3 (-524 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-840)))) + ((*1 *1 *2) (-12 (-5 *2 (-142)) (-4 *1 (-1117)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) ((*1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) - (-5 *1 (-1145 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1146)))) - ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1147)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156 (-1147) (-429))) (-5 *1 (-1151)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) - ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) - ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1152)))) - ((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1157 *3)) (-4 *3 (-1072)))) - ((*1 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-1163)))) - ((*1 *2 *3) (-12 (-5 *2 (-1163)) (-5 *1 (-1164 *3)) (-4 *3 (-1072)))) - ((*1 *1 *2) (-12 (-5 *2 (-920 *3)) (-4 *3 (-1023)) (-5 *1 (-1176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1176 *3)) (-4 *3 (-1023)))) - ((*1 *1 *2) (-12 (-5 *2 (-932 *3)) (-4 *3 (-1183)) (-5 *1 (-1181 *3)))) + (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) + (-5 *1 (-1147 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1148)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1149)))) + ((*1 *2 *1) (-12 (-5 *2 (-1158 (-1149) (-431))) (-5 *1 (-1153)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) + ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1154)))) + ((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1159 *3)) (-4 *3 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-1165)))) + ((*1 *2 *3) (-12 (-5 *2 (-1165)) (-5 *1 (-1166 *3)) (-4 *3 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-922 *3)) (-4 *3 (-1025)) (-5 *1 (-1178 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1178 *3)) (-4 *3 (-1025)))) + ((*1 *1 *2) (-12 (-5 *2 (-934 *3)) (-4 *3 (-1185)) (-5 *1 (-1183 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-1193 *3 *2)) (-4 *2 (-1222 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1060 *3)) (-4 *3 (-1183)) (-5 *1 (-1196 *3)))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1195 *3 *2)) (-4 *2 (-1224 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1062 *3)) (-4 *3 (-1185)) (-5 *1 (-1198 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1226 *3)) (-14 *3 (-1147)) (-5 *1 (-1198 *3 *4)) - (-4 *4 (-1023)))) + (-12 (-5 *2 (-1228 *3)) (-14 *3 (-1149)) (-5 *1 (-1200 *3 *4)) + (-4 *4 (-1025)))) ((*1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-4 *3 (-1023)) (-4 *1 (-1214 *3 *2)) (-4 *2 (-1191 *3)))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-4 *3 (-1025)) (-4 *1 (-1216 *3 *2)) (-4 *2 (-1193 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *2) - (-12 (-5 *2 (-1198 *4 *3)) (-4 *3 (-1023)) (-14 *4 (-1147)) (-14 *5 *3) - (-5 *1 (-1219 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1226 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-460)) (-5 *2 (-1232)) (-5 *1 (-1231)))) - ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1232)))) - ((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-1235)))) + (-12 (-5 *2 (-1200 *4 *3)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3) + (-5 *1 (-1221 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-462)) (-5 *2 (-1234)) (-5 *1 (-1233)))) + ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-1237)))) ((*1 *1 *2) - (-12 (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-620 *4)) - (-5 *1 (-1242 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-924 *3 *5 *4)) - (-14 *7 (-620 (-749))) (-14 *8 (-749)))) + (-12 (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-622 *4)) + (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-926 *3 *5 *4)) + (-14 *7 (-622 (-751))) (-14 *8 (-751)))) ((*1 *2 *1) - (-12 (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-1242 *3 *4 *5 *2 *6 *7 *8)) - (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) (-14 *6 (-620 *4)) - (-14 *7 (-620 (-749))) (-14 *8 (-749)))) - ((*1 *1 *2) (-12 (-4 *1 (-1244 *2)) (-4 *2 (-1023)))) - ((*1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) + (-12 (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-1244 *3 *4 *5 *2 *6 *7 *8)) + (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) (-14 *6 (-622 *4)) + (-14 *7 (-622 (-751))) (-14 *8 (-751)))) + ((*1 *1 *2) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1025)))) + ((*1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) ((*1 *2 *1) - (-12 (-5 *2 (-1254 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) + (-12 (-5 *2 (-1256 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) ((*1 *2 *1) - (-12 (-5 *2 (-1245 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) + (-12 (-5 *2 (-1247 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) - (-5 *1 (-1250 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-821))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-34)) (-5 *2 (-749)))) + (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) + (-5 *1 (-1252 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-823))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-34)) (-5 *2 (-751)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-536)))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-538)))) ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821))))) + (-12 (-5 *2 (-751)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823))))) (((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-797 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023))))) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025))))) (((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-797 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-821)) (-5 *1 (-1253 *3 *2)) (-4 *3 (-1023))))) + (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-799 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-823)) (-5 *1 (-1255 *3 *2)) (-4 *3 (-1025))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1254 *4 *2)) (-4 *1 (-367 *4 *2)) (-4 *4 (-825)) + (-12 (-5 *3 (-1256 *4 *2)) (-4 *1 (-369 *4 *2)) (-4 *4 (-827)) (-4 *2 (-170)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-797 *4)) (-4 *1 (-1249 *4 *2)) (-4 *4 (-825)) (-4 *2 (-1023)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1023)) (-5 *1 (-1253 *2 *3)) (-4 *3 (-821))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + (-12 (-5 *3 (-799 *4)) (-4 *1 (-1251 *4 *2)) (-4 *4 (-827)) (-4 *2 (-1025)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1072)) (-5 *2 (-1 *5 *4)) (-5 *1 (-661 *4 *5)) - (-4 *4 (-1072)))) - ((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) - ((*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-825)) (-4 *2 (-1023)))) - ((*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-1253 *2 *3)) (-4 *3 (-821))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1074)) (-5 *2 (-1 *5 *4)) (-5 *1 (-663 *4 *5)) + (-4 *4 (-1074)))) + ((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))) + ((*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-827)) (-4 *2 (-1025)))) + ((*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-1255 *2 *3)) (-4 *3 (-823))))) (((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1253 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-821))))) -(((*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) - ((*1 *1 *1) (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-821))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1255 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-823))))) +(((*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) + ((*1 *1 *1) (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-823))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *2 (-356)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-219)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-358)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-221)))) ((*1 *1 *1 *1) - (-3886 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1183))) - (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1183))))) - ((*1 *1 *1 *1) (-4 *1 (-356))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-371)))) + (-3891 (-12 (-5 *1 (-288 *2)) (-4 *2 (-358)) (-4 *2 (-1185))) + (-12 (-5 *1 (-288 *2)) (-4 *2 (-467)) (-4 *2 (-1185))))) + ((*1 *1 *1 *1) (-4 *1 (-358))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-373)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1096 *3 (-593 *1))) (-4 *3 (-543)) (-4 *3 (-825)) - (-4 *1 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-465))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-525))) + (-12 (-5 *2 (-1098 *3 (-595 *1))) (-4 *3 (-545)) (-4 *3 (-827)) + (-4 *1 (-416 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-467))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-527))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-705) *4)))) + (-12 (-4 *4 (-170)) (-5 *1 (-601 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-707) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-170)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-705) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-170)) (-4 *2 (-356)))) + (-12 (-4 *4 (-170)) (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-707) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)) (-4 *2 (-358)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-630 *2 *4 *3)) (-4 *2 (-696 *4)) - (-4 *3 (|SubsetCategory| (-705) *4)))) + (-12 (-4 *4 (-170)) (-5 *1 (-632 *2 *4 *3)) (-4 *2 (-698 *4)) + (-4 *3 (|SubsetCategory| (-707) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-170)) (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-696 *4)) - (-4 *2 (|SubsetCategory| (-705) *4)))) + (-12 (-4 *4 (-170)) (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-698 *4)) + (-4 *2 (|SubsetCategory| (-707) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *1) (-5 *1 (-838))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)) (-4 *2 (-358)))) + ((*1 *1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-840 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *2 (-1023)) - (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-749))) (-14 *5 (-749)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)))) + (|partial| -12 (-5 *1 (-842 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *2 (-1025)) + (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-751))) (-14 *5 (-751)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *2 (-1023)) (-4 *5 (-232 *4 *2)) - (-4 *6 (-232 *3 *2)) (-4 *2 (-356)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1237 *2)) (-4 *2 (-356)))) + (-12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) (-4 *5 (-234 *4 *2)) + (-4 *6 (-234 *3 *2)) (-4 *2 (-358)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1239 *2)) (-4 *2 (-358)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-356)) (-4 *2 (-1023)) (-4 *3 (-825)) (-4 *4 (-771)) - (-14 *6 (-620 *3)) (-5 *1 (-1242 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-924 *2 *4 *3)) (-14 *7 (-620 (-749))) (-14 *8 (-749)))) + (|partial| -12 (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-827)) (-4 *4 (-773)) + (-14 *6 (-622 *3)) (-5 *1 (-1244 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-926 *2 *4 *3)) (-14 *7 (-622 (-751))) (-14 *8 (-751)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1253 *2 *3)) (-4 *2 (-356)) (-4 *2 (-1023)) (-4 *3 (-821))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) + (-12 (-5 *1 (-1255 *2 *3)) (-4 *2 (-358)) (-4 *2 (-1025)) (-4 *3 (-823))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) - (-14 *4 (-620 (-1147))))) + (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) + (-14 *4 (-622 (-1149))))) ((*1 *2 *1) - (-12 (-5 *2 (-536)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) - (-14 *4 (-620 (-1147))))) + (-12 (-5 *2 (-538)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) + (-14 *4 (-622 (-1149))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) - (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-268)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *8)) (-5 *4 (-620 *6)) (-4 *6 (-825)) - (-4 *8 (-924 *7 *5 *6)) (-4 *5 (-771)) (-4 *7 (-1023)) (-5 *2 (-620 (-749))) - (-5 *1 (-314 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-893)))) + (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) + (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-270)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1143 *8)) (-5 *4 (-622 *6)) (-4 *6 (-827)) + (-4 *8 (-926 *7 *5 *6)) (-4 *5 (-773)) (-4 *7 (-1025)) (-5 *2 (-622 (-751))) + (-5 *1 (-316 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-895)))) ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-462 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-4 *1 (-464 *3 *2)) (-4 *3 (-170)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *3 (-543)) (-5 *2 (-536)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) + (-12 (-4 *3 (-545)) (-5 *2 (-538)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-620 (-749))))) + (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-622 (-751))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) - (-5 *2 (-749)))) + (-12 (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) + (-5 *2 (-751)))) ((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *2 *4)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *2 (-770)))) + (-12 (-4 *1 (-949 *3 *2 *4)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *2 (-772)))) ((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-749)))) + (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-751)))) ((*1 *2 *1) - (-12 (-4 *1 (-1193 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1222 *3)) - (-5 *2 (-536)))) + (-12 (-4 *1 (-1195 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1224 *3)) + (-5 *2 (-538)))) ((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1191 *3)) - (-5 *2 (-400 (-536))))) - ((*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-810 (-893))))) + (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1193 *3)) + (-5 *2 (-402 (-538))))) + ((*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-812 (-895))))) ((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-749))))) + (-12 (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-751))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)))) + (-12 (-5 *2 (-751)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023))))) + (-12 (-5 *2 (-751)) (-4 *1 (-1254 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1245 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) - (-5 *1 (-642 *3 *4)))) + (|partial| -12 (-5 *2 (-1247 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) + (-5 *1 (-644 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-642 *3 *4)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) + (|partial| -12 (-5 *2 (-644 *3 *4)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-414 *4)))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-416 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1063 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) + (-12 (-5 *3 (-1065 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-158)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170))))) + (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170))))) (((*1 *1 *2) - (-12 (-5 *2 (-620 (-536))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) - (-14 *4 (-620 (-1147))))) + (-12 (-5 *2 (-622 (-538))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) + (-14 *4 (-622 (-1149))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) (-4 *1 (-277))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) + ((*1 *1 *1) (-4 *1 (-279))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-642 *3 *4)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-5 *1 (-607 *3 *4 *5)) - (-14 *5 (-893)))) + (-12 (-5 *2 (-644 *3 *4)) (-4 *3 (-827)) + (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-5 *1 (-609 *3 *4 *5)) + (-14 *5 (-895)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) - (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4)))) + (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827)) + (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *4 (-696 (-400 (-536)))) - (-4 *3 (-825)) (-4 *4 (-170))))) + (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-538)))) + (-4 *3 (-827)) (-4 *4 (-170))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) (-4 *1 (-277))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) + ((*1 *1 *1) (-4 *1 (-279))) ((*1 *2 *3) - (-12 (-5 *3 (-398 *4)) (-4 *4 (-543)) - (-5 *2 (-620 (-2 (|:| -4308 (-749)) (|:| |logand| *4)))) (-5 *1 (-313 *4)))) + (-12 (-5 *3 (-400 *4)) (-4 *4 (-545)) + (-5 *2 (-622 (-2 (|:| -4313 (-751)) (|:| |logand| *4)))) (-5 *1 (-315 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) ((*1 *2 *1) - (-12 (-5 *2 (-642 *3 *4)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) + (-12 (-5 *2 (-644 *3 *4)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) + (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) - (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4)))) + (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827)) + (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-1250 *3 *4)) (-4 *4 (-696 (-400 (-536)))) - (-4 *3 (-825)) (-4 *4 (-170))))) + (-12 (-5 *2 (-751)) (-5 *1 (-1252 *3 *4)) (-4 *4 (-698 (-402 (-538)))) + (-4 *3 (-827)) (-4 *4 (-170))))) (((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) - (-5 *2 (-2 (|:| |k| (-797 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) + (-5 *2 (-2 (|:| |k| (-799 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1254 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) + (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-797 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-799 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1254 *3 *4)) (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) + (-12 (-5 *2 (-1256 *3 *4)) (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-797 *3)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1072)))) + (-12 (-5 *2 (-799 *3)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1074)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-536)) (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023)))) + (-12 (-5 *4 (-538)) (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-797 *4)) (-4 *4 (-825)) (-4 *1 (-1249 *4 *3)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-799 *4)) (-4 *4 (-827)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1025))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-112)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1023)))) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025)))) ((*1 *2 *1) - (-12 (-4 *3 (-543)) (-5 *2 (-112)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) + (-12 (-4 *3 (-545)) (-5 *2 (-112)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) + (-12 (-5 *2 (-112)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) + (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) ((*1 *1 *1) - (-12 (-5 *1 (-607 *2 *3 *4)) (-4 *2 (-825)) - (-4 *3 (-13 (-170) (-696 (-400 (-536))))) (-14 *4 (-893)))) - ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023))))) + (-12 (-5 *1 (-609 *2 *3 *4)) (-4 *2 (-827)) + (-4 *3 (-13 (-170) (-698 (-402 (-538))))) (-14 *4 (-895)))) + ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) + ((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) + ((*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) + (-12 (-5 *2 (-751)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-4 *4 (-170)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1249 *2 *3)) (-4 *2 (-825)) (-4 *3 (-1023)) (-4 *3 (-170))))) + (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-827)) (-4 *3 (-1025)) (-4 *3 (-170))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-620 (-1147))) (-5 *1 (-204)) (-5 *3 (-1147)))) + (-12 (-5 *4 (-751)) (-5 *2 (-622 (-1149))) (-5 *1 (-206)) (-5 *3 (-1149)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 (-219))) (-5 *4 (-749)) (-5 *2 (-620 (-1147))) - (-5 *1 (-260)))) + (-12 (-5 *3 (-309 (-221))) (-5 *4 (-751)) (-5 *2 (-622 (-1149))) + (-5 *1 (-262)))) ((*1 *2 *1) - (-12 (-4 *1 (-367 *3 *4)) (-4 *3 (-825)) (-4 *4 (-170)) (-5 *2 (-620 *3)))) + (-12 (-4 *1 (-369 *3 *4)) (-4 *3 (-827)) (-4 *4 (-170)) (-5 *2 (-622 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 *3)) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) + (-12 (-5 *2 (-622 *3)) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) + (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) ((*1 *2 *1) - (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-825)) (-4 *4 (-1023)) (-5 *2 (-620 *3))))) + (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-827)) (-4 *4 (-1025)) (-5 *2 (-622 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1178 *4 *5 *3 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *3 (-825)) - (-4 *6 (-1037 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1180 *4 *5 *3 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *3 (-827)) + (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-893)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + (-12 (-4 *4 (-358)) (-5 *2 (-895)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) ((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-810 (-893))) (-5 *1 (-321 *3 *4)) - (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-893)))) - ((*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-810 (-893)))))) + (-12 (-4 *4 (-358)) (-5 *2 (-812 (-895))) (-5 *1 (-323 *3 *4)) + (-4 *3 (-324 *4)))) + ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-895)))) + ((*1 *2) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-812 (-895)))))) (((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-5 *2 (-749))))) + (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) + ((*1 *2) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-5 *2 (-751))))) (((*1 *2 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-322 *3)) (-4 *5 (-1205 *4)) - (-5 *1 (-755 *3 *4 *5 *2 *6)) (-4 *2 (-1205 *5)) (-14 *6 (-893)))) + (-12 (-4 *3 (-345)) (-4 *4 (-324 *3)) (-4 *5 (-1207 *4)) + (-5 *1 (-757 *3 *4 *5 *2 *6)) (-4 *2 (-1207 *5)) (-14 *6 (-895)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1248 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) - ((*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-356)) (-4 *2 (-361))))) + (-12 (-5 *2 (-751)) (-4 *1 (-1250 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) + ((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-358)) (-4 *2 (-363))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-13 (-1023) (-696 (-400 (-536))))) (-4 *5 (-825)) - (-5 *1 (-1246 *4 *5 *2)) (-4 *2 (-1252 *5 *4))))) + (-12 (-5 *3 (-751)) (-4 *4 (-13 (-1025) (-698 (-402 (-538))))) (-4 *5 (-827)) + (-5 *1 (-1248 *4 *5 *2)) (-4 *2 (-1254 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1243 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) + (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) - (-4 *7 (-825)) (-5 *1 (-1243 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) + (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1243 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) + (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1245 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) - (-4 *7 (-825)) (-5 *1 (-1243 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) + (-4 *7 (-827)) (-5 *1 (-1245 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-620 (-1243 *4 *5 *6 *7))) - (-5 *1 (-1243 *4 *5 *6 *7)))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-622 (-1245 *4 *5 *6 *7))) + (-5 *1 (-1245 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) (-4 *8 (-825)) - (-5 *2 (-620 (-1243 *6 *7 *8 *9))) (-5 *1 (-1243 *6 *7 *8 *9))))) + (-12 (-5 *3 (-622 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) (-4 *8 (-827)) + (-5 *2 (-622 (-1245 *6 *7 *8 *9))) (-5 *1 (-1245 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-840 *4 *5 *6 *7)) - (-4 *4 (-1023)) (-14 *5 (-620 (-1147))) (-14 *6 (-620 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-842 *4 *5 *6 *7)) + (-4 *4 (-1025)) (-14 *5 (-622 (-1149))) (-14 *6 (-622 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-1023)) (-4 *5 (-825)) (-4 *6 (-771)) - (-14 *8 (-620 *5)) (-5 *2 (-1235)) (-5 *1 (-1242 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-924 *4 *6 *5)) (-14 *9 (-620 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508)))) + (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) + (-14 *8 (-622 *5)) (-5 *2 (-1237)) (-5 *1 (-1244 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-926 *4 *6 *5)) (-14 *9 (-622 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1072) (-34))) (-5 *1 (-1111 *3 *2)) - (-4 *3 (-13 (-1072) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1241))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1240))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1240))))) -(((*1 *2 *3) - (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) - (-4 *4 (-1205 *3)) + (-12 (-4 *2 (-13 (-1074) (-34))) (-5 *1 (-1113 *3 *2)) + (-4 *3 (-13 (-1074) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1243))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1242))))) +(((*1 *2 *3) + (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) + (-4 *4 (-1207 *3)) (-5 *2 - (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) - (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) + (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-536)) (-4 *4 (-1205 *3)) + (-12 (-5 *3 (-538)) (-4 *4 (-1207 *3)) (-5 *2 - (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) - (-5 *1 (-746 *4 *5)) (-4 *5 (-403 *3 *4)))) + (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) + (-5 *1 (-748 *4 *5)) (-4 *5 (-405 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 *3)) + (-12 (-4 *4 (-345)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 *3)) (-5 *2 - (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) - (-5 *1 (-959 *4 *3 *5 *6)) (-4 *6 (-703 *3 *5)))) + (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) + (-5 *1 (-961 *4 *3 *5 *6)) (-4 *6 (-705 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 *3)) + (-12 (-4 *4 (-345)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 *3)) (-5 *2 - (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) - (-5 *1 (-1239 *4 *3 *5 *6)) (-4 *6 (-403 *3 *5))))) + (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) + (-5 *1 (-1241 *4 *3 *5 *6)) (-4 *6 (-405 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) - (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)))) + (-12 (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) + (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) - (-4 *4 (-1205 *3)) + (-12 (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) + (-4 *4 (-1207 *3)) (-5 *2 - (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) - (-5 *1 (-344 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) + (-5 *1 (-346 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1205 (-536))) + (-12 (-4 *3 (-1207 (-538))) (-5 *2 - (-2 (|:| -2123 (-667 (-536))) (|:| |basisDen| (-536)) - (|:| |basisInv| (-667 (-536))))) - (-5 *1 (-746 *3 *4)) (-4 *4 (-403 (-536) *3)))) + (-2 (|:| -2128 (-669 (-538))) (|:| |basisDen| (-538)) + (|:| |basisInv| (-669 (-538))))) + (-5 *1 (-748 *3 *4)) (-4 *4 (-405 (-538) *3)))) ((*1 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 *4)) + (-12 (-4 *3 (-345)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 *4)) (-5 *2 - (-2 (|:| -2123 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) - (-5 *1 (-959 *3 *4 *5 *6)) (-4 *6 (-703 *4 *5)))) + (-2 (|:| -2128 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4)))) + (-5 *1 (-961 *3 *4 *5 *6)) (-4 *6 (-705 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-343)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 *4)) + (-12 (-4 *3 (-345)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 *4)) (-5 *2 - (-2 (|:| -2123 (-667 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-667 *4)))) - (-5 *1 (-1239 *3 *4 *5 *6)) (-4 *6 (-403 *4 *5))))) + (-2 (|:| -2128 (-669 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-669 *4)))) + (-5 *1 (-1241 *3 *4 *5 *6)) (-4 *6 (-405 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-749)) (-4 *6 (-356)) (-5 *4 (-1176 *6)) - (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1238 *6)) (-5 *5 (-1124 *4))))) + (-12 (-5 *3 (-751)) (-4 *6 (-358)) (-5 *4 (-1178 *6)) + (-5 *2 (-1 (-1126 *4) (-1126 *4))) (-5 *1 (-1240 *6)) (-5 *5 (-1126 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-4 *5 (-356)) (-5 *2 (-620 (-1176 *5))) - (-5 *1 (-1238 *5)) (-5 *4 (-1176 *5))))) + (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-622 (-1178 *5))) + (-5 *1 (-1240 *5)) (-5 *4 (-1178 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-5 *2 (-1 (-1141 (-920 *4)) (-920 *4))) - (-5 *1 (-1238 *4)) (-4 *4 (-356))))) + (-12 (-5 *3 (-1149)) (-5 *2 (-1 (-1143 (-922 *4)) (-922 *4))) + (-5 *1 (-1240 *4)) (-4 *4 (-358))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-4 *5 (-356)) (-5 *2 (-1124 (-1124 (-920 *5)))) - (-5 *1 (-1238 *5)) (-5 *4 (-1124 (-920 *5)))))) + (-12 (-5 *3 (-1149)) (-4 *5 (-358)) (-5 *2 (-1126 (-1126 (-922 *5)))) + (-5 *1 (-1240 *5)) (-5 *4 (-1126 (-922 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-920 *4)) (-1124 (-920 *4)))) - (-5 *1 (-1238 *4)) (-4 *4 (-356))))) + (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1126 (-922 *4)) (-1126 (-922 *4)))) + (-5 *1 (-1240 *4)) (-4 *4 (-358))))) (((*1 *2 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1 (-1124 (-920 *4)) (-1124 (-920 *4)))) - (-5 *1 (-1238 *4)) (-4 *4 (-356))))) + (-12 (-5 *3 (-751)) (-5 *2 (-1 (-1126 (-922 *4)) (-1126 (-922 *4)))) + (-5 *1 (-1240 *4)) (-4 *4 (-358))))) (((*1 *2) - (-12 (-14 *4 (-749)) (-4 *5 (-1183)) (-5 *2 (-133)) (-5 *1 (-231 *3 *4 *5)) - (-4 *3 (-232 *4 *5)))) + (-12 (-14 *4 (-751)) (-4 *5 (-1185)) (-5 *2 (-133)) (-5 *1 (-233 *3 *4 *5)) + (-4 *3 (-234 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-133)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) + (-12 (-4 *4 (-358)) (-5 *2 (-133)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) ((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) ((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-536)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-538)) + (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) - (-5 *2 (-536)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-954 *3)) (-4 *3 (-1023)) (-5 *2 (-893)))) - ((*1 *2) (-12 (-4 *1 (-1237 *3)) (-4 *3 (-356)) (-5 *2 (-133))))) + (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) + (-5 *2 (-538)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-956 *3)) (-4 *3 (-1025)) (-5 *2 (-895)))) + ((*1 *2) (-12 (-4 *1 (-1239 *3)) (-4 *3 (-358)) (-5 *2 (-133))))) +(((*1 *1) (-5 *1 (-1237)))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-221)) (-5 *1 (-1236)))) + ((*1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-1236))))) +(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) + ((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) + ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) + ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236)))) + ((*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1236)))) + ((*1 *2 *2) (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1236)))) + ((*1 *2 *2) (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236)))) + ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) + ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) + ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) + ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236))))) +(((*1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236)))) + ((*1 *2 *2) (-12 (-5 *2 (-850)) (-5 *1 (-1236))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235)))) + ((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1235))))) (((*1 *1) (-5 *1 (-1235)))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-1234)))) - ((*1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-1234))))) -(((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) - ((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) - ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) - ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234)))) - ((*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1234)))) - ((*1 *2 *2) (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1234)))) - ((*1 *2 *2) (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234)))) - ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) - ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) - ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) - ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234))))) -(((*1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234)))) - ((*1 *2 *2) (-12 (-5 *2 (-848)) (-5 *1 (-1234))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233)))) - ((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1233))))) -(((*1 *1) (-5 *1 (-1233)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-620 (-254))) (-5 *1 (-1233)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-1129)) (-5 *1 (-1233)))) - ((*1 *1 *1) (-5 *1 (-1233)))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-1135 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1233))))) + (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-622 (-256))) (-5 *1 (-1235)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1131)) (-5 *1 (-1235)))) + ((*1 *1 *1) (-5 *1 (-1235)))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-1137 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1235)))) + ((*1 *2 *1) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1235))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-749)) (-5 *3 (-917 *4)) (-4 *1 (-1105 *4)) (-4 *4 (-1023)))) + (-12 (-5 *2 (-751)) (-5 *3 (-919 *4)) (-4 *1 (-1107 *4)) (-4 *4 (-1025)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1232)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1232)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1233)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-254))) (-5 *1 (-1233))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-1232)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) + (-12 (-5 *3 (-751)) (-5 *4 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1234)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1235)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-256))) (-5 *1 (-1235))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1234)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-256)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + (-12 (-5 *3 (-751)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1233))))) + (-12 (-5 *3 (-751)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1235))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *1 (-254)))) + (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) + (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) + (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) + (-5 *1 (-256)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *3 (-620 (-254))) (-5 *1 (-255)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) + (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) + (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) + (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) + (-5 *3 (-622 (-256))) (-5 *1 (-257)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-536)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) + (-12 (-5 *3 (-538)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *2 (-1235)) (-5 *1 (-1233)))) + (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) + (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) + (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) + (-5 *2 (-1237)) (-5 *1 (-1235)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-219)) (|:| |phi| (-219)) (|:| -4202 (-219)) - (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |scaleZ| (-219)) - (|:| |deltaX| (-219)) (|:| |deltaY| (-219)))) - (-5 *1 (-1233)))) + (-2 (|:| |theta| (-221)) (|:| |phi| (-221)) (|:| -4207 (-221)) + (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |scaleZ| (-221)) + (|:| |deltaX| (-221)) (|:| |deltaY| (-221)))) + (-5 *1 (-1235)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) + (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + (-12 (-5 *3 (-895)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1234)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) + (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1235)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1232)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1232)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1235)) (-5 *1 (-1233))))) + (-12 (-5 *3 (-895)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1234)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-155)) (-5 *2 (-1237)) (-5 *1 (-1235))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-1232)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1232)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1232)))) + (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1234)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1234)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-1233)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1233)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1233))))) + (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-1235)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1235)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1235))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1232)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1233))))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1232)))) - ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1233))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-917 (-219)))) (-5 *1 (-1232))))) -(((*1 *1) (-5 *1 (-1232)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-460)) (-5 *3 (-620 (-254))) (-5 *1 (-1232)))) - ((*1 *1 *1) (-5 *1 (-1232)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1234)))) + ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1235))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-919 (-221)))) (-5 *1 (-1234))))) +(((*1 *1) (-5 *1 (-1234)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-462)) (-5 *3 (-622 (-256))) (-5 *1 (-1234)))) + ((*1 *1 *1) (-5 *1 (-1234)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-893)) (-5 *4 (-219)) (-5 *5 (-536)) (-5 *6 (-848)) - (-5 *2 (-1235)) (-5 *1 (-1232))))) + (-12 (-5 *3 (-895)) (-5 *4 (-221)) (-5 *5 (-538)) (-5 *6 (-850)) + (-5 *2 (-1237)) (-5 *1 (-1234))))) (((*1 *2 *1) (-12 (-5 *2 - (-1229 - (-2 (|:| |scaleX| (-219)) (|:| |scaleY| (-219)) (|:| |deltaX| (-219)) - (|:| |deltaY| (-219)) (|:| -4205 (-536)) (|:| -4203 (-536)) - (|:| |spline| (-536)) (|:| -4234 (-536)) (|:| |axesColor| (-848)) - (|:| -4206 (-536)) (|:| |unitsColor| (-848)) (|:| |showing| (-536))))) - (-5 *1 (-1232))))) -(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-1229 (-3 (-460) "undefined"))) (-5 *1 (-1232))))) + (-1231 + (-2 (|:| |scaleX| (-221)) (|:| |scaleY| (-221)) (|:| |deltaX| (-221)) + (|:| |deltaY| (-221)) (|:| -4210 (-538)) (|:| -4208 (-538)) + (|:| |spline| (-538)) (|:| -4239 (-538)) (|:| |axesColor| (-850)) + (|:| -4211 (-538)) (|:| |unitsColor| (-850)) (|:| |showing| (-538))))) + (-5 *1 (-1234))))) +(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) + ((*1 *2 *1) (-12 (-5 *2 (-1231 (-3 (-462) "undefined"))) (-5 *1 (-1234))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-460)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-893)) (-5 *2 (-460)) (-5 *1 (-1232))))) + (-12 (-5 *3 (-462)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-895)) (-5 *2 (-462)) (-5 *1 (-1234))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-620 (-371))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-460)))) + (-12 (-5 *2 (-622 (-373))) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-462)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-1232)))) + (-12 (-5 *3 (-895)) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-1234)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232))))) + (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232))))) + (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232))))) + (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) + (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) + ((*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-371)) (-5 *2 (-1235)) (-5 *1 (-1232))))) + (-12 (-5 *3 (-895)) (-5 *4 (-373)) (-5 *2 (-1237)) (-5 *1 (-1234))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1232))))) + (-12 (-5 *3 (-895)) (-5 *4 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1234))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-460)) (-5 *4 (-893)) (-5 *2 (-1235)) (-5 *1 (-1232))))) + (-12 (-5 *3 (-462)) (-5 *4 (-895)) (-5 *2 (-1237)) (-5 *1 (-1234))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-848)) (-5 *5 (-893)) - (-5 *6 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-1231)))) + (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-895)) + (-5 *6 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-1233)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-620 (-254))) - (-5 *2 (-1232)) (-5 *1 (-1231))))) + (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-622 (-256))) + (-5 *2 (-1234)) (-5 *1 (-1233))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-848)) (-5 *5 (-893)) - (-5 *6 (-620 (-254))) (-5 *2 (-460)) (-5 *1 (-1231)))) + (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-850)) (-5 *5 (-895)) + (-5 *6 (-622 (-256))) (-5 *2 (-462)) (-5 *1 (-1233)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-460)) (-5 *1 (-1231)))) + (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-462)) (-5 *1 (-1233)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-620 (-254))) (-5 *2 (-460)) - (-5 *1 (-1231))))) + (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-622 (-256))) (-5 *2 (-462)) + (-5 *1 (-1233))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) (-5 *1 (-58 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1072)) (|has| *1 (-6 -4348)) - (-4 *1 (-149 *2)) (-4 *2 (-1183)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1074)) (|has| *1 (-6 -4353)) + (-4 *1 (-149 *2)) (-4 *2 (-1185)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) - (-4 *2 (-1183)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) + (-4 *2 (-1185)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) - (-4 *2 (-1183)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) + (-4 *2 (-1185)))) ((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-5 *2 (-2 (|:| -2115 (-1141 *4)) (|:| |deg| (-893)))) - (-5 *1 (-215 *4 *5)) (-5 *3 (-1141 *4)) (-4 *5 (-13 (-543) (-825))))) + (-12 (-4 *4 (-1025)) (-5 *2 (-2 (|:| -2120 (-1143 *4)) (|:| |deg| (-895)))) + (-5 *1 (-217 *4 *5)) (-5 *3 (-1143 *4)) (-4 *5 (-13 (-545) (-827))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-233 *5 *6)) (-14 *5 (-749)) - (-4 *6 (-1183)) (-4 *2 (-1183)) (-5 *1 (-234 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-235 *5 *6)) (-14 *5 (-751)) + (-4 *6 (-1185)) (-4 *2 (-1185)) (-5 *1 (-236 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-170)) (-5 *1 (-282 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1205 *4)) + (-12 (-4 *4 (-170)) (-5 *1 (-284 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1207 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-307 *2)) (-4 *2 (-543)) (-4 *2 (-825)))) + ((*1 *1 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-545)) (-4 *2 (-827)))) ((*1 *1 *1) - (-12 (-4 *1 (-329 *2 *3 *4 *5)) (-4 *2 (-356)) (-4 *3 (-1205 *2)) - (-4 *4 (-1205 (-400 *3))) (-4 *5 (-335 *2 *3 *4)))) + (-12 (-4 *1 (-331 *2 *3 *4 *5)) (-4 *2 (-358)) (-4 *3 (-1207 *2)) + (-4 *4 (-1207 (-402 *3))) (-4 *5 (-337 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1183)) (-4 *2 (-1183)) - (-5 *1 (-366 *5 *4 *2 *6)) (-4 *4 (-365 *5)) (-4 *6 (-365 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1185)) (-4 *2 (-1185)) + (-5 *1 (-368 *5 *4 *2 *6)) (-4 *4 (-367 *5)) (-4 *6 (-367 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1072)) (-4 *2 (-1072)) - (-5 *1 (-420 *5 *4 *2 *6)) (-4 *4 (-419 *5)) (-4 *6 (-419 *2)))) - ((*1 *1 *1) (-5 *1 (-486))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1074)) (-4 *2 (-1074)) + (-5 *1 (-422 *5 *4 *2 *6)) (-4 *4 (-421 *5)) (-4 *6 (-421 *2)))) + ((*1 *1 *1) (-5 *1 (-488))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-620 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) - (-5 *1 (-621 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-622 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) + (-5 *1 (-623 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1023)) (-4 *2 (-1023)) (-4 *6 (-365 *5)) - (-4 *7 (-365 *5)) (-4 *8 (-365 *2)) (-4 *9 (-365 *2)) - (-5 *1 (-665 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-664 *5 *6 *7)) - (-4 *10 (-664 *2 *8 *9)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1025)) (-4 *2 (-1025)) (-4 *6 (-367 *5)) + (-4 *7 (-367 *5)) (-4 *8 (-367 *2)) (-4 *9 (-367 *2)) + (-5 *1 (-667 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-666 *5 *6 *7)) + (-4 *10 (-666 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-356)) - (-4 *3 (-170)) (-4 *1 (-703 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-703 *3 *2)) (-4 *2 (-1205 *3)))) + (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-358)) + (-4 *3 (-170)) (-4 *1 (-705 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-170)) (-4 *1 (-705 *3 *2)) (-4 *2 (-1207 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-932 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) - (-5 *1 (-933 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-934 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) + (-5 *1 (-935 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *2 (-924 *3 *4 *5)) (-14 *6 (-620 *2)))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *2 (-926 *3 *4 *5)) (-14 *6 (-622 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1023)) (-4 *2 (-1023)) (-14 *5 (-749)) - (-14 *6 (-749)) (-4 *8 (-232 *6 *7)) (-4 *9 (-232 *5 *7)) - (-4 *10 (-232 *6 *2)) (-4 *11 (-232 *5 *2)) - (-5 *1 (-1028 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1026 *5 *6 *7 *8 *9)) (-4 *12 (-1026 *5 *6 *2 *10 *11)))) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1025)) (-4 *2 (-1025)) (-14 *5 (-751)) + (-14 *6 (-751)) (-4 *8 (-234 *6 *7)) (-4 *9 (-234 *5 *7)) + (-4 *10 (-234 *6 *2)) (-4 *11 (-234 *5 *2)) + (-5 *1 (-1030 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1028 *5 *6 *7 *8 *9)) (-4 *12 (-1028 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1124 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) - (-5 *1 (-1126 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1126 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) + (-5 *1 (-1128 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1178 *5 *6 *7 *2)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *2 (-1037 *5 *6 *7)))) + (-4 *1 (-1180 *5 *6 *7 *2)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) + (-4 *2 (-1039 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1229 *5)) (-4 *5 (-1183)) (-4 *2 (-1183)) - (-5 *1 (-1230 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1231 *5)) (-4 *5 (-1185)) (-4 *2 (-1185)) + (-5 *1 (-1232 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-5 *2 (-57 *5)) (-5 *1 (-58 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-233 *6 *7)) (-14 *6 (-749)) - (-4 *7 (-1183)) (-4 *5 (-1183)) (-5 *2 (-233 *6 *5)) - (-5 *1 (-234 *6 *7 *5)))) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-235 *6 *7)) (-14 *6 (-751)) + (-4 *7 (-1185)) (-4 *5 (-1185)) (-5 *2 (-235 *6 *5)) + (-5 *1 (-236 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1183)) (-4 *5 (-1183)) (-4 *2 (-365 *5)) - (-5 *1 (-366 *6 *4 *5 *2)) (-4 *4 (-365 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1185)) (-4 *5 (-1185)) (-4 *2 (-367 *5)) + (-5 *1 (-368 *6 *4 *5 *2)) (-4 *4 (-367 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1072)) (-4 *5 (-1072)) (-4 *2 (-419 *5)) - (-5 *1 (-420 *6 *4 *5 *2)) (-4 *4 (-419 *6)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1074)) (-4 *5 (-1074)) (-4 *2 (-421 *5)) + (-5 *1 (-422 *6 *4 *5 *2)) (-4 *4 (-421 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-620 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) - (-5 *2 (-620 *5)) (-5 *1 (-621 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-622 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) + (-5 *2 (-622 *5)) (-5 *1 (-623 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-932 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) - (-5 *2 (-932 *5)) (-5 *1 (-933 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-934 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) + (-5 *2 (-934 *5)) (-5 *1 (-935 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1124 *6)) (-4 *6 (-1183)) (-4 *3 (-1183)) - (-5 *2 (-1124 *3)) (-5 *1 (-1126 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1126 *6)) (-4 *6 (-1185)) (-4 *3 (-1185)) + (-5 *2 (-1126 *3)) (-5 *1 (-1128 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1229 *6)) (-4 *6 (-1183)) (-4 *5 (-1183)) - (-5 *2 (-1229 *5)) (-5 *1 (-1230 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1229 *3))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1231 *6)) (-4 *6 (-1185)) (-4 *5 (-1185)) + (-5 *2 (-1231 *5)) (-5 *1 (-1232 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1231 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-208 *2)) + (-12 (-5 *1 (-210 *2)) (-4 *2 - (-13 (-825) - (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) - (-15 -2082 ((-1235) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1183)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-25)) (-4 *2 (-1183)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-130)))) + (-13 (-827) + (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) + (-15 -2087 ((-1237) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1185)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-25)) (-4 *2 (-1185)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-130)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *2)) (-4 *2 (-1205 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + (-12 (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *2)) (-4 *2 (-1207 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-924 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-525))) + (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) + (-4 *5 (-926 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-527))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-25))))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-749)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1228 *3)) (-4 *3 (-23)) (-4 *3 (-1183))))) + (-12 (-5 *2 (-751)) (-4 *1 (-1230 *3)) (-4 *3 (-23)) (-4 *3 (-1185))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-133))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-208 *2)) + (-12 (-5 *1 (-210 *2)) (-4 *2 - (-13 (-825) - (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) - (-15 -2082 ((-1235) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + (-13 (-827) + (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) + (-15 -2087 ((-1237) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) - ((*1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-232 *3 *2)) (-4 *2 (-1183)) (-4 *2 (-1023)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) - ((*1 *1 *1) (-5 *1 (-838))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-219)) (-5 *1 (-1180)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-1023))))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) + ((*1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-234 *3 *2)) (-4 *2 (-1185)) (-4 *2 (-1025)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840)))) + ((*1 *1 *1) (-5 *1 (-840))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-221)) (-5 *1 (-1182)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-1025))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1228 *3)) (-4 *3 (-1183)) (-4 *3 (-1023)) (-5 *2 (-667 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-954 *2)) (-4 *2 (-1023)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-1023))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) - ((*1 *1 *1) (-4 *1 (-535))) - ((*1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-893)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-4 *1 (-969 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1181 *3)) (-4 *3 (-1183)))) + (-12 (-4 *1 (-1230 *3)) (-4 *3 (-1185)) (-4 *3 (-1025)) (-5 *2 (-669 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-956 *2)) (-4 *2 (-1025)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-1025))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) + (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) + ((*1 *1 *1) (-4 *1 (-537))) + ((*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-895)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-4 *1 (-971 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1183 *3)) (-4 *3 (-1185)))) ((*1 *2 *1) - (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-976)) (-4 *2 (-1023))))) + (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-978)) (-4 *2 (-1025))))) (((*1 *2 *1) - (-12 (-4 *1 (-1228 *2)) (-4 *2 (-1183)) (-4 *2 (-976)) (-4 *2 (-1023))))) -(((*1 *2 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) + (-12 (-4 *1 (-1230 *2)) (-4 *2 (-1185)) (-4 *2 (-978)) (-4 *2 (-1025))))) +(((*1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-839 *3)) (-14 *3 (-620 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-940 *3)) (-4 *3 (-941)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-963)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1063 *3)) (-4 *3 (-1183)))) + (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-841 *3)) (-14 *3 (-622 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-942 *3)) (-4 *3 (-943)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-965)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1065 *3)) (-4 *3 (-1185)))) ((*1 *2 *1) - (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-1147)))) - ((*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1226 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-1149)))) + ((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1228 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-400 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-543)) (-4 *4 (-1023)) - (-4 *2 (-1222 *4)) (-5 *1 (-1224 *4 *5 *6 *2)) (-4 *6 (-636 *5))))) + (-12 (-5 *3 (-402 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-545)) (-4 *4 (-1025)) + (-4 *2 (-1224 *4)) (-5 *1 (-1226 *4 *5 *6 *2)) (-4 *6 (-638 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-4 *5 (-1205 *4)) (-5 *2 (-1 *6 (-620 *6))) - (-5 *1 (-1224 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-1222 *4))))) + (-12 (-4 *4 (-1025)) (-4 *5 (-1207 *4)) (-5 *2 (-1 *6 (-622 *6))) + (-5 *1 (-1226 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-1224 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-1023)) (-4 *2 (-1205 *5)) - (-5 *1 (-1224 *5 *2 *6 *3)) (-4 *6 (-636 *2)) (-4 *3 (-1222 *5))))) + (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-4 *2 (-1207 *5)) + (-5 *1 (-1226 *5 *2 *6 *3)) (-4 *6 (-638 *2)) (-4 *3 (-1224 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-4 *3 (-1205 *4)) (-4 *2 (-1222 *4)) - (-5 *1 (-1224 *4 *3 *5 *2)) (-4 *5 (-636 *3))))) + (-12 (-4 *4 (-1025)) (-4 *3 (-1207 *4)) (-4 *2 (-1224 *4)) + (-5 *1 (-1226 *4 *3 *5 *2)) (-4 *5 (-638 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 (-1 *6 (-620 *6)))) - (-4 *5 (-38 (-400 (-536)))) (-4 *6 (-1222 *5)) (-5 *2 (-620 *6)) - (-5 *1 (-1223 *5 *6))))) + (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 (-1 *6 (-622 *6)))) + (-4 *5 (-38 (-402 (-538)))) (-4 *6 (-1224 *5)) (-5 *2 (-622 *6)) + (-5 *1 (-1225 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-620 *2))) (-5 *4 (-620 *5)) (-4 *5 (-38 (-400 (-536)))) - (-4 *2 (-1222 *5)) (-5 *1 (-1223 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-622 *2))) (-5 *4 (-622 *5)) (-4 *5 (-38 (-402 (-538)))) + (-4 *2 (-1224 *5)) (-5 *1 (-1225 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-1223 *4 *2)) - (-4 *4 (-38 (-400 (-536))))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1224 *4)) (-5 *1 (-1225 *4 *2)) + (-4 *4 (-38 (-402 (-538))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1222 *4)) (-5 *1 (-1223 *4 *2)) - (-4 *4 (-38 (-400 (-536))))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1224 *4)) (-5 *1 (-1225 *4 *2)) + (-4 *4 (-38 (-402 (-538))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1223 *3 *2)) (-4 *2 (-1222 *3))))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1225 *3 *2)) (-4 *2 (-1224 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-620 *5))) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) - (-5 *2 (-1 (-1124 *4) (-620 (-1124 *4)))) (-5 *1 (-1223 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-622 *5))) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538)))) + (-5 *2 (-1 (-1126 *4) (-622 (-1126 *4)))) (-5 *1 (-1225 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) - (-5 *2 (-1 (-1124 *4) (-1124 *4) (-1124 *4))) (-5 *1 (-1223 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538)))) + (-5 *2 (-1 (-1126 *4) (-1126 *4) (-1126 *4))) (-5 *1 (-1225 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1222 *4)) (-4 *4 (-38 (-400 (-536)))) - (-5 *2 (-1 (-1124 *4) (-1124 *4))) (-5 *1 (-1223 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1224 *4)) (-4 *4 (-38 (-402 (-538)))) + (-5 *2 (-1 (-1126 *4) (-1126 *4))) (-5 *1 (-1225 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) + (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-400 (-536))) - (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + (-12 (-5 *4 (-402 (-538))) + (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)))) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) + (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-536))) - (-4 *3 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-536))) (-5 *4 (-286 *6)) - (-4 *6 (-13 (-27) (-1169) (-414 *5))) - (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *5 *6)))) + (-12 (-5 *4 (-288 *3)) (-5 *5 (-402 (-538))) + (-4 *3 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-538))) (-5 *4 (-288 *6)) + (-4 *6 (-13 (-27) (-1171) (-416 *5))) + (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *6 *3)))) + (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-536))) - (-4 *7 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-538))) + (-4 *7 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-536))) - (-4 *3 (-13 (-27) (-1169) (-414 *7))) - (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *7 *3)))) + (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-538))) + (-4 *3 (-13 (-27) (-1171) (-416 *7))) + (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-400 (-536)))) (-5 *4 (-286 *8)) - (-5 *5 (-1196 (-400 (-536)))) (-5 *6 (-400 (-536))) - (-4 *8 (-13 (-27) (-1169) (-414 *7))) - (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-402 (-538)))) (-5 *4 (-288 *8)) + (-5 *5 (-1198 (-402 (-538)))) (-5 *6 (-402 (-538))) + (-4 *8 (-13 (-27) (-1171) (-416 *7))) + (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-400 (-536)))) - (-5 *7 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *8))) - (-4 *8 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *8 *3)))) + (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-402 (-538)))) + (-5 *7 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *8))) + (-4 *8 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-4 *3 (-1023)) - (-5 *1 (-578 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-579 *3)))) + (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-4 *3 (-1025)) + (-5 *1 (-580 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-581 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-4 *3 (-1023)) - (-4 *1 (-1191 *3)))) + (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-4 *3 (-1025)) + (-4 *1 (-1193 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-749)) (-5 *3 (-1124 (-2 (|:| |k| (-400 (-536))) (|:| |c| *4)))) - (-4 *4 (-1023)) (-4 *1 (-1212 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-4 *1 (-1222 *3)))) + (-12 (-5 *2 (-751)) (-5 *3 (-1126 (-2 (|:| |k| (-402 (-538))) (|:| |c| *4)))) + (-4 *4 (-1025)) (-4 *1 (-1214 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-4 *1 (-1224 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1124 (-2 (|:| |k| (-749)) (|:| |c| *3)))) (-4 *3 (-1023)) - (-4 *1 (-1222 *3))))) + (-12 (-5 *2 (-1126 (-2 (|:| |k| (-751)) (|:| |c| *3)))) (-4 *3 (-1025)) + (-4 *1 (-1224 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-620 *3)))) + (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-622 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-620 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-622 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 *3)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-620 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1222 *3)) (-4 *3 (-1023)) (-5 *2 (-1124 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-536))) (-4 *3 (-1023)) (-5 *1 (-578 *3)))) + (-12 (-5 *2 (-622 *3)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707)))) + ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-622 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1224 *3)) (-4 *3 (-1025)) (-5 *2 (-1126 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-538))) (-4 *3 (-1025)) (-5 *1 (-580 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-536))) (-4 *1 (-1191 *3)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-1 *3 (-538))) (-4 *1 (-1193 *3)) (-4 *3 (-1025)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-536))) (-4 *1 (-1222 *3)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-1 *3 (-538))) (-4 *1 (-1224 *3)) (-4 *3 (-1025))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)) - (-5 *2 (-920 *4)))) + (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)) + (-5 *2 (-922 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *5)) (-4 *4 (-1023)) (-4 *5 (-825)) - (-5 *2 (-920 *4)))) + (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *5)) (-4 *4 (-1025)) (-4 *5 (-827)) + (-5 *2 (-922 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-1222 *4)) (-4 *4 (-1023)) (-5 *2 (-920 *4)))) + (-12 (-5 *3 (-751)) (-4 *1 (-1224 *4)) (-4 *4 (-1025)) (-5 *2 (-922 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-1222 *4)) (-4 *4 (-1023)) (-5 *2 (-920 *4))))) + (-12 (-5 *3 (-751)) (-4 *1 (-1224 *4)) (-4 *4 (-1025)) (-5 *2 (-922 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-400 (-536))) (-4 *4 (-1012 (-536))) (-4 *4 (-13 (-825) (-543))) - (-5 *1 (-32 *4 *2)) (-4 *2 (-414 *4)))) + (-12 (-5 *3 (-402 (-538))) (-4 *4 (-1014 (-538))) (-4 *4 (-13 (-827) (-545))) + (-5 *1 (-32 *4 *2)) (-4 *2 (-416 *4)))) ((*1 *1 *1 *1) (-5 *1 (-133))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-219))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-237)) (-5 *2 (-536)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-221))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-538)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-400 (-536))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1222 *4)) - (-5 *1 (-271 *4 *5 *2)) (-4 *2 (-1193 *4 *5)))) + (-12 (-5 *3 (-402 (-538))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1224 *4)) + (-5 *1 (-273 *4 *5 *2)) (-4 *2 (-1195 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-400 (-536))) (-4 *4 (-356)) (-4 *4 (-38 *3)) (-4 *5 (-1191 *4)) - (-5 *1 (-272 *4 *5 *2 *6)) (-4 *2 (-1214 *4 *5)) (-4 *6 (-957 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-277))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-354 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *1) (-5 *1 (-371))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-379 *2)) (-4 *2 (-1072)))) + (-12 (-5 *3 (-402 (-538))) (-4 *4 (-358)) (-4 *4 (-38 *3)) (-4 *5 (-1193 *4)) + (-5 *1 (-274 *4 *5 *2 *6)) (-4 *2 (-1216 *4 *5)) (-4 *6 (-959 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-279))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-356 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *1) (-5 *1 (-373))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-381 *2)) (-4 *2 (-1074)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-414 *3)) (-4 *3 (-825)) (-4 *3 (-1083)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-465)) (-5 *2 (-536)))) + (-12 (-5 *2 (-751)) (-4 *1 (-416 *3)) (-4 *3 (-827)) (-4 *3 (-1085)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-467)) (-5 *2 (-538)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + (-12 (-5 *2 (-751)) (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1229 *4)) (-5 *3 (-536)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-525)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-525)))) + (-12 (-5 *2 (-1231 *4)) (-5 *3 (-538)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-527)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-527)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *4 (-1072)) (-5 *1 (-660 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *4 (-1074)) (-5 *1 (-662 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-356)))) + (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-4 *3 (-358)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-751)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-668 *4)))) + (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-536)) (-4 *3 (-1023)) (-5 *1 (-693 *3 *4)) (-4 *4 (-626 *3)))) + (-12 (-5 *2 (-538)) (-4 *3 (-1025)) (-5 *1 (-695 *3 *4)) (-4 *4 (-628 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-693 *4 *5)) - (-4 *5 (-626 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-705)) (-5 *2 (-749)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-812 *3)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-113)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *5)) + (-4 *5 (-628 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-707)) (-5 *2 (-751)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-799 *2)) (-4 *2 (-827)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-814 *3)) (-4 *3 (-1025)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-536)) (-5 *1 (-812 *4)) (-4 *4 (-1023)))) - ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-400 (-536))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1083)) (-5 *2 (-893)))) + (-12 (-5 *2 (-113)) (-5 *3 (-538)) (-5 *1 (-814 *4)) (-4 *4 (-1025)))) + ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-402 (-538))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1085)) (-5 *2 (-895)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-536)) (-4 *1 (-1094 *3 *4 *5 *6)) (-4 *4 (-1023)) - (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4)) (-4 *4 (-356)))) + (-12 (-5 *2 (-538)) (-4 *1 (-1096 *3 *4 *5 *6)) (-4 *4 (-1025)) + (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4)) (-4 *4 (-358)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1063 (-817 *3))) (-4 *3 (-13 (-1169) (-934) (-29 *5))) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-12 (-5 *4 (-1065 (-819 *3))) (-4 *3 (-13 (-1171) (-936) (-29 *5))) + (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 - (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) + (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) - (-5 *1 (-213 *5 *3)))) + (-5 *1 (-215 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1063 (-817 *3))) (-5 *5 (-1129)) - (-4 *3 (-13 (-1169) (-934) (-29 *6))) - (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-12 (-5 *4 (-1065 (-819 *3))) (-5 *5 (-1131)) + (-4 *3 (-13 (-1171) (-936) (-29 *6))) + (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 - (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) - (-5 *1 (-213 *6 *3)))) + (-5 *1 (-215 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1063 (-817 (-307 *5)))) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1065 (-819 (-309 *5)))) + (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 - (-3 (|:| |f1| (-817 (-307 *5))) (|:| |f2| (-620 (-817 (-307 *5)))) + (-3 (|:| |f1| (-819 (-309 *5))) (|:| |f2| (-622 (-819 (-309 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) - (-5 *1 (-214 *5)))) + (-5 *1 (-216 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-400 (-920 *6))) (-5 *4 (-1063 (-817 (-307 *6)))) - (-5 *5 (-1129)) - (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-12 (-5 *3 (-402 (-922 *6))) (-5 *4 (-1065 (-819 (-309 *6)))) + (-5 *5 (-1131)) + (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 - (-3 (|:| |f1| (-817 (-307 *6))) (|:| |f2| (-620 (-817 (-307 *6)))) + (-3 (|:| |f1| (-819 (-309 *6))) (|:| |f2| (-622 (-819 (-309 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-214 *6)))) + (-5 *1 (-216 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1063 (-817 (-400 (-920 *5))))) (-5 *3 (-400 (-920 *5))) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-12 (-5 *4 (-1065 (-819 (-402 (-922 *5))))) (-5 *3 (-402 (-922 *5))) + (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 - (-3 (|:| |f1| (-817 (-307 *5))) (|:| |f2| (-620 (-817 (-307 *5)))) + (-3 (|:| |f1| (-819 (-309 *5))) (|:| |f2| (-622 (-819 (-309 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-214 *5)))) + (-5 *1 (-216 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1063 (-817 (-400 (-920 *6))))) (-5 *5 (-1129)) - (-5 *3 (-400 (-920 *6))) - (-4 *6 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (-12 (-5 *4 (-1065 (-819 (-402 (-922 *6))))) (-5 *5 (-1131)) + (-5 *3 (-402 (-922 *6))) + (-4 *6 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 - (-3 (|:| |f1| (-817 (-307 *6))) (|:| |f2| (-620 (-817 (-307 *6)))) + (-3 (|:| |f1| (-819 (-309 *6))) (|:| |f2| (-622 (-819 (-309 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) - (-5 *1 (-214 *6)))) + (-5 *1 (-216 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-3 *3 (-620 *3))) (-5 *1 (-423 *5 *3)) - (-4 *3 (-13 (-1169) (-934) (-29 *5))))) + (-12 (-5 *4 (-1149)) + (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-3 *3 (-622 *3))) (-5 *1 (-425 *5 *3)) + (-4 *3 (-13 (-1171) (-936) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) - (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) + (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) - (-5 *6 (-1035)) (-5 *2 (-1009)) (-5 *1 (-551)))) - ((*1 *2 *3) (-12 (-5 *3 (-747)) (-5 *2 (-1009)) (-5 *1 (-551)))) + (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373)) + (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553)))) + ((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1011)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) - (-5 *2 (-1009)) (-5 *1 (-551)))) + (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373)) + (-5 *2 (-1011)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *5 (-371)) - (-5 *2 (-1009)) (-5 *1 (-551)))) + (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *5 (-373)) + (-5 *2 (-1011)) (-5 *1 (-553)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-1060 (-817 (-371)))) (-5 *2 (-1009)) - (-5 *1 (-551)))) + (-12 (-5 *3 (-309 (-373))) (-5 *4 (-1062 (-819 (-373)))) (-5 *2 (-1011)) + (-5 *1 (-553)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) - (-5 *2 (-1009)) (-5 *1 (-551)))) + (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) + (-5 *2 (-1011)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) - (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) + (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) + (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) - (-5 *5 (-371)) (-5 *2 (-1009)) (-5 *1 (-551)))) + (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) + (-5 *5 (-373)) (-5 *2 (-1011)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-1060 (-817 (-371))))) - (-5 *5 (-371)) (-5 *6 (-1035)) (-5 *2 (-1009)) (-5 *1 (-551)))) + (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-1062 (-819 (-373))))) + (-5 *5 (-373)) (-5 *6 (-1037)) (-5 *2 (-1011)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1063 (-817 (-371)))) - (-5 *5 (-1129)) (-5 *2 (-1009)) (-5 *1 (-551)))) + (|partial| -12 (-5 *3 (-309 (-373))) (-5 *4 (-1065 (-819 (-373)))) + (-5 *5 (-1131)) (-5 *2 (-1011)) (-5 *1 (-553)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-307 (-371))) (-5 *4 (-1063 (-817 (-371)))) - (-5 *5 (-1147)) (-5 *2 (-1009)) (-5 *1 (-551)))) + (|partial| -12 (-5 *3 (-309 (-373))) (-5 *4 (-1065 (-819 (-373)))) + (-5 *5 (-1149)) (-5 *2 (-1011)) (-5 *1 (-553)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) - (-5 *2 (-567 (-400 *5))) (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5)))) + (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) + (-5 *2 (-569 (-402 *5))) (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-145)) - (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) - (-5 *2 (-3 (-307 *5) (-620 (-307 *5)))) (-5 *1 (-572 *5)))) + (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) + (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) + (-5 *2 (-3 (-309 *5) (-622 (-309 *5)))) (-5 *1 (-574 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023)))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-719 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-825)) - (-4 *3 (-38 (-400 (-536)))))) + (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-827)) + (-4 *3 (-38 (-402 (-538)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1147)) (-5 *1 (-920 *3)) (-4 *3 (-38 (-400 (-536)))) - (-4 *3 (-1023)))) + (-12 (-5 *2 (-1149)) (-5 *1 (-922 *3)) (-4 *3 (-38 (-402 (-538)))) + (-4 *3 (-1025)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-4 *2 (-825)) - (-5 *1 (-1097 *3 *2 *4)) (-4 *4 (-924 *3 (-522 *2) *2)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-4 *2 (-827)) + (-5 *1 (-1099 *3 *2 *4)) (-4 *4 (-926 *3 (-524 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) - (-5 *1 (-1131 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) + (-5 *1 (-1133 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) - (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) + (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) - (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) + (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) - (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) + (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *1 (-1176 *3)) (-4 *3 (-38 (-400 (-536)))) - (-4 *3 (-1023)))) + (-12 (-5 *2 (-1149)) (-5 *1 (-1178 *3)) (-4 *3 (-38 (-402 (-538)))) + (-4 *3 (-1025)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) - (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3886 - (-12 (-5 *2 (-1147)) (-4 *1 (-1191 *3)) (-4 *3 (-1023)) - (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) - (-4 *3 (-38 (-400 (-536)))))) - (-12 (-5 *2 (-1147)) (-4 *1 (-1191 *3)) (-4 *3 (-1023)) - (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) - (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536)))))))) + (-3891 + (-12 (-5 *2 (-1149)) (-4 *1 (-1193 *3)) (-4 *3 (-1025)) + (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171)) + (-4 *3 (-38 (-402 (-538)))))) + (-12 (-5 *2 (-1149)) (-4 *1 (-1193 *3)) (-4 *3 (-1025)) + (-12 (|has| *3 (-15 -3417 ((-622 *2) *3))) + (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1191 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) + (-12 (-4 *1 (-1193 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) + (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) - (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5)) + (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3886 - (-12 (-5 *2 (-1147)) (-4 *1 (-1212 *3)) (-4 *3 (-1023)) - (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) - (-4 *3 (-38 (-400 (-536)))))) - (-12 (-5 *2 (-1147)) (-4 *1 (-1212 *3)) (-4 *3 (-1023)) - (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) - (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536)))))))) + (-3891 + (-12 (-5 *2 (-1149)) (-4 *1 (-1214 *3)) (-4 *3 (-1025)) + (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171)) + (-4 *3 (-38 (-402 (-538)))))) + (-12 (-5 *2 (-1149)) (-4 *1 (-1214 *3)) (-4 *3 (-1025)) + (-12 (|has| *3 (-15 -3417 ((-622 *2) *3))) + (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1212 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536)))))) + (-12 (-4 *1 (-1214 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) - (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5)) + (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3886 - (-12 (-5 *2 (-1147)) (-4 *1 (-1222 *3)) (-4 *3 (-1023)) - (-12 (-4 *3 (-29 (-536))) (-4 *3 (-934)) (-4 *3 (-1169)) - (-4 *3 (-38 (-400 (-536)))))) - (-12 (-5 *2 (-1147)) (-4 *1 (-1222 *3)) (-4 *3 (-1023)) - (-12 (|has| *3 (-15 -3412 ((-620 *2) *3))) - (|has| *3 (-15 -4167 (*3 *3 *2))) (-4 *3 (-38 (-400 (-536)))))))) + (-3891 + (-12 (-5 *2 (-1149)) (-4 *1 (-1224 *3)) (-4 *3 (-1025)) + (-12 (-4 *3 (-29 (-538))) (-4 *3 (-936)) (-4 *3 (-1171)) + (-4 *3 (-38 (-402 (-538)))))) + (-12 (-5 *2 (-1149)) (-4 *1 (-1224 *3)) (-4 *3 (-1025)) + (-12 (|has| *3 (-15 -3417 ((-622 *2) *3))) + (|has| *3 (-15 -4172 (*3 *3 *2))) (-4 *3 (-38 (-402 (-538)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1222 *2)) (-4 *2 (-1023)) (-4 *2 (-38 (-400 (-536))))))) + (-12 (-4 *1 (-1224 *2)) (-4 *2 (-1025)) (-4 *2 (-38 (-402 (-538))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1145 *4 *5 *6)) - (-4 *4 (-1023)) (-14 *5 (-1147)) (-14 *6 *4))) + (-12 (-5 *3 (-751)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1147 *4 *5 *6)) + (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1198 *5 *4)) (-5 *1 (-1219 *4 *5 *6)) - (-4 *4 (-1023)) (-14 *5 (-1147)) (-14 *6 *4)))) + (-12 (-5 *3 (-751)) (-5 *2 (-1200 *5 *4)) (-5 *1 (-1221 *4 *5 *6)) + (-4 *4 (-1025)) (-14 *5 (-1149)) (-14 *6 *4)))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1023)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1023)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) - ((*1 *1 *1) (-4 *1 (-227))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-259 *3)) (-4 *3 (-825)))) - ((*1 *1 *1) (-12 (-4 *1 (-259 *2)) (-4 *2 (-825)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751)))) + ((*1 *1 *1) (-4 *1 (-229))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-261 *3)) (-4 *3 (-827)))) + ((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-827)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) - (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) + (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) - (-4 *4 (-1205 *3)))) + (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) + (-4 *4 (-1207 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1205 *2)))) + (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1207 *2)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-466 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-468 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-356)) (-4 *2 (-874 *3)) (-5 *1 (-567 *2)) (-5 *3 (-1147)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-567 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) + (-12 (-4 *2 (-358)) (-4 *2 (-876 *3)) (-5 *1 (-569 *2)) (-5 *3 (-1149)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-569 *2)) (-4 *2 (-358)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 (-749))) (-4 *1 (-874 *4)) - (-4 *4 (-1072)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1072)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1072)))) + (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 (-751))) (-4 *1 (-876 *4)) + (-4 *4 (-1074)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1074)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1138 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1140 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1144 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1146 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1145 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1147 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1189 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1191 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1210 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1212 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1226 *4)) (-14 *4 (-1147)) (-5 *1 (-1219 *3 *4 *5)) - (-4 *3 (-1023)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + (-12 (-5 *2 (-1228 *4)) (-14 *4 (-1149)) (-5 *1 (-1221 *3 *4 *5)) + (-4 *3 (-1025)) (-14 *5 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2)))) + (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) + (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) + (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1219 *2 *3 *4)) (-4 *2 (-1023)) (-14 *3 (-1147)) (-14 *4 *2)))) + (-12 (-5 *1 (-1221 *2 *3 *4)) (-4 *2 (-1025)) (-14 *3 (-1149)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) + (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) + (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-1023)) (-5 *1 (-1131 *4)))) + (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-1025)) (-5 *1 (-1133 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-536)) (-5 *1 (-1219 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-1147)) + (-12 (-5 *2 (-538)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-1149)) (-14 *5 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-296)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-1009))) (-5 *2 (-1009)) (-5 *1 (-296)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1 *1) (-5 *1 (-1035))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1011)) (-5 *1 (-298)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-1011))) (-5 *2 (-1011)) (-5 *1 (-298)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1 *1) (-5 *1 (-1037))) ((*1 *2 *3) - (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1125 *4)) - (-4 *4 (-1183)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) + (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1127 *4)) + (-4 *4 (-1185)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) (((*1 *2 *1) - (-12 (-4 *1 (-586 *3 *2)) (-4 *3 (-1072)) (-4 *3 (-825)) (-4 *2 (-1183)))) - ((*1 *2 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *2 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *2 *1) (-12 (-4 *2 (-1183)) (-5 *1 (-847 *2 *3)) (-4 *3 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-650 *3)) (-5 *1 (-867 *3)) (-4 *3 (-825)))) + (-12 (-4 *1 (-588 *3 *2)) (-4 *3 (-1074)) (-4 *3 (-827)) (-4 *2 (-1185)))) + ((*1 *2 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) + ((*1 *2 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) + ((*1 *2 *1) (-12 (-4 *2 (-1185)) (-5 *1 (-849 *2 *3)) (-4 *3 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-652 *3)) (-5 *1 (-869 *3)) (-4 *3 (-827)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) - ((*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) + (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) + (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) + ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)))) + (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2)) + (-4 *5 (-367 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1183)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1183)))) + (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) + (-4 *5 (-367 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1185)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1185)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-620 (-536))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) - (-14 *4 (-536)) (-14 *5 (-749)))) + (-12 (-5 *3 (-622 (-538))) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) + (-14 *4 (-538)) (-14 *5 (-751)))) ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-749)))) + (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-751)))) ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-749)))) + (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-751)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-749)))) + (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-751)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-749)))) + (-12 (-5 *3 (-538)) (-4 *2 (-170)) (-5 *1 (-134 *4 *5 *2)) (-14 *4 *3) + (-14 *5 (-751)))) ((*1 *2 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-536)) (-14 *4 (-749)))) + (-12 (-4 *2 (-170)) (-5 *1 (-134 *3 *4 *2)) (-14 *3 (-538)) (-14 *4 (-751)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *2 (-1072)) (-5 *1 (-207 *4 *2)) (-14 *4 (-893)))) + (-12 (-5 *3 (-751)) (-4 *2 (-1074)) (-5 *1 (-209 *4 *2)) (-14 *4 (-895)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1147)) (-5 *2 (-239 (-1129))) (-5 *1 (-208 *4)) + (-12 (-5 *3 (-1149)) (-5 *2 (-241 (-1131))) (-5 *1 (-210 *4)) (-4 *4 - (-13 (-825) - (-10 -8 (-15 -4154 ((-1129) $ *3)) (-15 -3975 ((-1235) $)) - (-15 -2082 ((-1235) $))))))) + (-13 (-827) + (-10 -8 (-15 -4159 ((-1131) $ *3)) (-15 -3980 ((-1237) $)) + (-15 -2087 ((-1237) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-963)) (-5 *1 (-208 *3)) + (-12 (-5 *2 (-965)) (-5 *1 (-210 *3)) (-4 *3 - (-13 (-825) - (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 ((-1235) $)) - (-15 -2082 ((-1235) $))))))) + (-13 (-827) + (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 ((-1237) $)) + (-15 -2087 ((-1237) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-749)) (-5 *1 (-239 *4)) (-4 *4 (-825)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-239 *3)) (-4 *3 (-825)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-239 *3)) (-4 *3 (-825)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-279 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) + (-12 (-5 *3 "count") (-5 *2 (-751)) (-5 *1 (-241 *4)) (-4 *4 (-827)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-241 *3)) (-4 *3 (-827)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-241 *3)) (-4 *3 (-827)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) ((*1 *2 *1 *2) - (-12 (-4 *3 (-170)) (-5 *1 (-282 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1205 *3)) + (-12 (-4 *3 (-170)) (-5 *1 (-284 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1207 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 *1)) (-4 *1 (-291)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 *1)) (-4 *1 (-293)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1188)) (-4 *3 (-1205 *2)) - (-4 *4 (-1205 (-400 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-411 *2)) (-4 *2 (-170)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1129)) (-5 *1 (-493)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-51)) (-5 *1 (-612)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1072)))) + (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1207 *2)) + (-4 *4 (-1207 (-402 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-413 *2)) (-4 *2 (-170)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1131)) (-5 *1 (-495)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-51)) (-5 *1 (-614)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1074)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-620 (-536))) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) + (-12 (-5 *2 (-622 (-538))) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-620 (-864 *4))) (-5 *1 (-864 *4)) - (-4 *4 (-1072)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-878 *2)) (-4 *2 (-1072)))) + (-12 (-5 *2 (-113)) (-5 *3 (-622 (-866 *4))) (-5 *1 (-866 *4)) + (-4 *4 (-1074)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-880 *2)) (-4 *2 (-1074)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-876 *4)) (-5 *1 (-879 *4)) (-4 *4 (-1072)))) + (-12 (-5 *3 (-751)) (-5 *2 (-878 *4)) (-5 *1 (-881 *4)) (-4 *4 (-1074)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-233 *4 *2)) (-14 *4 (-893)) (-4 *2 (-356)) - (-5 *1 (-967 *4 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-984 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) + (-12 (-5 *3 (-235 *4 *2)) (-14 *4 (-895)) (-4 *2 (-358)) + (-5 *1 (-969 *4 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-986 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *2 (-1023)) - (-4 *6 (-232 *5 *2)) (-4 *7 (-232 *4 *2)))) + (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *2 (-1025)) + (-4 *6 (-234 *5 *2)) (-4 *7 (-234 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) - (-4 *7 (-232 *4 *2)) (-4 *2 (-1023)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-893)) (-4 *4 (-1072)) - (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) - (-5 *1 (-1046 *4 *5 *2)) - (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) + (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) + (-4 *7 (-234 *4 *2)) (-4 *2 (-1025)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-893)) (-4 *4 (-1072)) - (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) + (-12 (-5 *3 (-895)) (-4 *4 (-1074)) + (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) (-5 *1 (-1048 *4 *5 *2)) - (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) + (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-895)) (-4 *4 (-1074)) + (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) + (-5 *1 (-1050 *4 *5 *2)) + (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-536))) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) - (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)))) + (-12 (-5 *2 (-622 (-538))) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) + (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-536)) (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) - (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)))) - ((*1 *1 *1 *1) (-4 *1 (-1115))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147)))) + (-12 (-5 *2 (-538)) (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) + (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)))) + ((*1 *1 *1 *1) (-4 *1 (-1117))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-400 *1)) (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) + (-12 (-5 *3 (-402 *1)) (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-400 *1)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-4 *3 (-543)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825)))) + (-12 (-5 *2 (-402 *1)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-4 *3 (-545)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) + ((*1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827)))) + ((*1 *1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1178 *2 *3 *4 *5)) (-4 *2 (-543)) (-4 *3 (-771)) - (-4 *4 (-825)) (-4 *5 (-1037 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) - ((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1067)))) + (|partial| -12 (-4 *1 (-1180 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-773)) + (-4 *4 (-827)) (-4 *5 (-1039 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) + ((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1069)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1218 *3)) (-4 *3 (-1183)))) - ((*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) + (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) + (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1220 *3)) (-4 *3 (-1185)))) + ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) ((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) - ((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *2 (-1183)) (-5 *1 (-847 *3 *2)) (-4 *3 (-1183)))) - ((*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-1218 *3)) (-4 *3 (-1183)) (-5 *2 (-749))))) -(((*1 *1 *1) (-12 (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) + ((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *2 (-1185)) (-5 *1 (-849 *3 *2)) (-4 *3 (-1185)))) + ((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-1220 *3)) (-4 *3 (-1185)) (-5 *2 (-751))))) +(((*1 *1 *1) (-12 (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)))) + (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2)) + (-4 *5 (-367 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4349)) (-4 *1 (-119 *3)) - (-4 *3 (-1183)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) + (-4 *3 (-1185)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4349)) (-4 *1 (-119 *3)) (-4 *3 (-1183)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4354)) (-4 *1 (-119 *3)) (-4 *3 (-1185)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-207 *4 *2)) (-14 *4 (-893)) (-4 *2 (-1072)))) + (-12 (-5 *3 (-751)) (-5 *1 (-209 *4 *2)) (-14 *4 (-895)) (-4 *2 (-1074)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4349)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) - (-4 *2 (-1183)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1147)) (-5 *1 (-612)))) + (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) + (-4 *2 (-1185)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1149)) (-5 *1 (-614)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1196 (-536))) (|has| *1 (-6 -4349)) (-4 *1 (-629 *2)) - (-4 *2 (-1183)))) + (-12 (-5 *3 (-1198 (-538))) (|has| *1 (-6 -4354)) (-4 *1 (-631 *2)) + (-4 *2 (-1185)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-620 (-536))) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-622 (-538))) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4349)) (-4 *1 (-984 *2)) - (-4 *2 (-1183)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1160 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) + (-4 *2 (-1185)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) - (-4 *2 (-1183)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) + (-4 *2 (-1185)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *3)) - (-4 *3 (-1183)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) + (-4 *3 (-1185)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) - (-4 *2 (-1183))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1124 *3)) (-4 *3 (-1183)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-1218 *2)) (-4 *2 (-1183))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) + (-4 *2 (-1185))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1126 *3)) (-4 *3 (-1185)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-1220 *2)) (-4 *2 (-1185))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-536)) (|has| *1 (-6 -4349)) (-4 *1 (-1218 *3)) - (-4 *3 (-1183))))) + (-12 (-5 *2 (-538)) (|has| *1 (-6 -4354)) (-4 *1 (-1220 *3)) + (-4 *3 (-1185))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) - (-5 *2 (-817 *4)) (-5 *1 (-306 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) + (-5 *2 (-819 *4)) (-5 *1 (-308 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) - (-5 *2 (-817 *4)) (-5 *1 (-1216 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1169) (-414 *3))) (-14 *5 (-1147)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) + (-5 *2 (-819 *4)) (-5 *1 (-1218 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1171) (-416 *3))) (-14 *5 (-1149)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-825) (-1012 (-536)) (-619 (-536)) (-444))) + (|partial| -12 (-4 *3 (-13 (-827) (-1014 (-538)) (-621 (-538)) (-446))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1210 *4 *5 *6)) (|:| |%expon| (-312 *4 *5 *6)) - (|:| |%expTerms| (-620 (-2 (|:| |k| (-400 (-536))) (|:| |c| *4)))))) - (|:| |%type| (-1129)))) - (-5 *1 (-1216 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1169) (-414 *3))) - (-14 *5 (-1147)) (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) + (-2 (|:| |%coef| (-1212 *4 *5 *6)) (|:| |%expon| (-314 *4 *5 *6)) + (|:| |%expTerms| (-622 (-2 (|:| |k| (-402 (-538))) (|:| |c| *4)))))) + (|:| |%type| (-1131)))) + (-5 *1 (-1218 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1171) (-416 *3))) + (-14 *5 (-1149)) (-14 *6 *4)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) + (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-400 (-536))) - (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + (-12 (-5 *4 (-402 (-538))) + (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)))) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) + (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-5 *5 (-400 (-536))) - (-4 *3 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *6 *3)))) + (-12 (-5 *4 (-288 *3)) (-5 *5 (-402 (-538))) + (-4 *3 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-400 (-536)))) (-5 *4 (-286 *8)) - (-5 *5 (-1196 (-400 (-536)))) (-5 *6 (-400 (-536))) - (-4 *8 (-13 (-27) (-1169) (-414 *7))) - (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *7 *8)))) + (-12 (-5 *3 (-1 *8 (-402 (-538)))) (-5 *4 (-288 *8)) + (-5 *5 (-1198 (-402 (-538)))) (-5 *6 (-402 (-538))) + (-4 *8 (-13 (-27) (-1171) (-416 *7))) + (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-400 (-536)))) - (-5 *7 (-400 (-536))) (-4 *3 (-13 (-27) (-1169) (-414 *8))) - (-4 *8 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *8 *3)))) + (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-402 (-538)))) + (-5 *7 (-402 (-538))) (-4 *3 (-13 (-27) (-1171) (-416 *8))) + (-4 *8 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-400 (-536))) (-4 *4 (-1023)) (-4 *1 (-1214 *4 *3)) - (-4 *3 (-1191 *4))))) + (-12 (-5 *2 (-402 (-538))) (-4 *4 (-1025)) (-4 *1 (-1216 *4 *3)) + (-4 *3 (-1193 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1214 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1191 *3)) - (-5 *2 (-400 (-536)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3))))) + (-12 (-4 *1 (-1216 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1193 *3)) + (-5 *2 (-402 (-538)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) + (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-536)) (-4 *5 (-13 (-444) (-825) (-1012 *4) (-619 *4))) - (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + (-12 (-5 *4 (-538)) (-4 *5 (-13 (-446) (-827) (-1014 *4) (-621 *4))) + (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)))) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) + (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 *5) (-619 *5))) (-5 *5 (-536)) - (-5 *2 (-51)) (-5 *1 (-309 *6 *3)))) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-446) (-827) (-1014 *5) (-621 *5))) (-5 *5 (-538)) + (-5 *2 (-51)) (-5 *1 (-311 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-536))) - (-4 *7 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-538))) + (-4 *7 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-536))) - (-4 *3 (-13 (-27) (-1169) (-414 *7))) - (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *7 *3)))) + (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-538))) + (-4 *3 (-13 (-27) (-1171) (-416 *7))) + (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-536)) (-4 *4 (-1023)) (-4 *1 (-1193 *4 *3)) - (-4 *3 (-1222 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3))))) + (-12 (-5 *2 (-538)) (-4 *4 (-1025)) (-4 *1 (-1195 *4 *3)) + (-4 *3 (-1224 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1191 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)))) + (|partial| -12 (-4 *1 (-1216 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1193 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-893)) (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-4 *1 (-1212 *3)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-895)) (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-4 *1 (-1214 *3)) (-4 *3 (-1025))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-536)))) - (-4 *4 (-13 (-1205 *3) (-543) (-10 -8 (-15 -3490 ($ $ $))))) (-4 *3 (-543)) - (-5 *1 (-1209 *3 *4))))) + (|:| |xpnt| (-538)))) + (-4 *4 (-13 (-1207 *3) (-545) (-10 -8 (-15 -3495 ($ $ $))))) (-4 *3 (-545)) + (-5 *1 (-1211 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-924 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-444)))) + (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-446)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) - (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *1)))) - (-4 *1 (-1043 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1188))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) + (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *1)))) + (-4 *1 (-1045 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1190))) ((*1 *2 *2) - (-12 (-4 *3 (-543)) (-5 *1 (-1209 *3 *2)) - (-4 *2 (-13 (-1205 *3) (-543) (-10 -8 (-15 -3490 ($ $ $)))))))) + (-12 (-4 *3 (-545)) (-5 *1 (-1211 *3 *2)) + (-4 *2 (-13 (-1207 *3) (-545) (-10 -8 (-15 -3495 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)) - (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))))) + (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)) + (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4)))))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| -4308 *3) (|:| -4293 *4)))) (-5 *1 (-714 *3 *4)) - (-4 *3 (-1023)) (-4 *4 (-705)))) + (-12 (-5 *2 (-622 (-2 (|:| -4313 *3) (|:| -4298 *4)))) (-5 *1 (-716 *3 *4)) + (-4 *3 (-1025)) (-4 *4 (-707)))) ((*1 *2 *1) - (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) - (-5 *2 (-1124 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-235)))) + (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) + (-5 *2 (-1126 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-237)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-620 (-1129))) (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *1 (-235)))) - ((*1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) - ((*1 *2 *1) (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023))))) + (-12 (-5 *2 (-622 (-1131))) (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *1 (-237)))) + ((*1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) + ((*1 *2 *1) (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025))))) (((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) - (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) + (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) + (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) - (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-893)))) + (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) + (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-895)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4 *5 *6 *7)) (-4 *4 (-13 (-361) (-356))) - (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-4 *7 (-335 *4 *5 *6)) - (-5 *2 (-749)) (-5 *1 (-385 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-810 (-893))))) - ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) + (-12 (-5 *3 (-328 *4 *5 *6 *7)) (-4 *4 (-13 (-363) (-358))) + (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-4 *7 (-337 *4 *5 *6)) + (-5 *2 (-751)) (-5 *1 (-387 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-812 (-895))))) + ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) ((*1 *2 *1) - (-12 (-4 *3 (-543)) (-5 *2 (-536)) (-5 *1 (-603 *3 *4)) (-4 *4 (-1205 *3)))) + (-12 (-4 *3 (-545)) (-5 *2 (-538)) (-5 *1 (-605 *3 *4)) (-4 *4 (-1207 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-719 *4 *3)) (-4 *4 (-1023)) (-4 *3 (-825)))) + (-12 (-5 *2 (-751)) (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-719 *4 *3)) (-4 *4 (-1023)) (-4 *3 (-825)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) + (-12 (-4 *1 (-721 *4 *3)) (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) - (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) - (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-749)) - (-5 *1 (-885 *4 *5 *6 *7 *8)))) + (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4)) + (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) + (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-751)) + (-5 *1 (-887 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) - (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-1205 (-400 *4))) - (-4 *6 (-335 (-400 (-536)) *4 *5)) (-5 *2 (-749)) (-5 *1 (-886 *4 *5 *6)))) + (|partial| -12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6)) + (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-1207 (-402 *4))) + (-4 *6 (-337 (-402 (-538)) *4 *5)) (-5 *2 (-751)) (-5 *1 (-888 *4 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-356)) - (-4 *7 (-1205 *6)) (-4 *4 (-1205 (-400 *7))) (-4 *8 (-335 *6 *7 *4)) - (-4 *9 (-13 (-361) (-356))) (-5 *2 (-749)) (-5 *1 (-992 *6 *7 *4 *8 *9)))) + (-12 (-5 *3 (-328 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-358)) + (-4 *7 (-1207 *6)) (-4 *4 (-1207 (-402 *7))) (-4 *8 (-337 *6 *7 *4)) + (-4 *9 (-13 (-363) (-358))) (-5 *2 (-751)) (-5 *1 (-994 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-4 *3 (-543)) (-5 *2 (-749)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) - ((*1 *2 *1) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770))))) -(((*1 *1 *1) (-4 *1 (-1032))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770))))) + (-12 (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-4 *3 (-545)) (-5 *2 (-751)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))) +(((*1 *1 *1) (-4 *1 (-1034))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-400 (-536))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-536)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) + (-12 (-5 *2 (-402 (-538))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-538)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-400 (-536))) (-5 *1 (-845 *4)) (-14 *4 *3) (-5 *3 (-536)))) + (-12 (-5 *2 (-402 (-538))) (-5 *1 (-847 *4)) (-14 *4 *3) (-5 *3 (-538)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-400 (-536))) (-5 *1 (-846 *4 *5)) (-5 *3 (-536)) - (-4 *5 (-844 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-986)) (-5 *2 (-400 (-536))))) + (-12 (-14 *4 *3) (-5 *2 (-402 (-538))) (-5 *1 (-848 *4 *5)) (-5 *3 (-538)) + (-4 *5 (-846 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-988)) (-5 *2 (-402 (-538))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1040 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1205 *2)))) + (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1207 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1208 *2 *3)) (-4 *3 (-770)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -4312 (*2 (-1147)))) (-4 *2 (-1023))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-172 *3)) (-4 *3 (-300)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) + (-12 (-4 *1 (-1210 *2 *3)) (-4 *3 (-772)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -4317 (*2 (-1149)))) (-4 *2 (-1025))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-172 *3)) (-4 *3 (-302)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-654 *3)) (-4 *3 (-1185)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-719 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-825)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-954 *3)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-751)) (-4 *1 (-721 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-827)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-956 *3)) (-4 *3 (-1025)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) - (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) + (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) + (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) + (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) - (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) + (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *2 (-1037 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1208 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770))))) + (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *2 (-1039 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1210 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-400 *5)) (-4 *4 (-1188)) (-4 *5 (-1205 *4)) - (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1205 *3)))) + (-12 (-5 *3 (-402 *5)) (-4 *4 (-1190)) (-4 *5 (-1207 *4)) + (-5 *1 (-146 *4 *5 *2)) (-4 *2 (-1207 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1149 (-400 (-536)))) (-5 *2 (-400 (-536))) (-5 *1 (-184)))) + (-12 (-5 *3 (-1151 (-402 (-538)))) (-5 *2 (-402 (-538))) (-5 *1 (-186)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-667 (-307 (-219)))) (-5 *3 (-620 (-1147))) - (-5 *4 (-1229 (-307 (-219)))) (-5 *1 (-199)))) + (-12 (-5 *2 (-669 (-309 (-221)))) (-5 *3 (-622 (-1149))) + (-5 *4 (-1231 (-309 (-221)))) (-5 *1 (-201)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-286 *3))) (-4 *3 (-302 *3)) (-4 *3 (-1072)) - (-4 *3 (-1183)) (-5 *1 (-286 *3)))) + (-12 (-5 *2 (-622 (-288 *3))) (-4 *3 (-304 *3)) (-4 *3 (-1074)) + (-4 *3 (-1185)) (-5 *1 (-288 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-302 *2)) (-4 *2 (-1072)) (-4 *2 (-1183)) (-5 *1 (-286 *2)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) + (-12 (-4 *2 (-304 *2)) (-4 *2 (-1074)) (-4 *2 (-1185)) (-5 *1 (-288 *2)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-620 *1))) (-4 *1 (-291)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *1 (-622 *1))) (-4 *1 (-293)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-291)))) + (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-293)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 (-1 *1 *1))) (-4 *1 (-291)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1 *1 *1)) (-4 *1 (-291)))) + (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 (-1 *1 *1))) (-4 *1 (-293)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 *1)) (-4 *1 (-293)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-1 *1 (-620 *1))) (-4 *1 (-291)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-1 *1 (-622 *1))) (-4 *1 (-293)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-291)))) + (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-293)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-1 *1 *1))) (-4 *1 (-291)))) + (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-1 *1 *1))) (-4 *1 (-293)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-286 *3))) (-4 *1 (-302 *3)) (-4 *3 (-1072)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *1 (-302 *3)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-622 (-288 *3))) (-4 *1 (-304 *3)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-288 *3)) (-4 *1 (-304 *3)) (-4 *3 (-1074)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-536))) (-5 *4 (-1149 (-400 (-536)))) (-5 *1 (-303 *2)) - (-4 *2 (-38 (-400 (-536)))))) + (-12 (-5 *3 (-1 *2 (-538))) (-5 *4 (-1151 (-402 (-538)))) (-5 *1 (-305 *2)) + (-4 *2 (-38 (-402 (-538)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 *1)) (-4 *1 (-367 *4 *5)) (-4 *4 (-825)) + (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 *1)) (-4 *1 (-369 *4 *5)) (-4 *4 (-827)) (-4 *5 (-170)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-367 *2 *3)) (-4 *2 (-825)) (-4 *3 (-170)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-369 *2 *3)) (-4 *2 (-827)) (-4 *3 (-170)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *4 (-1 *1 *1)) (-4 *1 (-414 *5)) - (-4 *5 (-825)) (-4 *5 (-1023)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 *1)) (-4 *1 (-416 *5)) + (-4 *5 (-827)) (-4 *5 (-1025)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *4 (-1 *1 (-620 *1))) - (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *4 (-1 *1 (-622 *1))) + (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-749))) - (-5 *4 (-620 (-1 *1 (-620 *1)))) (-4 *1 (-414 *5)) (-4 *5 (-825)) - (-4 *5 (-1023)))) + (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-751))) + (-5 *4 (-622 (-1 *1 (-622 *1)))) (-4 *1 (-416 *5)) (-4 *5 (-827)) + (-4 *5 (-1025)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-620 (-749))) (-5 *4 (-620 (-1 *1 *1))) - (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-1023)))) + (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-622 (-751))) (-5 *4 (-622 (-1 *1 *1))) + (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-1025)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-620 (-113))) (-5 *3 (-620 *1)) (-5 *4 (-1147)) - (-4 *1 (-414 *5)) (-4 *5 (-825)) (-4 *5 (-596 (-525))))) + (-12 (-5 *2 (-622 (-113))) (-5 *3 (-622 *1)) (-5 *4 (-1149)) + (-4 *1 (-416 *5)) (-4 *5 (-827)) (-4 *5 (-598 (-527))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1147)) (-4 *1 (-414 *4)) (-4 *4 (-825)) - (-4 *4 (-596 (-525))))) - ((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-596 (-525))))) + (-12 (-5 *2 (-113)) (-5 *3 (-1149)) (-4 *1 (-416 *4)) (-4 *4 (-827)) + (-4 *4 (-598 (-527))))) + ((*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-598 (-527))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-1147))) (-4 *1 (-414 *3)) (-4 *3 (-825)) - (-4 *3 (-596 (-525))))) + (-12 (-5 *2 (-622 (-1149))) (-4 *1 (-416 *3)) (-4 *3 (-827)) + (-4 *3 (-598 (-527))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)) (-4 *3 (-596 (-525))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-505 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1183)))) + (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)) (-4 *3 (-598 (-527))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-507 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1185)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 *5)) (-4 *1 (-505 *4 *5)) (-4 *4 (-1072)) - (-4 *5 (-1183)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-810 *3)) (-4 *3 (-356)) (-5 *1 (-697 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-878 *2)) (-4 *2 (-1072)))) + (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 *5)) (-4 *1 (-507 *4 *5)) (-4 *4 (-1074)) + (-4 *5 (-1185)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-812 *3)) (-4 *3 (-358)) (-5 *1 (-699 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-880 *2)) (-4 *2 (-1074)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-400 (-920 *4))) (-5 *3 (-1147)) (-4 *4 (-543)) - (-5 *1 (-1014 *4)))) + (-12 (-5 *2 (-402 (-922 *4))) (-5 *3 (-1149)) (-4 *4 (-545)) + (-5 *1 (-1016 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-620 (-1147))) (-5 *4 (-620 (-400 (-920 *5)))) - (-5 *2 (-400 (-920 *5))) (-4 *5 (-543)) (-5 *1 (-1014 *5)))) + (-12 (-5 *3 (-622 (-1149))) (-5 *4 (-622 (-402 (-922 *5)))) + (-5 *2 (-402 (-922 *5))) (-4 *5 (-545)) (-5 *1 (-1016 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-286 (-400 (-920 *4)))) (-5 *2 (-400 (-920 *4))) (-4 *4 (-543)) - (-5 *1 (-1014 *4)))) + (-12 (-5 *3 (-288 (-402 (-922 *4)))) (-5 *2 (-402 (-922 *4))) (-4 *4 (-545)) + (-5 *1 (-1016 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-620 (-286 (-400 (-920 *4))))) (-5 *2 (-400 (-920 *4))) - (-4 *4 (-543)) (-5 *1 (-1014 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3)))) + (-12 (-5 *3 (-622 (-288 (-402 (-922 *4))))) (-5 *2 (-402 (-922 *4))) + (-4 *4 (-545)) (-5 *1 (-1016 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1208 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1124 *3))))) + (-12 (-4 *1 (-1210 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1126 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-1205 *4)) (-4 *4 (-1023)) (-5 *2 (-1229 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1205 *3)) (-4 *3 (-1023)) (-5 *2 (-1141 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-1023)) (-4 *1 (-1205 *3))))) + (-12 (-5 *3 (-751)) (-4 *1 (-1207 *4)) (-4 *4 (-1025)) (-5 *2 (-1231 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1207 *3)) (-4 *3 (-1025)) (-5 *2 (-1143 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-1025)) (-4 *1 (-1207 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023))))) + (|partial| -12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-924 *4 *5 *3)))) + (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) + (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-926 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1023)) (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) - (-4 *1 (-1205 *3))))) + (-12 (-4 *3 (-1025)) (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) + (-4 *1 (-1207 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-1023)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1205 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1205 *3)) (-4 *3 (-1023))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023))))) + (-12 (-5 *3 (-751)) (-4 *4 (-1025)) + (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1207 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1207 *3)) (-4 *3 (-1025))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025))))) (((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-163 *3 *2)) (-4 *3 (-164 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *2 *4)) (-4 *4 (-1205 *2)) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *2 *4)) (-4 *4 (-1207 *2)) (-4 *2 (-170)))) ((*1 *2) - (-12 (-4 *4 (-1205 *2)) (-4 *2 (-170)) (-5 *1 (-402 *3 *2 *4)) - (-4 *3 (-403 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-403 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) + (-12 (-4 *4 (-1207 *2)) (-4 *2 (-170)) (-5 *1 (-404 *3 *2 *4)) + (-4 *3 (-405 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-405 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170)))) ((*1 *2) - (-12 (-4 *3 (-1205 *2)) (-5 *2 (-536)) (-5 *1 (-746 *3 *4)) - (-4 *4 (-403 *2 *3)))) + (-12 (-4 *3 (-1207 *2)) (-5 *2 (-538)) (-5 *1 (-748 *3 *4)) + (-4 *4 (-405 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) + (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-170)))) - ((*1 *2 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-170))))) + ((*1 *2 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-170))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) + (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) (-4 *3 (-170)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-543)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-170))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-545)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-170))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-543)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-545)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-400 *1)) (-4 *1 (-1205 *3)) (-4 *3 (-1023)) - (-4 *3 (-543)))) + (|partial| -12 (-5 *2 (-402 *1)) (-4 *1 (-1207 *3)) (-4 *3 (-1025)) + (-4 *3 (-545)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1205 *2)) (-4 *2 (-1023)) (-4 *2 (-543))))) + (|partial| -12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1207 *2)) (-4 *2 (-1025)) (-4 *2 (-545))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -4308 *4) (|:| -2091 *3) (|:| -3230 *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4)))) + (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -4313 *4) (|:| -2096 *3) (|:| -3235 *3))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-1037 *3 *4 *5)))) + (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-1039 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-543)) (-4 *3 (-1023)) - (-5 *2 (-2 (|:| -4308 *3) (|:| -2091 *1) (|:| -3230 *1))) - (-4 *1 (-1205 *3))))) + (-12 (-4 *3 (-545)) (-4 *3 (-1025)) + (-5 *2 (-2 (|:| -4313 *3) (|:| -2096 *1) (|:| -3235 *1))) + (-4 *1 (-1207 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *4 (-543)) (-4 *5 (-1205 *4)) - (-5 *2 (-2 (|:| -1879 (-603 *4 *5)) (|:| -1878 (-400 *5)))) - (-5 *1 (-603 *4 *5)) (-5 *3 (-400 *5)))) + (-12 (-4 *4 (-358)) (-4 *4 (-545)) (-4 *5 (-1207 *4)) + (-5 *2 (-2 (|:| -1884 (-605 *4 *5)) (|:| -1883 (-402 *5)))) + (-5 *1 (-605 *4 *5)) (-5 *3 (-402 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) - (-4 *4 (-1023)))) + (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) + (-4 *4 (-1025)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-444)) (-4 *3 (-1023)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1205 *3))))) + (-12 (-4 *3 (-446)) (-4 *3 (-1025)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1207 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-1203 *4 *2)) - (-4 *2 (-1205 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-1205 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-1203 *3 *2)) (-4 *2 (-1205 *3))))) + (-12 (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-1205 *4 *2)) + (-4 *2 (-1207 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1207 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-1205 *3 *2)) (-4 *2 (-1207 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) - (-5 *1 (-1202 *4 *3)) (-4 *3 (-1205 *4))))) + (|partial| -12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) + (-5 *1 (-1204 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-543) (-145))) (-5 *2 (-620 *3)) (-5 *1 (-1201 *4 *3)) - (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-13 (-545) (-145))) (-5 *2 (-622 *3)) (-5 *1 (-1203 *4 *3)) + (-4 *3 (-1207 *4))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-543) (-145))) - (-5 *2 (-2 (|:| -3468 *3) (|:| -3467 *3))) (-5 *1 (-1201 *4 *3)) - (-4 *3 (-1205 *4))))) + (|partial| -12 (-4 *4 (-13 (-545) (-145))) + (-5 *2 (-2 (|:| -3473 *3) (|:| -3472 *3))) (-5 *1 (-1203 *4 *3)) + (-4 *3 (-1207 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1201 *3 *2)) - (-4 *2 (-1205 *3))))) + (|partial| -12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1203 *3 *2)) + (-4 *2 (-1207 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-543) (-145))) - (-5 *1 (-1201 *4 *2)) (-4 *2 (-1205 *4))))) + (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-545) (-145))) + (-5 *1 (-1203 *4 *2)) (-4 *2 (-1207 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-749)) (-4 *4 (-13 (-543) (-145))) - (-5 *1 (-1201 *4 *2)) (-4 *2 (-1205 *4))))) + (|partial| -12 (-5 *3 (-751)) (-4 *4 (-13 (-545) (-145))) + (-5 *1 (-1203 *4 *2)) (-4 *2 (-1207 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) + (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-140 *4 *5 *3)) - (-4 *3 (-365 *5)))) + (-4 *3 (-367 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-494 *4 *5 *6 *3)) - (-4 *6 (-365 *4)) (-4 *3 (-365 *5)))) + (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-496 *4 *5 *6 *3)) + (-4 *6 (-367 *4)) (-4 *3 (-367 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-543)) - (-5 *2 (-2 (|:| |num| (-667 *4)) (|:| |den| *4))) (-5 *1 (-671 *4 *5)))) + (-12 (-5 *3 (-669 *5)) (-4 *5 (-967 *4)) (-4 *4 (-545)) + (-5 *2 (-2 (|:| |num| (-669 *4)) (|:| |den| *4))) (-5 *1 (-673 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) - (-5 *2 (-2 (|:| -3612 *7) (|:| |rh| (-620 (-400 *6))))) - (-5 *1 (-785 *5 *6 *7 *3)) (-5 *4 (-620 (-400 *6))) (-4 *7 (-636 *6)) - (-4 *3 (-636 (-400 *6))))) + (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) + (-5 *2 (-2 (|:| -3617 *7) (|:| |rh| (-622 (-402 *6))))) + (-5 *1 (-787 *5 *6 *7 *3)) (-5 *4 (-622 (-402 *6))) (-4 *7 (-638 *6)) + (-4 *3 (-638 (-402 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1200 *4 *5 *3)) - (-4 *3 (-1205 *5))))) + (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1202 *4 *5 *3)) + (-4 *3 (-1207 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-543)) (-4 *4 (-965 *3)) (-5 *1 (-140 *3 *4 *2)) - (-4 *2 (-365 *4)))) + (-12 (-4 *3 (-545)) (-4 *4 (-967 *3)) (-5 *1 (-140 *3 *4 *2)) + (-4 *2 (-367 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-965 *4)) (-4 *2 (-365 *4)) - (-5 *1 (-494 *4 *5 *2 *3)) (-4 *3 (-365 *5)))) + (-12 (-4 *4 (-545)) (-4 *5 (-967 *4)) (-4 *2 (-367 *4)) + (-5 *1 (-496 *4 *5 *2 *3)) (-4 *3 (-367 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 *5)) (-4 *5 (-965 *4)) (-4 *4 (-543)) (-5 *2 (-667 *4)) - (-5 *1 (-671 *4 *5)))) + (-12 (-5 *3 (-669 *5)) (-4 *5 (-967 *4)) (-4 *4 (-545)) (-5 *2 (-669 *4)) + (-5 *1 (-673 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-543)) (-4 *4 (-965 *3)) (-5 *1 (-1200 *3 *4 *2)) - (-4 *2 (-1205 *4))))) + (-12 (-4 *3 (-545)) (-4 *4 (-967 *3)) (-5 *1 (-1202 *3 *4 *2)) + (-4 *2 (-1207 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-140 *2 *4 *3)) - (-4 *3 (-365 *4)))) + (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-140 *2 *4 *3)) + (-4 *3 (-367 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-494 *2 *4 *5 *3)) - (-4 *5 (-365 *2)) (-4 *3 (-365 *4)))) + (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-496 *2 *4 *5 *3)) + (-4 *5 (-367 *2)) (-4 *3 (-367 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 *4)) (-4 *4 (-965 *2)) (-4 *2 (-543)) - (-5 *1 (-671 *2 *4)))) + (-12 (-5 *3 (-669 *4)) (-4 *4 (-967 *2)) (-4 *2 (-545)) + (-5 *1 (-673 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-965 *2)) (-4 *2 (-543)) (-5 *1 (-1200 *2 *4 *3)) - (-4 *3 (-1205 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-759 *3)) (-4 *3 (-1023)))) + (-12 (-4 *4 (-967 *2)) (-4 *2 (-545)) (-5 *1 (-1202 *2 *4 *3)) + (-4 *3 (-1207 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-761 *3)) (-4 *3 (-1025)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-930 *3 *2)) (-4 *2 (-130)) (-4 *3 (-543)) (-4 *3 (-1023)) - (-4 *2 (-770)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-749)) (-5 *1 (-1141 *3)) (-4 *3 (-1023)))) + (-12 (-5 *1 (-932 *3 *2)) (-4 *2 (-130)) (-4 *3 (-545)) (-4 *3 (-1025)) + (-4 *2 (-772)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-751)) (-5 *1 (-1143 *3)) (-4 *3 (-1025)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-945)) (-4 *2 (-130)) (-5 *1 (-1149 *3)) (-4 *3 (-543)) - (-4 *3 (-1023)))) + (-12 (-5 *2 (-947)) (-4 *2 (-130)) (-5 *1 (-1151 *3)) (-4 *3 (-545)) + (-4 *3 (-1025)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1198 *4 *3)) (-14 *4 (-1147)) (-4 *3 (-1023))))) -(((*1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) - ((*1 *1 *2) (-12 (-5 *1 (-1196 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060 *3)) (-5 *1 (-1063 *3)) (-4 *3 (-1183)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183)))) - ((*1 *1 *2) (-12 (-5 *1 (-1196 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196 *3)) (-4 *3 (-1183))))) + (-12 (-5 *2 (-751)) (-5 *1 (-1200 *4 *3)) (-14 *4 (-1149)) (-4 *3 (-1025))))) +(((*1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) + ((*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-1062 *3)) (-5 *1 (-1065 *3)) (-4 *3 (-1185)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185)))) + ((*1 *1 *2) (-12 (-5 *1 (-1198 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1198 *3)) (-4 *3 (-1185))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |contp| (-536)) - (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) - (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) + (-2 (|:| |contp| (-538)) + (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) + (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 - (-2 (|:| |contp| (-536)) - (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) - (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536)))))) + (-2 (|:| |contp| (-538)) + (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) + (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538)))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) - (-4 *3 (-1205 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) + (-12 (-4 *4 (-345)) (-5 *2 (-400 *3)) (-5 *1 (-212 *4 *3)) + (-4 *3 (-1207 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1205 (-536))))) + (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-749))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1205 (-536))))) + (-12 (-5 *4 (-622 (-751))) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1205 (-536))))) + (-12 (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1205 (-536))))) + (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1207 (-538))))) ((*1 *2 *3) - (-12 (-5 *2 (-398 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1205 (-400 (-536)))))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536)))))) + (-12 (-5 *2 (-400 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1207 (-402 (-538)))))) + ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-48))) (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1205 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48))))) + (-12 (-5 *4 (-622 (-48))) (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1207 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-398 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-924 (-48) *6 *5)))) + (-12 (-5 *4 (-622 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-400 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-926 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-48))) (-4 *5 (-825)) (-4 *6 (-771)) - (-4 *7 (-924 (-48) *6 *5)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1141 *7)))) + (-12 (-5 *4 (-622 (-48))) (-4 *5 (-827)) (-4 *6 (-773)) + (-4 *7 (-926 (-48) *6 *5)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1143 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-165 *4 *3)) - (-4 *3 (-1205 (-166 *4))))) + (-12 (-4 *4 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-165 *4 *3)) + (-4 *3 (-1207 (-166 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) - (-4 *3 (-1205 (-166 *4))))) + (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) + (-4 *3 (-1207 (-166 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) - (-4 *3 (-1205 (-166 *4))))) + (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) + (-4 *3 (-1207 (-166 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-398 *3)) (-5 *1 (-210 *4 *3)) - (-4 *3 (-1205 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) + (-12 (-4 *4 (-345)) (-5 *2 (-400 *3)) (-5 *1 (-212 *4 *3)) + (-4 *3 (-1207 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1205 (-536))))) + (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-749))) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1205 (-536))))) + (-12 (-5 *4 (-622 (-751))) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-620 (-749))) (-5 *5 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1205 (-536))))) + (-12 (-5 *4 (-622 (-751))) (-5 *5 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-398 *3)) (-5 *1 (-434 *3)) - (-4 *3 (-1205 (-536))))) + (-12 (-5 *4 (-751)) (-5 *2 (-400 *3)) (-5 *1 (-436 *3)) + (-4 *3 (-1207 (-538))))) ((*1 *2 *3) - (-12 (-5 *2 (-398 (-166 (-536)))) (-5 *1 (-438)) (-5 *3 (-166 (-536))))) + (-12 (-5 *2 (-400 (-166 (-538)))) (-5 *1 (-440)) (-5 *3 (-166 (-538))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-825) - (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147)))))) - (-4 *5 (-771)) (-4 *7 (-543)) (-5 *2 (-398 *3)) - (-5 *1 (-448 *4 *5 *6 *7 *3)) (-4 *6 (-543)) (-4 *3 (-924 *7 *5 *4)))) + (-13 (-827) + (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149)))))) + (-4 *5 (-773)) (-4 *7 (-545)) (-5 *2 (-400 *3)) + (-5 *1 (-450 *4 *5 *6 *7 *3)) (-4 *6 (-545)) (-4 *3 (-926 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-300)) (-5 *2 (-398 (-1141 *4))) (-5 *1 (-450 *4)) - (-5 *3 (-1141 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) - (-4 *7 (-13 (-356) (-145) (-703 *5 *6))) (-5 *2 (-398 *3)) - (-5 *1 (-485 *5 *6 *7 *3)) (-4 *3 (-1205 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-398 (-1141 *7)) (-1141 *7))) (-4 *7 (-13 (-300) (-145))) - (-4 *5 (-825)) (-4 *6 (-771)) (-5 *2 (-398 *3)) (-5 *1 (-530 *5 *6 *7 *3)) - (-4 *3 (-924 *7 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-398 (-1141 *7)) (-1141 *7))) (-4 *7 (-13 (-300) (-145))) - (-4 *5 (-825)) (-4 *6 (-771)) (-4 *8 (-924 *7 *6 *5)) - (-5 *2 (-398 (-1141 *8))) (-5 *1 (-530 *5 *6 *7 *8)) (-5 *3 (-1141 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-620 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-4 *6 (-1205 *5)) (-5 *2 (-620 (-633 (-400 *6)))) (-5 *1 (-637 *5 *6)) - (-5 *3 (-633 (-400 *6))))) + (-12 (-4 *4 (-302)) (-5 *2 (-400 (-1143 *4))) (-5 *1 (-452 *4)) + (-5 *3 (-1143 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) + (-4 *7 (-13 (-358) (-145) (-705 *5 *6))) (-5 *2 (-400 *3)) + (-5 *1 (-487 *5 *6 *7 *3)) (-4 *3 (-1207 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-400 (-1143 *7)) (-1143 *7))) (-4 *7 (-13 (-302) (-145))) + (-4 *5 (-827)) (-4 *6 (-773)) (-5 *2 (-400 *3)) (-5 *1 (-532 *5 *6 *7 *3)) + (-4 *3 (-926 *7 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-400 (-1143 *7)) (-1143 *7))) (-4 *7 (-13 (-302) (-145))) + (-4 *5 (-827)) (-4 *6 (-773)) (-4 *8 (-926 *7 *6 *5)) + (-5 *2 (-400 (-1143 *8))) (-5 *1 (-532 *5 *6 *7 *8)) (-5 *3 (-1143 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-622 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-4 *6 (-1207 *5)) (-5 *2 (-622 (-635 (-402 *6)))) (-5 *1 (-639 *5 *6)) + (-5 *3 (-635 (-402 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-4 *5 (-1205 *4)) (-5 *2 (-620 (-633 (-400 *5)))) (-5 *1 (-637 *4 *5)) - (-5 *3 (-633 (-400 *5))))) + (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-4 *5 (-1207 *4)) (-5 *2 (-622 (-635 (-402 *5)))) (-5 *1 (-639 *4 *5)) + (-5 *3 (-635 (-402 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-620 (-650 *4))) - (-5 *1 (-650 *4)))) + (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-622 (-652 *4))) + (-5 *1 (-652 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-536)) (-5 *2 (-620 *3)) (-5 *1 (-674 *3)) (-4 *3 (-1205 *4)))) + (-12 (-5 *4 (-538)) (-5 *2 (-622 *3)) (-5 *1 (-676 *3)) (-4 *3 (-1207 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-343)) (-5 *2 (-398 *3)) - (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4)))) + (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-345)) (-5 *2 (-400 *3)) + (-5 *1 (-678 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-343)) (-4 *7 (-924 *6 *5 *4)) - (-5 *2 (-398 (-1141 *7))) (-5 *1 (-676 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) + (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-345)) (-4 *7 (-926 *6 *5 *4)) + (-5 *2 (-400 (-1143 *7))) (-5 *1 (-678 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-771)) + (-12 (-4 *4 (-773)) (-4 *5 - (-13 (-825) - (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ "failed") (-1147)))))) - (-4 *6 (-300)) (-5 *2 (-398 *3)) (-5 *1 (-709 *4 *5 *6 *3)) - (-4 *3 (-924 (-920 *6) *4 *5)))) + (-13 (-827) + (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ "failed") (-1149)))))) + (-4 *6 (-302)) (-5 *2 (-400 *3)) (-5 *1 (-711 *4 *5 *6 *3)) + (-4 *3 (-926 (-922 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) - (-4 *6 (-543)) (-5 *2 (-398 *3)) (-5 *1 (-711 *4 *5 *6 *3)) - (-4 *3 (-924 (-400 (-920 *6)) *4 *5)))) + (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) + (-4 *6 (-545)) (-5 *2 (-400 *3)) (-5 *1 (-713 *4 *5 *6 *3)) + (-4 *3 (-926 (-402 (-922 *6)) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-13 (-300) (-145))) - (-5 *2 (-398 *3)) (-5 *1 (-712 *4 *5 *6 *3)) - (-4 *3 (-924 (-400 *6) *4 *5)))) + (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-13 (-302) (-145))) + (-5 *2 (-400 *3)) (-5 *1 (-714 *4 *5 *6 *3)) + (-4 *3 (-926 (-402 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) - (-5 *2 (-398 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-924 *6 *5 *4)))) + (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) + (-5 *2 (-400 *3)) (-5 *1 (-722 *4 *5 *6 *3)) (-4 *3 (-926 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-825)) (-4 *5 (-771)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-924 *6 *5 *4)) (-5 *2 (-398 (-1141 *7))) (-5 *1 (-720 *4 *5 *6 *7)) - (-5 *3 (-1141 *7)))) + (-12 (-4 *4 (-827)) (-4 *5 (-773)) (-4 *6 (-13 (-302) (-145))) + (-4 *7 (-926 *6 *5 *4)) (-5 *2 (-400 (-1143 *7))) (-5 *1 (-722 *4 *5 *6 *7)) + (-5 *3 (-1143 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-398 *3)) (-5 *1 (-981 *3)) (-4 *3 (-1205 (-400 (-536)))))) + (-12 (-5 *2 (-400 *3)) (-5 *1 (-983 *3)) (-4 *3 (-1207 (-402 (-538)))))) ((*1 *2 *3) - (-12 (-5 *2 (-398 *3)) (-5 *1 (-1016 *3)) - (-4 *3 (-1205 (-400 (-920 (-536))))))) + (-12 (-5 *2 (-400 *3)) (-5 *1 (-1018 *3)) + (-4 *3 (-1207 (-402 (-922 (-538))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1205 (-400 (-536)))) - (-4 *5 (-13 (-356) (-145) (-703 (-400 (-536)) *4))) (-5 *2 (-398 *3)) - (-5 *1 (-1051 *4 *5 *3)) (-4 *3 (-1205 *5)))) + (-12 (-4 *4 (-1207 (-402 (-538)))) + (-4 *5 (-13 (-358) (-145) (-705 (-402 (-538)) *4))) (-5 *2 (-400 *3)) + (-5 *1 (-1053 *4 *5 *3)) (-4 *3 (-1207 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1205 (-400 (-920 (-536))))) - (-4 *5 (-13 (-356) (-145) (-703 (-400 (-920 (-536))) *4))) (-5 *2 (-398 *3)) - (-5 *1 (-1052 *4 *5 *3)) (-4 *3 (-1205 *5)))) + (-12 (-4 *4 (-1207 (-402 (-922 (-538))))) + (-4 *5 (-13 (-358) (-145) (-705 (-402 (-922 (-538))) *4))) (-5 *2 (-400 *3)) + (-5 *1 (-1054 *4 *5 *3)) (-4 *3 (-1207 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-444)) (-4 *7 (-924 *6 *4 *5)) - (-5 *2 (-398 (-1141 (-400 *7)))) (-5 *1 (-1143 *4 *5 *6 *7)) - (-5 *3 (-1141 (-400 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-398 *1)) (-4 *1 (-1188)))) - ((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-1195 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-536)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-845 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-845 *2)) (-14 *2 (-536)))) + (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-446)) (-4 *7 (-926 *6 *4 *5)) + (-5 *2 (-400 (-1143 (-402 *7)))) (-5 *1 (-1145 *4 *5 *6 *7)) + (-5 *3 (-1143 (-402 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-400 *1)) (-4 *1 (-1190)))) + ((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-1197 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-538)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-847 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-14 *2 (-538)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-536)) (-14 *3 *2) (-5 *1 (-846 *3 *4)) (-4 *4 (-844 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-536)) (-5 *1 (-846 *2 *3)) (-4 *3 (-844 *2)))) + (-12 (-5 *2 (-538)) (-14 *3 *2) (-5 *1 (-848 *3 *4)) (-4 *4 (-846 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-538)) (-5 *1 (-848 *2 *3)) (-4 *3 (-846 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-536)) (-4 *1 (-1193 *3 *4)) (-4 *3 (-1023)) - (-4 *4 (-1222 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1193 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-1222 *2))))) + (-12 (-5 *2 (-538)) (-4 *1 (-1195 *3 *4)) (-4 *3 (-1025)) + (-4 *4 (-1224 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1195 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-1224 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-51)) (-5 *1 (-309 *4 *5)) (-4 *5 (-13 (-27) (-1169) (-414 *4))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-51)) (-5 *1 (-311 *4 *5)) (-4 *5 (-13 (-27) (-1171) (-416 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) + (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-51)) (-5 *1 (-309 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + (-12 (-5 *4 (-751)) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-51)) (-5 *1 (-311 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *5 *3)))) + (-12 (-5 *4 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) + (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-286 *3)) (-5 *5 (-749)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-309 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-536))) (-5 *4 (-286 *6)) - (-4 *6 (-13 (-27) (-1169) (-414 *5))) - (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *5 *6)))) + (-12 (-5 *4 (-288 *3)) (-5 *5 (-751)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-311 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-538))) (-5 *4 (-288 *6)) + (-4 *6 (-13 (-27) (-1171) (-416 *5))) + (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *6 *3)))) + (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-536))) (-5 *4 (-286 *7)) (-5 *5 (-1196 (-749))) - (-4 *7 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *6 *7)))) + (-12 (-5 *3 (-1 *7 (-538))) (-5 *4 (-288 *7)) (-5 *5 (-1198 (-751))) + (-4 *7 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1147)) (-5 *5 (-286 *3)) (-5 *6 (-1196 (-749))) - (-4 *3 (-13 (-27) (-1169) (-414 *7))) - (-4 *7 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-51)) - (-5 *1 (-451 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3))))) + (-12 (-5 *4 (-1149)) (-5 *5 (-288 *3)) (-5 *6 (-1198 (-751))) + (-4 *3 (-13 (-27) (-1171) (-416 *7))) + (-4 *7 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-51)) + (-5 *1 (-453 *7 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1193 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1222 *3))))) + (|partial| -12 (-4 *1 (-1195 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1224 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-1191 *4)) (-4 *4 (-1023)) (-4 *4 (-543)) - (-5 *2 (-400 (-920 *4))))) + (-12 (-5 *3 (-538)) (-4 *1 (-1193 *4)) (-4 *4 (-1025)) (-4 *4 (-545)) + (-5 *2 (-402 (-922 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-1191 *4)) (-4 *4 (-1023)) (-4 *4 (-543)) - (-5 *2 (-400 (-920 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-166 (-536))) (-5 *2 (-112)) (-5 *1 (-438)))) + (-12 (-5 *3 (-538)) (-4 *1 (-1193 *4)) (-4 *4 (-1025)) (-4 *4 (-545)) + (-5 *2 (-402 (-922 *4)))))) +(((*1 *2 *3) (-12 (-5 *3 (-166 (-538))) (-5 *2 (-112)) (-5 *1 (-440)))) ((*1 *2 *3) (-12 (-5 *3 - (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) - (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) - (-5 *1 (-496 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-936 *3)) (-4 *3 (-535)))) - ((*1 *2 *1) (-12 (-4 *1 (-1188)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1186))))) + (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) + (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) + (-5 *1 (-498 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-938 *3)) (-4 *3 (-537)))) + ((*1 *2 *1) (-12 (-4 *1 (-1190)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1188))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3574 (-620 (-1147))) (|:| -3575 (-620 (-1147))))) - (-5 *1 (-1186))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1186)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1186))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) + (-12 (-5 *2 (-2 (|:| -3579 (-622 (-1149))) (|:| -3580 (-622 (-1149))))) + (-5 *1 (-1188))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1188))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-825)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-827)) (-4 *3 (-1074))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1185 *2)) - (-4 *2 (-1072)))) + (-12 (-5 *3 (-622 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1187 *2)) + (-4 *2 (-1074)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-825)) (-5 *1 (-1185 *2))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112)))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-827)) (-5 *1 (-1187 *2))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1185 *3)) (-4 *3 (-1072)))) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1187 *3)) (-4 *3 (-1074)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1072)) (-5 *2 (-112)) - (-5 *1 (-1185 *3))))) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1074)) (-5 *2 (-112)) + (-5 *1 (-1187 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3575 (-620 *3)) (|:| -3574 (-620 *3)))) - (-5 *1 (-1185 *3)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-2 (|:| -3580 (-622 *3)) (|:| -3579 (-622 *3)))) + (-5 *1 (-1187 *3)) (-4 *3 (-1074))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-5 *2 (-1235)) (-5 *1 (-1185 *4)))) + (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-5 *2 (-1237)) (-5 *1 (-1187 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-5 *2 (-1235)) (-5 *1 (-1185 *4))))) + (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-5 *2 (-1237)) (-5 *1 (-1187 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-536)) (-4 *5 (-343)) (-5 *2 (-398 (-1141 (-1141 *5)))) - (-5 *1 (-1182 *5)) (-5 *3 (-1141 (-1141 *5)))))) + (-12 (-5 *4 (-538)) (-4 *5 (-345)) (-5 *2 (-400 (-1143 (-1143 *5)))) + (-5 *1 (-1184 *5)) (-5 *3 (-1143 (-1143 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1141 (-1141 *4)))) (-5 *1 (-1182 *4)) - (-5 *3 (-1141 (-1141 *4)))))) + (-12 (-4 *4 (-345)) (-5 *2 (-400 (-1143 (-1143 *4)))) (-5 *1 (-1184 *4)) + (-5 *3 (-1143 (-1143 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-398 (-1141 (-1141 *4)))) (-5 *1 (-1182 *4)) - (-5 *3 (-1141 (-1141 *4)))))) + (-12 (-4 *4 (-345)) (-5 *2 (-400 (-1143 (-1143 *4)))) (-5 *1 (-1184 *4)) + (-5 *3 (-1143 (-1143 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *3)) - (-4 *3 (-1183)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) + (-4 *3 (-1185)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1185)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1178 *4 *5 *3 *2)) (-4 *4 (-543)) (-4 *5 (-771)) - (-4 *3 (-825)) (-4 *2 (-1037 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-1181 *2)) (-4 *2 (-1183))))) + (|partial| -12 (-4 *1 (-1180 *4 *5 *3 *2)) (-4 *4 (-545)) (-4 *5 (-773)) + (-4 *3 (-827)) (-4 *2 (-1039 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-1183 *2)) (-4 *2 (-1185))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-620 (-620 (-219)))) (-5 *4 (-219)) (-5 *2 (-620 (-917 *4))) - (-5 *1 (-1180)) (-5 *3 (-917 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *2 (-620 (-620 (-219)))) (-5 *1 (-1180))))) + (-12 (-5 *5 (-622 (-622 (-221)))) (-5 *4 (-221)) (-5 *2 (-622 (-919 *4))) + (-5 *1 (-1182)) (-5 *3 (-919 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *2 (-622 (-622 (-221)))) (-5 *1 (-1182))))) (((*1 *1 *2) - (-12 (-5 *2 (-893)) (-4 *1 (-232 *3 *4)) (-4 *4 (-1023)) (-4 *4 (-1183)))) + (-12 (-5 *2 (-895)) (-4 *1 (-234 *3 *4)) (-4 *4 (-1025)) (-4 *4 (-1185)))) ((*1 *1 *2) - (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *5 (-232 (-4311 *3) (-749))) + (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-4316 *3) (-751))) (-14 *6 - (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *5)) - (-2 (|:| -2487 *2) (|:| -2488 *5)))) - (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) (-4 *2 (-825)) - (-4 *7 (-924 *4 *5 (-839 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180))))) + (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *5)) + (-2 (|:| -2492 *2) (|:| -2493 *5)))) + (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) (-4 *2 (-827)) + (-4 *7 (-926 *4 *5 (-841 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *2 (-1235)) (-5 *1 (-460)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-954 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-917 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-917 *3)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *2 (-1237)) (-5 *1 (-462)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-956 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-919 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-919 *3)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-917 (-219))) (-5 *1 (-1180)) (-5 *3 (-219))))) + (-12 (-5 *2 (-919 (-221))) (-5 *1 (-1182)) (-5 *3 (-221))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-219)) (-5 *5 (-536)) (-5 *2 (-1179 *3)) (-5 *1 (-768 *3)) - (-4 *3 (-948)))) + (-12 (-5 *4 (-221)) (-5 *5 (-538)) (-5 *2 (-1181 *3)) (-5 *1 (-770 *3)) + (-4 *3 (-950)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *4 (-112)) (-5 *1 (-1179 *2)) - (-4 *2 (-948))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948))))) + (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *4 (-112)) (-5 *1 (-1181 *2)) + (-4 *2 (-950))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1179 *3)) (-4 *3 (-948))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181 *3)) (-4 *3 (-950))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-1179 *3)) (-4 *3 (-948))))) -(((*1 *2 *1) (-12 (-5 *1 (-1179 *2)) (-4 *2 (-948))))) + (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-1181 *3)) (-4 *3 (-950))))) +(((*1 *2 *1) (-12 (-5 *1 (-1181 *2)) (-4 *2 (-950))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) (-4 *8 (-825)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3678 (-620 *9)))) (-5 *3 (-620 *9)) - (-4 *1 (-1178 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1037 *5 *6 *7)) - (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3678 (-620 *8)))) (-5 *3 (-620 *8)) - (-4 *1 (-1178 *5 *6 *7 *8))))) + (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) (-4 *8 (-827)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3683 (-622 *9)))) (-5 *3 (-622 *9)) + (-4 *1 (-1180 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1039 *5 *6 *7)) + (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3683 (-622 *8)))) (-5 *3 (-622 *8)) + (-4 *1 (-1180 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *6))))) + (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) - (-5 *2 (-2 (|:| -4216 (-620 *6)) (|:| -1813 (-620 *6))))))) + (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) + (-5 *2 (-2 (|:| -4221 (-622 *6)) (|:| -1818 (-622 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1178 *5 *6 *7 *3)) (-4 *5 (-543)) - (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) (-5 *2 (-112))))) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1180 *5 *6 *7 *3)) (-4 *5 (-545)) + (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-620 *1)) (-4 *1 (-1037 *4 *5 *6)) (-4 *4 (-1023)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)))) + (-12 (-5 *3 (-622 *1)) (-4 *1 (-1039 *4 *5 *6)) (-4 *4 (-1025)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1178 *4 *5 *6 *3)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1180 *4 *5 *6 *3)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-620 *7))) (-4 *1 (-1178 *4 *5 *6 *7)) - (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) + (-12 (-5 *3 (-1 (-112) *7 (-622 *7))) (-4 *1 (-1180 *4 *5 *6 *7)) + (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-620 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) - (-4 *1 (-1178 *5 *6 *7 *8)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-1037 *5 *6 *7))))) + (-12 (-5 *2 (-622 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) + (-4 *1 (-1180 *5 *6 *7 *8)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) + (-4 *8 (-1039 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *2 (-1037 *3 *4 *5))))) + (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *2 (-1039 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *2 (-1037 *3 *4 *5))))) + (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *2 (-1039 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *2 (-1037 *3 *4 *5))))) + (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *2 (-1039 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *2 (-1037 *3 *4 *5))))) + (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *2 (-1039 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1178 *2 *3 *4 *5)) (-4 *2 (-543)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *5 (-1037 *2 *3 *4))))) + (-12 (-4 *1 (-1180 *2 *3 *4 *5)) (-4 *2 (-545)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *5 (-1039 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *2 (-1037 *3 *4 *5))))) + (-12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *2 (-1039 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 *10)) - (-5 *1 (-604 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1043 *5 *6 *7 *8)) - (-4 *10 (-1080 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-608 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-620 (-1147))) - (-5 *2 (-620 (-1117 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) - (-5 *1 (-608 *5 *6)))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 *10)) + (-5 *1 (-606 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1045 *5 *6 *7 *8)) + (-4 *10 (-1082 *5 *6 *7 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) + (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-610 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) + (-14 *6 (-622 (-1149))) + (-5 *2 (-622 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) + (-5 *1 (-610 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) - (-5 *1 (-1001 *5 *6 *7 *8)))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8))) + (-5 *1 (-1003 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) - (-5 *1 (-1001 *5 *6 *7 *8)))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8))) + (-5 *1 (-1003 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-1020 *5 *6)))) + (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) + (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-1022 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 *1)) - (-4 *1 (-1043 *5 *6 *7 *8)))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 *1)) + (-4 *1 (-1045 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) - (-5 *1 (-1117 *5 *6 *7 *8)))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8))) + (-5 *1 (-1119 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) - (-5 *1 (-1117 *5 *6 *7 *8)))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8))) + (-5 *1 (-1119 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1178 *4 *5 *6 *7))))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1180 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-620 (-2 (|:| -4216 *1) (|:| -1813 (-620 *7))))) (-5 *3 (-620 *7)) - (-4 *1 (-1178 *4 *5 *6 *7))))) + (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-622 (-2 (|:| -4221 *1) (|:| -1818 (-622 *7))))) (-5 *3 (-622 *7)) + (-4 *1 (-1180 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5))))) + (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1178 *3 *4 *5 *2)) (-4 *3 (-543)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *2 (-1037 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1180 *3 *4 *5 *2)) (-4 *3 (-545)) (-4 *4 (-773)) + (-4 *5 (-827)) (-4 *2 (-1039 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1178 *3 *4 *5 *6)) (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-4 *5 (-361)) (-5 *2 (-749))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) + (-12 (-4 *1 (-1180 *3 *4 *5 *6)) (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-4 *5 (-363)) (-5 *2 (-751))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-1023)) (-5 *1 (-50 *2 *3)) (-14 *3 (-620 (-1147))))) + (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-622 (-1149))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-620 (-893))) (-4 *2 (-356)) (-5 *1 (-150 *4 *2 *5)) - (-14 *4 (-893)) (-14 *5 (-967 *4 *2)))) + (-12 (-5 *3 (-622 (-895))) (-4 *2 (-358)) (-5 *1 (-150 *4 *2 *5)) + (-14 *4 (-895)) (-14 *5 (-969 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) - (-14 *4 (-620 (-1147))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-316 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-130)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1023)))) + (-12 (-5 *2 (-309 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) + (-14 *4 (-622 (-1149))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-318 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-130)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1025)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *2 (-543)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1205 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1023)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1023)) (-5 *1 (-714 *2 *3)) (-4 *3 (-705)))) + (-12 (-5 *3 (-538)) (-4 *2 (-545)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1207 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-707)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 *5)) (-5 *3 (-620 (-749))) (-4 *1 (-719 *4 *5)) - (-4 *4 (-1023)) (-4 *5 (-825)))) + (-12 (-5 *2 (-622 *5)) (-5 *3 (-622 (-751))) (-4 *1 (-721 *4 *5)) + (-4 *4 (-1025)) (-4 *5 (-827)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1023)) (-4 *2 (-825)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1023)))) + (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 (-749))) (-4 *1 (-924 *4 *5 *6)) - (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)))) + (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 (-751))) (-4 *1 (-926 *4 *5 *6)) + (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-924 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-771)) - (-4 *2 (-825)))) + (-12 (-5 *3 (-751)) (-4 *1 (-926 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773)) + (-4 *2 (-827)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-4 *2 (-924 *4 (-522 *5) *5)) (-5 *1 (-1097 *4 *5 *2)) - (-4 *4 (-1023)) (-4 *5 (-825)))) + (-12 (-5 *3 (-751)) (-4 *2 (-926 *4 (-524 *5) *5)) (-5 *1 (-1099 *4 *5 *2)) + (-4 *4 (-1025)) (-4 *5 (-827)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-920 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1023))))) + (-12 (-5 *3 (-751)) (-5 *2 (-922 *4)) (-5 *1 (-1178 *4)) (-4 *4 (-1025))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1097 *4 *3 *5))) (-4 *4 (-38 (-400 (-536)))) - (-4 *4 (-1023)) (-4 *3 (-825)) (-5 *1 (-1097 *4 *3 *5)) - (-4 *5 (-924 *4 (-522 *3) *3)))) + (-12 (-5 *2 (-1 (-1099 *4 *3 *5))) (-4 *4 (-38 (-402 (-538)))) + (-4 *4 (-1025)) (-4 *3 (-827)) (-5 *1 (-1099 *4 *3 *5)) + (-4 *5 (-926 *4 (-524 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1176 *4))) (-5 *3 (-1147)) (-5 *1 (-1176 *4)) - (-4 *4 (-38 (-400 (-536)))) (-4 *4 (-1023))))) + (-12 (-5 *2 (-1 (-1178 *4))) (-5 *3 (-1149)) (-5 *1 (-1178 *4)) + (-4 *4 (-38 (-402 (-538)))) (-4 *4 (-1025))))) (((*1 *2 *2) - (-12 (-4 *3 (-596 (-864 *3))) (-4 *3 (-860 *3)) (-4 *3 (-13 (-825) (-444))) - (-5 *1 (-1175 *3 *2)) (-4 *2 (-596 (-864 *3))) (-4 *2 (-860 *3)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-598 (-866 *3))) (-4 *3 (-862 *3)) (-4 *3 (-13 (-827) (-446))) + (-5 *1 (-1177 *3 *2)) (-4 *2 (-598 (-866 *3))) (-4 *2 (-862 *3)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *1 *1) - (-12 (-4 *2 (-145)) (-4 *2 (-300)) (-4 *2 (-444)) (-4 *3 (-825)) - (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) (-4 *5 (-924 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-307 (-536))) (-5 *1 (-1090)))) + (-12 (-4 *2 (-145)) (-4 *2 (-302)) (-4 *2 (-446)) (-4 *3 (-827)) + (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5)) (-4 *5 (-926 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-309 (-538))) (-5 *1 (-1092)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-444))) (-5 *1 (-1175 *3 *2)) - (-4 *2 (-13 (-414 *3) (-1169)))))) + (-12 (-4 *3 (-13 (-827) (-446))) (-5 *1 (-1177 *3 *2)) + (-4 *2 (-13 (-416 *3) (-1171)))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-543)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1174 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) + (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-543)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1174 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) + (-12 (-4 *3 (-545)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1176 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-166 (-307 *4))) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) + (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-166 (-309 *4))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-166 *3)) (-5 *1 (-1173 *4 *3)) - (-4 *3 (-13 (-27) (-1169) (-414 *4)))))) + (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-166 *3)) (-5 *1 (-1175 *4 *3)) + (-4 *3 (-13 (-27) (-1171) (-416 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-112)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) + (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-112)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-112)) - (-5 *1 (-1173 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4)))))) + (-12 (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-112)) + (-5 *1 (-1175 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4)))))) (((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-307 *4)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) + (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-309 *4)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3)))))) + (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3)))))) (((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-307 *4)) - (-5 *1 (-182 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 (-166 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) + (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-309 *4)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 (-166 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3)))))) + (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3)))))) + (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3)))))) + (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3)))))) + (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) - (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *4)))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) + (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) + (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-1173 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4)))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)))) (-5 *1 (-182 *3 *2)) - (-4 *2 (-13 (-27) (-1169) (-414 (-166 *3)))))) + (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-13 (-27) (-1171) (-416 (-166 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) - (-5 *1 (-182 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 (-166 *4)))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) + (-5 *1 (-184 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 (-166 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-1173 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) + (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-1175 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-1173 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4)))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-1175 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) (-4 *1 (-1172)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) + ((*1 *1 *1) (-4 *1 (-1174)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) (-4 *1 (-1172)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) + ((*1 *1 *1) (-4 *1 (-1174)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) (-4 *1 (-1172)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) + ((*1 *1 *1) (-4 *1 (-1174)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) (-4 *1 (-1172)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) + ((*1 *1 *1) (-4 *1 (-1174)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) (-4 *1 (-1172)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) + ((*1 *1 *1) (-4 *1 (-1174)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3)))) - ((*1 *1 *1) (-4 *1 (-1172)))) -(((*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1072))))) -(((*1 *1 *2) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1072)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-1170 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3)))) + ((*1 *1 *1) (-4 *1 (-1174)))) +(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1074))))) +(((*1 *1 *2) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-1172 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-620 (-1170 *2))) (-5 *1 (-1170 *2)) (-4 *2 (-1072))))) -(((*1 *1 *1) (-12 (-5 *1 (-1170 *2)) (-4 *2 (-1072))))) + (-12 (-5 *3 (-622 (-1172 *2))) (-5 *1 (-1172 *2)) (-4 *2 (-1074))))) +(((*1 *1 *1) (-12 (-5 *1 (-1172 *2)) (-4 *2 (-1074))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170 *3)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-622 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1172 *3)) (-4 *3 (-1074))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-1170 *3))) (-5 *1 (-1170 *3)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-622 (-1172 *3))) (-5 *1 (-1172 *3)) (-4 *3 (-1074))))) (((*1 *2) - (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) - (-4 *3 (-13 (-825) (-543))))) + (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2)) + (-4 *3 (-13 (-827) (-545))))) ((*1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) - ((*1 *1) (-5 *1 (-469))) ((*1 *1) (-4 *1 (-1169)))) -(((*1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-1167))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1129)) (-5 *2 (-536)) (-5 *1 (-1166 *4)) (-4 *4 (-1023))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-536)) (-5 *1 (-1166 *3)) (-4 *3 (-1023))))) -(((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) + ((*1 *1) (-5 *1 (-471))) ((*1 *1) (-4 *1 (-1171)))) +(((*1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-1169))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1131)) (-5 *2 (-538)) (-5 *1 (-1168 *4)) (-4 *4 (-1025))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-538)) (-5 *1 (-1168 *3)) (-4 *3 (-1025))))) +(((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-538)))) + ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) - (-5 *2 (-536)))) + (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) + (-5 *2 (-538)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) - (-5 *2 (-536)) (-5 *1 (-1088 *4 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *4))))) + (|partial| -12 (-4 *4 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) + (-5 *2 (-538)) (-5 *1 (-1090 *4 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-817 *3)) - (-4 *3 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-536)) - (-5 *1 (-1088 *6 *3)))) + (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-819 *3)) + (-4 *3 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-538)) + (-5 *1 (-1090 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-1129)) - (-4 *6 (-13 (-543) (-825) (-1012 *2) (-619 *2) (-444))) (-5 *2 (-536)) - (-5 *1 (-1088 *6 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *6))))) + (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-1131)) + (-4 *6 (-13 (-545) (-827) (-1014 *2) (-621 *2) (-446))) (-5 *2 (-538)) + (-5 *1 (-1090 *6 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-444)) (-5 *2 (-536)) - (-5 *1 (-1089 *4)))) + (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-446)) (-5 *2 (-538)) + (-5 *1 (-1091 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-817 (-400 (-920 *6)))) - (-5 *3 (-400 (-920 *6))) (-4 *6 (-444)) (-5 *2 (-536)) (-5 *1 (-1089 *6)))) + (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-819 (-402 (-922 *6)))) + (-5 *3 (-402 (-922 *6))) (-4 *6 (-446)) (-5 *2 (-538)) (-5 *1 (-1091 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-400 (-920 *6))) (-5 *4 (-1147)) (-5 *5 (-1129)) - (-4 *6 (-444)) (-5 *2 (-536)) (-5 *1 (-1089 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-536)) (-5 *1 (-1166 *3)) (-4 *3 (-1023))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1165)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1165))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1165))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-1165))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-109)))) - ((*1 *2 *1) (|partial| -12 (-5 *1 (-357 *2)) (-4 *2 (-1072)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1129)) (-5 *1 (-1165))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1165))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-838) (-838))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-838) (-620 (-838)))) (-5 *1 (-113)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-838) (-620 (-838)))) (-5 *1 (-113)))) + (|partial| -12 (-5 *3 (-402 (-922 *6))) (-5 *4 (-1149)) (-5 *5 (-1131)) + (-4 *6 (-446)) (-5 *2 (-538)) (-5 *1 (-1091 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-538)) (-5 *1 (-1168 *3)) (-4 *3 (-1025))))) +(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1167))))) +(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1167))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1093)) (-5 *1 (-109)))) + ((*1 *2 *1) (|partial| -12 (-5 *1 (-359 *2)) (-4 *2 (-1074)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1131)) (-5 *1 (-1167))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1167))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-840) (-840))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-840) (-622 (-840)))) (-5 *1 (-113)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-840) (-622 (-840)))) (-5 *1 (-113)))) ((*1 *2 *1) - (-12 (-5 *2 (-1235)) (-5 *1 (-208 *3)) + (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) (-4 *3 - (-13 (-825) - (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) - (-15 -2082 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-386)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-386)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-493)))) - ((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-689)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1163)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1163))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) + (-13 (-827) + (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $)) + (-15 -2087 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-388)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495)))) + ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-691)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1165)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1165))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-749)) (-4 *3 (-1183)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-751)) (-4 *3 (-1185)) (-4 *1 (-56 *3 *4 *5)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)))) ((*1 *1) (-5 *1 (-169))) - ((*1 *1) (-12 (-5 *1 (-207 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1072)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382)))) - ((*1 *1) (-5 *1 (-386))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) + ((*1 *1) (-12 (-5 *1 (-209 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1074)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384)))) + ((*1 *1) (-5 *1 (-388))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) ((*1 *1) - (-12 (-4 *3 (-1072)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1072)) - (-4 *4 (-644 *3)))) - ((*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) - ((*1 *1 *2) (-12 (-5 *1 (-1113 *3 *2)) (-14 *3 (-749)) (-4 *2 (-1023)))) - ((*1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023)))) - ((*1 *1 *1) (-5 *1 (-1147))) ((*1 *1) (-5 *1 (-1147))) - ((*1 *1) (-5 *1 (-1163)))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1163))))) -(((*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1162))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-1162))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-275 *2)) (-4 *2 (-1183)))) + (-12 (-4 *3 (-1074)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1074)) + (-4 *4 (-646 *3)))) + ((*1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) + ((*1 *1 *2) (-12 (-5 *1 (-1115 *3 *2)) (-14 *3 (-751)) (-4 *2 (-1025)))) + ((*1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025)))) + ((*1 *1 *1) (-5 *1 (-1149))) ((*1 *1) (-5 *1 (-1149))) + ((*1 *1) (-5 *1 (-1165)))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1165))))) +(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1164))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-1164))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-827)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-277 *2)) (-4 *2 (-1185)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -4215 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| -2186 + (|:| -4220 + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -3969,8025 +3969,8026 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1124 (-219))) + (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1556 + (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-546)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-749)) (-4 *1 (-673 *2)) (-4 *2 (-1072)))) + (-5 *1 (-548)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-751)) (-4 *1 (-675 *2)) (-4 *2 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -4215 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (|:| -2186 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371)))))) - (-5 *1 (-781)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1072)) (-5 *1 (-1161 *3 *2)) (-4 *3 (-1072))))) + (|:| -4220 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (|:| -2191 + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373)))))) + (-5 *1 (-783)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1074)) (-5 *1 (-1163 *3 *2)) (-4 *3 (-1074))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) (((*1 *2) - (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) + (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) (((*1 *2) - (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) + (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) (((*1 *2 *3) - (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-1072)) - (-4 *5 (-1072))))) + (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1074)) + (-4 *5 (-1074))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-1072)) - (-4 *5 (-1072))))) + (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1163 *4 *5)) (-4 *4 (-1074)) + (-4 *5 (-1074))))) (((*1 *2) - (-12 (-5 *2 (-1235)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) + (-12 (-5 *2 (-1237)) (-5 *1 (-1163 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) (((*1 *1 *2) - (-12 (-5 *2 (-620 (-2 (|:| -4215 *3) (|:| -2186 *4)))) (-4 *3 (-1072)) - (-4 *4 (-1072)) (-4 *1 (-1160 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1160 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-1158 *2)) (-4 *2 (-356))))) + (-12 (-5 *2 (-622 (-2 (|:| -4220 *3) (|:| -2191 *4)))) (-4 *3 (-1074)) + (-4 *4 (-1074)) (-4 *1 (-1162 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-1160 *2)) (-4 *2 (-358))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-893)) (-5 *2 (-1141 *3)) (-5 *1 (-1158 *3)) (-4 *3 (-356))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-1158 *2)) (-4 *2 (-356))))) + (-12 (-5 *4 (-895)) (-5 *2 (-1143 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-358))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-1160 *2)) (-4 *2 (-358))))) (((*1 *2 *1) - (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-620 (-620 *3))))) + (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-622 (-622 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-620 (-620 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-620 *3))) (-5 *1 (-1157 *3)) (-4 *3 (-1072))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-1157 *3))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-622 (-622 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-622 *3))) (-5 *1 (-1159 *3)) (-4 *3 (-1074))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-1159 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-825)) + (-12 (-4 *4 (-827)) (-5 *2 - (-2 (|:| |f1| (-620 *4)) (|:| |f2| (-620 (-620 (-620 *4)))) - (|:| |f3| (-620 (-620 *4))) (|:| |f4| (-620 (-620 (-620 *4)))))) - (-5 *1 (-1155 *4)) (-5 *3 (-620 (-620 (-620 *4))))))) + (-2 (|:| |f1| (-622 *4)) (|:| |f2| (-622 (-622 (-622 *4)))) + (|:| |f3| (-622 (-622 *4))) (|:| |f4| (-622 (-622 (-622 *4)))))) + (-5 *1 (-1157 *4)) (-5 *3 (-622 (-622 (-622 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-825)) (-5 *3 (-620 *6)) (-5 *5 (-620 *3)) + (-12 (-4 *6 (-827)) (-5 *3 (-622 *6)) (-5 *5 (-622 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-620 *5)) (|:| |f3| *5) (|:| |f4| (-620 *5)))) - (-5 *1 (-1155 *6)) (-5 *4 (-620 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-622 *5)) (|:| |f3| *5) (|:| |f4| (-622 *5)))) + (-5 *1 (-1157 *6)) (-5 *4 (-622 *5))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-4 *7 (-965 *4)) (-4 *2 (-664 *7 *8 *9)) - (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-664 *4 *5 *6)) - (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) + (|partial| -12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-4 *7 (-967 *4)) (-4 *2 (-666 *7 *8 *9)) + (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-666 *4 *5 *6)) + (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)) (-4 *2 (-356)))) + (|partial| -12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)) (-4 *2 (-358)))) ((*1 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-4 *3 (-170)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-667 *2)) (-4 *2 (-356)) (-4 *2 (-1023)))) + (|partial| -12 (-4 *3 (-358)) (-4 *3 (-170)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-669 *2)) (-4 *2 (-358)) (-4 *2 (-1025)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1094 *2 *3 *4 *5)) (-4 *3 (-1023)) - (-4 *4 (-232 *2 *3)) (-4 *5 (-232 *2 *3)) (-4 *3 (-356)))) - ((*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-1155 *3))))) + (|partial| -12 (-4 *1 (-1096 *2 *3 *4 *5)) (-4 *3 (-1025)) + (-4 *4 (-234 *2 *3)) (-4 *5 (-234 *2 *3)) (-4 *3 (-358)))) + ((*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-1157 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-825)) (-5 *2 (-620 (-620 *4))) (-5 *1 (-1155 *4)) - (-5 *3 (-620 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-825)) (-5 *1 (-1155 *3))))) + (-12 (-4 *4 (-827)) (-5 *2 (-622 (-622 *4))) (-5 *1 (-1157 *4)) + (-5 *3 (-622 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-827)) (-5 *1 (-1157 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-825)) (-5 *2 (-1157 (-620 *4))) (-5 *1 (-1155 *4)) - (-5 *3 (-620 *4))))) + (-12 (-4 *4 (-827)) (-5 *2 (-1159 (-622 *4))) (-5 *1 (-1157 *4)) + (-5 *3 (-622 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-825)) (-5 *2 (-620 (-620 (-620 *4)))) (-5 *1 (-1155 *4)) - (-5 *3 (-620 (-620 *4)))))) + (-12 (-4 *4 (-827)) (-5 *2 (-622 (-622 (-622 *4)))) (-5 *1 (-1157 *4)) + (-5 *3 (-622 (-622 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1157 (-620 *4))) (-4 *4 (-825)) (-5 *2 (-620 (-620 *4))) - (-5 *1 (-1155 *4))))) + (-12 (-5 *3 (-1159 (-622 *4))) (-4 *4 (-827)) (-5 *2 (-622 (-622 *4))) + (-5 *1 (-1157 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-620 (-620 *4)))) (-5 *2 (-620 (-620 *4))) - (-5 *1 (-1155 *4)) (-4 *4 (-825))))) + (-12 (-5 *3 (-622 (-622 (-622 *4)))) (-5 *2 (-622 (-622 *4))) + (-5 *1 (-1157 *4)) (-4 *4 (-827))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-620 (-620 (-620 *4)))) (-5 *2 (-620 (-620 *4))) (-4 *4 (-825)) - (-5 *1 (-1155 *4))))) + (-12 (-5 *3 (-622 (-622 (-622 *4)))) (-5 *2 (-622 (-622 *4))) (-4 *4 (-827)) + (-5 *1 (-1157 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-620 (-620 (-620 *4)))) (-5 *3 (-620 *4)) (-4 *4 (-825)) - (-5 *1 (-1155 *4))))) + (-12 (-5 *2 (-622 (-622 (-622 *4)))) (-5 *3 (-622 *4)) (-4 *4 (-827)) + (-5 *1 (-1157 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-620 (-620 (-620 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-620 *5)) (-4 *5 (-825)) (-5 *1 (-1155 *5))))) + (-12 (-5 *2 (-622 (-622 (-622 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-622 *5)) (-4 *5 (-827)) (-5 *1 (-1157 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-825)) (-5 *4 (-620 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-620 *4)))) - (-5 *1 (-1155 *6)) (-5 *5 (-620 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-1154))))) -(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154))))) -(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154))))) -(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-1154))))) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-827)) (-5 *4 (-622 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-622 *4)))) + (-5 *1 (-1157 *6)) (-5 *5 (-622 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-1156))))) +(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156))))) +(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156))))) +(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-1156))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) - (-5 *2 (-620 (-620 (-920 *5)))) (-5 *1 (-1153 *5))))) + (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) + (-5 *2 (-622 (-622 (-922 *5)))) (-5 *1 (-1155 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-400 (-920 (-536))))) - (-5 *2 (-620 (-620 (-286 (-920 *4))))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-823) (-356))))) + (-12 (-5 *3 (-622 (-402 (-922 (-538))))) + (-5 *2 (-622 (-622 (-288 (-922 *4))))) (-5 *1 (-375 *4)) + (-4 *4 (-13 (-825) (-358))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-286 (-400 (-920 (-536)))))) - (-5 *2 (-620 (-620 (-286 (-920 *4))))) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-823) (-356))))) + (-12 (-5 *3 (-622 (-288 (-402 (-922 (-538)))))) + (-5 *2 (-622 (-622 (-288 (-922 *4))))) (-5 *1 (-375 *4)) + (-4 *4 (-13 (-825) (-358))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 (-536)))) (-5 *2 (-620 (-286 (-920 *4)))) - (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) + (-12 (-5 *3 (-402 (-922 (-538)))) (-5 *2 (-622 (-288 (-922 *4)))) + (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-400 (-920 (-536))))) (-5 *2 (-620 (-286 (-920 *4)))) - (-5 *1 (-373 *4)) (-4 *4 (-13 (-823) (-356))))) + (-12 (-5 *3 (-288 (-402 (-922 (-538))))) (-5 *2 (-622 (-288 (-922 *4)))) + (-5 *1 (-375 *4)) (-4 *4 (-13 (-825) (-358))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1147)) - (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-4 *4 (-13 (-29 *6) (-1169) (-934))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-620 *4)))) - (-5 *1 (-631 *6 *4 *3)) (-4 *3 (-636 *4)))) + (|partial| -12 (-5 *5 (-1149)) + (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-4 *4 (-13 (-29 *6) (-1171) (-936))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2128 (-622 *4)))) + (-5 *1 (-633 *6 *4 *3)) (-4 *3 (-638 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 *2)) - (-4 *2 (-13 (-29 *6) (-1169) (-934))) - (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *1 (-631 *6 *2 *3)) (-4 *3 (-636 *2)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) - (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) - (-4 *7 (-13 (-365 *5) (-10 -7 (-6 -4349)))) - (-5 *2 (-620 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2123 (-620 *7))))) - (-5 *1 (-645 *5 *6 *7 *3)) (-5 *4 (-620 *7)) (-4 *3 (-664 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) + (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 *2)) + (-4 *2 (-13 (-29 *6) (-1171) (-936))) + (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *1 (-633 *6 *2 *3)) (-4 *3 (-638 *2)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4)))) + (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) + (-4 *7 (-13 (-367 *5) (-10 -7 (-6 -4354)))) + (-5 *2 (-622 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2128 (-622 *7))))) + (-5 *1 (-647 *5 *6 *7 *3)) (-5 *4 (-622 *7)) (-4 *3 (-666 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 - (-2 (|:| |particular| (-3 (-1229 *5) #2="failed")) - (|:| -2123 (-620 (-1229 *5))))) - (-5 *1 (-646 *5)) (-5 *4 (-1229 *5)))) + (-2 (|:| |particular| (-3 (-1231 *5) #2="failed")) + (|:| -2128 (-622 (-1231 *5))))) + (-5 *1 (-648 *5)) (-5 *4 (-1231 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-620 *5))) (-4 *5 (-356)) + (-12 (-5 *3 (-622 (-622 *5))) (-4 *5 (-358)) (-5 *2 - (-2 (|:| |particular| (-3 (-1229 *5) #2#)) (|:| -2123 (-620 (-1229 *5))))) - (-5 *1 (-646 *5)) (-5 *4 (-1229 *5)))) + (-2 (|:| |particular| (-3 (-1231 *5) #2#)) (|:| -2128 (-622 (-1231 *5))))) + (-5 *1 (-648 *5)) (-5 *4 (-1231 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *5)) (-4 *5 (-356)) + (-12 (-5 *3 (-669 *5)) (-4 *5 (-358)) (-5 *2 - (-620 - (-2 (|:| |particular| (-3 (-1229 *5) #2#)) - (|:| -2123 (-620 (-1229 *5)))))) - (-5 *1 (-646 *5)) (-5 *4 (-620 (-1229 *5))))) + (-622 + (-2 (|:| |particular| (-3 (-1231 *5) #2#)) + (|:| -2128 (-622 (-1231 *5)))))) + (-5 *1 (-648 *5)) (-5 *4 (-622 (-1231 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-620 *5))) (-4 *5 (-356)) + (-12 (-5 *3 (-622 (-622 *5))) (-4 *5 (-358)) (-5 *2 - (-620 - (-2 (|:| |particular| (-3 (-1229 *5) #2#)) - (|:| -2123 (-620 (-1229 *5)))))) - (-5 *1 (-646 *5)) (-5 *4 (-620 (-1229 *5))))) + (-622 + (-2 (|:| |particular| (-3 (-1231 *5) #2#)) + (|:| -2128 (-622 (-1231 *5)))))) + (-5 *1 (-648 *5)) (-5 *4 (-622 (-1231 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) - (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-748 *5)))) + (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) + (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-750 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-543)) - (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-748 *4)))) + (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-545)) + (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-750 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1147)) - (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *1 (-750 *5 *2)) (-4 *2 (-13 (-29 *5) (-1169) (-934))))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-1149)) + (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *1 (-752 *5 *2)) (-4 *2 (-13 (-29 *5) (-1171) (-936))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-667 *7)) (-5 *5 (-1147)) - (-4 *7 (-13 (-29 *6) (-1169) (-934))) - (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) - (-5 *1 (-780 *6 *7)) (-5 *4 (-1229 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-667 *6)) (-5 *4 (-1147)) - (-4 *6 (-13 (-29 *5) (-1169) (-934))) - (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-620 (-1229 *6))) (-5 *1 (-780 *5 *6)))) + (|partial| -12 (-5 *3 (-669 *7)) (-5 *5 (-1149)) + (-4 *7 (-13 (-29 *6) (-1171) (-936))) + (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7))))) + (-5 *1 (-782 *6 *7)) (-5 *4 (-1231 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-669 *6)) (-5 *4 (-1149)) + (-4 *6 (-13 (-29 *5) (-1171) (-936))) + (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-622 (-1231 *6))) (-5 *1 (-782 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-620 (-286 *7))) (-5 *4 (-620 (-113))) (-5 *5 (-1147)) - (-4 *7 (-13 (-29 *6) (-1169) (-934))) - (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) - (-5 *1 (-780 *6 *7)))) + (|partial| -12 (-5 *3 (-622 (-288 *7))) (-5 *4 (-622 (-113))) (-5 *5 (-1149)) + (-4 *7 (-13 (-29 *6) (-1171) (-936))) + (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7))))) + (-5 *1 (-782 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-620 *7)) (-5 *4 (-620 (-113))) (-5 *5 (-1147)) - (-4 *7 (-13 (-29 *6) (-1169) (-934))) - (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-2 (|:| |particular| (-1229 *7)) (|:| -2123 (-620 (-1229 *7))))) - (-5 *1 (-780 *6 *7)))) + (|partial| -12 (-5 *3 (-622 *7)) (-5 *4 (-622 (-113))) (-5 *5 (-1149)) + (-4 *7 (-13 (-29 *6) (-1171) (-936))) + (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-2 (|:| |particular| (-1231 *7)) (|:| -2128 (-622 (-1231 *7))))) + (-5 *1 (-782 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-1147)) - (-4 *7 (-13 (-29 *6) (-1169) (-934))) - (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2123 (-620 *7))) *7 #3="failed")) - (-5 *1 (-780 *6 *7)))) + (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-1149)) + (-4 *7 (-13 (-29 *6) (-1171) (-936))) + (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2128 (-622 *7))) *7 #3="failed")) + (-5 *1 (-782 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-1147)) - (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2123 (-620 *3))) *3 #3#)) - (-5 *1 (-780 *6 *3)) (-4 *3 (-13 (-29 *6) (-1169) (-934))))) + (-12 (-5 *4 (-113)) (-5 *5 (-1149)) + (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2128 (-622 *3))) *3 #3#)) + (-5 *1 (-782 *6 *3)) (-4 *3 (-13 (-29 *6) (-1171) (-936))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-286 *2)) (-5 *4 (-113)) (-5 *5 (-620 *2)) - (-4 *2 (-13 (-29 *6) (-1169) (-934))) (-5 *1 (-780 *6 *2)) - (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))))) + (|partial| -12 (-5 *3 (-288 *2)) (-5 *4 (-113)) (-5 *5 (-622 *2)) + (-4 *2 (-13 (-29 *6) (-1171) (-936))) (-5 *1 (-782 *6 *2)) + (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-286 *2)) (-5 *5 (-620 *2)) - (-4 *2 (-13 (-29 *6) (-1169) (-934))) - (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *1 (-780 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1009)) (-5 *1 (-783)))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-288 *2)) (-5 *5 (-622 *2)) + (-4 *2 (-13 (-29 *6) (-1171) (-936))) + (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *1 (-782 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1011)) (-5 *1 (-785)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-786)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-783)))) + (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-785)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) - (-5 *2 (-1009)) (-5 *1 (-783)))) + (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4)) + (-5 *2 (-1011)) (-5 *1 (-785)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) - (-5 *2 (-1009)) (-5 *1 (-783)))) + (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4)) + (-5 *2 (-1011)) (-5 *1 (-785)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) - (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) + (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373))) + (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1229 (-307 (-371)))) (-5 *4 (-371)) (-5 *5 (-620 *4)) - (-5 *2 (-1009)) (-5 *1 (-783)))) + (-12 (-5 *3 (-1231 (-309 (-373)))) (-5 *4 (-373)) (-5 *5 (-622 *4)) + (-5 *2 (-1011)) (-5 *1 (-785)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) - (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) + (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373))) + (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1229 (-307 *4))) (-5 *5 (-620 (-371))) (-5 *6 (-307 (-371))) - (-5 *4 (-371)) (-5 *2 (-1009)) (-5 *1 (-783)))) + (-12 (-5 *3 (-1231 (-309 *4))) (-5 *5 (-622 (-373))) (-5 *6 (-309 (-373))) + (-5 *4 (-373)) (-5 *2 (-1011)) (-5 *1 (-785)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2123 (-620 *6))) "failed") *7 *6)) - (-4 *6 (-356)) (-4 *7 (-636 *6)) - (-5 *2 (-2 (|:| |particular| (-1229 *6)) (|:| -2123 (-667 *6)))) - (-5 *1 (-791 *6 *7)) (-5 *3 (-667 *6)) (-5 *4 (-1229 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-872)) (-5 *2 (-1009)) (-5 *1 (-871)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2128 (-622 *6))) "failed") *7 *6)) + (-4 *6 (-358)) (-4 *7 (-638 *6)) + (-5 *2 (-2 (|:| |particular| (-1231 *6)) (|:| -2128 (-669 *6)))) + (-5 *1 (-793 *6 *7)) (-5 *3 (-669 *6)) (-5 *4 (-1231 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-874)) (-5 *2 (-1011)) (-5 *1 (-873)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-872)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-871)))) + (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-873)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-749)) (-5 *6 (-620 (-620 (-307 *3)))) (-5 *7 (-1129)) - (-5 *8 (-219)) (-5 *5 (-620 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1009)) - (-5 *1 (-871)))) + (-12 (-5 *4 (-751)) (-5 *6 (-622 (-622 (-309 *3)))) (-5 *7 (-1131)) + (-5 *8 (-221)) (-5 *5 (-622 (-309 (-373)))) (-5 *3 (-373)) (-5 *2 (-1011)) + (-5 *1 (-873)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-749)) (-5 *6 (-620 (-620 (-307 *3)))) (-5 *7 (-1129)) - (-5 *5 (-620 (-307 (-371)))) (-5 *3 (-371)) (-5 *2 (-1009)) (-5 *1 (-871)))) + (-12 (-5 *4 (-751)) (-5 *6 (-622 (-622 (-309 *3)))) (-5 *7 (-1131)) + (-5 *5 (-622 (-309 (-373)))) (-5 *3 (-373)) (-5 *2 (-1011)) (-5 *1 (-873)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *2 (-620 (-371))) (-5 *1 (-997)) - (-5 *4 (-371)))) + (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *2 (-622 (-373))) (-5 *1 (-999)) + (-5 *4 (-373)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-920 (-536))) (-5 *2 (-620 (-371))) (-5 *1 (-997)) - (-5 *4 (-371)))) + (-12 (-5 *3 (-922 (-538))) (-5 *2 (-622 (-373))) (-5 *1 (-999)) + (-5 *4 (-373)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) + (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1102 *4)) (-5 *3 (-307 *4)))) + (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1104 *4)) (-5 *3 (-309 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1102 *4)) - (-5 *3 (-286 (-307 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) - (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1102 *5)) - (-5 *3 (-286 (-307 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) - (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-620 (-286 (-307 *5)))) (-5 *1 (-1102 *5)) (-5 *3 (-307 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-1147))) - (-4 *5 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-620 (-620 (-286 (-307 *5))))) (-5 *1 (-1102 *5)) - (-5 *3 (-620 (-286 (-307 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) - (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-1153 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-1147))) (-4 *5 (-543)) - (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-1153 *5)) - (-5 *3 (-620 (-286 (-400 (-920 *5))))))) + (-12 (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1104 *4)) + (-5 *3 (-288 (-309 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1149)) + (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1104 *5)) + (-5 *3 (-288 (-309 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1149)) + (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-622 (-288 (-309 *5)))) (-5 *1 (-1104 *5)) (-5 *3 (-309 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-622 (-1149))) + (-4 *5 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-622 (-622 (-288 (-309 *5))))) (-5 *1 (-1104 *5)) + (-5 *3 (-622 (-288 (-309 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) + (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-1155 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-622 (-1149))) (-4 *5 (-545)) + (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-1155 *5)) + (-5 *3 (-622 (-288 (-402 (-922 *5))))))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-400 (-920 *4)))) (-4 *4 (-543)) - (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-1153 *4)))) + (-12 (-5 *3 (-622 (-402 (-922 *4)))) (-4 *4 (-545)) + (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-1155 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) - (-5 *1 (-1153 *4)) (-5 *3 (-620 (-286 (-400 (-920 *4))))))) + (-12 (-4 *4 (-545)) (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) + (-5 *1 (-1155 *4)) (-5 *3 (-622 (-288 (-402 (-922 *4))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *5))))) - (-5 *1 (-1153 *5)) (-5 *3 (-400 (-920 *5))))) + (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *5))))) + (-5 *1 (-1155 *5)) (-5 *3 (-402 (-922 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *5))))) - (-5 *1 (-1153 *5)) (-5 *3 (-286 (-400 (-920 *5)))))) + (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *5))))) + (-5 *1 (-1155 *5)) (-5 *3 (-288 (-402 (-922 *5)))))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *4))))) (-5 *1 (-1153 *4)) - (-5 *3 (-400 (-920 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *4))))) (-5 *1 (-1155 *4)) + (-5 *3 (-402 (-922 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-620 (-286 (-400 (-920 *4))))) (-5 *1 (-1153 *4)) - (-5 *3 (-286 (-400 (-920 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838))))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1129)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-497)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-575)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-470)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-136)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-606)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1067)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1062)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1045)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-944)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-178)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1010)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-305)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-649)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-152)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-516)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1241)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1038)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-508)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-659)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-95)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1087)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-132)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-1240)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-654)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-212)))) - ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-515)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-1152)))) - ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-1152))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1152)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-1152))) (-5 *1 (-1152))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-273)))) + (-12 (-4 *4 (-545)) (-5 *2 (-622 (-288 (-402 (-922 *4))))) (-5 *1 (-1155 *4)) + (-5 *3 (-288 (-402 (-922 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840))))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-538)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1131)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-499)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-577)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-472)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-136)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-608)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1069)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1064)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1047)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-946)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-178)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1012)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-307)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-651)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-152)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-518)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1243)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1040)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-510)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-661)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-95)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1089)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-132)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-1242)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-656)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-214)))) + ((*1 *2 *1) (-12 (-4 *1 (-1110)) (-5 *2 (-517)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-1154)))) + ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-1154))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1154)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-1154))) (-5 *1 (-1154))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-536) (-219) (-1147) (-1129) (-1152))) (-5 *1 (-1152))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-620 (-273))) (-5 *1 (-273)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1152))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1152))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2317)) (-5 *2 (-112)) (-5 *1 (-598)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2318)) (-5 *2 (-112)) (-5 *1 (-598)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2319)) (-5 *2 (-112)) (-5 *1 (-598)))) + (-12 (-5 *2 (-3 (-538) (-221) (-1149) (-1131) (-1154))) (-5 *1 (-1154))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-622 (-275))) (-5 *1 (-275)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1154))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1154))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2322)) (-5 *2 (-112)) (-5 *1 (-600)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2323)) (-5 *2 (-112)) (-5 *1 (-600)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2324)) (-5 *2 (-112)) (-5 *1 (-600)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2441)) (-5 *2 (-112)) (-5 *1 (-669 *4)) - (-4 *4 (-595 (-838))))) + (-12 (-5 *3 (|[\|\|]| -2446)) (-5 *2 (-112)) (-5 *1 (-671 *4)) + (-4 *4 (-597 (-840))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-595 (-838))) (-5 *2 (-112)) - (-5 *1 (-669 *4)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-597 (-840))) (-5 *2 (-112)) + (-5 *1 (-671 *4)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1129))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-497))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-575))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-470))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-499))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-577))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-472))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-136))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1139))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-608))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1069))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1062))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1064))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1045))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-944))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1047))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-946))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-178))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1010))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-305))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-649))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-516))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1012))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-307))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-651))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-152))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1241))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1243))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1038))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-659))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1040))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-510))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-661))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-95))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-132))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-1240))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-654))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-212))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1108)) (-5 *3 (|[\|\|]| (-515))) (-5 *2 (-112)))) + (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-1242))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-656))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-214))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1110)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1129))) (-5 *2 (-112)) (-5 *1 (-1152)))) + (-12 (-5 *3 (|[\|\|]| (-1131))) (-5 *2 (-112)) (-5 *1 (-1154)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1147))) (-5 *2 (-112)) (-5 *1 (-1152)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-219))) (-5 *2 (-112)) (-5 *1 (-1152)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-112)) (-5 *1 (-1152))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-284))) ((*1 *1) (-5 *1 (-838))) + (-12 (-5 *3 (|[\|\|]| (-1149))) (-5 *2 (-112)) (-5 *1 (-1154)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-221))) (-5 *2 (-112)) (-5 *1 (-1154)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-112)) (-5 *1 (-1154))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-286))) ((*1 *1) (-5 *1 (-840))) ((*1 *1) - (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) - (-4 *5 (-924 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1056))) + (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5)) + (-4 *5 (-926 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1058))) ((*1 *1) - (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) - (-4 *3 (-13 (-1072) (-34))))) - ((*1 *1) (-5 *1 (-1150))) ((*1 *1) (-5 *1 (-1151)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) + (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) + (-4 *3 (-13 (-1074) (-34))))) + ((*1 *1) (-5 *1 (-1152))) ((*1 *1) (-5 *1 (-1153)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-429)) (-5 *3 (-620 (-1147))) (-5 *4 (-1147)) (-5 *1 (-1150)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1150)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-1147)) (-5 *1 (-1151)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-429)) (-5 *3 (-620 (-1147))) (-5 *1 (-1151))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-429)) (-5 *1 (-1151))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1151))))) + (-12 (-5 *2 (-431)) (-5 *3 (-622 (-1149))) (-5 *4 (-1149)) (-5 *1 (-1152)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1152)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-1149)) (-5 *1 (-1153)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-431)) (-5 *3 (-622 (-1149))) (-5 *1 (-1153))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-431)) (-5 *1 (-1153))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1153))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-427)) + (-12 (-5 *3 (-429)) (-5 *2 - (-620 - (-3 (|:| -3900 (-1147)) - (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536))))))))) - (-5 *1 (-1151))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1151))))) + (-622 + (-3 (|:| -3905 (-1149)) + (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538))))))))) + (-5 *1 (-1153))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1153))))) (((*1 *2 *1) (-12 (-5 *2 - (-620 - (-620 - (-3 (|:| -3900 (-1147)) - (|:| -3571 (-620 (-3 (|:| S (-1147)) (|:| P (-920 (-536)))))))))) - (-5 *1 (-1151))))) -(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1151))))) -(((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-1151))))) + (-622 + (-622 + (-3 (|:| -3905 (-1149)) + (|:| -3576 (-622 (-3 (|:| S (-1149)) (|:| P (-922 (-538)))))))))) + (-5 *1 (-1153))))) +(((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-1153))))) +(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-1153))))) (((*1 *1 *2) - (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 (-429))))) - (-5 *1 (-1151))))) -(((*1 *1) (-5 *1 (-1150)))) -(((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) - ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1150))))) -(((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150))))) -(((*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1150))))) -(((*1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1150))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1235)) (-5 *1 (-1150)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) + (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 (-431))))) + (-5 *1 (-1153))))) +(((*1 *1) (-5 *1 (-1152)))) +(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) + ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152))))) +(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))) +(((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152))))) +(((*1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1152))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1237)) (-5 *1 (-1152)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150))))) + (-12 (-5 *4 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) (-5 *2 (-1235)) - (-5 *1 (-1150)))) + (-12 (-5 *3 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void"))) (-5 *2 (-1237)) + (-5 *1 (-1152)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) - (-5 *2 (-1235)) (-5 *1 (-1150)))) + (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) + (-5 *2 (-1237)) (-5 *1 (-1152)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1147)) (-5 *4 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) - (-5 *2 (-1235)) (-5 *1 (-1150))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1150)))) - ((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-1150))))) + (-12 (-5 *3 (-1149)) (-5 *4 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) + (-5 *2 (-1237)) (-5 *1 (-1152))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1152)))) + ((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-1152))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1147)) (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 "void"))) - (-5 *1 (-1150))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1150)) (-5 *3 (-1147))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1147)) (-5 *2 (-1151)) (-5 *1 (-1150))))) -(((*1 *2 *3) - (-12 (-5 *3 (-620 *4)) (-4 *4 (-1023)) (-5 *2 (-1229 *4)) - (-5 *1 (-1148 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-893)) (-5 *2 (-1229 *3)) (-5 *1 (-1148 *3)) (-4 *3 (-1023))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1147))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-95)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1072)))) - ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-431 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-475)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-939)))) - ((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-1047 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-1087)))) ((*1 *1 *1) (-5 *1 (-1147)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1147))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) + (-12 (-5 *3 (-1149)) (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 "void"))) + (-5 *1 (-1152))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1152)) (-5 *3 (-1149))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1149)) (-5 *2 (-1153)) (-5 *1 (-1152))))) +(((*1 *2 *3) + (-12 (-5 *3 (-622 *4)) (-4 *4 (-1025)) (-5 *2 (-1231 *4)) + (-5 *1 (-1150 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-895)) (-5 *2 (-1231 *3)) (-5 *1 (-1150 *3)) (-4 *3 (-1025))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1149))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-95)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-181)))) + ((*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1074)))) + ((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-433 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-477)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-941)))) + ((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-1049 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-499)) (-5 *1 (-1089)))) ((*1 *1 *1) (-5 *1 (-1149)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1149))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) - (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) - (|:| |args| (-620 (-838))))) - (-5 *1 (-1147))))) + (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) + (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) + (|:| |args| (-622 (-840))))) + (-5 *1 (-1149))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2909 (-620 (-838))) (|:| -2728 (-620 (-838))) - (|:| |presup| (-620 (-838))) (|:| -2907 (-620 (-838))) - (|:| |args| (-620 (-838))))) - (-5 *1 (-1147)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-620 (-838)))) (-5 *1 (-1147))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-1147))))) -(((*1 *1 *1) (-5 *1 (-838))) + (-2 (|:| -2914 (-622 (-840))) (|:| -2733 (-622 (-840))) + (|:| |presup| (-622 (-840))) (|:| -2912 (-622 (-840))) + (|:| |args| (-622 (-840))))) + (-5 *1 (-1149)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-622 (-840)))) (-5 *1 (-1149))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-1149))))) +(((*1 *1 *1) (-5 *1 (-840))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072)))) - ((*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1128)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1147))))) -(((*1 *1 *2) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-1147))))) + (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074)))) + ((*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1130)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-1149))))) +(((*1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-1149))))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-128))) ((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) - ((*1 *1) (-4 *1 (-705))) ((*1 *1) (-5 *1 (-1147)))) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) + ((*1 *1) (-4 *1 (-707))) ((*1 *1) (-5 *1 (-1149)))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) - (-5 *1 (-1146))))) + (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) + (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) + (-5 *1 (-1148))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) - (-5 *1 (-1146))))) + (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) + (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) + (-5 *1 (-1148))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) - (-5 *1 (-1146))))) + (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) + (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) + (-5 *1 (-1148))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) - (-5 *1 (-1146))))) + (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) + (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) + (-5 *1 (-1148))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) - (-5 *1 (-1146))))) + (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) + (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) + (-5 *1 (-1148))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) - (-5 *1 (-1146))))) + (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) + (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) + (-5 *1 (-1148))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) - (-5 *1 (-1146))))) -(((*1 *1 *1) (-5 *1 (-1146))) + (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) + (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) + (-5 *1 (-1148))))) +(((*1 *1 *1) (-5 *1 (-1148))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-307 (-536))) (|:| -3423 (-307 (-371))) - (|:| CF (-307 (-166 (-371)))) (|:| |switch| (-1146)))) - (-5 *1 (-1146))))) + (-3 (|:| I (-309 (-538))) (|:| -3428 (-309 (-373))) + (|:| CF (-309 (-166 (-373)))) (|:| |switch| (-1148)))) + (-5 *1 (-1148))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-838) (-838) (-838))) (-5 *4 (-536)) (-5 *2 (-838)) - (-5 *1 (-627 *5 *6 *7)) (-4 *5 (-1072)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-840) (-840) (-840))) (-5 *4 (-538)) (-5 *2 (-840)) + (-5 *1 (-629 *5 *6 *7)) (-4 *5 (-1074)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-838)) (-5 *1 (-829 *3 *4 *5)) (-4 *3 (-1023)) (-14 *4 (-98 *3)) + (-12 (-5 *2 (-840)) (-5 *1 (-831 *3 *4 *5)) (-4 *3 (-1025)) (-14 *4 (-98 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-838)))) - ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-838)))) - ((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-838)) (-5 *1 (-1141 *3)) (-4 *3 (-1023))))) + ((*1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-840)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-840)))) + ((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-840)) (-5 *1 (-1143 *3)) (-4 *3 (-1025))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1060 *3)) (-4 *3 (-924 *7 *6 *4)) (-4 *6 (-771)) (-4 *4 (-825)) - (-4 *7 (-543)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-536)))) - (-5 *1 (-577 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-543)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-536)))) (-5 *1 (-577 *5 *4 *6 *3)) - (-4 *3 (-924 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1) (-5 *1 (-838))) + (-12 (-5 *5 (-1062 *3)) (-4 *3 (-926 *7 *6 *4)) (-4 *6 (-773)) (-4 *4 (-827)) + (-4 *7 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-538)))) + (-5 *1 (-579 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-545)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-538)))) (-5 *1 (-579 *5 *4 *6 *3)) + (-4 *3 (-926 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1) (-5 *1 (-840))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-1139 *4 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1169))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-1141 *4 *2)) (-4 *2 (-13 (-416 *4) (-158) (-27) (-1171))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1063 *2)) (-4 *2 (-13 (-414 *4) (-158) (-27) (-1169))) - (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-1139 *4 *2)))) + (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-416 *4) (-158) (-27) (-1171))) + (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-1141 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) - (-5 *2 (-400 (-920 *5))) (-5 *1 (-1140 *5)) (-5 *3 (-920 *5)))) + (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) + (-5 *2 (-402 (-922 *5))) (-5 *1 (-1142 *5)) (-5 *3 (-922 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) - (-5 *2 (-3 (-400 (-920 *5)) (-307 *5))) (-5 *1 (-1140 *5)) - (-5 *3 (-400 (-920 *5))))) + (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) + (-5 *2 (-3 (-402 (-922 *5)) (-309 *5))) (-5 *1 (-1142 *5)) + (-5 *3 (-402 (-922 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1063 (-920 *5))) (-5 *3 (-920 *5)) - (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-400 *3)) - (-5 *1 (-1140 *5)))) + (-12 (-5 *4 (-1065 (-922 *5))) (-5 *3 (-922 *5)) + (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-402 *3)) + (-5 *1 (-1142 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1063 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) - (-4 *5 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-3 *3 (-307 *5))) - (-5 *1 (-1140 *5))))) + (-12 (-5 *4 (-1065 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) + (-4 *5 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-3 *3 (-309 *5))) + (-5 *1 (-1142 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-865 *4 *5)) (-4 *5 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1137))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-149 *3)))) + (-12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-867 *4 *5)) (-4 *5 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1139))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-149 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 (-2 (|:| -2488 (-749)) (|:| -4127 *4) (|:| |num| *4)))) - (-4 *4 (-1205 *3)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)))) + (-12 (-5 *2 (-622 (-2 (|:| -2493 (-751)) (|:| -4132 *4) (|:| |num| *4)))) + (-4 *4 (-1207 *3)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1="void"))) - (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-112)) (-5 *1 (-429)))) + (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1="void"))) + (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-112)) (-5 *1 (-431)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 #1#))) (-5 *3 (-620 (-1147))) - (-5 *4 (-112)) (-5 *1 (-429)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-583 *3)) (-4 *3 (-1183)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-170)))) + (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 #1#))) (-5 *3 (-622 (-1149))) + (-5 *4 (-112)) (-5 *1 (-431)))) + ((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-585 *3)) (-4 *3 (-1185)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-617 *2)) (-4 *2 (-170)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) + (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) + (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-5 *1 (-642 *3 *4)) (-4 *4 (-170)))) + (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-5 *1 (-644 *3 *4)) (-4 *4 (-170)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 (-620 (-620 *3)))) (-4 *3 (-1072)) (-5 *1 (-653 *3)))) + (-12 (-5 *2 (-622 (-622 (-622 *3)))) (-4 *3 (-1074)) (-5 *1 (-655 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-692 *2 *3 *4)) (-4 *2 (-825)) (-4 *3 (-1072)) + (-12 (-5 *1 (-694 *2 *3 *4)) (-4 *2 (-827)) (-4 *3 (-1074)) (-14 *4 - (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *3)) - (-2 (|:| -2487 *2) (|:| -2488 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1183)) (-4 *3 (-1183)))) + (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *3)) + (-2 (|:| -2492 *2) (|:| -2493 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1185)) (-4 *3 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 *4)))) (-4 *4 (-1072)) - (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 *4)))) (-4 *4 (-1074)) + (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 *5)) (-4 *5 (-13 (-1072) (-34))) - (-5 *2 (-620 (-1111 *3 *5))) (-5 *1 (-1111 *3 *5)) - (-4 *3 (-13 (-1072) (-34))))) + (-12 (-5 *4 (-622 *5)) (-4 *5 (-13 (-1074) (-34))) + (-5 *2 (-622 (-1113 *3 *5))) (-5 *1 (-1113 *3 *5)) + (-4 *3 (-13 (-1074) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-2 (|:| |val| *4) (|:| -1655 *5)))) - (-4 *4 (-13 (-1072) (-34))) (-4 *5 (-13 (-1072) (-34))) - (-5 *2 (-620 (-1111 *4 *5))) (-5 *1 (-1111 *4 *5)))) + (-12 (-5 *3 (-622 (-2 (|:| |val| *4) (|:| -1660 *5)))) + (-4 *4 (-13 (-1074) (-34))) (-4 *5 (-13 (-1074) (-34))) + (-5 *2 (-622 (-1113 *4 *5))) (-5 *1 (-1113 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1655 *4))) (-4 *3 (-13 (-1072) (-34))) - (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1111 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1660 *4))) (-4 *3 (-13 (-1074) (-34))) + (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1113 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) - (-4 *3 (-13 (-1072) (-34))))) + (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) + (-4 *3 (-13 (-1074) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) - (-4 *3 (-13 (-1072) (-34))))) + (-12 (-5 *4 (-112)) (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) + (-4 *3 (-13 (-1074) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-620 *3)) (-4 *3 (-13 (-1072) (-34))) (-5 *1 (-1112 *2 *3)) - (-4 *2 (-13 (-1072) (-34))))) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-13 (-1074) (-34))) (-5 *1 (-1114 *2 *3)) + (-4 *2 (-13 (-1074) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-620 (-1111 *2 *3))) (-4 *2 (-13 (-1072) (-34))) - (-4 *3 (-13 (-1072) (-34))) (-5 *1 (-1112 *2 *3)))) + (-12 (-5 *4 (-622 (-1113 *2 *3))) (-4 *2 (-13 (-1074) (-34))) + (-4 *3 (-13 (-1074) (-34))) (-5 *1 (-1114 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-620 (-1112 *2 *3))) (-5 *1 (-1112 *2 *3)) - (-4 *2 (-13 (-1072) (-34))) (-4 *3 (-13 (-1072) (-34))))) + (-12 (-5 *4 (-622 (-1114 *2 *3))) (-5 *1 (-1114 *2 *3)) + (-4 *2 (-13 (-1074) (-34))) (-4 *3 (-13 (-1074) (-34))))) ((*1 *1 *2) - (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) - (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1136 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-470)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-575)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-606)))) + (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) + (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1138 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608)))) ((*1 *2 *1) - (-12 (-4 *3 (-1072)) (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) - (-5 *1 (-1046 *3 *4 *2)) - (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-1136 *2 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-470)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-575)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-606)))) + (-12 (-4 *3 (-1074)) (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))) + (-5 *1 (-1048 *3 *4 *2)) + (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-1138 *2 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-136)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-472)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-608)))) ((*1 *2 *1) - (-12 (-4 *3 (-1072)) (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) - (-5 *1 (-1046 *3 *4 *2)) - (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-1136 *3 *2)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-112)))) + (-12 (-4 *3 (-1074)) (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))) + (-5 *1 (-1048 *3 *4 *2)) + (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-1138 *3 *2)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) -(((*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025))))) +(((*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) -(((*1 *2 *1) (-12 (-4 *3 (-1183)) (-5 *2 (-620 *1)) (-4 *1 (-984 *3)))) + (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025))))) +(((*1 *2 *1) (-12 (-4 *3 (-1185)) (-5 *2 (-622 *1)) (-4 *1 (-986 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) - (-4 *4 (-1023))))) + (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) + (-4 *4 (-1025))))) (((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) -(((*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023))))) -(((*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) + (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025))))) +(((*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025))))) +(((*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 (-1135 *3 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) - (-4 *4 (-1023)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-622 (-1137 *3 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) + (-4 *4 (-1025)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *2 (-749)) (-5 *1 (-1135 *4 *5)) - (-14 *4 (-893)))) + (-12 (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *2 (-751)) (-5 *1 (-1137 *4 *5)) + (-14 *4 (-895)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-749))) (-5 *3 (-749)) (-5 *1 (-1135 *4 *5)) - (-14 *4 (-893)) (-4 *5 (-1023)))) + (-12 (-5 *2 (-622 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) + (-14 *4 (-895)) (-4 *5 (-1025)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1023)) - (-5 *1 (-1135 *4 *5)) (-14 *4 (-893))))) + (-12 (-5 *2 (-622 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) + (-5 *1 (-1137 *4 *5)) (-14 *4 (-895))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-917 *4)) (-4 *4 (-1023)) (-5 *1 (-1135 *3 *4)) - (-14 *3 (-893))))) + (-12 (-5 *2 (-919 *4)) (-4 *4 (-1025)) (-5 *1 (-1137 *3 *4)) + (-14 *3 (-895))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-917 *5)) (-5 *3 (-749)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) - (-14 *4 (-893))))) + (-12 (-5 *2 (-919 *5)) (-5 *3 (-751)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) + (-14 *4 (-895))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-749)) (-5 *3 (-917 *5)) (-4 *5 (-1023)) (-5 *1 (-1135 *4 *5)) - (-14 *4 (-893)))) + (-12 (-5 *2 (-751)) (-5 *3 (-919 *5)) (-4 *5 (-1025)) (-5 *1 (-1137 *4 *5)) + (-14 *4 (-895)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-749))) (-5 *3 (-749)) (-5 *1 (-1135 *4 *5)) - (-14 *4 (-893)) (-4 *5 (-1023)))) + (-12 (-5 *2 (-622 (-751))) (-5 *3 (-751)) (-5 *1 (-1137 *4 *5)) + (-14 *4 (-895)) (-4 *5 (-1025)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-749))) (-5 *3 (-917 *5)) (-4 *5 (-1023)) - (-5 *1 (-1135 *4 *5)) (-14 *4 (-893))))) + (-12 (-5 *2 (-622 (-751))) (-5 *3 (-919 *5)) (-4 *5 (-1025)) + (-5 *1 (-1137 *4 *5)) (-14 *4 (-895))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-749))) (-5 *3 (-112)) (-5 *1 (-1135 *4 *5)) - (-14 *4 (-893)) (-4 *5 (-1023))))) + (-12 (-5 *2 (-622 (-751))) (-5 *3 (-112)) (-5 *1 (-1137 *4 *5)) + (-14 *4 (-895)) (-4 *5 (-1025))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-749))) (-5 *3 (-169)) (-5 *1 (-1135 *4 *5)) - (-14 *4 (-893)) (-4 *5 (-1023))))) + (-12 (-5 *2 (-622 (-751))) (-5 *3 (-169)) (-5 *1 (-1137 *4 *5)) + (-14 *4 (-895)) (-4 *5 (-1025))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-749))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) - (-4 *4 (-1023))))) + (-12 (-5 *2 (-622 (-751))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) + (-4 *4 (-1025))))) (((*1 *2 *1) - (-12 (-5 *2 (-917 *4)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) - (-4 *4 (-1023))))) + (-12 (-5 *2 (-919 *4)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) + (-4 *4 (-1025))))) (((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) + (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025))))) (((*1 *2 *1) - (-12 (-5 *2 (-169)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-305)))) + (-12 (-5 *2 (-169)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-307)))) ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) (-4 *4 (-1023))))) -(((*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-893)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-751)) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) (-4 *4 (-1025))))) +(((*1 *1 *1) (-12 (-5 *1 (-1137 *2 *3)) (-14 *2 (-895)) (-4 *3 (-1025))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-917 *4))) (-5 *1 (-1135 *3 *4)) (-14 *3 (-893)) - (-4 *4 (-1023))))) + (-12 (-5 *2 (-622 (-919 *4))) (-5 *1 (-1137 *3 *4)) (-14 *3 (-895)) + (-4 *4 (-1025))))) (((*1 *1 *1) - (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *2 (-444)))) + (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *2 (-446)))) ((*1 *1 *1) - (-12 (-4 *1 (-335 *2 *3 *4)) (-4 *2 (-1188)) (-4 *3 (-1205 *2)) - (-4 *4 (-1205 (-400 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-444)))) + (-12 (-4 *1 (-337 *2 *3 *4)) (-4 *2 (-1190)) (-4 *3 (-1207 *2)) + (-4 *4 (-1207 (-402 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) - (-4 *3 (-444)))) + (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) + (-4 *3 (-446)))) ((*1 *1 *1) - (-12 (-4 *1 (-924 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-444)))) + (-12 (-4 *1 (-926 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-446)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-300)) (-4 *3 (-543)) (-5 *1 (-1134 *3 *2)) (-4 *2 (-1205 *3))))) + (-12 (-4 *3 (-302)) (-4 *3 (-545)) (-5 *1 (-1136 *3 *2)) (-4 *2 (-1207 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-932 *3)) (-5 *1 (-1134 *4 *3)) - (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-934 *3)) (-5 *1 (-1136 *4 *3)) + (-4 *3 (-1207 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) (-4 *1 (-484))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) + ((*1 *1 *1) (-4 *1 (-486))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) (-4 *1 (-484))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) + ((*1 *1 *1) (-4 *1 (-486))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) - ((*1 *1 *1) (-4 *1 (-484))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) + ((*1 *1 *1) (-4 *1 (-486))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) - ((*1 *1 *1) (-4 *1 (-484))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) + ((*1 *1 *1) (-4 *1 (-486))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) - ((*1 *1 *1) (-4 *1 (-484))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) + ((*1 *1 *1) (-4 *1 (-486))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) - ((*1 *1 *1) (-4 *1 (-484))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) + ((*1 *1 *1) (-4 *1 (-486))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) -(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-219))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) +(((*1 *1 *1) (-4 *1 (-94))) ((*1 *1 *1 *1) (-5 *1 (-221))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) - ((*1 *1 *1 *1) (-5 *1 (-371))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) + ((*1 *1 *1 *1) (-5 *1 (-373))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *1 *1) (-4 *1 (-94))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1222 *3)) (-5 *1 (-271 *3 *4 *2)) - (-4 *2 (-1193 *3 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1224 *3)) (-5 *1 (-273 *3 *4 *2)) + (-4 *2 (-1195 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *4 (-1191 *3)) - (-5 *1 (-272 *3 *4 *2 *5)) (-4 *2 (-1214 *3 *4)) (-4 *5 (-957 *4)))) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *4 (-1193 *3)) + (-5 *1 (-274 *3 *4 *2 *5)) (-4 *2 (-1216 *3 *4)) (-4 *5 (-959 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1132 *3)))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1134 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-38 (-400 (-536)))) (-5 *1 (-1133 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-38 (-402 (-538)))) (-5 *1 (-1135 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-400 (-536)))) - (-5 *2 (-2 (|:| -3839 (-1124 *4)) (|:| -3840 (-1124 *4)))) - (-5 *1 (-1132 *4)) (-5 *3 (-1124 *4))))) + (-12 (-4 *4 (-38 (-402 (-538)))) + (-5 *2 (-2 (|:| -3844 (-1126 *4)) (|:| -3845 (-1126 *4)))) + (-5 *1 (-1134 *4)) (-5 *3 (-1126 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-38 (-400 (-536)))) - (-5 *2 (-2 (|:| -3996 (-1124 *4)) (|:| -3992 (-1124 *4)))) - (-5 *1 (-1132 *4)) (-5 *3 (-1124 *4))))) + (-12 (-4 *4 (-38 (-402 (-538)))) + (-5 *2 (-2 (|:| -4001 (-1126 *4)) (|:| -3997 (-1126 *4)))) + (-5 *1 (-1134 *4)) (-5 *3 (-1126 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-536))) (-5 *5 (-1 (-1124 *4))) (-4 *4 (-356)) - (-4 *4 (-1023)) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4))))) + (-12 (-5 *3 (-1 *4 (-538))) (-5 *5 (-1 (-1126 *4))) (-4 *4 (-358)) + (-4 *4 (-1025)) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-356)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-358)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1124 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1023)) - (-5 *3 (-400 (-536))) (-5 *1 (-1131 *4))))) + (-12 (-5 *2 (-1126 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1025)) + (-5 *3 (-402 (-538))) (-5 *1 (-1133 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4)) - (-4 *4 (-38 (-400 (-536)))) (-4 *4 (-1023))))) + (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4)) + (-4 *4 (-38 (-402 (-538)))) (-4 *4 (-1025))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1124 *3))) (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) - (-4 *3 (-38 (-400 (-536)))) (-4 *3 (-1023))))) + (-12 (-5 *4 (-1 (-1126 *3))) (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) + (-4 *3 (-38 (-402 (-538)))) (-4 *3 (-1025))))) (((*1 *2 *3) - (-12 (-5 *3 (-1124 (-1124 *4))) (-5 *2 (-1124 *4)) (-5 *1 (-1131 *4)) - (-4 *4 (-1023))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-868 *2 *3)) (-4 *2 (-1205 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) + (-12 (-5 *3 (-1126 (-1126 *4))) (-5 *2 (-1126 *4)) (-5 *1 (-1133 *4)) + (-4 *4 (-1025))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1207 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1124 *4)) (-5 *3 (-1 *4 (-536))) (-4 *4 (-1023)) - (-5 *1 (-1131 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) + (-12 (-5 *2 (-1126 *4)) (-5 *3 (-1 *4 (-538))) (-4 *4 (-1025)) + (-5 *1 (-1133 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) - (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1169) (-934))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1) (-5 *1 (-838))) - ((*1 *2 *3) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-1131 *3)) (-4 *3 (-1023))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-1131 *4)) (-4 *4 (-1023)) - (-5 *3 (-536))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-1131 *4)) (-4 *4 (-1023)) - (-5 *3 (-536))))) + (-12 (-5 *3 (-1149)) + (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-936))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1) (-5 *1 (-840))) + ((*1 *2 *3) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-1133 *3)) (-4 *3 (-1025))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) + (-5 *3 (-538))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-1133 *4)) (-4 *4 (-1025)) + (-5 *3 (-538))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-893)) (-4 *3 (-356)) - (-14 *4 (-967 *2 *3)))) + (|partial| -12 (-5 *1 (-150 *2 *3 *4)) (-14 *2 (-895)) (-4 *3 (-358)) + (-14 *4 (-969 *2 *3)))) ((*1 *1 *1) - (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1205 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *1 *1) (|partial| -4 *1 (-701))) ((*1 *1 *1) (|partial| -4 *1 (-705))) + ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) + ((*1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) + ((*1 *1 *1) (|partial| -4 *1 (-703))) ((*1 *1 *1) (|partial| -4 *1 (-707))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-754 *5 *6 *7 *3 *4)) - (-4 *4 (-1043 *5 *6 *7 *3)))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-756 *5 *6 *7 *3 *4)) + (-4 *4 (-1045 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1040 *3 *2)) (-4 *3 (-13 (-823) (-356))) - (-4 *2 (-1205 *3)))) + (|partial| -12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) + (-4 *2 (-1207 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) + (|partial| -12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) + (|partial| -12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)) - (-4 *2 (-543)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-543))) + (|partial| -12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)) + (-4 *2 (-545)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-545))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)) (-4 *2 (-543)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-749))) + (|partial| -12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)) (-4 *2 (-545)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-751))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-543)))) - ((*1 *1 *1 *1) (-5 *1 (-838))) + (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-545)))) + ((*1 *1 *1 *1) (-5 *1 (-840))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-543)) - (-5 *1 (-943 *3 *4)))) + (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-545)) + (-5 *1 (-945 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1026 *3 *4 *2 *5 *6)) (-4 *2 (-1023)) - (-4 *5 (-232 *4 *2)) (-4 *6 (-232 *3 *2)) (-4 *2 (-543)))) + (|partial| -12 (-4 *1 (-1028 *3 *4 *2 *5 *6)) (-4 *2 (-1025)) + (-4 *5 (-234 *4 *2)) (-4 *6 (-234 *3 *2)) (-4 *2 (-545)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1124 *3)) (-4 *3 (-1023)) (-5 *1 (-1131 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3))))) + (|partial| -12 (-5 *2 (-1126 *3)) (-4 *3 (-1025)) (-5 *1 (-1133 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-620 *4)) (-4 *4 (-1072)) (-4 *4 (-1183)) (-5 *2 (-112)) - (-5 *1 (-1124 *4))))) + (-12 (-5 *3 (-622 *4)) (-4 *4 (-1074)) (-4 *4 (-1185)) (-5 *2 (-112)) + (-5 *1 (-1126 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2920 (-749)) (|:| |period| (-749)))) - (-5 *1 (-1124 *4)) (-4 *4 (-1183)) (-5 *3 (-749))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1124 *3))) (-5 *1 (-1124 *3)) (-4 *3 (-1183))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1124 *2)) (-4 *2 (-1183))))) -(((*1 *1) (-5 *1 (-563))) - ((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-834)))) - ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-834)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1129)) (-5 *4 (-838)) (-5 *2 (-1235)) (-5 *1 (-834)))) + (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2925 (-751)) (|:| |period| (-751)))) + (-5 *1 (-1126 *4)) (-4 *4 (-1185)) (-5 *3 (-751))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1126 *3))) (-5 *1 (-1126 *3)) (-4 *3 (-1185))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1126 *2)) (-4 *2 (-1185))))) +(((*1 *1) (-5 *1 (-565))) + ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-836)))) + ((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-836)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1131)) (-5 *4 (-840)) (-5 *2 (-1237)) (-5 *1 (-836)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-1124 *4)) (-4 *4 (-1072)) - (-4 *4 (-1183))))) + (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-1126 *4)) (-4 *4 (-1074)) + (-4 *4 (-1185))))) (((*1 *2 *1) - (-12 (-5 *2 (-838)) (-5 *1 (-1124 *3)) (-4 *3 (-1072)) (-4 *3 (-1183))))) + (-12 (-5 *2 (-840)) (-5 *1 (-1126 *3)) (-4 *3 (-1074)) (-4 *3 (-1185))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1124 *3)) (-4 *3 (-1072)) (-4 *3 (-1183))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1126 *3)) (-4 *3 (-1074)) (-4 *3 (-1185))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1229 (-620 (-536)))) (-5 *1 (-472)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) + (-12 (-5 *3 (-751)) (-5 *2 (-1231 (-622 (-538)))) (-5 *1 (-474)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-583 *3)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-585 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1183)) (-5 *1 (-1124 *3))))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1185)) (-5 *1 (-1126 *3))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-536)) (-4 *4 (-13 (-543) (-145))) (-5 *1 (-527 *4 *2)) - (-4 *2 (-1222 *4)))) + (-12 (-5 *3 (-538)) (-4 *4 (-13 (-545) (-145))) (-5 *1 (-529 *4 *2)) + (-4 *2 (-1224 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-536)) (-4 *4 (-13 (-356) (-361) (-596 *3))) (-4 *5 (-1205 *4)) - (-4 *6 (-703 *4 *5)) (-5 *1 (-531 *4 *5 *6 *2)) (-4 *2 (-1222 *6)))) + (-12 (-5 *3 (-538)) (-4 *4 (-13 (-358) (-363) (-598 *3))) (-4 *5 (-1207 *4)) + (-4 *6 (-705 *4 *5)) (-5 *1 (-533 *4 *5 *6 *2)) (-4 *2 (-1224 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-536)) (-4 *4 (-13 (-356) (-361) (-596 *3))) - (-5 *1 (-532 *4 *2)) (-4 *2 (-1222 *4)))) + (-12 (-5 *3 (-538)) (-4 *4 (-13 (-358) (-363) (-598 *3))) + (-5 *1 (-534 *4 *2)) (-4 *2 (-1224 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1124 *4)) (-5 *3 (-536)) (-4 *4 (-13 (-543) (-145))) - (-5 *1 (-1123 *4))))) + (-12 (-5 *2 (-1126 *4)) (-5 *3 (-538)) (-4 *4 (-13 (-545) (-145))) + (-5 *1 (-1125 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3)))) + (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) - (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5)))) + (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3)) + (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) - (-4 *2 (-1222 *3)))) + (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2)) + (-4 *2 (-1224 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3)))) + (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) - (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5)))) + (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3)) + (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) - (-4 *2 (-1222 *3)))) + (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2)) + (-4 *2 (-1224 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-543) (-145))) (-5 *1 (-527 *3 *2)) (-4 *2 (-1222 *3)))) + (-12 (-4 *3 (-13 (-545) (-145))) (-5 *1 (-529 *3 *2)) (-4 *2 (-1224 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-4 *4 (-1205 *3)) - (-4 *5 (-703 *3 *4)) (-5 *1 (-531 *3 *4 *5 *2)) (-4 *2 (-1222 *5)))) + (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-4 *4 (-1207 *3)) + (-4 *5 (-705 *3 *4)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-1224 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-361) (-596 (-536)))) (-5 *1 (-532 *3 *2)) - (-4 *2 (-1222 *3)))) + (-12 (-4 *3 (-13 (-358) (-363) (-598 (-538)))) (-5 *1 (-534 *3 *2)) + (-4 *2 (-1224 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1124 *3)) (-4 *3 (-13 (-543) (-145))) (-5 *1 (-1123 *3))))) + (-12 (-5 *2 (-1126 *3)) (-4 *3 (-13 (-545) (-145))) (-5 *1 (-1125 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)))) - ((*1 *1) (-4 *1 (-1122)))) -(((*1 *1 *1) (|partial| -4 *1 (-1122)))) -(((*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-1118 *3))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)))) + ((*1 *1) (-4 *1 (-1124)))) +(((*1 *1 *1) (|partial| -4 *1 (-1124)))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1185)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1122 *3)) (-4 *3 (-1185)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-1120 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-620 (-1001 *5 *6 *7 *3))) (-5 *1 (-1001 *5 *6 *7 *3)) - (-4 *3 (-1037 *5 *6 *7)))) + (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *2 (-622 (-1003 *5 *6 *7 *3))) (-5 *1 (-1003 *5 *6 *7 *3)) + (-4 *3 (-1039 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-620 *6)) (-4 *1 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)))) + (-12 (-5 *2 (-622 *6)) (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1043 *3 *4 *5 *2)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *2 (-1037 *3 *4 *5)))) + (-12 (-4 *1 (-1045 *3 *4 *5 *2)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *2 (-1039 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-620 (-1117 *5 *6 *7 *3))) (-5 *1 (-1117 *5 *6 *7 *3)) - (-4 *3 (-1037 *5 *6 *7))))) + (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *2 (-622 (-1119 *5 *6 *7 *3))) (-5 *1 (-1119 *5 *6 *7 *3)) + (-4 *3 (-1039 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1001 *5 *6 *7 *8))) - (-5 *1 (-1001 *5 *6 *7 *8)))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1003 *5 *6 *7 *8))) + (-5 *1 (-1003 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-112)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-620 (-1117 *5 *6 *7 *8))) - (-5 *1 (-1117 *5 *6 *7 *8))))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-112)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-622 (-1119 *5 *6 *7 *8))) + (-5 *1 (-1119 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-1037 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-620 *8)) (|:| |towers| (-620 (-1001 *5 *6 *7 *8))))) - (-5 *1 (-1001 *5 *6 *7 *8)) (-5 *3 (-620 *8)))) + (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) + (-4 *8 (-1039 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-622 *8)) (|:| |towers| (-622 (-1003 *5 *6 *7 *8))))) + (-5 *1 (-1003 *5 *6 *7 *8)) (-5 *3 (-622 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-1037 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-620 *8)) (|:| |towers| (-620 (-1117 *5 *6 *7 *8))))) - (-5 *1 (-1117 *5 *6 *7 *8)) (-5 *3 (-620 *8))))) + (-12 (-5 *4 (-112)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) + (-4 *8 (-1039 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-622 *8)) (|:| |towers| (-622 (-1119 *5 *6 *7 *8))))) + (-5 *1 (-1119 *5 *6 *7 *8)) (-5 *3 (-622 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *4 (-749)) - (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1235)) - (-5 *1 (-1041 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *4 (-749)) - (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-1235)) - (-5 *1 (-1116 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *4 (-751)) + (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) + (-5 *1 (-1043 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *4 (-751)) + (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-1237)) + (-5 *1 (-1118 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-620 *11)) - (|:| |todo| (-620 (-2 (|:| |val| *3) (|:| -1655 *11)))))) - (-5 *6 (-749)) (-5 *2 (-620 (-2 (|:| |val| (-620 *10)) (|:| -1655 *11)))) - (-5 *3 (-620 *10)) (-5 *4 (-620 *11)) (-4 *10 (-1037 *7 *8 *9)) - (-4 *11 (-1043 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) - (-5 *1 (-1041 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-622 *11)) + (|:| |todo| (-622 (-2 (|:| |val| *3) (|:| -1660 *11)))))) + (-5 *6 (-751)) (-5 *2 (-622 (-2 (|:| |val| (-622 *10)) (|:| -1660 *11)))) + (-5 *3 (-622 *10)) (-5 *4 (-622 *11)) (-4 *10 (-1039 *7 *8 *9)) + (-4 *11 (-1045 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) + (-5 *1 (-1043 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-620 *11)) - (|:| |todo| (-620 (-2 (|:| |val| *3) (|:| -1655 *11)))))) - (-5 *6 (-749)) (-5 *2 (-620 (-2 (|:| |val| (-620 *10)) (|:| -1655 *11)))) - (-5 *3 (-620 *10)) (-5 *4 (-620 *11)) (-4 *10 (-1037 *7 *8 *9)) - (-4 *11 (-1080 *7 *8 *9 *10)) (-4 *7 (-444)) (-4 *8 (-771)) (-4 *9 (-825)) - (-5 *1 (-1116 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-622 *11)) + (|:| |todo| (-622 (-2 (|:| |val| *3) (|:| -1660 *11)))))) + (-5 *6 (-751)) (-5 *2 (-622 (-2 (|:| |val| (-622 *10)) (|:| -1660 *11)))) + (-5 *3 (-622 *10)) (-5 *4 (-622 *11)) (-4 *10 (-1039 *7 *8 *9)) + (-4 *11 (-1082 *7 *8 *9 *10)) (-4 *7 (-446)) (-4 *8 (-773)) (-4 *9 (-827)) + (-5 *1 (-1118 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) + (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 - (-2 (|:| -2412 (-406 *4 (-400 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2417 (-408 *4 (-402 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3420 (-400 *6)) (|:| |special| (-400 *6)))) - (-5 *1 (-706 *5 *6)) (-5 *3 (-400 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3425 (-402 *6)) (|:| |special| (-402 *6)))) + (-5 *1 (-708 *5 *6)) (-5 *3 (-402 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-870 *3 *4)) - (-4 *3 (-1205 *4)))) + (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-872 *3 *4)) + (-4 *3 (-1207 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-749)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -3468 *3) (|:| -3467 *3))) (-5 *1 (-870 *3 *5)) - (-4 *3 (-1205 *5)))) + (|partial| -12 (-5 *4 (-751)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| -3473 *3) (|:| -3472 *3))) (-5 *1 (-872 *3 *5)) + (-4 *3 (-1207 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) - (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) + (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) - (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) + (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) - (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1116 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) + (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-620 *9)) (-5 *3 (-620 *8)) (-5 *4 (-112)) - (-4 *8 (-1037 *5 *6 *7)) (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-5 *1 (-1116 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-622 *9)) (-5 *3 (-622 *8)) (-5 *4 (-112)) + (-4 *8 (-1039 *5 *6 *7)) (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-5 *1 (-1118 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) - (-4 *9 (-825)) (-4 *3 (-1037 *7 *8 *9)) + (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) + (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1041 *7 *8 *9 *3 *4)) (-4 *4 (-1043 *7 *8 *9 *3)))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1045 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1037 *6 *7 *8)) + (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) + (-4 *3 (-1039 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-749)) (-5 *6 (-112)) (-4 *7 (-444)) (-4 *8 (-771)) - (-4 *9 (-825)) (-4 *3 (-1037 *7 *8 *9)) + (-12 (-5 *5 (-751)) (-5 *6 (-112)) (-4 *7 (-446)) (-4 *8 (-773)) + (-4 *9 (-827)) (-4 *3 (-1039 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1116 *7 *8 *9 *3 *4)) (-4 *4 (-1080 *7 *8 *9 *3)))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1118 *7 *8 *9 *3 *4)) (-4 *4 (-1082 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1037 *6 *7 *8)) + (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) + (-4 *3 (-1039 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1037 *6 *7 *8)) + (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) + (-4 *3 (-1039 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1041 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1037 *6 *7 *8)) + (-12 (-5 *5 (-751)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) + (-4 *3 (-1039 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1116 *6 *7 *8 *3 *4)) (-4 *4 (-1080 *6 *7 *8 *3)))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1118 *6 *7 *8 *3 *4)) (-4 *4 (-1082 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1037 *6 *7 *8)) + (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) + (-4 *3 (-1039 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1041 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-620 *4)) - (|:| |todo| (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))))) - (-5 *1 (-1116 *5 *6 *7 *3 *4)) (-4 *4 (-1080 *5 *6 *7 *3))))) + (-2 (|:| |done| (-622 *4)) + (|:| |todo| (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))))) + (-5 *1 (-1118 *5 *6 *7 *3 *4)) (-4 *4 (-1082 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) - (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-749)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) + (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) - (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-749)) (-5 *1 (-1116 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) + (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) - (-4 *9 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-749)) (-5 *1 (-1041 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) + (-4 *9 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *2 (-751)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *9)) (-4 *8 (-1037 *5 *6 *7)) - (-4 *9 (-1080 *5 *6 *7 *8)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-749)) (-5 *1 (-1116 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *9)) (-4 *8 (-1039 *5 *6 *7)) + (-4 *9 (-1082 *5 *6 *7 *8)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *2 (-751)) (-5 *1 (-1118 *5 *6 *7 *8 *9))))) (((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) - ((*1 *1 *1) (-4 *1 (-1115)))) -(((*1 *1 *1) (-4 *1 (-1115)))) + ((*1 *1 *1) (-4 *1 (-1117)))) +(((*1 *1 *1) (-4 *1 (-1117)))) (((*1 *1) (-5 *1 (-139))) ((*1 *1 *1) (-5 *1 (-142))) - ((*1 *1 *1) (-4 *1 (-1115)))) -(((*1 *1 *1) (-4 *1 (-1115)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-112))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-536)) (-5 *2 (-112))))) + ((*1 *1 *1) (-4 *1 (-1117)))) +(((*1 *1 *1) (-4 *1 (-1117)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-112))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-538)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *6)) (-4 *5 (-1072)) (-4 *6 (-1183)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-622 *5 *6)))) + (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *6)) (-4 *5 (-1074)) (-4 *6 (-1185)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-624 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-4 *5 (-1072)) (-4 *2 (-1183)) - (-5 *1 (-622 *5 *2)))) + (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-4 *5 (-1074)) (-4 *2 (-1185)) + (-5 *1 (-624 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 *5)) (-4 *6 (-1072)) (-4 *5 (-1183)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-622 *6 *5)))) + (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 *5)) (-4 *6 (-1074)) (-4 *5 (-1185)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-624 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-4 *5 (-1072)) (-4 *2 (-1183)) - (-5 *1 (-622 *5 *2)))) + (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-4 *5 (-1074)) (-4 *2 (-1185)) + (-5 *1 (-624 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-620 *5)) (-5 *4 (-620 *6)) (-4 *5 (-1072)) - (-4 *6 (-1183)) (-5 *1 (-622 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-622 *5)) (-5 *4 (-622 *6)) (-4 *5 (-1074)) + (-4 *6 (-1185)) (-5 *1 (-624 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-620 *5)) (-5 *4 (-620 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1072)) - (-4 *2 (-1183)) (-5 *1 (-622 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-142)) (-5 *2 (-749))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1115)) (-5 *3 (-142)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1115)) (-5 *2 (-1196 (-536)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-749)))) + (-12 (-5 *3 (-622 *5)) (-5 *4 (-622 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1074)) + (-4 *2 (-1185)) (-5 *1 (-624 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-751))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1117)) (-5 *3 (-142)) (-5 *2 (-112))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1117)) (-5 *2 (-1198 (-538)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-4 *1 (-131)) (-5 *2 (-751)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-536)) (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-538)) (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-536)))) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-538)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-365 *4)) (-4 *4 (-1183)) - (-5 *2 (-536)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-536)) (-5 *3 (-139)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-536))))) -(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48))))) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-367 *4)) (-4 *4 (-1185)) + (-5 *2 (-538)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-538)) (-5 *3 (-139)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-825)))) + (-5 *1 (-121 *3)) (-4 *3 (-827)))) ((*1 *2 *2) - (-12 (-5 *2 (-567 *4)) (-4 *4 (-13 (-29 *3) (-1169))) - (-4 *3 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) - (-5 *1 (-569 *3 *4)))) + (-12 (-5 *2 (-569 *4)) (-4 *4 (-13 (-29 *3) (-1171))) + (-4 *3 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) + (-5 *1 (-571 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-567 (-400 (-920 *3)))) - (-4 *3 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *1 (-572 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -3420 *3) (|:| |special| *3))) (-5 *1 (-706 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) - (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) - (-5 *3 (-620 (-667 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1229 (-1229 *5))) (-4 *5 (-356)) (-4 *5 (-1023)) - (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) - (-5 *3 (-620 (-667 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-620 *1)) (-4 *1 (-1115)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-620 *1)) (-4 *1 (-1115))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-139)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1115)) (-5 *2 (-142))))) + (-12 (-5 *2 (-569 (-402 (-922 *3)))) + (-4 *3 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *1 (-574 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| -3425 *3) (|:| |special| *3))) (-5 *1 (-708 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) + (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) + (-5 *3 (-622 (-669 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1231 (-1231 *5))) (-4 *5 (-358)) (-4 *5 (-1025)) + (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) + (-5 *3 (-622 (-669 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-139)) (-5 *2 (-622 *1)) (-4 *1 (-1117)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-142)) (-5 *2 (-622 *1)) (-4 *1 (-1117))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-139)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1117)) (-5 *2 (-142))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) + (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) ((*1 *1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170)))) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170)))) ((*1 *1 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-1023)) (-4 *1 (-664 *3 *2 *4)) (-4 *2 (-365 *3)) - (-4 *4 (-365 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1113 *2 *3)) (-14 *2 (-749)) (-4 *3 (-1023))))) + (-12 (-4 *3 (-1025)) (-4 *1 (-666 *3 *2 *4)) (-4 *2 (-367 *3)) + (-4 *4 (-367 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-1115 *2 *3)) (-14 *2 (-751)) (-4 *3 (-1025))))) (((*1 *1 *2) - (-12 (-5 *2 (-667 *4)) (-4 *4 (-1023)) (-5 *1 (-1113 *3 *4)) - (-14 *3 (-749))))) + (-12 (-5 *2 (-669 *4)) (-4 *4 (-1025)) (-5 *1 (-1115 *3 *4)) + (-14 *3 (-751))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))) - (-4 *3 (-13 (-1072) (-34)))))) + (|partial| -12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34))) + (-4 *3 (-13 (-1074) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1112 *2 *3)) (-4 *2 (-13 (-1072) (-34))) - (-4 *3 (-13 (-1072) (-34)))))) + (-12 (-5 *1 (-1114 *2 *3)) (-4 *2 (-13 (-1074) (-34))) + (-4 *3 (-13 (-1074) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 *4)) (-5 *1 (-1112 *3 *4)) (-4 *3 (-13 (-1072) (-34))) - (-4 *4 (-13 (-1072) (-34)))))) + (-12 (-5 *2 (-622 *4)) (-5 *1 (-1114 *3 *4)) (-4 *3 (-13 (-1074) (-34))) + (-4 *4 (-13 (-1074) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) (-5 *1 (-1112 *3 *4)) - (-4 *3 (-13 (-1072) (-34))) (-4 *4 (-13 (-1072) (-34)))))) + (-12 (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) (-5 *1 (-1114 *3 *4)) + (-4 *3 (-13 (-1074) (-34))) (-4 *4 (-13 (-1074) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1111 *4 *5)) (-4 *4 (-13 (-1072) (-34))) - (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-112)) (-5 *1 (-1112 *4 *5))))) + (-12 (-5 *3 (-1113 *4 *5)) (-4 *4 (-13 (-1074) (-34))) + (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-112)) (-5 *1 (-1114 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1111 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1072) (-34))) (-4 *6 (-13 (-1072) (-34))) (-5 *2 (-112)) - (-5 *1 (-1112 *5 *6))))) + (-12 (-5 *3 (-1113 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1074) (-34))) (-4 *6 (-13 (-1074) (-34))) (-5 *2 (-112)) + (-5 *1 (-1114 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)) - (-4 *2 (-1072)))) + (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)) + (-4 *2 (-1074)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-149 *3)) - (-4 *3 (-1183)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-652 *3)) (-4 *3 (-1183)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-149 *3)) + (-4 *3 (-1185)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-654 *3)) (-4 *3 (-1185)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-536)) (-4 *4 (-1072)) - (-5 *1 (-715 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-715 *2)) (-4 *2 (-1072)))) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-538)) (-4 *4 (-1074)) + (-5 *1 (-717 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-717 *2)) (-4 *2 (-1074)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) - (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4))))) + (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) + (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-229 *3)) - (-4 *3 (-1072)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4348)) (-4 *1 (-229 *2)) (-4 *2 (-1072)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-1072)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) + (-4 *3 (-1074)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4353)) (-4 *1 (-231 *2)) (-4 *2 (-1074)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-1074)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072)))) + (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-536)) (-4 *4 (-1072)) - (-5 *1 (-715 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-715 *2)) (-4 *2 (-1072)))) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-538)) (-4 *4 (-1074)) + (-5 *1 (-717 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-717 *2)) (-4 *2 (-1074)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) - (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4))))) + (-12 (-5 *2 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) + (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-1111 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1072) (-34))) (-4 *5 (-13 (-1072) (-34))) - (-5 *1 (-1112 *4 *5)))) + (-12 (-5 *2 (-622 (-1113 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1074) (-34))) (-4 *5 (-13 (-1074) (-34))) + (-5 *1 (-1114 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-620 (-1111 *3 *4))) (-4 *3 (-13 (-1072) (-34))) - (-4 *4 (-13 (-1072) (-34))) (-5 *1 (-1112 *3 *4))))) + (-12 (-5 *2 (-622 (-1113 *3 *4))) (-4 *3 (-13 (-1074) (-34))) + (-4 *4 (-13 (-1074) (-34))) (-5 *1 (-1114 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) - (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) + (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) + (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) - (-4 *4 (-13 (-1072) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-833)))) - ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-939)))) - ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-963)))) - ((*1 *2 *1) (-12 (-4 *1 (-984 *2)) (-4 *2 (-1183)))) + (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) + (-4 *4 (-13 (-1074) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-835)))) + ((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-941)))) + ((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-965)))) + ((*1 *2 *1) (-12 (-4 *1 (-986 *2)) (-4 *2 (-1185)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1072) (-34))) (-5 *1 (-1111 *2 *3)) - (-4 *3 (-13 (-1072) (-34)))))) + (-12 (-4 *2 (-13 (-1074) (-34))) (-5 *1 (-1113 *2 *3)) + (-4 *3 (-13 (-1074) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-112)) - (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-112)) + (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) - (-4 *4 (-13 (-1072) (-34)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) + (-4 *4 (-13 (-1074) (-34)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-113))) - ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-535))) - ((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023)))) + ((*1 *1 *1) (-5 *1 (-169))) ((*1 *1 *1) (-4 *1 (-537))) + ((*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025)))) ((*1 *1 *1) - (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) - (-4 *3 (-13 (-1072) (-34)))))) + (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) + (-4 *3 (-13 (-1074) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) - (-4 *3 (-13 (-1072) (-34)))))) + (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) + (-4 *3 (-13 (-1074) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1111 *3 *2)) (-4 *3 (-13 (-1072) (-34))) - (-4 *2 (-13 (-1072) (-34)))))) + (-12 (-5 *1 (-1113 *3 *2)) (-4 *3 (-13 (-1074) (-34))) + (-4 *2 (-13 (-1074) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1111 *3 *4)) (-4 *3 (-13 (-1072) (-34))) - (-4 *4 (-13 (-1072) (-34)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-13 (-1074) (-34))) + (-4 *4 (-13 (-1074) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1111 *2 *3)) (-4 *2 (-13 (-1072) (-34))) - (-4 *3 (-13 (-1072) (-34)))))) + (-12 (-5 *1 (-1113 *2 *3)) (-4 *2 (-13 (-1074) (-34))) + (-4 *3 (-13 (-1074) (-34)))))) (((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1072) (-34))) (-4 *6 (-13 (-1072) (-34))) (-5 *2 (-112)) - (-5 *1 (-1111 *5 *6))))) + (-4 *5 (-13 (-1074) (-34))) (-4 *6 (-13 (-1074) (-34))) (-5 *2 (-112)) + (-5 *1 (-1113 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1072) (-34))) (-5 *2 (-112)) - (-5 *1 (-1111 *4 *5)) (-4 *4 (-13 (-1072) (-34)))))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1074) (-34))) (-5 *2 (-112)) + (-5 *1 (-1113 *4 *5)) (-4 *4 (-13 (-1074) (-34)))))) +(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1110)))) -(((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) + ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1110)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1110)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1110)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1110)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1110)))) -(((*1 *1 *1) (-5 *1 (-219))) ((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1112)))) +(((*1 *1 *1) (-5 *1 (-221))) ((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1110))) ((*1 *1 *1 *1) (-4 *1 (-1110)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-219)) (-5 *3 (-749)) (-5 *1 (-220)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-166 (-219))) (-5 *3 (-749)) (-5 *1 (-220)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *1 *1) (-4 *1 (-1112))) ((*1 *1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-221)) (-5 *3 (-751)) (-5 *1 (-222)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-166 (-221))) (-5 *3 (-751)) (-5 *1 (-222)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1110)))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *1 *1) (-4 *1 (-1110)))) -(((*1 *1 *1 *1) (-5 *1 (-219))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *1 *1 *1) (-5 *1 (-221))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015)))) - ((*1 *1 *1 *1) (-4 *1 (-1110)))) -(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017)))) + ((*1 *1 *1 *1) (-4 *1 (-1112)))) +(((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) - ((*1 *1 *1) (-4 *1 (-823))) - ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)) (-4 *2 (-1032)))) - ((*1 *1 *1) (-4 *1 (-1032))) ((*1 *1 *1) (-4 *1 (-1110)))) -(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109))))) -(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-62 *3)) (-14 *3 (-1147)))) - ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-68 *3)) (-14 *3 (-1147)))) - ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-71 *3)) (-14 *3 (-1147)))) - ((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1235)) (-5 *1 (-388)))) - ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1235)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1129)) (-5 *4 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) - ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-1109)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-838))) (-5 *2 (-1235)) (-5 *1 (-1109))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-620 (-1152))) (-5 *1 (-1107))))) -(((*1 *1 *2) (-12 (-5 *2 (-1135 3 *3)) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) - ((*1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) + ((*1 *1 *1) (-4 *1 (-825))) + ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)) (-4 *2 (-1034)))) + ((*1 *1 *1) (-4 *1 (-1034))) ((*1 *1 *1) (-4 *1 (-1112)))) +(((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111))))) +(((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-62 *3)) (-14 *3 (-1149)))) + ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-68 *3)) (-14 *3 (-1149)))) + ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-71 *3)) (-14 *3 (-1149)))) + ((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-390)))) + ((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1237)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1131)) (-5 *4 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))) + ((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-1111)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-840))) (-5 *2 (-1237)) (-5 *1 (-1111))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-622 (-1154))) (-5 *1 (-1109))))) +(((*1 *1 *2) (-12 (-5 *2 (-1137 3 *3)) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) + ((*1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025))))) (((*1 *2) - (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) - (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) + (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) + (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-749))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-749))))) -(((*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-620 *1)) (-4 *1 (-1105 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1023)) (-5 *2 (-620 *1)) (-4 *1 (-1105 *3))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751))))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-751))))) +(((*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-622 *1)) (-4 *1 (-1107 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-1025)) (-5 *2 (-622 *1)) (-4 *1 (-1107 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-620 (-917 *4))) (-4 *1 (-1105 *4)) (-4 *4 (-1023)) - (-5 *2 (-749))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-851 *2)) (-4 *2 (-1183)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) + (-12 (-5 *3 (-622 (-919 *4))) (-4 *1 (-1107 *4)) (-4 *4 (-1025)) + (-5 *2 (-751))))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-853 *2)) (-4 *2 (-1185)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) + (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-917 *3))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) + (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-919 *3))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-620 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-622 (-622 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-917 *3))) (-4 *1 (-1105 *3)) (-4 *3 (-1023))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112))))) + (-12 (-5 *2 (-622 (-919 *3))) (-4 *1 (-1107 *3)) (-4 *3 (-1025))))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-917 *3)))))) + (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-919 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-620 (-620 (-917 *4)))) (-5 *3 (-112)) (-4 *4 (-1023)) - (-4 *1 (-1105 *4)))) + (-12 (-5 *2 (-622 (-622 (-919 *4)))) (-5 *3 (-112)) (-4 *4 (-1025)) + (-4 *1 (-1107 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 (-620 (-917 *3)))) (-4 *3 (-1023)) (-4 *1 (-1105 *3)))) + (-12 (-5 *2 (-622 (-622 (-919 *3)))) (-4 *3 (-1025)) (-4 *1 (-1107 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-620 (-620 (-620 *4)))) (-5 *3 (-112)) (-4 *1 (-1105 *4)) - (-4 *4 (-1023)))) + (-12 (-5 *2 (-622 (-622 (-622 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4)) + (-4 *4 (-1025)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-620 (-620 (-917 *4)))) (-5 *3 (-112)) (-4 *1 (-1105 *4)) - (-4 *4 (-1023)))) + (-12 (-5 *2 (-622 (-622 (-919 *4)))) (-5 *3 (-112)) (-4 *1 (-1107 *4)) + (-4 *4 (-1025)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-620 (-620 (-620 *5)))) (-5 *3 (-620 (-169))) (-5 *4 (-169)) - (-4 *1 (-1105 *5)) (-4 *5 (-1023)))) + (-12 (-5 *2 (-622 (-622 (-622 *5)))) (-5 *3 (-622 (-169))) (-5 *4 (-169)) + (-4 *1 (-1107 *5)) (-4 *5 (-1025)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-620 (-620 (-917 *5)))) (-5 *3 (-620 (-169))) (-5 *4 (-169)) - (-4 *1 (-1105 *5)) (-4 *5 (-1023))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-917 *3)))))) + (-12 (-5 *2 (-622 (-622 (-919 *5)))) (-5 *3 (-622 (-169))) (-5 *4 (-169)) + (-4 *1 (-1107 *5)) (-4 *5 (-1025))))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-919 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-620 (-749)))))))) + (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-622 (-751)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) - (-5 *2 (-620 (-620 (-620 (-917 *3)))))))) + (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) + (-5 *2 (-622 (-622 (-622 (-919 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-620 (-169))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) (-5 *2 (-620 (-169)))))) + (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-622 (-169))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 (-622 (-169)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1105 *3)) (-4 *3 (-1023)) + (-12 (-4 *1 (-1107 *3)) (-4 *3 (-1025)) (-5 *2 - (-2 (|:| -4205 (-749)) (|:| |curves| (-749)) (|:| |polygons| (-749)) - (|:| |constructs| (-749))))))) + (-2 (|:| -4210 (-751)) (|:| |curves| (-751)) (|:| |polygons| (-751)) + (|:| |constructs| (-751))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-620 (-2 (|:| -4087 (-1141 *6)) (|:| -2488 (-536))))) - (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1105 *2)) (-4 *2 (-1023))))) + (-12 (-5 *3 (-622 (-2 (|:| -4092 (-1143 *6)) (|:| -2493 (-538))))) + (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) + (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1107 *2)) (-4 *2 (-1025))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-1103 *4 *2)) - (-4 *2 (-13 (-586 (-536) *4) (-10 -7 (-6 -4348) (-6 -4349)))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-1105 *4 *2)) + (-4 *2 (-13 (-588 (-538) *4) (-10 -7 (-6 -4353) (-6 -4354)))))) ((*1 *2 *2) - (-12 (-4 *3 (-825)) (-4 *3 (-1183)) (-5 *1 (-1103 *3 *2)) - (-4 *2 (-13 (-586 (-536) *3) (-10 -7 (-6 -4348) (-6 -4349))))))) + (-12 (-4 *3 (-827)) (-4 *3 (-1185)) (-5 *1 (-1105 *3 *2)) + (-4 *2 (-13 (-588 (-538) *3) (-10 -7 (-6 -4353) (-6 -4354))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-1103 *4 *2)) - (-4 *2 (-13 (-586 (-536) *4) (-10 -7 (-6 -4348) (-6 -4349)))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-1105 *4 *2)) + (-4 *2 (-13 (-588 (-538) *4) (-10 -7 (-6 -4353) (-6 -4354)))))) ((*1 *2 *2) - (-12 (-4 *3 (-825)) (-4 *3 (-1183)) (-5 *1 (-1103 *3 *2)) - (-4 *2 (-13 (-586 (-536) *3) (-10 -7 (-6 -4348) (-6 -4349))))))) + (-12 (-4 *3 (-827)) (-4 *3 (-1185)) (-5 *1 (-1105 *3 *2)) + (-4 *2 (-13 (-588 (-538) *3) (-10 -7 (-6 -4353) (-6 -4354))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 *4)) (-4 *4 (-1023)) (-4 *2 (-1205 *4)) - (-5 *1 (-436 *4 *2)))) + (-12 (-5 *3 (-1231 *4)) (-4 *4 (-1025)) (-4 *2 (-1207 *4)) + (-5 *1 (-438 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-400 (-1141 (-307 *5)))) (-5 *3 (-1229 (-307 *5))) - (-5 *4 (-536)) (-4 *5 (-13 (-543) (-825))) (-5 *1 (-1101 *5))))) + (-12 (-5 *2 (-402 (-1143 (-309 *5)))) (-5 *3 (-1231 (-309 *5))) + (-5 *4 (-538)) (-4 *5 (-13 (-545) (-827))) (-5 *1 (-1103 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-400 (-1141 (-307 *3)))) (-4 *3 (-13 (-543) (-825))) - (-5 *1 (-1101 *3))))) + (-12 (-5 *2 (-402 (-1143 (-309 *3)))) (-4 *3 (-13 (-545) (-827))) + (-5 *1 (-1103 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-400 (-920 *5)))) (-5 *4 (-1147)) - (-4 *5 (-13 (-300) (-825) (-145))) - (-5 *2 (-1136 (-620 (-307 *5)) (-620 (-286 (-307 *5))))) - (-5 *1 (-1100 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) - (-4 *5 (-13 (-300) (-825) (-145))) - (-5 *2 (-1136 (-620 (-307 *5)) (-620 (-286 (-307 *5))))) - (-5 *1 (-1100 *5))))) + (-12 (-5 *3 (-288 (-402 (-922 *5)))) (-5 *4 (-1149)) + (-4 *5 (-13 (-302) (-827) (-145))) + (-5 *2 (-1138 (-622 (-309 *5)) (-622 (-288 (-309 *5))))) + (-5 *1 (-1102 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) + (-4 *5 (-13 (-302) (-827) (-145))) + (-5 *2 (-1138 (-622 (-309 *5)) (-622 (-288 (-309 *5))))) + (-5 *1 (-1102 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) - (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-307 *5))) - (-5 *1 (-1100 *5)))) + (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) + (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-309 *5))) + (-5 *1 (-1102 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) - (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-307 *5)))) - (-5 *1 (-1100 *5))))) + (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) + (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-309 *5)))) + (-5 *1 (-1102 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) - (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) - (-5 *1 (-1100 *5)))) + (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) + (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *5)))) + (-5 *1 (-1102 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-13 (-300) (-825) (-145))) - (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1100 *4)))) + (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-13 (-302) (-827) (-145))) + (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1102 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-400 (-920 *5)))) (-5 *4 (-1147)) - (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-286 (-307 *5)))) - (-5 *1 (-1100 *5)))) + (-12 (-5 *3 (-288 (-402 (-922 *5)))) (-5 *4 (-1149)) + (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-288 (-309 *5)))) + (-5 *1 (-1102 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-286 (-400 (-920 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) - (-5 *2 (-620 (-286 (-307 *4)))) (-5 *1 (-1100 *4)))) + (-12 (-5 *3 (-288 (-402 (-922 *4)))) (-4 *4 (-13 (-302) (-827) (-145))) + (-5 *2 (-622 (-288 (-309 *4)))) (-5 *1 (-1102 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-400 (-920 *5)))) (-5 *4 (-620 (-1147))) - (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *5))))) - (-5 *1 (-1100 *5)))) + (-12 (-5 *3 (-622 (-402 (-922 *5)))) (-5 *4 (-622 (-1149))) + (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *5))))) + (-5 *1 (-1102 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-400 (-920 *4)))) (-4 *4 (-13 (-300) (-825) (-145))) - (-5 *2 (-620 (-620 (-286 (-307 *4))))) (-5 *1 (-1100 *4)))) + (-12 (-5 *3 (-622 (-402 (-922 *4)))) (-4 *4 (-13 (-302) (-827) (-145))) + (-5 *2 (-622 (-622 (-288 (-309 *4))))) (-5 *1 (-1102 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-286 (-400 (-920 *5))))) (-5 *4 (-620 (-1147))) - (-4 *5 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *5))))) - (-5 *1 (-1100 *5)))) + (-12 (-5 *3 (-622 (-288 (-402 (-922 *5))))) (-5 *4 (-622 (-1149))) + (-4 *5 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *5))))) + (-5 *1 (-1102 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-286 (-400 (-920 *4))))) - (-4 *4 (-13 (-300) (-825) (-145))) (-5 *2 (-620 (-620 (-286 (-307 *4))))) - (-5 *1 (-1100 *4))))) + (-12 (-5 *3 (-622 (-288 (-402 (-922 *4))))) + (-4 *4 (-13 (-302) (-827) (-145))) (-5 *2 (-622 (-622 (-288 (-309 *4))))) + (-5 *1 (-1102 *4))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2))))) + (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2))))) (((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2))))) + (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2))))) (((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2))))) + (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2))))) (((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2))))) + (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) + (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3))))) + (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) + (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3))))) + (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) + (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3))))) + (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *2 (-620 *4)) (-5 *1 (-1099 *3 *4)) (-4 *3 (-1205 *4)))) + (-12 (-4 *4 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *2 (-622 *4)) (-5 *1 (-1101 *3 *4)) (-4 *3 (-1207 *4)))) ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *2 (-620 *3)) (-5 *1 (-1099 *4 *3)) (-4 *4 (-1205 *3))))) + (-12 (-4 *3 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *2 (-622 *3)) (-5 *1 (-1101 *4 *3)) (-4 *4 (-1207 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) + (-4 *5 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) (-5 *2 - (-2 (|:| |solns| (-620 *5)) - (|:| |maps| (-620 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1099 *3 *5)) (-4 *3 (-1205 *5))))) + (-2 (|:| |solns| (-622 *5)) + (|:| |maps| (-622 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1101 *3 *5)) (-4 *3 (-1207 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-356)) (-4 *5 (-13 (-365 *4) (-10 -7 (-6 -4349)))) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349)))) (-5 *1 (-645 *4 *5 *2 *3)) - (-4 *3 (-664 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-358)) (-4 *5 (-13 (-367 *4) (-10 -7 (-6 -4354)))) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354)))) (-5 *1 (-647 *4 *5 *2 *3)) + (-4 *3 (-666 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1229 *4)) (-5 *3 (-667 *4)) (-4 *4 (-356)) - (-5 *1 (-646 *4)))) + (|partial| -12 (-5 *2 (-1231 *4)) (-5 *3 (-669 *4)) (-4 *4 (-358)) + (-5 *1 (-648 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-620 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-356)) - (-5 *1 (-792 *2 *3)) (-4 *3 (-636 *2)))) + (|partial| -12 (-5 *4 (-622 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-358)) + (-5 *1 (-794 *2 *3)) (-4 *3 (-638 *2)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-356) (-10 -8 (-15 ** ($ $ (-400 (-536))))))) - (-5 *1 (-1099 *3 *2)) (-4 *3 (-1205 *2))))) + (-12 (-4 *2 (-13 (-358) (-10 -8 (-15 ** ($ $ (-402 (-538))))))) + (-5 *1 (-1101 *3 *2)) (-4 *3 (-1207 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-1124 *7))) (-4 *6 (-825)) - (-4 *7 (-924 *5 (-522 *6) *6)) (-4 *5 (-1023)) (-5 *2 (-1 (-1124 *7) *7)) - (-5 *1 (-1097 *5 *6 *7))))) + (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-1126 *7))) (-4 *6 (-827)) + (-4 *7 (-926 *5 (-524 *6) *6)) (-4 *5 (-1025)) (-5 *2 (-1 (-1126 *7) *7)) + (-5 *1 (-1099 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-300)) (-4 *6 (-365 *5)) (-4 *4 (-365 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-620 *4)))) - (-5 *1 (-1095 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4))))) + (-12 (-4 *5 (-302)) (-4 *6 (-367 *5)) (-4 *4 (-367 *5)) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2128 (-622 *4)))) + (-5 *1 (-1097 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) + (-12 (-4 *4 (-302)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1095 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6))))) + (-5 *1 (-1097 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) + (-12 (-4 *3 (-302)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-300)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1095 *4 *5 *6 *3)) - (-4 *3 (-664 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536)))) + (-12 (-4 *4 (-302)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1097 *4 *5 *6 *3)) + (-4 *3 (-666 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538)))) ((*1 *2 *2) - (-12 (-4 *3 (-300)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) + (-12 (-4 *3 (-302)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-1097 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-749)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-751)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-1023)) (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) - (-4 *5 (-232 *3 *2))))) + (-12 (-4 *2 (-1025)) (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) + (-4 *5 (-234 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-620 *1)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-622 *1)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 *3)) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1023)) (-5 *1 (-667 *3)))) + (-12 (-5 *2 (-622 *3)) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1025)) (-5 *1 (-669 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 *4)) (-4 *4 (-1023)) (-4 *1 (-1094 *3 *4 *5 *6)) - (-4 *5 (-232 *3 *4)) (-4 *6 (-232 *3 *4))))) + (-12 (-5 *2 (-622 *4)) (-4 *4 (-1025)) (-4 *1 (-1096 *3 *4 *5 *6)) + (-4 *5 (-234 *3 *4)) (-4 *6 (-234 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *4 *2 *5)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) - (-4 *2 (-232 *3 *4))))) + (-12 (-4 *1 (-1096 *3 *4 *2 *5)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) + (-4 *2 (-234 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-893)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) - ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) + (-12 (-5 *2 (-895)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) + ((*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1229 *4)) (-5 *3 (-893)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) + (-12 (-5 *2 (-1231 *4)) (-5 *3 (-895)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) - (-4 *2 (-1023))))) + (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) + (-4 *2 (-1025))))) (((*1 *2 *3) - (-12 (-5 *3 (-667 *2)) (-4 *4 (-1205 *2)) - (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) - (-5 *1 (-490 *2 *4 *5)) (-4 *5 (-403 *2 *4)))) + (-12 (-5 *3 (-669 *2)) (-4 *4 (-1207 *2)) + (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) + (-5 *1 (-492 *2 *4 *5)) (-4 *5 (-405 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) - (-4 *2 (-1023))))) + (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) + (-4 *2 (-1025))))) (((*1 *2 *3) - (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-356)) - (-5 *1 (-512 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5)))) + (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-358)) + (-5 *1 (-514 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) - (|has| *2 (-6 (-4350 "*"))) (-4 *2 (-1023)))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) + (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) ((*1 *2 *3) - (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) - (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5)))) + (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-170)) + (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) - (|has| *2 (-6 (-4350 "*"))) (-4 *2 (-1023))))) + (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) + (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025))))) (((*1 *2 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *3 (-365 *2)) (-4 *4 (-365 *2)) - (|has| *2 (-6 (-4350 "*"))) (-4 *2 (-1023)))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *3 (-367 *2)) (-4 *4 (-367 *2)) + (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025)))) ((*1 *2 *3) - (-12 (-4 *4 (-365 *2)) (-4 *5 (-365 *2)) (-4 *2 (-170)) - (-5 *1 (-666 *2 *4 *5 *3)) (-4 *3 (-664 *2 *4 *5)))) + (-12 (-4 *4 (-367 *2)) (-4 *5 (-367 *2)) (-4 *2 (-170)) + (-5 *1 (-668 *2 *4 *5 *3)) (-4 *3 (-666 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1094 *3 *2 *4 *5)) (-4 *4 (-232 *3 *2)) (-4 *5 (-232 *3 *2)) - (|has| *2 (-6 (-4350 "*"))) (-4 *2 (-1023))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) - ((*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1183)) (-5 *2 (-749))))) -(((*1 *1 *1 *1) (-4 *1 (-640))) ((*1 *1 *1 *1) (-5 *1 (-1091)))) -(((*1 *1 *1 *1) (-4 *1 (-640))) ((*1 *1 *1 *1) (-5 *1 (-1091)))) -(((*1 *1 *1) (-4 *1 (-640))) ((*1 *1 *1) (-5 *1 (-1091)))) + (-12 (-4 *1 (-1096 *3 *2 *4 *5)) (-4 *4 (-234 *3 *2)) (-4 *5 (-234 *3 *2)) + (|has| *2 (-6 (-4355 "*"))) (-4 *2 (-1025))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-1094 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) (-12 (-4 *1 (-1094 *3)) (-4 *3 (-1185)) (-5 *2 (-751))))) +(((*1 *1 *1 *1) (-4 *1 (-642))) ((*1 *1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1 *1) (-4 *1 (-642))) ((*1 *1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-4 *1 (-642))) ((*1 *1 *1) (-5 *1 (-1093)))) (((*1 *1) - (-12 (-4 *1 (-397)) (-3671 (|has| *1 (-6 -4339))) - (-3671 (|has| *1 (-6 -4331))))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (-4 *1 (-825))) - ((*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825)))) ((*1 *1) (-5 *1 (-1091)))) + (-12 (-4 *1 (-399)) (-3676 (|has| *1 (-6 -4344))) + (-3676 (|has| *1 (-6 -4336))))) + ((*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-827)))) + ((*1 *1 *1 *1) (-4 *1 (-827))) + ((*1 *2 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827)))) ((*1 *1) (-5 *1 (-1093)))) (((*1 *1) - (-12 (-4 *1 (-397)) (-3671 (|has| *1 (-6 -4339))) - (-3671 (|has| *1 (-6 -4331))))) - ((*1 *2 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-825)))) - ((*1 *2 *1) (-12 (-4 *1 (-808 *2)) (-4 *2 (-825)))) - ((*1 *1 *1 *1) (-4 *1 (-825))) ((*1 *1) (-5 *1 (-1091)))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1) (-4 *1 (-941))) ((*1 *1 *1) (-5 *1 (-1091)))) + (-12 (-4 *1 (-399)) (-3676 (|has| *1 (-6 -4344))) + (-3676 (|has| *1 (-6 -4336))))) + ((*1 *2 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-827)))) + ((*1 *2 *1) (-12 (-4 *1 (-810 *2)) (-4 *2 (-827)))) + ((*1 *1 *1 *1) (-4 *1 (-827))) ((*1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1) (-4 *1 (-943))) ((*1 *1 *1) (-5 *1 (-1093)))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1091)))) -(((*1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536)))) - ((*1 *1 *1) (-5 *1 (-1091)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536)))) - ((*1 *1 *1 *1) (-5 *1 (-1091)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-491 *2)) (-14 *2 (-536)))) - ((*1 *1 *1 *1) (-5 *1 (-1091)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-497)) (-5 *3 (-1086)) (-5 *1 (-1087))))) -(((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-212)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-620 (-1152))) (-5 *3 (-1152)) (-5 *1 (-1086)))) - ((*1 *2 *1) (-12 (-5 *2 (-1086)) (-5 *1 (-1087))))) -(((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-659)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-944)))) - ((*1 *2 *1) (-12 (-5 *2 (-1184)) (-5 *1 (-1045)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1086))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-659)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-1086))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1147)) - (-5 *2 (-536)) (-5 *1 (-1085 *4 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538)))) + ((*1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538)))) + ((*1 *1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-493 *2)) (-14 *2 (-538)))) + ((*1 *1 *1 *1) (-5 *1 (-1093)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-499)) (-5 *3 (-1088)) (-5 *1 (-1089))))) +(((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-214)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-622 (-1154))) (-5 *3 (-1154)) (-5 *1 (-1088)))) + ((*1 *2 *1) (-12 (-5 *2 (-1088)) (-5 *1 (-1089))))) +(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-178)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-661)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-946)))) + ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1047)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1088))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-661)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-1088))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149)) + (-5 *2 (-538)) (-5 *1 (-1087 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-444)) (-4 *4 (-798)) (-14 *5 (-1147)) - (-5 *2 (-536)) (-5 *1 (-1085 *4 *5))))) + (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-446)) (-4 *4 (-800)) (-14 *5 (-1149)) + (-5 *2 (-538)) (-5 *1 (-1087 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) - (-5 *1 (-1085 *4 *5))))) + (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538)) + (-5 *1 (-1087 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-536)) - (-5 *1 (-1085 *4 *5))))) + (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-538)) + (-5 *1 (-1087 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1198 *5 *4)) (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 *4)) - (-5 *1 (-1085 *4 *5))))) + (-12 (-5 *3 (-1200 *5 *4)) (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 *4)) + (-5 *1 (-1087 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 (-1198 *5 *4))) - (-5 *1 (-1085 *4 *5)) (-5 *3 (-1198 *5 *4))))) + (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 (-1200 *5 *4))) + (-5 *1 (-1087 *4 *5)) (-5 *3 (-1200 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-798)) (-14 *5 (-1147)) (-5 *2 (-620 (-1198 *5 *4))) - (-5 *1 (-1085 *4 *5)) (-5 *3 (-1198 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-1081)) (-5 *3 (-536))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1081))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1229 (-536))) (-5 *3 (-536)) (-5 *1 (-1081)))) + (-12 (-4 *4 (-800)) (-14 *5 (-1149)) (-5 *2 (-622 (-1200 *5 *4))) + (-5 *1 (-1087 *4 *5)) (-5 *3 (-1200 *5 *4))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-1083)) (-5 *3 (-538))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1083))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1231 (-538))) (-5 *3 (-538)) (-5 *1 (-1083)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1229 (-536))) (-5 *3 (-620 (-536))) (-5 *4 (-536)) - (-5 *1 (-1081))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *3 (-112)) (-5 *1 (-1081))))) + (-12 (-5 *2 (-1231 (-538))) (-5 *3 (-622 (-538))) (-5 *4 (-538)) + (-5 *1 (-1083))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *3 (-112)) (-5 *1 (-1083))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-667 (-536))) (-5 *3 (-620 (-536))) (-5 *1 (-1081))))) + (-12 (-5 *2 (-669 (-538))) (-5 *3 (-622 (-538))) (-5 *1 (-1083))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1081))))) + (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1083))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-536))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-1081))))) + (-12 (-5 *3 (-622 (-538))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-1083))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-620 (-536))) (-5 *3 (-667 (-536))) (-5 *1 (-1081))))) + (-12 (-5 *2 (-622 (-538))) (-5 *3 (-669 (-538))) (-5 *1 (-1083))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1081))))) + (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1083))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) - (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) + (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) - (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) - (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) + (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) - (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 *4)) (-5 *1 (-1079 *5 *6 *7 *3 *4)) - (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 *4)) (-5 *1 (-1081 *5 *6 *7 *3 *4)) + (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) - (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1079 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) + (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) + (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) + (-5 *1 (-1081 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) - (-4 *8 (-1037 *6 *7 *4)) (-4 *9 (-1043 *6 *7 *4 *8)) (-4 *6 (-444)) - (-4 *7 (-771)) (-4 *4 (-825)) - (-5 *2 (-620 (-2 (|:| |val| *8) (|:| -1655 *9)))) - (-5 *1 (-1079 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *5 (-112)) + (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446)) + (-4 *7 (-773)) (-4 *4 (-827)) + (-5 *2 (-622 (-2 (|:| |val| *8) (|:| -1660 *9)))) + (-5 *1 (-1081 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))) - (-5 *1 (-1079 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))) + (-5 *1 (-1081 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *2 (-1235)) (-5 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) + (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *2 (-1235)) (-5 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6))))) + (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1044 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1079 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *2 (-1235)) (-5 *1 (-1044 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) + (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *2 (-1237)) (-5 *1 (-1046 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *2 (-1235)) (-5 *1 (-1079 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6))))) + (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *2 (-1237)) (-5 *1 (-1081 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1044 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1046 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1079 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1081 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *9 (-1037 *6 *7 *8)) - (-5 *2 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *4) (|:| |ineq| (-620 *9)))) - (-5 *1 (-962 *6 *7 *8 *9 *4)) (-5 *3 (-620 *9)) - (-4 *4 (-1043 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) + (-4 *9 (-1039 *6 *7 *8)) + (-5 *2 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *4) (|:| |ineq| (-622 *9)))) + (-5 *1 (-964 *6 *7 *8 *9 *4)) (-5 *3 (-622 *9)) + (-4 *4 (-1045 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *9 (-1037 *6 *7 *8)) - (-5 *2 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *4) (|:| |ineq| (-620 *9)))) - (-5 *1 (-1078 *6 *7 *8 *9 *4)) (-5 *3 (-620 *9)) - (-4 *4 (-1043 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) + (-4 *9 (-1039 *6 *7 *8)) + (-5 *2 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *4) (|:| |ineq| (-622 *9)))) + (-5 *1 (-1080 *6 *7 *8 *9 *4)) (-5 *3 (-622 *9)) + (-4 *4 (-1045 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-620 *10)) (-5 *5 (-112)) (-4 *10 (-1043 *6 *7 *8 *9)) - (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) + (-12 (-5 *4 (-622 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) + (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 - (-620 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *10) (|:| |ineq| (-620 *9))))) - (-5 *1 (-962 *6 *7 *8 *9 *10)) (-5 *3 (-620 *9)))) + (-622 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *10) (|:| |ineq| (-622 *9))))) + (-5 *1 (-964 *6 *7 *8 *9 *10)) (-5 *3 (-622 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-620 *10)) (-5 *5 (-112)) (-4 *10 (-1043 *6 *7 *8 *9)) - (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-1037 *6 *7 *8)) + (-12 (-5 *4 (-622 *10)) (-5 *5 (-112)) (-4 *10 (-1045 *6 *7 *8 *9)) + (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-1039 *6 *7 *8)) (-5 *2 - (-620 (-2 (|:| -3612 (-620 *9)) (|:| -1655 *10) (|:| |ineq| (-620 *9))))) - (-5 *1 (-1078 *6 *7 *8 *9 *10)) (-5 *3 (-620 *9))))) + (-622 (-2 (|:| -3617 (-622 *9)) (|:| -1660 *10) (|:| |ineq| (-622 *9))))) + (-5 *1 (-1080 *6 *7 *8 *9 *10)) (-5 *3 (-622 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 (-2 (|:| |val| (-620 *6)) (|:| -1655 *7)))) - (-4 *6 (-1037 *3 *4 *5)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-962 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-622 (-2 (|:| |val| (-622 *6)) (|:| -1660 *7)))) + (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-964 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-620 (-2 (|:| |val| (-620 *6)) (|:| -1655 *7)))) - (-4 *6 (-1037 *3 *4 *5)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-1078 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-622 (-2 (|:| |val| (-622 *6)) (|:| -1660 *7)))) + (-4 *6 (-1039 *3 *4 *5)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-1080 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) - (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) + (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-620 *7)) (|:| -1655 *8))) - (-4 *7 (-1037 *4 *5 *6)) (-4 *8 (-1043 *4 *5 *6 *7)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-1078 *4 *5 *6 *7 *8))))) + (-12 (-5 *3 (-2 (|:| |val| (-622 *7)) (|:| -1660 *8))) + (-4 *7 (-1039 *4 *5 *6)) (-4 *8 (-1045 *4 *5 *6 *7)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) + (-5 *1 (-1080 *4 *5 *6 *7 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *1 (-962 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *1 (-964 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *1 (-1078 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *1 (-1080 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 *3)) (-4 *3 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-962 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-964 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 *3)) (-4 *3 (-1043 *5 *6 *7 *8)) (-4 *5 (-444)) - (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1078 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-1045 *5 *6 *7 *8)) (-4 *5 (-446)) + (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1080 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) - (-4 *3 (-1043 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) + (-4 *3 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) - (-4 *3 (-1043 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) + (-4 *3 (-1045 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7))))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7))))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7))))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *1 (-962 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *1 (-964 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-620 *7)) (-4 *7 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *1 (-1078 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-622 *7)) (-4 *7 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *1 (-1080 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-962 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7)))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-964 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-112)) (-5 *1 (-1078 *4 *5 *6 *7 *3)) (-4 *3 (-1043 *4 *5 *6 *7))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-112)) (-5 *1 (-1080 *4 *5 *6 *7 *3)) (-4 *3 (-1045 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *2 (-1235)) (-5 *1 (-962 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6)))) + (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *2 (-1237)) (-5 *1 (-964 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *2 (-1235)) (-5 *1 (-1078 *3 *4 *5 *6 *7)) (-4 *7 (-1043 *3 *4 *5 *6))))) + (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *2 (-1237)) (-5 *1 (-1080 *3 *4 *5 *6 *7)) (-4 *7 (-1045 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-962 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-964 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1129)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1037 *4 *5 *6)) (-5 *2 (-1235)) (-5 *1 (-1078 *4 *5 *6 *7 *8)) - (-4 *8 (-1043 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1131)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-1039 *4 *5 *6)) (-5 *2 (-1237)) (-5 *1 (-1080 *4 *5 *6 *7 *8)) + (-4 *8 (-1045 *4 *5 *6 *7))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1147)) (-5 *3 (-427)) (-4 *5 (-825)) (-5 *1 (-1077 *5 *4)) - (-4 *4 (-414 *5))))) + (-12 (-5 *2 (-1149)) (-5 *3 (-429)) (-4 *5 (-827)) (-5 *1 (-1079 *5 *4)) + (-4 *4 (-416 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-555 *3)) (-4 *3 (-1012 (-536))))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-557 *3)) (-4 *3 (-1014 (-538))))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *7)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *7 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *7)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *7 (-1074)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| -4215 (-1147)) (|:| -2186 *4)))) - (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)))) + (-12 (-5 *2 (-622 (-2 (|:| -4220 (-1149)) (|:| -2191 *4)))) + (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)))) ((*1 *2 *1) - (-12 (-4 *3 (-1072)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) - (-4 *7 (-1072)) (-5 *2 (-620 *1)) (-4 *1 (-1075 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1074)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-4 *7 (-1074)) (-5 *2 (-622 *1)) (-4 *1 (-1077 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *2 *4 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072))))) -(((*1 *2 *3) (-12 (-5 *2 (-536)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2)))) + (-12 (-4 *1 (-1077 *3 *2 *4 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074))))) +(((*1 *2 *3) (-12 (-5 *2 (-538)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *2 *5 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-893)) (-4 *1 (-397)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-536)) (-4 *1 (-397)))) + (-12 (-4 *1 (-1077 *3 *4 *2 *5 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-895)) (-4 *1 (-399)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-538)) (-4 *1 (-399)))) ((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *2 *6)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072))))) + (-12 (-4 *1 (-1077 *3 *4 *5 *2 *6)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074))))) (((*1 *2 *1) - (-12 (-4 *1 (-1075 *3 *4 *5 *6 *2)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-1072)) (-4 *2 (-1072))))) + (-12 (-4 *1 (-1077 *3 *4 *5 *6 *2)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-1074)) (-4 *2 (-1074))))) (((*1 *1 *1) - (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) - (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072))))) + (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074)) + (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074))))) (((*1 *1 *1) - (-12 (-4 *1 (-1075 *2 *3 *4 *5 *6)) (-4 *2 (-1072)) (-4 *3 (-1072)) - (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072))))) + (-12 (-4 *1 (-1077 *2 *3 *4 *5 *6)) (-4 *2 (-1074)) (-4 *3 (-1074)) + (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-893)) (-5 *1 (-1073 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1075 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-893)) (-5 *1 (-1073 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-649)))) + (|partial| -12 (-5 *2 (-895)) (-5 *1 (-1075 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-651)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) - (-14 *4 (-893))))) + (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895)) + (-14 *4 (-895))))) (((*1 *1 *2) - (-12 (-5 *2 (-620 (-893))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) - (-14 *4 (-893))))) + (-12 (-5 *2 (-622 (-895))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895)) + (-14 *4 (-895))))) (((*1 *2) - (-12 (-5 *2 (-1229 (-1073 *3 *4))) (-5 *1 (-1073 *3 *4)) (-14 *3 (-893)) - (-14 *4 (-893))))) + (-12 (-5 *2 (-1231 (-1075 *3 *4))) (-5 *1 (-1075 *3 *4)) (-14 *3 (-895)) + (-14 *4 (-895))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) + (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-112)) (-5 *1 (-879 *4)))) + (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-881 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-893)) (-5 *2 (-112)) (-5 *1 (-1073 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-895)) (-5 *2 (-112)) (-5 *1 (-1075 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-749)) (-5 *1 (-1073 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-895)) (-5 *2 (-751)) (-5 *1 (-1075 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-576 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-1091))))) -(((*1 *2 *1) (-12 (-4 *1 (-1072)) (-5 *2 (-1129))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3)) (-4 *3 (-1072)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) - ((*1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-1070 *3)))) - ((*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-1070 *3)))) - ((*1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-578 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1074)) (-5 *2 (-1093))))) +(((*1 *2 *1) (-12 (-4 *1 (-1074)) (-5 *2 (-1131))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) + ((*1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-1072 *3)))) + ((*1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-1072 *3)))) + ((*1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074))))) (((*1 *1 *2) - (-12 (-5 *2 (-620 (-495 *3 *4 *5 *6))) (-4 *3 (-356)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + (-12 (-5 *2 (-622 (-497 *3 *4 *5 *6))) (-4 *3 (-358)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-924 *2 *3 *4)))) + (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) + (-4 *5 (-926 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) + (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) - (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) + (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) + (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) - (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1070 *3)) (-4 *3 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) + (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1072 *3)) (-4 *3 (-1074)) (-5 *2 (-112))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-620 (-593 *4))) (-4 *4 (-414 *3)) (-4 *3 (-825)) - (-5 *1 (-559 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1070 *2)) (-4 *2 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-132)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-160)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-212)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-654)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-993)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1038)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1067))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-1065 *3)) (-4 *3 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1183)) (-5 *2 (-536))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1129)) (-5 *1 (-963)))) + (-12 (-5 *2 (-622 (-595 *4))) (-4 *4 (-416 *3)) (-4 *3 (-827)) + (-5 *1 (-561 *3 *4)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-132)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-160)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-214)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-656)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1040)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1069))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-1067 *3)) (-4 *3 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-1067 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-1067 *3)) (-4 *3 (-1185)) (-5 *2 (-538))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-965)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-1060 *4)) (-4 *4 (-1183)) (-5 *1 (-1063 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1062))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-254)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-1062 *4)) (-4 *4 (-1185)) (-5 *1 (-1065 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1064))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-256)))) ((*1 *2 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-322 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1229 *3)))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-324 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1231 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-1229 *4)))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-1231 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1205 *4)) (-5 *2 (-1229 *4)))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1207 *4)) (-5 *2 (-1231 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-403 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-405 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) - (-5 *2 (-1229 *3)))) + (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) + (-5 *2 (-1231 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-411 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 *3)))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-413 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-667 *5))) (-5 *3 (-667 *5)) (-4 *5 (-356)) - (-5 *2 (-1229 *5)) (-5 *1 (-1057 *5))))) + (-12 (-5 *4 (-622 (-669 *5))) (-5 *3 (-669 *5)) (-4 *5 (-358)) + (-5 *2 (-1231 *5)) (-5 *1 (-1059 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-1229 (-667 *4))))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) + (-5 *2 (-1231 (-669 *4))))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1229 (-667 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-1229 (-667 *3))))) + (-12 (-4 *4 (-170)) (-5 *2 (-1231 (-669 *4))) (-5 *1 (-412 *3 *4)) + (-4 *3 (-413 *4)))) + ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-1231 (-669 *3))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-1147))) (-4 *5 (-356)) - (-5 *2 (-1229 (-667 (-400 (-920 *5))))) (-5 *1 (-1057 *5)) - (-5 *4 (-667 (-400 (-920 *5)))))) + (-12 (-5 *3 (-622 (-1149))) (-4 *5 (-358)) + (-5 *2 (-1231 (-669 (-402 (-922 *5))))) (-5 *1 (-1059 *5)) + (-5 *4 (-669 (-402 (-922 *5)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-1147))) (-4 *5 (-356)) (-5 *2 (-1229 (-667 (-920 *5)))) - (-5 *1 (-1057 *5)) (-5 *4 (-667 (-920 *5))))) + (-12 (-5 *3 (-622 (-1149))) (-4 *5 (-358)) (-5 *2 (-1231 (-669 (-922 *5)))) + (-5 *1 (-1059 *5)) (-5 *4 (-669 (-922 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-667 *4))) (-4 *4 (-356)) (-5 *2 (-1229 (-667 *4))) - (-5 *1 (-1057 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-173))) (-5 *1 (-1056))))) -(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-108)) (-5 *1 (-173)))) - ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-108)) (-5 *1 (-1056))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1056))))) -(((*1 *1) (-5 *1 (-1056)))) -(((*1 *1) (-5 *1 (-1056)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1055 *2)))) + (-12 (-5 *3 (-622 (-669 *4))) (-4 *4 (-358)) (-5 *2 (-1231 (-669 *4))) + (-5 *1 (-1059 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-173))) (-5 *1 (-1058))))) +(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-173)))) + ((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-108)) (-5 *1 (-1058))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1058))))) +(((*1 *1) (-5 *1 (-1058)))) +(((*1 *1) (-5 *1 (-1058)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-536) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1055 *2))))) -(((*1 *2) (-12 (-5 *2 (-620 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-131))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-1055 *3)) (-4 *3 (-131))))) -(((*1 *1) (-5 *1 (-1053)))) + (-12 (-5 *3 (-1 (-538) *2 *2)) (-4 *2 (-131)) (-5 *1 (-1057 *2))))) +(((*1 *2) (-12 (-5 *2 (-622 *3)) (-5 *1 (-1057 *3)) (-4 *3 (-131))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-1057 *3)) (-4 *3 (-131))))) +(((*1 *1) (-5 *1 (-1055)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-620 *3)) (-5 *1 (-574 *5 *6 *7 *8 *3)) - (-4 *3 (-1080 *5 *6 *7 *8)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) + (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-622 *3)) (-5 *1 (-576 *5 *6 *7 *8 *3)) + (-4 *3 (-1082 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) - (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) - (-5 *1 (-1049 *5 *6)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) + (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) + (-5 *1 (-1051 *5 *6)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) - (-5 *2 (-620 (-2 (|:| -1858 (-1141 *4)) (|:| -3570 (-620 (-920 *4)))))) - (-5 *1 (-1049 *4 *5)) (-5 *3 (-620 (-920 *4))) (-14 *5 (-620 (-1147))))) + (-12 (-4 *4 (-13 (-302) (-145))) + (-5 *2 (-622 (-2 (|:| -1863 (-1143 *4)) (|:| -3575 (-622 (-922 *4)))))) + (-5 *1 (-1051 *4 *5)) (-5 *3 (-622 (-922 *4))) (-14 *5 (-622 (-1149))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) - (-5 *2 (-620 (-2 (|:| -1858 (-1141 *5)) (|:| -3570 (-620 (-920 *5)))))) - (-5 *1 (-1049 *5 *6)) (-5 *3 (-620 (-920 *5))) (-14 *6 (-620 (-1147)))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) + (-5 *2 (-622 (-2 (|:| -1863 (-1143 *5)) (|:| -3575 (-622 (-922 *5)))))) + (-5 *1 (-1051 *5 *6)) (-5 *3 (-622 (-922 *5))) (-14 *6 (-622 (-1149)))))) (((*1 *1 *2) - (-12 (-5 *2 (-620 (-1046 *3 *4 *5))) (-4 *3 (-1072)) - (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) - (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3)))) - (-5 *1 (-1048 *3 *4 *5))))) + (-12 (-5 *2 (-622 (-1048 *3 *4 *5))) (-4 *3 (-1074)) + (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) + (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3)))) + (-5 *1 (-1050 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) - (-5 *2 (-620 (-1046 *3 *4 *5))) (-5 *1 (-1048 *3 *4 *5)) - (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3))))))) + (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) + (-5 *2 (-622 (-1048 *3 *4 *5))) (-5 *1 (-1050 *3 *4 *5)) + (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-1072)) - (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) - (-5 *1 (-1046 *4 *5 *2)) - (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))))) + (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-1074)) + (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) + (-5 *1 (-1048 *4 *5 *2)) + (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) - (-5 *1 (-1046 *3 *4 *2)) - (-4 *2 (-13 (-414 *4) (-860 *3) (-596 (-864 *3))))))) + (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) + (-5 *1 (-1048 *3 *4 *2)) + (-4 *2 (-13 (-416 *4) (-862 *3) (-598 (-866 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-864 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1072)) (-4 *5 (-1183)) - (-5 *1 (-865 *4 *5)))) + (-12 (-5 *2 (-866 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1074)) (-4 *5 (-1185)) + (-5 *1 (-867 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-864 *4)) (-5 *3 (-620 (-1 (-112) *5))) (-4 *4 (-1072)) - (-4 *5 (-1183)) (-5 *1 (-865 *4 *5)))) + (-12 (-5 *2 (-866 *4)) (-5 *3 (-622 (-1 (-112) *5))) (-4 *4 (-1074)) + (-4 *5 (-1185)) (-5 *1 (-867 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-864 *5)) (-5 *3 (-620 (-1147))) (-5 *4 (-1 (-112) (-620 *6))) - (-4 *5 (-1072)) (-4 *6 (-1183)) (-5 *1 (-865 *5 *6)))) + (-12 (-5 *2 (-866 *5)) (-5 *3 (-622 (-1149))) (-5 *4 (-1 (-112) (-622 *6))) + (-4 *5 (-1074)) (-4 *6 (-1185)) (-5 *1 (-867 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1183)) - (-5 *2 (-307 (-536))) (-5 *1 (-911 *5)))) + (-12 (-5 *3 (-1149)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1185)) + (-5 *2 (-309 (-538))) (-5 *1 (-913 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-620 (-1 (-112) *5))) (-4 *5 (-1183)) - (-5 *2 (-307 (-536))) (-5 *1 (-911 *5)))) + (-12 (-5 *3 (-1149)) (-5 *4 (-622 (-1 (-112) *5))) (-4 *5 (-1185)) + (-5 *2 (-309 (-538))) (-5 *1 (-913 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1183)) (-4 *4 (-825)) - (-5 *1 (-912 *4 *2 *5)) (-4 *2 (-414 *4)))) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1185)) (-4 *4 (-827)) + (-5 *1 (-914 *4 *2 *5)) (-4 *2 (-416 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-620 (-1 (-112) *5))) (-4 *5 (-1183)) (-4 *4 (-825)) - (-5 *1 (-912 *4 *2 *5)) (-4 *2 (-414 *4)))) + (-12 (-5 *3 (-622 (-1 (-112) *5))) (-4 *5 (-1185)) (-4 *4 (-827)) + (-5 *1 (-914 *4 *2 *5)) (-4 *2 (-416 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-1 (-112) (-620 *6))) - (-4 *6 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))) (-4 *4 (-1072)) - (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) - (-5 *1 (-1046 *4 *5 *6))))) + (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-1 (-112) (-622 *6))) + (-4 *6 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))) (-4 *4 (-1074)) + (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) + (-5 *1 (-1048 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 *2))) - (-5 *2 (-864 *3)) (-5 *1 (-1046 *3 *4 *5)) - (-4 *5 (-13 (-414 *4) (-860 *3) (-596 *2)))))) + (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 *2))) + (-5 *2 (-866 *3)) (-5 *1 (-1048 *3 *4 *5)) + (-4 *5 (-13 (-416 *4) (-862 *3) (-598 *2)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1072)) (-4 *4 (-13 (-1023) (-860 *3) (-825) (-596 (-864 *3)))) - (-5 *2 (-620 (-1147))) (-5 *1 (-1046 *3 *4 *5)) - (-4 *5 (-13 (-414 *4) (-860 *3) (-596 (-864 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-178)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-305)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-944)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-968)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1010)))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-1045))))) + (-12 (-4 *3 (-1074)) (-4 *4 (-13 (-1025) (-862 *3) (-827) (-598 (-866 *3)))) + (-5 *2 (-622 (-1149))) (-5 *1 (-1048 *3 *4 *5)) + (-4 *5 (-13 (-416 *4) (-862 *3) (-598 (-866 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-178)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-307)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-946)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-970)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1012)))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-1047))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) + (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 *4)) (-5 *1 (-1044 *5 *6 *7 *3 *4)) - (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 *4)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) + (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3)))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) - (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) + (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) + (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) + (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *3 (-1037 *6 *7 *8)) (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-1044 *6 *7 *8 *3 *4)) (-4 *4 (-1043 *6 *7 *8 *3)))) + (-12 (-5 *5 (-112)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) + (-4 *3 (-1039 *6 *7 *8)) (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) + (-5 *1 (-1046 *6 *7 *8 *3 *4)) (-4 *4 (-1045 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 (-2 (|:| |val| (-620 *8)) (|:| -1655 *9)))) (-5 *5 (-112)) - (-4 *8 (-1037 *6 *7 *4)) (-4 *9 (-1043 *6 *7 *4 *8)) (-4 *6 (-444)) - (-4 *7 (-771)) (-4 *4 (-825)) - (-5 *2 (-620 (-2 (|:| |val| *8) (|:| -1655 *9)))) - (-5 *1 (-1044 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-622 (-2 (|:| |val| (-622 *8)) (|:| -1660 *9)))) (-5 *5 (-112)) + (-4 *8 (-1039 *6 *7 *4)) (-4 *9 (-1045 *6 *7 *4 *8)) (-4 *6 (-446)) + (-4 *7 (-773)) (-4 *4 (-827)) + (-5 *2 (-622 (-2 (|:| |val| *8) (|:| -1660 *9)))) + (-5 *1 (-1046 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| (-620 *3)) (|:| -1655 *4)))) - (-5 *1 (-1044 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| (-622 *3)) (|:| -1660 *4)))) + (-5 *1 (-1046 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1043 *3 *4 *5 *6)) (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1045 *3 *4 *5 *6)) (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) - (-5 *2 (-3 (-112) (-620 *1))) (-4 *1 (-1043 *4 *5 *6 *3))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) + (-5 *2 (-3 (-112) (-622 *1))) (-4 *1 (-1045 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) - (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *1)))) - (-4 *1 (-1043 *4 *5 *6 *3))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) + (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *1)))) + (-4 *1 (-1045 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) - (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) + (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) - (-5 *2 (-3 *3 (-620 *1))) (-4 *1 (-1043 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-543)) (-4 *2 (-1023)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) + (-5 *2 (-3 *3 (-622 *1))) (-4 *1 (-1045 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-545)) (-4 *2 (-1025)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-543)))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-545)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) - (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *1)))) - (-4 *1 (-1043 *4 *5 *6 *3))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) + (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *1)))) + (-4 *1 (-1045 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-620 *1)) (-5 *3 (-620 *7)) (-4 *1 (-1043 *4 *5 *6 *7)) - (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)))) + (-12 (-5 *2 (-622 *1)) (-5 *3 (-622 *7)) (-4 *1 (-1045 *4 *5 *6 *7)) + (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *7)))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)))) + (-12 (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-1037 *4 *5 *6)) - (-5 *2 (-620 *1)) (-4 *1 (-1043 *4 *5 *6 *3))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-1039 *4 *5 *6)) + (-5 *2 (-622 *1)) (-4 *1 (-1045 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) + (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) + (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) + (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) + (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-823)) (-5 *2 (-112)))) + (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1040 *4 *3)) (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) + (-12 (-4 *1 (-1042 *4 *3)) (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-1012 (-536))) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-32 *3 *2)) - (-4 *2 (-414 *3)))) + (-12 (-4 *3 (-1014 (-538))) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-32 *3 *2)) + (-4 *2 (-416 *3)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1141 *4)) (-5 *1 (-163 *3 *4)) + (-12 (-4 *4 (-170)) (-5 *2 (-1143 *4)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1023)) (-4 *1 (-291)))) - ((*1 *2) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) - ((*1 *2) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1025)) (-4 *1 (-293)))) + ((*1 *2) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1143 *3)))) + ((*1 *2) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1040 *3 *2)) (-4 *3 (-13 (-823) (-356))) (-4 *2 (-1205 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-920 (-536))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) + (-12 (-4 *1 (-1042 *3 *2)) (-4 *3 (-13 (-825) (-358))) (-4 *2 (-1207 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-922 (-538))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) ((*1 *2 *3) - (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) - ((*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-986)) (-5 *2 (-620 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1141 (-536))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) + (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) + ((*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-988)) (-5 *2 (-622 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1143 (-538))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) ((*1 *2 *3) - (-12 (-5 *3 (-1141 (-400 (-536)))) (-5 *2 (-620 *1)) (-4 *1 (-986)))) - ((*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-986)) (-5 *2 (-620 *1)))) + (-12 (-5 *3 (-1143 (-402 (-538)))) (-5 *2 (-622 *1)) (-4 *1 (-988)))) + ((*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-988)) (-5 *2 (-622 *1)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-823) (-356))) (-4 *3 (-1205 *4)) (-5 *2 (-620 *1)) - (-4 *1 (-1040 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1147)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-920 *1)) (-4 *1 (-27)))) + (-12 (-4 *4 (-13 (-825) (-358))) (-4 *3 (-1207 *4)) (-5 *2 (-622 *1)) + (-4 *1 (-1042 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1143 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-922 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1147)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-543))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-543))))) + (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-545))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-545))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *2)) (-5 *4 (-1147)) (-4 *2 (-414 *5)) (-5 *1 (-32 *5 *2)) - (-4 *5 (-13 (-825) (-543))))) + (-12 (-5 *3 (-1143 *2)) (-5 *4 (-1149)) (-4 *2 (-416 *5)) (-5 *1 (-32 *5 *2)) + (-4 *5 (-13 (-827) (-545))))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-893)) (-4 *1 (-986)))) + (|partial| -12 (-5 *2 (-1143 *1)) (-5 *3 (-895)) (-4 *1 (-988)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1141 *1)) (-5 *3 (-893)) (-5 *4 (-838)) - (-4 *1 (-986)))) + (|partial| -12 (-5 *2 (-1143 *1)) (-5 *3 (-895)) (-5 *4 (-840)) + (-4 *1 (-988)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-893)) (-4 *4 (-13 (-823) (-356))) - (-4 *1 (-1040 *4 *2)) (-4 *2 (-1205 *4))))) + (|partial| -12 (-5 *3 (-895)) (-4 *4 (-13 (-825) (-358))) + (-4 *1 (-1042 *4 *2)) (-4 *2 (-1207 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-400 (-536))) (-5 *1 (-998 *3)) - (-4 *3 (-13 (-823) (-356) (-994))))) + (-12 (-5 *2 (-402 (-538))) (-5 *1 (-1000 *3)) + (-4 *3 (-13 (-825) (-358) (-996))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2)))) + (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1040 *2 *3)) (-4 *2 (-13 (-823) (-356))) (-4 *3 (-1205 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-152)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1106))) (-5 *1 (-1038))))) + (-12 (-4 *1 (-1042 *2 *3)) (-4 *2 (-13 (-825) (-358))) (-4 *3 (-1207 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-152)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1108))) (-5 *1 (-1040))))) (((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) - (-4 *5 (-1037 *3 *4 *2)) (-4 *2 (-825)))) + (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) + (-4 *5 (-1039 *3 *4 *2)) (-4 *2 (-827)))) ((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825))))) + (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))))) (((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-749))))) -(((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-212)))) - ((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1) (-12 (-5 *2 (-475)) (-5 *1 (-654)))) + (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-751))))) +(((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-214)))) + ((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1) (-12 (-5 *2 (-477)) (-5 *1 (-656)))) ((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))) (((*1 *2 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) - (-4 *1 (-1037 *3 *4 *5))))) + (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) + (-4 *1 (-1039 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) - ((*1 *2 *1) (-12 (-4 *2 (-1023)) (-5 *1 (-50 *2 *3)) (-14 *3 (-620 (-1147))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) + ((*1 *2 *1) (-12 (-4 *2 (-1025)) (-5 *1 (-50 *2 *3)) (-14 *3 (-622 (-1149))))) ((*1 *2 *1) - (-12 (-5 *2 (-307 *3)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) - (-14 *4 (-620 (-1147))))) - ((*1 *2 *1) (-12 (-4 *1 (-377 *2 *3)) (-4 *3 (-1072)) (-4 *2 (-1023)))) + (-12 (-5 *2 (-309 *3)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) + (-14 *4 (-622 (-1149))))) + ((*1 *2 *1) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1074)) (-4 *2 (-1025)))) ((*1 *2 *1) - (-12 (-14 *3 (-620 (-1147))) (-4 *5 (-232 (-4311 *3) (-749))) + (-12 (-14 *3 (-622 (-1149))) (-4 *5 (-234 (-4316 *3) (-751))) (-14 *6 - (-1 (-112) (-2 (|:| -2487 *4) (|:| -2488 *5)) - (-2 (|:| -2487 *4) (|:| -2488 *5)))) - (-4 *2 (-170)) (-5 *1 (-453 *3 *2 *4 *5 *6 *7)) (-4 *4 (-825)) - (-4 *7 (-924 *2 *5 (-839 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-500 *2 *3)) (-4 *3 (-825)) (-4 *2 (-1072)))) - ((*1 *2 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-687 *2)) (-4 *2 (-1023)))) + (-1 (-112) (-2 (|:| -2492 *4) (|:| -2493 *5)) + (-2 (|:| -2492 *4) (|:| -2493 *5)))) + (-4 *2 (-170)) (-5 *1 (-455 *3 *2 *4 *5 *6 *7)) (-4 *4 (-827)) + (-4 *7 (-926 *2 *5 (-841 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-502 *2 *3)) (-4 *3 (-827)) (-4 *2 (-1074)))) + ((*1 *2 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-689 *2)) (-4 *2 (-1025)))) ((*1 *2 *1) - (-12 (-4 *2 (-1023)) (-5 *1 (-714 *2 *3)) (-4 *3 (-825)) (-4 *3 (-705)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) + (-12 (-4 *2 (-1025)) (-5 *1 (-716 *2 *3)) (-4 *3 (-827)) (-4 *3 (-707)))) + ((*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) ((*1 *2 *1) - (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *3 (-770)) (-4 *4 (-825)) (-4 *2 (-1023)))) + (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *3 (-772)) (-4 *4 (-827)) (-4 *2 (-1025)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825))))) + (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827))))) (((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-5 *2 (-112)) (-5 *1 (-436 *4 *3)) (-4 *3 (-1205 *4)))) + (-12 (-4 *4 (-1025)) (-5 *2 (-112)) (-5 *1 (-438 *4 *3)) (-4 *3 (-1207 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))) (((*1 *2 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) - (-4 *1 (-1037 *3 *4 *5))))) + (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) + (-4 *1 (-1039 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) - (-4 *1 (-1037 *3 *4 *5))))) + (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) + (-4 *1 (-1039 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-112))))) + (|partial| -12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *2 (-112))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) + (-12 (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) + (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) + (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) + (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1037 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)))) + (-12 (-4 *1 (-1039 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -3230 *1))) - (-4 *1 (-1037 *4 *5 *3)))) + (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) + (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -3235 *1))) + (-4 *1 (-1039 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -3230 *1))) - (-4 *1 (-1037 *3 *4 *5))))) + (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -3235 *1))) + (-4 *1 (-1039 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -4308 *3) (|:| |gap| (-749)) (|:| -2091 (-759 *3)) - (|:| -3230 (-759 *3)))) - (-5 *1 (-759 *3)) (-4 *3 (-1023)))) + (-2 (|:| -4313 *3) (|:| |gap| (-751)) (|:| -2096 (-761 *3)) + (|:| -3235 (-761 *3)))) + (-5 *1 (-761 *3)) (-4 *3 (-1025)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -2091 *1) (|:| -3230 *1))) - (-4 *1 (-1037 *4 *5 *3)))) + (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) + (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -2096 *1) (|:| -3235 *1))) + (-4 *1 (-1039 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -4308 *1) (|:| |gap| (-749)) (|:| -2091 *1) (|:| -3230 *1))) - (-4 *1 (-1037 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023)))) + (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-2 (|:| -4313 *1) (|:| |gap| (-751)) (|:| -2096 *1) (|:| -3235 *1))) + (-4 *1 (-1039 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-759 *3)) (|:| |polden| *3) (|:| -3830 (-749)))) - (-5 *1 (-759 *3)) (-4 *3 (-1023)))) + (-5 *2 (-2 (|:| |polnum| (-761 *3)) (|:| |polden| *3) (|:| -3835 (-751)))) + (-5 *1 (-761 *3)) (-4 *3 (-1025)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3830 (-749)))) - (-4 *1 (-1037 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1183)))) + (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3835 (-751)))) + (-4 *1 (-1039 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1185)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-920 (-371))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) - (-4 *5 (-380)))) + (|partial| -12 (-5 *2 (-922 (-373))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) + (-4 *5 (-382)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 (-920 (-371)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) - (-4 *5 (-380)))) + (|partial| -12 (-5 *2 (-402 (-922 (-373)))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) + (-4 *5 (-382)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) - (-4 *5 (-380)))) + (|partial| -12 (-5 *2 (-309 (-373))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) + (-4 *5 (-382)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-920 (-536))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) - (-4 *5 (-380)))) + (|partial| -12 (-5 *2 (-922 (-538))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) + (-4 *5 (-382)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-400 (-920 (-536)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) - (-4 *5 (-380)))) + (|partial| -12 (-5 *2 (-402 (-922 (-538)))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) + (-4 *5 (-382)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-307 (-536))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) - (-4 *5 (-380)))) + (|partial| -12 (-5 *2 (-309 (-538))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) + (-4 *5 (-382)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 *2)) - (-14 *4 (-620 *2)) (-4 *5 (-380)))) + (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 *2)) + (-14 *4 (-622 *2)) (-4 *5 (-382)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) - (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))))) + (|partial| -12 (-5 *2 (-309 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) + (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-667 (-400 (-920 (-536))))) (-4 *1 (-378)))) + (|partial| -12 (-5 *2 (-669 (-402 (-922 (-538))))) (-4 *1 (-380)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-667 (-400 (-920 (-371))))) (-4 *1 (-378)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-920 (-536)))) (-4 *1 (-378)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-920 (-371)))) (-4 *1 (-378)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-307 (-536)))) (-4 *1 (-378)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-667 (-307 (-371)))) (-4 *1 (-378)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-536)))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-400 (-920 (-371)))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-536))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-920 (-371))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-536))) (-4 *1 (-390)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) + (|partial| -12 (-5 *2 (-669 (-402 (-922 (-373))))) (-4 *1 (-380)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-922 (-538)))) (-4 *1 (-380)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-922 (-373)))) (-4 *1 (-380)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-309 (-538)))) (-4 *1 (-380)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-669 (-309 (-373)))) (-4 *1 (-380)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-538)))) (-4 *1 (-392)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-402 (-922 (-373)))) (-4 *1 (-392)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-538))) (-4 *1 (-392)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-922 (-373))) (-4 *1 (-392)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-538))) (-4 *1 (-392)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-309 (-373))) (-4 *1 (-392)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1229 (-400 (-920 (-536))))) (-4 *1 (-433)))) + (|partial| -12 (-5 *2 (-1231 (-402 (-922 (-538))))) (-4 *1 (-435)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1229 (-400 (-920 (-371))))) (-4 *1 (-433)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-920 (-536)))) (-4 *1 (-433)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-920 (-371)))) (-4 *1 (-433)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-307 (-536)))) (-4 *1 (-433)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1229 (-307 (-371)))) (-4 *1 (-433)))) + (|partial| -12 (-5 *2 (-1231 (-402 (-922 (-373))))) (-4 *1 (-435)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-922 (-538)))) (-4 *1 (-435)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-922 (-373)))) (-4 *1 (-435)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-309 (-538)))) (-4 *1 (-435)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1231 (-309 (-373)))) (-4 *1 (-435)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1205 *5)) - (-5 *2 (-1141 (-1141 *4))) (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1205 *6)) - (-14 *7 (-893)))) + (|partial| -12 (-4 *4 (-345)) (-4 *5 (-324 *4)) (-4 *6 (-1207 *5)) + (-5 *2 (-1143 (-1143 *4))) (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1207 *6)) + (-14 *7 (-895)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1012 *2)) (-4 *2 (-1183)))) + (|partial| -12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1185)))) ((*1 *1 *2) - (|partial| -3886 - (-12 (-5 *2 (-920 *3)) - (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-3671 (-4 *3 (-38 (-536)))) - (-4 *5 (-596 (-1147)))) - (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) - (-12 (-5 *2 (-920 *3)) - (-12 (-3671 (-4 *3 (-535))) (-3671 (-4 *3 (-38 (-400 (-536))))) - (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) - (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) - (-12 (-5 *2 (-920 *3)) - (-12 (-3671 (-4 *3 (-965 (-536)))) (-4 *3 (-38 (-400 (-536)))) - (-4 *5 (-596 (-1147)))) - (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) + (|partial| -3891 + (-12 (-5 *2 (-922 *3)) + (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-3676 (-4 *3 (-38 (-538)))) + (-4 *5 (-598 (-1149)))) + (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) + (-12 (-5 *2 (-922 *3)) + (-12 (-3676 (-4 *3 (-537))) (-3676 (-4 *3 (-38 (-402 (-538))))) + (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) + (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) + (-12 (-5 *2 (-922 *3)) + (-12 (-3676 (-4 *3 (-967 (-538)))) (-4 *3 (-38 (-402 (-538)))) + (-4 *5 (-598 (-1149)))) + (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))))) ((*1 *1 *2) - (|partial| -3886 - (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) - (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) - (-4 *5 (-596 (-1147)))) - (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) - (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825))))) + (|partial| -3891 + (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) + (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) + (-4 *5 (-598 (-1149)))) + (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) + (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) - (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1183)))) + (|partial| -12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5)) + (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1185)))) ((*1 *1 *2) - (-12 (-5 *2 (-920 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) - (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + (-12 (-5 *2 (-922 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) + (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-400 (-920 (-371)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-371))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) - (-4 *5 (-380)))) + (-12 (-5 *2 (-402 (-922 (-373)))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1014 (-373))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) + (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 (-371))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-371))) - (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + (-12 (-5 *2 (-309 (-373))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-373))) + (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-920 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) - (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + (-12 (-5 *2 (-922 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) + (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-400 (-920 (-536)))) (-5 *1 (-332 *3 *4 *5)) - (-4 *5 (-1012 (-536))) (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) - (-4 *5 (-380)))) + (-12 (-5 *2 (-402 (-922 (-538)))) (-5 *1 (-334 *3 *4 *5)) + (-4 *5 (-1014 (-538))) (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) + (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 (-536))) (-5 *1 (-332 *3 *4 *5)) (-4 *5 (-1012 (-536))) - (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + (-12 (-5 *2 (-309 (-538))) (-5 *1 (-334 *3 *4 *5)) (-4 *5 (-1014 (-538))) + (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-1147)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 *2)) - (-14 *4 (-620 *2)) (-4 *5 (-380)))) + (-12 (-5 *2 (-1149)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 *2)) + (-14 *4 (-622 *2)) (-4 *5 (-382)))) ((*1 *1 *2) - (-12 (-5 *2 (-307 *5)) (-4 *5 (-380)) (-5 *1 (-332 *3 *4 *5)) - (-14 *3 (-620 (-1147))) (-14 *4 (-620 (-1147))))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-920 (-536))))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-400 (-920 (-371))))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-920 (-536)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-920 (-371)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-307 (-536)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-667 (-307 (-371)))) (-4 *1 (-378)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-536)))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-920 (-371)))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-920 (-536))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-920 (-371))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-4 *1 (-390)))) - ((*1 *1 *2) (-12 (-5 *2 (-1229 (-400 (-920 (-536))))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1229 (-400 (-920 (-371))))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1229 (-920 (-536)))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1229 (-920 (-371)))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1229 (-307 (-536)))) (-4 *1 (-433)))) - ((*1 *1 *2) (-12 (-5 *2 (-1229 (-307 (-371)))) (-4 *1 (-433)))) + (-12 (-5 *2 (-309 *5)) (-4 *5 (-382)) (-5 *1 (-334 *3 *4 *5)) + (-14 *3 (-622 (-1149))) (-14 *4 (-622 (-1149))))) + ((*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-922 (-538))))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-669 (-402 (-922 (-373))))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-669 (-922 (-538)))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-669 (-922 (-373)))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-669 (-309 (-538)))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-669 (-309 (-373)))) (-4 *1 (-380)))) + ((*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-538)))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-402 (-922 (-373)))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-922 (-538))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-922 (-373))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-4 *1 (-392)))) + ((*1 *1 *2) (-12 (-5 *2 (-1231 (-402 (-922 (-538))))) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-1231 (-402 (-922 (-373))))) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-1231 (-922 (-538)))) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-1231 (-922 (-373)))) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-1231 (-309 (-538)))) (-4 *1 (-435)))) + ((*1 *1 *2) (-12 (-5 *2 (-1231 (-309 (-373)))) (-4 *1 (-435)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (|:| |mdnia| - (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) - (-5 *1 (-747)))) + (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) + (-5 *1 (-749)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *1 (-786)))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *1 (-788)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) - (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) - (|:| |ub| (-620 (-817 (-219)))))) + (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) + (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) + (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| - (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) - (-5 *1 (-816)))) + (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) + (-5 *1 (-818)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-620 (-307 (-219)))) + (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| - (-620 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) - (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) - (|:| |dFinish| (-667 (-219)))))) - (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) - (|:| |tol| (-219)))) - (-5 *1 (-872)))) + (-622 + (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) + (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) + (|:| |dFinish| (-669 (-221)))))) + (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) + (|:| |tol| (-221)))) + (-5 *1 (-874)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *1 (-950 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-1183)))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *1 (-952 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1185)))) ((*1 *1 *2) - (-3886 - (-12 (-5 *2 (-920 *3)) - (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-3671 (-4 *3 (-38 (-536)))) - (-4 *5 (-596 (-1147)))) - (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) - (-12 (-5 *2 (-920 *3)) - (-12 (-3671 (-4 *3 (-535))) (-3671 (-4 *3 (-38 (-400 (-536))))) - (-4 *3 (-38 (-536))) (-4 *5 (-596 (-1147)))) - (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))) - (-12 (-5 *2 (-920 *3)) - (-12 (-3671 (-4 *3 (-965 (-536)))) (-4 *3 (-38 (-400 (-536)))) - (-4 *5 (-596 (-1147)))) - (-4 *3 (-1023)) (-4 *1 (-1037 *3 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825))))) + (-3891 + (-12 (-5 *2 (-922 *3)) + (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-3676 (-4 *3 (-38 (-538)))) + (-4 *5 (-598 (-1149)))) + (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) + (-12 (-5 *2 (-922 *3)) + (-12 (-3676 (-4 *3 (-537))) (-3676 (-4 *3 (-38 (-402 (-538))))) + (-4 *3 (-38 (-538))) (-4 *5 (-598 (-1149)))) + (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))) + (-12 (-5 *2 (-922 *3)) + (-12 (-3676 (-4 *3 (-967 (-538)))) (-4 *3 (-38 (-402 (-538)))) + (-4 *5 (-598 (-1149)))) + (-4 *3 (-1025)) (-4 *1 (-1039 *3 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827))))) ((*1 *1 *2) - (-3886 - (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) - (-12 (-3671 (-4 *3 (-38 (-400 (-536))))) (-4 *3 (-38 (-536))) - (-4 *5 (-596 (-1147)))) - (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825))) - (-12 (-5 *2 (-920 (-536))) (-4 *1 (-1037 *3 *4 *5)) - (-12 (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147)))) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825))))) + (-3891 + (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) + (-12 (-3676 (-4 *3 (-38 (-402 (-538))))) (-4 *3 (-38 (-538))) + (-4 *5 (-598 (-1149)))) + (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827))) + (-12 (-5 *2 (-922 (-538))) (-4 *1 (-1039 *3 *4 *5)) + (-12 (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149)))) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827))))) ((*1 *1 *2) - (-12 (-5 *2 (-920 (-400 (-536)))) (-4 *1 (-1037 *3 *4 *5)) - (-4 *3 (-38 (-400 (-536)))) (-4 *5 (-596 (-1147))) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825))))) + (-12 (-5 *2 (-922 (-402 (-538)))) (-4 *1 (-1039 *3 *4 *5)) + (-4 *3 (-38 (-402 (-538)))) (-4 *5 (-598 (-1149))) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-543))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-545))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-543))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-545))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-543)))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-545)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-543))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-545))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-543)))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-545)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-543))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-545))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3490 (-759 *3)) (|:| |coef1| (-759 *3)) (|:| |coef2| (-759 *3)))) - (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) + (-2 (|:| -3495 (-761 *3)) (|:| |coef1| (-761 *3)) (|:| |coef2| (-761 *3)))) + (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -3490 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1037 *3 *4 *5))))) + (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1039 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3490 (-759 *3)) (|:| |coef1| (-759 *3)))) - (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-2 (|:| -3495 (-761 *3)) (|:| |coef1| (-761 *3)))) + (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -3490 *1) (|:| |coef1| *1))) (-4 *1 (-1037 *3 *4 *5))))) + (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-2 (|:| -3495 *1) (|:| |coef1| *1))) (-4 *1 (-1039 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3490 (-759 *3)) (|:| |coef2| (-759 *3)))) - (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-2 (|:| -3495 (-761 *3)) (|:| |coef2| (-761 *3)))) + (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-2 (|:| -3490 *1) (|:| |coef2| *1))) (-4 *1 (-1037 *3 *4 *5))))) + (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-2 (|:| -3495 *1) (|:| |coef2| *1))) (-4 *1 (-1039 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-543)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-620 *1)) (-4 *1 (-1037 *3 *4 *5))))) + (-12 (-4 *3 (-545)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-622 *1)) (-4 *1 (-1039 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *3 (-543))))) + (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) + (-4 *5 (-827)) (-4 *3 (-545))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-1037 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *3 (-543))))) + (-12 (-5 *2 (-751)) (-4 *1 (-1039 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) + (-4 *5 (-827)) (-4 *3 (-545))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-543))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-444)))) - ((*1 *1 *1 *1) (-4 *1 (-444))) - ((*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1205 (-536))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-749))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-545))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-446)))) + ((*1 *1 *1 *1) (-4 *1 (-446))) + ((*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1207 (-538))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-751))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *2)) - (-4 *2 (-924 *5 *3 *4)))) + (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2)) + (-4 *2 (-926 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *6 *4 *5)) (-5 *1 (-890 *4 *5 *6 *2)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-1141 *7))) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) - (-5 *2 (-1141 *7)) (-5 *1 (-890 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-893))) + (-12 (-5 *3 (-622 (-1143 *7))) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) + (-5 *2 (-1143 *7)) (-5 *1 (-892 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-895))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3)))) + (-12 (-4 *3 (-446)) (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-444))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-446))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-444))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-446))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-444))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-446))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-444))))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-446))))) (((*1 *1 *1) - (-12 (-4 *1 (-1037 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *2 (-444))))) -(((*1 *1) (-5 *1 (-1035)))) -(((*1 *1 *1) (-5 *1 (-1035)))) -(((*1 *1 *1) (-5 *1 (-1035)))) -(((*1 *1 *1) (-5 *1 (-1035)))) -(((*1 *1 *1) (-5 *1 (-1035)))) -(((*1 *1 *1) (-5 *1 (-1035)))) -(((*1 *1 *1) (-5 *1 (-1035)))) -(((*1 *1 *1) (-5 *1 (-1035)))) -(((*1 *1 *1) (-5 *1 (-1035)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-371)) (-5 *1 (-1035))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-371)) (-5 *1 (-1035))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-371)) (-5 *1 (-1035))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-1035)) (-5 *3 (-1129))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1035))))) -(((*1 *1) (-5 *1 (-1035)))) + (-12 (-4 *1 (-1039 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *2 (-446))))) +(((*1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1) (-5 *1 (-1037)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-373)) (-5 *1 (-1037))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-373)) (-5 *1 (-1037))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-373)) (-5 *1 (-1037))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-1037)) (-5 *3 (-1131))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1037))))) +(((*1 *1) (-5 *1 (-1037)))) (((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-1035))))) -(((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1034)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-1034))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) + (|partial| -12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-1037))))) +(((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1036)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-1036))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) + ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) + ((*1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1) (-12 (-5 *1 (-650 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-825)))) - ((*1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) + (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1) (-12 (-5 *1 (-652 *2)) (-4 *2 (-827)))) + ((*1 *1 *1) (-12 (-5 *1 (-657 *2)) (-4 *2 (-827)))) + ((*1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2))))) + (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1183)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) - (-4 *3 (-232 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1185)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5)) + (-4 *3 (-234 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)) (-5 *2 (-749)))) + (-12 (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)) (-5 *2 (-751)))) ((*1 *2) - (-12 (-4 *4 (-356)) (-5 *2 (-749)) (-5 *1 (-321 *3 *4)) (-4 *3 (-322 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) - ((*1 *2) (-12 (-4 *1 (-361)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) + (-12 (-4 *4 (-358)) (-5 *2 (-751)) (-5 *1 (-323 *3 *4)) (-4 *3 (-324 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-356 *3)) (-4 *3 (-1074)))) + ((*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) ((*1 *2) - (-12 (-4 *4 (-1072)) (-5 *2 (-749)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) + (-12 (-4 *4 (-1074)) (-5 *2 (-751)) (-5 *1 (-420 *3 *4)) (-4 *3 (-421 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) + (-12 (-5 *2 (-751)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-749)) (-5 *1 (-702 *3 *4 *5)) - (-4 *3 (-703 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-797 *3)) (-4 *3 (-825)))) - ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980)))) + (-12 (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-751)) (-5 *1 (-704 *3 *4 *5)) + (-4 *3 (-705 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-799 *3)) (-4 *3 (-827)))) + ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2))))) + (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-219)) (-5 *1 (-30)))) + (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-221)) (-5 *1 (-30)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-398 *4) *4)) (-4 *4 (-543)) (-5 *2 (-398 *4)) - (-5 *1 (-412 *4)))) - ((*1 *1 *1) (-5 *1 (-899))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) + (-12 (-5 *3 (-1 (-400 *4) *4)) (-4 *4 (-545)) (-5 *2 (-400 *4)) + (-5 *1 (-414 *4)))) ((*1 *1 *1) (-5 *1 (-901))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) + ((*1 *1 *1) (-5 *1 (-903))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) - (-5 *4 (-400 (-536))) (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))))) + (-12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) + (-5 *4 (-402 (-538))) (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) - (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))))) + (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) + (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) - (-5 *4 (-400 (-536))) (-5 *1 (-996 *3)) (-4 *3 (-1205 *4)))) + (-12 (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) + (-5 *4 (-402 (-538))) (-5 *1 (-998 *3)) (-4 *3 (-1207 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) - (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536)))))) + (-5 *2 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) + (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-823) (-356))) (-5 *1 (-1033 *2 *3)) (-4 *3 (-1205 *2))))) + (-12 (-4 *2 (-13 (-825) (-358))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-1207 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-823) (-356))) (-5 *2 (-112)) (-5 *1 (-1033 *4 *3)) - (-4 *3 (-1205 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-593 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-593 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-825) (-358))) (-5 *2 (-112)) (-5 *1 (-1035 *4 *3)) + (-4 *3 (-1207 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-595 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-620 (-593 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1141 (-48))) (-5 *3 (-593 (-48))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1143 (-48))) (-5 *3 (-622 (-595 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1143 (-48))) (-5 *3 (-595 (-48))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1205 (-166 *2))))) + (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1207 (-166 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-893)) (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-356)))) - ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1205 *2)) (-4 *2 (-170)))) + (-12 (-5 *2 (-895)) (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-358)))) + ((*1 *2 *1) (-12 (-4 *1 (-365 *2 *3)) (-4 *3 (-1207 *2)) (-4 *2 (-170)))) ((*1 *2 *1) - (-12 (-4 *4 (-1205 *2)) (-4 *2 (-965 *3)) (-5 *1 (-406 *3 *2 *4 *5)) - (-4 *3 (-300)) (-4 *5 (-13 (-403 *2 *4) (-1012 *2))))) + (-12 (-4 *4 (-1207 *2)) (-4 *2 (-967 *3)) (-5 *1 (-408 *3 *2 *4 *5)) + (-4 *3 (-302)) (-4 *5 (-13 (-405 *2 *4) (-1014 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1205 *2)) (-4 *2 (-965 *3)) (-5 *1 (-408 *3 *2 *4 *5 *6)) - (-4 *3 (-300)) (-4 *5 (-403 *2 *4)) (-14 *6 (-1229 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-893)) (-4 *5 (-1023)) - (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))) - (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1205 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-593 (-486)))) (-5 *1 (-486)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-593 (-486))) (-5 *1 (-486)))) + (-12 (-4 *4 (-1207 *2)) (-4 *2 (-967 *3)) (-5 *1 (-410 *3 *2 *4 *5 *6)) + (-4 *3 (-302)) (-4 *5 (-405 *2 *4)) (-14 *6 (-1231 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-895)) (-4 *5 (-1025)) + (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) + (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1207 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-595 (-488)))) (-5 *1 (-488)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-595 (-488))) (-5 *1 (-488)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-620 (-593 (-486)))) (-5 *1 (-486)))) + (-12 (-5 *2 (-1143 (-488))) (-5 *3 (-622 (-595 (-488)))) (-5 *1 (-488)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 (-486))) (-5 *3 (-593 (-486))) (-5 *1 (-486)))) + (-12 (-5 *2 (-1143 (-488))) (-5 *3 (-595 (-488))) (-5 *1 (-488)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1229 *4)) (-5 *3 (-893)) (-4 *4 (-343)) (-5 *1 (-519 *4)))) + (-12 (-5 *2 (-1231 *4)) (-5 *3 (-895)) (-4 *4 (-345)) (-5 *1 (-521 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-703 *4 *2)) (-4 *2 (-1205 *4)) - (-5 *1 (-753 *4 *2 *5 *3)) (-4 *3 (-1205 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170)))) - ((*1 *1 *1) (-4 *1 (-1032)))) -(((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-535)))) - ((*1 *1 *1) (-4 *1 (-1032)))) -(((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-535)))) - ((*1 *1 *1) (-4 *1 (-1032)))) -(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-4 *1 (-1032)) (-5 *2 (-536))))) -(((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479)))) - ((*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543)) (-4 *2 (-300)))) - ((*1 *2 *1) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536)))) - ((*1 *1 *1) (-4 *1 (-1032)))) -(((*1 *1 *1) (-4 *1 (-1032)))) + (-12 (-4 *4 (-446)) (-4 *5 (-705 *4 *2)) (-4 *2 (-1207 *4)) + (-5 *1 (-755 *4 *2 *5 *3)) (-4 *3 (-1207 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170)))) + ((*1 *1 *1) (-4 *1 (-1034)))) +(((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-537)))) + ((*1 *1 *1) (-4 *1 (-1034)))) +(((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-537)))) + ((*1 *1 *1) (-4 *1 (-1034)))) +(((*1 *2 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) + ((*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302)))) + ((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-302)))) + ((*1 *2 *1) (-12 (-4 *1 (-1034)) (-5 *2 (-538))))) +(((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481)))) + ((*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545)) (-4 *2 (-302)))) + ((*1 *2 *1) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538)))) + ((*1 *1 *1) (-4 *1 (-1034)))) +(((*1 *1 *1) (-4 *1 (-1034)))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) + (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1183)) (-5 *2 (-749)) (-5 *1 (-231 *3 *4 *5)) - (-4 *3 (-232 *4 *5)))) + (-12 (-14 *4 *2) (-4 *5 (-1185)) (-5 *2 (-751)) (-5 *1 (-233 *3 *4 *5)) + (-4 *3 (-234 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-825)) (-5 *2 (-749)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) - ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-534 *3)) (-4 *3 (-535)))) - ((*1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-749)))) + (-12 (-4 *4 (-827)) (-5 *2 (-751)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) + ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-536 *3)) (-4 *3 (-537)))) + ((*1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-751)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-773 *3 *4)) (-4 *3 (-774 *4)))) + (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-775 *3 *4)) (-4 *3 (-776 *4)))) ((*1 *2) - (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-964 *3 *4)) (-4 *3 (-965 *4)))) + (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-966 *3 *4)) (-4 *3 (-967 *4)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-749)) (-5 *1 (-971 *3 *4)) (-4 *3 (-972 *4)))) - ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-985 *3)) (-4 *3 (-986)))) - ((*1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-749)))) - ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-1031 *3)) (-4 *3 (-1032))))) + (-12 (-4 *4 (-170)) (-5 *2 (-751)) (-5 *1 (-973 *3 *4)) (-4 *3 (-974 *4)))) + ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-987 *3)) (-4 *3 (-988)))) + ((*1 *2) (-12 (-4 *1 (-1025)) (-5 *2 (-751)))) + ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-1033 *3)) (-4 *3 (-1034))))) (((*1 *1 *2) - (-12 (-5 *2 (-667 *5)) (-4 *5 (-1023)) (-5 *1 (-1027 *3 *4 *5)) - (-14 *3 (-749)) (-14 *4 (-749))))) + (-12 (-5 *2 (-669 *5)) (-4 *5 (-1025)) (-5 *1 (-1029 *3 *4 *5)) + (-14 *3 (-751)) (-14 *4 (-751))))) (((*1 *1 *2) - (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1023)) (-4 *1 (-664 *3 *4 *5)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-838)))) (-5 *1 (-838)))) + (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1025)) (-4 *1 (-666 *3 *4 *5)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-840)))) (-5 *1 (-840)))) ((*1 *2 *1) - (-12 (-5 *2 (-1113 *3 *4)) (-5 *1 (-967 *3 *4)) (-14 *3 (-893)) - (-4 *4 (-356)))) + (-12 (-5 *2 (-1115 *3 *4)) (-5 *1 (-969 *3 *4)) (-14 *3 (-895)) + (-4 *4 (-358)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 (-620 *5))) (-4 *5 (-1023)) (-4 *1 (-1026 *3 *4 *5 *6 *7)) - (-4 *6 (-232 *4 *5)) (-4 *7 (-232 *3 *5))))) + (-12 (-5 *2 (-622 (-622 *5))) (-4 *5 (-1025)) (-4 *1 (-1028 *3 *4 *5 *6 *7)) + (-4 *6 (-234 *4 *5)) (-4 *7 (-234 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-112)))) + (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-536)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-538)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-536))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-538))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-536)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-538)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-536))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-538))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-536)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-538)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-536))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-538))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-536)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-538)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-536))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-538))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-749)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-751)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-749))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-751))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-749)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-751)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-5 *2 (-749))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-5 *2 (-751))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1183)))) + (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *4 (-367 *2)) + (-4 *5 (-367 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1185)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *2 *6 *7)) (-4 *6 (-232 *5 *2)) - (-4 *7 (-232 *4 *2)) (-4 *2 (-1023))))) + (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *2 *6 *7)) (-4 *6 (-234 *5 *2)) + (-4 *7 (-234 *4 *2)) (-4 *2 (-1025))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) - (-4 *2 (-365 *4)))) + (-12 (-5 *3 (-538)) (-4 *1 (-56 *4 *2 *5)) (-4 *4 (-1185)) (-4 *5 (-367 *4)) + (-4 *2 (-367 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *6 *2 *7)) (-4 *6 (-1023)) - (-4 *7 (-232 *4 *6)) (-4 *2 (-232 *5 *6))))) + (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *6 *2 *7)) (-4 *6 (-1025)) + (-4 *7 (-234 *4 *6)) (-4 *2 (-234 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) - (-4 *2 (-365 *4)))) + (-12 (-5 *3 (-538)) (-4 *1 (-56 *4 *5 *2)) (-4 *4 (-1185)) (-4 *5 (-367 *4)) + (-4 *2 (-367 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-1026 *4 *5 *6 *7 *2)) (-4 *6 (-1023)) - (-4 *7 (-232 *5 *6)) (-4 *2 (-232 *4 *6))))) + (-12 (-5 *3 (-538)) (-4 *1 (-1028 *4 *5 *6 *7 *2)) (-4 *6 (-1025)) + (-4 *7 (-234 *5 *6)) (-4 *2 (-234 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) + (-12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-4 *7 (-965 *4)) - (-4 *2 (-664 *7 *8 *9)) (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-664 *4 *5 *6)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)))) + (-12 (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-4 *7 (-967 *4)) + (-4 *2 (-666 *7 *8 *9)) (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-666 *4 *5 *6)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)) (-4 *2 (-300)))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)) (-4 *2 (-302)))) ((*1 *2 *2) - (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3)))) + (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1026 *2 *3 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-232 *3 *4)) - (-4 *6 (-232 *2 *4)) (-4 *4 (-300))))) + (-12 (-4 *1 (-1028 *2 *3 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-234 *3 *4)) + (-4 *6 (-234 *2 *4)) (-4 *4 (-302))))) (((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) (-14 *4 *2) + (-12 (-5 *2 (-751)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) (-14 *4 *2) (-4 *5 (-170)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-893)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-893)))) + (-12 (-4 *4 (-170)) (-5 *2 (-895)) (-5 *1 (-163 *3 *4)) (-4 *3 (-164 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-895)))) ((*1 *2) - (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-893)))) + (-12 (-4 *1 (-365 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-895)))) ((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) - (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) + (-12 (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751)) + (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-749)) - (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) + (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-751)) + (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-5 *2 (-749)) - (-5 *1 (-646 *5)))) + (-12 (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-5 *2 (-751)) + (-5 *1 (-648 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-749)))) + (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-751)))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) + (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-749))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-751))))) (((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) (-5 *2 (-749)) - (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) + (-12 (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) (-5 *2 (-751)) + (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-749)))) + (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-751)))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-749)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) + (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-751)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-749))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-751))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4349)) (-4 *4 (-356)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-620 *6)) (-5 *1 (-512 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) + (-12 (|has| *6 (-6 -4354)) (-4 *4 (-358)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-622 *6)) (-5 *1 (-514 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4349)) (-4 *4 (-543)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-4 *7 (-965 *4)) (-4 *8 (-365 *7)) (-4 *9 (-365 *7)) (-5 *2 (-620 *6)) - (-5 *1 (-513 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-664 *4 *5 *6)) - (-4 *10 (-664 *7 *8 *9)))) + (-12 (|has| *9 (-6 -4354)) (-4 *4 (-545)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-4 *7 (-967 *4)) (-4 *8 (-367 *7)) (-4 *9 (-367 *7)) (-5 *2 (-622 *6)) + (-5 *1 (-515 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-666 *4 *5 *6)) + (-4 *10 (-666 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-4 *3 (-543)) (-5 *2 (-620 *5)))) + (-12 (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-4 *3 (-545)) (-5 *2 (-622 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-620 *6)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-664 *4 *5 *6)))) + (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-622 *6)) (-5 *1 (-668 *4 *5 *6 *3)) (-4 *3 (-666 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *5 (-1023)) (-4 *6 (-232 *4 *5)) - (-4 *7 (-232 *3 *5)) (-4 *5 (-543)) (-5 *2 (-620 *7))))) + (-12 (-4 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *5 (-1025)) (-4 *6 (-234 *4 *5)) + (-4 *7 (-234 *3 *5)) (-4 *5 (-545)) (-5 *2 (-622 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1198 *4 *5)) (-5 *3 (-620 *5)) (-14 *4 (-1147)) (-4 *5 (-356)) - (-5 *1 (-896 *4 *5)))) + (-12 (-5 *2 (-1200 *4 *5)) (-5 *3 (-622 *5)) (-14 *4 (-1149)) (-4 *5 (-358)) + (-5 *1 (-898 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *5)) (-4 *5 (-356)) (-5 *2 (-1141 *5)) (-5 *1 (-896 *4 *5)) - (-14 *4 (-1147)))) + (-12 (-5 *3 (-622 *5)) (-4 *5 (-358)) (-5 *2 (-1143 *5)) (-5 *1 (-898 *4 *5)) + (-14 *4 (-1149)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-620 *6)) (-5 *4 (-749)) (-4 *6 (-356)) (-5 *2 (-400 (-920 *6))) - (-5 *1 (-1024 *5 *6)) (-14 *5 (-1147))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-1021))))) + (-12 (-5 *3 (-622 *6)) (-5 *4 (-751)) (-4 *6 (-358)) (-5 *2 (-402 (-922 *6))) + (-5 *1 (-1026 *5 *6)) (-14 *5 (-1149))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-1023))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023))))) (((*1 *1 *1 *1) (-4 *1 (-141))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) - ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-536))) (-5 *1 (-1021)) - (-5 *3 (-536))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1068 *4)) (-4 *4 (-1072)) (-5 *2 (-1 *4)) (-5 *1 (-991 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371)))) - ((*1 *2 *3) (-12 (-5 *3 (-1060 (-536))) (-5 *2 (-1 (-536))) (-5 *1 (-1021))))) -(((*1 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-300)) (-5 *2 (-400 (-398 (-920 *4)))) - (-5 *1 (-1017 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1 (-371))) (-5 *1 (-1015))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) + ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-538))) (-5 *1 (-1023)) + (-5 *3 (-538))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1070 *4)) (-4 *4 (-1074)) (-5 *2 (-1 *4)) (-5 *1 (-993 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373)))) + ((*1 *2 *3) (-12 (-5 *3 (-1062 (-538))) (-5 *2 (-1 (-538))) (-5 *1 (-1023))))) +(((*1 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-155))) ((*1 *2 *1) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-1020 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-302)) (-5 *2 (-402 (-400 (-922 *4)))) + (-5 *1 (-1019 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017))))) +(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1 (-373))) (-5 *1 (-1017))))) (((*1 *1 *2) - (-12 (-5 *2 (-1210 *3 *4 *5)) (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) - (-14 *5 *3) (-5 *1 (-312 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-371))) (-5 *1 (-1015)) (-5 *3 (-371))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-371)) (-5 *1 (-1015))))) -(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015))))) -(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015))))) -(((*1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-1015))))) + (-12 (-5 *2 (-1212 *3 *4 *5)) (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) + (-14 *5 *3) (-5 *1 (-314 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-373))) (-5 *1 (-1017)) (-5 *3 (-373))))) +(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-373)) (-5 *1 (-1017))))) +(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017))))) +(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017))))) +(((*1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-1017))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1141 (-400 (-1141 *2)))) (-5 *4 (-593 *2)) - (-4 *2 (-13 (-414 *5) (-27) (-1169))) - (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *1 (-547 *5 *2 *6)) (-4 *6 (-1072)))) + (-12 (-5 *3 (-1143 (-402 (-1143 *2)))) (-5 *4 (-595 *2)) + (-4 *2 (-13 (-416 *5) (-27) (-1171))) + (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *1 (-549 *5 *2 *6)) (-4 *6 (-1074)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1141 *1)) (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) - (-4 *5 (-771)) (-4 *3 (-825)))) + (-12 (-5 *2 (-1143 *1)) (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) + (-4 *5 (-773)) (-4 *3 (-827)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1141 *4)) (-4 *4 (-1023)) (-4 *1 (-924 *4 *5 *3)) - (-4 *5 (-771)) (-4 *3 (-825)))) + (-12 (-5 *2 (-1143 *4)) (-4 *4 (-1025)) (-4 *1 (-926 *4 *5 *3)) + (-4 *5 (-773)) (-4 *3 (-827)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-1141 *2))) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) + (-12 (-5 *3 (-402 (-1143 *2))) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *2 - (-13 (-356) - (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))) - (-5 *1 (-925 *5 *4 *6 *7 *2)) (-4 *7 (-924 *6 *5 *4)))) + (-13 (-358) + (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))) + (-5 *1 (-927 *5 *4 *6 *7 *2)) (-4 *7 (-926 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-1141 (-400 (-920 *5))))) (-5 *4 (-1147)) - (-5 *2 (-400 (-920 *5))) (-5 *1 (-1014 *5)) (-4 *5 (-543))))) + (-12 (-5 *3 (-402 (-1143 (-402 (-922 *5))))) (-5 *4 (-1149)) + (-5 *2 (-402 (-922 *5))) (-5 *1 (-1016 *5)) (-4 *5 (-545))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-593 *1)) (-4 *1 (-414 *4)) (-4 *4 (-825)) (-4 *4 (-543)) - (-5 *2 (-400 (-1141 *1))))) + (-12 (-5 *3 (-595 *1)) (-4 *1 (-416 *4)) (-4 *4 (-827)) (-4 *4 (-545)) + (-5 *2 (-402 (-1143 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *6) (-27) (-1169))) - (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-1141 (-400 (-1141 *3)))) (-5 *1 (-547 *6 *3 *7)) (-5 *5 (-1141 *3)) - (-4 *7 (-1072)))) + (-12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *6) (-27) (-1171))) + (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-1143 (-402 (-1143 *3)))) (-5 *1 (-549 *6 *3 *7)) (-5 *5 (-1143 *3)) + (-4 *7 (-1074)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1226 *5)) (-14 *5 (-1147)) (-4 *6 (-1023)) - (-5 *2 (-1198 *5 (-920 *6))) (-5 *1 (-922 *5 *6)) (-5 *3 (-920 *6)))) + (-12 (-5 *4 (-1228 *5)) (-14 *5 (-1149)) (-4 *6 (-1025)) + (-5 *2 (-1200 *5 (-922 *6))) (-5 *1 (-924 *5 *6)) (-5 *3 (-922 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-1141 *3)))) + (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-1143 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-5 *2 (-1141 *1)) - (-4 *1 (-924 *4 *5 *3)))) + (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-5 *2 (-1143 *1)) + (-4 *1 (-926 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *5 *4)) - (-5 *2 (-400 (-1141 *3))) (-5 *1 (-925 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *5 *4)) + (-5 *2 (-402 (-1143 *3))) (-5 *1 (-927 *5 *4 *6 *7 *3)) (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) + (-13 (-358) + (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1141 *3)) + (-12 (-5 *2 (-1143 *3)) (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))) - (-4 *7 (-924 *6 *5 *4)) (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-1023)) - (-5 *1 (-925 *5 *4 *6 *7 *3)))) + (-13 (-358) + (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))) + (-4 *7 (-926 *6 *5 *4)) (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-1025)) + (-5 *1 (-927 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-4 *5 (-543)) (-5 *2 (-400 (-1141 (-400 (-920 *5))))) - (-5 *1 (-1014 *5)) (-5 *3 (-400 (-920 *5)))))) + (-12 (-5 *4 (-1149)) (-4 *5 (-545)) (-5 *2 (-402 (-1143 (-402 (-922 *5))))) + (-5 *1 (-1016 *5)) (-5 *3 (-402 (-922 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) - (-4 *2 (-825)))) + (|partial| -12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) + (-4 *2 (-827)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-771)) (-4 *5 (-1023)) (-4 *6 (-924 *5 *4 *2)) - (-4 *2 (-825)) (-5 *1 (-925 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-773)) (-4 *5 (-1025)) (-4 *6 (-926 *5 *4 *2)) + (-4 *2 (-827)) (-5 *1 (-927 *4 *2 *5 *6 *3)) (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4312 ($ *6)) (-15 -3326 (*6 $)) (-15 -3325 (*6 $))))))) + (-13 (-358) + (-10 -8 (-15 -4317 ($ *6)) (-15 -3331 (*6 $)) (-15 -3330 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-1147)) - (-5 *1 (-1014 *4))))) + (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-1149)) + (-5 *1 (-1016 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) - (-5 *2 (-620 (-1147))) (-5 *1 (-260)))) + (-12 (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) + (-5 *2 (-622 (-1149))) (-5 *1 (-262)))) ((*1 *2 *3) - (-12 (-5 *3 (-1141 *7)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1023)) (-5 *2 (-620 *5)) (-5 *1 (-314 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1143 *7)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1025)) (-5 *2 (-622 *5)) (-5 *1 (-316 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-332 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-380)))) - ((*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-825)) (-5 *2 (-620 (-1147))))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-334 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-382)))) + ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-827)) (-5 *2 (-622 (-1149))))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-620 *5)))) + (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-622 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) (-4 *7 (-924 *6 *4 *5)) - (-5 *2 (-620 *5)) (-5 *1 (-925 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) (-4 *7 (-926 *6 *4 *5)) + (-5 *2 (-622 *5)) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1068 (-1147))) (-5 *1 (-940 *3)) (-4 *3 (-941)))) + (-13 (-358) + (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1070 (-1149))) (-5 *1 (-942 *3)) (-4 *3 (-943)))) ((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-770)) (-4 *5 (-825)) - (-5 *2 (-620 *5)))) + (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827)) + (-5 *2 (-622 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5)))) + (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-5 *2 (-620 (-1147))) - (-5 *1 (-1014 *4))))) + (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-5 *2 (-622 (-1149))) + (-5 *1 (-1016 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) - (-4 *6 (-13 (-543) (-1012 *5))) (-4 *5 (-543)) - (-5 *2 (-620 (-620 (-286 (-400 (-920 *6)))))) (-5 *1 (-1013 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1009))))) + (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) + (-4 *6 (-13 (-545) (-1014 *5))) (-4 *5 (-545)) + (-5 *2 (-622 (-622 (-288 (-402 (-922 *6)))))) (-5 *1 (-1015 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1011))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-593 *6)) (-4 *6 (-13 (-414 *5) (-27) (-1169))) - (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-1141 (-400 (-1141 *6)))) (-5 *1 (-547 *5 *6 *7)) (-5 *3 (-1141 *6)) - (-4 *7 (-1072)))) - ((*1 *2 *1) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1023)))) - ((*1 *2 *1) (-12 (-4 *1 (-703 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) + (-12 (-5 *4 (-595 *6)) (-4 *6 (-13 (-416 *5) (-27) (-1171))) + (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-1143 (-402 (-1143 *6)))) (-5 *1 (-549 *5 *6 *7)) (-5 *3 (-1143 *6)) + (-4 *7 (-1074)))) + ((*1 *2 *1) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) + ((*1 *2 *1) (-12 (-4 *1 (-705 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1141 *11)) (-5 *6 (-620 *10)) (-5 *7 (-620 (-749))) - (-5 *8 (-620 *11)) (-4 *10 (-825)) (-4 *11 (-300)) (-4 *9 (-771)) - (-4 *5 (-924 *11 *9 *10)) (-5 *2 (-620 (-1141 *5))) - (-5 *1 (-721 *9 *10 *11 *5)) (-5 *3 (-1141 *5)))) + (|partial| -12 (-5 *4 (-1143 *11)) (-5 *6 (-622 *10)) (-5 *7 (-622 (-751))) + (-5 *8 (-622 *11)) (-4 *10 (-827)) (-4 *11 (-302)) (-4 *9 (-773)) + (-4 *5 (-926 *11 *9 *10)) (-5 *2 (-622 (-1143 *5))) + (-5 *1 (-723 *9 *10 *11 *5)) (-5 *3 (-1143 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-924 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *2 *6)) (-4 *3 (-356)) - (-4 *4 (-771)) (-4 *5 (-825)) (-14 *6 (-620 *2))))) + (-12 (-4 *2 (-926 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *2 *6)) (-4 *3 (-358)) + (-4 *4 (-773)) (-4 *5 (-827)) (-14 *6 (-622 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-893)) (-5 *1 (-1006 *2)) - (-4 *2 (-13 (-1072) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-895)) (-5 *1 (-1008 *2)) + (-4 *2 (-13 (-1074) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-893)) (-5 *1 (-1005 *2)) - (-4 *2 (-13 (-1072) (-10 -8 (-15 -4194 ($ $ $)))))))) + (-12 (-5 *3 (-895)) (-5 *1 (-1007 *2)) + (-4 *2 (-13 (-1074) (-10 -8 (-15 -4199 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-1229 *5))) (-5 *4 (-536)) (-5 *2 (-1229 *5)) - (-5 *1 (-1004 *5)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023))))) + (-12 (-5 *3 (-622 (-1231 *5))) (-5 *4 (-538)) (-5 *2 (-1231 *5)) + (-5 *1 (-1006 *5)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-536)) (-4 *6 (-356)) (-4 *6 (-361)) - (-4 *6 (-1023)) (-5 *2 (-620 (-620 (-667 *6)))) (-5 *1 (-1004 *6)) - (-5 *3 (-620 (-667 *6))))) + (-12 (-5 *4 (-112)) (-5 *5 (-538)) (-4 *6 (-358)) (-4 *6 (-363)) + (-4 *6 (-1025)) (-5 *2 (-622 (-622 (-669 *6)))) (-5 *1 (-1006 *6)) + (-5 *3 (-622 (-669 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-356)) (-4 *4 (-361)) (-4 *4 (-1023)) - (-5 *2 (-620 (-620 (-667 *4)))) (-5 *1 (-1004 *4)) - (-5 *3 (-620 (-667 *4))))) + (-12 (-4 *4 (-358)) (-4 *4 (-363)) (-4 *4 (-1025)) + (-5 *2 (-622 (-622 (-669 *4)))) (-5 *1 (-1006 *4)) + (-5 *3 (-622 (-669 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023)) - (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) - (-5 *3 (-620 (-667 *5))))) + (-12 (-5 *4 (-112)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) + (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) + (-5 *3 (-622 (-669 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-893)) (-4 *5 (-356)) (-4 *5 (-361)) (-4 *5 (-1023)) - (-5 *2 (-620 (-620 (-667 *5)))) (-5 *1 (-1004 *5)) - (-5 *3 (-620 (-667 *5)))))) + (-12 (-5 *4 (-895)) (-4 *5 (-358)) (-4 *5 (-363)) (-4 *5 (-1025)) + (-5 *2 (-622 (-622 (-669 *5)))) (-5 *1 (-1006 *5)) + (-5 *3 (-622 (-669 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-536)) (-4 *5 (-356)) (-4 *5 (-1023)) - (-5 *2 (-112)) (-5 *1 (-1004 *5)))) + (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-538)) (-4 *5 (-358)) (-4 *5 (-1025)) + (-5 *2 (-112)) (-5 *1 (-1006 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-667 *4))) (-4 *4 (-356)) (-4 *4 (-1023)) (-5 *2 (-112)) - (-5 *1 (-1004 *4))))) + (-12 (-5 *3 (-622 (-669 *4))) (-4 *4 (-358)) (-4 *4 (-1025)) (-5 *2 (-112)) + (-5 *1 (-1006 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-620 (-667 *6))) (-5 *4 (-112)) (-5 *5 (-536)) (-5 *2 (-667 *6)) - (-5 *1 (-1004 *6)) (-4 *6 (-356)) (-4 *6 (-1023)))) + (-12 (-5 *3 (-622 (-669 *6))) (-5 *4 (-112)) (-5 *5 (-538)) (-5 *2 (-669 *6)) + (-5 *1 (-1006 *6)) (-4 *6 (-358)) (-4 *6 (-1025)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-620 (-667 *4))) (-5 *2 (-667 *4)) (-5 *1 (-1004 *4)) - (-4 *4 (-356)) (-4 *4 (-1023)))) + (-12 (-5 *3 (-622 (-669 *4))) (-5 *2 (-669 *4)) (-5 *1 (-1006 *4)) + (-4 *4 (-358)) (-4 *4 (-1025)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-536)) (-5 *2 (-667 *5)) - (-5 *1 (-1004 *5)) (-4 *5 (-356)) (-4 *5 (-1023))))) + (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-538)) (-5 *2 (-669 *5)) + (-5 *1 (-1006 *5)) (-4 *5 (-358)) (-4 *5 (-1025))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-667 *5))) (-5 *4 (-1229 *5)) (-4 *5 (-300)) - (-4 *5 (-1023)) (-5 *2 (-667 *5)) (-5 *1 (-1004 *5))))) + (-12 (-5 *3 (-622 (-669 *5))) (-5 *4 (-1231 *5)) (-4 *5 (-302)) + (-4 *5 (-1025)) (-5 *2 (-669 *5)) (-5 *1 (-1006 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-667 *5))) (-4 *5 (-300)) (-4 *5 (-1023)) - (-5 *2 (-1229 (-1229 *5))) (-5 *1 (-1004 *5)) (-5 *4 (-1229 *5))))) + (-12 (-5 *3 (-622 (-669 *5))) (-4 *5 (-302)) (-4 *5 (-1025)) + (-5 *2 (-1231 (-1231 *5))) (-5 *1 (-1006 *5)) (-5 *4 (-1231 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-620 (-667 *4))) (-5 *2 (-667 *4)) (-4 *4 (-1023)) - (-5 *1 (-1004 *4))))) + (-12 (-5 *3 (-622 (-669 *4))) (-5 *2 (-669 *4)) (-4 *4 (-1025)) + (-5 *1 (-1006 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 (-1229 *4))) (-4 *4 (-1023)) (-5 *2 (-667 *4)) - (-5 *1 (-1004 *4))))) + (-12 (-5 *3 (-1231 (-1231 *4))) (-4 *4 (-1025)) (-5 *2 (-669 *4)) + (-5 *1 (-1006 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-876 (-536))) (-5 *4 (-536)) (-5 *2 (-667 *4)) - (-5 *1 (-1003 *5)) (-4 *5 (-1023)))) + (-12 (-5 *3 (-878 (-538))) (-5 *4 (-538)) (-5 *2 (-669 *4)) + (-5 *1 (-1005 *5)) (-4 *5 (-1025)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-536))) (-5 *2 (-667 (-536))) (-5 *1 (-1003 *4)) - (-4 *4 (-1023)))) + (-12 (-5 *3 (-622 (-538))) (-5 *2 (-669 (-538))) (-5 *1 (-1005 *4)) + (-4 *4 (-1025)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-876 (-536)))) (-5 *4 (-536)) (-5 *2 (-620 (-667 *4))) - (-5 *1 (-1003 *5)) (-4 *5 (-1023)))) + (-12 (-5 *3 (-622 (-878 (-538)))) (-5 *4 (-538)) (-5 *2 (-622 (-669 *4))) + (-5 *1 (-1005 *5)) (-4 *5 (-1025)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-620 (-536)))) (-5 *2 (-620 (-667 (-536)))) - (-5 *1 (-1003 *4)) (-4 *4 (-1023))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) + (-12 (-5 *3 (-622 (-622 (-538)))) (-5 *2 (-622 (-669 (-538)))) + (-5 *1 (-1005 *4)) (-4 *4 (-1025))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-620 (-667 *3))) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-1003 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-620 (-667 *3))) (-4 *3 (-1023)) (-5 *1 (-1003 *3))))) + (-12 (-5 *2 (-622 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-1005 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-622 (-669 *3))) (-4 *3 (-1025)) (-5 *1 (-1005 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-667 *4)) (-5 *3 (-893)) (-4 *4 (-1023)) (-5 *1 (-1003 *4)))) + (-12 (-5 *2 (-669 *4)) (-5 *3 (-895)) (-4 *4 (-1025)) (-5 *1 (-1005 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-620 (-667 *4))) (-5 *3 (-893)) (-4 *4 (-1023)) - (-5 *1 (-1003 *4))))) + (-12 (-5 *2 (-622 (-669 *4))) (-5 *3 (-895)) (-4 *4 (-1025)) + (-5 *1 (-1005 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-667 (-920 *4))) (-5 *1 (-1003 *4)) - (-4 *4 (-1023))))) + (-12 (-5 *3 (-751)) (-5 *2 (-669 (-922 *4))) (-5 *1 (-1005 *4)) + (-4 *4 (-1025))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-667 *4)) (-5 *3 (-893)) (|has| *4 (-6 (-4350 "*"))) - (-4 *4 (-1023)) (-5 *1 (-1003 *4)))) + (-12 (-5 *2 (-669 *4)) (-5 *3 (-895)) (|has| *4 (-6 (-4355 "*"))) + (-4 *4 (-1025)) (-5 *1 (-1005 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-620 (-667 *4))) (-5 *3 (-893)) (|has| *4 (-6 (-4350 "*"))) - (-4 *4 (-1023)) (-5 *1 (-1003 *4))))) + (-12 (-5 *2 (-622 (-669 *4))) (-5 *3 (-895)) (|has| *4 (-6 (-4355 "*"))) + (-4 *4 (-1025)) (-5 *1 (-1005 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-667 (-307 (-536))))) - (-5 *1 (-1002))))) -(((*1 *2 *2) (-12 (-5 *2 (-620 (-667 (-307 (-536))))) (-5 *1 (-1002))))) -(((*1 *2 *2) (-12 (-5 *2 (-667 (-307 (-536)))) (-5 *1 (-1002))))) + (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-669 (-309 (-538))))) + (-5 *1 (-1004))))) +(((*1 *2 *2) (-12 (-5 *2 (-622 (-669 (-309 (-538))))) (-5 *1 (-1004))))) +(((*1 *2 *2) (-12 (-5 *2 (-669 (-309 (-538)))) (-5 *1 (-1004))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-667 (-400 (-920 (-536))))) - (-5 *2 (-667 (-307 (-536)))) (-5 *1 (-1002))))) + (|partial| -12 (-5 *3 (-669 (-402 (-922 (-538))))) + (-5 *2 (-669 (-309 (-538)))) (-5 *1 (-1004))))) (((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-307 (-536)))) - (-5 *1 (-1002))))) + (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-309 (-538)))) + (-5 *1 (-1004))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-667 (-400 (-920 (-536))))) (-5 *2 (-620 (-667 (-307 (-536))))) - (-5 *1 (-1002)) (-5 *3 (-307 (-536)))))) + (-12 (-5 *4 (-669 (-402 (-922 (-538))))) (-5 *2 (-622 (-669 (-309 (-538))))) + (-5 *1 (-1004)) (-5 *3 (-309 (-538)))))) (((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-920 (-536))))) + (-12 (-5 *3 (-669 (-402 (-922 (-538))))) (-5 *2 - (-620 - (-2 (|:| |radval| (-307 (-536))) (|:| |radmult| (-536)) - (|:| |radvect| (-620 (-667 (-307 (-536)))))))) - (-5 *1 (-1002))))) -(((*1 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1000 *2)) (-4 *2 (-1183))))) + (-622 + (-2 (|:| |radval| (-309 (-538))) (|:| |radmult| (-538)) + (|:| |radvect| (-622 (-669 (-309 (-538)))))))) + (-5 *1 (-1004))))) +(((*1 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1002 *2)) (-4 *2 (-1185))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427)))) - ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1000 *3)) (-4 *3 (-1183))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-999 *3 *2)) (-4 *2 (-636 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-5 *2 (-2 (|:| -3612 *3) (|:| -2831 (-620 *5)))) - (-5 *1 (-999 *5 *3)) (-5 *4 (-620 *5)) (-4 *3 (-636 *5))))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429)))) + ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1002 *3)) (-4 *3 (-1185))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-1001 *3 *2)) (-4 *2 (-638 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-358)) (-5 *2 (-2 (|:| -3617 *3) (|:| -2836 (-622 *5)))) + (-5 *1 (-1001 *5 *3)) (-5 *4 (-622 *5)) (-4 *3 (-638 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1033 (-998 *4) (-1141 (-998 *4)))) (-5 *3 (-838)) - (-5 *1 (-998 *4)) (-4 *4 (-13 (-823) (-356) (-994)))))) + (-12 (-5 *2 (-1035 (-1000 *4) (-1143 (-1000 *4)))) (-5 *3 (-840)) + (-5 *1 (-1000 *4)) (-4 *4 (-13 (-825) (-358) (-996)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1033 (-998 *3) (-1141 (-998 *3)))) (-5 *1 (-998 *3)) - (-4 *3 (-13 (-823) (-356) (-994)))))) + (|partial| -12 (-5 *2 (-1035 (-1000 *3) (-1143 (-1000 *3)))) + (-5 *1 (-1000 *3)) (-4 *3 (-13 (-825) (-358) (-996)))))) (((*1 *2 *3) - (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) - (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))))) + (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) + (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) - (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) - (-5 *4 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) + (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) + (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))) + (-5 *4 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) - (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) (-5 *4 (-400 (-536))))) + (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) + (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))) (-5 *4 (-402 (-538))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *5) (|:| -3467 *5)))) - (-5 *1 (-995 *3)) (-4 *3 (-1205 (-536))) - (-5 *4 (-2 (|:| -3468 *5) (|:| -3467 *5))))) + (-12 (-5 *5 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *5) (|:| -3472 *5)))) + (-5 *1 (-997 *3)) (-4 *3 (-1207 (-538))) + (-5 *4 (-2 (|:| -3473 *5) (|:| -3472 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) - (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536)))))) + (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) + (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) - (-5 *1 (-996 *3)) (-4 *3 (-1205 (-400 (-536)))) - (-5 *4 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))))) + (-12 (-5 *2 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) + (-5 *1 (-998 *3)) (-4 *3 (-1207 (-402 (-538)))) + (-5 *4 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *4) (|:| -3467 *4)))) - (-5 *1 (-996 *3)) (-4 *3 (-1205 *4)))) + (-12 (-5 *4 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *4) (|:| -3472 *4)))) + (-5 *1 (-998 *3)) (-4 *3 (-1207 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-400 (-536))) (-5 *2 (-620 (-2 (|:| -3468 *5) (|:| -3467 *5)))) - (-5 *1 (-996 *3)) (-4 *3 (-1205 *5)) - (-5 *4 (-2 (|:| -3468 *5) (|:| -3467 *5)))))) + (-12 (-5 *5 (-402 (-538))) (-5 *2 (-622 (-2 (|:| -3473 *5) (|:| -3472 *5)))) + (-5 *1 (-998 *3)) (-4 *3 (-1207 *5)) + (-5 *4 (-2 (|:| -3473 *5) (|:| -3472 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) - (-5 *2 (-620 (-400 (-536)))) (-5 *1 (-995 *4)) (-4 *4 (-1205 (-536)))))) + (-12 (-5 *3 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) + (-5 *2 (-622 (-402 (-538)))) (-5 *1 (-997 *4)) (-4 *4 (-1207 (-538)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536))))) - (-5 *2 (-400 (-536))) (-5 *1 (-995 *4)) (-4 *4 (-1205 (-536)))))) + (-12 (-5 *3 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538))))) + (-5 *2 (-402 (-538))) (-5 *1 (-997 *4)) (-4 *4 (-1207 (-538)))))) (((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-414 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-749)) (-5 *1 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-113)))) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-416 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-751)) (-5 *1 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-113)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *4)) - (-4 *4 (-414 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-113)) (-5 *1 (-161)))) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *4)) + (-4 *4 (-416 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-113)) (-5 *1 (-161)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *4)) - (-4 *4 (-13 (-414 *3) (-976))))) - ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-290 *3)) (-4 *3 (-291)))) - ((*1 *2 *2) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *4)) + (-4 *4 (-13 (-416 *3) (-978))))) + ((*1 *2 *2) (-12 (-5 *2 (-113)) (-5 *1 (-292 *3)) (-4 *3 (-293)))) + ((*1 *2 *2) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *4 (-825)) (-5 *1 (-413 *3 *4)) (-4 *3 (-414 *4)))) + (-12 (-5 *2 (-113)) (-4 *4 (-827)) (-5 *1 (-415 *3 *4)) (-4 *3 (-416 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *4)) - (-4 *4 (-414 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *4)) + (-4 *4 (-416 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-113)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) ((*1 *2 *2) - (-12 (-5 *2 (-113)) (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *4)) - (-4 *4 (-13 (-414 *3) (-976) (-1169))))) - ((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-993))))) + (-12 (-5 *2 (-113)) (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *4)) + (-4 *4 (-13 (-416 *3) (-978) (-1171))))) + ((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-995))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1229 *6)) (-5 *4 (-1229 (-536))) (-5 *5 (-536)) (-4 *6 (-1072)) - (-5 *2 (-1 *6)) (-5 *1 (-991 *6))))) + (-12 (-5 *3 (-1231 *6)) (-5 *4 (-1231 (-538))) (-5 *5 (-538)) (-4 *6 (-1074)) + (-5 *2 (-1 *6)) (-5 *1 (-993 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-2 (|:| -3756 *4) (|:| -1572 (-536))))) (-4 *4 (-1072)) - (-5 *2 (-1 *4)) (-5 *1 (-991 *4))))) + (-12 (-5 *3 (-622 (-2 (|:| -3761 *4) (|:| -1577 (-538))))) (-4 *4 (-1074)) + (-5 *2 (-1 *4)) (-5 *1 (-993 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) - (-5 *2 (-620 (-400 *5))) (-5 *1 (-990 *4 *5)) (-5 *3 (-400 *5))))) + (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) + (-5 *2 (-622 (-402 *5))) (-5 *1 (-992 *4 *5)) (-5 *3 (-402 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |h| *6) (|:| |c1| (-400 *6)) - (|:| |c2| (-400 *6)) (|:| -3424 *6))) - (-5 *1 (-990 *5 *6)) (-5 *3 (-400 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |h| *6) (|:| |c1| (-402 *6)) + (|:| |c2| (-402 *6)) (|:| -3429 *6))) + (-5 *1 (-992 *5 *6)) (-5 *3 (-402 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1205 *6)) - (-4 *6 (-13 (-356) (-145) (-1012 *4))) (-5 *4 (-536)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1207 *6)) + (-4 *6 (-13 (-358) (-145) (-1014 *4))) (-5 *4 (-538)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3612 + (|:| -3617 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-989 *6 *3))))) + (-5 *1 (-991 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) - (-5 *2 (-2 (|:| |ans| (-400 *5)) (|:| |nosol| (-112)))) (-5 *1 (-989 *4 *5)) - (-5 *3 (-400 *5))))) + (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) + (-5 *2 (-2 (|:| |ans| (-402 *5)) (|:| |nosol| (-112)))) (-5 *1 (-991 *4 *5)) + (-5 *3 (-402 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-400 *6)) (|:| |c| (-400 *6)) (|:| -3424 *6))) - (-5 *1 (-989 *5 *6)) (-5 *3 (-400 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-402 *6)) (|:| |c| (-402 *6)) (|:| -3429 *6))) + (-5 *1 (-991 *5 *6)) (-5 *3 (-402 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1147)) + (|partial| -12 (-5 *5 (-1149)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-620 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1169) (-27) (-414 *8))) - (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) (-5 *3 (-536)) - (-5 *2 (-620 *4)) (-5 *1 (-988 *8 *4))))) + *4 (-622 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1171) (-27) (-416 *8))) + (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-538)) + (-5 *2 (-622 *4)) (-5 *1 (-990 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1147)) + (-12 (-5 *5 (-1149)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-620 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1169) (-27) (-414 *8))) - (-4 *8 (-13 (-444) (-825) (-145) (-1012 *3) (-619 *3))) (-5 *3 (-536)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3467 *4) (|:| |sol?| (-112)))) - (-5 *1 (-987 *8 *4))))) + *4 (-622 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1171) (-27) (-416 *8))) + (-4 *8 (-13 (-446) (-827) (-145) (-1014 *3) (-621 *3))) (-5 *3 (-538)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3472 *4) (|:| |sol?| (-112)))) + (-5 *1 (-989 *8 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536)))) - ((*1 *1 *1) (-4 *1 (-976))) ((*1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-986)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-4 *1 (-986)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-893)))) - ((*1 *1 *1) (-4 *1 (-986)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-986)) (-5 *2 (-838))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1141 *1)) (-4 *1 (-986))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-838))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-838))))) -(((*1 *2 *1) (-12 (-4 *3 (-1183)) (-5 *2 (-620 *1)) (-4 *1 (-984 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-620 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-5 *2 (-536))))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538)))) + ((*1 *1 *1) (-4 *1 (-978))) ((*1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-988)))) + ((*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-4 *1 (-988)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-895)))) + ((*1 *1 *1) (-4 *1 (-988)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-988)) (-5 *2 (-840))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1143 *1)) (-4 *1 (-988))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1143 *1)) (-4 *1 (-988))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-840))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-988)) (-5 *2 (-840))))) +(((*1 *2 *1) (-12 (-4 *3 (-1185)) (-5 *2 (-622 *1)) (-4 *1 (-986 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-622 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-5 *2 (-538))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-984 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *1 (-986 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-620 *1)) (|has| *1 (-6 -4349)) (-4 *1 (-984 *3)) - (-4 *3 (-1183))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-984 *2)) (-4 *2 (-1183))))) + (-12 (-5 *2 (-622 *1)) (|has| *1 (-6 -4354)) (-4 *1 (-986 *3)) + (-4 *3 (-1185))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-986 *2)) (-4 *2 (-1185))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) - (-5 *2 (-400 (-536))))) + (|partial| -12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) + (-5 *2 (-402 (-538))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-398 *3)) (-4 *3 (-535)) - (-4 *3 (-543)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-535)) (-5 *2 (-400 (-536))))) + (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-400 *3)) (-4 *3 (-537)) + (-4 *3 (-545)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-537)) (-5 *2 (-402 (-538))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) - (-5 *2 (-400 (-536))))) + (|partial| -12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) + (-5 *2 (-402 (-538))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-810 *3)) (-4 *3 (-535)) - (-4 *3 (-1072)))) + (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-812 *3)) (-4 *3 (-537)) + (-4 *3 (-1074)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-817 *3)) (-4 *3 (-535)) - (-4 *3 (-1072)))) + (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-819 *3)) (-4 *3 (-537)) + (-4 *3 (-1074)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) - (-5 *2 (-400 (-536))))) + (|partial| -12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) + (-5 *2 (-402 (-538))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-400 (-536))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2))))) + (|partial| -12 (-5 *2 (-402 (-538))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-398 *3)) (-4 *3 (-535)) (-4 *3 (-543)))) - ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) + (-12 (-5 *2 (-112)) (-5 *1 (-400 *3)) (-4 *3 (-537)) (-4 *3 (-545)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) + (-12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-112)))) + (-12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-982 *3)) (-4 *3 (-1012 (-400 (-536))))))) + (-12 (-5 *2 (-112)) (-5 *1 (-984 *3)) (-4 *3 (-1014 (-402 (-538))))))) (((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) ((*1 *2 *1) - (-12 (-5 *2 (-400 (-536))) (-5 *1 (-398 *3)) (-4 *3 (-535)) (-4 *3 (-543)))) - ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-400 (-536))))) + (-12 (-5 *2 (-402 (-538))) (-5 *1 (-400 *3)) (-4 *3 (-537)) (-4 *3 (-545)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-402 (-538))))) ((*1 *2 *1) - (-12 (-4 *1 (-774 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) + (-12 (-4 *1 (-776 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) ((*1 *2 *1) - (-12 (-5 *2 (-400 (-536))) (-5 *1 (-810 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-402 (-538))) (-5 *1 (-812 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-5 *2 (-400 (-536))) (-5 *1 (-817 *3)) (-4 *3 (-535)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-402 (-538))) (-5 *1 (-819 *3)) (-4 *3 (-537)) (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-4 *1 (-972 *3)) (-4 *3 (-170)) (-4 *3 (-535)) (-5 *2 (-400 (-536))))) - ((*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-982 *3)) (-4 *3 (-1012 *2))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980))))) -(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-980))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980)))) - ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-980))))) + (-12 (-4 *1 (-974 *3)) (-4 *3 (-170)) (-4 *3 (-537)) (-5 *2 (-402 (-538))))) + ((*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-984 *3)) (-4 *3 (-1014 *2))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982))))) +(((*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-982))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982)))) + ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-982))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-536))) (-5 *4 (-536)) (-5 *2 (-51)) (-5 *1 (-979))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-978 *3)) (-14 *3 (-536))))) + (-12 (-5 *3 (-402 (-538))) (-5 *4 (-538)) (-5 *2 (-51)) (-5 *1 (-981))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-980 *3)) (-14 *3 (-538))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-398 *5)) (-4 *5 (-543)) - (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *5) (|:| |radicand| (-620 *5)))) - (-5 *1 (-313 *5)) (-5 *4 (-749)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-536))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-974 *3))))) + (-12 (-5 *3 (-400 *5)) (-4 *5 (-545)) + (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *5) (|:| |radicand| (-622 *5)))) + (-5 *1 (-315 *5)) (-5 *4 (-751)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-538))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-976 *3))))) (((*1 *1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)))) - ((*1 *1 *1 *1) (-4 *1 (-465))) - ((*1 *1 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) - ((*1 *2 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-857)))) - ((*1 *1 *1) (-5 *1 (-945))) - ((*1 *1 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-972 *2)) (-4 *2 (-170))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-1183))))) + ((*1 *1 *1 *1) (-4 *1 (-467))) + ((*1 *1 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) + ((*1 *2 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-859)))) + ((*1 *1 *1) (-5 *1 (-947))) + ((*1 *1 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-974 *2)) (-4 *2 (-170))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-971 *2)) (-4 *2 (-1185))))) (((*1 *1 *2) - (-12 (-5 *2 (-1113 *3 *4)) (-14 *3 (-893)) (-4 *4 (-356)) - (-5 *1 (-967 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1115 *3 *4)) (-14 *3 (-895)) (-4 *4 (-358)) + (-5 *1 (-969 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) - (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))))) + (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6)) + (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1023)) (-4 *3 (-825)) (-5 *2 (-1096 *3 (-593 *1))) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) + (-12 (-4 *3 (-1025)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-595 *1))) + (-4 *1 (-416 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488)))) ((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-599 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-705) *3)))) + (-12 (-4 *3 (-170)) (-4 *2 (-38 *3)) (-5 *1 (-601 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-707) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-696 *3)) (-5 *1 (-630 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-705) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543))))) -(((*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-170)) (-4 *2 (-698 *3)) (-5 *1 (-632 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-707) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-965 *2)) (-4 *4 (-1205 *3)) (-4 *2 (-300)) - (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1012 *3))))) + (-12 (-4 *3 (-967 *2)) (-4 *4 (-1207 *3)) (-4 *2 (-302)) + (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1014 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-543)) (-4 *3 (-825)) (-5 *2 (-1096 *3 (-593 *1))) - (-4 *1 (-414 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1096 (-536) (-593 (-486)))) (-5 *1 (-486)))) + (-12 (-4 *3 (-545)) (-4 *3 (-827)) (-5 *2 (-1098 *3 (-595 *1))) + (-4 *1 (-416 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1098 (-538) (-595 (-488)))) (-5 *1 (-488)))) ((*1 *2 *1) - (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) - (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) + (-5 *1 (-601 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-705) *4)) - (-5 *1 (-630 *3 *4 *2)) (-4 *3 (-696 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543))))) -(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-1023)))) - ((*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543))))) -(((*1 *1 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825)) (-4 *2 (-543)))) - ((*1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-543))))) -(((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) + (-12 (-4 *4 (-170)) (-4 *2 (|SubsetCategory| (-707) *4)) + (-5 *1 (-632 *3 *4 *2)) (-4 *3 (-698 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545))))) +(((*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-1025)))) + ((*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545))))) +(((*1 *1 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827)) (-4 *2 (-545)))) + ((*1 *1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-545))))) +(((*1 *2 *3) + (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343)))) - ((*1 *1) (-4 *1 (-361))) + (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345)))) + ((*1 *1) (-4 *1 (-363))) ((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) - ((*1 *1 *1) (-4 *1 (-535))) ((*1 *1) (-4 *1 (-535))) - ((*1 *1 *1) (-5 *1 (-536))) ((*1 *1 *1) (-5 *1 (-749))) - ((*1 *2 *1) (-12 (-5 *2 (-876 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072)))) + (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))) + ((*1 *1 *1) (-4 *1 (-537))) ((*1 *1) (-4 *1 (-537))) + ((*1 *1 *1) (-5 *1 (-538))) ((*1 *1 *1) (-5 *1 (-751))) + ((*1 *2 *1) (-12 (-5 *2 (-878 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-5 *2 (-876 *4)) (-5 *1 (-879 *4)) (-4 *4 (-1072)))) - ((*1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-535)) (-4 *2 (-543))))) + (-12 (-5 *3 (-538)) (-5 *2 (-878 *4)) (-5 *1 (-881 *4)) (-4 *4 (-1074)))) + ((*1 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-537)) (-4 *2 (-545))))) (((*1 *2 *2) (-12 (-5 *2 - (-960 (-400 (-536)) (-839 *3) (-233 *4 (-749)) (-241 *3 (-400 (-536))))) - (-14 *3 (-620 (-1147))) (-14 *4 (-749)) (-5 *1 (-961 *3 *4))))) + (-962 (-402 (-538)) (-841 *3) (-235 *4 (-751)) (-243 *3 (-402 (-538))))) + (-14 *3 (-622 (-1149))) (-14 *4 (-751)) (-5 *1 (-963 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-620 *3)) (-4 *3 (-924 *4 *6 *5)) (-4 *4 (-444)) (-4 *5 (-825)) - (-4 *6 (-771)) (-5 *1 (-960 *4 *5 *6 *3))))) + (-12 (-5 *2 (-622 *3)) (-4 *3 (-926 *4 *6 *5)) (-4 *4 (-446)) (-4 *5 (-827)) + (-4 *6 (-773)) (-5 *1 (-962 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-444)) (-4 *4 (-825)) - (-4 *5 (-771)) (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-446)) (-4 *4 (-827)) + (-4 *5 (-773)) (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-444)) (-4 *4 (-825)) (-4 *5 (-771)) (-5 *2 (-620 *6)) - (-5 *1 (-960 *3 *4 *5 *6)) (-4 *6 (-924 *3 *5 *4))))) + (-12 (-4 *3 (-446)) (-4 *4 (-827)) (-4 *5 (-773)) (-5 *2 (-622 *6)) + (-5 *1 (-962 *3 *4 *5 *6)) (-4 *6 (-926 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-960 *3 *4 *5 *2)) (-4 *3 (-444)) - (-4 *4 (-825)) (-4 *5 (-771))))) + (-12 (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-962 *3 *4 *5 *2)) (-4 *3 (-446)) + (-4 *4 (-827)) (-4 *5 (-773))))) (((*1 *1 *1) - (-12 (-4 *2 (-444)) (-4 *3 (-825)) (-4 *4 (-771)) (-5 *1 (-960 *2 *3 *4 *5)) - (-4 *5 (-924 *2 *4 *3))))) + (-12 (-4 *2 (-446)) (-4 *3 (-827)) (-4 *4 (-773)) (-5 *1 (-962 *2 *3 *4 *5)) + (-4 *5 (-926 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1205 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-959 *4 *2 *3 *5)) - (-4 *4 (-343)) (-4 *5 (-703 *2 *3))))) + (-12 (-4 *3 (-1207 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-961 *4 *2 *3 *5)) + (-4 *4 (-345)) (-4 *5 (-705 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) - (-4 *5 (-543)) (-5 *1 (-711 *4 *3 *5 *2)) - (-4 *2 (-924 (-400 (-920 *5)) *4 *3)))) + (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) + (-4 *5 (-545)) (-5 *1 (-713 *4 *3 *5 *2)) + (-4 *2 (-926 (-402 (-922 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1023)) (-4 *5 (-771)) + (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 - (-13 (-825) - (-10 -8 (-15 -4325 ((-1147) $)) - (-15 -4186 ((-3 $ #1="failed") (-1147)))))) - (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-924 (-920 *4) *5 *3)))) + (-13 (-827) + (-10 -8 (-15 -4330 ((-1149) $)) + (-15 -4191 ((-3 $ #1="failed") (-1149)))))) + (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-926 (-922 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-620 *6)) + (-12 (-5 *3 (-622 *6)) (-4 *6 - (-13 (-825) - (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) - (-4 *4 (-1023)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) - (-4 *2 (-924 (-920 *4) *5 *6))))) + (-13 (-827) + (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149)))))) + (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) + (-4 *2 (-926 (-922 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-771)) (-4 *3 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) - (-4 *5 (-543)) (-5 *1 (-711 *4 *3 *5 *2)) - (-4 *2 (-924 (-400 (-920 *5)) *4 *3)))) + (-12 (-4 *4 (-773)) (-4 *3 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) + (-4 *5 (-545)) (-5 *1 (-713 *4 *3 *5 *2)) + (-4 *2 (-926 (-402 (-922 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1023)) (-4 *5 (-771)) + (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 - (-13 (-825) - (-10 -8 (-15 -4325 ((-1147) $)) - (-15 -4186 ((-3 $ #1="failed") (-1147)))))) - (-5 *1 (-958 *4 *5 *3 *2)) (-4 *2 (-924 (-920 *4) *5 *3)))) + (-13 (-827) + (-10 -8 (-15 -4330 ((-1149) $)) + (-15 -4191 ((-3 $ #1="failed") (-1149)))))) + (-5 *1 (-960 *4 *5 *3 *2)) (-4 *2 (-926 (-922 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-620 *6)) + (-12 (-5 *3 (-622 *6)) (-4 *6 - (-13 (-825) - (-10 -8 (-15 -4325 ((-1147) $)) (-15 -4186 ((-3 $ #1#) (-1147)))))) - (-4 *4 (-1023)) (-4 *5 (-771)) (-5 *1 (-958 *4 *5 *6 *2)) - (-4 *2 (-924 (-920 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-957 *2)) (-4 *2 (-1169))))) + (-13 (-827) + (-10 -8 (-15 -4330 ((-1149) $)) (-15 -4191 ((-3 $ #1#) (-1149)))))) + (-4 *4 (-1025)) (-4 *5 (-773)) (-5 *1 (-960 *4 *5 *6 *2)) + (-4 *2 (-926 (-922 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-959 *2)) (-4 *2 (-1171))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-749)) (-4 *1 (-957 *2)) (-4 *2 (-1169))))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-848)))) - ((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-155)))) - ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-848)))) - ((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) -(((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-155)))) - ((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) -(((*1 *2 *3) (-12 (-5 *3 (-917 *2)) (-5 *1 (-956 *2)) (-4 *2 (-1023))))) + (|partial| -12 (-5 *3 (-751)) (-4 *1 (-959 *2)) (-4 *2 (-1171))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-850)))) + ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-155)))) + ((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-850)))) + ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) +(((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-155)))) + ((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) +(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) +(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) +(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) +(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) +(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) +(((*1 *2 *3) (-12 (-5 *3 (-919 *2)) (-5 *1 (-958 *2)) (-4 *2 (-1025))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) - (-5 *2 (-620 (-2 (|:| C (-667 *5)) (|:| |g| (-1229 *5))))) (-5 *1 (-952 *5)) - (-5 *3 (-667 *5)) (-5 *4 (-1229 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-893)) (-5 *1 (-677)))) + (-12 (-4 *5 (-358)) + (-5 *2 (-622 (-2 (|:| C (-669 *5)) (|:| |g| (-1231 *5))))) (-5 *1 (-954 *5)) + (-5 *3 (-669 *5)) (-5 *4 (-1231 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-895)) (-5 *1 (-679)))) ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-667 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) - (-5 *1 (-952 *5))))) + (-12 (-5 *2 (-669 *5)) (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) + (-5 *1 (-954 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-356)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *2)))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-358)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-356)) - (-5 *2 (-2 (|:| R (-667 *6)) (|:| A (-667 *6)) (|:| |Ainv| (-667 *6)))) - (-5 *1 (-952 *6)) (-5 *3 (-667 *6))))) + (-12 (-5 *4 (-98 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-358)) + (-5 *2 (-2 (|:| R (-669 *6)) (|:| A (-669 *6)) (|:| |Ainv| (-669 *6)))) + (-5 *1 (-954 *6)) (-5 *3 (-669 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) - (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) + (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) - (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) + (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-300)) - (-4 *3 (-543)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-145)) (-4 *3 (-302)) + (-4 *3 (-545)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) + (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) + (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) + (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-444)) (-4 *3 (-543)) - (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-446)) (-4 *3 (-545)) + (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-620 *7)) (-5 *3 (-112)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-444)) - (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7))))) + (-12 (-5 *2 (-622 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-446)) + (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *2 (-620 *3)) (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6))))) + (-12 (-4 *4 (-446)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) + (-5 *2 (-622 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-620 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *1 (-951 *5 *6 *7 *8))))) + (-12 (-5 *2 (-622 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *1 (-953 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-620 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1037 *6 *7 *8)) (-4 *6 (-543)) (-4 *7 (-771)) - (-4 *8 (-825)) (-5 *1 (-951 *6 *7 *8 *9))))) + (-12 (-5 *2 (-622 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1039 *6 *7 *8)) (-4 *6 (-545)) (-4 *7 (-773)) + (-4 *8 (-827)) (-5 *1 (-953 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-468 *4 *5 *6 *7)) (|:| -3678 (-620 *7)))) - (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) + (|partial| -12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-470 *4 *5 *6 *7)) (|:| -3683 (-622 *7)))) + (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *2))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-620 *7)) (-5 *3 (-112)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *7))))) + (-12 (-5 *2 (-622 *7)) (-5 *3 (-112)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) - (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) + (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) + (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6))))) + (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) + (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) - (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260)))) - ((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260)))) + (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) + (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *2 (-112)) (-5 *1 (-262)))) + ((*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-112)) (-5 *1 (-262)))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6))))) + (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) + (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) - (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) + (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) + (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6))))) + (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) + (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-1037 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-620 *7)) (|:| |badPols| (-620 *7)))) - (-5 *1 (-951 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) + (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-1039 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-622 *7)) (|:| |badPols| (-622 *7)))) + (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-622 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-1 (-112) *8))) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) - (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) - (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8))))) + (-12 (-5 *3 (-622 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) + (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8)))) + (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-1 (-112) *8))) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) - (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) - (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8))))) + (-12 (-5 *3 (-622 (-1 (-112) *8))) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) + (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8)))) + (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1037 *5 *6 *7)) (-4 *5 (-543)) - (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *2 (-2 (|:| |goodPols| (-620 *8)) (|:| |badPols| (-620 *8)))) - (-5 *1 (-951 *5 *6 *7 *8)) (-5 *4 (-620 *8))))) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1039 *5 *6 *7)) (-4 *5 (-545)) + (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *2 (-2 (|:| |goodPols| (-622 *8)) (|:| |badPols| (-622 *8)))) + (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-622 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *7))))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-620 *8))) (-5 *3 (-620 *8)) (-4 *8 (-1037 *5 *6 *7)) - (-4 *5 (-543)) (-4 *6 (-771)) (-4 *7 (-825)) (-5 *2 (-112)) - (-5 *1 (-951 *5 *6 *7 *8))))) + (-12 (-5 *4 (-622 (-622 *8))) (-5 *3 (-622 *8)) (-4 *8 (-1039 *5 *6 *7)) + (-4 *5 (-545)) (-4 *6 (-773)) (-4 *7 (-827)) (-5 *2 (-112)) + (-5 *1 (-953 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-112)) (-5 *1 (-951 *4 *5 *6 *7))))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-112)) (-5 *1 (-953 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *3)) - (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6)))) + (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *3)) + (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-620 *3)) (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *1 (-951 *4 *5 *6 *3)))) + (-12 (-5 *2 (-622 *3)) (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *1 (-953 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6)))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-620 *7) (-620 *7))) (-5 *2 (-620 *7)) - (-4 *7 (-1037 *4 *5 *6)) (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *1 (-951 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-622 *7) (-622 *7))) (-5 *2 (-622 *7)) + (-4 *7 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) + (-5 *1 (-953 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-620 *3)) - (-5 *1 (-951 *4 *5 *6 *3)) (-4 *3 (-1037 *4 *5 *6))))) + (-12 (-4 *4 (-545)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-622 *3)) + (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-1039 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-951 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-953 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-620 *5))))) + (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-622 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-950 *4 *5 *3 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) - (-4 *6 (-1037 *4 *5 *3)) (-5 *2 (-112))))) + (-12 (-4 *1 (-952 *4 *5 *3 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) + (-4 *6 (-1039 *4 *5 *3)) (-5 *2 (-112))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) - (-4 *5 (-1037 *3 *4 *2))))) + (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) + (-4 *5 (-1039 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) - (-4 *5 (-1037 *3 *4 *2))))) + (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) + (-4 *5 (-1039 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-950 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) - (-4 *5 (-1037 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) + (-12 (-4 *1 (-952 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) + (-4 *5 (-1039 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-365 *3)) (-4 *3 (-1183)))) - ((*1 *2 *2) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-367 *3)) (-4 *3 (-1185)))) + ((*1 *2 *2) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) (-4 *6 (-1037 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3460 *1) (|:| |upper| *1))) - (-4 *1 (-950 *4 *5 *3 *6))))) + (-12 (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) (-4 *6 (-1039 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3465 *1) (|:| |upper| *1))) + (-4 *1 (-952 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) + (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) + (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) + (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) + (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) + (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-950 *4 *5 *6 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *3 (-1037 *4 *5 *6)) (-4 *4 (-543)) + (-12 (-4 *1 (-952 *4 *5 *6 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *3 (-1039 *4 *5 *6)) (-4 *4 (-545)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-620 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543))))) + (-12 (-5 *2 (-622 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-620 *6)) (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543))))) + (-12 (-5 *2 (-622 *6)) (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545))))) (((*1 *2 *1) - (-12 (-4 *1 (-950 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1037 *3 *4 *5)) (-4 *3 (-543)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-620 (-620 (-917 (-219))))))) - ((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-620 (-620 (-917 (-219)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1060 (-219))))) - ((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219)))))) -(((*1 *2 *1) (-12 (-4 *1 (-929)) (-5 *2 (-1060 (-219))))) - ((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219)))))) -(((*1 *2 *1) (-12 (-4 *1 (-948)) (-5 *2 (-1060 (-219)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) - ((*1 *2 *1) (-12 (-4 *1 (-377 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-1072)))) + (-12 (-4 *1 (-952 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1039 *3 *4 *5)) (-4 *3 (-545)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-622 (-622 (-919 (-221))))))) + ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-622 (-622 (-919 (-221)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1062 (-221))))) + ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221)))))) +(((*1 *2 *1) (-12 (-4 *1 (-931)) (-5 *2 (-1062 (-221))))) + ((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221)))))) +(((*1 *2 *1) (-12 (-4 *1 (-950)) (-5 *2 (-1062 (-221)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-1074)))) ((*1 *2 *1) - (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *6 (-232 (-4311 *3) (-749))) + (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *6 (-234 (-4316 *3) (-751))) (-14 *7 - (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) - (-2 (|:| -2487 *5) (|:| -2488 *6)))) - (-5 *2 (-692 *5 *6 *7)) (-5 *1 (-453 *3 *4 *5 *6 *7 *8)) (-4 *5 (-825)) - (-4 *8 (-924 *4 *6 (-839 *3))))) + (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6)) + (-2 (|:| -2492 *5) (|:| -2493 *6)))) + (-5 *2 (-694 *5 *6 *7)) (-5 *1 (-455 *3 *4 *5 *6 *7 *8)) (-4 *5 (-827)) + (-4 *8 (-926 *4 *6 (-841 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-705)) (-4 *2 (-825)) (-5 *1 (-714 *3 *2)) (-4 *3 (-1023)))) + (-12 (-4 *2 (-707)) (-4 *2 (-827)) (-5 *1 (-716 *3 *2)) (-4 *3 (-1025)))) ((*1 *1 *1) - (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *4 (-825))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770)))) + (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-620 (-893))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-893)) - (-4 *2 (-356)) (-14 *5 (-967 *4 *2)))) + (-12 (-5 *3 (-622 (-895))) (-5 *1 (-150 *4 *2 *5)) (-14 *4 (-895)) + (-4 *2 (-358)) (-14 *5 (-969 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-692 *5 *6 *7)) (-4 *5 (-825)) (-4 *6 (-232 (-4311 *4) (-749))) + (-12 (-5 *3 (-694 *5 *6 *7)) (-4 *5 (-827)) (-4 *6 (-234 (-4316 *4) (-751))) (-14 *7 - (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *6)) - (-2 (|:| -2487 *5) (|:| -2488 *6)))) - (-14 *4 (-620 (-1147))) (-4 *2 (-170)) (-5 *1 (-453 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-924 *2 *6 (-839 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-500 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-825)))) + (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *6)) + (-2 (|:| -2492 *5) (|:| -2493 *6)))) + (-14 *4 (-622 (-1149))) (-4 *2 (-170)) (-5 *1 (-455 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-926 *2 *6 (-841 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-502 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-827)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-536)) (-4 *2 (-543)) (-5 *1 (-603 *2 *4)) (-4 *4 (-1205 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-687 *2)) (-4 *2 (-1023)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-705)))) + (-12 (-5 *3 (-538)) (-4 *2 (-545)) (-5 *1 (-605 *2 *4)) (-4 *4 (-1207 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-689 *2)) (-4 *2 (-1025)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-707)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 *5)) (-5 *3 (-620 (-749))) (-4 *1 (-719 *4 *5)) - (-4 *4 (-1023)) (-4 *5 (-825)))) + (-12 (-5 *2 (-622 *5)) (-5 *3 (-622 (-751))) (-4 *1 (-721 *4 *5)) + (-4 *4 (-1025)) (-4 *5 (-827)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-719 *4 *2)) (-4 *4 (-1023)) (-4 *2 (-825)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-827 *2)) (-4 *2 (-1023)))) + (-12 (-5 *3 (-751)) (-4 *1 (-721 *4 *2)) (-4 *4 (-1025)) (-4 *2 (-827)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-829 *2)) (-4 *2 (-1025)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 (-749))) (-4 *1 (-924 *4 *5 *6)) - (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *6 (-825)))) + (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 (-751))) (-4 *1 (-926 *4 *5 *6)) + (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *6 (-827)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *1 (-924 *4 *5 *2)) (-4 *4 (-1023)) (-4 *5 (-771)) - (-4 *2 (-825)))) + (-12 (-5 *3 (-751)) (-4 *1 (-926 *4 *5 *2)) (-4 *4 (-1025)) (-4 *5 (-773)) + (-4 *2 (-827)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 *6)) (-5 *3 (-620 *5)) (-4 *1 (-947 *4 *5 *6)) - (-4 *4 (-1023)) (-4 *5 (-770)) (-4 *6 (-825)))) + (-12 (-5 *2 (-622 *6)) (-5 *3 (-622 *5)) (-4 *1 (-949 *4 *5 *6)) + (-4 *4 (-1025)) (-4 *5 (-772)) (-4 *6 (-827)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-947 *4 *3 *2)) (-4 *4 (-1023)) (-4 *3 (-770)) (-4 *2 (-825))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579 *3)) (-4 *3 (-1023)))) + (-12 (-4 *1 (-949 *4 *3 *2)) (-4 *4 (-1025)) (-4 *3 (-772)) (-4 *2 (-827))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-581 *3)) (-4 *3 (-1025)))) ((*1 *2 *1) - (-12 (-4 *1 (-947 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-770)) (-4 *5 (-825)) + (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *5 (-827)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300)))) - ((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536)))) - ((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1) (-4 *1 (-844 *2))) +(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302)))) + ((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538)))) + ((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1) (-4 *1 (-846 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-947 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-770)) (-4 *4 (-825))))) -(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-945))))) + (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-772)) (-4 *4 (-827))))) +(((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-947))))) (((*1 *2 *3) - (-12 (-5 *2 (-620 (-620 (-536)))) (-5 *1 (-945)) (-5 *3 (-620 (-536)))))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-945))))) + (-12 (-5 *2 (-622 (-622 (-538)))) (-5 *1 (-947)) (-5 *3 (-622 (-538)))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-947))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4111 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4116 *4))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4111 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-543)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2))))) + (-12 (-4 *4 (-545)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4116 *4))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-545)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3))))) + (-12 (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-749)) (-4 *3 (-543)) (-5 *1 (-943 *3 *2)) (-4 *2 (-1205 *3))))) + (-12 (-5 *4 (-751)) (-4 *3 (-545)) (-5 *1 (-945 *3 *2)) (-4 *2 (-1207 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *2 (-543)) (-5 *1 (-943 *2 *4)) (-4 *4 (-1205 *2))))) + (-12 (-5 *3 (-751)) (-4 *2 (-545)) (-5 *1 (-945 *2 *4)) (-4 *4 (-1207 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-300)))) + (-12 (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-302)))) ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |rm| (-379 *3)))) - (-5 *1 (-379 *3)) (-4 *3 (-1072)))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |rm| (-381 *3)))) + (-5 *1 (-381 *3)) (-4 *3 (-1074)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2091 (-749)) (|:| -3230 (-749)))) (-5 *1 (-749)))) + (-12 (-5 *2 (-2 (|:| -2096 (-751)) (|:| -3235 (-751)))) (-5 *1 (-751)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *4 (-543)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3206 *4))) (-5 *1 (-943 *4 *3)) - (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-446)) (-4 *4 (-545)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3211 *4))) (-5 *1 (-945 *4 *3)) + (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *4 (-543)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3206 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-446)) (-4 *4 (-545)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3211 *4))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-543)) (-4 *2 (-444)) (-5 *1 (-943 *2 *3)) (-4 *3 (-1205 *2))))) + (-12 (-4 *2 (-545)) (-4 *2 (-446)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1207 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-620 (-749))) (-5 *1 (-943 *4 *3)) - (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-622 (-751))) (-5 *1 (-945 *4 *3)) + (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-943 *4 *3)) - (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-945 *4 *3)) + (-4 *3 (-1207 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4112 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4117 *4))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4112 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4117 *4))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3490 *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3495 *3))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3490 *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3495 *3))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3490 *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3495 *3))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) + (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-543)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) - (-4 *3 (-1205 *5))))) + (-12 (-5 *4 (-751)) (-4 *5 (-545)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) + (-4 *3 (-1207 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-543)) + (-12 (-5 *4 (-751)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5))))) + (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-543)) (-5 *1 (-943 *4 *2)) (-4 *2 (-1205 *4))))) + (-12 (-5 *3 (-751)) (-4 *4 (-545)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1207 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-543)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-943 *5 *3)) - (-4 *3 (-1205 *5))))) + (-12 (-5 *4 (-751)) (-4 *5 (-545)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-945 *5 *3)) + (-4 *3 (-1207 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-543)) + (-12 (-5 *4 (-751)) (-4 *5 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-943 *5 *3)) (-4 *3 (-1205 *5))))) + (-5 *1 (-945 *5 *3)) (-4 *3 (-1207 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-543)) (-5 *1 (-943 *4 *2)) (-4 *2 (-1205 *4))))) + (-12 (-5 *3 (-751)) (-4 *4 (-545)) (-5 *1 (-945 *4 *2)) (-4 *2 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4111 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4116 *4))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4111 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4116 *4))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-543)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4111 *4))) - (-5 *1 (-943 *4 *3)) (-4 *3 (-1205 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) + (-12 (-4 *4 (-545)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4116 *4))) + (-5 *1 (-945 *4 *3)) (-4 *3 (-1207 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-827)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-825))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *1) (-4 *1 (-941)))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *1) (-4 *1 (-941)))) -(((*1 *1 *1 *1) (-4 *1 (-941)))) -(((*1 *1 *1 *1) (-4 *1 (-941)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *1 *1) (-12 (-5 *1 (-940 *2)) (-4 *2 (-941))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-944 *2)) (-4 *2 (-827))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *1) (-4 *1 (-943)))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *1) (-4 *1 (-943)))) +(((*1 *1 *1 *1) (-4 *1 (-943)))) +(((*1 *1 *1 *1) (-4 *1 (-943)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) +(((*1 *2 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) +(((*1 *1 *1) (-12 (-5 *1 (-942 *2)) (-4 *2 (-943))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) (((*1 *2 *1) - (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) + (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) (((*1 *2 *1) - (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) + (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) (((*1 *2 *1) - (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-940 *3)) (-4 *3 (-941))))) + (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-942 *3)) (-4 *3 (-943))))) (((*1 *2 *1) - (-12 (-5 *2 (-847 (-940 *3) (-940 *3))) (-5 *1 (-940 *3)) (-4 *3 (-941))))) -(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1129)) (-5 *2 (-751)) (-5 *1 (-113)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1074)) (-5 *1 (-939))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-938 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-938 *2 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-4 *2 (-1072)) (-5 *1 (-938 *3 *2)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-838)))) - ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1235)) (-5 *1 (-937))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-620 *3)) (-5 *1 (-936 *3)) (-4 *3 (-535))))) -(((*1 *2 *2) (-12 (-5 *1 (-936 *2)) (-4 *2 (-535))))) -(((*1 *2 *2) (-12 (-5 *1 (-936 *2)) (-4 *2 (-535))))) -(((*1 *1) (-4 *1 (-343))) + (-12 (-5 *2 (-849 (-942 *3) (-942 *3))) (-5 *1 (-942 *3)) (-4 *3 (-943))))) +(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-753)) (-5 *1 (-113)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1076)) (-5 *1 (-941))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-940 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-940 *2 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-4 *2 (-1074)) (-5 *1 (-940 *3 *2)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-840)))) + ((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1237)) (-5 *1 (-939))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-622 *3)) (-5 *1 (-938 *3)) (-4 *3 (-537))))) +(((*1 *2 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-537))))) +(((*1 *2 *2) (-12 (-5 *1 (-938 *2)) (-4 *2 (-537))))) +(((*1 *1) (-4 *1 (-345))) ((*1 *2 *3) - (-12 (-5 *3 (-620 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-543) (-825) (-145))) + (-12 (-5 *3 (-622 *5)) (-4 *5 (-416 *4)) (-4 *4 (-13 (-545) (-827) (-145))) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-620 (-1141 *5))) - (|:| |prim| (-1141 *5)))) - (-5 *1 (-425 *4 *5)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-622 (-1143 *5))) + (|:| |prim| (-1143 *5)))) + (-5 *1 (-427 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-543) (-825) (-145))) + (-12 (-4 *4 (-13 (-545) (-827) (-145))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1141 *3)) (|:| |pol2| (-1141 *3)) - (|:| |prim| (-1141 *3)))) - (-5 *1 (-425 *4 *3)) (-4 *3 (-27)) (-4 *3 (-414 *4)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1143 *3)) (|:| |pol2| (-1143 *3)) + (|:| |prim| (-1143 *3)))) + (-5 *1 (-427 *4 *3)) (-4 *3 (-27)) (-4 *3 (-416 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-920 *5)) (-5 *4 (-1147)) (-4 *5 (-13 (-356) (-145))) + (-12 (-5 *3 (-922 *5)) (-5 *4 (-1149)) (-4 *5 (-13 (-358) (-145))) (-5 *2 - (-2 (|:| |coef1| (-536)) (|:| |coef2| (-536)) (|:| |prim| (-1141 *5)))) - (-5 *1 (-935 *5)))) + (-2 (|:| |coef1| (-538)) (|:| |coef2| (-538)) (|:| |prim| (-1143 *5)))) + (-5 *1 (-937 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) - (-4 *5 (-13 (-356) (-145))) + (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) + (-4 *5 (-13 (-358) (-145))) (-5 *2 - (-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 *5))) - (|:| |prim| (-1141 *5)))) - (-5 *1 (-935 *5)))) + (-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 *5))) + (|:| |prim| (-1143 *5)))) + (-5 *1 (-937 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) (-5 *5 (-1147)) - (-4 *6 (-13 (-356) (-145))) + (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) (-5 *5 (-1149)) + (-4 *6 (-13 (-358) (-145))) (-5 *2 - (-2 (|:| -4308 (-620 (-536))) (|:| |poly| (-620 (-1141 *6))) - (|:| |prim| (-1141 *6)))) - (-5 *1 (-935 *6))))) + (-2 (|:| -4313 (-622 (-538))) (|:| |poly| (-622 (-1143 *6))) + (|:| |prim| (-1143 *6)))) + (-5 *1 (-937 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1147)) (-5 *1 (-567 *2)) (-4 *2 (-1012 *3)) (-4 *2 (-356)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356)))) + (-12 (-5 *3 (-1149)) (-5 *1 (-569 *2)) (-4 *2 (-1014 *3)) (-4 *2 (-358)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-569 *2)) (-4 *2 (-358)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-609 *4 *2)) - (-4 *2 (-13 (-414 *4) (-976) (-1169))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-611 *4 *2)) + (-4 *2 (-13 (-416 *4) (-978) (-1171))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1063 *2)) (-4 *2 (-13 (-414 *4) (-976) (-1169))) - (-4 *4 (-13 (-825) (-543))) (-5 *1 (-609 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-1147)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-934))))) + (-12 (-5 *3 (-1065 *2)) (-4 *2 (-13 (-416 *4) (-978) (-1171))) + (-4 *4 (-13 (-827) (-545))) (-5 *1 (-611 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-936)) (-5 *2 (-1149)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-936))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-893)) (-4 *5 (-543)) (-5 *2 (-667 *5)) - (-5 *1 (-931 *5 *3)) (-4 *3 (-636 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-928))))) + (|partial| -12 (-5 *4 (-895)) (-4 *5 (-545)) (-5 *2 (-669 *5)) + (-5 *1 (-933 *5 *3)) (-4 *3 (-638 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-930))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) (-4 *3 (-924 *7 *5 *6)) - (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| (-620 *3)))) - (-5 *1 (-927 *5 *6 *7 *3 *8)) (-5 *4 (-749)) + (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545)) (-4 *3 (-926 *7 *5 *6)) + (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| (-622 *3)))) + (-5 *1 (-929 *5 *6 *7 *3 *8)) (-5 *4 (-751)) (-4 *8 - (-13 (-356) - (-10 -8 (-15 -3326 (*3 $)) (-15 -3325 (*3 $)) (-15 -4312 ($ *3)))))))) + (-13 (-358) + (-10 -8 (-15 -3331 (*3 $)) (-15 -3330 (*3 $)) (-15 -4317 ($ *3)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) - (-4 *8 (-924 *7 *5 *6)) - (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| *3))) - (-5 *1 (-927 *5 *6 *7 *8 *3)) (-5 *4 (-749)) + (-12 (-4 *7 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545)) + (-4 *8 (-926 *7 *5 *6)) + (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| *3))) + (-5 *1 (-929 *5 *6 *7 *8 *3)) (-5 *4 (-751)) (-4 *3 - (-13 (-356) - (-10 -8 (-15 -3326 (*8 $)) (-15 -3325 (*8 $)) (-15 -4312 ($ *8)))))))) + (-13 (-358) + (-10 -8 (-15 -3331 (*8 $)) (-15 -3330 (*8 $)) (-15 -4317 ($ *8)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-536))) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-543)) - (-4 *8 (-924 *7 *5 *6)) - (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *9) (|:| |radicand| *9))) - (-5 *1 (-927 *5 *6 *7 *8 *9)) (-5 *4 (-749)) + (-12 (-5 *3 (-402 (-538))) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-545)) + (-4 *8 (-926 *7 *5 *6)) + (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *9) (|:| |radicand| *9))) + (-5 *1 (-929 *5 *6 *7 *8 *9)) (-5 *4 (-751)) (-4 *9 - (-13 (-356) - (-10 -8 (-15 -3326 (*8 $)) (-15 -3325 (*8 $)) (-15 -4312 ($ *8)))))))) + (-13 (-358) + (-10 -8 (-15 -3331 (*8 $)) (-15 -3330 (*8 $)) (-15 -4317 ($ *8)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-771)) (-4 *6 (-825)) (-4 *3 (-543)) (-4 *7 (-924 *3 *5 *6)) - (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *8) (|:| |radicand| *8))) - (-5 *1 (-927 *5 *6 *3 *7 *8)) (-5 *4 (-749)) + (-12 (-4 *5 (-773)) (-4 *6 (-827)) (-4 *3 (-545)) (-4 *7 (-926 *3 *5 *6)) + (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *8) (|:| |radicand| *8))) + (-5 *1 (-929 *5 *6 *3 *7 *8)) (-5 *4 (-751)) (-4 *8 - (-13 (-356) - (-10 -8 (-15 -3326 (*7 $)) (-15 -3325 (*7 $)) (-15 -4312 ($ *7)))))))) + (-13 (-358) + (-10 -8 (-15 -3331 (*7 $)) (-15 -3330 (*7 $)) (-15 -4317 ($ *7)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1023)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2488 (-536)))) (-4 *1 (-414 *3)))) + (|partial| -12 (-4 *3 (-1025)) (-4 *3 (-827)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2493 (-538)))) (-4 *1 (-416 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-864 *3)) (|:| -2488 (-864 *3)))) - (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -2493 (-866 *3)))) + (-5 *1 (-866 *3)) (-4 *3 (-1074)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) - (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2488 (-536)))) - (-5 *1 (-925 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) + (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2493 (-538)))) + (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) + (-13 (-358) + (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1147)) (-4 *4 (-1023)) (-4 *4 (-825)) - (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *4)))) + (|partial| -12 (-5 *3 (-1149)) (-4 *4 (-1025)) (-4 *4 (-827)) + (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1023)) (-4 *4 (-825)) - (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *4)))) + (|partial| -12 (-5 *3 (-113)) (-4 *4 (-1025)) (-4 *4 (-827)) + (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1083)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| |var| (-593 *1)) (|:| -2488 (-536)))) (-4 *1 (-414 *3)))) + (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) + (-5 *2 (-2 (|:| |var| (-595 *1)) (|:| -2493 (-538)))) (-4 *1 (-416 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-864 *3)) (|:| -2488 (-749)))) - (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-866 *3)) (|:| -2493 (-751)))) + (-5 *1 (-866 *3)) (-4 *3 (-1074)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *2 (-2 (|:| |var| *5) (|:| -2488 (-749)))))) + (|partial| -12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *2 (-2 (|:| |var| *5) (|:| -2493 (-751)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) - (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2488 (-536)))) - (-5 *1 (-925 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) + (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2493 (-538)))) + (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) + (-13 (-358) + (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1083)) (-4 *3 (-825)) (-5 *2 (-620 *1)) - (-4 *1 (-414 *3)))) + (|partial| -12 (-4 *3 (-1085)) (-4 *3 (-827)) (-5 *2 (-622 *1)) + (-4 *1 (-416 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) - (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-620 *3)) (-5 *1 (-925 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) + (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-622 *3)) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) + (-13 (-358) + (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) (-5 *2 (-620 *1)) - (-4 *1 (-414 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) (-5 *2 (-622 *1)) + (-4 *1 (-416 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-620 *1)) (-4 *1 (-924 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-622 *1)) (-4 *1 (-926 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1023)) - (-4 *7 (-924 *6 *4 *5)) (-5 *2 (-620 *3)) (-5 *1 (-925 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1025)) + (-4 *7 (-926 *6 *4 *5)) (-5 *2 (-622 *3)) (-5 *1 (-927 *4 *5 *6 *7 *3)) (-4 *3 - (-13 (-356) - (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) + (-13 (-358) + (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-620 *1)) (-4 *1 (-377 *3 *4)))) + (-12 (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-622 *1)) (-4 *1 (-379 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-714 *3 *4))) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) - (-4 *4 (-705)))) + (-12 (-5 *2 (-622 (-716 *3 *4))) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) + (-4 *4 (-707)))) ((*1 *2 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) - (-4 *1 (-924 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-319 *3 *2)) (-4 *3 (-1023)) (-4 *2 (-770)))) - ((*1 *2 *1) (-12 (-4 *1 (-687 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *3)) (-4 *3 (-1023)) (-5 *2 (-749)))) + (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) + (-4 *1 (-926 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-321 *3 *2)) (-4 *3 (-1025)) (-4 *2 (-772)))) + ((*1 *2 *1) (-12 (-4 *1 (-689 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-4 *1 (-829 *3)) (-4 *3 (-1025)) (-5 *2 (-751)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-620 (-749))))) + (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-622 (-751))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-924 *4 *5 *3)) (-4 *4 (-1023)) (-4 *5 (-771)) (-4 *3 (-825)) - (-5 *2 (-749))))) + (-12 (-4 *1 (-926 *4 *5 *3)) (-4 *4 (-1025)) (-4 *5 (-773)) (-4 *3 (-827)) + (-5 *2 (-751))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-620 *6)) (-4 *1 (-924 *4 *5 *6)) (-4 *4 (-1023)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-749)))) + (-12 (-5 *3 (-622 *6)) (-4 *1 (-926 *4 *5 *6)) (-4 *4 (-1025)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-751)))) ((*1 *2 *1) - (-12 (-4 *1 (-924 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-749))))) + (-12 (-4 *1 (-926 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-751))))) (((*1 *2 *1) - (-12 (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *1)) - (-4 *1 (-924 *3 *4 *5))))) + (-12 (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *1)) + (-4 *1 (-926 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)) (-4 *2 (-444)))) + (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)) (-4 *2 (-446)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 *4)) (-4 *4 (-1205 (-536))) (-5 *2 (-620 (-536))) - (-5 *1 (-478 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-444)))) + (-12 (-5 *3 (-622 *4)) (-4 *4 (-1207 (-538))) (-5 *2 (-622 (-538))) + (-5 *1 (-480 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-446)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-924 *3 *4 *2)) (-4 *3 (-1023)) (-4 *4 (-771)) (-4 *2 (-825)) - (-4 *3 (-444))))) + (-12 (-4 *1 (-926 *3 *4 *2)) (-4 *3 (-1025)) (-4 *4 (-773)) (-4 *2 (-827)) + (-4 *3 (-446))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-620 *5)) (-5 *4 (-536)) (-4 *5 (-823)) (-4 *5 (-356)) - (-5 *2 (-749)) (-5 *1 (-919 *5 *6)) (-4 *6 (-1205 *5))))) + (-12 (-5 *3 (-622 *5)) (-5 *4 (-538)) (-4 *5 (-825)) (-4 *5 (-358)) + (-5 *2 (-751)) (-5 *1 (-921 *5 *6)) (-4 *6 (-1207 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *4)) (-4 *4 (-823)) (-4 *4 (-356)) (-5 *2 (-749)) - (-5 *1 (-919 *4 *5)) (-4 *5 (-1205 *4))))) + (-12 (-5 *3 (-622 *4)) (-4 *4 (-825)) (-4 *4 (-358)) (-5 *2 (-751)) + (-5 *1 (-921 *4 *5)) (-4 *5 (-1207 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-356)) (-4 *2 (-823)) (-5 *1 (-919 *2 *3)) (-4 *3 (-1205 *2))))) + (-12 (-4 *2 (-358)) (-4 *2 (-825)) (-5 *1 (-921 *2 *3)) (-4 *3 (-1207 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-919 *4 *3)) - (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-921 *4 *3)) + (-4 *3 (-1207 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-620 *3)) (-5 *1 (-919 *4 *3)) - (-4 *3 (-1205 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-920 *5)) (-4 *5 (-1023)) (-5 *2 (-241 *4 *5)) - (-5 *1 (-918 *4 *5)) (-14 *4 (-620 (-1147)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) - (-5 *2 (-920 *5)) (-5 *1 (-918 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) - (-5 *2 (-920 *5)) (-5 *1 (-918 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-920 *5)) (-4 *5 (-1023)) (-5 *2 (-473 *4 *5)) - (-5 *1 (-918 *4 *5)) (-14 *4 (-620 (-1147)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-473 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) - (-5 *2 (-241 *4 *5)) (-5 *1 (-918 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-1023)) - (-5 *2 (-473 *4 *5)) (-5 *1 (-918 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) - ((*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536))))) -(((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536))))) -(((*1 *2 *3) (-12 (-5 *3 (-1141 (-536))) (-5 *2 (-536)) (-5 *1 (-916))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548)))) - ((*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536))))) -(((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-185)) (-5 *3 (-536)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) - ((*1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *1 (-916)) (-5 *3 (-536))))) -(((*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-548)) (-5 *3 (-536)))) - ((*1 *2 *3) (-12 (-5 *2 (-1141 (-400 (-536)))) (-5 *1 (-916)) (-5 *3 (-536))))) + (-12 (-4 *4 (-358)) (-5 *2 (-622 *3)) (-5 *1 (-921 *4 *3)) + (-4 *3 (-1207 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922 *5)) (-4 *5 (-1025)) (-5 *2 (-243 *4 *5)) + (-5 *1 (-920 *4 *5)) (-14 *4 (-622 (-1149)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) + (-5 *2 (-922 *5)) (-5 *1 (-920 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) + (-5 *2 (-922 *5)) (-5 *1 (-920 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922 *5)) (-4 *5 (-1025)) (-5 *2 (-475 *4 *5)) + (-5 *1 (-920 *4 *5)) (-14 *4 (-622 (-1149)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-475 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) + (-5 *2 (-243 *4 *5)) (-5 *1 (-920 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-1025)) + (-5 *2 (-475 *4 *5)) (-5 *1 (-920 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) + ((*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538))))) +(((*1 *2 *3) (-12 (-5 *3 (-1143 (-538))) (-5 *2 (-538)) (-5 *1 (-918))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550)))) + ((*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-187)) (-5 *3 (-538)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) + ((*1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *1 (-918)) (-5 *3 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-550)) (-5 *3 (-538)))) + ((*1 *2 *3) (-12 (-5 *2 (-1143 (-402 (-538)))) (-5 *1 (-918)) (-5 *3 (-538))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 (-864 *6))) - (-5 *5 (-1 (-862 *6 *8) *8 (-864 *6) (-862 *6 *8))) (-4 *6 (-1072)) - (-4 *8 (-13 (-1023) (-596 (-864 *6)) (-1012 *7))) (-5 *2 (-862 *6 *8)) - (-4 *7 (-13 (-1023) (-825))) (-5 *1 (-915 *6 *7 *8))))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 (-866 *6))) + (-5 *5 (-1 (-864 *6 *8) *8 (-866 *6) (-864 *6 *8))) (-4 *6 (-1074)) + (-4 *8 (-13 (-1025) (-598 (-866 *6)) (-1014 *7))) (-5 *2 (-864 *6 *8)) + (-4 *7 (-13 (-1025) (-827))) (-5 *1 (-917 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-862 *5 *3)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *3 (-164 *6)) - (-4 (-920 *6) (-860 *5)) (-4 *6 (-13 (-860 *5) (-170))) + (-12 (-5 *2 (-864 *5 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *3 (-164 *6)) + (-4 (-922 *6) (-862 *5)) (-4 *6 (-13 (-862 *5) (-170))) (-5 *1 (-176 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-862 *4 *1)) (-5 *3 (-864 *4)) (-4 *1 (-860 *4)) - (-4 *4 (-1072)))) + (-12 (-5 *2 (-864 *4 *1)) (-5 *3 (-866 *4)) (-4 *1 (-862 *4)) + (-4 *4 (-1074)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-862 *5 *6)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) - (-4 *6 (-13 (-1072) (-1012 *3))) (-4 *3 (-860 *5)) (-5 *1 (-905 *5 *3 *6)))) + (-12 (-5 *2 (-864 *5 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) + (-4 *6 (-13 (-1074) (-1014 *3))) (-4 *3 (-862 *5)) (-5 *1 (-907 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) - (-4 *3 (-13 (-414 *6) (-596 *4) (-860 *5) (-1012 (-593 $)))) - (-5 *4 (-864 *5)) (-4 *6 (-13 (-543) (-825) (-860 *5))) - (-5 *1 (-906 *5 *6 *3)))) + (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074)) + (-4 *3 (-13 (-416 *6) (-598 *4) (-862 *5) (-1014 (-595 $)))) + (-5 *4 (-866 *5)) (-4 *6 (-13 (-545) (-827) (-862 *5))) + (-5 *1 (-908 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-862 (-536) *3)) (-5 *4 (-864 (-536))) (-4 *3 (-535)) - (-5 *1 (-907 *3)))) + (-12 (-5 *2 (-864 (-538) *3)) (-5 *4 (-866 (-538))) (-4 *3 (-537)) + (-5 *1 (-909 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-862 *5 *6)) (-5 *3 (-593 *6)) (-4 *5 (-1072)) - (-4 *6 (-13 (-825) (-1012 (-593 $)) (-596 *4) (-860 *5))) (-5 *4 (-864 *5)) - (-5 *1 (-908 *5 *6)))) + (-12 (-5 *2 (-864 *5 *6)) (-5 *3 (-595 *6)) (-4 *5 (-1074)) + (-4 *6 (-13 (-827) (-1014 (-595 $)) (-598 *4) (-862 *5))) (-5 *4 (-866 *5)) + (-5 *1 (-910 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-859 *5 *6 *3)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) - (-4 *6 (-860 *5)) (-4 *3 (-644 *6)) (-5 *1 (-909 *5 *6 *3)))) + (-12 (-5 *2 (-861 *5 *6 *3)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) + (-4 *6 (-862 *5)) (-4 *3 (-646 *6)) (-5 *1 (-911 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-862 *6 *3) *8 (-864 *6) (-862 *6 *3))) (-4 *8 (-825)) - (-5 *2 (-862 *6 *3)) (-5 *4 (-864 *6)) (-4 *6 (-1072)) - (-4 *3 (-13 (-924 *9 *7 *8) (-596 *4))) (-4 *7 (-771)) - (-4 *9 (-13 (-1023) (-825) (-860 *6))) (-5 *1 (-910 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-864 *6 *3) *8 (-866 *6) (-864 *6 *3))) (-4 *8 (-827)) + (-5 *2 (-864 *6 *3)) (-5 *4 (-866 *6)) (-4 *6 (-1074)) + (-4 *3 (-13 (-926 *9 *7 *8) (-598 *4))) (-4 *7 (-773)) + (-4 *9 (-13 (-1025) (-827) (-862 *6))) (-5 *1 (-912 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) - (-4 *3 (-13 (-924 *8 *6 *7) (-596 *4))) (-5 *4 (-864 *5)) (-4 *7 (-860 *5)) - (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-13 (-1023) (-825) (-860 *5))) - (-5 *1 (-910 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074)) + (-4 *3 (-13 (-926 *8 *6 *7) (-598 *4))) (-5 *4 (-866 *5)) (-4 *7 (-862 *5)) + (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-13 (-1025) (-827) (-862 *5))) + (-5 *1 (-912 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-862 *5 *3)) (-4 *5 (-1072)) (-4 *3 (-965 *6)) - (-4 *6 (-13 (-543) (-860 *5) (-596 *4))) (-5 *4 (-864 *5)) - (-5 *1 (-913 *5 *6 *3)))) + (-12 (-5 *2 (-864 *5 *3)) (-4 *5 (-1074)) (-4 *3 (-967 *6)) + (-4 *6 (-13 (-545) (-862 *5) (-598 *4))) (-5 *4 (-866 *5)) + (-5 *1 (-915 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-862 *5 (-1147))) (-5 *3 (-1147)) (-5 *4 (-864 *5)) - (-4 *5 (-1072)) (-5 *1 (-914 *5)))) + (-12 (-5 *2 (-864 *5 (-1149))) (-5 *3 (-1149)) (-5 *4 (-866 *5)) + (-4 *5 (-1074)) (-5 *1 (-916 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-620 (-864 *7))) (-5 *5 (-1 *9 (-620 *9))) - (-5 *6 (-1 (-862 *7 *9) *9 (-864 *7) (-862 *7 *9))) (-4 *7 (-1072)) - (-4 *9 (-13 (-1023) (-596 (-864 *7)) (-1012 *8))) (-5 *2 (-862 *7 *9)) - (-5 *3 (-620 *9)) (-4 *8 (-13 (-1023) (-825))) (-5 *1 (-915 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1072) (-1012 *5))) - (-4 *5 (-860 *4)) (-4 *4 (-1072)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-905 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) - ((*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) - ((*1 *2 *2) (-12 (-4 *3 (-825)) (-5 *1 (-904 *3 *2)) (-4 *2 (-414 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-113)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-1129)) (-5 *2 (-307 (-536))) (-5 *1 (-903)))) + (-12 (-5 *4 (-622 (-866 *7))) (-5 *5 (-1 *9 (-622 *9))) + (-5 *6 (-1 (-864 *7 *9) *9 (-866 *7) (-864 *7 *9))) (-4 *7 (-1074)) + (-4 *9 (-13 (-1025) (-598 (-866 *7)) (-1014 *8))) (-5 *2 (-864 *7 *9)) + (-5 *3 (-622 *9)) (-4 *8 (-13 (-1025) (-827))) (-5 *1 (-917 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1074) (-1014 *5))) + (-4 *5 (-862 *4)) (-4 *4 (-1074)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-907 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))) + ((*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))) + ((*1 *2 *2) (-12 (-4 *3 (-827)) (-5 *1 (-906 *3 *2)) (-4 *2 (-416 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-113)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1149)) (-5 *4 (-1131)) (-5 *2 (-309 (-538))) (-5 *1 (-905)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1129)) (-4 *4 (-825)) (-5 *1 (-904 *4 *2)) (-4 *2 (-414 *4))))) + (-12 (-5 *3 (-1131)) (-4 *4 (-827)) (-5 *1 (-906 *4 *2)) (-4 *2 (-416 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-620 (-1060 (-219)))) - (-5 *1 (-902))))) + (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-622 (-1062 (-221)))) + (-5 *1 (-904))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) - (-5 *1 (-899)))) + (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) + (-5 *1 (-901)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) - (-5 *1 (-899)))) - ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) + (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) + ((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) + (-5 *1 (-903)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-917 (-219)) (-219))) (-5 *3 (-1060 (-219))) - (-5 *1 (-901))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) + (-12 (-5 *2 (-1 (-919 (-221)) (-221))) (-5 *3 (-1062 (-221))) + (-5 *1 (-903))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-620 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219))) - (-5 *1 (-899)))) + (-12 (-5 *2 (-622 (-1 (-221) (-221)))) (-5 *3 (-1062 (-221))) + (-5 *1 (-901)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-620 (-1 (-219) (-219)))) (-5 *3 (-1060 (-219))) - (-5 *1 (-899)))) + (-12 (-5 *2 (-622 (-1 (-221) (-221)))) (-5 *3 (-1062 (-221))) + (-5 *1 (-901)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) - (-4 *3 (-596 (-525))))) + (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3)) + (-4 *3 (-598 (-527))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) - (-4 *3 (-596 (-525))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901)))) + (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3)) + (-4 *3 (-598 (-527))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901)))) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-901))))) -(((*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-899)))) - ((*1 *2 *1) (-12 (-5 *2 (-1060 (-219))) (-5 *1 (-901))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-219)))) (-5 *1 (-901))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-903))))) +(((*1 *2 *1) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-901)))) + ((*1 *2 *1) (-12 (-5 *2 (-1062 (-221))) (-5 *1 (-903))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-221)))) (-5 *1 (-903))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-903))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-903))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-901)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-221) (-221))) (-5 *3 (-1062 (-221))) (-5 *1 (-901)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1149)) (-5 *5 (-1062 (-221))) (-5 *2 (-901)) (-5 *1 (-902 *3)) + (-4 *3 (-598 (-527))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1149)) (-5 *2 (-901)) (-5 *1 (-902 *3)) (-4 *3 (-598 (-527)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) + ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) + ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-461)))) + ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901))))) (((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) (((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-901))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-901))))) (((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-901))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-899)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-219) (-219))) (-5 *3 (-1060 (-219))) (-5 *1 (-899)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1147)) (-5 *5 (-1060 (-219))) (-5 *2 (-899)) (-5 *1 (-900 *3)) - (-4 *3 (-596 (-525))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-5 *2 (-899)) (-5 *1 (-900 *3)) (-4 *3 (-596 (-525)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) - ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) - ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-459)))) - ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-899))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-899))))) -(((*1 *2 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-112)) - (-5 *1 (-898 *4 *5 *6 *7)))) +(((*1 *2 *3) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) + (-5 *1 (-900 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-112)) - (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5))))) + (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-112)) + (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1147)))) - (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *2)) (-4 *2 (-924 *3 *5 *4))))) + (-12 (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) + (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *2)) (-4 *2 (-926 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) - (-5 *4 (-667 *12)) (-5 *5 (-620 (-400 (-920 *9)))) (-5 *6 (-620 (-620 *12))) - (-5 *7 (-749)) (-5 *8 (-536)) (-4 *9 (-13 (-300) (-145))) - (-4 *12 (-924 *9 *11 *10)) (-4 *10 (-13 (-825) (-596 (-1147)))) - (-4 *11 (-771)) + (-2 (|:| |det| *12) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) + (-5 *4 (-669 *12)) (-5 *5 (-622 (-402 (-922 *9)))) (-5 *6 (-622 (-622 *12))) + (-5 *7 (-751)) (-5 *8 (-538)) (-4 *9 (-13 (-302) (-145))) + (-4 *12 (-926 *9 *11 *10)) (-4 *10 (-13 (-827) (-598 (-1149)))) + (-4 *11 (-773)) (-5 *2 - (-2 (|:| |eqzro| (-620 *12)) (|:| |neqzro| (-620 *12)) - (|:| |wcond| (-620 (-920 *9))) + (-2 (|:| |eqzro| (-622 *12)) (|:| |neqzro| (-622 *12)) + (|:| |wcond| (-622 (-922 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1229 (-400 (-920 *9)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *9))))))))) - (-5 *1 (-898 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *9)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *9))))))))) + (-5 *1 (-900 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-667 *7)) (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) - (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) - (-4 *6 (-771)) (-5 *1 (-898 *4 *5 *6 *7))))) + (-12 (-5 *2 (-669 *7)) (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) + (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) + (-4 *6 (-773)) (-5 *1 (-900 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-5 *4 (-749)) (-4 *8 (-924 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) - (-4 *7 (-771)) + (-12 (-5 *3 (-669 *8)) (-5 *4 (-751)) (-4 *8 (-926 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) + (-4 *7 (-773)) (-5 *2 - (-620 - (-2 (|:| |det| *8) (|:| |rows| (-620 (-536))) - (|:| |cols| (-620 (-536)))))) - (-5 *1 (-898 *5 *6 *7 *8))))) + (-622 + (-2 (|:| |det| *8) (|:| |rows| (-622 (-538))) + (|:| |cols| (-622 (-538)))))) + (-5 *1 (-900 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-620 *8))) (-5 *3 (-620 *8)) (-4 *8 (-924 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) - (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-898 *5 *6 *7 *8))))) + (-12 (-5 *4 (-622 (-622 *8))) (-5 *3 (-622 *8)) (-4 *8 (-926 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) + (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-900 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) - (-4 *6 (-771)) (-5 *2 (-620 (-620 (-536)))) (-5 *1 (-898 *4 *5 *6 *7)) - (-5 *3 (-536)) (-4 *7 (-924 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) + (-4 *6 (-773)) (-5 *2 (-622 (-622 (-538)))) (-5 *1 (-900 *4 *5 *6 *7)) + (-5 *3 (-538)) (-4 *7 (-926 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 (-620 *6))) (-4 *6 (-924 *3 *5 *4)) - (-4 *3 (-13 (-300) (-145))) (-4 *4 (-13 (-825) (-596 (-1147)))) - (-4 *5 (-771)) (-5 *1 (-898 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 (-622 *6))) (-4 *6 (-926 *3 *5 *4)) + (-4 *3 (-13 (-302) (-145))) (-4 *4 (-13 (-827) (-598 (-1149)))) + (-4 *5 (-773)) (-5 *1 (-900 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-620 - (-2 (|:| -3439 (-749)) + (-622 + (-2 (|:| -3444 (-751)) (|:| |eqns| - (-620 - (-2 (|:| |det| *7) (|:| |rows| (-620 (-536))) - (|:| |cols| (-620 (-536)))))) - (|:| |fgb| (-620 *7))))) - (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-749)) - (-5 *1 (-898 *4 *5 *6 *7))))) + (-622 + (-2 (|:| |det| *7) (|:| |rows| (-622 (-538))) + (|:| |cols| (-622 (-538)))))) + (|:| |fgb| (-622 *7))))) + (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) + (-5 *1 (-900 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-620 - (-2 (|:| -3439 (-749)) + (-622 + (-2 (|:| -3444 (-751)) (|:| |eqns| - (-620 - (-2 (|:| |det| *7) (|:| |rows| (-620 (-536))) - (|:| |cols| (-620 (-536)))))) - (|:| |fgb| (-620 *7))))) - (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) (-5 *2 (-749)) - (-5 *1 (-898 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) - (-4 *6 (-771)) (-5 *2 (-620 *3)) (-5 *1 (-898 *4 *5 *6 *3)) - (-4 *3 (-924 *4 *6 *5))))) + (-622 + (-2 (|:| |det| *7) (|:| |rows| (-622 (-538))) + (|:| |cols| (-622 (-538)))))) + (|:| |fgb| (-622 *7))))) + (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 (-751)) + (-5 *1 (-900 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) + (-4 *6 (-773)) (-5 *2 (-622 *3)) (-5 *1 (-900 *4 *5 *6 *3)) + (-4 *3 (-926 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -1695 (-667 (-400 (-920 *4)))) (|:| |vec| (-620 (-400 (-920 *4)))) - (|:| -3439 (-749)) (|:| |rows| (-620 (-536))) (|:| |cols| (-620 (-536))))) - (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) - (-4 *6 (-771)) + (-2 (|:| -1700 (-669 (-402 (-922 *4)))) (|:| |vec| (-622 (-402 (-922 *4)))) + (|:| -3444 (-751)) (|:| |rows| (-622 (-538))) (|:| |cols| (-622 (-538))))) + (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) + (-4 *6 (-773)) (-5 *2 - (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *4))))))) - (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5))))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *4))))))) + (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *4))))))) - (-5 *3 (-620 *7)) (-4 *4 (-13 (-300) (-145))) (-4 *7 (-924 *4 *6 *5)) - (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) - (-5 *1 (-898 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *4))))))) + (-5 *3 (-622 *7)) (-4 *4 (-13 (-302) (-145))) (-4 *7 (-926 *4 *6 *5)) + (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) + (-5 *1 (-900 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) - (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) + (-12 (-5 *3 (-669 *8)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) + (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 - (-620 - (-2 (|:| -3439 (-749)) + (-622 + (-2 (|:| -3444 (-751)) (|:| |eqns| - (-620 - (-2 (|:| |det| *8) (|:| |rows| (-620 (-536))) - (|:| |cols| (-620 (-536)))))) - (|:| |fgb| (-620 *8))))) - (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-749))))) + (-622 + (-2 (|:| |det| *8) (|:| |rows| (-622 (-538))) + (|:| |cols| (-622 (-538)))))) + (|:| |fgb| (-622 *8))))) + (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-751))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) - (-4 *6 (-771)) (-4 *7 (-924 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-620 *7)) (|:| |n0| (-620 *7)))) - (-5 *1 (-898 *4 *5 *6 *7)) (-5 *3 (-620 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-920 *4)) (-4 *4 (-13 (-300) (-145))) (-4 *2 (-924 *4 *6 *5)) - (-5 *1 (-898 *4 *5 *6 *2)) (-4 *5 (-13 (-825) (-596 (-1147)))) - (-4 *6 (-771))))) -(((*1 *2 *3) - (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) - (-5 *2 (-620 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7)) - (-4 *7 (-924 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-13 (-825) (-596 (-1147)))) - (-4 *6 (-771)) (-5 *2 (-400 (-920 *4))) (-5 *1 (-898 *4 *5 *6 *3)) - (-4 *3 (-924 *4 *6 *5)))) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) + (-4 *6 (-773)) (-4 *7 (-926 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-622 *7)) (|:| |n0| (-622 *7)))) + (-5 *1 (-900 *4 *5 *6 *7)) (-5 *3 (-622 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-922 *4)) (-4 *4 (-13 (-302) (-145))) (-4 *2 (-926 *4 *6 *5)) + (-5 *1 (-900 *4 *5 *6 *2)) (-4 *5 (-13 (-827) (-598 (-1149)))) + (-4 *6 (-773))))) +(((*1 *2 *3) + (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) + (-5 *2 (-622 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7)) + (-4 *7 (-926 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-13 (-827) (-598 (-1149)))) + (-4 *6 (-773)) (-5 *2 (-402 (-922 *4))) (-5 *1 (-900 *4 *5 *6 *3)) + (-4 *3 (-926 *4 *6 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) - (-5 *2 (-667 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7)))) + (-12 (-5 *3 (-669 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) + (-5 *2 (-669 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) - (-5 *2 (-620 (-400 (-920 *4)))) (-5 *1 (-898 *4 *5 *6 *7))))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) + (-5 *2 (-622 (-402 (-922 *4)))) (-5 *1 (-900 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-667 *11)) (-5 *4 (-620 (-400 (-920 *8)))) (-5 *5 (-749)) - (-5 *6 (-1129)) (-4 *8 (-13 (-300) (-145))) (-4 *11 (-924 *8 *10 *9)) - (-4 *9 (-13 (-825) (-596 (-1147)))) (-4 *10 (-771)) + (-12 (-5 *3 (-669 *11)) (-5 *4 (-622 (-402 (-922 *8)))) (-5 *5 (-751)) + (-5 *6 (-1131)) (-4 *8 (-13 (-302) (-145))) (-4 *11 (-926 *8 *10 *9)) + (-4 *9 (-13 (-827) (-598 (-1149)))) (-4 *10 (-773)) (-5 *2 (-2 (|:| |rgl| - (-620 - (-2 (|:| |eqzro| (-620 *11)) (|:| |neqzro| (-620 *11)) - (|:| |wcond| (-620 (-920 *8))) + (-622 + (-2 (|:| |eqzro| (-622 *11)) (|:| |neqzro| (-622 *11)) + (|:| |wcond| (-622 (-922 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1229 (-400 (-920 *8)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *8)))))))))) - (|:| |rgsz| (-536)))) - (-5 *1 (-898 *8 *9 *10 *11)) (-5 *7 (-536))))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *8)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *8)))))))))) + (|:| |rgsz| (-538)))) + (-5 *1 (-900 *8 *9 *10 *11)) (-5 *7 (-538))))) (((*1 *2 *3) - (-12 (-5 *3 (-1129)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) + (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 - (-620 - (-2 (|:| |eqzro| (-620 *7)) (|:| |neqzro| (-620 *7)) - (|:| |wcond| (-620 (-920 *4))) + (-622 + (-2 (|:| |eqzro| (-622 *7)) (|:| |neqzro| (-622 *7)) + (|:| |wcond| (-622 (-922 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *4)))))))))) - (-5 *1 (-898 *4 *5 *6 *7)) (-4 *7 (-924 *4 *6 *5))))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *4)))))))))) + (-5 *1 (-900 *4 *5 *6 *7)) (-4 *7 (-926 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-620 - (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) - (|:| |wcond| (-620 (-920 *5))) + (-622 + (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) + (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) - (-5 *4 (-1129)) (-4 *5 (-13 (-300) (-145))) (-4 *8 (-924 *5 *7 *6)) - (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) (-5 *2 (-536)) - (-5 *1 (-898 *5 *6 *7 *8))))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) + (-5 *4 (-1131)) (-4 *5 (-13 (-302) (-145))) (-4 *8 (-926 *5 *7 *6)) + (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 (-538)) + (-5 *1 (-900 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-4 *8 (-924 *5 *7 *6)) (-4 *5 (-13 (-300) (-145))) - (-4 *6 (-13 (-825) (-596 (-1147)))) (-4 *7 (-771)) + (-12 (-5 *3 (-669 *8)) (-4 *8 (-926 *5 *7 *6)) (-4 *5 (-13 (-302) (-145))) + (-4 *6 (-13 (-827) (-598 (-1149)))) (-4 *7 (-773)) (-5 *2 - (-620 - (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) - (|:| |wcond| (-620 (-920 *5))) + (-622 + (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) + (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) - (-5 *1 (-898 *5 *6 *7 *8)) (-5 *4 (-620 *8)))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) + (-5 *1 (-900 *5 *6 *7 *8)) (-5 *4 (-622 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-5 *4 (-620 (-1147))) (-4 *8 (-924 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) - (-4 *7 (-771)) + (-12 (-5 *3 (-669 *8)) (-5 *4 (-622 (-1149))) (-4 *8 (-926 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) + (-4 *7 (-773)) (-5 *2 - (-620 - (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) - (|:| |wcond| (-620 (-920 *5))) + (-622 + (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) + (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) - (-5 *1 (-898 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) + (-5 *1 (-900 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 *7)) (-4 *7 (-924 *4 *6 *5)) (-4 *4 (-13 (-300) (-145))) - (-4 *5 (-13 (-825) (-596 (-1147)))) (-4 *6 (-771)) + (-12 (-5 *3 (-669 *7)) (-4 *7 (-926 *4 *6 *5)) (-4 *4 (-13 (-302) (-145))) + (-4 *5 (-13 (-827) (-598 (-1149)))) (-4 *6 (-773)) (-5 *2 - (-620 - (-2 (|:| |eqzro| (-620 *7)) (|:| |neqzro| (-620 *7)) - (|:| |wcond| (-620 (-920 *4))) + (-622 + (-2 (|:| |eqzro| (-622 *7)) (|:| |neqzro| (-622 *7)) + (|:| |wcond| (-622 (-922 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1229 (-400 (-920 *4)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *4)))))))))) - (-5 *1 (-898 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *4)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *4)))))))))) + (-5 *1 (-900 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *9)) (-5 *5 (-893)) (-4 *9 (-924 *6 *8 *7)) - (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) - (-4 *8 (-771)) + (-12 (-5 *3 (-669 *9)) (-5 *5 (-895)) (-4 *9 (-926 *6 *8 *7)) + (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) + (-4 *8 (-773)) (-5 *2 - (-620 - (-2 (|:| |eqzro| (-620 *9)) (|:| |neqzro| (-620 *9)) - (|:| |wcond| (-620 (-920 *6))) + (-622 + (-2 (|:| |eqzro| (-622 *9)) (|:| |neqzro| (-622 *9)) + (|:| |wcond| (-622 (-922 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1229 (-400 (-920 *6)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *6)))))))))) - (-5 *1 (-898 *6 *7 *8 *9)) (-5 *4 (-620 *9)))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *6)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *6)))))))))) + (-5 *1 (-900 *6 *7 *8 *9)) (-5 *4 (-622 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 (-1147))) (-5 *5 (-893)) - (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) + (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 (-1149))) (-5 *5 (-895)) + (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) + (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 - (-620 - (-2 (|:| |eqzro| (-620 *9)) (|:| |neqzro| (-620 *9)) - (|:| |wcond| (-620 (-920 *6))) + (-622 + (-2 (|:| |eqzro| (-622 *9)) (|:| |neqzro| (-622 *9)) + (|:| |wcond| (-622 (-922 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1229 (-400 (-920 *6)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *6)))))))))) - (-5 *1 (-898 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *6)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *6)))))))))) + (-5 *1 (-900 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-5 *4 (-893)) (-4 *8 (-924 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) - (-4 *7 (-771)) + (-12 (-5 *3 (-669 *8)) (-5 *4 (-895)) (-4 *8 (-926 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) + (-4 *7 (-773)) (-5 *2 - (-620 - (-2 (|:| |eqzro| (-620 *8)) (|:| |neqzro| (-620 *8)) - (|:| |wcond| (-620 (-920 *5))) + (-622 + (-2 (|:| |eqzro| (-622 *8)) (|:| |neqzro| (-622 *8)) + (|:| |wcond| (-622 (-922 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1229 (-400 (-920 *5)))) - (|:| -2123 (-620 (-1229 (-400 (-920 *5)))))))))) - (-5 *1 (-898 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1231 (-402 (-922 *5)))) + (|:| -2128 (-622 (-1231 (-402 (-922 *5)))))))))) + (-5 *1 (-900 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 *9)) (-5 *5 (-1129)) - (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-536)) - (-5 *1 (-898 *6 *7 *8 *9)))) + (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 *9)) (-5 *5 (-1131)) + (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) + (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-538)) + (-5 *1 (-900 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *9)) (-5 *4 (-620 (-1147))) (-5 *5 (-1129)) - (-4 *9 (-924 *6 *8 *7)) (-4 *6 (-13 (-300) (-145))) - (-4 *7 (-13 (-825) (-596 (-1147)))) (-4 *8 (-771)) (-5 *2 (-536)) - (-5 *1 (-898 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *8)) (-5 *4 (-1129)) (-4 *8 (-924 *5 *7 *6)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-13 (-825) (-596 (-1147)))) - (-4 *7 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *5 *6 *7 *8)))) + (-12 (-5 *3 (-669 *9)) (-5 *4 (-622 (-1149))) (-5 *5 (-1131)) + (-4 *9 (-926 *6 *8 *7)) (-4 *6 (-13 (-302) (-145))) + (-4 *7 (-13 (-827) (-598 (-1149)))) (-4 *8 (-773)) (-5 *2 (-538)) + (-5 *1 (-900 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-669 *8)) (-5 *4 (-1131)) (-4 *8 (-926 *5 *7 *6)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-13 (-827) (-598 (-1149)))) + (-4 *7 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-667 *10)) (-5 *4 (-620 *10)) (-5 *5 (-893)) (-5 *6 (-1129)) - (-4 *10 (-924 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) - (-4 *8 (-13 (-825) (-596 (-1147)))) (-4 *9 (-771)) (-5 *2 (-536)) - (-5 *1 (-898 *7 *8 *9 *10)))) + (-12 (-5 *3 (-669 *10)) (-5 *4 (-622 *10)) (-5 *5 (-895)) (-5 *6 (-1131)) + (-4 *10 (-926 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) + (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-538)) + (-5 *1 (-900 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-667 *10)) (-5 *4 (-620 (-1147))) (-5 *5 (-893)) (-5 *6 (-1129)) - (-4 *10 (-924 *7 *9 *8)) (-4 *7 (-13 (-300) (-145))) - (-4 *8 (-13 (-825) (-596 (-1147)))) (-4 *9 (-771)) (-5 *2 (-536)) - (-5 *1 (-898 *7 *8 *9 *10)))) + (-12 (-5 *3 (-669 *10)) (-5 *4 (-622 (-1149))) (-5 *5 (-895)) (-5 *6 (-1131)) + (-4 *10 (-926 *7 *9 *8)) (-4 *7 (-13 (-302) (-145))) + (-4 *8 (-13 (-827) (-598 (-1149)))) (-4 *9 (-773)) (-5 *2 (-538)) + (-5 *1 (-900 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *9)) (-5 *4 (-893)) (-5 *5 (-1129)) (-4 *9 (-924 *6 *8 *7)) - (-4 *6 (-13 (-300) (-145))) (-4 *7 (-13 (-825) (-596 (-1147)))) - (-4 *8 (-771)) (-5 *2 (-536)) (-5 *1 (-898 *6 *7 *8 *9))))) + (-12 (-5 *3 (-669 *9)) (-5 *4 (-895)) (-5 *5 (-1131)) (-4 *9 (-926 *6 *8 *7)) + (-4 *6 (-13 (-302) (-145))) (-4 *7 (-13 (-827) (-598 (-1149)))) + (-4 *8 (-773)) (-5 *2 (-538)) (-5 *1 (-900 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-620 *4)) (-4 *4 (-356)) (-4 *2 (-1205 *4)) - (-5 *1 (-897 *4 *2))))) + (-12 (-5 *3 (-622 *4)) (-4 *4 (-358)) (-4 *2 (-1207 *4)) + (-5 *1 (-899 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-895)) (-5 *2 (-2 (|:| -4308 (-620 *1)) (|:| -2496 *1))) - (-5 *3 (-620 *1))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-895))))) + (-12 (-4 *1 (-897)) (-5 *2 (-2 (|:| -4313 (-622 *1)) (|:| -2501 *1))) + (-5 *3 (-622 *1))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-897))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-620 (-920 *4))) (-5 *3 (-620 (-1147))) (-4 *4 (-444)) - (-5 *1 (-892 *4))))) + (-12 (-5 *2 (-622 (-922 *4))) (-5 *3 (-622 (-1149))) (-4 *4 (-446)) + (-5 *1 (-894 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-620 (-920 *4))) (-5 *3 (-620 (-1147))) (-4 *4 (-444)) - (-5 *1 (-892 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2 *3) (-12 (-5 *3 (-945)) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2) (-12 (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-893))) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) -(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-879 (-536))) (-5 *1 (-891)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-879 (-536))) (-5 *1 (-891))))) + (-12 (-5 *2 (-622 (-922 *4))) (-5 *3 (-622 (-1149))) (-4 *4 (-446)) + (-5 *1 (-894 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2 *3) (-12 (-5 *3 (-947)) (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2) (-12 (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-895))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))) +(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-881 (-538))) (-5 *1 (-893)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-881 (-538))) (-5 *1 (-893))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *2)) - (-4 *2 (-924 *5 *3 *4)))) + (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *2)) + (-4 *2 (-926 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *5 (-300)) (-5 *1 (-890 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *5 (-302)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *6 *4 *5)) (-5 *1 (-890 *4 *5 *6 *2)) - (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-398 *2)) (-4 *2 (-300)) (-5 *1 (-888 *2)))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *6 *4 *5)) (-5 *1 (-892 *4 *5 *6 *2)) + (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-400 *2)) (-4 *2 (-302)) (-5 *1 (-890 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-13 (-300) (-145))) - (-5 *2 (-51)) (-5 *1 (-889 *5)))) + (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-13 (-302) (-145))) + (-5 *2 (-51)) (-5 *1 (-891 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-398 (-920 *6))) (-5 *5 (-1147)) (-5 *3 (-920 *6)) - (-4 *6 (-13 (-300) (-145))) (-5 *2 (-51)) (-5 *1 (-889 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-398 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1141 *3)) (-5 *1 (-888 *3)) (-4 *3 (-300))))) -(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-300))))) + (-12 (-5 *4 (-400 (-922 *6))) (-5 *5 (-1149)) (-5 *3 (-922 *6)) + (-4 *6 (-13 (-302) (-145))) (-5 *2 (-51)) (-5 *1 (-891 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-400 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302))))) +(((*1 *2 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-890 *3)) (-4 *3 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-890 *3)) (-4 *3 (-302))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1143 *3)) (-5 *1 (-890 *3)) (-4 *3 (-302))))) +(((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-302))))) (((*1 *2 *2) - (-12 (-4 *3 (-1205 (-400 (-536)))) (-5 *1 (-887 *3 *2)) - (-4 *2 (-1205 (-400 *3)))))) + (-12 (-4 *3 (-1207 (-402 (-538)))) (-5 *1 (-889 *3 *2)) + (-4 *2 (-1207 (-402 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *3)) - (-4 *3 (-1205 (-400 *4)))))) + (-12 (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *3)) + (-4 *3 (-1207 (-402 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536))))) - (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *5)) - (-4 *5 (-1205 (-400 *4)))))) + (-12 (-5 *3 (-622 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538))))) + (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *5)) + (-4 *5 (-1207 (-402 *4)))))) (((*1 *2 *3) - (-12 (-4 *3 (-1205 (-400 (-536)))) - (-5 *2 (-2 (|:| |den| (-536)) (|:| |gcdnum| (-536)))) (-5 *1 (-887 *3 *4)) - (-4 *4 (-1205 (-400 *3))))) + (-12 (-4 *3 (-1207 (-402 (-538)))) + (-5 *2 (-2 (|:| |den| (-538)) (|:| |gcdnum| (-538)))) (-5 *1 (-889 *3 *4)) + (-4 *4 (-1207 (-402 *3))))) ((*1 *2 *3) - (-12 (-4 *4 (-1205 (-400 *2))) (-5 *2 (-536)) (-5 *1 (-887 *4 *3)) - (-4 *3 (-1205 (-400 *4)))))) + (-12 (-4 *4 (-1207 (-402 *2))) (-5 *2 (-538)) (-5 *1 (-889 *4 *3)) + (-4 *3 (-1207 (-402 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-536)) (-4 *4 (-1205 (-400 *3))) (-5 *2 (-893)) - (-5 *1 (-887 *4 *5)) (-4 *5 (-1205 (-400 *4)))))) + (-12 (-5 *3 (-538)) (-4 *4 (-1207 (-402 *3))) (-5 *2 (-895)) + (-5 *1 (-889 *4 *5)) (-4 *5 (-1207 (-402 *4)))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) - (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) - (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) - (-5 *2 (-2 (|:| -4126 (-749)) (|:| -2470 *8))) - (-5 *1 (-885 *4 *5 *6 *7 *8)))) + (|partial| -12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4)) + (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) + (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) + (-5 *2 (-2 (|:| -4131 (-751)) (|:| -2475 *8))) + (-5 *1 (-887 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) - (-4 *4 (-1205 (-400 (-536)))) (-4 *5 (-1205 (-400 *4))) - (-4 *6 (-335 (-400 (-536)) *4 *5)) - (-5 *2 (-2 (|:| -4126 (-749)) (|:| -2470 *6))) (-5 *1 (-886 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-326 *5 *6 *7 *8)) (-4 *5 (-414 *4)) (-4 *6 (-1205 *5)) - (-4 *7 (-1205 (-400 *6))) (-4 *8 (-335 *5 *6 *7)) - (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-112)) - (-5 *1 (-885 *4 *5 *6 *7 *8)))) + (|partial| -12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6)) + (-4 *4 (-1207 (-402 (-538)))) (-4 *5 (-1207 (-402 *4))) + (-4 *6 (-337 (-402 (-538)) *4 *5)) + (-5 *2 (-2 (|:| -4131 (-751)) (|:| -2475 *6))) (-5 *1 (-888 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-328 *5 *6 *7 *8)) (-4 *5 (-416 *4)) (-4 *6 (-1207 *5)) + (-4 *7 (-1207 (-402 *6))) (-4 *8 (-337 *5 *6 *7)) + (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-112)) + (-5 *1 (-887 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 (-400 (-536)) *4 *5 *6)) (-4 *4 (-1205 (-400 (-536)))) - (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 (-400 (-536)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-886 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-444)))) + (-12 (-5 *3 (-328 (-402 (-538)) *4 *5 *6)) (-4 *4 (-1207 (-402 (-538)))) + (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 (-402 (-538)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-888 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-446)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1141 *6)) (-4 *6 (-924 *5 *3 *4)) (-4 *3 (-771)) (-4 *4 (-825)) - (-4 *5 (-884)) (-5 *1 (-449 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-884))))) -(((*1 *2 *3) - (-12 (-5 *2 (-398 (-1141 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1141 *1)) - (-4 *4 (-444)) (-4 *4 (-543)) (-4 *4 (-825)))) - ((*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-398 (-1141 *1))) (-5 *1 (-307 *4)) (-5 *3 (-1141 *1)) - (-4 *4 (-444)) (-4 *4 (-543)) (-4 *4 (-825)))) - ((*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-884)) (-5 *2 (-398 (-1141 *1))) (-5 *3 (-1141 *1))))) + (-12 (-5 *2 (-1143 *6)) (-4 *6 (-926 *5 *3 *4)) (-4 *3 (-773)) (-4 *4 (-827)) + (-4 *5 (-886)) (-5 *1 (-451 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-886))))) +(((*1 *2 *3) + (-12 (-5 *2 (-400 (-1143 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1143 *1)) + (-4 *4 (-446)) (-4 *4 (-545)) (-4 *4 (-827)))) + ((*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-400 (-1143 *1))) (-5 *1 (-309 *4)) (-5 *3 (-1143 *1)) + (-4 *4 (-446)) (-4 *4 (-545)) (-4 *4 (-827)))) + ((*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-886)) (-5 *2 (-400 (-1143 *1))) (-5 *3 (-1143 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-620 (-1141 *5))) (-5 *3 (-1141 *5)) (-4 *5 (-164 *4)) - (-4 *4 (-535)) (-5 *1 (-147 *4 *5)))) + (|partial| -12 (-5 *2 (-622 (-1143 *5))) (-5 *3 (-1143 *5)) (-4 *5 (-164 *4)) + (-4 *4 (-537)) (-5 *1 (-147 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-1205 *4)) - (-4 *4 (-343)) (-5 *1 (-351 *4 *5 *3)))) + (|partial| -12 (-5 *2 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-1207 *4)) + (-4 *4 (-345)) (-5 *1 (-353 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-620 (-1141 (-536)))) (-5 *3 (-1141 (-536))) - (-5 *1 (-558)))) + (|partial| -12 (-5 *2 (-622 (-1143 (-538)))) (-5 *3 (-1143 (-538))) + (-5 *1 (-560)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-620 (-1141 *1))) (-5 *3 (-1141 *1)) (-4 *1 (-884))))) + (|partial| -12 (-5 *2 (-622 (-1143 *1))) (-5 *3 (-1143 *1)) (-4 *1 (-886))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-343)) (-5 *2 (-1229 *1)))) + (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-345)) (-5 *2 (-1231 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-667 *1)) (-4 *1 (-143)) (-4 *1 (-884)) - (-5 *2 (-1229 *1))))) -(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-343))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-884))))) + (|partial| -12 (-5 *3 (-669 *1)) (-4 *1 (-143)) (-4 *1 (-886)) + (-5 *2 (-1231 *1))))) +(((*1 *1 *1) (|partial| -4 *1 (-143))) ((*1 *1 *1) (-4 *1 (-345))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-143)) (-4 *1 (-886))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-825)) (-4 *5 (-884)) (-4 *6 (-771)) - (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-398 (-1141 *8))) (-5 *1 (-881 *5 *6 *7 *8)) - (-5 *4 (-1141 *8)))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-827)) (-4 *5 (-886)) (-4 *6 (-773)) + (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-400 (-1143 *8))) (-5 *1 (-883 *5 *6 *7 *8)) + (-5 *4 (-1143 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) - (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5))))) + (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5))) + (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5))))) (((*1 *2) - (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-884)) (-5 *1 (-449 *3 *4 *2 *5)) - (-4 *5 (-924 *2 *3 *4)))) + (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-886)) (-5 *1 (-451 *3 *4 *2 *5)) + (-4 *5 (-926 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-771)) (-4 *4 (-825)) (-4 *2 (-884)) (-5 *1 (-881 *2 *3 *4 *5)) - (-4 *5 (-924 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-884)) (-5 *1 (-882 *2 *3)) (-4 *3 (-1205 *2))))) + (-12 (-4 *3 (-773)) (-4 *4 (-827)) (-4 *2 (-886)) (-5 *1 (-883 *2 *3 *4 *5)) + (-4 *5 (-926 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-886)) (-5 *1 (-884 *2 *3)) (-4 *3 (-1207 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) - (-5 *2 (-398 (-1141 *7))) (-5 *1 (-881 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) + (-12 (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) + (-5 *2 (-400 (-1143 *7))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) - (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5))))) + (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5))) + (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-924 *4 *5 *6)) - (-5 *2 (-398 (-1141 *7))) (-5 *1 (-881 *4 *5 *6 *7)) (-5 *3 (-1141 *7)))) + (-12 (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-926 *4 *5 *6)) + (-5 *2 (-400 (-1143 *7))) (-5 *1 (-883 *4 *5 *6 *7)) (-5 *3 (-1143 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-884)) (-4 *5 (-1205 *4)) (-5 *2 (-398 (-1141 *5))) - (-5 *1 (-882 *4 *5)) (-5 *3 (-1141 *5))))) + (-12 (-4 *4 (-886)) (-4 *5 (-1207 *4)) (-5 *2 (-400 (-1143 *5))) + (-5 *1 (-884 *4 *5)) (-5 *3 (-1143 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-620 (-1141 *7))) (-5 *3 (-1141 *7)) - (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-884)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *1 (-881 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-622 (-1143 *7))) (-5 *3 (-1143 *7)) + (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-886)) (-4 *5 (-773)) (-4 *6 (-827)) + (-5 *1 (-883 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-620 (-1141 *5))) (-5 *3 (-1141 *5)) - (-4 *5 (-1205 *4)) (-4 *4 (-884)) (-5 *1 (-882 *4 *5))))) + (|partial| -12 (-5 *2 (-622 (-1143 *5))) (-5 *3 (-1143 *5)) + (-4 *5 (-1207 *4)) (-4 *4 (-886)) (-5 *1 (-884 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-620 (-1141 *7))) (-5 *3 (-1141 *7)) - (-4 *7 (-924 *5 *6 *4)) (-4 *5 (-884)) (-4 *6 (-771)) (-4 *4 (-825)) - (-5 *1 (-881 *5 *6 *4 *7))))) + (|partial| -12 (-5 *2 (-622 (-1143 *7))) (-5 *3 (-1143 *7)) + (-4 *7 (-926 *5 *6 *4)) (-4 *5 (-886)) (-4 *6 (-773)) (-4 *4 (-827)) + (-5 *1 (-883 *5 *6 *4 *7))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-620 *6)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) ((*1 *1) (-4 *1 (-535))) - ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-876 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-622 *6)) + (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) ((*1 *1) (-4 *1 (-537))) + ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-878 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-620 (-749)))) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-876 *3))) (-4 *3 (-1072)) (-5 *1 (-879 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-878 *3)) (-4 *3 (-1072)) (-5 *2 (-1068 *3)))) + (-12 (-5 *2 (-622 (-622 (-751)))) (-5 *1 (-881 *3)) (-4 *3 (-1074))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-878 *3))) (-4 *3 (-1074)) (-5 *1 (-881 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-880 *3)) (-4 *3 (-1074)) (-5 *2 (-1070 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1072)) (-5 *2 (-1068 (-620 *4))) (-5 *1 (-879 *4)) - (-5 *3 (-620 *4)))) + (-12 (-4 *4 (-1074)) (-5 *2 (-1070 (-622 *4))) (-5 *1 (-881 *4)) + (-5 *3 (-622 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1072)) (-5 *2 (-1068 (-1068 *4))) (-5 *1 (-879 *4)) - (-5 *3 (-1068 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) + (-12 (-4 *4 (-1074)) (-5 *2 (-1070 (-1070 *4))) (-5 *1 (-881 *4)) + (-5 *3 (-1070 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074))))) (((*1 *2 *1) - (-12 (-5 *2 (-1068 (-1068 *3))) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-1070 (-1070 *3))) (-5 *1 (-881 *3)) (-4 *3 (-1074))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-620 (-749))) - (-5 *1 (-879 *4))))) + (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-622 (-751))) + (-5 *1 (-881 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-876 *4)) (-4 *4 (-1072)) (-5 *2 (-620 (-749))) - (-5 *1 (-879 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-1072)))) - ((*1 *2 *1) (-12 (-5 *2 (-1068 *3)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-878 *3)) (-4 *3 (-1072)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) + (-12 (-5 *3 (-878 *4)) (-4 *4 (-1074)) (-5 *2 (-622 (-751))) + (-5 *1 (-881 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-1070 *3)) (-5 *1 (-881 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-880 *3)) (-4 *3 (-1074)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-881 *3)) (-4 *3 (-1074))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-879 *4)) (-4 *4 (-1072)))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-879 *3)) (-4 *3 (-1072))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-878 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-4 *1 (-878 *3))))) + (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-881 *4)) (-4 *4 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-881 *3)) (-4 *3 (-1074))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-880 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-4 *1 (-880 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1113 *4 *2)) (-14 *4 (-893)) - (-4 *2 (-13 (-1023) (-10 -7 (-6 (-4350 "*"))))) (-5 *1 (-877 *4 *2))))) + (-12 (-5 *3 (-1115 *4 *2)) (-14 *4 (-895)) + (-4 *2 (-13 (-1025) (-10 -7 (-6 (-4355 "*"))))) (-5 *1 (-879 *4 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-620 *3)) (|:| |image| (-620 *3)))) - (-5 *1 (-876 *3)) (-4 *3 (-1072))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-620 *3))) (-4 *3 (-1072)) (-5 *1 (-876 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-945)) (-5 *1 (-876 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-876 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 (-536))) (-4 *1 (-291)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 (-536))) (-4 *1 (-291)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-876 *3)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-2 (|:| |preimage| (-622 *3)) (|:| |image| (-622 *3)))) + (-5 *1 (-878 *3)) (-4 *3 (-1074))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-622 *3))) (-4 *3 (-1074)) (-5 *1 (-878 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-947)) (-5 *1 (-878 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-878 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014 (-538))) (-4 *1 (-293)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-1014 (-538))) (-4 *1 (-293)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-878 *3)) (-4 *3 (-1074))))) (((*1 *2 *1) - (-12 (-5 *2 (-1068 *3)) (-5 *1 (-876 *3)) (-4 *3 (-361)) (-4 *3 (-1072))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-876 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1072)))) - ((*1 *1 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1072))))) + (-12 (-5 *2 (-1070 *3)) (-5 *1 (-878 *3)) (-4 *3 (-363)) (-4 *3 (-1074))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-878 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1074)))) + ((*1 *1 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1074))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-749)) (-4 *1 (-225 *4)) (-4 *4 (-1023)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-225 *3)) (-4 *3 (-1023)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-227)) (-5 *2 (-749)))) - ((*1 *1 *1) (-4 *1 (-227))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-751)) (-4 *1 (-227 *4)) (-4 *4 (-1025)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-227 *3)) (-4 *3 (-1025)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-229)) (-5 *2 (-751)))) + ((*1 *1 *1) (-4 *1 (-229))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *3 (-13 (-356) (-145))) (-5 *1 (-392 *3 *4)) - (-4 *4 (-1205 *3)))) + (-12 (-5 *2 (-751)) (-4 *3 (-13 (-358) (-145))) (-5 *1 (-394 *3 *4)) + (-4 *4 (-1207 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-356) (-145))) (-5 *1 (-392 *2 *3)) (-4 *3 (-1205 *2)))) - ((*1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)))) + (-12 (-4 *2 (-13 (-358) (-145))) (-5 *1 (-394 *2 *3)) (-4 *3 (-1207 *2)))) + ((*1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 *4)) (-5 *3 (-620 (-749))) (-4 *1 (-874 *4)) - (-4 *4 (-1072)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-874 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *1 (-874 *3)) (-4 *3 (-1072)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-874 *2)) (-4 *2 (-1072))))) + (-12 (-5 *2 (-622 *4)) (-5 *3 (-622 (-751))) (-4 *1 (-876 *4)) + (-4 *4 (-1074)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-876 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *1 (-876 *3)) (-4 *3 (-1074)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1074))))) (((*1 *2 *3) - (-12 (-5 *3 (-747)) + (-12 (-5 *3 (-749)) (-5 *2 - (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) - (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) - (-5 *1 (-551)))) + (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) + (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) + (-5 *1 (-553)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-747)) (-5 *4 (-1035)) + (-12 (-5 *3 (-749)) (-5 *4 (-1037)) (-5 *2 - (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) - (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) - (-5 *1 (-551)))) + (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) + (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) + (-5 *1 (-553)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-765)) (-5 *3 (-1035)) + (-12 (-4 *1 (-767)) (-5 *3 (-1037)) (-5 *4 - (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 - (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) - (|:| |extra| (-1009)))))) + (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) + (|:| |extra| (-1011)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-765)) (-5 *3 (-1035)) + (-12 (-4 *1 (-767)) (-5 *3 (-1037)) (-5 *4 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (-5 *2 - (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)) - (|:| |extra| (-1009)))))) + (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)) + (|:| |extra| (-1011)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-778)) (-5 *3 (-1035)) + (-12 (-4 *1 (-780)) (-5 *3 (-1037)) (-5 *4 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) ((*1 *2 *3) - (-12 (-5 *3 (-786)) + (-12 (-5 *3 (-788)) (-5 *2 - (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) - (|:| |explanations| (-620 (-1129))))) - (-5 *1 (-783)))) + (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) + (|:| |explanations| (-622 (-1131))))) + (-5 *1 (-785)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-786)) (-5 *4 (-1035)) + (-12 (-5 *3 (-788)) (-5 *4 (-1037)) (-5 *2 - (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) - (|:| |explanations| (-620 (-1129))))) - (-5 *1 (-783)))) + (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) + (|:| |explanations| (-622 (-1131))))) + (-5 *1 (-785)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-814)) (-5 *3 (-1035)) - (-5 *4 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) - (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) + (-12 (-4 *1 (-816)) (-5 *3 (-1037)) + (-5 *4 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) + (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-814)) (-5 *3 (-1035)) + (-12 (-4 *1 (-816)) (-5 *3 (-1037)) (-5 *4 - (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) - (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) - (|:| |ub| (-620 (-817 (-219)))))) - (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) + (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) + (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) + (|:| |ub| (-622 (-819 (-221)))))) + (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) ((*1 *2 *3) - (-12 (-5 *3 (-816)) + (-12 (-5 *3 (-818)) (-5 *2 - (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) - (|:| |explanations| (-620 (-1129))))) - (-5 *1 (-815)))) + (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) + (|:| |explanations| (-622 (-1131))))) + (-5 *1 (-817)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-816)) (-5 *4 (-1035)) + (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 - (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) - (|:| |explanations| (-620 (-1129))))) - (-5 *1 (-815)))) + (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) + (|:| |explanations| (-622 (-1131))))) + (-5 *1 (-817)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-869)) (-5 *3 (-1035)) + (-12 (-4 *1 (-871)) (-5 *3 (-1037)) (-5 *4 - (-2 (|:| |pde| (-620 (-307 (-219)))) + (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| - (-620 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) - (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) - (|:| |dFinish| (-667 (-219)))))) - (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) - (|:| |tol| (-219)))) - (-5 *2 (-2 (|:| -2996 (-371)) (|:| |explanations| (-1129)))))) + (-622 + (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) + (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) + (|:| |dFinish| (-669 (-221)))))) + (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) + (|:| |tol| (-221)))) + (-5 *2 (-2 (|:| -3001 (-373)) (|:| |explanations| (-1131)))))) ((*1 *2 *3) - (-12 (-5 *3 (-872)) + (-12 (-5 *3 (-874)) (-5 *2 - (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) - (|:| |explanations| (-620 (-1129))))) - (-5 *1 (-871)))) + (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) + (|:| |explanations| (-622 (-1131))))) + (-5 *1 (-873)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-872)) (-5 *4 (-1035)) + (-12 (-5 *3 (-874)) (-5 *4 (-1037)) (-5 *2 - (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) - (|:| |explanations| (-620 (-1129))))) - (-5 *1 (-871))))) + (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) + (|:| |explanations| (-622 (-1131))))) + (-5 *1 (-873))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-5 *1 (-870 *2 *4)) (-4 *2 (-1205 *4))))) + (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-5 *1 (-872 *2 *4)) (-4 *2 (-1207 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-5 *1 (-870 *2 *3)) (-4 *2 (-1205 *3))))) + (|partial| -12 (-4 *3 (-358)) (-5 *1 (-872 *2 *3)) (-4 *2 (-1207 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-869)) + (-12 (-4 *1 (-871)) (-5 *3 - (-2 (|:| |pde| (-620 (-307 (-219)))) + (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| - (-620 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) - (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) - (|:| |dFinish| (-667 (-219)))))) - (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) - (|:| |tol| (-219)))) - (-5 *2 (-1009))))) -(((*1 *1) (-12 (-4 *1 (-457 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-525))) ((*1 *1) (-4 *1 (-701))) ((*1 *1) (-4 *1 (-705))) - ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072)))) - ((*1 *1) (-12 (-5 *1 (-867 *2)) (-4 *2 (-825))))) + (-622 + (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) + (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) + (|:| |dFinish| (-669 (-221)))))) + (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) + (|:| |tol| (-221)))) + (-5 *2 (-1011))))) +(((*1 *1) (-12 (-4 *1 (-459 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-527))) ((*1 *1) (-4 *1 (-703))) ((*1 *1) (-4 *1 (-707))) + ((*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074)))) + ((*1 *1) (-12 (-5 *1 (-869 *2)) (-4 *2 (-827))))) (((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) - (-5 *2 (-620 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) + (-5 *2 (-622 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| |k| (-867 *3)) (|:| |c| *4)))) - (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-650 *3))) (-5 *1 (-867 *3)) (-4 *3 (-825))))) + (-12 (-5 *2 (-622 (-2 (|:| |k| (-869 *3)) (|:| |c| *4)))) + (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) + (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-652 *3))) (-5 *1 (-869 *3)) (-4 *3 (-827))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) - (-14 *4 (-620 (-1147))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) + (-14 *4 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1183)))) + (-12 (-5 *3 (-51)) (-5 *2 (-112)) (-5 *1 (-52 *4)) (-4 *4 (-1185)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) - (-14 *4 (-620 (-1147))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-867 *3)) (-4 *3 (-825))))) -(((*1 *2 *3) - (-12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-620 *5)) (-5 *1 (-865 *4 *5)) - (-4 *5 (-1183))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) + (-14 *4 (-622 (-1149))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-869 *3)) (-4 *3 (-827))))) +(((*1 *2 *3) + (-12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-622 *5)) (-5 *1 (-867 *4 *5)) + (-4 *5 (-1185))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-866 *3)) (-4 *3 (-1074)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1183))))) + (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1185))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-5 *2 (-112)) - (-5 *1 (-862 *4 *5)) (-4 *5 (-1072)))) + (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-5 *2 (-112)) + (-5 *1 (-864 *4 *5)) (-4 *5 (-1074)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-5 *2 (-112)) (-5 *1 (-865 *5 *3)) - (-4 *3 (-1183)))) + (-12 (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-867 *5 *3)) + (-4 *3 (-1185)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *6)) (-5 *4 (-864 *5)) (-4 *5 (-1072)) (-4 *6 (-1183)) - (-5 *2 (-112)) (-5 *1 (-865 *5 *6))))) + (-12 (-5 *3 (-622 *6)) (-5 *4 (-866 *5)) (-4 *5 (-1074)) (-4 *6 (-1185)) + (-5 *2 (-112)) (-5 *1 (-867 *5 *6))))) (((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-462 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-525))) ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072))))) + ((*1 *1) (-12 (-4 *1 (-464 *2 *3)) (-4 *2 (-170)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-527))) ((*1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2831 (-113)) (|:| |arg| (-620 (-864 *3))))) - (-5 *1 (-864 *3)) (-4 *3 (-1072)))) + (|partial| -12 (-5 *2 (-2 (|:| -2836 (-113)) (|:| |arg| (-622 (-866 *3))))) + (-5 *1 (-866 *3)) (-4 *3 (-1074)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-620 (-864 *4))) (-5 *1 (-864 *4)) - (-4 *4 (-1072))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-296)))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-622 (-866 *4))) (-5 *1 (-866 *4)) + (-4 *4 (-1074))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-221))) (-5 *1 (-298)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-864 *3)) (|:| |den| (-864 *3)))) - (-5 *1 (-864 *3)) (-4 *3 (-1072))))) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-866 *3)) (|:| |den| (-866 *3)))) + (-5 *1 (-866 *3)) (-4 *3 (-1074))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) + (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-112)) (-5 *1 (-864 *4)) (-4 *4 (-1072))))) + (-12 (-5 *2 (-1149)) (-5 *3 (-112)) (-5 *1 (-866 *4)) (-4 *4 (-1074))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-51)) (-5 *1 (-864 *4)) (-4 *4 (-1072))))) + (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-51)) (-5 *1 (-866 *4)) (-4 *4 (-1074))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-620 (-1147))) (|:| |pred| (-51)))) - (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) -(((*1 *1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-51))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-2 (|:| |var| (-622 (-1149))) (|:| |pred| (-51)))) + (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) +(((*1 *1 *1) (-12 (-5 *1 (-866 *2)) (-4 *2 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-51))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-620 (-864 *3))) (-5 *1 (-864 *3)) (-4 *3 (-1072))))) + (|partial| -12 (-5 *2 (-622 (-866 *3))) (-5 *1 (-866 *3)) (-4 *3 (-1074))))) (((*1 *2 *1) - (-12 (-4 *4 (-1072)) (-5 *2 (-112)) (-5 *1 (-859 *3 *4 *5)) (-4 *3 (-1072)) - (-4 *5 (-644 *4)))) + (-12 (-4 *4 (-1074)) (-5 *2 (-112)) (-5 *1 (-861 *3 *4 *5)) (-4 *3 (-1074)) + (-4 *5 (-646 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-862 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) + (-12 (-5 *2 (-112)) (-5 *1 (-864 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) (((*1 *1) - (-12 (-4 *3 (-1072)) (-5 *1 (-859 *2 *3 *4)) (-4 *2 (-1072)) - (-4 *4 (-644 *3)))) - ((*1 *1) (-12 (-5 *1 (-862 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) + (-12 (-4 *3 (-1074)) (-5 *1 (-861 *2 *3 *4)) (-4 *2 (-1074)) + (-4 *4 (-646 *3)))) + ((*1 *1) (-12 (-5 *1 (-864 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-864 *4)) (-4 *4 (-1072)) (-4 *2 (-1072)) - (-5 *1 (-862 *4 *2))))) + (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-1074)) (-4 *2 (-1074)) + (-5 *1 (-864 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-864 *4)) (-4 *4 (-1072)) (-5 *1 (-862 *4 *3)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-866 *4)) (-4 *4 (-1074)) (-5 *1 (-864 *4 *3)) (-4 *3 (-1074))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1072)) (-4 *6 (-860 *5)) (-5 *2 (-859 *5 *6 (-620 *6))) - (-5 *1 (-861 *5 *6 *4)) (-5 *3 (-620 *6)) (-4 *4 (-596 (-864 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1072)) (-5 *2 (-620 (-286 *3))) (-5 *1 (-861 *5 *3 *4)) - (-4 *3 (-1012 (-1147))) (-4 *3 (-860 *5)) (-4 *4 (-596 (-864 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1072)) (-5 *2 (-620 (-286 (-920 *3)))) (-5 *1 (-861 *5 *3 *4)) - (-4 *3 (-1023)) (-3671 (-4 *3 (-1012 (-1147)))) (-4 *3 (-860 *5)) - (-4 *4 (-596 (-864 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1072)) (-5 *2 (-862 *5 *3)) (-5 *1 (-861 *5 *3 *4)) - (-3671 (-4 *3 (-1012 (-1147)))) (-3671 (-4 *3 (-1023))) (-4 *3 (-860 *5)) - (-4 *4 (-596 (-864 *5)))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-112)) (-5 *1 (-113)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1147)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) + (-12 (-4 *5 (-1074)) (-4 *6 (-862 *5)) (-5 *2 (-861 *5 *6 (-622 *6))) + (-5 *1 (-863 *5 *6 *4)) (-5 *3 (-622 *6)) (-4 *4 (-598 (-866 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1074)) (-5 *2 (-622 (-288 *3))) (-5 *1 (-863 *5 *3 *4)) + (-4 *3 (-1014 (-1149))) (-4 *3 (-862 *5)) (-4 *4 (-598 (-866 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1074)) (-5 *2 (-622 (-288 (-922 *3)))) (-5 *1 (-863 *5 *3 *4)) + (-4 *3 (-1025)) (-3676 (-4 *3 (-1014 (-1149)))) (-4 *3 (-862 *5)) + (-4 *4 (-598 (-866 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1074)) (-5 *2 (-864 *5 *3)) (-5 *1 (-863 *5 *3 *4)) + (-3676 (-4 *3 (-1014 (-1149)))) (-3676 (-4 *3 (-1025))) (-4 *3 (-862 *5)) + (-4 *4 (-598 (-866 *5)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-113)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1149)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-113)) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1147)) (-5 *2 (-112)) (-5 *1 (-593 *4)) (-4 *4 (-825)))) + (-12 (-5 *3 (-1149)) (-5 *2 (-112)) (-5 *1 (-595 *4)) (-4 *4 (-827)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-593 *4)) (-4 *4 (-825)))) + (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-595 *4)) (-4 *4 (-827)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1072)) (-5 *2 (-112)) (-5 *1 (-861 *5 *3 *4)) (-4 *3 (-860 *5)) - (-4 *4 (-596 (-864 *5))))) + (-12 (-4 *5 (-1074)) (-5 *2 (-112)) (-5 *1 (-863 *5 *3 *4)) (-4 *3 (-862 *5)) + (-4 *4 (-598 (-866 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *6)) (-4 *6 (-860 *5)) (-4 *5 (-1072)) (-5 *2 (-112)) - (-5 *1 (-861 *5 *6 *4)) (-4 *4 (-596 (-864 *5)))))) + (-12 (-5 *3 (-622 *6)) (-4 *6 (-862 *5)) (-4 *5 (-1074)) (-5 *2 (-112)) + (-5 *1 (-863 *5 *6 *4)) (-4 *4 (-598 (-866 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-862 *4 *5)) (-5 *3 (-862 *4 *6)) (-4 *4 (-1072)) - (-4 *5 (-1072)) (-4 *6 (-644 *5)) (-5 *1 (-859 *4 *5 *6))))) + (-12 (-5 *2 (-864 *4 *5)) (-5 *3 (-864 *4 *6)) (-4 *4 (-1074)) + (-4 *5 (-1074)) (-4 *6 (-646 *5)) (-5 *1 (-861 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1072)) (-5 *2 (-862 *3 *4)) (-5 *1 (-859 *3 *4 *5)) - (-4 *3 (-1072)) (-4 *5 (-644 *4))))) + (-12 (-4 *4 (-1074)) (-5 *2 (-864 *3 *4)) (-5 *1 (-861 *3 *4 *5)) + (-4 *3 (-1074)) (-4 *5 (-646 *4))))) (((*1 *2 *1) - (-12 (-4 *4 (-1072)) (-5 *2 (-862 *3 *5)) (-5 *1 (-859 *3 *4 *5)) - (-4 *3 (-1072)) (-4 *5 (-644 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536))))) + (-12 (-4 *4 (-1074)) (-5 *2 (-864 *3 *5)) (-5 *1 (-861 *3 *4 *5)) + (-4 *3 (-1074)) (-4 *5 (-646 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536))))) + (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538))))) ((*1 *2 *3) - (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536)))))) + (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *3 (-620 (-536))) (-5 *1 (-857))))) + (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *3 (-622 (-538))) (-5 *1 (-859))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-620 (-536)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857))))) + (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-622 (-538)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536)))) - ((*1 *2 *3) (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536)))) + (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))) + ((*1 *2 *3) (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-1124 (-620 (-536)))) (-5 *1 (-857)) (-5 *3 (-536))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-851 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-853 *2)) (-4 *2 (-1183)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *1 (-856 *2)) (-4 *2 (-1183))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-1183))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-620 (-1152))) (-5 *1 (-854))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(((*1 *2 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-235)) (-5 *3 (-1129)))) - ((*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-235)))) - ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-848))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-847 *2 *3)) (-4 *2 (-1183)) (-4 *3 (-1183))))) + (-12 (-5 *2 (-1126 (-622 (-538)))) (-5 *1 (-859)) (-5 *3 (-538))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-853 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-855 *2)) (-4 *2 (-1185)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *1 (-858 *2)) (-4 *2 (-1185))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-858 *2)) (-4 *2 (-1185))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-622 (-1154))) (-5 *1 (-856))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) +(((*1 *2 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-237)) (-5 *3 (-1131)))) + ((*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-237)))) + ((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) +(((*1 *1 *2) (-12 (-5 *2 (-155)) (-5 *1 (-850))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-849 *2 *3)) (-4 *2 (-1185)) (-4 *3 (-1185))))) (((*1 *2 *1) - (-12 (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-117 *3)) (-14 *3 (-536)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-300)) (-5 *1 (-172 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-172 (-536))) (-5 *1 (-744 *3)) (-4 *3 (-397)))) + (-12 (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-117 *3)) (-14 *3 (-538)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1126 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-402 *3)) (-4 *3 (-302)) (-5 *1 (-172 *3)))) + ((*1 *2 *3) (-12 (-5 *2 (-172 (-538))) (-5 *1 (-746 *3)) (-4 *3 (-399)))) ((*1 *2 *1) - (-12 (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-845 *3)) (-14 *3 (-536)))) + (-12 (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-847 *3)) (-14 *3 (-538)))) ((*1 *2 *1) - (-12 (-14 *3 (-536)) (-5 *2 (-172 (-400 (-536)))) (-5 *1 (-846 *3 *4)) - (-4 *4 (-844 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) - ((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-396 *3)) (-4 *3 (-397)))) - ((*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) - ((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-1124 (-536)))))) + (-12 (-14 *3 (-538)) (-5 *2 (-172 (-402 (-538)))) (-5 *1 (-848 *3 *4)) + (-4 *4 (-846 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) + ((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-398 *3)) (-4 *3 (-399)))) + ((*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) + ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) + ((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-1126 (-538)))))) (((*1 *2 *1) - (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-282 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1205 *3)) (-14 *5 (-1 *4 *4 *2)) + (-12 (-4 *3 (-170)) (-4 *2 (-23)) (-5 *1 (-284 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1207 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-690 *3 *2 *4 *5 *6)) (-4 *3 (-170)) + (-12 (-4 *2 (-23)) (-5 *1 (-692 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1205 *3)) (-5 *1 (-691 *3 *2)) (-4 *3 (-1023)))) + ((*1 *2) (-12 (-4 *2 (-1207 *3)) (-5 *1 (-693 *3 *2)) (-4 *3 (-1025)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-694 *3 *2 *4 *5 *6)) (-4 *3 (-170)) + (-12 (-4 *2 (-23)) (-5 *1 (-696 *3 *2 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536))))) -(((*1 *2 *1) (-12 (-4 *1 (-844 *3)) (-5 *2 (-536))))) -(((*1 *1 *1) (-4 *1 (-844 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1141 (-536))) (-5 *3 (-536)) (-4 *1 (-844 *4))))) + ((*1 *2) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538))))) +(((*1 *2 *1) (-12 (-4 *1 (-846 *3)) (-5 *2 (-538))))) +(((*1 *1 *1) (-4 *1 (-846 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1143 (-538))) (-5 *3 (-538)) (-4 *1 (-846 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-400 *6)) - (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1222 *5)) (-4 *6 (-1205 *5)))) + (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-402 *6)) + (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1224 *5)) (-4 *6 (-1207 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) - (-14 *6 (-1147)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5))) - (-5 *1 (-842 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1221 *5 *6 *7)) (-4 *5 (-358)) + (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1200 *6 *5))) + (-5 *1 (-844 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-749)) (-5 *4 (-1219 *5 *6 *7)) (-4 *5 (-356)) - (-14 *6 (-1147)) (-14 *7 *5) (-5 *2 (-400 (-1198 *6 *5))) - (-5 *1 (-842 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-751)) (-5 *4 (-1221 *5 *6 *7)) (-4 *5 (-358)) + (-14 *6 (-1149)) (-14 *7 *5) (-5 *2 (-402 (-1200 *6 *5))) + (-5 *1 (-844 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-749)) (-4 *5 (-356)) (-5 *2 (-172 *6)) - (-5 *1 (-841 *5 *4 *6)) (-4 *4 (-1222 *5)) (-4 *6 (-1205 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-838))))) -(((*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-838))))) -(((*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) - ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) - ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *3)) (-4 *3 (-1183)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-749)))) + (|partial| -12 (-5 *3 (-751)) (-4 *5 (-358)) (-5 *2 (-172 *6)) + (-5 *1 (-843 *5 *4 *6)) (-4 *4 (-1224 *5)) (-4 *6 (-1207 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-840))))) +(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) + ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) + ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *3)) (-4 *3 (-1185)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-751)))) ((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) - ((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838)))) - ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) -(((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) -(((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-838))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) - ((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) - ((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-838))))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-291)))) - ((*1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) + (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) + (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) + ((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840)))) + ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-840))))) +(((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840))))) +(((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-840))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) + ((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) + ((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840))))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-293)))) + ((*1 *1 *1) (-4 *1 (-293))) ((*1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) - (-5 *4 (-307 (-166 (-371)))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) + (-5 *4 (-309 (-166 (-373)))) (-5 *1 (-325)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-371))) - (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-373))) + (-5 *1 (-325)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-536))) - (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-538))) + (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-166 (-371))))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-166 (-373))))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-371)))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-373)))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-536)))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-538)))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-166 (-371))))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-166 (-373))))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-371)))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-373)))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-536)))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-538)))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-166 (-371)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-371))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-536))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-166 (-373)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-373))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-538))) (-5 *1 (-325)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-672))) - (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-674))) + (-5 *1 (-325)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-677))) - (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-679))) + (-5 *1 (-325)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-920 (-536)))) (-5 *4 (-307 (-679))) - (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-922 (-538)))) (-5 *4 (-309 (-681))) + (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-672)))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-674)))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-677)))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-679)))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-307 (-679)))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-309 (-681)))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-672)))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-674)))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-677)))) (-5 *1 (-323)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-679)))) (-5 *1 (-325)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-307 (-679)))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-672))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-679))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-672))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-667 (-679))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-672))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-677))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-307 (-679))) (-5 *1 (-323)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-1129)) (-5 *1 (-323)))) - ((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) -(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-838)))) - ((*1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-838))) ((*1 *1 *1 *1) (-5 *1 (-838))) - ((*1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) - ((*1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-291)))) - ((*1 *1 *1) (-4 *1 (-291))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838)))) - ((*1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1129)) (-5 *1 (-186)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-838))))) + (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-309 (-681)))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-674))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-679))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-681))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-674))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-679))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-669 (-681))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-674))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-679))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-309 (-681))) (-5 *1 (-325)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-1131)) (-5 *1 (-325)))) + ((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))) +(((*1 *1) (-5 *1 (-142))) ((*1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-840)))) + ((*1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-840))) ((*1 *1 *1 *1) (-5 *1 (-840))) + ((*1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) + ((*1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-293)))) + ((*1 *1 *1) (-4 *1 (-293))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840)))) + ((*1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1131)) (-5 *1 (-188)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-840))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-101)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-825)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-838)))) + ((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-827)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-840)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |rm| (-797 *3)))) - (-5 *1 (-797 *3)) (-4 *3 (-825)))) - ((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-749))) - ((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *1 *1) (-4 *1 (-300))) ((*1 *1 *1 *1) (-5 *1 (-749))) - ((*1 *1 *1 *1) (-5 *1 (-838)))) -(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-837)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-837))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-837))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-128)) (-5 *2 (-1091))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-836)) (-5 *3 (-129)) (-5 *2 (-1091))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-51))) (-5 *2 (-1235)) (-5 *1 (-834))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |rm| (-799 *3)))) + (-5 *1 (-799 *3)) (-4 *3 (-827)))) + ((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-751))) + ((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1 *1) (-5 *1 (-751))) + ((*1 *1 *1 *1) (-5 *1 (-840)))) +(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-839)))) + ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-839))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-128)) (-5 *2 (-1093))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-838)) (-5 *3 (-129)) (-5 *2 (-1093))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-51))) (-5 *2 (-1237)) (-5 *1 (-836))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-38 (-400 (-536)))) + (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-170))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-749)) (-5 *1 (-831 *2)) (-4 *2 (-170))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-751)) (-5 *1 (-833 *2)) (-4 *2 (-170))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1023)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) + (-12 (-4 *3 (-358)) (-4 *3 (-1025)) + (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) - (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) - (-4 *3 (-827 *5))))) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) + (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) + (-4 *3 (-829 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-356)) (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) - (-5 *1 (-745 *3 *4)) (-4 *3 (-687 *4)))) + (-12 (-4 *4 (-358)) (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) + (-5 *1 (-747 *3 *4)) (-4 *3 (-689 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1023)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) + (-12 (-4 *3 (-358)) (-4 *3 (-1025)) + (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-356)) (-4 *5 (-1023)) - (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) - (-4 *3 (-827 *5))))) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-358)) (-4 *5 (-1025)) + (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) + (-4 *3 (-829 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-543)) (-4 *3 (-1023)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) + (-12 (-4 *3 (-545)) (-4 *3 (-1025)) + (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-543)) (-4 *5 (-1023)) - (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) - (-4 *3 (-827 *5))))) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1025)) + (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) + (-4 *3 (-829 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-543)) (-4 *3 (-1023)) - (-5 *2 (-2 (|:| -2091 *1) (|:| -3230 *1))) (-4 *1 (-827 *3)))) + (-12 (-4 *3 (-545)) (-4 *3 (-1025)) + (-5 *2 (-2 (|:| -2096 *1) (|:| -3235 *1))) (-4 *1 (-829 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-98 *5)) (-4 *5 (-543)) (-4 *5 (-1023)) - (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-828 *5 *3)) - (-4 *3 (-827 *5))))) + (-12 (-5 *4 (-98 *5)) (-4 *5 (-545)) (-4 *5 (-1025)) + (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-830 *5 *3)) + (-4 *3 (-829 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-626 *5)) (-4 *5 (-1023)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-827 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-667 *3)) (-4 *1 (-411 *3)) (-4 *3 (-170)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-628 *5)) (-4 *5 (-1025)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-829 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-669 *3)) (-4 *1 (-413 *3)) (-4 *3 (-170)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1023)) (-5 *1 (-828 *2 *3)) - (-4 *3 (-827 *2))))) + (-12 (-5 *4 (-98 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1025)) (-5 *1 (-830 *2 *3)) + (-4 *3 (-829 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1023)) (-5 *1 (-828 *5 *2)) - (-4 *2 (-827 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) + (-12 (-5 *3 (-98 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1025)) (-5 *1 (-830 *5 *2)) + (-4 *2 (-829 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) + (|partial| -12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) + (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1023)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) - (-4 *1 (-827 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) + (-12 (-4 *3 (-358)) (-4 *3 (-1025)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1))) + (-4 *1 (-829 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) + (|partial| -12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *3 (-1023)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) - (-4 *1 (-827 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-356)) (-5 *1 (-745 *2 *3)) (-4 *2 (-687 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) + (-12 (-4 *3 (-358)) (-4 *3 (-1025)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1))) + (-4 *1 (-829 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-358)) (-5 *1 (-747 *2 *3)) (-4 *2 (-689 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-829 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) - (-14 *4 (-749))))) + (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) + (-14 *4 (-751))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) - (-14 *4 (-749))))) + (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) + (-14 *4 (-751))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1229 *5)) (-4 *5 (-770)) (-5 *2 (-112)) (-5 *1 (-820 *4 *5)) - (-14 *4 (-749))))) -(((*1 *2) (-12 (-5 *2 (-817 (-536))) (-5 *1 (-524)))) - ((*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1072))))) -(((*1 *2) (-12 (-5 *2 (-817 (-536))) (-5 *1 (-524)))) - ((*1 *1) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1072))))) + (-12 (-5 *3 (-1231 *5)) (-4 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-822 *4 *5)) + (-14 *4 (-751))))) +(((*1 *2) (-12 (-5 *2 (-819 (-538))) (-5 *1 (-526)))) + ((*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1074))))) +(((*1 *2) (-12 (-5 *2 (-819 (-538))) (-5 *1 (-526)))) + ((*1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-1074))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-1072)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-810 *3)) (-4 *3 (-1072)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-817 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-817 *3)) (-4 *3 (-1072))))) -(((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-307 (-371)))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) - (-5 *1 (-815))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-812 *3)) (-4 *3 (-1074)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-819 *3)) (-4 *3 (-1074))))) +(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-622 (-309 (-373)))) (-5 *4 (-622 (-373))) (-5 *2 (-1011)) + (-5 *1 (-817))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-816)) (-5 *4 (-1035)) (-5 *2 (-1009)) (-5 *1 (-815)))) - ((*1 *2 *3) (-12 (-5 *3 (-816)) (-5 *2 (-1009)) (-5 *1 (-815)))) + (-12 (-5 *3 (-818)) (-5 *4 (-1037)) (-5 *2 (-1011)) (-5 *1 (-817)))) + ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-1011)) (-5 *1 (-817)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-620 (-371))) (-5 *5 (-620 (-817 (-371)))) - (-5 *6 (-620 (-307 (-371)))) (-5 *3 (-307 (-371))) (-5 *2 (-1009)) - (-5 *1 (-815)))) + (-12 (-5 *4 (-622 (-373))) (-5 *5 (-622 (-819 (-373)))) + (-5 *6 (-622 (-309 (-373)))) (-5 *3 (-309 (-373))) (-5 *2 (-1011)) + (-5 *1 (-817)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-371))) (-5 *5 (-620 (-817 (-371)))) - (-5 *2 (-1009)) (-5 *1 (-815)))) + (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-373))) (-5 *5 (-622 (-819 (-373)))) + (-5 *2 (-1011)) (-5 *1 (-817)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 (-371))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) - (-5 *1 (-815)))) + (-12 (-5 *3 (-309 (-373))) (-5 *4 (-622 (-373))) (-5 *2 (-1011)) + (-5 *1 (-817)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-307 (-371)))) (-5 *4 (-620 (-371))) (-5 *2 (-1009)) - (-5 *1 (-815))))) + (-12 (-5 *3 (-622 (-309 (-373)))) (-5 *4 (-622 (-373))) (-5 *2 (-1011)) + (-5 *1 (-817))))) (((*1 *2 *3) - (-12 (-4 *1 (-814)) + (-12 (-4 *1 (-816)) (-5 *3 - (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) - (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) - (|:| |ub| (-620 (-817 (-219)))))) - (-5 *2 (-1009)))) + (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) + (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) + (|:| |ub| (-622 (-819 (-221)))))) + (-5 *2 (-1011)))) ((*1 *2 *3) - (-12 (-4 *1 (-814)) - (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) - (-5 *2 (-1009))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-208 (-493))) (-5 *1 (-813))))) -(((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)))) + (-12 (-4 *1 (-816)) + (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) + (-5 *2 (-1011))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-210 (-495))) (-5 *1 (-815))))) +(((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)))) ((*1 *2 *3) - (-12 (-4 *4 (-543)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-666 *4 *5 *6 *3)) - (-4 *3 (-664 *4 *5 *6)))) + (-12 (-4 *4 (-545)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-668 *4 *5 *6 *3)) + (-4 *3 (-666 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) + (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023)))) - ((*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023))))) + (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025)))) + ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025))))) (((*1 *2 *2) - (-12 (-4 *2 (-170)) (-4 *2 (-1023)) (-5 *1 (-693 *2 *3)) (-4 *3 (-626 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-170)) (-4 *2 (-1023))))) + (-12 (-4 *2 (-170)) (-4 *2 (-1025)) (-5 *1 (-695 *2 *3)) (-4 *3 (-628 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-170)) (-4 *2 (-1025))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-113)) (-5 *4 (-620 *2)) (-5 *1 (-114 *2)) - (-4 *2 (-1072)))) + (|partial| -12 (-5 *3 (-113)) (-5 *4 (-622 *2)) (-5 *1 (-114 *2)) + (-4 *2 (-1074)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-620 *4))) (-4 *4 (-1072)) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 (-622 *4))) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-620 *4))) (-5 *1 (-114 *4)) - (-4 *4 (-1072)))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-1 *4 (-622 *4))) (-5 *1 (-114 *4)) + (-4 *4 (-1074)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1023)) - (-5 *1 (-693 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-812 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) + (-5 *1 (-695 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-626 *3)) (-4 *3 (-1023)) - (-5 *1 (-693 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-812 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-628 *3)) (-4 *3 (-1025)) + (-5 *1 (-695 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-814 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-113)) (-4 *4 (-1023)) (-5 *1 (-693 *4 *2)) (-4 *2 (-626 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-812 *2)) (-4 *2 (-1023))))) + (-12 (-5 *3 (-113)) (-4 *4 (-1025)) (-5 *1 (-695 *4 *2)) (-4 *2 (-628 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-113)) (-5 *1 (-814 *2)) (-4 *2 (-1025))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-354 (-113))) (-4 *2 (-1023)) (-5 *1 (-693 *2 *4)) - (-4 *4 (-626 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-354 (-113))) (-5 *1 (-812 *2)) (-4 *2 (-1023))))) -(((*1 *2) (-12 (-5 *2 (-810 (-536))) (-5 *1 (-524)))) - ((*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1072))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1235)) (-5 *1 (-809))))) + (-12 (-5 *3 (-356 (-113))) (-4 *2 (-1025)) (-5 *1 (-695 *2 *4)) + (-4 *4 (-628 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-356 (-113))) (-5 *1 (-814 *2)) (-4 *2 (-1025))))) +(((*1 *2) (-12 (-5 *2 (-812 (-538))) (-5 *1 (-526)))) + ((*1 *1) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1074))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-1237)) (-5 *1 (-811))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-800)) (-5 *4 (-51)) (-5 *2 (-1235)) (-5 *1 (-809))))) -(((*1 *2 *3) (-12 (-5 *3 (-800)) (-5 *2 (-51)) (-5 *1 (-809))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-807))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-807))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-807))))) -(((*1 *2 *3) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-807)) (-5 *3 (-1129))))) -(((*1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-807))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-807))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-51)) (-5 *1 (-807))))) -(((*1 *2 *3) (-12 (-5 *3 (-801)) (-5 *2 (-51)) (-5 *1 (-807))))) -(((*1 *1 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-806 *2 *3)) (-4 *2 (-687 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-687 *3)) (-5 *1 (-806 *2 *3)) (-4 *3 (-1023))))) -(((*1 *2 *1) (-12 (-4 *1 (-799)) (-5 *2 (-1129)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-799)) (-5 *3 (-112)) (-5 *2 (-1129)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-799)) (-5 *3 (-801)) (-5 *2 (-1235)))) + (-12 (-5 *3 (-802)) (-5 *4 (-51)) (-5 *2 (-1237)) (-5 *1 (-811))))) +(((*1 *2 *3) (-12 (-5 *3 (-802)) (-5 *2 (-51)) (-5 *1 (-811))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-809))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-809))))) +(((*1 *2 *3) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-809)) (-5 *3 (-1131))))) +(((*1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-809))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-809))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-51)) (-5 *1 (-809))))) +(((*1 *2 *3) (-12 (-5 *3 (-803)) (-5 *2 (-51)) (-5 *1 (-809))))) +(((*1 *1 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-808 *2 *3)) (-4 *2 (-689 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-689 *3)) (-5 *1 (-808 *2 *3)) (-4 *3 (-1025))))) +(((*1 *2 *1) (-12 (-4 *1 (-801)) (-5 *2 (-1131)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-801)) (-5 *3 (-112)) (-5 *2 (-1131)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-801)) (-5 *3 (-803)) (-5 *2 (-1237)))) ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-799)) (-5 *3 (-801)) (-5 *4 (-112)) (-5 *2 (-1235)))) + (-12 (-4 *1 (-801)) (-5 *3 (-803)) (-5 *4 (-112)) (-5 *2 (-1237)))) ((*1 *2 *3) - (-12 (-5 *3 (-307 *4)) (-4 *4 (-13 (-799) (-825) (-1023))) (-5 *2 (-1129)) - (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-309 *4)) (-4 *4 (-13 (-801) (-827) (-1025))) (-5 *2 (-1131)) + (-5 *1 (-807 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-799) (-825) (-1023))) - (-5 *2 (-1129)) (-5 *1 (-805 *5)))) + (-12 (-5 *3 (-309 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-801) (-827) (-1025))) + (-5 *2 (-1131)) (-5 *1 (-807 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-801)) (-5 *4 (-307 *5)) (-4 *5 (-13 (-799) (-825) (-1023))) - (-5 *2 (-1235)) (-5 *1 (-805 *5)))) + (-12 (-5 *3 (-803)) (-5 *4 (-309 *5)) (-4 *5 (-13 (-801) (-827) (-1025))) + (-5 *2 (-1237)) (-5 *1 (-807 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-801)) (-5 *4 (-307 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-799) (-825) (-1023))) (-5 *2 (-1235)) (-5 *1 (-805 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-804))))) -(((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-803))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-803))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-620 (-1147))) (-5 *1 (-803))))) -(((*1 *1) (-5 *1 (-802)))) -(((*1 *1) (-5 *1 (-802)))) -(((*1 *1) (-5 *1 (-802)))) -(((*1 *1) (-5 *1 (-802)))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-801))))) + (-12 (-5 *3 (-803)) (-5 *4 (-309 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-801) (-827) (-1025))) (-5 *2 (-1237)) (-5 *1 (-807 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-806))))) +(((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-805))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-805))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-622 (-1149))) (-5 *1 (-805))))) +(((*1 *1) (-5 *1 (-804)))) +(((*1 *1) (-5 *1 (-804)))) +(((*1 *1) (-5 *1 (-804)))) +(((*1 *1) (-5 *1 (-804)))) +(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-803))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1129)) (|:| -3900 (-1129)))) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-219)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1147)) (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-802)) (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-801))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-802)) (-5 *1 (-801))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-802)) (-5 *1 (-801))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-112)) (-5 *1 (-800))))) + (-12 (-5 *2 (-2 (|:| |cd| (-1131)) (|:| -3905 (-1131)))) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-221)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1149)) (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-803))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-804)) (-5 *1 (-803))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-804)) (-5 *1 (-803))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-802))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1129)) (-5 *4 (-1091)) (-5 *2 (-112)) (-5 *1 (-800))))) -(((*1 *2 *1) (-12 (-5 *2 (-801)) (-5 *1 (-800))))) -(((*1 *2 *1) (-12 (-5 *2 (-801)) (-5 *1 (-800))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-800))))) -(((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-800))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3)) (-4 *3 (-825)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-655 *3)) (-4 *3 (-825)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-797 *3)) (-4 *3 (-825))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-379 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-797 *2)) (-4 *2 (-825))))) + (-12 (-5 *3 (-1131)) (-5 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-802))))) +(((*1 *2 *1) (-12 (-5 *2 (-803)) (-5 *1 (-802))))) +(((*1 *2 *1) (-12 (-5 *2 (-803)) (-5 *1 (-802))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-802))))) +(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-802))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-652 *3)) (-4 *3 (-827)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-657 *3)) (-4 *3 (-827)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-799 *3)) (-4 *3 (-827))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-381 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-799 *2)) (-4 *2 (-827))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |lm| (-379 *3)) (|:| |mm| (-379 *3)) (|:| |rm| (-379 *3)))) - (-5 *1 (-379 *3)) (-4 *3 (-1072)))) + (-5 *2 (-2 (|:| |lm| (-381 *3)) (|:| |mm| (-381 *3)) (|:| |rm| (-381 *3)))) + (-5 *1 (-381 *3)) (-4 *3 (-1074)))) ((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |lm| (-797 *3)) (|:| |mm| (-797 *3)) (|:| |rm| (-797 *3)))) - (-5 *1 (-797 *3)) (-4 *3 (-825))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) + (-5 *2 (-2 (|:| |lm| (-799 *3)) (|:| |mm| (-799 *3)) (|:| |rm| (-799 *3)))) + (-5 *1 (-799 *3)) (-4 *3 (-827))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-356 *3)) (-4 *3 (-1074)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-5 *2 (-749)) (-5 *1 (-379 *4)) (-4 *4 (-1072)))) + (-12 (-5 *3 (-538)) (-5 *2 (-751)) (-5 *1 (-381 *4)) (-4 *4 (-1074)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *2 (-23)) (-5 *1 (-627 *4 *2 *5)) (-4 *4 (-1072)) + (-12 (-5 *3 (-538)) (-4 *2 (-23)) (-5 *1 (-629 *4 *2 *5)) (-4 *4 (-1074)) (-14 *5 *2))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-5 *2 (-749)) (-5 *1 (-797 *4)) (-4 *4 (-825))))) + (-12 (-5 *3 (-538)) (-5 *2 (-751)) (-5 *1 (-799 *4)) (-4 *4 (-827))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-316 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1072)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-354 *2)) (-4 *2 (-1072)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-379 *2)) (-4 *2 (-1072)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543)))) + (-12 (-5 *3 (-538)) (-4 *1 (-318 *2 *4)) (-4 *4 (-130)) (-4 *2 (-1074)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-356 *2)) (-4 *2 (-1074)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-381 *2)) (-4 *2 (-1074)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *2 (-1072)) (-5 *1 (-627 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-538)) (-4 *2 (-1074)) (-5 *1 (-629 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-536)) (-5 *1 (-797 *2)) (-4 *2 (-825))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-538)) (-5 *1 (-799 *2)) (-4 *2 (-827))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-536))))) (-5 *1 (-354 *3)) - (-4 *3 (-1072)))) + (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-538))))) (-5 *1 (-356 *3)) + (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-749))))) (-5 *1 (-379 *3)) - (-4 *3 (-1072)))) + (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-751))))) (-5 *1 (-381 *3)) + (-4 *3 (-1074)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| -4087 *3) (|:| -2488 (-536))))) (-5 *1 (-398 *3)) - (-4 *3 (-543)))) + (-12 (-5 *2 (-622 (-2 (|:| -4092 *3) (|:| -2493 (-538))))) (-5 *1 (-400 *3)) + (-4 *3 (-545)))) ((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 (-749))))) (-5 *1 (-797 *3)) - (-4 *3 (-825))))) + (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 (-751))))) (-5 *1 (-799 *3)) + (-4 *3 (-827))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-620 *4)) (-4 *4 (-356)) (-5 *2 (-1229 *4)) - (-5 *1 (-792 *4 *3)) (-4 *3 (-636 *4))))) + (|partial| -12 (-5 *5 (-622 *4)) (-4 *4 (-358)) (-5 *2 (-1231 *4)) + (-5 *1 (-794 *4 *3)) (-4 *3 (-638 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *4)) (-4 *4 (-356)) (-5 *2 (-667 *4)) (-5 *1 (-792 *4 *5)) - (-4 *5 (-636 *4)))) + (-12 (-5 *3 (-622 *4)) (-4 *4 (-358)) (-5 *2 (-669 *4)) (-5 *1 (-794 *4 *5)) + (-4 *5 (-638 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *5)) (-5 *4 (-749)) (-4 *5 (-356)) (-5 *2 (-667 *5)) - (-5 *1 (-792 *5 *6)) (-4 *6 (-636 *5))))) + (-12 (-5 *3 (-622 *5)) (-5 *4 (-751)) (-4 *5 (-358)) (-5 *2 (-669 *5)) + (-5 *1 (-794 *5 *6)) (-4 *6 (-638 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-920 *5))) (-5 *4 (-620 (-1147))) (-4 *5 (-543)) - (-5 *2 (-620 (-620 (-286 (-400 (-920 *5)))))) (-5 *1 (-748 *5)))) + (-12 (-5 *3 (-622 (-922 *5))) (-5 *4 (-622 (-1149))) (-4 *5 (-545)) + (-5 *2 (-622 (-622 (-288 (-402 (-922 *5)))))) (-5 *1 (-750 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-543)) - (-5 *2 (-620 (-620 (-286 (-400 (-920 *4)))))) (-5 *1 (-748 *4)))) + (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-545)) + (-5 *2 (-622 (-622 (-288 (-402 (-922 *4)))))) (-5 *1 (-750 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *7)) + (-12 (-5 *3 (-669 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2123 (-620 *6))) *7 *6)) - (-4 *6 (-356)) (-4 *7 (-636 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2128 (-622 *6))) *7 *6)) + (-4 *6 (-358)) (-4 *7 (-638 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1229 *6) "failed")) - (|:| -2123 (-620 (-1229 *6))))) - (-5 *1 (-791 *6 *7)) (-5 *4 (-1229 *6))))) + (-2 (|:| |particular| (-3 (-1231 *6) "failed")) + (|:| -2128 (-622 (-1231 *6))))) + (-5 *1 (-793 *6 *7)) (-5 *4 (-1231 *6))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) + (-12 (-4 *5 (-358)) (-5 *2 - (-2 (|:| A (-667 *5)) + (-2 (|:| A (-669 *5)) (|:| |eqs| - (-620 - (-2 (|:| C (-667 *5)) (|:| |g| (-1229 *5)) (|:| -3612 *6) + (-622 + (-2 (|:| C (-669 *5)) (|:| |g| (-1231 *5)) (|:| -3617 *6) (|:| |rh| *5)))))) - (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) - (-4 *6 (-636 *5)))) + (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) + (-4 *6 (-638 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-636 *5)) - (-5 *2 (-2 (|:| -1695 (-667 *6)) (|:| |vec| (-1229 *5)))) - (-5 *1 (-791 *5 *6)) (-5 *3 (-667 *6)) (-5 *4 (-1229 *5))))) + (-12 (-4 *5 (-358)) (-4 *6 (-638 *5)) + (-5 *2 (-2 (|:| -1700 (-669 *6)) (|:| |vec| (-1231 *5)))) + (-5 *1 (-793 *5 *6)) (-5 *3 (-669 *6)) (-5 *4 (-1231 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-1 (-620 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-4 *6 (-1205 *5)) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) + (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-1 (-622 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-4 *6 (-1207 *5)) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-633 (-400 *7))) (-5 *4 (-1 (-620 *6) *7)) - (-5 *5 (-1 (-398 *7) *7)) - (-4 *6 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-4 *7 (-1205 *6)) (-5 *2 (-620 (-400 *7))) (-5 *1 (-790 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-1 (-620 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-4 *6 (-1205 *5)) (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) + (-12 (-5 *3 (-635 (-402 *7))) (-5 *4 (-1 (-622 *6) *7)) + (-5 *5 (-1 (-400 *7) *7)) + (-4 *6 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-4 *7 (-1207 *6)) (-5 *2 (-622 (-402 *7))) (-5 *1 (-792 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-1 (-622 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-4 *6 (-1207 *5)) (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-634 *7 (-400 *7))) (-5 *4 (-1 (-620 *6) *7)) - (-5 *5 (-1 (-398 *7) *7)) - (-4 *6 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-4 *7 (-1205 *6)) (-5 *2 (-620 (-400 *7))) (-5 *1 (-790 *6 *7)))) + (-12 (-5 *3 (-636 *7 (-402 *7))) (-5 *4 (-1 (-622 *6) *7)) + (-5 *5 (-1 (-400 *7) *7)) + (-4 *6 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-4 *7 (-1207 *6)) (-5 *2 (-622 (-402 *7))) (-5 *1 (-792 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-633 (-400 *5))) (-4 *5 (-1205 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-5 *2 (-620 (-400 *5))) (-5 *1 (-790 *4 *5)))) + (-12 (-5 *3 (-635 (-402 *5))) (-4 *5 (-1207 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-5 *2 (-622 (-402 *5))) (-5 *1 (-792 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) + (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6)))) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-634 *5 (-400 *5))) (-4 *5 (-1205 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-5 *2 (-620 (-400 *5))) (-5 *1 (-790 *4 *5)))) + (-12 (-5 *3 (-636 *5 (-402 *5))) (-4 *5 (-1207 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-5 *2 (-622 (-402 *5))) (-5 *1 (-792 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) + (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-5 *2 (-620 (-400 *6))) (-5 *1 (-790 *5 *6))))) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-5 *2 (-622 (-402 *6))) (-5 *1 (-792 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-620 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) - (-5 *2 (-620 (-2 (|:| |poly| *6) (|:| -3612 *3)))) - (-5 *1 (-787 *5 *6 *3 *7)) (-4 *3 (-636 *6)) (-4 *7 (-636 (-400 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-620 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-4 *6 (-1205 *5)) - (-5 *2 (-620 (-2 (|:| |poly| *6) (|:| -3612 (-634 *6 (-400 *6)))))) - (-5 *1 (-790 *5 *6)) (-5 *3 (-634 *6 (-400 *6)))))) + (-12 (-5 *4 (-1 (-622 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) + (-5 *2 (-622 (-2 (|:| |poly| *6) (|:| -3617 *3)))) + (-5 *1 (-789 *5 *6 *3 *7)) (-4 *3 (-638 *6)) (-4 *7 (-638 (-402 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-622 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-4 *6 (-1207 *5)) + (-5 *2 (-622 (-2 (|:| |poly| *6) (|:| -3617 (-636 *6 (-402 *6)))))) + (-5 *1 (-792 *5 *6)) (-5 *3 (-636 *6 (-402 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-620 *7) *7 (-1141 *7))) (-5 *5 (-1 (-398 *7) *7)) - (-4 *7 (-1205 *6)) (-4 *6 (-13 (-356) (-145) (-1012 (-400 (-536))))) - (-5 *2 (-620 (-2 (|:| |frac| (-400 *7)) (|:| -3612 *3)))) - (-5 *1 (-787 *6 *7 *3 *8)) (-4 *3 (-636 *7)) (-4 *8 (-636 (-400 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-5 *2 (-620 (-2 (|:| |frac| (-400 *6)) (|:| -3612 (-634 *6 (-400 *6)))))) - (-5 *1 (-790 *5 *6)) (-5 *3 (-634 *6 (-400 *6)))))) + (-12 (-5 *4 (-1 (-622 *7) *7 (-1143 *7))) (-5 *5 (-1 (-400 *7) *7)) + (-4 *7 (-1207 *6)) (-4 *6 (-13 (-358) (-145) (-1014 (-402 (-538))))) + (-5 *2 (-622 (-2 (|:| |frac| (-402 *7)) (|:| -3617 *3)))) + (-5 *1 (-789 *6 *7 *3 *8)) (-4 *3 (-638 *7)) (-4 *8 (-638 (-402 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-5 *2 (-622 (-2 (|:| |frac| (-402 *6)) (|:| -3617 (-636 *6 (-402 *6)))))) + (-5 *1 (-792 *5 *6)) (-5 *3 (-636 *6 (-402 *6)))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *7 (-1205 *5)) (-4 *4 (-703 *5 *7)) - (-5 *2 (-2 (|:| -1695 (-667 *6)) (|:| |vec| (-1229 *5)))) - (-5 *1 (-789 *5 *6 *7 *4 *3)) (-4 *6 (-636 *5)) (-4 *3 (-636 *4))))) + (-12 (-4 *5 (-358)) (-4 *7 (-1207 *5)) (-4 *4 (-705 *5 *7)) + (-5 *2 (-2 (|:| -1700 (-669 *6)) (|:| |vec| (-1231 *5)))) + (-5 *1 (-791 *5 *6 *7 *4 *3)) (-4 *6 (-638 *5)) (-4 *3 (-638 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-633 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-788 *4 *2)) - (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))))) + (-12 (-5 *3 (-635 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-790 *4 *2)) + (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))))) ((*1 *2 *3) - (-12 (-5 *3 (-634 *2 (-400 *2))) (-4 *2 (-1205 *4)) (-5 *1 (-788 *4 *2)) - (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536)))))))) + (-12 (-5 *3 (-636 *2 (-402 *2))) (-4 *2 (-1207 *4)) (-5 *1 (-790 *4 *2)) + (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-633 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1205 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) - (-5 *1 (-788 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-633 (-400 *6))) (-4 *6 (-1205 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-5 *2 (-2 (|:| -2123 (-620 (-400 *6))) (|:| -1695 (-667 *5)))) - (-5 *1 (-788 *5 *6)) (-5 *4 (-620 (-400 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-634 *6 (-400 *6))) (-5 *4 (-400 *6)) (-4 *6 (-1205 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-620 *4)))) - (-5 *1 (-788 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-634 *6 (-400 *6))) (-4 *6 (-1205 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-5 *2 (-2 (|:| -2123 (-620 (-400 *6))) (|:| -1695 (-667 *5)))) - (-5 *1 (-788 *5 *6)) (-5 *4 (-620 (-400 *6)))))) + (-12 (-5 *3 (-635 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1207 *5)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4)))) + (-5 *1 (-790 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-635 (-402 *6))) (-4 *6 (-1207 *5)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-5 *2 (-2 (|:| -2128 (-622 (-402 *6))) (|:| -1700 (-669 *5)))) + (-5 *1 (-790 *5 *6)) (-5 *4 (-622 (-402 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-636 *6 (-402 *6))) (-5 *4 (-402 *6)) (-4 *6 (-1207 *5)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2128 (-622 *4)))) + (-5 *1 (-790 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-636 *6 (-402 *6))) (-4 *6 (-1207 *5)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-5 *2 (-2 (|:| -2128 (-622 (-402 *6))) (|:| -1700 (-669 *5)))) + (-5 *1 (-790 *5 *6)) (-5 *4 (-622 (-402 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-1205 *4)) - (-5 *1 (-787 *4 *3 *2 *5)) (-4 *2 (-636 *3)) (-4 *5 (-636 (-400 *3))))) + (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-1207 *4)) + (-5 *1 (-789 *4 *3 *2 *5)) (-4 *2 (-638 *3)) (-4 *5 (-638 (-402 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-400 *5)) (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) - (-4 *5 (-1205 *4)) (-5 *1 (-787 *4 *5 *2 *6)) (-4 *2 (-636 *5)) - (-4 *6 (-636 *3))))) + (-12 (-5 *3 (-402 *5)) (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) + (-4 *5 (-1207 *4)) (-5 *1 (-789 *4 *5 *2 *6)) (-4 *2 (-638 *5)) + (-4 *6 (-638 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-620 *5) *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *6 (-1205 *5)) - (-5 *2 (-620 (-2 (|:| -4306 *5) (|:| -3612 *3)))) (-5 *1 (-787 *5 *6 *3 *7)) - (-4 *3 (-636 *6)) (-4 *7 (-636 (-400 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) - (-5 *2 (-620 (-2 (|:| |deg| (-749)) (|:| -3612 *5)))) - (-5 *1 (-787 *4 *5 *3 *6)) (-4 *3 (-636 *5)) (-4 *6 (-636 (-400 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1205 *4)) (-5 *1 (-787 *4 *2 *3 *5)) - (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) - (-4 *5 (-636 (-400 *2)))))) + (-12 (-5 *4 (-1 (-622 *5) *6)) + (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *6 (-1207 *5)) + (-5 *2 (-622 (-2 (|:| -4311 *5) (|:| -3617 *3)))) (-5 *1 (-789 *5 *6 *3 *7)) + (-4 *3 (-638 *6)) (-4 *7 (-638 (-402 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) + (-5 *2 (-622 (-2 (|:| |deg| (-751)) (|:| -3617 *5)))) + (-5 *1 (-789 *4 *5 *3 *6)) (-4 *3 (-638 *5)) (-4 *6 (-638 (-402 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1207 *4)) (-5 *1 (-789 *4 *2 *3 *5)) + (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) + (-4 *5 (-638 (-402 *2)))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1205 *4)) (-5 *1 (-785 *4 *2 *3 *5)) - (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) - (-4 *5 (-636 (-400 *2))))) + (-12 (-4 *2 (-1207 *4)) (-5 *1 (-787 *4 *2 *3 *5)) + (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) + (-4 *5 (-638 (-402 *2))))) ((*1 *2 *3 *4) - (-12 (-4 *2 (-1205 *4)) (-5 *1 (-785 *4 *2 *5 *3)) - (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-636 *2)) - (-4 *3 (-636 (-400 *2)))))) + (-12 (-4 *2 (-1207 *4)) (-5 *1 (-787 *4 *2 *5 *3)) + (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-638 *2)) + (-4 *3 (-638 (-402 *2)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) - (-5 *2 (-620 (-2 (|:| -4127 *5) (|:| -3572 *5)))) (-5 *1 (-785 *4 *5 *3 *6)) - (-4 *3 (-636 *5)) (-4 *6 (-636 (-400 *5))))) + (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) + (-5 *2 (-622 (-2 (|:| -4132 *5) (|:| -3577 *5)))) (-5 *1 (-787 *4 *5 *3 *6)) + (-4 *3 (-638 *5)) (-4 *6 (-638 (-402 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *4 (-1205 *5)) - (-5 *2 (-620 (-2 (|:| -4127 *4) (|:| -3572 *4)))) (-5 *1 (-785 *5 *4 *3 *6)) - (-4 *3 (-636 *4)) (-4 *6 (-636 (-400 *4))))) + (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *4 (-1207 *5)) + (-5 *2 (-622 (-2 (|:| -4132 *4) (|:| -3577 *4)))) (-5 *1 (-787 *5 *4 *3 *6)) + (-4 *3 (-638 *4)) (-4 *6 (-638 (-402 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *5 (-1205 *4)) - (-5 *2 (-620 (-2 (|:| -4127 *5) (|:| -3572 *5)))) (-5 *1 (-785 *4 *5 *6 *3)) - (-4 *6 (-636 *5)) (-4 *3 (-636 (-400 *5))))) + (-12 (-4 *4 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *5 (-1207 *4)) + (-5 *2 (-622 (-2 (|:| -4132 *5) (|:| -3577 *5)))) (-5 *1 (-787 *4 *5 *6 *3)) + (-4 *6 (-638 *5)) (-4 *3 (-638 (-402 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *4 (-1205 *5)) - (-5 *2 (-620 (-2 (|:| -4127 *4) (|:| -3572 *4)))) (-5 *1 (-785 *5 *4 *6 *3)) - (-4 *6 (-636 *4)) (-4 *3 (-636 (-400 *4)))))) + (-12 (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *4 (-1207 *5)) + (-5 *2 (-622 (-2 (|:| -4132 *4) (|:| -3577 *4)))) (-5 *1 (-787 *5 *4 *6 *3)) + (-4 *6 (-638 *4)) (-4 *3 (-638 (-402 *4)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-400 *2)) (-4 *2 (-1205 *5)) - (-5 *1 (-785 *5 *2 *3 *6)) (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) - (-4 *3 (-636 *2)) (-4 *6 (-636 *4)))) + (|partial| -12 (-5 *4 (-402 *2)) (-4 *2 (-1207 *5)) + (-5 *1 (-787 *5 *2 *3 *6)) (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) + (-4 *3 (-638 *2)) (-4 *6 (-638 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-400 *2))) (-4 *2 (-1205 *5)) (-5 *1 (-785 *5 *2 *3 *6)) - (-4 *5 (-13 (-356) (-145) (-1012 (-400 (-536))))) (-4 *3 (-636 *2)) - (-4 *6 (-636 (-400 *2)))))) + (-12 (-5 *4 (-622 (-402 *2))) (-4 *2 (-1207 *5)) (-5 *1 (-787 *5 *2 *3 *6)) + (-4 *5 (-13 (-358) (-145) (-1014 (-402 (-538))))) (-4 *3 (-638 *2)) + (-4 *6 (-638 (-402 *2)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-633 *4)) (-4 *4 (-335 *5 *6 *7)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-4 *6 (-1205 *5)) (-4 *7 (-1205 (-400 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-620 *4)))) - (-5 *1 (-784 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1147)) - (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-782 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1169) (-934)))))) + (-12 (-5 *3 (-635 *4)) (-4 *4 (-337 *5 *6 *7)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-4 *6 (-1207 *5)) (-4 *7 (-1207 (-402 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2128 (-622 *4)))) + (-5 *1 (-786 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1149)) + (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-784 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1171) (-936)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) - (-4 *4 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-5 *1 (-782 *4 *2)) (-4 *2 (-13 (-29 *4) (-1169) (-934)))))) + (-12 (-5 *3 (-1149)) + (-4 *4 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-5 *1 (-784 *4 *2)) (-4 *2 (-13 (-29 *4) (-1171) (-936)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) (-5 *2 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371)))) - (-5 *1 (-781))))) + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373)))) + (-5 *1 (-783))))) (((*1 *1 *2) (-12 (-5 *2 - (-620 + (-622 (-2 - (|:| -4215 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (|:| -2186 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371))))))) - (-5 *1 (-781))))) + (|:| -4220 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (|:| -2191 + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373))))))) + (-5 *1 (-783))))) (((*1 *2 *1) (-12 (-5 *2 - (-620 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219))))) - (-5 *1 (-546)))) + (-622 + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221))))) + (-5 *1 (-548)))) ((*1 *2 *1) - (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-620 *3)))) + (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-622 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-620 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219))))) - (-5 *1 (-781))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-781))))) -(((*1 *1) (-5 *1 (-781)))) + (-622 + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221))))) + (-5 *1 (-783))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-783))))) +(((*1 *1) (-5 *1 (-783)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1147)) - (-4 *6 (-13 (-825) (-300) (-1012 (-536)) (-619 (-536)) (-145))) - (-4 *4 (-13 (-29 *6) (-1169) (-934))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2123 (-620 *4)))) - (-5 *1 (-779 *6 *4 *3)) (-4 *3 (-636 *4))))) + (-12 (-5 *5 (-1149)) + (-4 *6 (-13 (-827) (-302) (-1014 (-538)) (-621 (-538)) (-145))) + (-4 *4 (-13 (-29 *6) (-1171) (-936))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2128 (-622 *4)))) + (-5 *1 (-781 *6 *4 *3)) (-4 *3 (-638 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-778)) + (-12 (-4 *1 (-780)) (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-1009))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-970 *3)) (-4 *3 (-170)) (-5 *1 (-776 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170))))) -(((*1 *1 *1) (-4 *1 (-237))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-1011))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-170)) (-5 *1 (-778 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170))))) +(((*1 *1 *1) (-4 *1 (-239))) ((*1 *1 *1) - (-12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *2)) + (-12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-3886 (-12 (-5 *1 (-286 *2)) (-4 *2 (-356)) (-4 *2 (-1183))) - (-12 (-5 *1 (-286 *2)) (-4 *2 (-465)) (-4 *2 (-1183))))) - ((*1 *1 *1) (-4 *1 (-465))) - ((*1 *2 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-343)) (-5 *1 (-519 *3)))) + (-3891 (-12 (-5 *1 (-288 *2)) (-4 *2 (-358)) (-4 *2 (-1185))) + (-12 (-5 *1 (-288 *2)) (-4 *2 (-467)) (-4 *2 (-1185))))) + ((*1 *1 *1) (-4 *1 (-467))) + ((*1 *2 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-345)) (-5 *1 (-521 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (-12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-774 *2)) (-4 *2 (-170)) (-4 *2 (-356))))) -(((*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) - ((*1 *1 *1 *1) (-4 *1 (-771)))) + ((*1 *1 *1) (-12 (-4 *1 (-776 *2)) (-4 *2 (-170)) (-4 *2 (-358))))) +(((*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) + ((*1 *1 *1 *1) (-4 *1 (-773)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-536))))) + (-5 *1 (-769)) (-5 *5 (-538))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-536))))) + (-5 *1 (-769)) (-5 *5 (-538))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-536))))) + (-5 *1 (-769)) (-5 *5 (-538))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-536))))) + (-5 *1 (-769)) (-5 *5 (-538))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-536))))) + (-5 *1 (-769)) (-5 *5 (-538))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-536))))) + (-5 *1 (-769)) (-5 *5 (-538))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-536))))) + (-5 *1 (-769)) (-5 *5 (-538))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-536))))) + (-5 *1 (-769)) (-5 *5 (-538))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-371) (-371))) (-5 *4 (-371)) + (-12 (-5 *3 (-1 (-373) (-373))) (-5 *4 (-373)) (-5 *2 - (-2 (|:| -3756 *4) (|:| -1651 *4) (|:| |totalpts| (-536)) + (-2 (|:| -3761 *4) (|:| -1656 *4) (|:| |totalpts| (-538)) (|:| |success| (-112)))) - (-5 *1 (-767)) (-5 *5 (-536))))) + (-5 *1 (-769)) (-5 *5 (-538))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) - (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766))))) + (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) + (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-536)) - (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) - (-5 *7 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) - (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) + (-12 (-5 *4 (-538)) + (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373)))) + (-5 *7 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) + (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-536)) - (-5 *6 (-2 (|:| |try| (-371)) (|:| |did| (-371)) (|:| -1527 (-371)))) - (-5 *7 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) (-5 *3 (-1229 (-371))) - (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766))))) + (-12 (-5 *4 (-538)) + (-5 *6 (-2 (|:| |try| (-373)) (|:| |did| (-373)) (|:| -1532 (-373)))) + (-5 *7 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) (-5 *3 (-1231 (-373))) + (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) - (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766))))) + (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) + (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) - (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766)))) + (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) + (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-536)) (-5 *6 (-1 (-1235) (-1229 *5) (-1229 *5) (-371))) - (-5 *3 (-1229 (-371))) (-5 *5 (-371)) (-5 *2 (-1235)) (-5 *1 (-766))))) + (-12 (-5 *4 (-538)) (-5 *6 (-1 (-1237) (-1231 *5) (-1231 *5) (-373))) + (-5 *3 (-1231 (-373))) (-5 *5 (-373)) (-5 *2 (-1237)) (-5 *1 (-768))))) (((*1 *2 *3 *2) - (-12 (-4 *1 (-765)) (-5 *2 (-1009)) + (-12 (-4 *1 (-767)) (-5 *2 (-1011)) (-5 *3 - (-2 (|:| |fn| (-307 (-219))) (|:| -1556 (-620 (-1060 (-817 (-219))))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))))) + (-2 (|:| |fn| (-309 (-221))) (|:| -1561 (-622 (-1062 (-819 (-221))))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))))) ((*1 *2 *3 *2) - (-12 (-4 *1 (-765)) (-5 *2 (-1009)) + (-12 (-4 *1 (-767)) (-5 *2 (-1011)) (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219))))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-764))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-764))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-893)) (-5 *1 (-764))))) -(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1129)) (-5 *1 (-764))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-893)) (-5 *1 (-764))))) -(((*1 *2 *3) (-12 (-5 *3 (-893)) (-5 *2 (-1129)) (-5 *1 (-764))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-920 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-920 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-170)) - (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221))))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-895)) (-5 *1 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1131)) (-5 *1 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-895)) (-5 *1 (-766))))) +(((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1131)) (-5 *1 (-766))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-922 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-922 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-170)) + (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (|partial| -12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) - (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (|partial| -12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) + (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) - (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (|partial| -12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) + (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-920 (-166 *4)))) (-4 *4 (-543)) - (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (|partial| -12 (-5 *3 (-402 (-922 (-166 *4)))) (-4 *4 (-545)) + (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-400 (-920 (-166 *5)))) (-5 *4 (-893)) (-4 *5 (-543)) - (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (|partial| -12 (-5 *3 (-402 (-922 (-166 *5)))) (-5 *4 (-895)) (-4 *5 (-545)) + (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) - (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) + (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) - (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) + (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-543)) (-4 *4 (-825)) - (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (|partial| -12 (-5 *3 (-309 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-827)) + (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-543)) - (-4 *5 (-825)) (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) - (-5 *1 (-763 *5))))) + (|partial| -12 (-5 *3 (-309 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-545)) + (-4 *5 (-827)) (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) + (-5 *1 (-765 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 *2)) - (-5 *2 (-371)) (-5 *1 (-763 *4)))) + (|partial| -12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) + (-5 *2 (-373)) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) - (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) + (|partial| -12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) + (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 *2)) - (-5 *2 (-371)) (-5 *1 (-763 *4)))) + (|partial| -12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 *2)) + (-5 *2 (-373)) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) - (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5)))) + (|partial| -12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) + (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) - (-4 *4 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *4)))) + (|partial| -12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) + (-4 *4 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) - (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5))))) + (|partial| -12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) + (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-166 (-371))) (-5 *1 (-763 *3)) (-4 *3 (-596 (-371))))) + (-12 (-5 *2 (-166 (-373))) (-5 *1 (-765 *3)) (-4 *3 (-598 (-373))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-893)) (-5 *2 (-166 (-371))) (-5 *1 (-763 *3)) - (-4 *3 (-596 (-371))))) + (-12 (-5 *4 (-895)) (-5 *2 (-166 (-373))) (-5 *1 (-765 *3)) + (-4 *3 (-598 (-373))))) ((*1 *2 *3) - (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-166 *4)) (-4 *4 (-170)) (-4 *4 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-166 *5)) (-5 *4 (-893)) (-4 *5 (-170)) (-4 *5 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (-12 (-5 *3 (-166 *5)) (-5 *4 (-895)) (-4 *5 (-170)) (-4 *5 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-920 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-922 (-166 *4))) (-4 *4 (-170)) (-4 *4 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-920 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-170)) - (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (-12 (-5 *3 (-922 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-170)) + (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (-12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) - (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) + (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-400 (-920 (-166 *4)))) (-4 *4 (-543)) (-4 *4 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-402 (-922 (-166 *4)))) (-4 *4 (-545)) (-4 *4 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 (-166 *5)))) (-5 *4 (-893)) (-4 *5 (-543)) - (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (-12 (-5 *3 (-402 (-922 (-166 *5)))) (-5 *4 (-895)) (-4 *5 (-545)) + (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 (-371))) - (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 (-373))) + (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) - (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5)))) + (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) + (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-307 (-166 *4))) (-4 *4 (-543)) (-4 *4 (-825)) - (-4 *4 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-309 (-166 *4))) (-4 *4 (-545)) (-4 *4 (-827)) + (-4 *4 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 (-166 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) - (-4 *5 (-596 (-371))) (-5 *2 (-166 (-371))) (-5 *1 (-763 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-371)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2)))) + (-12 (-5 *3 (-309 (-166 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) + (-4 *5 (-598 (-373))) (-5 *2 (-166 (-373))) (-5 *1 (-765 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-373)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-893)) (-5 *2 (-371)) (-5 *1 (-763 *3)) (-4 *3 (-596 *2)))) + (-12 (-5 *4 (-895)) (-5 *2 (-373)) (-5 *1 (-765 *3)) (-4 *3 (-598 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-920 *4)) (-4 *4 (-1023)) (-4 *4 (-596 *2)) (-5 *2 (-371)) - (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-922 *4)) (-4 *4 (-1025)) (-4 *4 (-598 *2)) (-5 *2 (-373)) + (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-920 *5)) (-5 *4 (-893)) (-4 *5 (-1023)) (-4 *5 (-596 *2)) - (-5 *2 (-371)) (-5 *1 (-763 *5)))) + (-12 (-5 *3 (-922 *5)) (-5 *4 (-895)) (-4 *5 (-1025)) (-4 *5 (-598 *2)) + (-5 *2 (-373)) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-400 (-920 *4))) (-4 *4 (-543)) (-4 *4 (-596 *2)) (-5 *2 (-371)) - (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-402 (-922 *4))) (-4 *4 (-545)) (-4 *4 (-598 *2)) (-5 *2 (-373)) + (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-596 *2)) - (-5 *2 (-371)) (-5 *1 (-763 *5)))) + (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-598 *2)) + (-5 *2 (-373)) (-5 *1 (-765 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-307 *4)) (-4 *4 (-543)) (-4 *4 (-825)) (-4 *4 (-596 *2)) - (-5 *2 (-371)) (-5 *1 (-763 *4)))) + (-12 (-5 *3 (-309 *4)) (-4 *4 (-545)) (-4 *4 (-827)) (-4 *4 (-598 *2)) + (-5 *2 (-373)) (-5 *1 (-765 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-307 *5)) (-5 *4 (-893)) (-4 *5 (-543)) (-4 *5 (-825)) - (-4 *5 (-596 *2)) (-5 *2 (-371)) (-5 *1 (-763 *5))))) + (-12 (-5 *3 (-309 *5)) (-5 *4 (-895)) (-4 *5 (-545)) (-4 *5 (-827)) + (-4 *5 (-598 *2)) (-5 *2 (-373)) (-5 *1 (-765 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-536)))) + (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-170))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-761 *2)) (-4 *2 (-38 (-400 (-536)))) + (-12 (-5 *3 (-751)) (-5 *1 (-763 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-170))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-759 *2)) (-4 *2 (-1023))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-1025))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-620 (-759 *3))) (-5 *1 (-759 *3)) (-4 *3 (-543)) - (-4 *3 (-1023))))) + (-12 (-5 *2 (-622 (-761 *3))) (-5 *1 (-761 *3)) (-4 *3 (-545)) + (-4 *3 (-1025))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -4111 *3) (|:| |coef1| (-759 *3)) (|:| |coef2| (-759 *3)))) - (-5 *1 (-759 *3)) (-4 *3 (-543)) (-4 *3 (-1023))))) + (-5 *2 (-2 (|:| -4116 *3) (|:| |coef1| (-761 *3)) (|:| |coef2| (-761 *3)))) + (-5 *1 (-761 *3)) (-4 *3 (-545)) (-4 *3 (-1025))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4111 *3) (|:| |coef1| (-759 *3)))) (-5 *1 (-759 *3)) - (-4 *3 (-543)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-2 (|:| -4116 *3) (|:| |coef1| (-761 *3)))) (-5 *1 (-761 *3)) + (-4 *3 (-545)) (-4 *3 (-1025))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4111 *3) (|:| |coef2| (-759 *3)))) (-5 *1 (-759 *3)) - (-4 *3 (-543)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-2 (|:| -4116 *3) (|:| |coef2| (-761 *3)))) (-5 *1 (-761 *3)) + (-4 *3 (-545)) (-4 *3 (-1025))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-400 (-536)))) + (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 - (-620 - (-2 (|:| |outval| *4) (|:| |outmult| (-536)) - (|:| |outvect| (-620 (-667 *4)))))) - (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823)))))) + (-622 + (-2 (|:| |outval| *4) (|:| |outmult| (-538)) + (|:| |outvect| (-622 (-669 *4)))))) + (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 (-620 *4)) (-5 *1 (-757 *4)) - (-4 *4 (-13 (-356) (-823)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-667 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))) + (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 (-622 *4)) (-5 *1 (-759 *4)) + (-4 *4 (-13 (-358) (-825)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-669 *2)) (-4 *2 (-170)) (-5 *1 (-144 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-170)) (-4 *2 (-1205 *4)) (-5 *1 (-175 *4 *2 *3)) - (-4 *3 (-703 *4 *2)))) + (-12 (-4 *4 (-170)) (-4 *2 (-1207 *4)) (-5 *1 (-175 *4 *2 *3)) + (-4 *3 (-705 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-400 (-920 *5)))) (-5 *4 (-1147)) (-5 *2 (-920 *5)) - (-5 *1 (-285 *5)) (-4 *5 (-444)))) + (-12 (-5 *3 (-669 (-402 (-922 *5)))) (-5 *4 (-1149)) (-5 *2 (-922 *5)) + (-5 *1 (-287 *5)) (-4 *5 (-446)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-920 *4)))) (-5 *2 (-920 *4)) (-5 *1 (-285 *4)) - (-4 *4 (-444)))) - ((*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1205 *3)))) + (-12 (-5 *3 (-669 (-402 (-922 *4)))) (-5 *2 (-922 *4)) (-5 *1 (-287 *4)) + (-4 *4 (-446)))) + ((*1 *2 *1) (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *2 (-1207 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 (-920 (-166 (-400 (-536))))) - (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823))))) + (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 (-922 (-166 (-402 (-538))))) + (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *4 (-1147)) - (-5 *2 (-920 (-166 (-400 (-536))))) (-5 *1 (-743 *5)) - (-4 *5 (-13 (-356) (-823))))) + (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *4 (-1149)) + (-5 *2 (-922 (-166 (-402 (-538))))) (-5 *1 (-745 *5)) + (-4 *5 (-13 (-358) (-825))))) ((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *2 (-920 (-400 (-536)))) - (-5 *1 (-757 *4)) (-4 *4 (-13 (-356) (-823))))) + (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *2 (-922 (-402 (-538)))) + (-5 *1 (-759 *4)) (-4 *4 (-13 (-358) (-825))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-400 (-536)))) (-5 *4 (-1147)) - (-5 *2 (-920 (-400 (-536)))) (-5 *1 (-757 *5)) (-4 *5 (-13 (-356) (-823)))))) + (-12 (-5 *3 (-669 (-402 (-538)))) (-5 *4 (-1149)) + (-5 *2 (-922 (-402 (-538)))) (-5 *1 (-759 *5)) (-4 *5 (-13 (-358) (-825)))))) (((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-620 (-749))) - (-5 *1 (-756 *3 *4 *5 *6 *7)) (-4 *3 (-1205 *6)) (-4 *7 (-924 *6 *4 *5))))) + (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-622 (-751))) + (-5 *1 (-758 *3 *4 *5 *6 *7)) (-4 *3 (-1207 *6)) (-4 *7 (-926 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1205 *9)) (-4 *7 (-771)) (-4 *8 (-825)) (-4 *9 (-300)) - (-4 *10 (-924 *9 *7 *8)) + (-12 (-4 *6 (-1207 *9)) (-4 *7 (-773)) (-4 *8 (-827)) (-4 *9 (-302)) + (-4 *10 (-926 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-620 (-1141 *10))) - (|:| |dterm| (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-620 *6)) (|:| |nlead| (-620 *10)))) - (-5 *1 (-756 *6 *7 *8 *9 *10)) (-5 *3 (-1141 *10)) (-5 *4 (-620 *6)) - (-5 *5 (-620 *10))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-4 *5 (-322 *4)) (-4 *6 (-1205 *5)) (-5 *2 (-620 *3)) - (-5 *1 (-755 *4 *5 *6 *3 *7)) (-4 *3 (-1205 *6)) (-14 *7 (-893))))) + (-2 (|:| |deter| (-622 (-1143 *10))) + (|:| |dterm| (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-622 *6)) (|:| |nlead| (-622 *10)))) + (-5 *1 (-758 *6 *7 *8 *9 *10)) (-5 *3 (-1143 *10)) (-5 *4 (-622 *6)) + (-5 *5 (-622 *10))))) +(((*1 *2 *3) + (-12 (-4 *4 (-345)) (-4 *5 (-324 *4)) (-4 *6 (-1207 *5)) (-5 *2 (-622 *3)) + (-5 *1 (-757 *4 *5 *6 *3 *7)) (-4 *3 (-1207 *6)) (-14 *7 (-895))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| (-112)) (|:| -1655 *4)))) - (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| (-112)) (|:| -1660 *4)))) + (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1129)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) - (-4 *4 (-1037 *6 *7 *8)) (-5 *2 (-1235)) (-5 *1 (-754 *6 *7 *8 *4 *5)) - (-4 *5 (-1043 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1131)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) + (-4 *4 (-1039 *6 *7 *8)) (-5 *2 (-1237)) (-5 *1 (-756 *6 *7 *8 *4 *5)) + (-4 *5 (-1045 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) + (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))))) - ((*1 *1 *1) (-5 *1 (-371))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))))) + ((*1 *1 *1) (-5 *1 (-373))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *3 (-1037 *5 *6 *7)) - (-5 *2 (-620 (-2 (|:| |val| *3) (|:| -1655 *4)))) - (-5 *1 (-754 *5 *6 *7 *3 *4)) (-4 *4 (-1043 *5 *6 *7 *3))))) + (-12 (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *3 (-1039 *5 *6 *7)) + (-5 *2 (-622 (-2 (|:| |val| *3) (|:| -1660 *4)))) + (-5 *1 (-756 *5 *6 *7 *3 *4)) (-4 *4 (-1045 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *2 (-1037 *4 *5 *6)) - (-5 *1 (-754 *4 *5 *6 *2 *3)) (-4 *3 (-1043 *4 *5 *6 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-371)))) - ((*1 *1 *1 *1) (-4 *1 (-535))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *1 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-749))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *2 (-1039 *4 *5 *6)) + (-5 *1 (-756 *4 *5 *6 *2 *3)) (-4 *3 (-1045 *4 *5 *6 *2))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-373)))) + ((*1 *1 *1 *1) (-4 *1 (-537))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) + ((*1 *1 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-751))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-166 (-400 (-536))))) + (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 - (-620 - (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-536)) - (|:| |outvect| (-620 (-667 (-166 *4))))))) - (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) + (-622 + (-2 (|:| |outval| (-166 *4)) (|:| |outmult| (-538)) + (|:| |outvect| (-622 (-669 (-166 *4))))))) + (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 (-166 (-400 (-536))))) (-5 *2 (-620 (-166 *4))) - (-5 *1 (-743 *4)) (-4 *4 (-13 (-356) (-823)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-740)))) -(((*1 *1 *1 *1) (-4 *1 (-465))) ((*1 *1 *1 *1) (-4 *1 (-740)))) -(((*1 *1 *1 *1) (-4 *1 (-740)))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-738))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-738))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-920 (-536)))) (-5 *1 (-429)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-667 (-219))) (-5 *2 (-1074)) (-5 *1 (-738)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-667 (-536))) (-5 *2 (-1074)) (-5 *1 (-738))))) -(((*1 *2 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738))))) -(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738))))) -(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-738))))) + (-12 (-5 *3 (-669 (-166 (-402 (-538))))) (-5 *2 (-622 (-166 *4))) + (-5 *1 (-745 *4)) (-4 *4 (-13 (-358) (-825)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-742)))) +(((*1 *1 *1 *1) (-4 *1 (-467))) ((*1 *1 *1 *1) (-4 *1 (-742)))) +(((*1 *1 *1 *1) (-4 *1 (-742)))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-740))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-740))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-922 (-538)))) (-5 *1 (-431)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-221))) (-5 *2 (-1076)) (-5 *1 (-740)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1149)) (-5 *4 (-669 (-538))) (-5 *2 (-1076)) (-5 *1 (-740))))) +(((*1 *2 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740))))) +(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740))))) +(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-740))))) (((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) + (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) + (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-536)) (-5 *5 (-166 (-219))) (-5 *6 (-1129)) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-538)) (-5 *5 (-166 (-221))) (-5 *6 (-1131)) (-5 *4 (-221)) + (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1129)) (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *2 (-1009)) - (-5 *1 (-737))))) + (-12 (-5 *3 (-1131)) (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *2 (-1011)) + (-5 *1 (-739))))) (((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1129)) (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *2 (-1009)) - (-5 *1 (-737))))) + (-12 (-5 *3 (-1131)) (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *2 (-1011)) + (-5 *1 (-739))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) + (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-166 (-219))) (-5 *5 (-536)) (-5 *6 (-1129)) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *4 (-166 (-221))) (-5 *5 (-538)) (-5 *6 (-1131)) (-5 *3 (-221)) + (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-166 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-737))))) + (-12 (-5 *3 (-166 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-739))))) (((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-736))))) + (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) + (-5 *1 (-738))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-736))))) + (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) + (-5 *1 (-738))))) (((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) - (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-736))))) + (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538))) + (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-738))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-736))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-738))))) (((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-69 APROD)))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-735))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-69 APROD)))) (-5 *4 (-221)) + (-5 *2 (-1011)) (-5 *1 (-737))))) (((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) - (-5 *2 (-1009)) (-5 *1 (-735))))) + (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) + (-5 *2 (-1011)) (-5 *1 (-737))))) (((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 APROD)))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1009)) - (-5 *1 (-735))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 APROD)))) + (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-72 MSOLVE)))) (-5 *2 (-1011)) + (-5 *1 (-737))))) (((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) - (-5 *2 (-1009)) (-5 *1 (-735))))) + (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) + (-5 *2 (-1011)) (-5 *1 (-737))))) (((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) - (-5 *1 (-735))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) + (-5 *1 (-737))))) (((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737))))) (((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) - (-5 *2 (-1009)) (-5 *1 (-735))))) + (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) + (-5 *2 (-1011)) (-5 *1 (-737))))) (((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-735))))) + (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-737))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-735))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-737))))) (((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-166 (-219)))) (-5 *2 (-1009)) - (-5 *1 (-735))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-166 (-221)))) (-5 *2 (-1011)) + (-5 *1 (-737))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-112)) (-5 *5 (-667 (-166 (-219)))) - (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *4 (-112)) (-5 *5 (-669 (-166 (-221)))) + (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-112)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *4 (-112)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) + (-5 *1 (-736))))) (((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-734)))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *4 (-221)) + (-5 *2 (-1011)) (-5 *1 (-736)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-66 DOT)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-381)) - (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-66 DOT)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-67 IMAGE)))) (-5 *8 (-383)) + (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-536)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) (-5 *4 (-221)) + (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) - (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) + (-5 *1 (-736))))) (((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-734))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-736))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-166 (-219)))) - (-5 *2 (-1009)) (-5 *1 (-733))))) + (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-166 (-221)))) + (-5 *2 (-1011)) (-5 *1 (-735))))) (((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-166 (-219)))) - (-5 *2 (-1009)) (-5 *1 (-733))))) + (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-166 (-221)))) + (-5 *2 (-1011)) (-5 *1 (-735))))) (((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-166 (-219)))) (-5 *2 (-1009)) - (-5 *1 (-733))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-166 (-221)))) (-5 *2 (-1011)) + (-5 *1 (-735))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-733))))) + (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) + (-5 *1 (-735))))) (((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-733))))) + (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) + (-5 *1 (-735))))) (((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-733))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-735))))) (((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *3 (-536)) - (-5 *2 (-1009)) (-5 *1 (-733))))) + (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *3 (-538)) + (-5 *2 (-1011)) (-5 *1 (-735))))) (((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-620 (-112))) (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) - (-5 *7 (-219)) (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-733))))) + (-12 (-5 *4 (-622 (-112))) (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538))) + (-5 *7 (-221)) (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-735))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-667 (-536))) (-5 *5 (-112)) (-5 *7 (-667 (-219))) - (-5 *3 (-536)) (-5 *6 (-219)) (-5 *2 (-1009)) (-5 *1 (-733))))) + (-12 (-5 *4 (-669 (-538))) (-5 *5 (-112)) (-5 *7 (-669 (-221))) + (-5 *3 (-538)) (-5 *6 (-221)) (-5 *2 (-1011)) (-5 *1 (-735))))) (((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-620 (-112))) (-5 *7 (-667 (-219))) (-5 *8 (-667 (-536))) - (-5 *3 (-536)) (-5 *4 (-219)) (-5 *5 (-112)) (-5 *2 (-1009)) - (-5 *1 (-733))))) + (-12 (-5 *6 (-622 (-112))) (-5 *7 (-669 (-221))) (-5 *8 (-669 (-538))) + (-5 *3 (-538)) (-5 *4 (-221)) (-5 *5 (-112)) (-5 *2 (-1011)) + (-5 *1 (-735))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) - (-5 *1 (-732))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) + (-5 *1 (-734))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *6 (-219)) - (-5 *7 (-667 (-536))) (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-79 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-536)) - (-5 *2 (-1009)) (-5 *1 (-732))))) + (-12 (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *6 (-221)) + (-5 *7 (-669 (-538))) (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-79 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-538)) + (-5 *2 (-1011)) (-5 *1 (-734))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) - (-12 (-5 *5 (-667 (-219))) (-5 *6 (-112)) (-5 *7 (-667 (-536))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-536)) - (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-732))))) + (-12 (-5 *5 (-669 (-221))) (-5 *6 (-112)) (-5 *7 (-669 (-538))) + (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-64 QPHESS)))) (-5 *3 (-538)) + (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-734))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-112)) (-5 *2 (-1009)) - (-5 *1 (-732))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-112)) (-5 *2 (-1011)) + (-5 *1 (-734))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1009)) - (-5 *1 (-732))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-65 FUNCT1)))) (-5 *2 (-1011)) + (-5 *1 (-734))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1009)) - (-5 *1 (-732))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1011)) + (-5 *1 (-734))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1009)) - (-5 *1 (-732))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-78 LSFUN1)))) (-5 *2 (-1011)) + (-5 *1 (-734))))) (((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-536)) (-5 *5 (-112)) (-5 *6 (-667 (-219))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-219)) - (-5 *2 (-1009)) (-5 *1 (-732))))) + (-12 (-5 *3 (-538)) (-5 *5 (-112)) (-5 *6 (-669 (-221))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-221)) + (-5 *2 (-1011)) (-5 *1 (-734))))) (((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) - (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) + (-5 *1 (-733))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1129)) (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) - (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *3 (-1131)) (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) + (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) - (-5 *7 (-667 (-536))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) + (-5 *7 (-669 (-538))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *6 (-219)) - (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *6 (-221)) + (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1129)) (-5 *5 (-667 (-219))) (-5 *6 (-219)) - (-5 *7 (-667 (-536))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *3 (-1131)) (-5 *5 (-669 (-221))) (-5 *6 (-221)) + (-5 *7 (-669 (-538))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) - (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) + (-5 *1 (-733))))) (((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) - (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) + (-5 *1 (-733))))) (((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) - (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) + (-5 *1 (-733))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) - (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) + (-5 *1 (-733))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) - (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) + (-5 *1 (-733))))) (((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-667 (-219))) (-5 *6 (-667 (-536))) (-5 *3 (-536)) - (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *5 (-669 (-221))) (-5 *6 (-669 (-538))) (-5 *3 (-538)) + (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) - (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) + (-5 *1 (-733))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-731))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-733))))) (((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) - (-5 *1 (-730))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) + (-5 *1 (-732))))) (((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) - (-5 *1 (-730))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) + (-5 *1 (-732))))) (((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-667 (-219))) (-5 *5 (-667 (-536))) (-5 *6 (-219)) - (-5 *3 (-536)) (-5 *2 (-1009)) (-5 *1 (-730))))) + (-12 (-5 *4 (-669 (-221))) (-5 *5 (-669 (-538))) (-5 *6 (-221)) + (-5 *3 (-538)) (-5 *2 (-1011)) (-5 *1 (-732))))) (((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732))))) (((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732))))) (((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) (-5 *2 (-1009)) - (-5 *1 (-730))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) (-5 *2 (-1011)) + (-5 *1 (-732))))) (((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732))))) (((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732))))) (((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-730))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-732))))) (((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) - (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) (-5 *6 (-653 (-219))) - (-5 *3 (-219)) (-5 *2 (-1009)) (-5 *1 (-729))))) + (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) (-5 *6 (-655 (-221))) + (-5 *3 (-221)) (-5 *2 (-1011)) (-5 *1 (-731))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *5 (-1129)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1009)) - (-5 *1 (-729))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *5 (-1131)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1011)) + (-5 *1 (-731))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) (-5 *4 (-219)) (-5 *2 (-1009)) - (-5 *1 (-729))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) (-5 *4 (-221)) (-5 *2 (-1011)) + (-5 *1 (-731))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-536)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-219)) (-5 *2 (-1009)) (-5 *1 (-728))))) + (-12 (-5 *3 (-538)) (-5 *5 (-669 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-221)) (-5 *2 (-1011)) (-5 *1 (-730))))) (((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1009)) - (-5 *1 (-728)))) + (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1011)) + (-5 *1 (-730)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-381)) - (-5 *2 (-1009)) (-5 *1 (-728))))) + (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-383)) + (-5 *2 (-1011)) (-5 *1 (-730))))) (((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-728))))) + (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-221)) + (-5 *2 (-1011)) (-5 *1 (-730))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1009)) - (-5 *1 (-728))))) + (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1011)) + (-5 *1 (-730))))) (((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-536)) (-5 *5 (-1129)) (-5 *6 (-667 (-219))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) - (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-70 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-728))))) + (-12 (-5 *4 (-538)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) + (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-70 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221)) + (-5 *2 (-1011)) (-5 *1 (-730))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-536)) (-5 *5 (-1129)) (-5 *6 (-667 (-219))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) - (-5 *8 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) - (-5 *9 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-728))))) + (-12 (-5 *4 (-538)) (-5 *5 (-1131)) (-5 *6 (-669 (-221))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) + (-5 *8 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) + (-5 *9 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221)) + (-5 *2 (-1011)) (-5 *1 (-730))))) (((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-88 G)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-728))))) + (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-88 G)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) (-5 *3 (-221)) + (-5 *2 (-1011)) (-5 *1 (-730))))) (((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-81 FCN)))) - (-5 *7 (-3 (|:| |fn| (-381)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-728))))) + (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-81 FCN)))) + (-5 *7 (-3 (|:| |fn| (-383)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-221)) + (-5 *2 (-1011)) (-5 *1 (-730))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1011)) + (-5 *1 (-729))))) (((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-727))))) + (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-729))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-74 FUNCTN)))) (-5 *2 (-1011)) + (-5 *1 (-729))))) (((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) (-5 *2 (-1009)) (-5 *1 (-727))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) (-5 *2 (-1011)) (-5 *1 (-729))))) (((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) + (-5 *1 (-729))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) + (-5 *1 (-729))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) + (-5 *1 (-729))))) (((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 G)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 G)))) (-5 *2 (-1011)) + (-5 *1 (-729))))) (((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) + (-5 *1 (-729))))) (((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-536)) (-5 *5 (-667 (-219))) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *3 (-219)) - (-5 *2 (-1009)) (-5 *1 (-727))))) + (-12 (-5 *4 (-538)) (-5 *5 (-669 (-221))) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *3 (-221)) + (-5 *2 (-1011)) (-5 *1 (-729))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) + (-5 *1 (-729))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) - (-5 *1 (-727))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) + (-5 *1 (-729))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) + (-5 *1 (-728))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) + (-5 *1 (-728))))) (((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) + (-5 *1 (-728))))) (((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-1129)) (-5 *5 (-667 (-219))) (-5 *2 (-1009)) - (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-1131)) (-5 *5 (-669 (-221))) (-5 *2 (-1011)) + (-5 *1 (-728))))) (((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *2 (-1009)) (-5 *1 (-726))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *2 (-1011)) (-5 *1 (-728))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1009)) - (-5 *1 (-725))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-73 FCN)))) (-5 *2 (-1011)) + (-5 *1 (-727))))) (((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-536)) (-5 *4 (-667 (-219))) (-5 *5 (-219)) - (-5 *6 (-3 (|:| |fn| (-381)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1009)) - (-5 *1 (-725))))) + (-12 (-5 *3 (-538)) (-5 *4 (-669 (-221))) (-5 *5 (-221)) + (-5 *6 (-3 (|:| |fn| (-383)) (|:| |fp| (-80 FCN)))) (-5 *2 (-1011)) + (-5 *1 (-727))))) (((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-219)) (-5 *4 (-536)) - (-5 *5 (-3 (|:| |fn| (-381)) (|:| |fp| (-60 -3423)))) (-5 *2 (-1009)) - (-5 *1 (-725))))) + (-12 (-5 *3 (-221)) (-5 *4 (-538)) + (-5 *5 (-3 (|:| |fn| (-383)) (|:| |fp| (-60 -3428)))) (-5 *2 (-1011)) + (-5 *1 (-727))))) (((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-112)) (-5 *2 (-1009)) - (-5 *1 (-724))))) + (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-112)) (-5 *2 (-1011)) + (-5 *1 (-726))))) (((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-667 (-219))) (-5 *4 (-536)) (-5 *5 (-112)) (-5 *2 (-1009)) - (-5 *1 (-724))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-723 *3)) (-4 *3 (-170))))) + (-12 (-5 *3 (-669 (-221))) (-5 *4 (-538)) (-5 *5 (-112)) (-5 *2 (-1011)) + (-5 *1 (-726))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-725 *3)) (-4 *3 (-170))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 *6)) (-5 *3 (-536)) (-4 *6 (-300)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5))))) + (-12 (-5 *2 (-1143 *6)) (-5 *3 (-538)) (-4 *6 (-302)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-4 *7 (-825)) - (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) (-4 *8 (-300)) (-5 *2 (-620 (-749))) - (-5 *1 (-721 *6 *7 *8 *9)) (-5 *5 (-749))))) + (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-4 *7 (-827)) + (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-4 *8 (-302)) (-5 *2 (-622 (-751))) + (-5 *1 (-723 *6 *7 *8 *9)) (-5 *5 (-751))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-536)) (-5 *4 (-398 *2)) (-4 *2 (-924 *7 *5 *6)) - (-5 *1 (-721 *5 *6 *7 *2)) (-4 *5 (-771)) (-4 *6 (-825)) (-4 *7 (-300))))) + (-12 (-5 *3 (-538)) (-5 *4 (-400 *2)) (-4 *2 (-926 *7 *5 *6)) + (-5 *1 (-723 *5 *6 *7 *2)) (-4 *5 (-773)) (-4 *6 (-827)) (-4 *7 (-302))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-5 *5 (-620 (-620 *8))) - (-4 *7 (-825)) (-4 *8 (-300)) (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) + (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-5 *5 (-622 (-622 *8))) + (-4 *7 (-827)) (-4 *8 (-302)) (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 - (-2 (|:| |upol| (-1141 *8)) (|:| |Lval| (-620 *8)) - (|:| |Lfact| (-620 (-2 (|:| -4087 (-1141 *8)) (|:| -2488 (-536))))) + (-2 (|:| |upol| (-1143 *8)) (|:| |Lval| (-622 *8)) + (|:| |Lfact| (-622 (-2 (|:| -4092 (-1143 *8)) (|:| -2493 (-538))))) (|:| |ctpol| *8))) - (-5 *1 (-721 *6 *7 *8 *9))))) + (-5 *1 (-723 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-620 *7)) (-5 *5 (-620 (-620 *8))) (-4 *7 (-825)) (-4 *8 (-300)) - (-4 *6 (-771)) (-4 *9 (-924 *8 *6 *7)) + (-12 (-5 *4 (-622 *7)) (-5 *5 (-622 (-622 *8))) (-4 *7 (-827)) (-4 *8 (-302)) + (-4 *6 (-773)) (-4 *9 (-926 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-620 (-2 (|:| -4087 (-1141 *9)) (|:| -2488 (-536))))))) - (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9))))) + (|:| |suPart| (-622 (-2 (|:| -4092 (-1143 *9)) (|:| -2493 (-538))))))) + (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1143 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-536)) (-4 *6 (-771)) (-4 *7 (-825)) (-4 *8 (-300)) - (-4 *9 (-924 *8 *6 *7)) - (-5 *2 (-2 (|:| -2115 (-1141 *9)) (|:| |polval| (-1141 *8)))) - (-5 *1 (-721 *6 *7 *8 *9)) (-5 *3 (-1141 *9)) (-5 *4 (-1141 *8))))) + (-12 (-5 *5 (-538)) (-4 *6 (-773)) (-4 *7 (-827)) (-4 *8 (-302)) + (-4 *9 (-926 *8 *6 *7)) + (-5 *2 (-2 (|:| -2120 (-1143 *9)) (|:| |polval| (-1143 *8)))) + (-5 *1 (-723 *6 *7 *8 *9)) (-5 *3 (-1143 *9)) (-5 *4 (-1143 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-771)) (-4 *4 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) - (-5 *1 (-721 *5 *4 *6 *3)) (-4 *3 (-924 *6 *5 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-620 (-2 (|:| -4087 (-1141 *6)) (|:| -2488 (-536))))) - (-4 *6 (-300)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-536)) - (-5 *1 (-721 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-300)) (-5 *2 (-398 *3)) - (-5 *1 (-721 *4 *5 *6 *3)) (-4 *3 (-924 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-718 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-717))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-715 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-1072)))) - ((*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-1072))))) + (-12 (-4 *5 (-773)) (-4 *4 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3)) + (-5 *1 (-723 *5 *4 *6 *3)) (-4 *3 (-926 *6 *5 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-622 (-2 (|:| -4092 (-1143 *6)) (|:| -2493 (-538))))) + (-4 *6 (-302)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-538)) + (-5 *1 (-723 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-302)) (-5 *2 (-400 *3)) + (-5 *1 (-723 *4 *5 *6 *3)) (-4 *3 (-926 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-720 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-719))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-717 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-717 *2)) (-4 *2 (-1074)))) + ((*1 *1) (-12 (-5 *1 (-717 *2)) (-4 *2 (-1074))))) (((*1 *2 *1) - (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) - (-5 *2 (-620 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-715 *3)) (-4 *3 (-1072))))) + (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) + (-5 *2 (-622 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-717 *3)) (-4 *3 (-1074))))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-749)))) + (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-751)))) ((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) (-5 *2 (-749)))) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-751)))) ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-714 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-705))))) + (-12 (-5 *2 (-751)) (-5 *1 (-716 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-707))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-543)) (-4 *2 (-924 *3 *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) - (-5 *3 (-400 (-920 *6))) (-4 *5 (-771)) - (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)))))))) + (-12 (-4 *6 (-545)) (-4 *2 (-926 *3 *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) + (-5 *3 (-402 (-922 *6))) (-4 *5 (-773)) + (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 (-920 *6))) (-4 *6 (-543)) - (-4 *2 (-924 (-400 (-920 *6)) *5 *4)) (-5 *1 (-711 *5 *4 *6 *2)) - (-4 *5 (-771)) (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $)))))))) + (-12 (-5 *3 (-1143 (-922 *6))) (-4 *6 (-545)) + (-4 *2 (-926 (-402 (-922 *6)) *5 *4)) (-5 *1 (-713 *5 *4 *6 *2)) + (-4 *5 (-773)) (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *2)) (-4 *2 (-924 (-400 (-920 *6)) *5 *4)) - (-5 *1 (-711 *5 *4 *6 *2)) (-4 *5 (-771)) - (-4 *4 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) (-4 *6 (-543))))) + (-12 (-5 *3 (-1143 *2)) (-4 *2 (-926 (-402 (-922 *6)) *5 *4)) + (-5 *1 (-713 *5 *4 *6 *2)) (-4 *5 (-773)) + (-4 *4 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) (-4 *6 (-545))))) (((*1 *2 *3) - (-12 (-4 *4 (-771)) (-4 *5 (-13 (-825) (-10 -8 (-15 -4325 ((-1147) $))))) - (-4 *6 (-543)) (-5 *2 (-2 (|:| -2728 (-920 *6)) (|:| -2168 (-920 *6)))) - (-5 *1 (-711 *4 *5 *6 *3)) (-4 *3 (-924 (-400 (-920 *6)) *4 *5))))) + (-12 (-4 *4 (-773)) (-4 *5 (-13 (-827) (-10 -8 (-15 -4330 ((-1149) $))))) + (-4 *6 (-545)) (-5 *2 (-2 (|:| -2733 (-922 *6)) (|:| -2173 (-922 *6)))) + (-5 *1 (-713 *4 *5 *6 *3)) (-4 *3 (-926 (-402 (-922 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-536)) - (-14 *6 (-749)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-134 *5 *6 *7)) (-14 *5 (-538)) + (-14 *6 (-751)) (-4 *7 (-170)) (-4 *8 (-170)) (-5 *2 (-134 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *9)) (-4 *9 (-1023)) (-4 *5 (-825)) (-4 *6 (-771)) - (-4 *8 (-1023)) (-4 *2 (-924 *9 *7 *5)) (-5 *1 (-707 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-771)) (-4 *4 (-924 *8 *6 *5))))) + (-12 (-5 *3 (-622 *9)) (-4 *9 (-1025)) (-4 *5 (-827)) (-4 *6 (-773)) + (-4 *8 (-1025)) (-4 *2 (-926 *9 *7 *5)) (-5 *1 (-709 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-773)) (-4 *4 (-926 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-400 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1205 *5)) - (-5 *1 (-706 *5 *2)) (-4 *5 (-356))))) + (-12 (-5 *3 (-402 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1207 *5)) + (-5 *1 (-708 *5 *2)) (-4 *5 (-358))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -3420 (-398 *3)) (|:| |special| (-398 *3)))) - (-5 *1 (-706 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| -3425 (-400 *3)) (|:| |special| (-400 *3)))) + (-5 *1 (-708 *5 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-701)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-705)) (-5 *2 (-112))))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) + (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-703)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-707)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) - (-14 *4 (-620 (-1147))))) + (-12 (-5 *2 (-751)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) + (-14 *4 (-622 (-1149))))) ((*1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) - (-14 *4 (-620 (-1147))))) - ((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) + (-12 (-5 *2 (-751)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) + (-14 *4 (-622 (-1149))))) + ((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-329 *3 *4 *5 *2)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-4 *2 (-335 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-331 *3 *4 *5 *2)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-4 *2 (-337 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-751)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-170)))) - ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-703 *2 *3)) (-4 *3 (-1205 *2))))) + ((*1 *1) (-12 (-4 *2 (-170)) (-4 *1 (-705 *2 *3)) (-4 *3 (-1207 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1229 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) - (-4 *1 (-703 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1205 *5)) (-5 *2 (-667 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-699)) (-5 *2 (-893)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-749))))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) - ((*1 *1 *1) (|partial| -4 *1 (-701)))) -(((*1 *1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-170)) (-4 *2 (-543)))) - ((*1 *1 *1) (|partial| -4 *1 (-701)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-697 *2)) (-4 *2 (-356))))) + (-12 (-5 *3 (-1231 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) + (-4 *1 (-705 *5 *6)) (-4 *5 (-170)) (-4 *6 (-1207 *5)) (-5 *2 (-669 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-701)) (-5 *2 (-895)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-703)) (-5 *2 (-751))))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) + ((*1 *1 *1) (|partial| -4 *1 (-703)))) +(((*1 *1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-170)) (-4 *2 (-545)))) + ((*1 *1 *1) (|partial| -4 *1 (-703)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-699 *2)) (-4 *2 (-358))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-170)) (-5 *1 (-282 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1205 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (|partial| -12 (-4 *2 (-170)) (-5 *1 (-284 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1207 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-690 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-692 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-694 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-696 *2 *3 *4 *5 *6)) (-4 *2 (-170)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1210 *3 *4 *5)) (-5 *1 (-312 *3 *4 *5)) - (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-398 *3)) (-4 *3 (-543)))) - ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) + (-12 (-5 *2 (-1212 *3 *4 *5)) (-5 *1 (-314 *3 *4 *5)) + (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538)))) + ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-400 *3)) (-4 *3 (-545)))) + ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) ((*1 *2 *1) - (-12 (-4 *2 (-1072)) (-5 *1 (-692 *3 *2 *4)) (-4 *3 (-825)) + (-12 (-4 *2 (-1074)) (-5 *1 (-694 *3 *2 *4)) (-4 *3 (-827)) (-14 *4 - (-1 (-112) (-2 (|:| -2487 *3) (|:| -2488 *2)) - (-2 (|:| -2487 *3) (|:| -2488 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-893)) (-4 *1 (-361)))) + (-1 (-112) (-2 (|:| -2492 *3) (|:| -2493 *2)) + (-2 (|:| -2492 *3) (|:| -2493 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-895)) (-4 *1 (-363)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343)))) + (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345)))) ((*1 *2 *1) - (-12 (-4 *2 (-825)) (-5 *1 (-692 *2 *3 *4)) (-4 *3 (-1072)) + (-12 (-4 *2 (-827)) (-5 *1 (-694 *2 *3 *4)) (-4 *3 (-1074)) (-14 *4 - (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *3)) - (-2 (|:| -2487 *2) (|:| -2488 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-691 *3 *2)) (-4 *2 (-1205 *3))))) + (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *3)) + (-2 (|:| -2492 *2) (|:| -2493 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-693 *3 *2)) (-4 *2 (-1207 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1023)) (-5 *2 (-1229 *3)) (-5 *1 (-691 *3 *4)) - (-4 *4 (-1205 *3))))) + (-12 (-4 *3 (-1025)) (-5 *2 (-1231 *3)) (-5 *1 (-693 *3 *4)) + (-4 *4 (-1207 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1023)) (-5 *1 (-691 *3 *4)) - (-4 *4 (-1205 *3))))) + (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1025)) (-5 *1 (-693 *3 *4)) + (-4 *4 (-1207 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1023)) (-5 *2 (-1229 *3)) (-5 *1 (-691 *3 *4)) - (-4 *4 (-1205 *3))))) + (-12 (-4 *3 (-1025)) (-5 *2 (-1231 *3)) (-5 *1 (-693 *3 *4)) + (-4 *4 (-1207 *3))))) (((*1 *2) - (-12 (-4 *3 (-1023)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) - (-4 *4 (-1205 *3))))) + (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) + (-4 *4 (-1207 *3))))) (((*1 *2) - (-12 (-4 *3 (-1023)) (-5 *2 (-932 (-691 *3 *4))) (-5 *1 (-691 *3 *4)) - (-4 *4 (-1205 *3))))) + (-12 (-4 *3 (-1025)) (-5 *2 (-934 (-693 *3 *4))) (-5 *1 (-693 *3 *4)) + (-4 *4 (-1207 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-343)) (-4 *2 (-1023)) (-5 *1 (-691 *2 *3)) (-4 *3 (-1205 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689))))) -(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689))))) -(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1129)) (-5 *1 (-689))))) + (-12 (-4 *2 (-345)) (-4 *2 (-1025)) (-5 *1 (-693 *2 *3)) (-4 *3 (-1207 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691))))) +(((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691))))) +(((*1 *2 *3) (-12 (-5 *3 (-840)) (-5 *2 (-1131)) (-5 *1 (-691))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-620 (-1141 *13))) (-5 *3 (-1141 *13)) - (-5 *4 (-620 *12)) (-5 *5 (-620 *10)) (-5 *6 (-620 *13)) - (-5 *7 (-620 (-620 (-2 (|:| -3407 (-749)) (|:| |pcoef| *13))))) - (-5 *8 (-620 (-749))) (-5 *9 (-1229 (-620 (-1141 *10)))) (-4 *12 (-825)) - (-4 *10 (-300)) (-4 *13 (-924 *10 *11 *12)) (-4 *11 (-771)) - (-5 *1 (-686 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-622 (-1143 *13))) (-5 *3 (-1143 *13)) + (-5 *4 (-622 *12)) (-5 *5 (-622 *10)) (-5 *6 (-622 *13)) + (-5 *7 (-622 (-622 (-2 (|:| -3412 (-751)) (|:| |pcoef| *13))))) + (-5 *8 (-622 (-751))) (-5 *9 (-1231 (-622 (-1143 *10)))) (-4 *12 (-827)) + (-4 *10 (-302)) (-4 *13 (-926 *10 *11 *12)) (-4 *11 (-773)) + (-5 *1 (-688 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-620 *11)) (-5 *5 (-620 (-1141 *9))) (-5 *6 (-620 *9)) - (-5 *7 (-620 *12)) (-5 *8 (-620 (-749))) (-4 *11 (-825)) (-4 *9 (-300)) - (-4 *12 (-924 *9 *10 *11)) (-4 *10 (-771)) (-5 *2 (-620 (-1141 *12))) - (-5 *1 (-686 *10 *11 *9 *12)) (-5 *3 (-1141 *12))))) + (|partial| -12 (-5 *4 (-622 *11)) (-5 *5 (-622 (-1143 *9))) (-5 *6 (-622 *9)) + (-5 *7 (-622 *12)) (-5 *8 (-622 (-751))) (-4 *11 (-827)) (-4 *9 (-302)) + (-4 *12 (-926 *9 *10 *11)) (-4 *10 (-773)) (-5 *2 (-622 (-1143 *12))) + (-5 *1 (-688 *10 *11 *9 *12)) (-5 *3 (-1143 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-620 (-1141 *11))) (-5 *3 (-1141 *11)) - (-5 *4 (-620 *10)) (-5 *5 (-620 *8)) (-5 *6 (-620 (-749))) - (-5 *7 (-1229 (-620 (-1141 *8)))) (-4 *10 (-825)) (-4 *8 (-300)) - (-4 *11 (-924 *8 *9 *10)) (-4 *9 (-771)) (-5 *1 (-686 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-622 (-1143 *11))) (-5 *3 (-1143 *11)) + (-5 *4 (-622 *10)) (-5 *5 (-622 *8)) (-5 *6 (-622 (-751))) + (-5 *7 (-1231 (-622 (-1143 *8)))) (-4 *10 (-827)) (-4 *8 (-302)) + (-4 *11 (-926 *8 *9 *10)) (-4 *9 (-773)) (-5 *1 (-688 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1147)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *3 *5 *6 *7)) - (-4 *3 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *7 (-1183)))) + (-12 (-5 *4 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *3 *5 *6 *7)) + (-4 *3 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *7 (-1185)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *3 *5 *6)) - (-4 *3 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183))))) + (-12 (-5 *4 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *3 *5 *6)) + (-4 *3 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185))))) (((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)) - (-4 *4 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183))))) + (-12 (-5 *3 (-1149)) (-5 *2 (-1 *6 *5)) (-5 *1 (-687 *4 *5 *6)) + (-4 *4 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-684 *3 *4)) - (-4 *3 (-1183)) (-4 *4 (-1183))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-620 (-1147))) (-5 *3 (-1147)) (-5 *1 (-525)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-686 *3 *4)) + (-4 *3 (-1185)) (-4 *4 (-1185))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-622 (-1149))) (-5 *3 (-1149)) (-5 *1 (-527)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) + (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1147)) (-5 *1 (-683 *3)) (-4 *3 (-596 (-525))))) + (-12 (-5 *2 (-1149)) (-5 *1 (-685 *3)) (-4 *3 (-598 (-527))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-620 (-1147))) (-5 *2 (-1147)) (-5 *1 (-683 *3)) - (-4 *3 (-596 (-525)))))) + (-12 (-5 *4 (-622 (-1149))) (-5 *2 (-1149)) (-5 *1 (-685 *3)) + (-4 *3 (-598 (-527)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-5 *2 (-1 (-219) (-219))) (-5 *1 (-682 *3)) - (-4 *3 (-596 (-525))))) + (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221))) (-5 *1 (-684 *3)) + (-4 *3 (-598 (-527))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1147)) (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-682 *3)) - (-4 *3 (-596 (-525)))))) + (-12 (-5 *4 (-1149)) (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-684 *3)) + (-4 *3 (-598 (-527)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-680 *4 *5 *6 *7)) - (-4 *4 (-596 (-525))) (-4 *5 (-1183)) (-4 *6 (-1183)) (-4 *7 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-679)))) - ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-679))))) + (-12 (-5 *3 (-1149)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-682 *4 *5 *6 *7)) + (-4 *4 (-598 (-527))) (-4 *5 (-1185)) (-4 *6 (-1185)) (-4 *7 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-681)))) + ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-681))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-300)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-666 *3 *4 *5 *6)) - (-4 *6 (-664 *3 *4 *5)))) + (-12 (-4 *3 (-302)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-668 *3 *4 *5 *6)) + (-4 *6 (-666 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2091 *3) (|:| -3230 *3))) (-5 *1 (-678 *3)) - (-4 *3 (-300))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-300)) (-5 *1 (-678 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-536)) (-5 *1 (-677))))) -(((*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893)))) - ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677)))) - ((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-677))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) - ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677))))) -(((*1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677)))) - ((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-677))))) + (-12 (-5 *2 (-2 (|:| -2096 *3) (|:| -3235 *3))) (-5 *1 (-680 *3)) + (-4 *3 (-302))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-302)) (-5 *1 (-680 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-399)) (-5 *2 (-538)))) + ((*1 *2 *1) (-12 (-5 *2 (-538)) (-5 *1 (-679))))) +(((*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) + ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895)))) + ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679)))) + ((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-679))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) + ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679))))) +(((*1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679)))) + ((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-679))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) - (-5 *4 (-1 (-219) (-219) (-219) (-219))) - (-5 *2 (-1 (-917 (-219)) (-219) (-219))) (-5 *1 (-675))))) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) + (-5 *4 (-1 (-221) (-221) (-221) (-221))) + (-5 *2 (-1 (-919 (-221)) (-221) (-221))) (-5 *1 (-677))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) - (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675))))) + (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) + (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) - (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) - (-5 *5 (-1060 (-219))) (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) - (-5 *1 (-675))))) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) + (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) + (-5 *5 (-1062 (-221))) (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221))) + (-5 *1 (-677))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) - (-5 *4 (-3 (-1 (-219) (-219) (-219) (-219)) "undefined")) - (-5 *5 (-1060 (-219))) (-5 *6 (-620 (-254))) (-5 *2 (-1104 (-219))) - (-5 *1 (-675)))) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) + (-5 *4 (-3 (-1 (-221) (-221) (-221) (-221)) "undefined")) + (-5 *5 (-1062 (-221))) (-5 *6 (-622 (-256))) (-5 *2 (-1106 (-221))) + (-5 *1 (-677)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-219))) - (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-675)))) + (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-221))) + (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-677)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1104 (-219))) (-5 *3 (-1 (-917 (-219)) (-219) (-219))) - (-5 *4 (-1060 (-219))) (-5 *5 (-620 (-254))) (-5 *1 (-675))))) + (-12 (-5 *2 (-1106 (-221))) (-5 *3 (-1 (-919 (-221)) (-221) (-221))) + (-5 *4 (-1062 (-221))) (-5 *5 (-622 (-256))) (-5 *1 (-677))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4)))) + (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3))))) + (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-2 (|:| |deg| (-749)) (|:| -2900 *5)))) (-4 *5 (-1205 *4)) - (-4 *4 (-343)) (-5 *2 (-620 *5)) (-5 *1 (-210 *4 *5)))) + (-12 (-5 *3 (-622 (-2 (|:| |deg| (-751)) (|:| -2905 *5)))) (-4 *5 (-1207 *4)) + (-4 *4 (-345)) (-5 *2 (-622 *5)) (-5 *1 (-212 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-2 (|:| -4087 *5) (|:| -4302 (-536))))) (-5 *4 (-536)) - (-4 *5 (-1205 *4)) (-5 *2 (-620 *5)) (-5 *1 (-674 *5))))) + (-12 (-5 *3 (-622 (-2 (|:| -4092 *5) (|:| -4307 (-538))))) (-5 *4 (-538)) + (-4 *5 (-1207 *4)) (-5 *2 (-622 *5)) (-5 *1 (-676 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-536)) (-5 *2 (-620 (-2 (|:| -4087 *3) (|:| -4302 *4)))) - (-5 *1 (-674 *3)) (-4 *3 (-1205 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-674 *2)) (-4 *2 (-1205 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-275 *2)) (-4 *2 (-1183)) (-4 *2 (-1072)))) - ((*1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1072))))) + (-12 (-5 *4 (-538)) (-5 *2 (-622 (-2 (|:| -4092 *3) (|:| -4307 *4)))) + (-5 *1 (-676 *3)) (-4 *3 (-1207 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-676 *2)) (-4 *2 (-1207 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-1185)) (-4 *2 (-1074)))) + ((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1074))))) (((*1 *2 *1) - (-12 (-4 *1 (-673 *3)) (-4 *3 (-1072)) - (-5 *2 (-620 (-2 (|:| -2186 *3) (|:| -2064 (-749)))))))) + (-12 (-4 *1 (-675 *3)) (-4 *3 (-1074)) + (-5 *2 (-622 (-2 (|:| -2191 *3) (|:| -2069 (-751)))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-1072)) (-4 *7 (-874 *6)) (-5 *2 (-667 *7)) - (-5 *1 (-670 *6 *7 *3 *4)) (-4 *3 (-365 *7)) - (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4348))))))) + (-12 (-5 *5 (-751)) (-4 *6 (-1074)) (-4 *7 (-876 *6)) (-5 *2 (-669 *7)) + (-5 *1 (-672 *6 *7 *3 *4)) (-4 *3 (-367 *7)) + (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4353))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *4 (-620 (-1147))) - (-5 *2 (-667 (-307 (-219)))) (-5 *1 (-199)))) + (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *4 (-622 (-1149))) + (-5 *2 (-669 (-309 (-221)))) (-5 *1 (-201)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1072)) (-4 *6 (-874 *5)) (-5 *2 (-667 *6)) - (-5 *1 (-670 *5 *6 *3 *4)) (-4 *3 (-365 *6)) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348))))))) + (-12 (-4 *5 (-1074)) (-4 *6 (-876 *5)) (-5 *2 (-669 *6)) + (-5 *1 (-672 *5 *6 *3 *4)) (-4 *3 (-367 *6)) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353))))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-749)) (-4 *6 (-1072)) (-4 *3 (-874 *6)) (-5 *2 (-667 *3)) - (-5 *1 (-670 *6 *3 *7 *4)) (-4 *7 (-365 *3)) - (-4 *4 (-13 (-365 *6) (-10 -7 (-6 -4348))))))) + (-12 (-5 *5 (-751)) (-4 *6 (-1074)) (-4 *3 (-876 *6)) (-5 *2 (-669 *3)) + (-5 *1 (-672 *6 *3 *7 *4)) (-4 *7 (-367 *3)) + (-4 *4 (-13 (-367 *6) (-10 -7 (-6 -4353))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1072)) (-4 *3 (-874 *5)) (-5 *2 (-667 *3)) - (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-365 *3)) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348))))))) + (-12 (-4 *5 (-1074)) (-4 *3 (-876 *5)) (-5 *2 (-669 *3)) + (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-367 *3)) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353))))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1072)) (-4 *2 (-874 *4)) (-5 *1 (-670 *4 *2 *5 *3)) - (-4 *5 (-365 *2)) (-4 *3 (-13 (-365 *4) (-10 -7 (-6 -4348))))))) + (-12 (-4 *4 (-1074)) (-4 *2 (-876 *4)) (-5 *1 (-672 *4 *2 *5 *3)) + (-4 *5 (-367 *2)) (-4 *3 (-13 (-367 *4) (-10 -7 (-6 -4353))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1072)) (-4 *2 (-874 *5)) (-5 *1 (-670 *5 *2 *3 *4)) - (-4 *3 (-365 *2)) (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348))))))) + (-12 (-4 *5 (-1074)) (-4 *2 (-876 *5)) (-5 *1 (-672 *5 *2 *3 *4)) + (-4 *3 (-367 *2)) (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1072)) (-4 *3 (-874 *5)) (-5 *2 (-1229 *3)) - (-5 *1 (-670 *5 *3 *6 *4)) (-4 *6 (-365 *3)) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4348))))))) -(((*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-595 (-838)))))) + (-12 (-4 *5 (-1074)) (-4 *3 (-876 *5)) (-5 *2 (-1231 *3)) + (-5 *1 (-672 *5 *3 *6 *4)) (-4 *6 (-367 *3)) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4353))))))) +(((*1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-597 (-840)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-667 *4)) (-5 *3 (-749)) (-4 *4 (-1023)) (-5 *1 (-668 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-1023)) (-5 *1 (-668 *3))))) + (-12 (-5 *2 (-669 *4)) (-5 *3 (-751)) (-4 *4 (-1025)) (-5 *1 (-670 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-669 *3)) (-4 *3 (-1025)) (-5 *1 (-670 *3))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) + (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-543)) (-4 *3 (-170)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-666 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) + (-12 (-4 *3 (-545)) (-4 *3 (-170)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-668 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-536)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) - (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-664 *3 *5 *6))))) + (-12 (-5 *4 (-538)) (-4 *3 (-170)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) + (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-666 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-536)) (-4 *3 (-170)) (-4 *5 (-365 *3)) (-4 *6 (-365 *3)) - (-5 *1 (-666 *3 *5 *6 *2)) (-4 *2 (-664 *3 *5 *6))))) + (-12 (-5 *4 (-538)) (-4 *3 (-170)) (-4 *5 (-367 *3)) (-4 *6 (-367 *3)) + (-5 *1 (-668 *3 *5 *6 *2)) (-4 *2 (-666 *3 *5 *6))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-536)) (-4 *4 (-170)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4)) - (-5 *1 (-666 *4 *5 *6 *2)) (-4 *2 (-664 *4 *5 *6))))) + (-12 (-5 *3 (-538)) (-4 *4 (-170)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4)) + (-5 *1 (-668 *4 *5 *6 *2)) (-4 *2 (-666 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2))))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2))))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-664 *2 *3 *4)) (-4 *2 (-1023)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2))))) + (-12 (-4 *1 (-666 *2 *3 *4)) (-4 *2 (-1025)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3))))) + (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3))))) + (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3))))) + (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-536)) (-4 *1 (-664 *3 *4 *5)) (-4 *3 (-1023)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3))))) + (-12 (-5 *2 (-538)) (-4 *1 (-666 *3 *4 *5)) (-4 *3 (-1025)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-662 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-664 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-662 *4 *5 *6)) (-4 *4 (-1072))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-664 *4 *5 *6)) (-4 *4 (-1074))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1072)) (-4 *6 (-1072)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-662 *4 *5 *6)) (-4 *5 (-1072))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1074)) (-4 *6 (-1074)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-664 *4 *5 *6)) (-4 *5 (-1074))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-4 *6 (-1072)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1072)) (-4 *4 (-1072)) (-4 *6 (-1072)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1074)) (-4 *4 (-1074)) (-4 *6 (-1074)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-664 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-661 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-663 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1072)) (-4 *5 (-1072)) (-5 *2 (-1 *5)) - (-5 *1 (-661 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1074)) (-4 *5 (-1074)) (-5 *2 (-1 *5)) + (-5 *1 (-663 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-661 *4 *3)) (-4 *4 (-1072)) - (-4 *3 (-1072))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-663 *4 *3)) (-4 *4 (-1074)) + (-4 *3 (-1074))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-749) *2)) (-5 *4 (-749)) (-4 *2 (-1072)) - (-5 *1 (-656 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-749) *3)) (-4 *3 (-1072)) (-5 *1 (-660 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1072))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-660 *2)) (-4 *2 (-1072)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-620 *5) (-620 *5))) (-5 *4 (-536)) (-5 *2 (-620 *5)) - (-5 *1 (-660 *5)) (-4 *5 (-1072))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-660 *3)) (-4 *3 (-1072))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-620 (-1184))) (-5 *3 (-1184)) (-5 *1 (-659))))) + (-12 (-5 *3 (-1 *2 (-751) *2)) (-5 *4 (-751)) (-4 *2 (-1074)) + (-5 *1 (-658 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-751) *3)) (-4 *3 (-1074)) (-5 *1 (-662 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-662 *2)) (-4 *2 (-1074))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-662 *2)) (-4 *2 (-1074)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-622 *5) (-622 *5))) (-5 *4 (-538)) (-5 *2 (-622 *5)) + (-5 *1 (-662 *5)) (-4 *5 (-1074))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-662 *3)) (-4 *3 (-1074))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-622 (-1186))) (-5 *3 (-1186)) (-5 *1 (-661))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1072)) (-4 *6 (-1072)) - (-4 *2 (-1072)) (-5 *1 (-658 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-657 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-657 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1074)) (-4 *6 (-1074)) + (-4 *2 (-1074)) (-5 *1 (-660 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-659 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-659 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-749)) (-4 *2 (-1072)) (-5 *1 (-656 *2))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-751)) (-4 *2 (-1074)) (-5 *1 (-658 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325)))) + (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-1063 (-920 (-536)))) (-5 *2 (-323)) - (-5 *1 (-325)))) + (-12 (-5 *3 (-1149)) (-5 *4 (-1065 (-922 (-538)))) (-5 *2 (-325)) + (-5 *1 (-327)))) ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1023)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1074))))) (((*1 *1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-653 *3)) (-4 *3 (-1023)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-751)) (-5 *1 (-655 *3)) (-4 *3 (-1025)) (-4 *3 (-1074))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1023)) (-4 *2 (-1072))))) + (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-655 *2)) (-4 *2 (-1025)) (-4 *2 (-1074))))) (((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-749)) (-5 *1 (-653 *2)) (-4 *2 (-1072))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-653 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-1229 (-749))) (-5 *1 (-653 *3)) (-4 *3 (-1072))))) -(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-652 *3)) (-4 *3 (-1183)) (-5 *2 (-749))))) -(((*1 *2 *3) - (-12 (-5 *3 (-797 *4)) (-4 *4 (-825)) (-5 *2 (-112)) (-5 *1 (-650 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3))))) + (-12 (-5 *3 (-751)) (-5 *1 (-655 *2)) (-4 *2 (-1074))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-655 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-1231 (-751))) (-5 *1 (-655 *3)) (-4 *3 (-1074))))) +(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-112))))) +(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-654 *3)) (-4 *3 (-1185)) (-5 *2 (-751))))) +(((*1 *2 *3) + (-12 (-5 *3 (-799 *4)) (-4 *4 (-827)) (-5 *2 (-112)) (-5 *1 (-652 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-797 *3)) (-4 *3 (-825)) (-5 *1 (-650 *3))))) + (|partial| -12 (-5 *2 (-799 *3)) (-4 *3 (-827)) (-5 *1 (-652 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *5)) (-5 *4 (-893)) (-4 *5 (-825)) - (-5 *2 (-57 (-620 (-650 *5)))) (-5 *1 (-650 *5))))) + (-12 (-5 *3 (-622 *5)) (-5 *4 (-895)) (-4 *5 (-827)) + (-5 *2 (-57 (-622 (-652 *5)))) (-5 *1 (-652 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *5)) (-5 *4 (-893)) (-4 *5 (-825)) (-5 *2 (-620 (-650 *5))) - (-5 *1 (-650 *5))))) + (-12 (-5 *3 (-622 *5)) (-5 *4 (-895)) (-4 *5 (-827)) (-5 *2 (-622 (-652 *5))) + (-5 *1 (-652 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 *7)) (-4 *7 (-825)) - (-4 *8 (-924 *5 *6 *7)) (-4 *5 (-543)) (-4 *6 (-771)) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 *7)) (-4 *7 (-827)) + (-4 *8 (-926 *5 *6 *7)) (-4 *5 (-545)) (-4 *6 (-773)) (-5 *2 - (-2 (|:| |particular| (-3 (-1229 (-400 *8)) "failed")) - (|:| -2123 (-620 (-1229 (-400 *8)))))) - (-5 *1 (-647 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1231 (-402 *8)) "failed")) + (|:| -2128 (-622 (-1231 (-402 *8)))))) + (-5 *1 (-649 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *6 (-13 (-365 *5) (-10 -7 (-6 -4349)))) - (-4 *4 (-13 (-365 *5) (-10 -7 (-6 -4349)))) (-5 *2 (-112)) - (-5 *1 (-645 *5 *6 *4 *3)) (-4 *3 (-664 *5 *6 *4)))) + (-12 (-4 *5 (-358)) (-4 *6 (-13 (-367 *5) (-10 -7 (-6 -4354)))) + (-4 *4 (-13 (-367 *5) (-10 -7 (-6 -4354)))) (-5 *2 (-112)) + (-5 *1 (-647 *5 *6 *4 *3)) (-4 *3 (-666 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *5)) (-5 *4 (-1229 *5)) (-4 *5 (-356)) (-5 *2 (-112)) - (-5 *1 (-646 *5))))) + (-12 (-5 *3 (-669 *5)) (-5 *4 (-1231 *5)) (-4 *5 (-358)) (-5 *2 (-112)) + (-5 *1 (-648 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-620 (-1141 *4))) (-5 *3 (-1141 *4)) (-4 *4 (-884)) - (-5 *1 (-641 *4))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) + (|partial| -12 (-5 *2 (-622 (-1143 *4))) (-5 *3 (-1143 *4)) (-4 *4 (-886)) + (-5 *1 (-643 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-638 *4 *2)) - (-4 *2 (-636 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-640 *4 *2)) + (-4 *2 (-638 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-636 *3)) (-4 *3 (-1023)) (-4 *3 (-356)))) + (-12 (-5 *2 (-751)) (-4 *1 (-638 *3)) (-4 *3 (-1025)) (-4 *3 (-358)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-1 *5 *5)) (-4 *5 (-356)) (-5 *1 (-638 *5 *2)) - (-4 *2 (-636 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356)))) + (-12 (-5 *3 (-751)) (-5 *4 (-1 *5 *5)) (-4 *5 (-358)) (-5 *1 (-640 *5 *2)) + (-4 *2 (-638 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-356)) (-5 *1 (-638 *4 *2)) - (-4 *2 (-636 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-358)) (-5 *1 (-640 *4 *2)) + (-4 *2 (-638 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-356) (-145) (-1012 (-536)) (-1012 (-400 (-536))))) - (-4 *5 (-1205 *4)) (-5 *2 (-620 (-633 (-400 *5)))) (-5 *1 (-637 *4 *5)) - (-5 *3 (-633 (-400 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-636 *2)) (-4 *2 (-1023)) (-4 *2 (-356))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-629 *3)) (-4 *3 (-1183))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-629 *3)) (-4 *3 (-1183)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-536)) (-4 *1 (-629 *2)) (-4 *2 (-1183))))) + (-4 *4 (-13 (-358) (-145) (-1014 (-538)) (-1014 (-402 (-538))))) + (-4 *5 (-1207 *4)) (-5 *2 (-622 (-635 (-402 *5)))) (-5 *1 (-639 *4 *5)) + (-5 *3 (-635 (-402 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1025)) (-4 *2 (-358))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-631 *3)) (-4 *3 (-1185))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-631 *3)) (-4 *3 (-1185)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-538)) (-4 *1 (-631 *2)) (-4 *2 (-1185))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))) - (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) (-14 *5 *4)))) + (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4)))) + (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-620 (-2 (|:| |gen| *3) (|:| -4298 *4)))) (-4 *3 (-1072)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-365 *2)) (-4 *2 (-1183)))) - ((*1 *2 *2) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3)))) + (-12 (-5 *2 (-622 (-2 (|:| |gen| *3) (|:| -4303 *4)))) (-4 *3 (-1074)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-1185)))) + ((*1 *2 *2) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-365 *2)) (-4 *2 (-1183)))) + (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-367 *2)) (-4 *2 (-1185)))) ((*1 *1 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-1072)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-629 *2 *3 *4)) (-4 *2 (-1074)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-1072)) (-4 *4 (-23)) + (-12 (-5 *2 (-112)) (-5 *1 (-629 *3 *4 *5)) (-4 *3 (-1074)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-536) (-536))) (-5 *1 (-354 *3)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-1 (-538) (-538))) (-5 *1 (-356 *3)) (-4 *3 (-1074)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-749) (-749))) (-5 *1 (-379 *3)) (-4 *3 (-1072)))) + (-12 (-5 *2 (-1 (-751) (-751))) (-5 *1 (-381 *3)) (-4 *3 (-1074)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-627 *3 *4 *5)) - (-4 *3 (-1072))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-629 *3 *4 *5)) + (-4 *3 (-1074))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-354 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-379 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-356 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-381 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-627 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-629 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-625 *3)) (-4 *3 (-1072))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1072))))) -(((*1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-620 *3)) (-4 *3 (-1183))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-1072)) (-4 *2 (-1183))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-627 *3)) (-4 *3 (-1074))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1074))))) +(((*1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-622 *3)) (-4 *3 (-1185))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-1074)) (-4 *2 (-1185))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-667 *1)) (-5 *4 (-1229 *1)) (-4 *1 (-619 *5)) (-4 *5 (-1023)) - (-5 *2 (-2 (|:| -1695 (-667 *5)) (|:| |vec| (-1229 *5)))))) + (-12 (-5 *3 (-669 *1)) (-5 *4 (-1231 *1)) (-4 *1 (-621 *5)) (-4 *5 (-1025)) + (-5 *2 (-2 (|:| -1700 (-669 *5)) (|:| |vec| (-1231 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-667 *1)) (-4 *1 (-619 *4)) (-4 *4 (-1023)) (-5 *2 (-667 *4))))) + (-12 (-5 *3 (-669 *1)) (-4 *1 (-621 *4)) (-4 *4 (-1025)) (-5 *2 (-669 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 *5)) (-4 *5 (-356)) - (-4 *5 (-543)) (-5 *2 (-1229 *5)) (-5 *1 (-618 *5 *4)))) + (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 *5)) (-4 *5 (-358)) + (-4 *5 (-545)) (-5 *2 (-1231 *5)) (-5 *1 (-620 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1229 *4)) (-4 *4 (-619 *5)) (-3671 (-4 *5 (-356))) - (-4 *5 (-543)) (-5 *2 (-1229 (-400 *5))) (-5 *1 (-618 *5 *4))))) + (|partial| -12 (-5 *3 (-1231 *4)) (-4 *4 (-621 *5)) (-3676 (-4 *5 (-358))) + (-4 *5 (-545)) (-5 *2 (-1231 (-402 *5))) (-5 *1 (-620 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1229 *5)) (-4 *5 (-619 *4)) (-4 *4 (-543)) - (-5 *2 (-1229 *4)) (-5 *1 (-618 *4 *5))))) + (|partial| -12 (-5 *3 (-1231 *5)) (-4 *5 (-621 *4)) (-4 *4 (-545)) + (-5 *2 (-1231 *4)) (-5 *1 (-620 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 *5)) (-4 *5 (-619 *4)) (-4 *4 (-543)) (-5 *2 (-112)) - (-5 *1 (-618 *4 *5))))) + (-12 (-5 *3 (-1231 *5)) (-4 *5 (-621 *4)) (-4 *4 (-545)) (-5 *2 (-112)) + (-5 *1 (-620 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-817 *3))) (-4 *3 (-13 (-27) (-1169) (-414 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-12 (-5 *4 (-288 (-819 *3))) (-4 *3 (-13 (-27) (-1171) (-416 *5))) + (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 - (-3 (-817 *3) - (-2 (|:| |leftHandLimit| (-3 (-817 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-817 *3) #1#))) + (-3 (-819 *3) + (-2 (|:| |leftHandLimit| (-3 (-819 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-819 *3) #1#))) "failed")) - (-5 *1 (-616 *5 *3)))) + (-5 *1 (-618 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-286 *3)) (-5 *5 (-1129)) - (-4 *3 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-817 *3)) - (-5 *1 (-616 *6 *3)))) + (|partial| -12 (-5 *4 (-288 *3)) (-5 *5 (-1131)) + (-4 *3 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-819 *3)) + (-5 *1 (-618 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-817 (-920 *5)))) (-4 *5 (-444)) + (-12 (-5 *4 (-288 (-819 (-922 *5)))) (-4 *5 (-446)) (-5 *2 - (-3 (-817 (-400 (-920 *5))) - (-2 (|:| |leftHandLimit| (-3 (-817 (-400 (-920 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-817 (-400 (-920 *5))) #2#))) + (-3 (-819 (-402 (-922 *5))) + (-2 (|:| |leftHandLimit| (-3 (-819 (-402 (-922 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-819 (-402 (-922 *5))) #2#))) #3="failed")) - (-5 *1 (-617 *5)) (-5 *3 (-400 (-920 *5))))) + (-5 *1 (-619 *5)) (-5 *3 (-402 (-922 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-444)) + (-12 (-5 *4 (-288 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-446)) (-5 *2 - (-3 (-817 *3) - (-2 (|:| |leftHandLimit| (-3 (-817 *3) #2#)) - (|:| |rightHandLimit| (-3 (-817 *3) #2#))) + (-3 (-819 *3) + (-2 (|:| |leftHandLimit| (-3 (-819 *3) #2#)) + (|:| |rightHandLimit| (-3 (-819 *3) #2#))) #3#)) - (-5 *1 (-617 *5)))) + (-5 *1 (-619 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-286 (-400 (-920 *6)))) (-5 *5 (-1129)) - (-5 *3 (-400 (-920 *6))) (-4 *6 (-444)) (-5 *2 (-817 *3)) - (-5 *1 (-617 *6))))) + (|partial| -12 (-5 *4 (-288 (-402 (-922 *6)))) (-5 *5 (-1131)) + (-5 *3 (-402 (-922 *6))) (-4 *6 (-446)) (-5 *2 (-819 *3)) + (-5 *1 (-619 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-286 (-810 *3))) - (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) (-5 *2 (-810 *3)) - (-5 *1 (-616 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + (|partial| -12 (-5 *4 (-288 (-812 *3))) + (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-812 *3)) + (-5 *1 (-618 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-810 (-920 *5)))) (-4 *5 (-444)) - (-5 *2 (-810 (-400 (-920 *5)))) (-5 *1 (-617 *5)) (-5 *3 (-400 (-920 *5))))) + (-12 (-5 *4 (-288 (-812 (-922 *5)))) (-4 *5 (-446)) + (-5 *2 (-812 (-402 (-922 *5)))) (-5 *1 (-619 *5)) (-5 *3 (-402 (-922 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-286 (-400 (-920 *5)))) (-5 *3 (-400 (-920 *5))) (-4 *5 (-444)) - (-5 *2 (-810 *3)) (-5 *1 (-617 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-612))))) -(((*1 *1 *1) (-12 (-5 *1 (-590 *2)) (-4 *2 (-1072)))) - ((*1 *1 *1) (-5 *1 (-612)))) + (-12 (-5 *4 (-288 (-402 (-922 *5)))) (-5 *3 (-402 (-922 *5))) (-4 *5 (-446)) + (-5 *2 (-812 *3)) (-5 *1 (-619 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-614))))) +(((*1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1074)))) + ((*1 *1 *1) (-5 *1 (-614)))) (((*1 *2 *3) - (-12 (-5 *3 (-241 *4 *5)) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) - (-5 *2 (-473 *4 *5)) (-5 *1 (-611 *4 *5))))) + (-12 (-5 *3 (-243 *4 *5)) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) + (-5 *2 (-475 *4 *5)) (-5 *1 (-613 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-620 (-241 *4 *5))) (-5 *2 (-241 *4 *5)) (-14 *4 (-620 (-1147))) - (-4 *5 (-444)) (-5 *1 (-611 *4 *5))))) + (-12 (-5 *3 (-622 (-243 *4 *5))) (-5 *2 (-243 *4 *5)) (-14 *4 (-622 (-1149))) + (-4 *5 (-446)) (-5 *1 (-613 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-620 (-473 *4 *5))) (-5 *3 (-839 *4)) (-14 *4 (-620 (-1147))) - (-4 *5 (-444)) (-5 *1 (-611 *4 *5))))) + (-12 (-5 *2 (-622 (-475 *4 *5))) (-5 *3 (-841 *4)) (-14 *4 (-622 (-1149))) + (-4 *5 (-446)) (-5 *1 (-613 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-241 *5 *6))) (-4 *6 (-444)) - (-5 *2 (-241 *5 *6)) (-14 *5 (-620 (-1147))) (-5 *1 (-611 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *1 (-254)))) + (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-243 *5 *6))) (-4 *6 (-446)) + (-5 *2 (-243 *5 *6)) (-14 *5 (-622 (-1149))) (-5 *1 (-613 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *1 (-256)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-917 (-219)) (-917 (-219)))) (-5 *3 (-620 (-254))) - (-5 *1 (-255)))) + (-12 (-5 *2 (-1 (-919 (-221)) (-919 (-221)))) (-5 *3 (-622 (-256))) + (-5 *1 (-257)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-473 *5 *6))) (-5 *3 (-473 *5 *6)) (-14 *5 (-620 (-1147))) - (-4 *6 (-444)) (-5 *2 (-1229 *6)) (-5 *1 (-611 *5 *6))))) + (-12 (-5 *4 (-622 (-475 *5 *6))) (-5 *3 (-475 *5 *6)) (-14 *5 (-622 (-1149))) + (-4 *6 (-446)) (-5 *2 (-1231 *6)) (-5 *1 (-613 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 (-473 *3 *4))) (-14 *3 (-620 (-1147))) (-4 *4 (-444)) - (-5 *1 (-611 *3 *4))))) + (-12 (-5 *2 (-622 (-475 *3 *4))) (-14 *3 (-622 (-1149))) (-4 *4 (-446)) + (-5 *1 (-613 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-620 (-473 *5 *6))) (-5 *4 (-839 *5)) (-14 *5 (-620 (-1147))) - (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444)))) + (-12 (-5 *3 (-622 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-622 (-1149))) + (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-473 *5 *6))) (-5 *4 (-839 *5)) (-14 *5 (-620 (-1147))) - (-5 *2 (-473 *5 *6)) (-5 *1 (-611 *5 *6)) (-4 *6 (-444))))) + (-12 (-5 *3 (-622 (-475 *5 *6))) (-5 *4 (-841 *5)) (-14 *5 (-622 (-1149))) + (-5 *2 (-475 *5 *6)) (-5 *1 (-613 *5 *6)) (-4 *6 (-446))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-473 *4 *5))) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) - (-5 *2 (-620 (-241 *4 *5))) (-5 *1 (-611 *4 *5))))) + (-12 (-5 *3 (-622 (-475 *4 *5))) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) + (-5 *2 (-622 (-243 *4 *5))) (-5 *1 (-613 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-620 (-1147))) (-4 *5 (-444)) - (-5 *2 (-2 (|:| |glbase| (-620 (-241 *4 *5))) (|:| |glval| (-620 (-536))))) - (-5 *1 (-611 *4 *5)) (-5 *3 (-620 (-241 *4 *5)))))) + (-12 (-14 *4 (-622 (-1149))) (-4 *5 (-446)) + (-5 *2 (-2 (|:| |glbase| (-622 (-243 *4 *5))) (|:| |glval| (-622 (-538))))) + (-5 *1 (-613 *4 *5)) (-5 *3 (-622 (-243 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-473 *4 *5))) (-14 *4 (-620 (-1147))) (-4 *5 (-444)) - (-5 *2 (-2 (|:| |gblist| (-620 (-241 *4 *5))) (|:| |gvlist| (-620 (-536))))) - (-5 *1 (-611 *4 *5))))) + (-12 (-5 *3 (-622 (-475 *4 *5))) (-14 *4 (-622 (-1149))) (-4 *5 (-446)) + (-5 *2 (-2 (|:| |gblist| (-622 (-243 *4 *5))) (|:| |gvlist| (-622 (-538))))) + (-5 *1 (-613 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976) (-1169))))) - ((*1 *1 *1) (-4 *1 (-610)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978) (-1171))))) + ((*1 *1 *1) (-4 *1 (-612)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976) (-1169))))) - ((*1 *1 *1) (-4 *1 (-610)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978) (-1171))))) + ((*1 *1 *1) (-4 *1 (-612)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976) (-1169))))) - ((*1 *1 *1) (-4 *1 (-610)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978) (-1171))))) + ((*1 *1 *1) (-4 *1 (-612)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976) (-1169))))) - ((*1 *1 *1) (-4 *1 (-610)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978) (-1171))))) + ((*1 *1 *1) (-4 *1 (-612)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976) (-1169))))) - ((*1 *1 *1) (-4 *1 (-610)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978) (-1171))))) + ((*1 *1 *1) (-4 *1 (-612)))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-609 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976) (-1169))))) - ((*1 *1 *1) (-4 *1 (-610)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-611 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978) (-1171))))) + ((*1 *1 *1) (-4 *1 (-612)))) (((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-414 *4)))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-416 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) - (-5 *1 (-156 *4 *5)) (-4 *5 (-414 *4)))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) + (-5 *1 (-156 *4 *5)) (-4 *5 (-416 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) - (-5 *1 (-269 *4 *5)) (-4 *5 (-13 (-414 *4) (-976))))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) + (-5 *1 (-271 *4 *5)) (-4 *5 (-13 (-416 *4) (-978))))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-290 *4)) (-4 *4 (-291)))) - ((*1 *2 *3) (-12 (-4 *1 (-291)) (-5 *3 (-113)) (-5 *2 (-112)))) + (-12 (-5 *3 (-113)) (-5 *2 (-112)) (-5 *1 (-292 *4)) (-4 *4 (-293)))) + ((*1 *2 *3) (-12 (-4 *1 (-293)) (-5 *3 (-113)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *5 (-825)) (-5 *2 (-112)) (-5 *1 (-413 *4 *5)) - (-4 *4 (-414 *5)))) + (-12 (-5 *3 (-113)) (-4 *5 (-827)) (-5 *2 (-112)) (-5 *1 (-415 *4 *5)) + (-4 *4 (-416 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) - (-5 *1 (-424 *4 *5)) (-4 *5 (-414 *4)))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) + (-5 *1 (-426 *4 *5)) (-4 *5 (-416 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-113)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) - (-5 *1 (-609 *4 *5)) (-4 *5 (-13 (-414 *4) (-976) (-1169)))))) + (-12 (-5 *3 (-113)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) + (-5 *1 (-611 *4 *5)) (-4 *5 (-13 (-416 *4) (-978) (-1171)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-620 (-1147))) - (-5 *2 (-620 (-1117 *5 (-522 (-839 *6)) (-839 *6) (-758 *5 (-839 *6))))) - (-5 *1 (-608 *5 *6))))) + (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) + (-14 *6 (-622 (-1149))) + (-5 *2 (-622 (-1119 *5 (-524 (-841 *6)) (-841 *6) (-760 *5 (-841 *6))))) + (-5 *1 (-610 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-758 *5 (-839 *6)))) (-5 *4 (-112)) (-4 *5 (-444)) - (-14 *6 (-620 (-1147))) (-5 *2 (-620 (-1020 *5 *6))) (-5 *1 (-608 *5 *6))))) + (-12 (-5 *3 (-622 (-760 *5 (-841 *6)))) (-5 *4 (-112)) (-4 *5 (-446)) + (-14 *6 (-622 (-1149))) (-5 *2 (-622 (-1022 *5 *6))) (-5 *1 (-610 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 (-920 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) - (-14 *4 (-620 (-1147))))) + (-12 (-5 *2 (-622 (-922 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) + (-14 *4 (-622 (-1149))))) ((*1 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-439 *3 *4 *5 *6)))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-441 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) + (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-439 *4 *5 *6 *7)))) + (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-441 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-924 *2 *3 *4)))) + (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) + (-4 *5 (-926 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-620 (-758 *3 (-839 *4)))) (-4 *3 (-444)) - (-14 *4 (-620 (-1147))) (-5 *1 (-608 *3 *4))))) + (-12 (-5 *2 (-622 (-760 *3 (-841 *4)))) (-4 *3 (-446)) + (-14 *4 (-622 (-1149))) (-5 *1 (-610 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-620 (-920 *3))) (-4 *3 (-444)) (-5 *1 (-353 *3 *4)) - (-14 *4 (-620 (-1147))))) + (|partial| -12 (-5 *2 (-622 (-922 *3))) (-4 *3 (-446)) (-5 *1 (-355 *3 *4)) + (-14 *4 (-622 (-1149))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-620 (-758 *3 (-839 *4)))) (-4 *3 (-444)) - (-14 *4 (-620 (-1147))) (-5 *1 (-608 *3 *4))))) + (|partial| -12 (-5 *2 (-622 (-760 *3 (-841 *4)))) (-4 *3 (-446)) + (-14 *4 (-622 (-1149))) (-5 *1 (-610 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-920 *4))) (-4 *4 (-444)) (-5 *2 (-112)) - (-5 *1 (-353 *4 *5)) (-14 *5 (-620 (-1147))))) + (-12 (-5 *3 (-622 (-922 *4))) (-4 *4 (-446)) (-5 *2 (-112)) + (-5 *1 (-355 *4 *5)) (-14 *5 (-622 (-1149))))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-758 *4 (-839 *5)))) (-4 *4 (-444)) - (-14 *5 (-620 (-1147))) (-5 *2 (-112)) (-5 *1 (-608 *4 *5))))) + (-12 (-5 *3 (-622 (-760 *4 (-841 *5)))) (-4 *4 (-446)) + (-14 *5 (-622 (-1149))) (-5 *2 (-112)) (-5 *1 (-610 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *4)) (-4 *4 (-825)) (-5 *2 (-620 (-642 *4 *5))) - (-5 *1 (-607 *4 *5 *6)) (-4 *5 (-13 (-170) (-696 (-400 (-536))))) - (-14 *6 (-893))))) + (-12 (-5 *3 (-622 *4)) (-4 *4 (-827)) (-5 *2 (-622 (-644 *4 *5))) + (-5 *1 (-609 *4 *5 *6)) (-4 *5 (-13 (-170) (-698 (-402 (-538))))) + (-14 *6 (-895))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| |k| (-650 *3)) (|:| |c| *4)))) - (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893))))) + (-12 (-5 *2 (-622 (-2 (|:| |k| (-652 *3)) (|:| |c| *4)))) + (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) + (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-620 (-286 *4))) (-5 *1 (-607 *3 *4 *5)) (-4 *3 (-825)) - (-4 *4 (-13 (-170) (-696 (-400 (-536))))) (-14 *5 (-893))))) + (-12 (-5 *2 (-622 (-288 *4))) (-5 *1 (-609 *3 *4 *5)) (-4 *3 (-827)) + (-4 *4 (-13 (-170) (-698 (-402 (-538))))) (-14 *5 (-895))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -2762 (-620 (-2 (|:| |irr| *10) (|:| -2482 (-536))))))) - (-5 *6 (-620 *3)) (-5 *7 (-620 *8)) (-4 *8 (-825)) (-4 *3 (-300)) - (-4 *10 (-924 *3 *9 *8)) (-4 *9 (-771)) + (|:| -2767 (-622 (-2 (|:| |irr| *10) (|:| -2487 (-538))))))) + (-5 *6 (-622 *3)) (-5 *7 (-622 *8)) (-4 *8 (-827)) (-4 *3 (-302)) + (-4 *10 (-926 *3 *9 *8)) (-4 *9 (-773)) (-5 *2 - (-2 (|:| |polfac| (-620 *10)) (|:| |correct| *3) - (|:| |corrfact| (-620 (-1141 *3))))) - (-5 *1 (-605 *8 *9 *3 *10)) (-5 *4 (-620 (-1141 *3)))))) + (-2 (|:| |polfac| (-622 *10)) (|:| |correct| *3) + (|:| |corrfact| (-622 (-1143 *3))))) + (-5 *1 (-607 *8 *9 *3 *10)) (-5 *4 (-622 (-1143 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-749)) (-5 *5 (-620 *3)) (-4 *3 (-300)) (-4 *6 (-825)) - (-4 *7 (-771)) (-5 *2 (-112)) (-5 *1 (-605 *6 *7 *3 *8)) - (-4 *8 (-924 *3 *7 *6))))) + (-12 (-5 *4 (-751)) (-5 *5 (-622 *3)) (-4 *3 (-302)) (-4 *6 (-827)) + (-4 *7 (-773)) (-5 *2 (-112)) (-5 *1 (-607 *6 *7 *3 *8)) + (-4 *8 (-926 *3 *7 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *6 (-1037 *3 *4 *5)) - (-5 *1 (-604 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1043 *3 *4 *5 *6)) - (-4 *2 (-1080 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-543)) (-5 *1 (-603 *2 *3)) (-4 *3 (-1205 *2))))) + (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *6 (-1039 *3 *4 *5)) + (-5 *1 (-606 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1045 *3 *4 *5 *6)) + (-4 *2 (-1082 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-545)) (-5 *1 (-605 *2 *3)) (-4 *3 (-1207 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1147)) - (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-602 *4 *2)) (-4 *2 (-13 (-1169) (-934) (-29 *4)))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-598)))) -(((*1 *1) (-5 *1 (-598)))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-598)))) + (-12 (-5 *3 (-1149)) + (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-604 *4 *2)) (-4 *2 (-13 (-1171) (-936) (-29 *4)))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-600)))) +(((*1 *1) (-5 *1 (-600)))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-600)))) (((*1 *2 *3 *3 *3) (|partial| -12 - (-4 *4 (-13 (-145) (-27) (-1012 (-536)) (-1012 (-400 (-536))))) - (-4 *5 (-1205 *4)) (-5 *2 (-1141 (-400 *5))) (-5 *1 (-597 *4 *5)) - (-5 *3 (-400 *5)))) + (-4 *4 (-13 (-145) (-27) (-1014 (-538)) (-1014 (-402 (-538))))) + (-4 *5 (-1207 *4)) (-5 *2 (-1143 (-402 *5))) (-5 *1 (-599 *4 *5)) + (-5 *3 (-402 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-398 *6) *6)) (-4 *6 (-1205 *5)) - (-4 *5 (-13 (-145) (-27) (-1012 (-536)) (-1012 (-400 (-536))))) - (-5 *2 (-1141 (-400 *6))) (-5 *1 (-597 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-593 *4)) (-4 *4 (-825)) (-4 *2 (-825)) - (-5 *1 (-594 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-593 *4)) (-5 *1 (-594 *3 *4)) (-4 *3 (-825)) (-4 *4 (-825))))) -(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1169)))) - ((*1 *2 *1) (-12 (-5 *1 (-324 *2)) (-4 *2 (-825)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 *3)) (-5 *1 (-593 *3)) (-4 *3 (-825))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-620 *1)) (-4 *1 (-291)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-113)))) - ((*1 *1 *2) (-12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825)))) + (|partial| -12 (-5 *4 (-1 (-400 *6) *6)) (-4 *6 (-1207 *5)) + (-4 *5 (-13 (-145) (-27) (-1014 (-538)) (-1014 (-402 (-538))))) + (-5 *2 (-1143 (-402 *6))) (-5 *1 (-599 *5 *6)) (-5 *3 (-402 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-595 *4)) (-4 *4 (-827)) (-4 *2 (-827)) + (-5 *1 (-596 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-595 *4)) (-5 *1 (-596 *3 *4)) (-4 *3 (-827)) (-4 *4 (-827))))) +(((*1 *2 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170)) (-4 *2 (-1171)))) + ((*1 *2 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-827)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-595 *3)) (-4 *3 (-827))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-113)) (-5 *3 (-622 *1)) (-4 *1 (-293)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-113)))) + ((*1 *1 *2) (-12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-113)) (-5 *3 (-620 *5)) (-5 *4 (-749)) (-4 *5 (-825)) - (-5 *1 (-593 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-593 *3)) (-4 *3 (-825))))) + (-12 (-5 *2 (-113)) (-5 *3 (-622 *5)) (-5 *4 (-751)) (-4 *5 (-827)) + (-5 *1 (-595 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-595 *3)) (-4 *3 (-827))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-592 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-112))))) + (-12 (-4 *1 (-594 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-592 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-588))))) + (|partial| -12 (-4 *1 (-594 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-590))))) (((*1 *2 *1) (-12 (-5 *2 - (-620 + (-622 (-2 - (|:| -4215 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| -2186 + (|:| -4220 + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -12000,502 +12001,502 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1124 (-219))) + (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1556 + (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-546)))) + (-5 *1 (-548)))) ((*1 *2 *1) - (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-620 *4))))) + (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-622 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-112))))) + (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1183)) (-5 *2 (-620 *3))))) + (-12 (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1185)) (-5 *2 (-622 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4348)) (-4 *1 (-586 *4 *3)) (-4 *4 (-1072)) - (-4 *3 (-1183)) (-4 *3 (-1072)) (-5 *2 (-112))))) + (-12 (|has| *1 (-6 -4353)) (-4 *1 (-588 *4 *3)) (-4 *4 (-1074)) + (-4 *3 (-1185)) (-4 *3 (-1074)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1183)) (-4 *2 (-1072)) (-4 *2 (-825))))) + (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1185)) (-4 *2 (-1074)) (-4 *2 (-827))))) (((*1 *2 *1) - (-12 (-4 *1 (-586 *2 *3)) (-4 *3 (-1183)) (-4 *2 (-1072)) (-4 *2 (-825))))) + (-12 (-4 *1 (-588 *2 *3)) (-4 *3 (-1185)) (-4 *2 (-1074)) (-4 *2 (-827))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1183)) (-4 *3 (-365 *2)) - (-4 *4 (-365 *2)))) + (-12 (-4 *1 (-56 *2 *3 *4)) (-4 *2 (-1185)) (-4 *3 (-367 *2)) + (-4 *4 (-367 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4349)) (-4 *1 (-586 *3 *2)) (-4 *3 (-1072)) - (-4 *2 (-1183))))) + (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *2)) (-4 *3 (-1074)) + (-4 *2 (-1185))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4349)) (-4 *1 (-586 *3 *4)) (-4 *3 (-1072)) - (-4 *4 (-1183)) (-5 *2 (-1235))))) + (-12 (|has| *1 (-6 -4354)) (-4 *1 (-588 *3 *4)) (-4 *3 (-1074)) + (-4 *4 (-1185)) (-5 *2 (-1237))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-620 (-593 *2))) (-5 *4 (-620 (-1147))) - (-4 *2 (-13 (-414 (-166 *5)) (-976) (-1169))) (-4 *5 (-13 (-543) (-825))) - (-5 *1 (-582 *5 *6 *2)) (-4 *6 (-13 (-414 *5) (-976) (-1169)))))) + (-12 (-5 *3 (-622 (-595 *2))) (-5 *4 (-622 (-1149))) + (-4 *2 (-13 (-416 (-166 *5)) (-978) (-1171))) (-4 *5 (-13 (-545) (-827))) + (-5 *1 (-584 *5 *6 *2)) (-4 *6 (-13 (-416 *5) (-978) (-1171)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-543) (-825))) (-5 *2 (-166 *5)) (-5 *1 (-582 *4 *5 *3)) - (-4 *5 (-13 (-414 *4) (-976) (-1169))) - (-4 *3 (-13 (-414 (-166 *4)) (-976) (-1169)))))) + (-12 (-4 *4 (-13 (-545) (-827))) (-5 *2 (-166 *5)) (-5 *1 (-584 *4 *5 *3)) + (-4 *5 (-13 (-416 *4) (-978) (-1171))) + (-4 *3 (-13 (-416 (-166 *4)) (-978) (-1171)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-543) (-825))) - (-4 *2 (-13 (-414 (-166 *4)) (-976) (-1169))) (-5 *1 (-582 *4 *3 *2)) - (-4 *3 (-13 (-414 *4) (-976) (-1169)))))) + (-12 (-4 *4 (-13 (-545) (-827))) + (-4 *2 (-13 (-416 (-166 *4)) (-978) (-1171))) (-5 *1 (-584 *4 *3 *2)) + (-4 *3 (-13 (-416 *4) (-978) (-1171)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-543) (-825))) (-4 *2 (-13 (-414 *4) (-976) (-1169))) - (-5 *1 (-582 *4 *2 *3)) (-4 *3 (-13 (-414 (-166 *4)) (-976) (-1169)))))) + (-12 (-4 *4 (-13 (-545) (-827))) (-4 *2 (-13 (-416 *4) (-978) (-1171))) + (-5 *1 (-584 *4 *2 *3)) (-4 *3 (-13 (-416 (-166 *4)) (-978) (-1171)))))) (((*1 *2 *3) - (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-414 *4) (-976) (-1169))) - (-4 *4 (-13 (-543) (-825))) (-4 *2 (-13 (-414 (-166 *4)) (-976) (-1169))) - (-5 *1 (-582 *4 *5 *2))))) + (-12 (-5 *3 (-166 *5)) (-4 *5 (-13 (-416 *4) (-978) (-1171))) + (-4 *4 (-13 (-545) (-827))) (-4 *2 (-13 (-416 (-166 *4)) (-978) (-1171))) + (-5 *1 (-584 *4 *5 *2))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1000 (-817 (-536)))) - (-5 *3 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *4)))) (-4 *4 (-1023)) - (-5 *1 (-578 *4))))) + (-12 (-5 *2 (-1002 (-819 (-538)))) + (-5 *3 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *4)))) (-4 *4 (-1025)) + (-5 *1 (-580 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-1000 (-817 (-536)))) (-5 *1 (-578 *3)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-1002 (-819 (-538)))) (-5 *1 (-580 *3)) (-4 *3 (-1025))))) (((*1 *2 *1) - (-12 (-5 *2 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *3)))) (-5 *1 (-578 *3)) - (-4 *3 (-1023))))) + (-12 (-5 *2 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *3)))) (-5 *1 (-580 *3)) + (-4 *3 (-1025))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-578 *3)) (-4 *3 (-1023))))) -(((*1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1023))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1023))))) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-580 *3)) (-4 *3 (-1025))))) +(((*1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-580 *2)) (-4 *2 (-1025))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1124 (-2 (|:| |k| (-536)) (|:| |c| *6)))) - (-5 *4 (-1000 (-817 (-536)))) (-5 *5 (-1147)) (-5 *7 (-400 (-536))) - (-4 *6 (-1023)) (-5 *2 (-838)) (-5 *1 (-578 *6))))) + (-12 (-5 *3 (-1126 (-2 (|:| |k| (-538)) (|:| |c| *6)))) + (-5 *4 (-1002 (-819 (-538)))) (-5 *5 (-1149)) (-5 *7 (-402 (-538))) + (-4 *6 (-1025)) (-5 *2 (-840)) (-5 *1 (-580 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-400 (-536))) (-5 *1 (-578 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1023))))) + (-12 (-5 *2 (-402 (-538))) (-5 *1 (-580 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *1 *1) - (-12 (-5 *1 (-578 *2)) (-4 *2 (-38 (-400 (-536)))) (-4 *2 (-1023))))) + (-12 (-5 *1 (-580 *2)) (-4 *2 (-38 (-402 (-538)))) (-4 *2 (-1025))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-620 *3)) (-4 *3 (-1080 *5 *6 *7 *8)) - (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-1037 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-574 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-1082 *5 *6 *7 *8)) + (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) + (-4 *8 (-1039 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-576 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-536))) (-5 *4 (-876 (-536))) (-5 *2 (-667 (-536))) - (-5 *1 (-573)))) + (-12 (-5 *3 (-622 (-538))) (-5 *4 (-878 (-538))) (-5 *2 (-669 (-538))) + (-5 *1 (-575)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-536))) (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-573)))) + (-12 (-5 *3 (-622 (-538))) (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-575)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-536))) (-5 *4 (-620 (-876 (-536)))) - (-5 *2 (-620 (-667 (-536)))) (-5 *1 (-573))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-536))) (-5 *2 (-749)) (-5 *1 (-573))))) + (-12 (-5 *3 (-622 (-538))) (-5 *4 (-622 (-878 (-538)))) + (-5 *2 (-622 (-669 (-538)))) (-5 *1 (-575))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-538))) (-5 *2 (-751)) (-5 *1 (-575))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) - (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-421 *4 *2)) (-4 *2 (-13 (-1169) (-29 *4))))) + (-12 (-5 *3 (-1149)) + (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-423 *4 *2)) (-4 *2 (-13 (-1171) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 *5))) (-5 *4 (-1147)) (-4 *5 (-145)) - (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-307 *5)) - (-5 *1 (-572 *5))))) + (-12 (-5 *3 (-402 (-922 *5))) (-5 *4 (-1149)) (-4 *5 (-145)) + (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-309 *5)) + (-5 *1 (-574 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-567 *2)) (-4 *2 (-13 (-29 *4) (-1169))) (-5 *1 (-569 *4 *2)) - (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))))) + (-12 (-5 *3 (-569 *2)) (-4 *2 (-13 (-29 *4) (-1171))) (-5 *1 (-571 *4 *2)) + (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))))) ((*1 *2 *3) - (-12 (-5 *3 (-567 (-400 (-920 *4)))) - (-4 *4 (-13 (-444) (-1012 (-536)) (-825) (-619 (-536)))) (-5 *2 (-307 *4)) - (-5 *1 (-572 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-571 *4)) (-4 *4 (-343))))) -(((*1 *2 *2) (-12 (-5 *1 (-570 *2)) (-4 *2 (-535))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-570 *2)) (-4 *2 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535))))) + (-12 (-5 *3 (-569 (-402 (-922 *4)))) + (-4 *4 (-13 (-446) (-1014 (-538)) (-827) (-621 (-538)))) (-5 *2 (-309 *4)) + (-5 *1 (-574 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-573 *4)) (-4 *4 (-345))))) +(((*1 *2 *2) (-12 (-5 *1 (-572 *2)) (-4 *2 (-537))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-572 *2)) (-4 *2 (-537))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-749)) (-5 *1 (-570 *2)) (-4 *2 (-535)))) + (|partial| -12 (-5 *3 (-751)) (-5 *1 (-572 *2)) (-4 *2 (-537)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3022 *3) (|:| -2488 (-749)))) (-5 *1 (-570 *3)) - (-4 *3 (-535))))) + (-12 (-5 *2 (-2 (|:| -3027 *3) (|:| -2493 (-751)))) (-5 *1 (-572 *3)) + (-4 *3 (-537))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-535))))) + (-12 (-5 *4 (-751)) (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-537))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-620 - (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 *2)) - (|:| |logand| (-1141 *2))))) - (-5 *4 (-620 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-356)) - (-5 *1 (-567 *2))))) -(((*1 *2 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-356))))) + (-622 + (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 *2)) + (|:| |logand| (-1143 *2))))) + (-5 *4 (-622 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-358)) + (-5 *1 (-569 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-569 *2)) (-4 *2 (-358))))) (((*1 *2 *1) (-12 (-5 *2 - (-620 - (-2 (|:| |scalar| (-400 (-536))) (|:| |coeff| (-1141 *3)) - (|:| |logand| (-1141 *3))))) - (-5 *1 (-567 *3)) (-4 *3 (-356))))) + (-622 + (-2 (|:| |scalar| (-402 (-538))) (|:| |coeff| (-1143 *3)) + (|:| |logand| (-1143 *3))))) + (-5 *1 (-569 *3)) (-4 *3 (-358))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-567 *3)) (-4 *3 (-356))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-567 *3)) (-4 *3 (-356))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-566))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-525) (-620 (-525)))) (-5 *1 (-113)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-525) (-620 (-525)))) (-5 *1 (-113)))) - ((*1 *1) (-5 *1 (-563)))) -(((*1 *1) (-5 *1 (-563)))) + (-12 (-5 *2 (-622 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-569 *3)) (-4 *3 (-358))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-358))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-568))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-527) (-622 (-527)))) (-5 *1 (-113)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-527) (-622 (-527)))) (-5 *1 (-113)))) + ((*1 *1) (-5 *1 (-565)))) +(((*1 *1) (-5 *1 (-565)))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1147)) - (-4 *4 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1169) (-934) (-1110) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1149)) + (-4 *4 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1171) (-936) (-1112) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-560 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-562 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-5 *2 - (-2 (|:| |ir| (-567 (-400 *6))) (|:| |specpart| (-400 *6)) + (-2 (|:| |ir| (-569 (-402 *6))) (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) - (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6))))) + (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-603 *4 *5)) + (|partial| -12 (-5 *2 (-605 *4 *5)) (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3467 *4) (|:| |sol?| (-112))) (-536) *4)) - (-4 *4 (-356)) (-4 *5 (-1205 *4)) (-5 *1 (-560 *4 *5))))) + (-1 (-2 (|:| |ans| *4) (|:| -3472 *4) (|:| |sol?| (-112))) (-538) *4)) + (-4 *4 (-358)) (-4 *5 (-1207 *4)) (-5 *1 (-562 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2246 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-356)) (-5 *1 (-560 *4 *2)) (-4 *2 (-1205 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2251 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-358)) (-5 *1 (-562 *4 *2)) (-4 *2 (-1207 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-620 (-400 *7))) (-4 *7 (-1205 *6)) - (-5 *3 (-400 *7)) (-4 *6 (-356)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-622 (-402 *7))) (-4 *7 (-1207 *6)) + (-5 *3 (-402 *7)) (-4 *6 (-358)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-560 *6 *7))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-562 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) - (-5 *2 (-2 (|:| -2246 (-400 *6)) (|:| |coeff| (-400 *6)))) - (-5 *1 (-560 *5 *6)) (-5 *3 (-400 *6))))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) + (-5 *2 (-2 (|:| -2251 (-402 *6)) (|:| |coeff| (-402 *6)))) + (-5 *1 (-562 *5 *6)) (-5 *3 (-402 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3467 *7) (|:| |sol?| (-112))) (-536) *7)) - (-5 *6 (-620 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1205 *7)) (-5 *3 (-400 *8)) + (-1 (-2 (|:| |ans| *7) (|:| -3472 *7) (|:| |sol?| (-112))) (-538) *7)) + (-5 *6 (-622 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1207 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-560 *7 *8))))) + (-5 *1 (-562 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2246 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-620 (-400 *8))) (-4 *7 (-356)) (-4 *8 (-1205 *7)) (-5 *3 (-400 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2251 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-622 (-402 *8))) (-4 *7 (-358)) (-4 *8 (-1207 *7)) (-5 *3 (-402 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) - (-5 *1 (-560 *7 *8))))) + (-5 *1 (-562 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3467 *6) (|:| |sol?| (-112))) (-536) *6)) - (-4 *6 (-356)) (-4 *7 (-1205 *6)) + (-1 (-2 (|:| |ans| *6) (|:| -3472 *6) (|:| |sol?| (-112))) (-538) *6)) + (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) - (-2 (|:| -2246 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) - (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) + (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) + (-2 (|:| -2251 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) + (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-356)) (-4 *7 (-1205 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2251 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-358)) (-4 *7 (-1207 *6)) (-5 *2 - (-3 (-2 (|:| |answer| (-400 *7)) (|:| |a0| *6)) - (-2 (|:| -2246 (-400 *7)) (|:| |coeff| (-400 *7))) "failed")) - (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) + (-3 (-2 (|:| |answer| (-402 *7)) (|:| |a0| *6)) + (-2 (|:| -2251 (-402 *7)) (|:| |coeff| (-402 *7))) "failed")) + (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-620 *6) "failed") (-536) *6 *6)) - (-4 *6 (-356)) (-4 *7 (-1205 *6)) - (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) - (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-622 *6) "failed") (-538) *6 *6)) + (-4 *6 (-358)) (-4 *7 (-1207 *6)) + (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6))) + (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3467 *6) (|:| |sol?| (-112))) (-536) *6)) - (-4 *6 (-356)) (-4 *7 (-1205 *6)) - (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) - (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) + (-1 (-2 (|:| |ans| *6) (|:| -3472 *6) (|:| |sol?| (-112))) (-538) *6)) + (-4 *6 (-358)) (-4 *7 (-1207 *6)) + (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6))) + (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2246 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-356)) (-4 *7 (-1205 *6)) - (-5 *2 (-2 (|:| |answer| (-567 (-400 *7))) (|:| |a0| *6))) - (-5 *1 (-560 *6 *7)) (-5 *3 (-400 *7))))) + (-5 *5 (-1 (-3 (-2 (|:| -2251 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-358)) (-4 *7 (-1207 *6)) + (-5 *2 (-2 (|:| |answer| (-569 (-402 *7))) (|:| |a0| *6))) + (-5 *1 (-562 *6 *7)) (-5 *3 (-402 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-567 *3) *3 (-1147))) + (-12 (-5 *5 (-1 (-569 *3) *3 (-1149))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1147))) - (-4 *3 (-277)) (-4 *3 (-610)) (-4 *3 (-1012 *4)) (-4 *3 (-414 *7)) - (-5 *4 (-1147)) (-4 *7 (-596 (-864 (-536)))) (-4 *7 (-444)) - (-4 *7 (-860 (-536))) (-4 *7 (-825)) (-5 *2 (-567 *3)) - (-5 *1 (-559 *7 *3))))) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1149))) + (-4 *3 (-279)) (-4 *3 (-612)) (-4 *3 (-1014 *4)) (-4 *3 (-416 *7)) + (-5 *4 (-1149)) (-4 *7 (-598 (-866 (-538)))) (-4 *7 (-446)) + (-4 *7 (-862 (-538))) (-4 *7 (-827)) (-5 *2 (-569 *3)) + (-5 *1 (-561 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-444)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) - (-4 *2 (-277)) (-4 *2 (-414 *4))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-446)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2)) + (-4 *2 (-279)) (-4 *2 (-416 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-543)) (-4 *4 (-825)) (-5 *1 (-559 *4 *2)) - (-4 *2 (-414 *4))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-545)) (-4 *4 (-827)) (-5 *1 (-561 *4 *2)) + (-4 *2 (-416 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *6)) (-5 *4 (-1147)) (-4 *6 (-414 *5)) (-4 *5 (-825)) - (-5 *2 (-620 (-593 *6))) (-5 *1 (-559 *5 *6))))) + (-12 (-5 *3 (-622 *6)) (-5 *4 (-1149)) (-4 *6 (-416 *5)) (-4 *5 (-827)) + (-5 *2 (-622 (-595 *6))) (-5 *1 (-561 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-620 (-593 *6))) (-5 *4 (-1147)) (-5 *2 (-593 *6)) - (-4 *6 (-414 *5)) (-4 *5 (-825)) (-5 *1 (-559 *5 *6))))) + (-12 (-5 *3 (-622 (-595 *6))) (-5 *4 (-1149)) (-5 *2 (-595 *6)) + (-4 *6 (-416 *5)) (-4 *5 (-827)) (-5 *1 (-561 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-593 *5))) (-4 *4 (-825)) (-5 *2 (-593 *5)) - (-5 *1 (-559 *4 *5)) (-4 *5 (-414 *4))))) + (-12 (-5 *3 (-622 (-595 *5))) (-4 *4 (-827)) (-5 *2 (-595 *5)) + (-5 *1 (-561 *4 *5)) (-4 *5 (-416 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-620 (-593 *5))) (-5 *3 (-1147)) (-4 *5 (-414 *4)) - (-4 *4 (-825)) (-5 *1 (-559 *4 *5))))) + (-12 (-5 *2 (-622 (-595 *5))) (-5 *3 (-1149)) (-4 *5 (-416 *4)) + (-4 *4 (-827)) (-5 *1 (-561 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-1012 (-536)) (-145))) - (-5 *2 (-2 (|:| -2246 (-400 (-920 *5))) (|:| |coeff| (-400 (-920 *5))))) - (-5 *1 (-556 *5)) (-5 *3 (-400 (-920 *5)))))) + (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-1014 (-538)) (-145))) + (-5 *2 (-2 (|:| -2251 (-402 (-922 *5))) (|:| |coeff| (-402 (-922 *5))))) + (-5 *1 (-558 *5)) (-5 *3 (-402 (-922 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 (-400 (-920 *6)))) - (-5 *3 (-400 (-920 *6))) (-4 *6 (-13 (-543) (-1012 (-536)) (-145))) + (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 (-402 (-922 *6)))) + (-5 *3 (-402 (-922 *6))) (-4 *6 (-13 (-545) (-1014 (-538)) (-145))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-556 *6))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-558 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-400 (-920 *4))) (-5 *3 (-1147)) - (-4 *4 (-13 (-543) (-1012 (-536)) (-145))) (-5 *1 (-556 *4))))) + (|partial| -12 (-5 *2 (-402 (-922 *4))) (-5 *3 (-1149)) + (-4 *4 (-13 (-545) (-1014 (-538)) (-145))) (-5 *1 (-558 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-567 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1169) (-29 *5))))) + (-12 (-5 *4 (-1149)) + (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-569 *3)) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-1012 (-536)) (-145))) - (-5 *2 (-567 (-400 (-920 *5)))) (-5 *1 (-556 *5)) (-5 *3 (-400 (-920 *5)))))) + (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-1014 (-538)) (-145))) + (-5 *2 (-569 (-402 (-922 *5)))) (-5 *1 (-558 *5)) (-5 *3 (-402 (-922 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-536)) (-5 *1 (-555 *3)) (-4 *3 (-1012 *2))))) + (|partial| -12 (-5 *2 (-538)) (-5 *1 (-557 *3)) (-4 *3 (-1014 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-620 (-400 *6))) (-5 *3 (-400 *6)) (-4 *6 (-1205 *5)) - (-4 *5 (-13 (-356) (-145) (-1012 (-536)))) + (|partial| -12 (-5 *4 (-622 (-402 *6))) (-5 *3 (-402 *6)) (-4 *6 (-1207 *5)) + (-4 *5 (-13 (-358) (-145) (-1014 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-554 *5 *6))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-556 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-356) (-145) (-1012 (-536)))) (-4 *5 (-1205 *4)) - (-5 *2 (-2 (|:| -2246 (-400 *5)) (|:| |coeff| (-400 *5)))) - (-5 *1 (-554 *4 *5)) (-5 *3 (-400 *5))))) + (|partial| -12 (-4 *4 (-13 (-358) (-145) (-1014 (-538)))) (-4 *5 (-1207 *4)) + (-5 *2 (-2 (|:| -2251 (-402 *5)) (|:| |coeff| (-402 *5)))) + (-5 *1 (-556 *4 *5)) (-5 *3 (-402 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) - (-4 *3 (-13 (-356) (-145) (-1012 (-536)))) (-5 *1 (-554 *3 *4))))) + (|partial| -12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) + (-4 *3 (-13 (-358) (-145) (-1014 (-538)))) (-5 *1 (-556 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-596 (-864 (-536)))) - (-4 *5 (-860 (-536))) - (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) - (-4 *3 (-610)) (-4 *3 (-13 (-27) (-1169) (-414 *5))))) + (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-866 (-538)))) + (-4 *5 (-862 (-538))) + (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) + (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1171) (-416 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1147)) (-5 *4 (-817 *2)) (-4 *2 (-1110)) - (-4 *2 (-13 (-27) (-1169) (-414 *5))) (-4 *5 (-596 (-864 (-536)))) - (-4 *5 (-860 (-536))) - (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) - (-5 *1 (-553 *5 *2))))) + (|partial| -12 (-5 *3 (-1149)) (-5 *4 (-819 *2)) (-4 *2 (-1112)) + (-4 *2 (-13 (-27) (-1171) (-416 *5))) (-4 *5 (-598 (-866 (-538)))) + (-4 *5 (-862 (-538))) + (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) + (-5 *1 (-555 *5 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1147)) (-4 *5 (-596 (-864 (-536)))) - (-4 *5 (-860 (-536))) - (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-553 *5 *3)) - (-4 *3 (-610)) (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) + (|partial| -12 (-5 *4 (-1149)) (-4 *5 (-598 (-866 (-538)))) + (-4 *5 (-862 (-538))) + (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-555 *5 *3)) + (-4 *3 (-612)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-825) (-1012 (-536)) (-444) (-619 (-536)))) - (-5 *2 (-2 (|:| -2414 *3) (|:| |nconst| *3))) (-5 *1 (-553 *5 *3)) - (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) + (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-827) (-1014 (-538)) (-446) (-621 (-538)))) + (-5 *2 (-2 (|:| -2419 *3) (|:| |nconst| *3))) (-5 *1 (-555 *5 *3)) + (-4 *3 (-13 (-27) (-1171) (-416 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-593 *4)) (-5 *6 (-1147)) (-4 *4 (-13 (-414 *7) (-27) (-1169))) - (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2123 (-620 *4)))) - (-5 *1 (-552 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072))))) + (-12 (-5 *5 (-595 *4)) (-5 *6 (-1149)) (-4 *4 (-13 (-416 *7) (-27) (-1171))) + (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2128 (-622 *4)))) + (-5 *1 (-554 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-593 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1147))) - (-4 *2 (-13 (-414 *5) (-27) (-1169))) - (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *1 (-552 *5 *2 *6)) (-4 *6 (-1072))))) + (|partial| -12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1149))) + (-4 *2 (-13 (-416 *5) (-27) (-1171))) + (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *1 (-554 *5 *2 *6)) (-4 *6 (-1074))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) - (-4 *3 (-13 (-414 *6) (-27) (-1169))) - (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) + (-4 *3 (-13 (-416 *6) (-27) (-1171))) + (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-552 *6 *3 *7)) (-4 *7 (-1072))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-554 *6 *3 *7)) (-4 *7 (-1074))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1169))) - (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-552 *5 *3 *6)) - (-4 *6 (-1072))))) + (|partial| -12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *5) (-27) (-1171))) + (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-554 *5 *3 *6)) + (-4 *6 (-1074))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-593 *3)) (-4 *3 (-13 (-414 *5) (-27) (-1169))) - (-4 *5 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-567 *3)) (-5 *1 (-552 *5 *3 *6)) (-4 *6 (-1072))))) + (-12 (-5 *4 (-595 *3)) (-4 *3 (-13 (-416 *5) (-27) (-1171))) + (-4 *5 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-569 *3)) (-5 *1 (-554 *5 *3 *6)) (-4 *6 (-1074))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) - (-4 *7 (-1205 (-400 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2245 *3))) - (-5 *1 (-549 *5 *6 *7 *3)) (-4 *3 (-335 *5 *6 *7)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) + (-4 *7 (-1207 (-402 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2250 *3))) + (-5 *1 (-551 *5 *6 *7 *3)) (-4 *3 (-337 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-356)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-358)) (-5 *2 - (-2 (|:| |answer| (-400 *6)) (|:| -2245 (-400 *6)) - (|:| |specpart| (-400 *6)) (|:| |polypart| *6))) - (-5 *1 (-550 *5 *6)) (-5 *3 (-400 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-536)) (-5 *3 (-749)) (-5 *1 (-548))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) -(((*1 *2 *3) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-548)) (-5 *3 (-536))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) -(((*1 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-548)) (-5 *3 (-536))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-177 *2)) (-4 *2 (-300)))) + (-2 (|:| |answer| (-402 *6)) (|:| -2250 (-402 *6)) + (|:| |specpart| (-402 *6)) (|:| |polypart| *6))) + (-5 *1 (-552 *5 *6)) (-5 *3 (-402 *6))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-538)) (-5 *3 (-751)) (-5 *1 (-550))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-550)) (-5 *3 (-538))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550))))) +(((*1 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-550)) (-5 *3 (-538))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-177 *2)) (-4 *2 (-302)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-620 (-620 *4))) (-5 *2 (-620 *4)) (-4 *4 (-300)) + (-12 (-5 *3 (-622 (-622 *4))) (-5 *2 (-622 *4)) (-4 *4 (-302)) (-5 *1 (-177 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 *8)) + (-12 (-5 *3 (-622 *8)) (-5 *4 - (-620 - (-2 (|:| -2123 (-667 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-667 *7))))) - (-5 *5 (-749)) (-4 *8 (-1205 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-343)) + (-622 + (-2 (|:| -2128 (-669 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-669 *7))))) + (-5 *5 (-751)) (-4 *8 (-1207 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-345)) (-5 *2 - (-2 (|:| -2123 (-667 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-667 *7)))) - (-5 *1 (-489 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-548))))) + (-2 (|:| -2128 (-669 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-669 *7)))) + (-5 *1 (-491 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-550))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-593 *4)) (-5 *6 (-1141 *4)) - (-4 *4 (-13 (-414 *7) (-27) (-1169))) - (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2123 (-620 *4)))) - (-5 *1 (-547 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072)))) + (-12 (-5 *5 (-595 *4)) (-5 *6 (-1143 *4)) + (-4 *4 (-13 (-416 *7) (-27) (-1171))) + (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2128 (-622 *4)))) + (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-593 *4)) (-5 *6 (-400 (-1141 *4))) - (-4 *4 (-13 (-414 *7) (-27) (-1169))) - (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2123 (-620 *4)))) - (-5 *1 (-547 *7 *4 *3)) (-4 *3 (-636 *4)) (-4 *3 (-1072))))) + (-12 (-5 *5 (-595 *4)) (-5 *6 (-402 (-1143 *4))) + (-4 *4 (-13 (-416 *7) (-27) (-1171))) + (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2128 (-622 *4)))) + (-5 *1 (-549 *7 *4 *3)) (-4 *3 (-638 *4)) (-4 *3 (-1074))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-593 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1147))) (-5 *5 (-1141 *2)) - (-4 *2 (-13 (-414 *6) (-27) (-1169))) - (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *1 (-547 *6 *2 *7)) (-4 *7 (-1072)))) + (|partial| -12 (-5 *3 (-595 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1149))) (-5 *5 (-1143 *2)) + (-4 *2 (-13 (-416 *6) (-27) (-1171))) + (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1074)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-593 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1147))) - (-5 *5 (-400 (-1141 *2))) (-4 *2 (-13 (-414 *6) (-27) (-1169))) - (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *1 (-547 *6 *2 *7)) (-4 *7 (-1072))))) + (|partial| -12 (-5 *3 (-595 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1149))) + (-5 *5 (-402 (-1143 *2))) (-4 *2 (-13 (-416 *6) (-27) (-1171))) + (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *1 (-549 *6 *2 *7)) (-4 *7 (-1074))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) (-5 *6 (-1141 *3)) - (-4 *3 (-13 (-414 *7) (-27) (-1169))) - (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) (-5 *6 (-1143 *3)) + (-4 *3 (-13 (-416 *7) (-27) (-1171))) + (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-547 *7 *3 *8)) (-4 *8 (-1072)))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1074)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-620 *3)) (-5 *6 (-400 (-1141 *3))) - (-4 *3 (-13 (-414 *7) (-27) (-1169))) - (-4 *7 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) + (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-622 *3)) (-5 *6 (-402 (-1143 *3))) + (-4 *3 (-13 (-416 *7) (-27) (-1171))) + (-4 *7 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-547 *7 *3 *8)) (-4 *8 (-1072))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-549 *7 *3 *8)) (-4 *8 (-1074))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-1141 *3)) - (-4 *3 (-13 (-414 *6) (-27) (-1169))) - (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-547 *6 *3 *7)) - (-4 *7 (-1072)))) + (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-1143 *3)) + (-4 *3 (-13 (-416 *6) (-27) (-1171))) + (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-549 *6 *3 *7)) + (-4 *7 (-1074)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-593 *3)) (-5 *5 (-400 (-1141 *3))) - (-4 *3 (-13 (-414 *6) (-27) (-1169))) - (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-547 *6 *3 *7)) - (-4 *7 (-1072))))) + (|partial| -12 (-5 *4 (-595 *3)) (-5 *5 (-402 (-1143 *3))) + (-4 *3 (-13 (-416 *6) (-27) (-1171))) + (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-549 *6 *3 *7)) + (-4 *7 (-1074))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-593 *3)) (-5 *5 (-1141 *3)) - (-4 *3 (-13 (-414 *6) (-27) (-1169))) - (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-567 *3)) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072)))) + (-12 (-5 *4 (-595 *3)) (-5 *5 (-1143 *3)) + (-4 *3 (-13 (-416 *6) (-27) (-1171))) + (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-569 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-593 *3)) (-5 *5 (-400 (-1141 *3))) - (-4 *3 (-13 (-414 *6) (-27) (-1169))) - (-4 *6 (-13 (-444) (-1012 (-536)) (-825) (-145) (-619 (-536)))) - (-5 *2 (-567 *3)) (-5 *1 (-547 *6 *3 *7)) (-4 *7 (-1072))))) + (-12 (-5 *4 (-595 *3)) (-5 *5 (-402 (-1143 *3))) + (-4 *3 (-13 (-416 *6) (-27) (-1171))) + (-4 *6 (-13 (-446) (-1014 (-538)) (-827) (-145) (-621 (-538)))) + (-5 *2 (-569 *3)) (-5 *1 (-549 *6 *3 *7)) (-4 *7 (-1074))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -12507,21 +12508,21 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1124 (-219))) + (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1556 + (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-546))))) + (-5 *1 (-548))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (-5 *2 (-2 (|:| |endPointContinuity| @@ -12533,25 +12534,25 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1124 (-219))) + (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1556 + (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-546))))) + (-5 *1 (-548))))) (((*1 *1 *2) (-12 (-5 *2 - (-620 + (-622 (-2 - (|:| -4215 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (|:| -2186 + (|:| -4220 + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (|:| -2191 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -12564,1652 +12565,1652 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1124 (-219))) + (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1556 + (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-546))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-546))))) -(((*1 *1) (-5 *1 (-546)))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-545 *2)) (-4 *2 (-535))))) -(((*1 *2 *3) (-12 (-5 *2 (-398 *3)) (-5 *1 (-545 *3)) (-4 *3 (-535))))) + (-5 *1 (-548))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-548))))) +(((*1 *1) (-5 *1 (-548)))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-547 *2)) (-4 *2 (-537))))) +(((*1 *2 *3) (-12 (-5 *2 (-400 *3)) (-5 *1 (-547 *3)) (-4 *3 (-537))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1147)) (-5 *6 (-620 (-593 *3))) (-5 *5 (-593 *3)) - (-4 *3 (-13 (-27) (-1169) (-414 *7))) - (-4 *7 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-544 *7 *3))))) + (|partial| -12 (-5 *4 (-1149)) (-5 *6 (-622 (-595 *3))) (-5 *5 (-595 *3)) + (-4 *3 (-13 (-27) (-1171) (-416 *7))) + (-4 *7 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-546 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) - (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-567 *3)) (-5 *1 (-544 *5 *3)) - (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) + (-12 (-5 *4 (-1149)) + (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-569 *3)) (-5 *1 (-546 *5 *3)) + (-4 *3 (-13 (-27) (-1171) (-416 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1147)) - (-4 *4 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-544 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4)))))) + (|partial| -12 (-5 *3 (-1149)) + (-4 *4 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-546 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1147)) (-5 *5 (-620 *3)) - (-4 *3 (-13 (-27) (-1169) (-414 *6))) - (-4 *6 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) + (|partial| -12 (-5 *4 (-1149)) (-5 *5 (-622 *3)) + (-4 *3 (-13 (-27) (-1171) (-416 *6))) + (-4 *6 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-620 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-544 *6 *3))))) + (|:| |limitedlogs| (-622 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-546 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1147)) - (-4 *5 (-13 (-444) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-2 (|:| -2246 *3) (|:| |coeff| *3))) (-5 *1 (-544 *5 *3)) - (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) + (|partial| -12 (-5 *4 (-1149)) + (-4 *5 (-13 (-446) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-2 (|:| -2251 *3) (|:| |coeff| *3))) (-5 *1 (-546 *5 *3)) + (-4 *3 (-13 (-27) (-1171) (-416 *5)))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1887 *1) (|:| -4335 *1) (|:| |associate| *1))) - (-4 *1 (-543))))) -(((*1 *1 *1) (-4 *1 (-543)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-543)) (-5 *2 (-112))))) + (-12 (-5 *2 (-2 (|:| -1892 *1) (|:| -4340 *1) (|:| |associate| *1))) + (-4 *1 (-545))))) +(((*1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))) (((*1 *1 *2) - (-12 (-5 *2 (-400 (-536))) (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))))) - ((*1 *1 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169)))))) -(((*1 *2 *1) (-12 (-4 *1 (-541 *2)) (-4 *2 (-13 (-397) (-1169)))))) + (-12 (-5 *2 (-402 (-538))) (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))))) + ((*1 *1 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171)))))) +(((*1 *2 *1) (-12 (-4 *1 (-543 *2)) (-4 *2 (-13 (-399) (-1171)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-541 *3)) (-4 *3 (-13 (-397) (-1169))) (-5 *2 (-112))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-112)) (-5 *1 (-540))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-540))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-540))))) + (-12 (-4 *1 (-543 *3)) (-4 *3 (-13 (-399) (-1171))) (-5 *2 (-112))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-112)) (-5 *1 (-542))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-542))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-542))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1205 *5)) - (-4 *5 (-13 (-27) (-414 *4))) (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) - (-4 *7 (-1205 (-400 *6))) (-5 *1 (-539 *4 *5 *6 *7 *2)) - (-4 *2 (-335 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1207 *5)) + (-4 *5 (-13 (-27) (-416 *4))) (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) + (-4 *7 (-1207 (-402 *6))) (-5 *1 (-541 *4 *5 *6 *7 *2)) + (-4 *2 (-337 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-13 (-27) (-414 *5))) - (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-4 *8 (-1205 (-400 *7))) - (-5 *2 (-567 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-13 (-27) (-416 *5))) + (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-4 *8 (-1207 (-402 *7))) + (-5 *2 (-569 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1205 *6)) (-4 *6 (-13 (-27) (-414 *5))) - (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-4 *8 (-1205 (-400 *7))) - (-5 *2 (-567 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-335 *6 *7 *8))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1207 *6)) (-4 *6 (-13 (-27) (-416 *5))) + (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-4 *8 (-1207 (-402 *7))) + (-5 *2 (-569 *3)) (-5 *1 (-541 *5 *6 *7 *8 *3)) (-4 *3 (-337 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-593 *3)) (-5 *5 (-1 (-1141 *3) (-1141 *3))) - (-4 *3 (-13 (-27) (-414 *6))) (-4 *6 (-13 (-825) (-543))) (-5 *2 (-567 *3)) - (-5 *1 (-538 *6 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-535)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *1 *1 *1) (-4 *1 (-535)))) -(((*1 *1 *1 *1) (-4 *1 (-535)))) + (-12 (-5 *4 (-595 *3)) (-5 *5 (-1 (-1143 *3) (-1143 *3))) + (-4 *3 (-13 (-27) (-416 *6))) (-4 *6 (-13 (-827) (-545))) (-5 *2 (-569 *3)) + (-5 *1 (-540 *6 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-537)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1 *1 *1) (-4 *1 (-537)))) +(((*1 *1 *1 *1) (-4 *1 (-537)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-536) #1="failed") *5)) (-4 *5 (-1023)) - (-5 *2 (-536)) (-5 *1 (-533 *5 *3)) (-4 *3 (-1205 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-538) #1="failed") *5)) (-4 *5 (-1025)) + (-5 *2 (-538)) (-5 *1 (-535 *5 *3)) (-4 *3 (-1207 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-536) #1#) *4)) (-4 *4 (-1023)) (-5 *2 (-536)) - (-5 *1 (-533 *4 *3)) (-4 *3 (-1205 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-538) #1#) *4)) (-4 *4 (-1025)) (-5 *2 (-538)) + (-5 *1 (-535 *4 *3)) (-4 *3 (-1207 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-536) #1#) *4)) (-4 *4 (-1023)) (-5 *2 (-536)) - (-5 *1 (-533 *4 *3)) (-4 *3 (-1205 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1205 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-300)) (-5 *1 (-452 *3 *2)) (-4 *2 (-1205 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-538) #1#) *4)) (-4 *4 (-1025)) (-5 *2 (-538)) + (-5 *1 (-535 *4 *3)) (-4 *3 (-1207 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-449 *3 *2)) (-4 *2 (-1207 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-302)) (-5 *1 (-454 *3 *2)) (-4 *2 (-1207 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-300)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-749))) - (-5 *1 (-529 *3 *2 *4 *5)) (-4 *2 (-1205 *3))))) + (-12 (-4 *3 (-302)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-751))) + (-5 *1 (-531 *3 *2 *4 *5)) (-4 *2 (-1207 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-529 *4 *2 *5 *6)) - (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-531 *4 *2 *5 *6)) + (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751)))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-1205 *4)) (-5 *1 (-529 *4 *2 *5 *6)) - (-4 *4 (-300)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-749)))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-1207 *4)) (-5 *1 (-531 *4 *2 *5 *6)) + (-4 *4 (-302)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-751)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 *6)) (-5 *4 (-620 (-1147))) (-4 *6 (-356)) - (-5 *2 (-620 (-286 (-920 *6)))) (-5 *1 (-528 *5 *6 *7)) (-4 *5 (-444)) - (-4 *7 (-13 (-356) (-823)))))) + (-12 (-5 *3 (-622 *6)) (-5 *4 (-622 (-1149))) (-4 *6 (-358)) + (-5 *2 (-622 (-288 (-922 *6)))) (-5 *1 (-530 *5 *6 *7)) (-4 *5 (-446)) + (-4 *7 (-13 (-358) (-825)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-620 (-920 *6))) (-5 *4 (-620 (-1147))) (-4 *6 (-444)) - (-5 *2 (-620 (-620 *7))) (-5 *1 (-528 *6 *7 *5)) (-4 *7 (-356)) - (-4 *5 (-13 (-356) (-823)))))) + (-12 (-5 *3 (-622 (-922 *6))) (-5 *4 (-622 (-1149))) (-4 *6 (-446)) + (-5 *2 (-622 (-622 *7))) (-5 *1 (-530 *6 *7 *5)) (-4 *7 (-358)) + (-4 *5 (-13 (-358) (-825)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *5)) (-4 *5 (-444)) (-5 *2 (-620 *6)) - (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-920 *5)) (-4 *5 (-444)) (-5 *2 (-620 *6)) - (-5 *1 (-528 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) -(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-525)))) - ((*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-526 *2)) (-4 *2 (-1183))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-5 *2 (-525)) (-5 *1 (-526 *4)) (-4 *4 (-1183))))) -(((*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-107)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-525))) (-5 *1 (-525))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-525))))) -(((*1 *1 *1) (-5 *1 (-525)))) -(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525))))) -(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-525))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-525))) (-5 *2 (-1147)) (-5 *1 (-525))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-525))) (-5 *1 (-525))))) + (-12 (-5 *3 (-1143 *5)) (-4 *5 (-446)) (-5 *2 (-622 *6)) + (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-922 *5)) (-4 *5 (-446)) (-5 *2 (-622 *6)) + (-5 *1 (-530 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825)))))) +(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-527)))) + ((*1 *2 *3) (-12 (-5 *3 (-527)) (-5 *1 (-528 *2)) (-4 *2 (-1185))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1149)) (-5 *2 (-527)) (-5 *1 (-528 *4)) (-4 *4 (-1185))))) +(((*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-107)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-527))) (-5 *1 (-527))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-527))))) +(((*1 *1 *1) (-5 *1 (-527)))) +(((*1 *2 *1) (-12 (-5 *2 (-1131)) (-5 *1 (-527))))) +(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-527))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-527))) (-5 *2 (-1149)) (-5 *1 (-527))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-527))) (-5 *1 (-527))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-667 *6)) (-5 *5 (-1 (-398 (-1141 *6)) (-1141 *6))) - (-4 *6 (-356)) + (-12 (-5 *3 (-669 *6)) (-5 *5 (-1 (-400 (-1143 *6)) (-1143 *6))) + (-4 *6 (-358)) (-5 *2 - (-620 - (-2 (|:| |outval| *7) (|:| |outmult| (-536)) - (|:| |outvect| (-620 (-667 *7)))))) - (-5 *1 (-523 *6 *7 *4)) (-4 *7 (-356)) (-4 *4 (-13 (-356) (-823)))))) + (-622 + (-2 (|:| |outval| *7) (|:| |outmult| (-538)) + (|:| |outvect| (-622 (-669 *7)))))) + (-5 *1 (-525 *6 *7 *4)) (-4 *7 (-358)) (-4 *4 (-13 (-358) (-825)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *5)) (-4 *5 (-356)) (-5 *2 (-620 *6)) - (-5 *1 (-523 *5 *6 *4)) (-4 *6 (-356)) (-4 *4 (-13 (-356) (-823)))))) + (-12 (-5 *3 (-1143 *5)) (-4 *5 (-358)) (-5 *2 (-622 *6)) + (-5 *1 (-525 *5 *6 *4)) (-4 *6 (-358)) (-4 *4 (-13 (-358) (-825)))))) (((*1 *2 *3) - (-12 (-5 *3 (-667 *4)) (-4 *4 (-356)) (-5 *2 (-1141 *4)) - (-5 *1 (-523 *4 *5 *6)) (-4 *5 (-356)) (-4 *6 (-13 (-356) (-823)))))) + (-12 (-5 *3 (-669 *4)) (-4 *4 (-358)) (-5 *2 (-1143 *4)) + (-5 *1 (-525 *4 *5 *6)) (-4 *5 (-358)) (-4 *6 (-13 (-358) (-825)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-521 *3)) (-4 *3 (-13 (-705) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-520)))) - ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-520))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-520))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-523 *3)) (-4 *3 (-13 (-707) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-522)))) + ((*1 *1 *2) (-12 (-5 *2 (-383)) (-5 *1 (-522))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-522))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-893)) (-4 *4 (-361)) (-4 *4 (-356)) (-5 *2 (-1141 *1)) - (-4 *1 (-322 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-5 *2 (-1141 *3)))) + (-12 (-5 *3 (-895)) (-4 *4 (-363)) (-4 *4 (-358)) (-5 *2 (-1143 *1)) + (-4 *1 (-324 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-5 *2 (-1143 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-170)) (-4 *3 (-356)) (-4 *2 (-1205 *3)))) + (-12 (-4 *1 (-365 *3 *2)) (-4 *3 (-170)) (-4 *3 (-358)) (-4 *2 (-1207 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4))))) -(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356)))) + (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4))))) +(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358)))) ((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1229 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-895)) (-5 *2 (-1231 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345))))) (((*1 *2 *2) - (-12 (-5 *2 (-1229 *4)) (-4 *4 (-411 *3)) (-4 *3 (-300)) (-4 *3 (-543)) + (-12 (-5 *2 (-1231 *4)) (-4 *4 (-413 *3)) (-4 *3 (-302)) (-4 *3 (-545)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-893)) (-4 *4 (-356)) (-5 *2 (-1229 *1)) (-4 *1 (-322 *4)))) - ((*1 *2) (-12 (-4 *3 (-356)) (-5 *2 (-1229 *1)) (-4 *1 (-322 *3)))) + (-12 (-5 *3 (-895)) (-4 *4 (-358)) (-5 *2 (-1231 *1)) (-4 *1 (-324 *4)))) + ((*1 *2) (-12 (-4 *3 (-358)) (-5 *2 (-1231 *1)) (-4 *1 (-324 *3)))) ((*1 *2) - (-12 (-4 *3 (-170)) (-4 *4 (-1205 *3)) (-5 *2 (-1229 *1)) - (-4 *1 (-403 *3 *4)))) + (-12 (-4 *3 (-170)) (-4 *4 (-1207 *3)) (-5 *2 (-1231 *1)) + (-4 *1 (-405 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) - (-5 *1 (-406 *3 *4 *5 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))))) + (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6)) + (-5 *1 (-408 *3 *4 *5 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-300)) (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-5 *2 (-1229 *6)) - (-5 *1 (-408 *3 *4 *5 *6 *7)) (-4 *6 (-403 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1229 *1)) (-4 *1 (-411 *3)))) + (-12 (-4 *3 (-302)) (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-5 *2 (-1231 *6)) + (-5 *1 (-410 *3 *4 *5 *6 *7)) (-4 *6 (-405 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1231 *1)) (-4 *1 (-413 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1229 (-1229 *4))) (-5 *1 (-519 *4)) - (-4 *4 (-343))))) + (-12 (-5 *3 (-895)) (-5 *2 (-1231 (-1231 *4))) (-5 *1 (-521 *4)) + (-4 *4 (-345))))) (((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-112)))) + (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4)))) + (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-351 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-519 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-361)) (-5 *2 (-893)))) + (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-521 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-895)))) ((*1 *2 *3) - (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-893)) (-5 *1 (-519 *4))))) + (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-895)) (-5 *1 (-521 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1229 *4)) (-5 *3 (-536)) (-4 *4 (-343)) (-5 *1 (-519 *4))))) + (-12 (-5 *2 (-1231 *4)) (-5 *3 (-538)) (-4 *4 (-345)) (-5 *1 (-521 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1091)) (-4 *4 (-343)) (-5 *1 (-519 *4))))) + (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1093)) (-4 *4 (-345)) (-5 *1 (-521 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1229 *4)) (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-519 *4))))) + (-12 (-5 *2 (-1231 *4)) (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-521 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1229 *5)) (-5 *3 (-749)) (-5 *4 (-1091)) (-4 *5 (-343)) - (-5 *1 (-519 *5))))) + (-12 (-5 *2 (-1231 *5)) (-5 *3 (-751)) (-5 *4 (-1093)) (-4 *5 (-345)) + (-5 *1 (-521 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-749)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-751)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4)) (-4 *4 (-345))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 *4)) (-4 *4 (-343)) (-5 *2 (-1141 *4)) (-5 *1 (-519 *4))))) + (-12 (-5 *3 (-1231 *4)) (-4 *4 (-345)) (-5 *2 (-1143 *4)) (-5 *1 (-521 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) - (-4 *4 (-343)) (-5 *2 (-1235)) (-5 *1 (-519 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-518)) (-5 *2 (-1091))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-518)) (-5 *3 (-129)) (-5 *2 (-1091))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-516))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-516))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1184))) (-5 *1 (-515))))) + (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) + (-4 *4 (-345)) (-5 *2 (-1237)) (-5 *1 (-521 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-520)) (-5 *2 (-1093))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-520)) (-5 *3 (-129)) (-5 *2 (-1093))))) +(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-518))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-518))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1186))) (-5 *1 (-517))))) (((*1 *2 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-365 *3)) (-4 *5 (-365 *3)) - (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-664 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508))))) -(((*1 *2 *1) (-12 (-5 *2 (-1106)) (-5 *1 (-508))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-320 *3)))) + (-12 (-4 *3 (-358)) (-4 *4 (-367 *3)) (-4 *5 (-367 *3)) + (-5 *1 (-514 *3 *4 *5 *2)) (-4 *2 (-666 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510))))) +(((*1 *2 *1) (-12 (-5 *2 (-1108)) (-5 *1 (-510))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-322 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-507 *3 *4)) (-14 *4 (-536))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-320 *3)) (-4 *3 (-1183)))) + (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-509 *3 *4)) (-14 *4 (-538))))) +(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-322 *3)) (-4 *3 (-1185)))) ((*1 *2 *1) - (-12 (-5 *2 (-749)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 (-536))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-320 *3)) (-4 *3 (-1183)))) + (-12 (-5 *2 (-751)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 (-538))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-322 *3)) (-4 *3 (-1185)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-536)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-320 *3)) (-4 *3 (-1183)))) + (-12 (-5 *2 (-538)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-322 *3)) (-4 *3 (-1185)))) ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-507 *3 *4)) (-4 *3 (-1183)) (-14 *4 (-536))))) -(((*1 *2 *1) (-12 (-4 *1 (-500 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-825))))) + (-12 (-5 *2 (-112)) (-5 *1 (-509 *3 *4)) (-4 *3 (-1185)) (-14 *4 (-538))))) +(((*1 *2 *1) (-12 (-4 *1 (-502 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-827))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) + (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-536)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-749)) + (-12 (-5 *2 (-538)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-751)) (-4 *5 (-170)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) - (-5 *3 (-620 (-839 *4))) (-14 *4 (-620 (-1147))) (-14 *5 (-749)) - (-5 *1 (-496 *4 *5))))) + (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) + (-5 *3 (-622 (-841 *4))) (-14 *4 (-622 (-1149))) (-14 *5 (-751)) + (-5 *1 (-498 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-620 (-1147))) (-14 *5 (-749)) + (-12 (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 - (-620 - (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536)))))) - (-5 *1 (-496 *4 *5)) + (-622 + (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538)))))) + (-5 *1 (-498 *4 *5)) (-5 *3 - (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536)))))))) + (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-495 (-400 (-536)) (-233 *4 (-749)) (-839 *3) (-241 *3 (-400 (-536))))) - (-14 *3 (-620 (-1147))) (-14 *4 (-749)) (-5 *1 (-496 *3 *4))))) + (-497 (-402 (-538)) (-235 *4 (-751)) (-841 *3) (-243 *3 (-402 (-538))))) + (-14 *3 (-622 (-1149))) (-14 *4 (-751)) (-5 *1 (-498 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) - (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) - (-5 *1 (-496 *4 *5))))) + (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) + (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) + (-5 *1 (-498 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-495 (-400 (-536)) (-233 *5 (-749)) (-839 *4) (-241 *4 (-400 (-536))))) - (-14 *4 (-620 (-1147))) (-14 *5 (-749)) (-5 *2 (-112)) - (-5 *1 (-496 *4 *5))))) + (-497 (-402 (-538)) (-235 *5 (-751)) (-841 *4) (-243 *4 (-402 (-538))))) + (-14 *4 (-622 (-1149))) (-14 *5 (-751)) (-5 *2 (-112)) + (-5 *1 (-498 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6))))) + (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) + (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-219)) (-5 *2 (-112)) (-5 *1 (-295 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-221)) (-5 *2 (-112)) (-5 *1 (-297 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1060 (-817 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) - (-5 *1 (-296)))) + (-12 (-5 *4 (-1062 (-819 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) + (-5 *1 (-298)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5))))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) + (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6))))) + (-12 (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-112)) + (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5)))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) + (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) - (-5 *2 (-112)) (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6))))) + (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) + (-5 *2 (-112)) (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) - (-4 *2 (-924 *3 *4 *5)))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2)) + (-4 *2 (-926 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-924 *2 *3 *4))))) + (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) + (-4 *5 (-926 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) + (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) (-5 *2 - (-2 (|:| |mval| (-667 *4)) (|:| |invmval| (-667 *4)) - (|:| |genIdeal| (-495 *4 *5 *6 *7)))) - (-5 *1 (-495 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6))))) + (-2 (|:| |mval| (-669 *4)) (|:| |invmval| (-669 *4)) + (|:| |genIdeal| (-497 *4 *5 *6 *7)))) + (-5 *1 (-497 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-667 *3)) (|:| |invmval| (-667 *3)) - (|:| |genIdeal| (-495 *3 *4 *5 *6)))) - (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6)) - (-4 *6 (-924 *3 *4 *5))))) + (-2 (|:| |mval| (-669 *3)) (|:| |invmval| (-669 *3)) + (|:| |genIdeal| (-497 *3 *4 *5 *6)))) + (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6)) + (-4 *6 (-926 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-356)) (-4 *3 (-771)) (-4 *4 (-825)) (-5 *1 (-495 *2 *3 *4 *5)) - (-4 *5 (-924 *2 *3 *4))))) + (-12 (-4 *2 (-358)) (-4 *3 (-773)) (-4 *4 (-827)) (-5 *1 (-497 *2 *3 *4 *5)) + (-4 *5 (-926 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) - (-5 *2 (-406 *4 (-400 *4) *5 *6)))) + (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) + (-5 *2 (-408 *4 (-402 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 *6)) (-4 *6 (-13 (-403 *4 *5) (-1012 *4))) - (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-4 *3 (-300)) - (-5 *1 (-406 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1231 *6)) (-4 *6 (-13 (-405 *4 *5) (-1014 *4))) + (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-4 *3 (-302)) + (-5 *1 (-408 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-356)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-358)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-495 *3 *4 *5 *6)) (-4 *6 (-924 *3 *4 *5))))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) + (-5 *1 (-497 *3 *4 *5 *6)) (-4 *6 (-926 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-620 *6)) (-4 *6 (-825)) (-4 *4 (-356)) (-4 *5 (-771)) - (-5 *1 (-495 *4 *5 *6 *2)) (-4 *2 (-924 *4 *5 *6)))) + (-12 (-5 *3 (-622 *6)) (-4 *6 (-827)) (-4 *4 (-358)) (-4 *5 (-773)) + (-5 *1 (-497 *4 *5 *6 *2)) (-4 *2 (-926 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-495 *3 *4 *5 *2)) - (-4 *2 (-924 *3 *4 *5))))) + (-12 (-4 *3 (-358)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-497 *3 *4 *5 *2)) + (-4 *2 (-926 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *5 *6)) (-4 *6 (-596 (-1147))) - (-4 *4 (-356)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *2 (-1136 (-620 (-920 *4)) (-620 (-286 (-920 *4))))) - (-5 *1 (-495 *4 *5 *6 *7))))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *5 *6)) (-4 *6 (-598 (-1149))) + (-4 *4 (-358)) (-4 *5 (-773)) (-4 *6 (-827)) + (-5 *2 (-1138 (-622 (-922 *4)) (-622 (-288 (-922 *4))))) + (-5 *1 (-497 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1235)) (-5 *1 (-208 *4)) + (-12 (-5 *3 (-895)) (-5 *2 (-1237)) (-5 *1 (-210 *4)) (-4 *4 - (-13 (-825) - (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) - (-15 -2082 (*2 $))))))) + (-13 (-827) + (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $)) + (-15 -2087 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1235)) (-5 *1 (-208 *3)) + (-12 (-5 *2 (-1237)) (-5 *1 (-210 *3)) (-4 *3 - (-13 (-825) - (-10 -8 (-15 -4154 ((-1129) $ (-1147))) (-15 -3975 (*2 $)) - (-15 -2082 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-493))))) + (-13 (-827) + (-10 -8 (-15 -4159 ((-1131) $ (-1149))) (-15 -3980 (*2 $)) + (-15 -2087 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-495))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *6 (-1205 *5)) - (-5 *2 (-1141 (-1141 *7))) (-5 *1 (-492 *5 *6 *4 *7)) (-4 *4 (-1205 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *6 (-1207 *5)) + (-5 *2 (-1143 (-1143 *7))) (-5 *1 (-494 *5 *6 *4 *7)) (-4 *4 (-1207 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-667 (-1141 *8))) - (-4 *5 (-1023)) (-4 *8 (-1023)) (-4 *6 (-1205 *5)) (-5 *2 (-667 *6)) - (-5 *1 (-492 *5 *6 *7 *8)) (-4 *7 (-1205 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-669 (-1143 *8))) + (-4 *5 (-1025)) (-4 *8 (-1025)) (-4 *6 (-1207 *5)) (-5 *2 (-669 *6)) + (-5 *1 (-494 *5 *6 *7 *8)) (-4 *7 (-1207 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1141 *7)) - (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *2 (-1205 *5)) - (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1205 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1143 *7)) + (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *2 (-1207 *5)) + (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1207 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1141 *7)) (-4 *5 (-1023)) (-4 *7 (-1023)) - (-4 *2 (-1205 *5)) (-5 *1 (-492 *5 *2 *6 *7)) (-4 *6 (-1205 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1143 *7)) (-4 *5 (-1025)) (-4 *7 (-1025)) + (-4 *2 (-1207 *5)) (-5 *1 (-494 *5 *2 *6 *7)) (-4 *6 (-1207 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1023)) (-4 *7 (-1023)) (-4 *4 (-1205 *5)) - (-5 *2 (-1141 *7)) (-5 *1 (-492 *5 *4 *6 *7)) (-4 *6 (-1205 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1025)) (-4 *7 (-1025)) (-4 *4 (-1207 *5)) + (-5 *2 (-1143 *7)) (-5 *1 (-494 *5 *4 *6 *7)) (-4 *6 (-1207 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2123 (-667 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-667 *3)))) - (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *4 (-1205 *3)) - (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) + (-2 (|:| -2128 (-669 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-669 *3)))) + (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *4 (-1207 *3)) + (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) - (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) + (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) + (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) - (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4)))) + (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) + (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) - (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) + (-12 (-5 *2 (-669 *3)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) + (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-749)) (-4 *3 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) - (-4 *4 (-1205 *3)) (-5 *1 (-490 *3 *4 *5)) (-4 *5 (-403 *3 *4))))) + (-12 (-5 *2 (-751)) (-4 *3 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) + (-4 *4 (-1207 *3)) (-5 *1 (-492 *3 *4 *5)) (-4 *5 (-405 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-667 *2)) (-5 *4 (-536)) - (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *5 (-1205 *2)) - (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) + (-12 (-5 *3 (-669 *2)) (-5 *4 (-538)) + (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *5 (-1207 *2)) + (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-405 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-667 *2)) (-5 *4 (-749)) - (-4 *2 (-13 (-300) (-10 -8 (-15 -4324 ((-398 $) $))))) (-4 *5 (-1205 *2)) - (-5 *1 (-490 *2 *5 *6)) (-4 *6 (-403 *2 *5))))) + (-12 (-5 *3 (-669 *2)) (-5 *4 (-751)) + (-4 *2 (-13 (-302) (-10 -8 (-15 -4329 ((-400 $) $))))) (-4 *5 (-1207 *2)) + (-5 *1 (-492 *2 *5 *6)) (-4 *6 (-405 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-343)) (-4 *6 (-1205 *5)) + (-12 (-5 *4 (-751)) (-4 *5 (-345)) (-4 *6 (-1207 *5)) (-5 *2 - (-620 - (-2 (|:| -2123 (-667 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-667 *6))))) - (-5 *1 (-489 *5 *6 *7)) + (-622 + (-2 (|:| -2128 (-669 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-669 *6))))) + (-5 *1 (-491 *5 *6 *7)) (-5 *3 - (-2 (|:| -2123 (-667 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-667 *6)))) - (-4 *7 (-1205 *6))))) + (-2 (|:| -2128 (-669 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-669 *6)))) + (-4 *7 (-1207 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-620 + (-622 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-536))))) - (-5 *1 (-398 *3)) (-4 *3 (-543)))) + (|:| |xpnt| (-538))))) + (-5 *1 (-400 *3)) (-4 *3 (-545)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-749)) (-4 *3 (-343)) (-4 *5 (-1205 *3)) - (-5 *2 (-620 (-1141 *3))) (-5 *1 (-489 *3 *5 *6)) (-4 *6 (-1205 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-486))))) -(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-482))))) + (-12 (-5 *4 (-751)) (-4 *3 (-345)) (-4 *5 (-1207 *3)) + (-5 *2 (-622 (-1143 *3))) (-5 *1 (-491 *3 *5 *6)) (-4 *6 (-1207 *5))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-488))))) +(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-484))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) - (-4 *4 (-365 *3)) (-4 *5 (-365 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) + (-4 *4 (-367 *3)) (-4 *5 (-367 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4349)) (-4 *1 (-481 *3)) - (-4 *3 (-1183))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-483 *3)) + (-4 *3 (-1185))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) - (-4 *4 (-1183)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) + (-4 *4 (-1185)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) - (-4 *4 (-1183)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) + (-4 *4 (-1185)) (-5 *2 (-112))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) (-4 *3 (-1072)) - (-5 *2 (-749)))) + (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) (-4 *3 (-1074)) + (-5 *2 (-751)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4348)) (-4 *1 (-481 *4)) - (-4 *4 (-1183)) (-5 *2 (-749))))) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4353)) (-4 *1 (-483 *4)) + (-4 *4 (-1185)) (-5 *2 (-751))))) (((*1 *2 *1) - (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1183)) (-4 *4 (-365 *3)) - (-4 *5 (-365 *3)) (-5 *2 (-620 *3)))) + (-12 (-4 *1 (-56 *3 *4 *5)) (-4 *3 (-1185)) (-4 *4 (-367 *3)) + (-4 *5 (-367 *3)) (-5 *2 (-622 *3)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4348)) (-4 *1 (-481 *3)) (-4 *3 (-1183)) - (-5 *2 (-620 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-479))))) -(((*1 *2 *3) - (-12 (-5 *3 (-620 (-536))) (-5 *2 (-536)) (-5 *1 (-478 *4)) - (-4 *4 (-1205 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1205 (-536))) (-5 *1 (-478 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1205 (-536))) (-5 *1 (-478 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 *2)) (-5 *1 (-478 *2)) (-4 *2 (-1205 (-536)))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-476 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-620 (-497))) (-5 *2 (-497)) (-5 *1 (-475))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-497))) (-5 *1 (-475))))) + (-12 (|has| *1 (-6 -4353)) (-4 *1 (-483 *3)) (-4 *3 (-1185)) + (-5 *2 (-622 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-481))))) +(((*1 *2 *3) + (-12 (-5 *3 (-622 (-538))) (-5 *2 (-538)) (-5 *1 (-480 *4)) + (-4 *4 (-1207 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1207 (-538))) (-5 *1 (-480 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1207 (-538))) (-5 *1 (-480 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 *2)) (-5 *1 (-480 *2)) (-4 *2 (-1207 (-538)))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-478 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-622 (-499))) (-5 *2 (-499)) (-5 *1 (-477))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-499))) (-5 *1 (-477))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-536))) (-5 *1 (-241 *3 *4)) (-14 *3 (-620 (-1147))) - (-4 *4 (-1023)))) + (-12 (-5 *2 (-622 (-538))) (-5 *1 (-243 *3 *4)) (-14 *3 (-622 (-1149))) + (-4 *4 (-1025)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-536))) (-14 *3 (-620 (-1147))) (-5 *1 (-446 *3 *4 *5)) - (-4 *4 (-1023)) (-4 *5 (-232 (-4311 *3) (-749))))) + (-12 (-5 *2 (-622 (-538))) (-14 *3 (-622 (-1149))) (-5 *1 (-448 *3 *4 *5)) + (-4 *4 (-1025)) (-4 *5 (-234 (-4316 *3) (-751))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-536))) (-5 *1 (-473 *3 *4)) (-14 *3 (-620 (-1147))) - (-4 *4 (-1023))))) -(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-536)) (-5 *2 (-112)) (-5 *1 (-472))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-472))))) + (-12 (-5 *2 (-622 (-538))) (-5 *1 (-475 *3 *4)) (-14 *3 (-622 (-1149))) + (-4 *4 (-1025))))) +(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-538)) (-5 *2 (-112)) (-5 *1 (-474))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-474))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-839 *5))) (-14 *5 (-620 (-1147))) (-4 *6 (-444)) - (-5 *2 (-2 (|:| |dpolys| (-620 (-241 *5 *6))) (|:| |coords| (-620 (-536))))) - (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-620 (-241 *5 *6))) (-4 *7 (-444))))) + (-12 (-5 *4 (-622 (-841 *5))) (-14 *5 (-622 (-1149))) (-4 *6 (-446)) + (-5 *2 (-2 (|:| |dpolys| (-622 (-243 *5 *6))) (|:| |coords| (-622 (-538))))) + (-5 *1 (-465 *5 *6 *7)) (-5 *3 (-622 (-243 *5 *6))) (-4 *7 (-446))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-620 (-473 *4 *5))) (-5 *3 (-620 (-839 *4))) - (-14 *4 (-620 (-1147))) (-4 *5 (-444)) (-5 *1 (-463 *4 *5 *6)) - (-4 *6 (-444))))) + (|partial| -12 (-5 *2 (-622 (-475 *4 *5))) (-5 *3 (-622 (-841 *4))) + (-14 *4 (-622 (-1149))) (-4 *5 (-446)) (-5 *1 (-465 *4 *5 *6)) + (-4 *6 (-446))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-839 *5))) (-14 *5 (-620 (-1147))) (-4 *6 (-444)) - (-5 *2 (-620 (-620 (-241 *5 *6)))) (-5 *1 (-463 *5 *6 *7)) - (-5 *3 (-620 (-241 *5 *6))) (-4 *7 (-444))))) -(((*1 *1) (-5 *1 (-460)))) + (-12 (-5 *4 (-622 (-841 *5))) (-14 *5 (-622 (-1149))) (-4 *6 (-446)) + (-5 *2 (-622 (-622 (-243 *5 *6)))) (-5 *1 (-465 *5 *6 *7)) + (-5 *3 (-622 (-243 *5 *6))) (-4 *7 (-446))))) +(((*1 *1) (-5 *1 (-462)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) - (-5 *4 (-620 (-893))) (-5 *5 (-620 (-254))) (-5 *1 (-460)))) + (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850))) + (-5 *4 (-622 (-895))) (-5 *5 (-622 (-256))) (-5 *1 (-462)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) - (-5 *4 (-620 (-893))) (-5 *1 (-460)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460)))) - ((*1 *1 *1) (-5 *1 (-460)))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *1 (-460))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254)))) + (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850))) + (-5 *4 (-622 (-895))) (-5 *1 (-462)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462)))) + ((*1 *1 *1) (-5 *1 (-462)))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *1 (-462))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-460)))) - ((*1 *2 *1) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-460))))) + (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-462)))) + ((*1 *2 *1) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-462))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-917 (-219))) (-5 *4 (-848)) (-5 *5 (-893)) (-5 *2 (-1235)) - (-5 *1 (-460)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-460)))) + (-12 (-5 *3 (-919 (-221))) (-5 *4 (-850)) (-5 *5 (-895)) (-5 *2 (-1237)) + (-5 *1 (-462)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *4 (-848)) (-5 *5 (-893)) - (-5 *2 (-1235)) (-5 *1 (-460))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-917 (-219))) (-5 *2 (-1235)) (-5 *1 (-460))))) + (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *4 (-850)) (-5 *5 (-895)) + (-5 *2 (-1237)) (-5 *1 (-462))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-919 (-221))) (-5 *2 (-1237)) (-5 *1 (-462))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-620 (-620 (-917 (-219))))) (-5 *3 (-620 (-848))) - (-5 *1 (-460))))) -(((*1 *2 *3) - (-12 (-5 *3 (-620 (-620 (-917 (-219))))) (-5 *2 (-620 (-219))) - (-5 *1 (-460))))) -(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-459))))) -(((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1229 (-1229 (-536)))) (-5 *1 (-458))))) + (-12 (-5 *2 (-622 (-622 (-919 (-221))))) (-5 *3 (-622 (-850))) + (-5 *1 (-462))))) +(((*1 *2 *3) + (-12 (-5 *3 (-622 (-622 (-919 (-221))))) (-5 *2 (-622 (-221))) + (-5 *1 (-462))))) +(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-461))))) +(((*1 *2 *3) + (-12 (-5 *3 (-895)) (-5 *2 (-1231 (-1231 (-538)))) (-5 *1 (-460))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1229 (-1229 (-536)))) (-5 *3 (-893)) (-5 *1 (-458))))) + (-12 (-5 *2 (-1231 (-1231 (-538)))) (-5 *3 (-895)) (-5 *1 (-460))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-825)) (-4 *5 (-771)) (-4 *6 (-543)) - (-4 *7 (-924 *6 *5 *3)) (-5 *1 (-454 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-827)) (-4 *5 (-773)) (-4 *6 (-545)) + (-4 *7 (-926 *6 *5 *3)) (-5 *1 (-456 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-1012 (-400 (-536))) (-356) - (-10 -8 (-15 -4312 ($ *7)) (-15 -3326 (*7 $)) (-15 -3325 (*7 $)))))))) + (-13 (-1014 (-402 (-538))) (-358) + (-10 -8 (-15 -4317 ($ *7)) (-15 -3331 (*7 $)) (-15 -3330 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) + (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-14 *6 - (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *2)) - (-2 (|:| -2487 *5) (|:| -2488 *2)))) - (-4 *2 (-232 (-4311 *3) (-749))) (-5 *1 (-453 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-825)) (-4 *7 (-924 *4 *2 (-839 *3)))))) + (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *2)) + (-2 (|:| -2492 *5) (|:| -2493 *2)))) + (-4 *2 (-234 (-4316 *3) (-751))) (-5 *1 (-455 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-827)) (-4 *7 (-926 *4 *2 (-841 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-620 (-1147))) (-4 *4 (-170)) (-4 *5 (-232 (-4311 *3) (-749))) + (-12 (-14 *3 (-622 (-1149))) (-4 *4 (-170)) (-4 *5 (-234 (-4316 *3) (-751))) (-14 *6 - (-1 (-112) (-2 (|:| -2487 *2) (|:| -2488 *5)) - (-2 (|:| -2487 *2) (|:| -2488 *5)))) - (-4 *2 (-825)) (-5 *1 (-453 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-924 *4 *5 (-839 *3)))))) + (-1 (-112) (-2 (|:| -2492 *2) (|:| -2493 *5)) + (-2 (|:| -2492 *2) (|:| -2493 *5)))) + (-4 *2 (-827)) (-5 *1 (-455 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-926 *4 *5 (-841 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-620 (-1147))) (-4 *2 (-170)) (-4 *4 (-232 (-4311 *5) (-749))) + (-12 (-14 *5 (-622 (-1149))) (-4 *2 (-170)) (-4 *4 (-234 (-4316 *5) (-751))) (-14 *6 - (-1 (-112) (-2 (|:| -2487 *3) (|:| -2488 *4)) - (-2 (|:| -2487 *3) (|:| -2488 *4)))) - (-5 *1 (-453 *5 *2 *3 *4 *6 *7)) (-4 *3 (-825)) - (-4 *7 (-924 *2 *4 (-839 *5)))))) + (-1 (-112) (-2 (|:| -2492 *3) (|:| -2493 *4)) + (-2 (|:| -2492 *3) (|:| -2493 *4)))) + (-5 *1 (-455 *5 *2 *3 *4 *6 *7)) (-4 *3 (-827)) + (-4 *7 (-926 *2 *4 (-841 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-620 (-1147))) (-4 *2 (-170)) (-4 *3 (-232 (-4311 *4) (-749))) + (-12 (-14 *4 (-622 (-1149))) (-4 *2 (-170)) (-4 *3 (-234 (-4316 *4) (-751))) (-14 *6 - (-1 (-112) (-2 (|:| -2487 *5) (|:| -2488 *3)) - (-2 (|:| -2487 *5) (|:| -2488 *3)))) - (-5 *1 (-453 *4 *2 *5 *3 *6 *7)) (-4 *5 (-825)) - (-4 *7 (-924 *2 *3 (-839 *4)))))) + (-1 (-112) (-2 (|:| -2492 *5) (|:| -2493 *3)) + (-2 (|:| -2492 *5) (|:| -2493 *3)))) + (-5 *1 (-455 *4 *2 *5 *3 *6 *7)) (-4 *5 (-827)) + (-4 *7 (-926 *2 *3 (-841 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-620 *3)) (-5 *5 (-893)) (-4 *3 (-1205 *4)) (-4 *4 (-300)) - (-5 *1 (-452 *4 *3))))) + (-12 (-5 *2 (-622 *3)) (-5 *5 (-895)) (-4 *3 (-1207 *4)) (-4 *4 (-302)) + (-5 *1 (-454 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-893)) (-4 *5 (-300)) (-4 *3 (-1205 *5)) - (-5 *2 (-2 (|:| |plist| (-620 *3)) (|:| |modulo| *5))) (-5 *1 (-452 *5 *3)) - (-5 *4 (-620 *3))))) + (-12 (-5 *6 (-895)) (-4 *5 (-302)) (-4 *3 (-1207 *5)) + (-5 *2 (-2 (|:| |plist| (-622 *3)) (|:| |modulo| *5))) (-5 *1 (-454 *5 *3)) + (-5 *4 (-622 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-620 *5)) (-4 *5 (-1205 *3)) (-4 *3 (-300)) (-5 *2 (-112)) - (-5 *1 (-447 *3 *5))))) + (-12 (-5 *4 (-622 *5)) (-4 *5 (-1207 *3)) (-4 *3 (-302)) (-5 *2 (-112)) + (-5 *1 (-449 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1229 (-620 *3))) (-4 *4 (-300)) (-5 *2 (-620 *3)) - (-5 *1 (-447 *4 *3)) (-4 *3 (-1205 *4))))) + (|partial| -12 (-5 *5 (-1231 (-622 *3))) (-4 *4 (-302)) (-5 *2 (-622 *3)) + (-5 *1 (-449 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-749)) (-4 *4 (-300)) (-4 *6 (-1205 *4)) - (-5 *2 (-1229 (-620 *6))) (-5 *1 (-447 *4 *6)) (-5 *5 (-620 *6))))) + (|partial| -12 (-5 *3 (-751)) (-4 *4 (-302)) (-4 *6 (-1207 *4)) + (-5 *2 (-1231 (-622 *6))) (-5 *1 (-449 *4 *6)) (-5 *5 (-622 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-300)) (-5 *2 (-749)) - (-5 *1 (-447 *5 *3))))) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-302)) (-5 *2 (-751)) + (-5 *1 (-449 *5 *3))))) (((*1 *2) - (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-620 *1)))) (-4 *1 (-360 *3)))) + (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2128 (-622 *1)))) (-4 *1 (-362 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-445 *3 *4 *5 *6)) - (|:| -2123 (-620 (-445 *3 *4 *5 *6))))) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) - (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3)))))) + (-2 (|:| |particular| (-447 *3 *4 *5 *6)) + (|:| -2128 (-622 (-447 *3 *4 *5 *6))))) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) + (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3)))))) (((*1 *2) - (|partial| -12 (-4 *3 (-543)) (-4 *3 (-170)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2123 (-620 *1)))) (-4 *1 (-360 *3)))) + (|partial| -12 (-4 *3 (-545)) (-4 *3 (-170)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2128 (-622 *1)))) (-4 *1 (-362 *3)))) ((*1 *2) (|partial| -12 (-5 *2 - (-2 (|:| |particular| (-445 *3 *4 *5 *6)) - (|:| -2123 (-620 (-445 *3 *4 *5 *6))))) - (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-893)) - (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3)))))) + (-2 (|:| |particular| (-447 *3 *4 *5 *6)) + (|:| -2128 (-622 (-447 *3 *4 *5 *6))))) + (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) (-14 *4 (-895)) + (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1229 (-1147))) (-5 *3 (-1229 (-445 *4 *5 *6 *7))) - (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-893)) - (-14 *6 (-620 (-1147))) (-14 *7 (-1229 (-667 *4))))) + (-12 (-5 *2 (-1231 (-1149))) (-5 *3 (-1231 (-447 *4 *5 *6 *7))) + (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) + (-14 *6 (-622 (-1149))) (-14 *7 (-1231 (-669 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-1229 (-445 *4 *5 *6 *7))) - (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-893)) (-14 *6 (-620 *2)) - (-14 *7 (-1229 (-667 *4))))) + (-12 (-5 *2 (-1149)) (-5 *3 (-1231 (-447 *4 *5 *6 *7))) + (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-170)) (-14 *5 (-895)) (-14 *6 (-622 *2)) + (-14 *7 (-1231 (-669 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-445 *3 *4 *5 *6))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3))))) + (-12 (-5 *2 (-1231 (-447 *3 *4 *5 *6))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 (-1147))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-893)) (-14 *5 (-620 (-1147))) (-14 *6 (-1229 (-667 *3))))) + (-12 (-5 *2 (-1231 (-1149))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) + (-14 *4 (-895)) (-14 *5 (-622 (-1149))) (-14 *6 (-1231 (-669 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1147)) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-170)) - (-14 *4 (-893)) (-14 *5 (-620 *2)) (-14 *6 (-1229 (-667 *3))))) + (-12 (-5 *2 (-1149)) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-170)) + (-14 *4 (-895)) (-14 *5 (-622 *2)) (-14 *6 (-1231 (-669 *3))))) ((*1 *1) - (-12 (-5 *1 (-445 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-893)) - (-14 *4 (-620 (-1147))) (-14 *5 (-1229 (-667 *2)))))) + (-12 (-5 *1 (-447 *2 *3 *4 *5)) (-4 *2 (-170)) (-14 *3 (-895)) + (-14 *4 (-622 (-1149))) (-14 *5 (-1231 (-669 *2)))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-920 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) + (-12 (-4 *4 (-170)) (-5 *2 (-1143 (-922 *4))) (-5 *1 (-412 *3 *4)) + (-4 *3 (-413 *4)))) ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) - (-5 *2 (-1141 (-920 *3))))) + (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-358)) + (-5 *2 (-1143 (-922 *3))))) ((*1 *2) - (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) - (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) + (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) - (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) + (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-1141 (-920 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) + (-12 (-4 *4 (-170)) (-5 *2 (-1143 (-922 *4))) (-5 *1 (-412 *3 *4)) + (-4 *3 (-413 *4)))) ((*1 *2) - (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-4 *3 (-356)) - (-5 *2 (-1141 (-920 *3))))) + (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-4 *3 (-358)) + (-5 *2 (-1143 (-922 *3))))) ((*1 *2) - (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1141 (-400 (-920 *3)))) (-5 *1 (-445 *3 *4 *5 *6)) - (-4 *3 (-543)) (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-1143 (-402 (-922 *3)))) (-5 *1 (-447 *3 *4 *5 *6)) + (-4 *3 (-545)) (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) - (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) + (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) - (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) + (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) - (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) + (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2) - (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) - (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) + (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) - (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) + (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2) - (-12 (-5 *2 (-400 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) - (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3)))))) + (-12 (-5 *2 (-402 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) + (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) - (-5 *2 (-620 (-920 *4))))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) + (-5 *2 (-622 (-922 *4))))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-620 (-920 *4))) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-620 (-920 *3))))) + (-12 (-4 *4 (-170)) (-5 *2 (-622 (-922 *4))) (-5 *1 (-412 *3 *4)) + (-4 *3 (-413 *4)))) + ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-622 (-922 *3))))) ((*1 *2) - (-12 (-5 *2 (-620 (-920 *3))) (-5 *1 (-445 *3 *4 *5 *6)) (-4 *3 (-543)) - (-4 *3 (-170)) (-14 *4 (-893)) (-14 *5 (-620 (-1147))) - (-14 *6 (-1229 (-667 *3))))) + (-12 (-5 *2 (-622 (-922 *3))) (-5 *1 (-447 *3 *4 *5 *6)) (-4 *3 (-545)) + (-4 *3 (-170)) (-14 *4 (-895)) (-14 *5 (-622 (-1149))) + (-14 *6 (-1231 (-669 *3))))) ((*1 *2 *3) - (-12 (-5 *3 (-1229 (-445 *4 *5 *6 *7))) (-5 *2 (-620 (-920 *4))) - (-5 *1 (-445 *4 *5 *6 *7)) (-4 *4 (-543)) (-4 *4 (-170)) (-14 *5 (-893)) - (-14 *6 (-620 (-1147))) (-14 *7 (-1229 (-667 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *1)) (-4 *1 (-444)))) - ((*1 *1 *1 *1) (-4 *1 (-444)))) -(((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-749)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6))))) + (-12 (-5 *3 (-1231 (-447 *4 *5 *6 *7))) (-5 *2 (-622 (-922 *4))) + (-5 *1 (-447 *4 *5 *6 *7)) (-4 *4 (-545)) (-4 *4 (-170)) (-14 *5 (-895)) + (-14 *6 (-622 (-1149))) (-14 *7 (-1231 (-669 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *1)) (-4 *1 (-446)))) + ((*1 *1 *1 *1) (-4 *1 (-446)))) +(((*1 *2 *3) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-751)) + (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-749)) (|:| -2115 *4))) (-5 *5 (-749)) - (-4 *4 (-924 *6 *7 *8)) (-4 *6 (-444)) (-4 *7 (-771)) (-4 *8 (-825)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-751)) (|:| -2120 *4))) (-5 *5 (-751)) + (-4 *4 (-926 *6 *7 *8)) (-4 *6 (-446)) (-4 *7 (-773)) (-4 *8 (-827)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) - (-5 *1 (-442 *6 *7 *8 *4))))) + (-5 *1 (-444 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-771)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) - (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7))))) + (-4 *5 (-773)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) + (-5 *2 (-112)) (-5 *1 (-444 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-536)) (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) - (-5 *2 (-1235)) (-5 *1 (-442 *4 *5 *6 *7)) (-4 *7 (-924 *4 *5 *6))))) + (-12 (-5 *3 (-538)) (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) + (-5 *2 (-1237)) (-5 *1 (-444 *4 *5 *6 *7)) (-4 *7 (-926 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *7)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *2 (-1235)) (-5 *1 (-442 *4 *5 *6 *7))))) + (-12 (-5 *3 (-622 *7)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *2 (-1237)) (-5 *1 (-444 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-536)) + (-12 (-5 *2 (-538)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-771)) (-4 *4 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) - (-5 *1 (-442 *5 *6 *7 *4))))) + (-4 *6 (-773)) (-4 *4 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) + (-5 *1 (-444 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-536)) + (-12 (-5 *2 (-538)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-749)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-751)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-771)) (-4 *4 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *7 (-825)) - (-5 *1 (-442 *5 *6 *7 *4))))) + (-4 *6 (-773)) (-4 *4 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *7 (-827)) + (-5 *1 (-444 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-1235)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-1237)) + (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) (-4 *5 (-771)) (-4 *6 (-825)) (-5 *2 (-536)) - (-5 *1 (-442 *4 *5 *6 *3)) (-4 *3 (-924 *4 *5 *6))))) + (-12 (-4 *4 (-446)) (-4 *5 (-773)) (-4 *6 (-827)) (-5 *2 (-538)) + (-5 *1 (-444 *4 *5 *6 *3)) (-4 *3 (-926 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *6))))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-620 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) + (-622 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-771)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) - (-5 *1 (-442 *3 *4 *5 *6))))) + (-4 *4 (-773)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) + (-5 *1 (-444 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-771)) (-4 *2 (-924 *4 *5 *6)) (-5 *1 (-442 *4 *5 *6 *2)) - (-4 *4 (-444)) (-4 *6 (-825))))) + (-4 *5 (-773)) (-4 *2 (-926 *4 *5 *6)) (-5 *1 (-444 *4 *5 *6 *2)) + (-4 *4 (-446)) (-4 *6 (-827))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-620 (-2 (|:| |totdeg| (-749)) (|:| -2115 *3)))) (-5 *4 (-749)) - (-4 *3 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) (-4 *7 (-825)) - (-5 *1 (-442 *5 *6 *7 *3))))) + (-12 (-5 *2 (-622 (-2 (|:| |totdeg| (-751)) (|:| -2120 *3)))) (-5 *4 (-751)) + (-4 *3 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) (-4 *7 (-827)) + (-5 *1 (-444 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *4 (-771)) (-4 *5 (-825)) (-5 *1 (-442 *3 *4 *5 *2)) - (-4 *2 (-924 *3 *4 *5))))) + (-12 (-4 *3 (-446)) (-4 *4 (-773)) (-4 *5 (-827)) (-5 *1 (-444 *3 *4 *5 *2)) + (-4 *2 (-926 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-620 *3)) (-4 *3 (-924 *5 *6 *7)) (-4 *5 (-444)) (-4 *6 (-771)) - (-4 *7 (-825)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-442 *5 *6 *7 *3))))) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-926 *5 *6 *7)) (-4 *5 (-446)) (-4 *6 (-773)) + (-4 *7 (-827)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-444 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-620 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-749)) (|:| |poli| *6) + (-622 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-771)) (-4 *6 (-924 *4 *3 *5)) (-4 *4 (-444)) (-4 *5 (-825)) - (-5 *1 (-442 *4 *3 *5 *6))))) + (-4 *3 (-773)) (-4 *6 (-926 *4 *3 *5)) (-4 *4 (-446)) (-4 *5 (-827)) + (-5 *1 (-444 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-620 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-749)) (|:| |poli| *6) + (-622 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-751)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-771)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-444)) (-4 *5 (-825)) - (-5 *1 (-442 *3 *4 *5 *6))))) + (-4 *4 (-773)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-446)) (-4 *5 (-827)) + (-5 *1 (-444 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-620 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *3) + (-622 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-771)) (-4 *3 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) - (-5 *1 (-442 *4 *5 *6 *3))))) + (-4 *5 (-773)) (-4 *3 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) + (-5 *1 (-444 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-924 *4 *3 *5))))) + (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) + (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-926 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-444)) (-4 *3 (-771)) (-4 *5 (-825)) (-5 *2 (-112)) - (-5 *1 (-442 *4 *3 *5 *6)) (-4 *6 (-924 *4 *3 *5))))) + (-12 (-4 *4 (-446)) (-4 *3 (-773)) (-4 *5 (-827)) (-5 *2 (-112)) + (-5 *1 (-444 *4 *3 *5 *6)) (-4 *6 (-926 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-749)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-751)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-771)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *6 (-825)) - (-5 *2 (-112)) (-5 *1 (-442 *4 *5 *6 *7))))) + (-4 *5 (-773)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *6 (-827)) + (-5 *2 (-112)) (-5 *1 (-444 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-620 *7)) (-5 *3 (-536)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-444)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *7))))) + (-12 (-5 *2 (-622 *7)) (-5 *3 (-538)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-446)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *2))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-444)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *1 (-442 *4 *5 *6 *2))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-446)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *1 (-444 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) - (-5 *3 (-620 *7)))) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7)) + (-5 *3 (-622 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) - (-5 *3 (-620 *8)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) + (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8)) + (-5 *3 (-622 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) - (-5 *3 (-620 *7)))) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7)) + (-5 *3 (-622 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) - (-5 *3 (-620 *8))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) + (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8)) + (-5 *3 (-622 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-300) (-145))) (-4 *5 (-771)) (-4 *6 (-825)) - (-4 *7 (-924 *4 *5 *6)) (-5 *2 (-620 (-620 *7))) (-5 *1 (-441 *4 *5 *6 *7)) - (-5 *3 (-620 *7)))) + (-12 (-4 *4 (-13 (-302) (-145))) (-4 *5 (-773)) (-4 *6 (-827)) + (-4 *7 (-926 *4 *5 *6)) (-5 *2 (-622 (-622 *7))) (-5 *1 (-443 *4 *5 *6 *7)) + (-5 *3 (-622 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-300) (-145))) (-4 *6 (-771)) (-4 *7 (-825)) - (-4 *8 (-924 *5 *6 *7)) (-5 *2 (-620 (-620 *8))) (-5 *1 (-441 *5 *6 *7 *8)) - (-5 *3 (-620 *8))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-302) (-145))) (-4 *6 (-773)) (-4 *7 (-827)) + (-4 *8 (-926 *5 *6 *7)) (-5 *2 (-622 (-622 *8))) (-5 *1 (-443 *5 *6 *7 *8)) + (-5 *3 (-622 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-620 *6)) (-4 *6 (-924 *3 *4 *5)) (-4 *3 (-300)) (-4 *4 (-771)) - (-4 *5 (-825)) (-5 *1 (-440 *3 *4 *5 *6)))) + (-12 (-5 *2 (-622 *6)) (-4 *6 (-926 *3 *4 *5)) (-4 *3 (-302)) (-4 *4 (-773)) + (-4 *5 (-827)) (-5 *1 (-442 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-300)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *7)))) + (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-302)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-620 *7)) (-5 *3 (-1129)) (-4 *7 (-924 *4 *5 *6)) (-4 *4 (-300)) - (-4 *5 (-771)) (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *7))))) + (-12 (-5 *2 (-622 *7)) (-5 *3 (-1131)) (-4 *7 (-926 *4 *5 *6)) (-4 *4 (-302)) + (-4 *5 (-773)) (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-924 *4 *5 *6)) (-4 *4 (-300)) (-4 *5 (-771)) - (-4 *6 (-825)) (-5 *1 (-440 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-438)) (-5 *3 (-536))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-926 *4 *5 *6)) (-4 *4 (-302)) (-4 *5 (-773)) + (-4 *6 (-827)) (-5 *1 (-442 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-440)) (-5 *3 (-538))))) (((*1 *2 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023)))) + (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025)))) ((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025))))) (((*1 *2 *3) - (-12 (-5 *2 (-536)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-538)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025))))) (((*1 *2 *3) - (-12 (-5 *2 (-536)) (-5 *1 (-437 *3)) (-4 *3 (-397)) (-4 *3 (-1023))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-437 *3)) (-4 *3 (-1023))))) -(((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023))))) -(((*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023)))) - ((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-437 *3)) (-4 *3 (-1023))))) + (-12 (-5 *2 (-538)) (-5 *1 (-439 *3)) (-4 *3 (-399)) (-4 *3 (-1025))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-439 *3)) (-4 *3 (-1025))))) +(((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025))))) +(((*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025)))) + ((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-439 *3)) (-4 *3 (-1025))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-536)) (-5 *1 (-437 *2)) (-4 *2 (-1023))))) + (-12 (-5 *3 (-751)) (-5 *4 (-538)) (-5 *1 (-439 *2)) (-4 *2 (-1025))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-398 *6)) (-4 *6 (-1205 *5)) (-4 *5 (-1023)) - (-5 *2 (-620 *6)) (-5 *1 (-436 *5 *6))))) + (-12 (-5 *3 (-895)) (-5 *4 (-400 *6)) (-4 *6 (-1207 *5)) (-4 *5 (-1025)) + (-5 *2 (-622 *6)) (-5 *1 (-438 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-893)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) + (|partial| -12 (-5 *3 (-895)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-893)) (-5 *4 (-749)) (-5 *1 (-434 *2)) - (-4 *2 (-1205 (-536))))) + (|partial| -12 (-5 *3 (-895)) (-5 *4 (-751)) (-5 *1 (-436 *2)) + (-4 *2 (-1207 (-538))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *1 (-434 *2)) - (-4 *2 (-1205 (-536))))) + (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *1 (-436 *2)) + (-4 *2 (-1207 (-538))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *5 (-749)) - (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) + (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *5 (-751)) + (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-893)) (-5 *4 (-620 (-749))) (-5 *5 (-749)) - (-5 *6 (-112)) (-5 *1 (-434 *2)) (-4 *2 (-1205 (-536))))) + (|partial| -12 (-5 *3 (-895)) (-5 *4 (-622 (-751))) (-5 *5 (-751)) + (-5 *6 (-112)) (-5 *1 (-436 *2)) (-4 *2 (-1207 (-538))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-893)) (-5 *4 (-398 *2)) (-4 *2 (-1205 *5)) (-5 *1 (-436 *5 *2)) - (-4 *5 (-1023))))) + (-12 (-5 *3 (-895)) (-5 *4 (-400 *2)) (-4 *2 (-1207 *5)) (-5 *1 (-438 *5 *2)) + (-4 *5 (-1025))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-2 (|:| -4087 *4) (|:| -4302 (-536))))) - (-4 *4 (-1205 (-536))) (-5 *2 (-715 (-749))) (-5 *1 (-434 *4)))) + (-12 (-5 *3 (-622 (-2 (|:| -4092 *4) (|:| -4307 (-538))))) + (-4 *4 (-1207 (-538))) (-5 *2 (-717 (-751))) (-5 *1 (-436 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-398 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-1023)) - (-5 *2 (-715 (-749))) (-5 *1 (-436 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1023)) (-5 *1 (-436 *3 *2)) (-4 *2 (-1205 *3))))) + (-12 (-5 *3 (-400 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-1025)) + (-5 *2 (-717 (-751))) (-5 *1 (-438 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1025)) (-5 *1 (-438 *3 *2)) (-4 *2 (-1207 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) + (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) + (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-749)) (-4 *5 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *5 *3 *6)) - (-4 *3 (-1205 *5)) (-4 *6 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))))) + (-12 (-5 *4 (-751)) (-4 *5 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *5 *3 *6)) + (-4 *3 (-1207 *5)) (-4 *6 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))))) ((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) - (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277)))))) + (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5)) + (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) - (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277)))))) + (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5)) + (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-4 *2 (-13 (-397) (-1012 *4) (-356) (-1169) (-277))) - (-5 *1 (-435 *4 *3 *2)) (-4 *3 (-1205 *4)))) + (-12 (-4 *4 (-1025)) (-4 *2 (-13 (-399) (-1014 *4) (-358) (-1171) (-279))) + (-5 *1 (-437 *4 *3 *2)) (-4 *3 (-1207 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-893)) (-4 *5 (-1023)) - (-4 *2 (-13 (-397) (-1012 *5) (-356) (-1169) (-277))) - (-5 *1 (-435 *5 *3 *2)) (-4 *3 (-1205 *5))))) + (-12 (-5 *4 (-895)) (-4 *5 (-1025)) + (-4 *2 (-13 (-399) (-1014 *5) (-358) (-1171) (-279))) + (-5 *1 (-437 *5 *3 *2)) (-4 *3 (-1207 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-5 *2 (-536)) (-5 *1 (-435 *4 *3 *5)) - (-4 *3 (-1205 *4)) (-4 *5 (-13 (-397) (-1012 *4) (-356) (-1169) (-277)))))) + (-12 (-4 *4 (-1025)) (-5 *2 (-538)) (-5 *1 (-437 *4 *3 *5)) + (-4 *3 (-1207 *4)) (-4 *5 (-13 (-399) (-1014 *4) (-358) (-1171) (-279)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1068 (-749))) (-5 *6 (-749)) + (-12 (-5 *4 (-112)) (-5 *5 (-1070 (-751))) (-5 *6 (-751)) (-5 *2 - (-2 (|:| |contp| (-536)) - (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) - (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2903 (-536)) (|:| -2762 (-620 *3)))) (-5 *1 (-434 *3)) - (-4 *3 (-1205 (-536)))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-398 *3)) (-4 *3 (-543)))) + (-2 (|:| |contp| (-538)) + (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) + (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2908 (-538)) (|:| -2767 (-622 *3)))) (-5 *1 (-436 *3)) + (-4 *3 (-1207 (-538)))))) +(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-400 *3)) (-4 *3 (-545)))) ((*1 *2 *3) - (-12 (-5 *3 (-620 (-2 (|:| -4087 *4) (|:| -4302 (-536))))) - (-4 *4 (-1205 (-536))) (-5 *2 (-749)) (-5 *1 (-434 *4))))) -(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) - ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536))))) - ((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-434 *3)) (-4 *3 (-1205 (-536)))))) + (-12 (-5 *3 (-622 (-2 (|:| -4092 *4) (|:| -4307 (-538))))) + (-4 *4 (-1207 (-538))) (-5 *2 (-751)) (-5 *1 (-436 *4))))) +(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) + ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538))))) + ((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-436 *3)) (-4 *3 (-1207 (-538)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-620 + (-622 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-536))))) - (-4 *2 (-543)) (-5 *1 (-398 *2)))) + (|:| |xpnt| (-538))))) + (-4 *2 (-545)) (-5 *1 (-400 *2)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-536)) - (|:| -2762 (-620 (-2 (|:| |irr| *4) (|:| -2482 (-536))))))) - (-4 *4 (-1205 (-536))) (-5 *2 (-398 *4)) (-5 *1 (-434 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-430))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-430))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-430))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-430))))) + (-2 (|:| |contp| (-538)) + (|:| -2767 (-622 (-2 (|:| |irr| *4) (|:| -2487 (-538))))))) + (-4 *4 (-1207 (-538))) (-5 *2 (-400 *4)) (-5 *1 (-436 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-432)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-383)) (-5 *1 (-432))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-432))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-432))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-432))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-427)) (|:| -4265 "void"))) (-5 *1 (-429))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *1) (-5 *1 (-429)))) -(((*1 *2 *3) - (|partial| -12 (-4 *5 (-1012 (-48))) - (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) - (-5 *2 (-398 (-1141 (-48)))) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) + (-12 (-5 *2 (-3 (|:| |fst| (-429)) (|:| -4270 "void"))) (-5 *1 (-431))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-431))))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *1) (-5 *1 (-431)))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1014 (-48))) + (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) + (-5 *2 (-400 (-1143 (-48)))) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) (-5 *2 - (-3 (|:| |overq| (-1141 (-400 (-536)))) (|:| |overan| (-1141 (-48))) - (|:| -2965 (-112)))) - (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) - (-5 *2 (-398 (-1141 (-400 (-536))))) (-5 *1 (-428 *4 *5 *3)) - (-4 *3 (-1205 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-543) (-825) (-1012 (-536)))) (-4 *5 (-414 *4)) - (-5 *2 (-398 *3)) (-5 *1 (-428 *4 *5 *3)) (-4 *3 (-1205 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-427))))) + (-3 (|:| |overq| (-1143 (-402 (-538)))) (|:| |overan| (-1143 (-48))) + (|:| -2970 (-112)))) + (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) + (-5 *2 (-400 (-1143 (-402 (-538))))) (-5 *1 (-430 *4 *5 *3)) + (-4 *3 (-1207 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-545) (-827) (-1014 (-538)))) (-4 *5 (-416 *4)) + (-5 *2 (-400 *3)) (-5 *1 (-430 *4 *5 *3)) (-4 *3 (-1207 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-429))))) (((*1 *2) - (-12 (-4 *3 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-1235)) - (-5 *1 (-426 *3 *4)) (-4 *4 (-414 *3))))) + (-12 (-4 *3 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-1237)) + (-5 *1 (-428 *3 *4)) (-4 *4 (-416 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-400 (-536))) - (-5 *1 (-426 *4 *3)) (-4 *3 (-414 *4)))) + (-12 (-4 *4 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-402 (-538))) + (-5 *1 (-428 *4 *3)) (-4 *3 (-416 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-593 *3)) (-4 *3 (-414 *5)) - (-4 *5 (-13 (-825) (-543) (-1012 (-536)))) (-5 *2 (-1141 (-400 (-536)))) - (-5 *1 (-426 *5 *3))))) + (-12 (-5 *4 (-595 *3)) (-4 *3 (-416 *5)) + (-4 *5 (-13 (-827) (-545) (-1014 (-538)))) (-5 *2 (-1143 (-402 (-538)))) + (-5 *1 (-428 *5 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-424 *3 *2)) (-4 *2 (-414 *3))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-426 *3 *2)) (-4 *2 (-416 *3))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-536))))) - (-4 *2 (-13 (-825) (-21)))))) + (-12 (-5 *1 (-424 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-538))))) + (-4 *2 (-13 (-827) (-21)))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-422 *3 *2)) (-4 *3 (-13 (-170) (-38 (-400 (-536))))) - (-4 *2 (-13 (-825) (-21)))))) + (-12 (-5 *1 (-424 *3 *2)) (-4 *3 (-13 (-170) (-38 (-402 (-538))))) + (-4 *2 (-13 (-827) (-21)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) - (-4 *5 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-567 *3)) (-5 *1 (-421 *5 *3)) (-4 *3 (-13 (-1169) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-1072)) (-5 *2 (-749))))) -(((*1 *1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-1072)) (-4 *2 (-361))))) -(((*1 *1) (-12 (-4 *1 (-419 *2)) (-4 *2 (-361)) (-4 *2 (-1072))))) + (-12 (-5 *4 (-1149)) + (-4 *5 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-569 *3)) (-5 *1 (-423 *5 *3)) (-4 *3 (-13 (-1171) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-421 *3)) (-4 *3 (-1074)) (-5 *2 (-751))))) +(((*1 *1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-1074)) (-4 *2 (-363))))) +(((*1 *1) (-12 (-4 *1 (-421 *2)) (-4 *2 (-363)) (-4 *2 (-1074))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-416 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1169) (-414 *3))) - (-14 *4 (-1147)) (-14 *5 *2))) + (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-418 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1171) (-416 *3))) + (-14 *4 (-1149)) (-14 *5 *2))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-4 *2 (-13 (-27) (-1169) (-414 *3) (-10 -8 (-15 -4312 ($ *4))))) - (-4 *4 (-823)) + (-12 (-4 *3 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-4 *2 (-13 (-27) (-1171) (-416 *3) (-10 -8 (-15 -4317 ($ *4))))) + (-4 *4 (-825)) (-4 *5 - (-13 (-1208 *2 *4) (-356) (-1169) - (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) - (-5 *1 (-417 *3 *2 *4 *5 *6 *7)) (-4 *6 (-957 *5)) (-14 *7 (-1147))))) + (-13 (-1210 *2 *4) (-358) (-1171) + (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $))))) + (-5 *1 (-419 *3 *2 *4 *5 *6 *7)) (-4 *6 (-959 *5)) (-14 *7 (-1149))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-4 *3 (-13 (-27) (-1169) (-414 *6) (-10 -8 (-15 -4312 ($ *7))))) - (-4 *7 (-823)) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-4 *3 (-13 (-27) (-1171) (-416 *6) (-10 -8 (-15 -4317 ($ *7))))) + (-4 *7 (-825)) (-4 *8 - (-13 (-1208 *3 *7) (-356) (-1169) - (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) + (-13 (-1210 *3 *7) (-358) (-1171) + (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) - (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1129)) (-4 *9 (-957 *8)) - (-14 *10 (-1147))))) + (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) + (-5 *1 (-419 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) + (-14 *10 (-1149))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-4 *3 (-13 (-27) (-1169) (-414 *6) (-10 -8 (-15 -4312 ($ *7))))) - (-4 *7 (-823)) + (-12 (-5 *4 (-112)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-4 *3 (-13 (-27) (-1171) (-416 *6) (-10 -8 (-15 -4317 ($ *7))))) + (-4 *7 (-825)) (-4 *8 - (-13 (-1208 *3 *7) (-356) (-1169) - (-10 -8 (-15 -4165 ($ $)) (-15 -4167 ($ $))))) + (-13 (-1210 *3 *7) (-358) (-1171) + (-10 -8 (-15 -4170 ($ $)) (-15 -4172 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) - (-5 *1 (-417 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1129)) (-4 *9 (-957 *8)) - (-14 *10 (-1147))))) + (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) + (-5 *1 (-419 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1131)) (-4 *9 (-959 *8)) + (-14 *10 (-1149))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 - (-3 (|:| |%expansion| (-306 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1129)) (|:| |prob| (-1129)))))) - (-5 *1 (-416 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1169) (-414 *5))) - (-14 *6 (-1147)) (-14 *7 *3)))) + (-3 (|:| |%expansion| (-308 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1131)) (|:| |prob| (-1131)))))) + (-5 *1 (-418 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1171) (-416 *5))) + (-14 *6 (-1149)) (-14 *7 *3)))) (((*1 *2 *1) - (-12 (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-414 *3)) (-4 *3 (-825)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-319 *2 *3)) (-4 *3 (-770)) (-4 *2 (-1023)))) - ((*1 *2 *1) (-12 (-4 *1 (-414 *2)) (-4 *2 (-825))))) + (-12 (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-416 *3)) (-4 *3 (-827)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-321 *2 *3)) (-4 *3 (-772)) (-4 *2 (-1025)))) + ((*1 *2 *1) (-12 (-4 *1 (-416 *2)) (-4 *2 (-827))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1147)) (-5 *3 (-620 *1)) (-4 *1 (-414 *4)) (-4 *4 (-825)))) + (-12 (-5 *2 (-1149)) (-5 *3 (-622 *1)) (-4 *1 (-416 *4)) (-4 *4 (-827)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1147)) (-4 *1 (-414 *3)) (-4 *3 (-825))))) + (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1149)) (-4 *1 (-416 *3)) (-4 *3 (-827))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-825)) - (-5 *2 (-2 (|:| -4308 (-536)) (|:| |var| (-593 *1)))) (-4 *1 (-414 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-398 *3)) (-4 *3 (-543)) (-5 *1 (-412 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-356)) (-4 *1 (-322 *3)))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-827)) + (-5 *2 (-2 (|:| -4313 (-538)) (|:| |var| (-595 *1)))) (-4 *1 (-416 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-400 *3)) (-4 *3 (-545)) (-5 *1 (-414 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-358)) (-4 *1 (-324 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1205 *4)) (-4 *4 (-1188)) - (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1205 (-400 *3))))) + (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1207 *4)) (-4 *4 (-1190)) + (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1207 (-402 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1229 *1)) (-4 *4 (-170)) (-4 *1 (-360 *4)))) + (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1231 *1)) (-4 *4 (-170)) (-4 *1 (-362 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1229 *4)) (-5 *3 (-1229 *1)) (-4 *4 (-170)) - (-4 *1 (-363 *4 *5)) (-4 *5 (-1205 *4)))) + (-12 (-5 *2 (-1231 *4)) (-5 *3 (-1231 *1)) (-4 *4 (-170)) + (-4 *1 (-365 *4 *5)) (-4 *5 (-1207 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-403 *3 *4)) - (-4 *4 (-1205 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1229 *3)) (-4 *3 (-170)) (-4 *1 (-411 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) - ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) - ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *2)) (-4 *2 (-170)))) - ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-410 *3 *2)) (-4 *3 (-411 *2)))) - ((*1 *2) (-12 (-4 *1 (-411 *2)) (-4 *2 (-170))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) + (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-405 *3 *4)) + (-4 *4 (-1207 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1231 *3)) (-4 *3 (-170)) (-4 *1 (-413 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) + ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2)))) + ((*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170))))) +(((*1 *2 *3) (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *2)) (-4 *2 (-170)))) + ((*1 *2) (-12 (-4 *2 (-170)) (-5 *1 (-412 *3 *2)) (-4 *3 (-413 *2)))) + ((*1 *2) (-12 (-4 *1 (-413 *2)) (-4 *2 (-170))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) + (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-412 *3 *4)) + (-4 *3 (-413 *4)))) + ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-667 *4)) (-5 *1 (-410 *3 *4)) - (-4 *3 (-411 *4)))) - ((*1 *2) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) + (-12 (-4 *4 (-170)) (-5 *2 (-669 *4)) (-5 *1 (-412 *3 *4)) + (-4 *3 (-413 *4)))) + ((*1 *2) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-360 *4)) (-4 *4 (-170)) (-5 *2 (-667 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-170)) (-5 *2 (-667 *3))))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-362 *4)) (-4 *4 (-170)) (-5 *2 (-669 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-413 *3)) (-4 *3 (-170)) (-5 *2 (-669 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-406 *3 *4 *5 *6)) (-4 *6 (-1012 *4)) (-4 *3 (-300)) - (-4 *4 (-965 *3)) (-4 *5 (-1205 *4)) (-4 *6 (-403 *4 *5)) - (-14 *7 (-1229 *6)) (-5 *1 (-408 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-408 *3 *4 *5 *6)) (-4 *6 (-1014 *4)) (-4 *3 (-302)) + (-4 *4 (-967 *3)) (-4 *5 (-1207 *4)) (-4 *6 (-405 *4 *5)) + (-14 *7 (-1231 *6)) (-5 *1 (-410 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1229 *6)) (-4 *6 (-403 *4 *5)) (-4 *4 (-965 *3)) - (-4 *5 (-1205 *4)) (-4 *3 (-300)) (-5 *1 (-408 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1231 *6)) (-4 *6 (-405 *4 *5)) (-4 *4 (-967 *3)) + (-4 *5 (-1207 *4)) (-4 *3 (-302)) (-5 *1 (-410 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-300)) (-4 *3 (-965 *2)) (-4 *4 (-1205 *3)) - (-5 *1 (-406 *2 *3 *4 *5)) (-4 *5 (-13 (-403 *3 *4) (-1012 *3)))))) + (-12 (-4 *2 (-302)) (-4 *3 (-967 *2)) (-4 *4 (-1207 *3)) + (-5 *1 (-408 *2 *3 *4 *5)) (-4 *5 (-13 (-405 *3 *4) (-1014 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-749)) (-5 *4 (-1229 *2)) (-4 *5 (-300)) (-4 *6 (-965 *5)) - (-4 *2 (-13 (-403 *6 *7) (-1012 *6))) (-5 *1 (-406 *5 *6 *7 *2)) - (-4 *7 (-1205 *6))))) + (-12 (-5 *3 (-751)) (-5 *4 (-1231 *2)) (-4 *5 (-302)) (-4 *6 (-967 *5)) + (-4 *2 (-13 (-405 *6 *7) (-1014 *6))) (-5 *1 (-408 *5 *6 *7 *2)) + (-4 *7 (-1207 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) ((*1 *2) - (-12 (-4 *4 (-170)) (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)) - (-5 *1 (-402 *3 *4 *5)) (-4 *3 (-403 *4 *5)))) + (-12 (-4 *4 (-170)) (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)) + (-5 *1 (-404 *3 *4 *5)) (-4 *3 (-405 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) - (-5 *2 (-667 *3))))) + (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) + (-5 *2 (-669 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1229 *1)) (-4 *1 (-363 *4 *5)) (-4 *4 (-170)) - (-4 *5 (-1205 *4)) (-5 *2 (-667 *4)))) + (-12 (-5 *3 (-1231 *1)) (-4 *1 (-365 *4 *5)) (-4 *4 (-170)) + (-4 *5 (-1207 *4)) (-5 *2 (-669 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-403 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1205 *3)) - (-5 *2 (-667 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-398 *3)) (-4 *3 (-543))))) + (-12 (-4 *1 (-405 *3 *4)) (-4 *3 (-170)) (-4 *4 (-1207 *3)) + (-5 *2 (-669 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-400 *3)) (-4 *3 (-545))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-398 *4)) (-4 *4 (-543))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-398 *2)) (-4 *2 (-543))))) + (-12 (-5 *3 (-538)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-400 *4)) (-4 *4 (-545))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-400 *2)) (-4 *2 (-545))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-536)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-398 *2)) (-4 *2 (-543))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-371))) (-5 *1 (-254)))) - ((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170)))) - ((*1 *2 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543))))) -(((*1 *1 *1) (-12 (-5 *1 (-398 *2)) (-4 *2 (-543))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-893)) (|has| *1 (-6 -4339)) (-4 *1 (-397)))) - ((*1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-893))))) -(((*1 *2 *3) - (-12 (-5 *3 (-536)) (|has| *1 (-6 -4339)) (-4 *1 (-397)) (-5 *2 (-893))))) -(((*1 *2 *3) - (-12 (-5 *3 (-536)) (|has| *1 (-6 -4339)) (-4 *1 (-397)) (-5 *2 (-893))))) -(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-749)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-395)) (-5 *2 (-749))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-395)) (-5 *2 (-749)))) - ((*1 *1 *1) (-4 *1 (-395)))) + (-12 (-5 *3 (-538)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-400 *2)) (-4 *2 (-545))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-373))) (-5 *1 (-256)))) + ((*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170)))) + ((*1 *2 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545))))) +(((*1 *1 *1) (-12 (-5 *1 (-400 *2)) (-4 *2 (-545))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-895)) (|has| *1 (-6 -4344)) (-4 *1 (-399)))) + ((*1 *2) (-12 (-4 *1 (-399)) (-5 *2 (-895))))) +(((*1 *2 *3) + (-12 (-5 *3 (-538)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-895))))) +(((*1 *2 *3) + (-12 (-5 *3 (-538)) (|has| *1 (-6 -4344)) (-4 *1 (-399)) (-5 *2 (-895))))) +(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-751)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-397)) (-5 *2 (-751))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-397)) (-5 *2 (-751)))) + ((*1 *1 *1) (-4 *1 (-397)))) (((*1 *1 *2) - (-12 (-5 *2 (-400 *4)) (-4 *4 (-1205 *3)) (-4 *3 (-13 (-356) (-145))) - (-5 *1 (-392 *3 *4))))) + (-12 (-5 *2 (-402 *4)) (-4 *4 (-1207 *3)) (-4 *3 (-13 (-358) (-145))) + (-5 *1 (-394 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1205 *3)) (-5 *1 (-392 *3 *2)) (-4 *3 (-13 (-356) (-145)))))) + (-12 (-4 *2 (-1207 *3)) (-5 *1 (-394 *3 *2)) (-4 *3 (-13 (-358) (-145)))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-356) (-145))) - (-5 *2 (-620 (-2 (|:| -2488 (-749)) (|:| -4127 *4) (|:| |num| *4)))) - (-5 *1 (-392 *3 *4)) (-4 *4 (-1205 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-388))))) + (-12 (-4 *3 (-13 (-358) (-145))) + (-5 *2 (-622 (-2 (|:| -2493 (-751)) (|:| -4132 *4) (|:| |num| *4)))) + (-5 *1 (-394 *3 *4)) (-4 *4 (-1207 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-390))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-620 (-620 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-620 (-3 (|:| |array| (-620 *3)) (|:| |scalar| (-1147))))) - (-5 *6 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-388)))) + (-12 (-5 *5 (-622 (-622 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-622 (-3 (|:| |array| (-622 *3)) (|:| |scalar| (-1149))))) + (-5 *6 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-390)))) ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-620 (-620 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-620 (-3 (|:| |array| (-620 *3)) (|:| |scalar| (-1147))))) - (-5 *6 (-620 (-1147))) (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-388)))) + (-12 (-5 *5 (-622 (-622 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-622 (-3 (|:| |array| (-622 *3)) (|:| |scalar| (-1149))))) + (-5 *6 (-622 (-1149))) (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-390)))) ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-620 (-1147))) (-5 *5 (-1150)) (-5 *3 (-1147)) (-5 *2 (-1074)) - (-5 *1 (-388))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-386))))) -(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-384))))) -(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1235)) (-5 *1 (-384)))) - ((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-384))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-384))))) -(((*1 *2) (-12 (-5 *2 (-1118 (-1129))) (-5 *1 (-384))))) -(((*1 *2) (-12 (-5 *2 (-1118 (-1129))) (-5 *1 (-384))))) + (-12 (-5 *4 (-622 (-1149))) (-5 *5 (-1152)) (-5 *3 (-1149)) (-5 *2 (-1076)) + (-5 *1 (-390))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-388))))) +(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-386))))) +(((*1 *2 *3) (-12 (-5 *3 (-383)) (-5 *2 (-1237)) (-5 *1 (-386)))) + ((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-386))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-386))))) +(((*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386))))) +(((*1 *2) (-12 (-5 *2 (-1120 (-1131))) (-5 *1 (-386))))) (((*1 *2 *1) - (-12 (-5 *2 (-838)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) + (-12 (-5 *2 (-840)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-170))))) (((*1 *2 *1) - (-12 (-5 *2 (-838)) (-5 *1 (-383 *3 *4 *5)) (-14 *3 (-749)) (-14 *4 (-749)) + (-12 (-5 *2 (-840)) (-5 *1 (-385 *3 *4 *5)) (-14 *3 (-751)) (-14 *4 (-751)) (-4 *5 (-170))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1129)) (-4 *1 (-382))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-112))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1131)) (-4 *1 (-384))))) +(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-384)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-377 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-1072)) + (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-1074)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 (-400 (-920 (-536))))) (-5 *4 (-620 (-1147))) - (-5 *2 (-620 (-620 *5))) (-5 *1 (-373 *5)) (-4 *5 (-13 (-823) (-356))))) + (-12 (-5 *3 (-622 (-402 (-922 (-538))))) (-5 *4 (-622 (-1149))) + (-5 *2 (-622 (-622 *5))) (-5 *1 (-375 *5)) (-4 *5 (-13 (-825) (-358))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 (-536)))) (-5 *2 (-620 *4)) (-5 *1 (-373 *4)) - (-4 *4 (-13 (-823) (-356)))))) + (-12 (-5 *3 (-402 (-922 (-538)))) (-5 *2 (-622 *4)) (-5 *1 (-375 *4)) + (-4 *4 (-13 (-825) (-358)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 (-166 (-536))))) (-5 *2 (-620 (-166 *4))) - (-5 *1 (-372 *4)) (-4 *4 (-13 (-356) (-823))))) + (-12 (-5 *3 (-402 (-922 (-166 (-538))))) (-5 *2 (-622 (-166 *4))) + (-5 *1 (-374 *4)) (-4 *4 (-13 (-358) (-825))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-620 (-400 (-920 (-166 (-536)))))) (-5 *4 (-620 (-1147))) - (-5 *2 (-620 (-620 (-166 *5)))) (-5 *1 (-372 *5)) - (-4 *5 (-13 (-356) (-823)))))) + (-12 (-5 *3 (-622 (-402 (-922 (-166 (-538)))))) (-5 *4 (-622 (-1149))) + (-5 *2 (-622 (-622 (-166 *5)))) (-5 *1 (-374 *5)) + (-4 *5 (-13 (-358) (-825)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-400 (-920 (-166 (-536)))))) - (-5 *2 (-620 (-620 (-286 (-920 (-166 *4)))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-356) (-823))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-286 (-400 (-920 (-166 (-536))))))) - (-5 *2 (-620 (-620 (-286 (-920 (-166 *4)))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-356) (-823))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-400 (-920 (-166 (-536))))) - (-5 *2 (-620 (-286 (-920 (-166 *4))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-356) (-823))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-286 (-400 (-920 (-166 (-536)))))) - (-5 *2 (-620 (-286 (-920 (-166 *4))))) (-5 *1 (-372 *4)) - (-4 *4 (-13 (-356) (-823)))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-536)) (-5 *1 (-371))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-219)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-219)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-371)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-749)) (-5 *2 (-400 (-536))) (-5 *1 (-371))))) -(((*1 *1 *1) (-5 *1 (-219))) ((*1 *1 *1) (-5 *1 (-371))) - ((*1 *1) (-5 *1 (-371)))) -(((*1 *1 *1) (-5 *1 (-219))) + (-12 (-5 *3 (-622 (-402 (-922 (-166 (-538)))))) + (-5 *2 (-622 (-622 (-288 (-922 (-166 *4)))))) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-358) (-825))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-622 (-288 (-402 (-922 (-166 (-538))))))) + (-5 *2 (-622 (-622 (-288 (-922 (-166 *4)))))) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-358) (-825))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-402 (-922 (-166 (-538))))) + (-5 *2 (-622 (-288 (-922 (-166 *4))))) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-358) (-825))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-288 (-402 (-922 (-166 (-538)))))) + (-5 *2 (-622 (-288 (-922 (-166 *4))))) (-5 *1 (-374 *4)) + (-4 *4 (-13 (-358) (-825)))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-538)) (-5 *1 (-373))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-221)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-221)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-373)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-751)) (-5 *2 (-402 (-538))) (-5 *1 (-373))))) +(((*1 *1 *1) (-5 *1 (-221))) ((*1 *1 *1) (-5 *1 (-373))) + ((*1 *1) (-5 *1 (-373)))) +(((*1 *1 *1) (-5 *1 (-221))) ((*1 *1 *1) - (-12 (-5 *1 (-332 *2 *3 *4)) (-14 *2 (-620 (-1147))) (-14 *3 (-620 (-1147))) - (-4 *4 (-380)))) - ((*1 *1 *1) (-5 *1 (-371))) ((*1 *1) (-5 *1 (-371)))) -(((*1 *1) (-5 *1 (-219))) ((*1 *1) (-5 *1 (-371)))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) - ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) - ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371)))) - ((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-371))))) -(((*1 *2 *3) (-12 (-5 *3 (-749)) (-5 *2 (-1235)) (-5 *1 (-371))))) + (-12 (-5 *1 (-334 *2 *3 *4)) (-14 *2 (-622 (-1149))) (-14 *3 (-622 (-1149))) + (-4 *4 (-382)))) + ((*1 *1 *1) (-5 *1 (-373))) ((*1 *1) (-5 *1 (-373)))) +(((*1 *1) (-5 *1 (-221))) ((*1 *1) (-5 *1 (-373)))) +(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))) + ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373))))) +(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))) + ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373))))) +(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373)))) + ((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-373))))) +(((*1 *2 *3) (-12 (-5 *3 (-751)) (-5 *2 (-1237)) (-5 *1 (-373))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349))))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2)) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349))))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2)) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1183)) (-5 *1 (-368 *4 *2)) - (-4 *2 (-13 (-365 *4) (-10 -7 (-6 -4349))))))) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1185)) (-5 *1 (-370 *4 *2)) + (-4 *2 (-13 (-367 *4) (-10 -7 (-6 -4354))))))) (((*1 *1 *2) - (-12 (-5 *2 (-650 *3)) (-4 *3 (-825)) (-4 *1 (-367 *3 *4)) (-4 *4 (-170))))) + (-12 (-5 *2 (-652 *3)) (-4 *3 (-827)) (-4 *1 (-369 *3 *4)) (-4 *4 (-170))))) (((*1 *2 *1) - (-12 (-4 *1 (-365 *3)) (-4 *3 (-1183)) (-4 *3 (-825)) (-5 *2 (-112)))) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-1185)) (-4 *3 (-827)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-365 *4)) (-4 *4 (-1183)) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-367 *4)) (-4 *4 (-1185)) (-5 *2 (-112))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-536)) (|has| *1 (-6 -4349)) (-4 *1 (-365 *3)) (-4 *3 (-1183))))) + (-12 (-5 *2 (-538)) (|has| *1 (-6 -4354)) (-4 *1 (-367 *3)) (-4 *3 (-1185))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4349)) (-4 *1 (-365 *2)) (-4 *2 (-1183)) (-4 *2 (-825)))) + (-12 (|has| *1 (-6 -4354)) (-4 *1 (-367 *2)) (-4 *2 (-1185)) (-4 *2 (-827)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4349)) (-4 *1 (-365 *3)) - (-4 *3 (-1183))))) -(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1229 *1)) (-4 *1 (-360 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *2)) (-4 *2 (-170))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-1141 *3))))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4354)) (-4 *1 (-367 *3)) + (-4 *3 (-1185))))) +(((*1 *2) (-12 (-4 *3 (-170)) (-5 *2 (-1231 *1)) (-4 *1 (-362 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *2)) (-4 *2 (-170))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1143 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-1143 *3))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-359 *3 *4)) (-4 *3 (-360 *4)))) - ((*1 *2) (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) + (-12 (-4 *4 (-170)) (-5 *2 (-112)) (-5 *1 (-361 *3 *4)) (-4 *3 (-362 *4)))) + ((*1 *2) (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-170)) (-5 *2 (-620 (-1229 *4))) (-5 *1 (-359 *3 *4)) - (-4 *3 (-360 *4)))) + (-12 (-4 *4 (-170)) (-5 *2 (-622 (-1231 *4))) (-5 *1 (-361 *3 *4)) + (-4 *3 (-362 *4)))) ((*1 *2) - (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) - (-5 *2 (-620 (-1229 *3)))))) + (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) + (-5 *2 (-622 (-1231 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) (-5 *2 (-1141 *3))))) + (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) (-5 *2 (-1143 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-360 *3)) (-4 *3 (-170)) (-4 *3 (-543)) (-5 *2 (-1141 *3))))) -(((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170))))) -(((*1 *1) (|partial| -12 (-4 *1 (-360 *2)) (-4 *2 (-543)) (-4 *2 (-170))))) + (-12 (-4 *1 (-362 *3)) (-4 *3 (-170)) (-4 *3 (-545)) (-5 *2 (-1143 *3))))) +(((*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170))))) +(((*1 *1) (|partial| -12 (-4 *1 (-362 *2)) (-4 *2 (-545)) (-4 *2 (-170))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1129)) (-4 *1 (-358 *2 *4)) (-4 *2 (-1072)) (-4 *4 (-1072)))) - ((*1 *1 *2) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) + (-12 (-5 *3 (-1131)) (-4 *1 (-360 *2 *4)) (-4 *2 (-1074)) (-4 *4 (-1074)))) + ((*1 *1 *2) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1129)) (-4 *1 (-358 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072))))) + (-12 (-5 *2 (-1131)) (-4 *1 (-360 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074))))) (((*1 *1 *1) (-4 *1 (-171))) - ((*1 *1 *1) (-12 (-4 *1 (-358 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-1072))))) + ((*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-1074))))) (((*1 *2 *1) - (-12 (-4 *1 (-358 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) (-5 *2 (-1129))))) -(((*1 *2 *1) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-358 *3 *2)) (-4 *3 (-1072)) (-4 *2 (-1072))))) + (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) (-5 *2 (-1131))))) +(((*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-1074)) (-4 *2 (-1074))))) (((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) + (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-4 *2 - (-13 (-395) - (-10 -7 (-15 -4312 (*2 *4)) (-15 -2121 ((-893) *2)) - (-15 -2123 ((-1229 *2) (-893))) (-15 -4283 (*2 *2))))) - (-5 *1 (-350 *2 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-932 (-1141 *4))) (-5 *1 (-349 *4)) - (-5 *3 (-1141 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) + (-13 (-397) + (-10 -7 (-15 -4317 (*2 *4)) (-15 -2126 ((-895) *2)) + (-15 -2128 ((-1231 *2) (-895))) (-15 -4288 (*2 *2))))) + (-5 *1 (-352 *2 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-345)) (-5 *2 (-934 (-1143 *4))) (-5 *1 (-351 *4)) + (-5 *3 (-1143 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) + (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) + (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) + (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) + (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1141 *3)) (-4 *3 (-343)) (-5 *1 (-349 *3))))) + (|partial| -12 (-5 *2 (-1143 *3)) (-4 *3 (-345)) (-5 *1 (-351 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345))))) (((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345))))) (((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345))))) (((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) + (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345))))) (((*1 *2 *3) - (-12 (-5 *3 (-893)) (-5 *2 (-1141 *4)) (-5 *1 (-349 *4)) (-4 *4 (-343))))) -(((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343))))) -(((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343))))) -(((*1 *2 *2) (-12 (-5 *2 (-893)) (-5 *1 (-349 *3)) (-4 *3 (-343))))) -(((*1 *2 *1) (-12 (-4 *1 (-343)) (-5 *2 (-112)))) + (-12 (-5 *3 (-895)) (-5 *2 (-1143 *4)) (-5 *1 (-351 *4)) (-4 *4 (-345))))) +(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345))))) +(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345))))) +(((*1 *2 *2) (-12 (-5 *2 (-895)) (-5 *1 (-351 *3)) (-4 *3 (-345))))) +(((*1 *2 *1) (-12 (-4 *1 (-345)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-349 *4))))) + (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-351 *4))))) (((*1 *2) - (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 (-880 *3)) (|:| -2487 (-1091)))))) - (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) + (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 (-882 *3)) (|:| -2492 (-1093)))))) + (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) ((*1 *2) - (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091)))))) - (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) (-14 *4 (-3 (-1141 *3) *2)))) + (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093)))))) + (-5 *1 (-348 *3 *4)) (-4 *3 (-345)) (-14 *4 (-3 (-1143 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091)))))) - (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893))))) + (-12 (-5 *2 (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093)))))) + (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895))))) (((*1 *2) - (-12 (-5 *2 (-667 (-880 *3))) (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) - (-14 *4 (-893)))) + (-12 (-5 *2 (-669 (-882 *3))) (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) + (-14 *4 (-895)))) ((*1 *2) - (-12 (-5 *2 (-667 *3)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) + (-12 (-5 *2 (-669 *3)) (-5 *1 (-348 *3 *4)) (-4 *3 (-345)) (-14 *4 - (-3 (-1141 *3) (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091))))))))) + (-3 (-1143 *3) (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093))))))))) ((*1 *2) - (-12 (-5 *2 (-667 *3)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893))))) + (-12 (-5 *2 (-669 *3)) (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) - (-4 *4 (-343)) (-5 *2 (-749)) (-5 *1 (-340 *4)))) + (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) + (-4 *4 (-345)) (-5 *2 (-751)) (-5 *1 (-342 *4)))) ((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-345 *3 *4)) (-14 *3 (-893)) (-14 *4 (-893)))) + (-12 (-5 *2 (-751)) (-5 *1 (-347 *3 *4)) (-14 *3 (-895)) (-14 *4 (-895)))) ((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-346 *3 *4)) (-4 *3 (-343)) + (-12 (-5 *2 (-751)) (-5 *1 (-348 *3 *4)) (-4 *3 (-345)) (-14 *4 - (-3 (-1141 *3) (-1229 (-620 (-2 (|:| -3756 *3) (|:| -2487 (-1091))))))))) + (-3 (-1143 *3) (-1231 (-622 (-2 (|:| -3761 *3) (|:| -2492 (-1093))))))))) ((*1 *2) - (-12 (-5 *2 (-749)) (-5 *1 (-347 *3 *4)) (-4 *3 (-343)) (-14 *4 (-893))))) + (-12 (-5 *2 (-751)) (-5 *1 (-349 *3 *4)) (-4 *3 (-345)) (-14 *4 (-895))))) (((*1 *2) - (-12 (-4 *1 (-343)) - (-5 *2 (-620 (-2 (|:| -4087 (-536)) (|:| -2488 (-536)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-343)) (-5 *3 (-536)) (-5 *2 (-1156 (-893) (-749)))))) -(((*1 *1) (-4 *1 (-343)))) + (-12 (-4 *1 (-345)) + (-5 *2 (-622 (-2 (|:| -4092 (-538)) (|:| -2493 (-538)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-345)) (-5 *3 (-538)) (-5 *2 (-1158 (-895) (-751)))))) +(((*1 *1) (-4 *1 (-345)))) (((*1 *2) - (-12 (-4 *1 (-343)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) + (-12 (-4 *1 (-345)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-893)) + (-12 (-5 *3 (-895)) (-5 *2 - (-3 (-1141 *4) (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091))))))) - (-5 *1 (-340 *4)) (-4 *4 (-343))))) + (-3 (-1143 *4) (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093))))))) + (-5 *1 (-342 *4)) (-4 *4 (-345))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-893)) - (-5 *2 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) - (-5 *1 (-340 *4)) (-4 *4 (-343))))) + (|partial| -12 (-5 *3 (-895)) + (-5 *2 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) + (-5 *1 (-342 *4)) (-4 *4 (-345))))) (((*1 *2 *3) - (-12 (-5 *3 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) - (-4 *4 (-343)) (-5 *2 (-667 *4)) (-5 *1 (-340 *4))))) + (-12 (-5 *3 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) + (-4 *4 (-345)) (-5 *2 (-669 *4)) (-5 *1 (-342 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) - (-5 *2 (-1229 (-620 (-2 (|:| -3756 *4) (|:| -2487 (-1091)))))) - (-5 *1 (-340 *4))))) + (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) + (-5 *2 (-1231 (-622 (-2 (|:| -3761 *4) (|:| -2492 (-1093)))))) + (-5 *1 (-342 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1141 *4)) (-4 *4 (-343)) (-5 *2 (-932 (-1091))) - (-5 *1 (-340 *4))))) + (-12 (-5 *3 (-1143 *4)) (-4 *4 (-345)) (-5 *2 (-934 (-1093))) + (-5 *1 (-342 *4))))) (((*1 *2) - (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-337 *3 *4)) (-14 *3 (-893)) - (-14 *4 (-893)))) + (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-339 *3 *4)) (-14 *3 (-895)) + (-14 *4 (-895)))) ((*1 *2) - (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-338 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-1141 *3)))) + (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-340 *3 *4)) (-4 *3 (-345)) + (-14 *4 (-1143 *3)))) ((*1 *2) - (-12 (-5 *2 (-932 (-1091))) (-5 *1 (-339 *3 *4)) (-4 *3 (-343)) - (-14 *4 (-893))))) + (-12 (-5 *2 (-934 (-1093))) (-5 *1 (-341 *3 *4)) (-4 *3 (-345)) + (-14 *4 (-895))))) (((*1 *2) - (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) - (-5 *2 (-749)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) + (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) + (-5 *2 (-751)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-749))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-751))))) (((*1 *2) - (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) - (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5 *6)) (-4 *3 (-335 *4 *5 *6)))) + (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) + (-5 *2 (-112)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *3 (-337 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1188)) (-4 *5 (-1205 *3)) (-4 *6 (-1205 (-400 *5))) - (-5 *2 (-112)) (-5 *1 (-334 *4 *3 *5 *6)) (-4 *4 (-335 *3 *5 *6)))) + (-12 (-4 *3 (-1190)) (-4 *5 (-1207 *3)) (-4 *6 (-1207 (-402 *5))) + (-5 *2 (-112)) (-5 *1 (-336 *4 *3 *5 *6)) (-4 *4 (-337 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) - (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) + (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) - (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) + (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) - (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) + (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *3 (-1188)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) - (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5))))) + (-12 (-4 *3 (-1190)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) + (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-335 *4 *3 *5)) (-4 *4 (-1188)) (-4 *3 (-1205 *4)) - (-4 *5 (-1205 (-400 *3))) (-5 *2 (-112)))) + (-12 (-4 *1 (-337 *4 *3 *5)) (-4 *4 (-1190)) (-4 *3 (-1207 *4)) + (-4 *5 (-1207 (-402 *3))) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112)))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-112))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) - (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4)))))) + (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) + (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) - (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4)))))) + (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) + (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1229 *1)) (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) - (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4)))))) + (-12 (-5 *2 (-1231 *1)) (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) + (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4)))))) (((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4)))))) (((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4)))))) (((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4)))))) (((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-5 *2 (-667 (-400 *4)))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-5 *2 (-669 (-402 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) - (-5 *2 (-2 (|:| |num| (-1229 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) + (-5 *2 (-2 (|:| |num| (-1231 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) - (-5 *2 (-2 (|:| |num| (-1229 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) + (-5 *2 (-2 (|:| |num| (-1231 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1229 *3)) (-4 *3 (-1205 *4)) (-4 *4 (-1188)) - (-4 *1 (-335 *4 *3 *5)) (-4 *5 (-1205 (-400 *3)))))) + (-12 (-5 *2 (-1231 *3)) (-4 *3 (-1207 *4)) (-4 *4 (-1190)) + (-4 *1 (-337 *4 *3 *5)) (-4 *5 (-1207 (-402 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1188)) - (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) - (-5 *2 (-2 (|:| |num| (-667 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) + (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) + (-5 *2 (-2 (|:| |num| (-669 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1169) (-976))))) + (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1171) (-978))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 (-400 *2))) (-4 *2 (-1205 *4)) - (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 (-402 *2))) (-4 *2 (-1207 *4)) + (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1188)) - (-4 *4 (-1205 (-400 *2))) (-4 *2 (-1205 *3))))) + (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) + (-4 *4 (-1207 (-402 *2))) (-4 *2 (-1207 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 (-400 *2))) (-4 *2 (-1205 *4)) - (-5 *1 (-334 *3 *4 *2 *5)) (-4 *3 (-335 *4 *2 *5)))) + (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 (-402 *2))) (-4 *2 (-1207 *4)) + (-5 *1 (-336 *3 *4 *2 *5)) (-4 *3 (-337 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-335 *3 *2 *4)) (-4 *3 (-1188)) - (-4 *4 (-1205 (-400 *2))) (-4 *2 (-1205 *3))))) + (|partial| -12 (-4 *1 (-337 *3 *2 *4)) (-4 *3 (-1190)) + (-4 *4 (-1207 (-402 *2))) (-4 *2 (-1207 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1205 *4)) (-4 *4 (-1188)) - (-4 *6 (-1205 (-400 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1207 *4)) (-4 *4 (-1190)) + (-4 *6 (-1207 (-402 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) - (-4 *1 (-335 *4 *5 *6))))) + (-4 *1 (-337 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *5 (-1188)) (-4 *6 (-1205 *5)) - (-4 *7 (-1205 (-400 *6))) (-5 *2 (-620 (-920 *5))) - (-5 *1 (-334 *4 *5 *6 *7)) (-4 *4 (-335 *5 *6 *7)))) + (-12 (-5 *3 (-1149)) (-4 *5 (-1190)) (-4 *6 (-1207 *5)) + (-4 *7 (-1207 (-402 *6))) (-5 *2 (-622 (-922 *5))) + (-5 *1 (-336 *4 *5 *6 *7)) (-4 *4 (-337 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *1 (-335 *4 *5 *6)) (-4 *4 (-1188)) - (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) (-4 *4 (-356)) - (-5 *2 (-620 (-920 *4)))))) + (-12 (-5 *3 (-1149)) (-4 *1 (-337 *4 *5 *6)) (-4 *4 (-1190)) + (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) (-4 *4 (-358)) + (-5 *2 (-622 (-922 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) (-4 *6 (-1205 (-400 *5))) - (-5 *2 (-620 (-620 *4))) (-5 *1 (-334 *3 *4 *5 *6)) - (-4 *3 (-335 *4 *5 *6)))) + (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-4 *6 (-1207 (-402 *5))) + (-5 *2 (-622 (-622 *4))) (-5 *1 (-336 *3 *4 *5 *6)) + (-4 *3 (-337 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-335 *3 *4 *5)) (-4 *3 (-1188)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-4 *3 (-361)) (-5 *2 (-620 (-620 *3)))))) + (-12 (-4 *1 (-337 *3 *4 *5)) (-4 *3 (-1190)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-4 *3 (-363)) (-5 *2 (-622 (-622 *3)))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) - (-14 *4 (-620 (-1147))) (-4 *5 (-380)))) + (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) + (-14 *4 (-622 (-1149))) (-4 *5 (-382)))) ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-332 *3 *4 *5)) (-14 *3 (-620 (-1147))) - (-14 *4 (-620 (-1147))) (-4 *5 (-380))))) + (-12 (-5 *2 (-112)) (-5 *1 (-334 *3 *4 *5)) (-14 *3 (-622 (-1149))) + (-14 *4 (-622 (-1149))) (-4 *5 (-382))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-356)) (-4 *3 (-1205 *4)) (-4 *5 (-1205 (-400 *3))) - (-4 *1 (-329 *4 *3 *5 *2)) (-4 *2 (-335 *4 *3 *5)))) + (-12 (-4 *4 (-358)) (-4 *3 (-1207 *4)) (-4 *5 (-1207 (-402 *3))) + (-4 *1 (-331 *4 *3 *5 *2)) (-4 *2 (-337 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-536)) (-4 *2 (-356)) (-4 *4 (-1205 *2)) - (-4 *5 (-1205 (-400 *4))) (-4 *1 (-329 *2 *4 *5 *6)) - (-4 *6 (-335 *2 *4 *5)))) + (-12 (-5 *3 (-538)) (-4 *2 (-358)) (-4 *4 (-1207 *2)) + (-4 *5 (-1207 (-402 *4))) (-4 *1 (-331 *2 *4 *5 *6)) + (-4 *6 (-337 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-356)) (-4 *3 (-1205 *2)) (-4 *4 (-1205 (-400 *3))) - (-4 *1 (-329 *2 *3 *4 *5)) (-4 *5 (-335 *2 *3 *4)))) + (-12 (-4 *2 (-358)) (-4 *3 (-1207 *2)) (-4 *4 (-1207 (-402 *3))) + (-4 *1 (-331 *2 *3 *4 *5)) (-4 *5 (-337 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) - (-4 *1 (-329 *3 *4 *5 *2)) (-4 *2 (-335 *3 *4 *5)))) + (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) + (-4 *1 (-331 *3 *4 *5 *2)) (-4 *2 (-337 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-406 *4 (-400 *4) *5 *6)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-4 *3 (-356)) - (-4 *1 (-329 *3 *4 *5 *6))))) + (-12 (-5 *2 (-408 *4 (-402 *4) *5 *6)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-4 *3 (-358)) + (-4 *1 (-331 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-329 *3 *4 *5 *6)) (-4 *3 (-356)) (-4 *4 (-1205 *3)) - (-4 *5 (-1205 (-400 *4))) (-4 *6 (-335 *3 *4 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-331 *3 *4 *5 *6)) (-4 *3 (-358)) (-4 *4 (-1207 *3)) + (-4 *5 (-1207 (-402 *4))) (-4 *6 (-337 *3 *4 *5)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) - (-5 *2 (-1229 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) + (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) + (-5 *2 (-1231 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-356)) (-4 *4 (-1205 *3)) (-4 *5 (-1205 (-400 *4))) - (-5 *2 (-1229 *6)) (-5 *1 (-326 *3 *4 *5 *6)) (-4 *6 (-335 *3 *4 *5))))) + (-12 (-4 *3 (-358)) (-4 *4 (-1207 *3)) (-4 *5 (-1207 (-402 *4))) + (-5 *2 (-1231 *6)) (-5 *1 (-328 *3 *4 *5 *6)) (-4 *6 (-337 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325))))) + (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325))))) + (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1147)) (-5 *4 (-920 (-536))) (-5 *2 (-323)) (-5 *1 (-325))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-324 *3)) (-4 *3 (-825))))) + (-12 (-5 *3 (-1149)) (-5 *4 (-922 (-538))) (-5 *2 (-325)) (-5 *1 (-327))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-326 *3)) (-4 *3 (-827))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1063 (-920 (-536)))) (-5 *3 (-920 (-536))) (-5 *1 (-323)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1063 (-920 (-536)))) (-5 *1 (-323))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-1129))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-307 (-166 (-371)))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-536))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-371))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-672))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-679))) (-5 *1 (-323)))) - ((*1 *1 *2) (-12 (-5 *2 (-307 (-677))) (-5 *1 (-323)))) - ((*1 *1) (-5 *1 (-323)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-323))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-323))) (-5 *1 (-323))))) -(((*1 *1) (-5 *1 (-323)))) -(((*1 *1) (-5 *1 (-323)))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-838))) (-5 *1 (-323))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-620 (-1147))) (-5 *2 (-1147)) (-5 *1 (-323))))) + (-12 (-5 *2 (-1065 (-922 (-538)))) (-5 *3 (-922 (-538))) (-5 *1 (-325)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1065 (-922 (-538)))) (-5 *1 (-325))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325))))) +(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325))))) +(((*1 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-1131))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325))))) +(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-325))))) +(((*1 *1 *2) (-12 (-5 *2 (-309 (-166 (-373)))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-538))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-373))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-674))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-681))) (-5 *1 (-325)))) + ((*1 *1 *2) (-12 (-5 *2 (-309 (-679))) (-5 *1 (-325)))) + ((*1 *1) (-5 *1 (-325)))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1148)) (-5 *1 (-325))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-325))) (-5 *1 (-325))))) +(((*1 *1) (-5 *1 (-325)))) +(((*1 *1) (-5 *1 (-325)))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-840))) (-5 *1 (-325))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-622 (-1149))) (-5 *2 (-1149)) (-5 *1 (-325))))) (((*1 *2 *1) (-12 (-5 *2 @@ -14220,163 +14221,163 @@ (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-323))))) + (-5 *1 (-325))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1147)) (|:| |arrayIndex| (-620 (-920 (-536)))) - (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) + (-2 (|:| |var| (-1149)) (|:| |arrayIndex| (-622 (-922 (-538)))) + (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1147)) (|:| |rand| (-838)) + (-2 (|:| |var| (-1149)) (|:| |rand| (-840)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1146)) (|:| |thenClause| (-323)) - (|:| |elseClause| (-323)))) + (-2 (|:| |switch| (-1148)) (|:| |thenClause| (-325)) + (|:| |elseClause| (-325)))) (|:| |returnBranch| - (-2 (|:| -3757 (-112)) - (|:| -3756 (-2 (|:| |ints2Floats?| (-112)) (|:| -3599 (-838)))))) - (|:| |blockBranch| (-620 (-323))) (|:| |commentBranch| (-620 (-1129))) - (|:| |callBranch| (-1129)) + (-2 (|:| -3762 (-112)) + (|:| -3761 (-2 (|:| |ints2Floats?| (-112)) (|:| -3604 (-840)))))) + (|:| |blockBranch| (-622 (-325))) (|:| |commentBranch| (-622 (-1131))) + (|:| |callBranch| (-1131)) (|:| |forBranch| - (-2 (|:| -1556 (-1063 (-920 (-536)))) (|:| |span| (-920 (-536))) - (|:| -3579 (-323)))) - (|:| |labelBranch| (-1091)) - (|:| |loopBranch| (-2 (|:| |switch| (-1146)) (|:| -3579 (-323)))) + (-2 (|:| -1561 (-1065 (-922 (-538)))) (|:| |span| (-922 (-538))) + (|:| -3584 (-325)))) + (|:| |labelBranch| (-1093)) + (|:| |loopBranch| (-2 (|:| |switch| (-1148)) (|:| -3584 (-325)))) (|:| |commonBranch| - (-2 (|:| -3900 (-1147)) (|:| |contents| (-620 (-1147))))) - (|:| |printBranch| (-620 (-838))))) - (-5 *1 (-323))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-323))))) -(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-323))))) -(((*1 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-323))))) -(((*1 *1) (-12 (-4 *1 (-322 *2)) (-4 *2 (-361)) (-4 *2 (-356))))) + (-2 (|:| -3905 (-1149)) (|:| |contents| (-622 (-1149))))) + (|:| |printBranch| (-622 (-840))))) + (-5 *1 (-325))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-325))))) +(((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-325))))) +(((*1 *2 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-325))))) +(((*1 *1) (-12 (-4 *1 (-324 *2)) (-4 *2 (-363)) (-4 *2 (-358))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1141 *3)) (-4 *3 (-361)) (-4 *1 (-322 *3)) (-4 *3 (-356))))) + (-12 (-5 *2 (-1143 *3)) (-4 *3 (-363)) (-4 *1 (-324 *3)) (-4 *3 (-358))))) (((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3))))) + (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1143 *3))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) - (-5 *2 (-1141 *3)))) + (|partial| -12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) + (-5 *2 (-1143 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-322 *3)) (-4 *3 (-356)) (-4 *3 (-361)) (-5 *2 (-1141 *3))))) + (-12 (-4 *1 (-324 *3)) (-4 *3 (-358)) (-4 *3 (-363)) (-5 *2 (-1143 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772))))) (((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-319 *2 *3)) (-4 *2 (-1023)) (-4 *3 (-770))))) + (-12 (-4 *1 (-321 *2 *3)) (-4 *2 (-1025)) (-4 *3 (-772))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-749)) (-4 *1 (-319 *3 *4)) (-4 *3 (-1023)) (-4 *4 (-770)) + (-12 (-5 *2 (-751)) (-4 *1 (-321 *3 *4)) (-4 *3 (-1025)) (-4 *4 (-772)) (-4 *3 (-170))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-536)) (-4 *1 (-316 *4 *2)) (-4 *4 (-1072)) (-4 *2 (-130))))) + (-12 (-5 *3 (-538)) (-4 *1 (-318 *4 *2)) (-4 *4 (-1074)) (-4 *2 (-130))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-316 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-130))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-318 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-130))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-316 *2 *3)) (-4 *2 (-1072)) (-4 *3 (-130)) (-4 *3 (-770))))) + (-12 (-4 *1 (-318 *2 *3)) (-4 *2 (-1074)) (-4 *3 (-130)) (-4 *3 (-772))))) (((*1 *2 *3) - (-12 (-5 *3 (-536)) (-4 *4 (-771)) (-4 *5 (-825)) (-4 *2 (-1023)) - (-5 *1 (-314 *4 *5 *2 *6)) (-4 *6 (-924 *2 *4 *5))))) + (-12 (-5 *3 (-538)) (-4 *4 (-773)) (-4 *5 (-827)) (-4 *2 (-1025)) + (-5 *1 (-316 *4 *5 *2 *6)) (-4 *6 (-926 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1141 *7)) (-5 *3 (-536)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) - (-4 *5 (-825)) (-4 *6 (-1023)) (-5 *1 (-314 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1143 *7)) (-5 *3 (-538)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) + (-4 *5 (-827)) (-4 *6 (-1025)) (-5 *1 (-316 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1141 *6)) (-4 *6 (-1023)) (-4 *4 (-771)) (-4 *5 (-825)) - (-5 *2 (-1141 *7)) (-5 *1 (-314 *4 *5 *6 *7)) (-4 *7 (-924 *6 *4 *5))))) + (-12 (-5 *3 (-1143 *6)) (-4 *6 (-1025)) (-4 *4 (-773)) (-4 *5 (-827)) + (-5 *2 (-1143 *7)) (-5 *1 (-316 *4 *5 *6 *7)) (-4 *7 (-926 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1141 *7)) (-4 *7 (-924 *6 *4 *5)) (-4 *4 (-771)) (-4 *5 (-825)) - (-4 *6 (-1023)) (-5 *2 (-1141 *6)) (-5 *1 (-314 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1143 *7)) (-4 *7 (-926 *6 *4 *5)) (-4 *4 (-773)) (-4 *5 (-827)) + (-4 *6 (-1025)) (-5 *2 (-1143 *6)) (-5 *1 (-316 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1141 *9)) (-5 *4 (-620 *7)) (-5 *5 (-620 *8)) (-4 *7 (-825)) - (-4 *8 (-1023)) (-4 *9 (-924 *8 *6 *7)) (-4 *6 (-771)) (-5 *2 (-1141 *8)) - (-5 *1 (-314 *6 *7 *8 *9))))) + (-12 (-5 *3 (-1143 *9)) (-5 *4 (-622 *7)) (-5 *5 (-622 *8)) (-4 *7 (-827)) + (-4 *8 (-1025)) (-4 *9 (-926 *8 *6 *7)) (-4 *6 (-773)) (-5 *2 (-1143 *8)) + (-5 *1 (-316 *6 *7 *8 *9))))) (((*1 *2 *1) - (-12 (-5 *2 (-400 (-536))) (-5 *1 (-312 *3 *4 *5)) - (-4 *3 (-13 (-356) (-825))) (-14 *4 (-1147)) (-14 *5 *3)))) + (-12 (-5 *2 (-402 (-538))) (-5 *1 (-314 *3 *4 *5)) + (-4 *3 (-13 (-358) (-827))) (-14 *4 (-1149)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) - (-5 *6 (-536)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) + (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) + (-5 *6 (-538)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) - (-5 *6 (-536)) (-5 *7 (-1129)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) + (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) + (-5 *6 (-538)) (-5 *7 (-1131)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) - (-5 *6 (-219)) (-5 *7 (-536)) (-5 *2 (-1179 (-901))) (-5 *1 (-311)))) + (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) + (-5 *6 (-221)) (-5 *7 (-538)) (-5 *2 (-1181 (-903))) (-5 *1 (-313)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-307 (-536))) (-5 *4 (-1 (-219) (-219))) (-5 *5 (-1060 (-219))) - (-5 *6 (-219)) (-5 *7 (-536)) (-5 *8 (-1129)) (-5 *2 (-1179 (-901))) - (-5 *1 (-311))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-311)) (-5 *3 (-219))))) + (-12 (-5 *3 (-309 (-538))) (-5 *4 (-1 (-221) (-221))) (-5 *5 (-1062 (-221))) + (-5 *6 (-221)) (-5 *7 (-538)) (-5 *8 (-1131)) (-5 *2 (-1181 (-903))) + (-5 *1 (-313))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-313)) (-5 *3 (-221))))) (((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-286 *6)) (-5 *4 (-113)) (-4 *6 (-414 *5)) - (-4 *5 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) - (-5 *1 (-310 *5 *6)))) + (-12 (-5 *3 (-288 *6)) (-5 *4 (-113)) (-4 *6 (-416 *5)) + (-4 *5 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) + (-5 *1 (-312 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-286 *7)) (-5 *4 (-113)) (-5 *5 (-620 *7)) (-4 *7 (-414 *6)) - (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *7)))) + (-12 (-5 *3 (-288 *7)) (-5 *4 (-113)) (-5 *5 (-622 *7)) (-4 *7 (-416 *6)) + (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) + (-5 *1 (-312 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-620 (-286 *7))) (-5 *4 (-620 (-113))) (-5 *5 (-286 *7)) - (-4 *7 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *7)))) + (-12 (-5 *3 (-622 (-288 *7))) (-5 *4 (-622 (-113))) (-5 *5 (-288 *7)) + (-4 *7 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) + (-5 *1 (-312 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-620 (-286 *8))) (-5 *4 (-620 (-113))) (-5 *5 (-286 *8)) - (-5 *6 (-620 *8)) (-4 *8 (-414 *7)) - (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) - (-5 *1 (-310 *7 *8)))) + (-12 (-5 *3 (-622 (-288 *8))) (-5 *4 (-622 (-113))) (-5 *5 (-288 *8)) + (-5 *6 (-622 *8)) (-4 *8 (-416 *7)) + (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) + (-5 *1 (-312 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-620 *7)) (-5 *4 (-620 (-113))) (-5 *5 (-286 *7)) - (-4 *7 (-414 *6)) (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *7)))) + (-12 (-5 *3 (-622 *7)) (-5 *4 (-622 (-113))) (-5 *5 (-288 *7)) + (-4 *7 (-416 *6)) (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) + (-5 *1 (-312 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-620 *8)) (-5 *4 (-620 (-113))) (-5 *6 (-620 (-286 *8))) - (-4 *8 (-414 *7)) (-5 *5 (-286 *8)) - (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) - (-5 *1 (-310 *7 *8)))) + (-12 (-5 *3 (-622 *8)) (-5 *4 (-622 (-113))) (-5 *6 (-622 (-288 *8))) + (-4 *8 (-416 *7)) (-5 *5 (-288 *8)) + (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) + (-5 *1 (-312 *7 *8)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-286 *5)) (-5 *4 (-113)) (-4 *5 (-414 *6)) - (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *5)))) + (-12 (-5 *3 (-288 *5)) (-5 *4 (-113)) (-4 *5 (-416 *6)) + (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) + (-5 *1 (-312 *6 *5)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) - (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *3)))) + (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-416 *6)) + (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) + (-5 *1 (-312 *6 *3)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-4 *3 (-414 *6)) - (-4 *6 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) - (-5 *1 (-310 *6 *3)))) + (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-4 *3 (-416 *6)) + (-4 *6 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) + (-5 *1 (-312 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-113)) (-5 *5 (-286 *3)) (-5 *6 (-620 *3)) (-4 *3 (-414 *7)) - (-4 *7 (-13 (-825) (-543) (-596 (-525)))) (-5 *2 (-51)) - (-5 *1 (-310 *7 *3))))) + (-12 (-5 *4 (-113)) (-5 *5 (-288 *3)) (-5 *6 (-622 *3)) (-4 *3 (-416 *7)) + (-4 *7 (-13 (-827) (-545) (-598 (-527)))) (-5 *2 (-51)) + (-5 *1 (-312 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-307 *3)) (-4 *3 (-543)) (-4 *3 (-825))))) + (-12 (-5 *2 (-112)) (-5 *1 (-309 *3)) (-4 *3 (-545)) (-4 *3 (-827))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-536)) (-5 *1 (-307 *3)) (-4 *3 (-543)) (-4 *3 (-825))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-300)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-300)) (-5 *2 (-749))))) + (-12 (-5 *2 (-538)) (-5 *1 (-309 *3)) (-4 *3 (-545)) (-4 *3 (-827))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-751))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-300)))) + (-4 *1 (-302)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2496 *1))) - (-4 *1 (-300))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-620 *1)) (-4 *1 (-300))))) -(((*1 *2 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-823)) (-5 *1 (-297 *3))))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2501 *1))) + (-4 *1 (-302))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-622 *1)) (-4 *1 (-302))))) +(((*1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-825)) (-5 *1 (-299 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-219))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) - (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-400 (-536))) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-307 (-371))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-920 (-219))) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-920 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296))))) + (-12 (-5 *3 (-622 (-221))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) + (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-402 (-538))) (-5 *2 (-221)) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-309 (-373))) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-922 (-221))) (-5 *2 (-221)) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-922 (-221))) (-5 *2 (-309 (-373))) (-5 *1 (-298))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |stiffness| (-371)) (|:| |stability| (-371)) - (|:| |expense| (-371)) (|:| |accuracy| (-371)) - (|:| |intermediateResults| (-371)))) - (-5 *2 (-1009)) (-5 *1 (-296))))) + (-2 (|:| |stiffness| (-373)) (|:| |stability| (-373)) + (|:| |expense| (-373)) (|:| |accuracy| (-373)) + (|:| |intermediateResults| (-373)))) + (-5 *2 (-1011)) (-5 *1 (-298))))) (((*1 *2 *3) (-12 (-5 *3 @@ -14390,1070 +14391,1077 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1124 (-219))) + (-3 (|:| |str| (-1126 (-221))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1556 + (|:| -1561 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1009)) (-5 *1 (-296))))) + (-5 *2 (-1011)) (-5 *1 (-298))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) - (|:| |explanations| (-620 (-1129))))) - (-5 *2 (-1009)) (-5 *1 (-296)))) + (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) + (|:| |explanations| (-622 (-1131))))) + (-5 *2 (-1011)) (-5 *1 (-298)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -2996 (-371)) (|:| -3900 (-1129)) - (|:| |explanations| (-620 (-1129))) (|:| |extra| (-1009)))) - (-5 *2 (-1009)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1129)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) - ((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))) - ((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-186)))) - ((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-294)))) - ((*1 *2 *3) (-12 (-5 *3 (-1060 (-817 (-219)))) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-186)))) + (-2 (|:| -3001 (-373)) (|:| -3905 (-1131)) + (|:| |explanations| (-622 (-1131))) (|:| |extra| (-1011)))) + (-5 *2 (-1011)) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1131)) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) + ((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-296)))) + ((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-188)))) + ((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-296)))) + ((*1 *2 *3) (-12 (-5 *3 (-1062 (-819 (-221)))) (-5 *2 (-221)) (-5 *1 (-298))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-188)))) ((*1 *2 *3) - (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-294)))) + (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-296)))) ((*1 *2 *3) - (-12 (-5 *3 (-1124 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-186)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-294)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-620 (-1129))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-1129)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-186)))) - ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-294)))) - ((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-1129)) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *2 (-1229 (-307 (-371)))) - (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-371))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1229 (-677))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-677)) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-620 (-2 (|:| -3468 (-400 (-536))) (|:| -3467 (-400 (-536)))))) - (-5 *2 (-620 (-219))) (-5 *1 (-296))))) -(((*1 *2 *2) (-12 (-5 *2 (-1060 (-817 (-219)))) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-307 (-219))) (-5 *2 (-307 (-400 (-536)))) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1229 (-307 (-219)))) + (-12 (-5 *3 (-1126 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-188)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-296)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-622 (-1131))) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-1131)) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-188)))) + ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-296)))) + ((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-1131)) (-5 *1 (-298))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 (-1231 (-309 (-373)))) + (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-309 (-373))) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1231 (-679))) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-679)) (-5 *1 (-298))))) +(((*1 *2 *3) + (-12 (-5 *3 (-622 (-2 (|:| -3473 (-402 (-538))) (|:| -3472 (-402 (-538)))))) + (-5 *2 (-622 (-221))) (-5 *1 (-298))))) +(((*1 *2 *2) (-12 (-5 *2 (-1062 (-819 (-221)))) (-5 *1 (-298))))) +(((*1 *2 *3) + (-12 (-5 *3 (-309 (-221))) (-5 *2 (-309 (-402 (-538)))) (-5 *1 (-298))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 - (-2 (|:| |additions| (-536)) (|:| |multiplications| (-536)) - (|:| |exponentiations| (-536)) (|:| |functionCalls| (-536)))) - (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))) - (-5 *2 (-371)) (-5 *1 (-260)))) - ((*1 *2 *3) (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-219)) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-400 (-536))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-219)) (-5 *2 (-400 (-536))) (-5 *1 (-296))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1060 (-817 (-371)))) (-5 *2 (-1060 (-817 (-219)))) - (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-817 (-371))) (-5 *2 (-817 (-219))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-307 (-371))) (-5 *2 (-307 (-219))) (-5 *1 (-296))))) -(((*1 *2 *3) (-12 (-5 *3 (-371)) (-5 *2 (-219)) (-5 *1 (-296))))) + (-2 (|:| |additions| (-538)) (|:| |multiplications| (-538)) + (|:| |exponentiations| (-538)) (|:| |functionCalls| (-538)))) + (-5 *1 (-298))))) +(((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))) + (-5 *2 (-373)) (-5 *1 (-262)))) + ((*1 *2 *3) (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *2 (-373)) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-221)) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-402 (-538))) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-221)) (-5 *2 (-402 (-538))) (-5 *1 (-298))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1062 (-819 (-373)))) (-5 *2 (-1062 (-819 (-221)))) + (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-819 (-373))) (-5 *2 (-819 (-221))) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-309 (-373))) (-5 *2 (-309 (-221))) (-5 *1 (-298))))) +(((*1 *2 *3) (-12 (-5 *3 (-373)) (-5 *2 (-221)) (-5 *1 (-298))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-920 (-400 (-536)))) (-5 *4 (-1147)) - (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-620 (-219))) (-5 *1 (-294))))) + (-12 (-5 *3 (-922 (-402 (-538)))) (-5 *4 (-1149)) + (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-622 (-221))) (-5 *1 (-296))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-1124 (-219))) (-5 *1 (-186)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-1126 (-221))) (-5 *1 (-188)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-219))) (-5 *4 (-620 (-1147))) - (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294)))) + (-12 (-5 *3 (-309 (-221))) (-5 *4 (-622 (-1149))) + (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1229 (-307 (-219)))) (-5 *4 (-620 (-1147))) - (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294))))) + (-12 (-5 *3 (-1231 (-309 (-221)))) (-5 *4 (-622 (-1149))) + (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1147)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) + (-12 (-5 *3 (-1143 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-620 *1)) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *3)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-219))) (-5 *4 (-620 (-1147))) - (-5 *5 (-1060 (-817 (-219)))) (-5 *2 (-1124 (-219))) (-5 *1 (-294))))) + (-12 (-5 *3 (-309 (-221))) (-5 *4 (-622 (-1149))) + (-5 *5 (-1062 (-819 (-221)))) (-5 *2 (-1126 (-221))) (-5 *1 (-296))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1147)) (-5 *5 (-1060 (-817 (-219)))) - (-5 *2 (-620 (-219))) (-5 *1 (-186)))) + (-12 (-5 *3 (-309 (-221))) (-5 *4 (-1149)) (-5 *5 (-1062 (-819 (-221)))) + (-5 *2 (-622 (-221))) (-5 *1 (-188)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-307 (-219))) (-5 *4 (-1147)) (-5 *5 (-1060 (-817 (-219)))) - (-5 *2 (-620 (-219))) (-5 *1 (-294))))) + (-12 (-5 *3 (-309 (-221))) (-5 *4 (-1149)) (-5 *5 (-1062 (-819 (-221)))) + (-5 *2 (-622 (-221))) (-5 *1 (-296))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-112)) (-5 *1 (-294))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-291)) (-4 *2 (-1183)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-112)) (-5 *1 (-296))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-293)) (-4 *2 (-1185)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-620 (-593 *1))) (-5 *3 (-620 *1)) (-4 *1 (-291)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-620 (-286 *1))) (-4 *1 (-291)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-286 *1)) (-4 *1 (-291))))) -(((*1 *1 *1 *1) (-4 *1 (-291))) ((*1 *1 *1) (-4 *1 (-291)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-593 *1)) (-4 *1 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-593 *1))) (-4 *1 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-593 *1))) (-4 *1 (-291))))) -(((*1 *2 *1) (-12 (-4 *1 (-291)) (-5 *2 (-620 (-113)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-291)) (-5 *3 (-1147)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-291)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-593 *5)) (-4 *5 (-414 *4)) (-4 *4 (-1012 (-536))) - (-4 *4 (-13 (-825) (-543))) (-5 *2 (-1141 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *2 (-622 (-595 *1))) (-5 *3 (-622 *1)) (-4 *1 (-293)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-622 (-288 *1))) (-4 *1 (-293)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-288 *1)) (-4 *1 (-293))))) +(((*1 *1 *1 *1) (-4 *1 (-293))) ((*1 *1 *1) (-4 *1 (-293)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-595 *1)) (-4 *1 (-293))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-595 *1))) (-4 *1 (-293))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-595 *1))) (-4 *1 (-293))))) +(((*1 *2 *1) (-12 (-4 *1 (-293)) (-5 *2 (-622 (-113)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-293)) (-5 *3 (-1149)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-293)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-595 *5)) (-4 *5 (-416 *4)) (-4 *4 (-1014 (-538))) + (-4 *4 (-13 (-827) (-545))) (-5 *2 (-1143 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-593 *1)) (-4 *1 (-1023)) (-4 *1 (-291)) (-5 *2 (-1141 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-304)) (-5 *1 (-289)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289)))) + (-12 (-5 *3 (-595 *1)) (-4 *1 (-1025)) (-4 *1 (-293)) (-5 *2 (-1143 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-306)) (-5 *1 (-291)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 (-1129))) (-5 *3 (-1129)) (-5 *2 (-304)) (-5 *1 (-289))))) + (-12 (-5 *4 (-622 (-1131))) (-5 *3 (-1131)) (-5 *2 (-306)) (-5 *1 (-291))))) (((*1 *2 *2) - (-12 (-4 *3 (-1023)) (-4 *4 (-1205 *3)) (-5 *1 (-162 *3 *4 *2)) - (-4 *2 (-1205 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183))))) -(((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-21)) (-4 *2 (-1183))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-705)) (-4 *2 (-1183))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-286 *2)) (-4 *2 (-705)) (-4 *2 (-1183))))) + (-12 (-4 *3 (-1025)) (-4 *4 (-1207 *3)) (-5 *1 (-162 *3 *4 *2)) + (-4 *2 (-1207 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185))))) +(((*1 *1 *1) (-12 (-5 *1 (-288 *2)) (-4 *2 (-21)) (-4 *2 (-1185))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-707)) (-4 *2 (-1185))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-288 *2)) (-4 *2 (-707)) (-4 *2 (-1185))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 (-286 *3))) (-5 *1 (-286 *3)) (-4 *3 (-543)) - (-4 *3 (-1183))))) + (-12 (-5 *2 (-622 (-288 *3))) (-5 *1 (-288 *3)) (-4 *3 (-545)) + (-4 *3 (-1185))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) + (-12 (-4 *4 (-446)) (-5 *2 - (-620 - (-2 (|:| |eigval| (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4)))) - (|:| |eigmult| (-749)) (|:| |eigvec| (-620 (-667 (-400 (-920 *4)))))))) - (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-920 *4))))))) + (-622 + (-2 (|:| |eigval| (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4)))) + (|:| |eigmult| (-751)) (|:| |eigvec| (-622 (-669 (-402 (-922 *4)))))))) + (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-922 *4))))))) (((*1 *2 *3) - (-12 (-4 *4 (-444)) + (-12 (-4 *4 (-446)) (-5 *2 - (-620 - (-2 (|:| |eigval| (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4)))) - (|:| |geneigvec| (-620 (-667 (-400 (-920 *4)))))))) - (-5 *1 (-285 *4)) (-5 *3 (-667 (-400 (-920 *4))))))) + (-622 + (-2 (|:| |eigval| (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4)))) + (|:| |geneigvec| (-622 (-669 (-402 (-922 *4)))))))) + (-5 *1 (-287 *4)) (-5 *3 (-669 (-402 (-922 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-400 (-920 *6)) (-1136 (-1147) (-920 *6)))) (-5 *5 (-749)) - (-4 *6 (-444)) (-5 *2 (-620 (-667 (-400 (-920 *6))))) (-5 *1 (-285 *6)) - (-5 *4 (-667 (-400 (-920 *6)))))) + (-12 (-5 *3 (-3 (-402 (-922 *6)) (-1138 (-1149) (-922 *6)))) (-5 *5 (-751)) + (-4 *6 (-446)) (-5 *2 (-622 (-669 (-402 (-922 *6))))) (-5 *1 (-287 *6)) + (-5 *4 (-669 (-402 (-922 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-400 (-920 *5)) (-1136 (-1147) (-920 *5)))) - (|:| |eigmult| (-749)) (|:| |eigvec| (-620 *4)))) - (-4 *5 (-444)) (-5 *2 (-620 (-667 (-400 (-920 *5))))) (-5 *1 (-285 *5)) - (-5 *4 (-667 (-400 (-920 *5))))))) + (-2 (|:| |eigval| (-3 (-402 (-922 *5)) (-1138 (-1149) (-922 *5)))) + (|:| |eigmult| (-751)) (|:| |eigvec| (-622 *4)))) + (-4 *5 (-446)) (-5 *2 (-622 (-669 (-402 (-922 *5))))) (-5 *1 (-287 *5)) + (-5 *4 (-669 (-402 (-922 *5))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-400 (-920 *5)) (-1136 (-1147) (-920 *5)))) (-4 *5 (-444)) - (-5 *2 (-620 (-667 (-400 (-920 *5))))) (-5 *1 (-285 *5)) - (-5 *4 (-667 (-400 (-920 *5))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-667 (-400 (-920 *4)))) (-4 *4 (-444)) - (-5 *2 (-620 (-3 (-400 (-920 *4)) (-1136 (-1147) (-920 *4))))) - (-5 *1 (-285 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1056))) (-5 *1 (-284))))) + (-12 (-5 *3 (-3 (-402 (-922 *5)) (-1138 (-1149) (-922 *5)))) (-4 *5 (-446)) + (-5 *2 (-622 (-669 (-402 (-922 *5))))) (-5 *1 (-287 *5)) + (-5 *4 (-669 (-402 (-922 *5))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-669 (-402 (-922 *4)))) (-4 *4 (-446)) + (-5 *2 (-622 (-3 (-402 (-922 *4)) (-1138 (-1149) (-922 *4))))) + (-5 *1 (-287 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1058))) (-5 *1 (-286))))) (((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-1074)) (-5 *1 (-284))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1147)) (-5 *3 (-1074)) (-5 *1 (-284))))) + (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-1076)) (-5 *1 (-286))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-1076)) (-5 *1 (-286))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1147)) (-5 *2 (-620 (-939))) (-5 *1 (-284))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-939))) (-5 *1 (-284))))) -(((*1 *1) (-5 *1 (-284)))) -(((*1 *1) (-5 *1 (-284)))) + (|partial| -12 (-5 *3 (-1149)) (-5 *2 (-622 (-941))) (-5 *1 (-286))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-941))) (-5 *1 (-286))))) +(((*1 *1) (-5 *1 (-286)))) +(((*1 *1) (-5 *1 (-286)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-536)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1183)) (-4 *4 (-365 *2)) - (-4 *5 (-365 *2)))) + (-12 (-5 *3 (-538)) (-4 *1 (-56 *2 *4 *5)) (-4 *2 (-1185)) (-4 *4 (-367 *2)) + (-4 *5 (-367 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4349)) (-4 *1 (-281 *3 *2)) (-4 *3 (-1072)) - (-4 *2 (-1183))))) + (-12 (|has| *1 (-6 -4354)) (-4 *1 (-283 *3 *2)) (-4 *3 (-1074)) + (-4 *2 (-1185))))) (((*1 *2 *3 *4) - (-12 (-4 *4 (-356)) (-5 *2 (-620 (-1124 *4))) (-5 *1 (-278 *4 *5)) - (-5 *3 (-1124 *4)) (-4 *5 (-1222 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-356)) (-5 *1 (-278 *3 *2)) (-4 *2 (-1222 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1196 (-536))) (-4 *1 (-275 *3)) (-4 *3 (-1183)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-536)) (-4 *1 (-275 *3)) (-4 *3 (-1183))))) + (-12 (-4 *4 (-358)) (-5 *2 (-622 (-1126 *4))) (-5 *1 (-280 *4 *5)) + (-5 *3 (-1126 *4)) (-4 *5 (-1224 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-358)) (-5 *1 (-280 *3 *2)) (-4 *2 (-1224 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1198 (-538))) (-4 *1 (-277 *3)) (-4 *3 (-1185)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-538)) (-4 *1 (-277 *3)) (-4 *3 (-1185))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4348)) (-4 *1 (-229 *3)) - (-4 *3 (-1072)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-275 *3)) (-4 *3 (-1183))))) -(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-273))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-273))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1147)) (-5 *1 (-273))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-273))))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4353)) (-4 *1 (-231 *3)) + (-4 *3 (-1074)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-277 *3)) (-4 *3 (-1185))))) +(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-275))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1076)) (-5 *1 (-275))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1149)) (-5 *1 (-275))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-275))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-400 (-536))) - (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4)))))) + (-12 (-5 *3 (-402 (-538))) + (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-593 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4))) - (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-270 *4 *2))))) + (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4))) + (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-272 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-620 (-593 *2))) (-5 *4 (-1147)) - (-4 *2 (-13 (-27) (-1169) (-414 *5))) - (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-270 *5 *2))))) + (|partial| -12 (-5 *3 (-622 (-595 *2))) (-5 *4 (-1149)) + (-4 *2 (-13 (-27) (-1171) (-416 *5))) + (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-272 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-270 *3 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *3))))) + (-12 (-4 *3 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-272 *3 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-270 *4 *2)) (-4 *2 (-13 (-27) (-1169) (-414 *4)))))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-272 *4 *2)) (-4 *2 (-13 (-27) (-1171) (-416 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1147)) (-4 *5 (-13 (-543) (-825) (-1012 (-536)) (-619 (-536)))) + (-12 (-5 *4 (-1149)) (-4 *5 (-13 (-545) (-827) (-1014 (-538)) (-621 (-538)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-620 (-593 *3))) (|:| |vals| (-620 *3)))) - (-5 *1 (-270 *5 *3)) (-4 *3 (-13 (-27) (-1169) (-414 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-622 (-595 *3))) (|:| |vals| (-622 *3)))) + (-5 *1 (-272 *5 *3)) (-4 *3 (-13 (-27) (-1171) (-416 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-825) (-543))) (-5 *2 (-112)) (-5 *1 (-269 *4 *3)) - (-4 *3 (-13 (-414 *4) (-976)))))) + (-12 (-4 *4 (-13 (-827) (-545))) (-5 *2 (-112)) (-5 *1 (-271 *4 *3)) + (-4 *3 (-13 (-416 *4) (-978)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-620 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-414 *4) (-976))) (-4 *4 (-13 (-825) (-543))) - (-5 *1 (-269 *4 *2))))) + (|partial| -12 (-5 *3 (-622 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-416 *4) (-978))) (-4 *4 (-13 (-827) (-545))) + (-5 *1 (-271 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-269 *3 *2)) - (-4 *2 (-13 (-414 *3) (-976)))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-271 *3 *2)) + (-4 *2 (-13 (-416 *3) (-978)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) - (-4 *3 (-13 (-825) (-543)))))) + (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2)) + (-4 *3 (-13 (-827) (-545)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-414 *3) (-976))) (-5 *1 (-269 *3 *2)) - (-4 *3 (-13 (-825) (-543)))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-536))) (-5 *1 (-268))))) -(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-268))))) + (-12 (-4 *2 (-13 (-416 *3) (-978))) (-5 *1 (-271 *3 *2)) + (-4 *3 (-13 (-827) (-545)))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-538))) (-5 *1 (-270))))) +(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-270))))) (((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| - (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) - (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) - (|:| |ub| (-620 (-817 (-219)))))) + (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) + (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) + (|:| |ub| (-622 (-819 (-221)))))) (|:| |lsa| - (-2 (|:| |lfn| (-620 (-307 (-219)))) (|:| -3799 (-620 (-219))))))) - (-5 *2 (-620 (-1129))) (-5 *1 (-260))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1147)) (-5 *1 (-260))))) -(((*1 *2 *3) (-12 (-5 *3 (-307 (-219))) (-5 *2 (-112)) (-5 *1 (-260))))) -(((*1 *2 *2) (-12 (-5 *2 (-620 (-307 (-219)))) (-5 *1 (-260))))) -(((*1 *2 *2) (-12 (-5 *2 (-620 (-307 (-219)))) (-5 *1 (-260))))) + (-2 (|:| |lfn| (-622 (-309 (-221)))) (|:| -3804 (-622 (-221))))))) + (-5 *2 (-622 (-1131))) (-5 *1 (-262))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-262))))) +(((*1 *2 *3) (-12 (-5 *3 (-309 (-221))) (-5 *2 (-112)) (-5 *1 (-262))))) +(((*1 *2 *2) (-12 (-5 *2 (-622 (-309 (-221)))) (-5 *1 (-262))))) +(((*1 *2 *2) (-12 (-5 *2 (-622 (-309 (-221)))) (-5 *1 (-262))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *4 (-749)) (-5 *2 (-667 (-219))) - (-5 *1 (-260))))) -(((*1 *2 *3) (-12 (-5 *3 (-620 (-307 (-219)))) (-5 *2 (-112)) (-5 *1 (-260))))) -(((*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-260))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-307 (-219))) (-5 *1 (-260))))) + (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *4 (-751)) (-5 *2 (-669 (-221))) + (-5 *1 (-262))))) +(((*1 *2 *3) (-12 (-5 *3 (-622 (-309 (-221)))) (-5 *2 (-112)) (-5 *1 (-262))))) +(((*1 *2 *2) (-12 (-5 *2 (-309 (-221))) (-5 *1 (-262))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-309 (-221))) (-5 *1 (-262))))) (((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-307 (-219))) (|:| -3799 (-620 (-219))) - (|:| |lb| (-620 (-817 (-219)))) (|:| |cf| (-620 (-307 (-219)))) - (|:| |ub| (-620 (-817 (-219)))))) - (-5 *1 (-260))))) + (-2 (|:| |fn| (-309 (-221))) (|:| -3804 (-622 (-221))) + (|:| |lb| (-622 (-819 (-221)))) (|:| |cf| (-622 (-309 (-221)))) + (|:| |ub| (-622 (-819 (-221)))))) + (-5 *1 (-262))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-817 (-219)))) (-5 *4 (-219)) (-5 *2 (-620 *4)) - (-5 *1 (-260))))) + (-12 (-5 *3 (-622 (-819 (-221)))) (-5 *4 (-221)) (-5 *2 (-622 *4)) + (-5 *1 (-262))))) (((*1 *2 *1) - (-12 (-4 *3 (-227)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-259 *4)) - (-4 *6 (-771)) (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *3 *4 *5 *6)))) + (-12 (-4 *3 (-229)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-261 *4)) + (-4 *6 (-773)) (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-1023)) (-4 *3 (-825)) (-4 *5 (-259 *3)) (-4 *6 (-771)) - (-5 *2 (-1 *1 (-749))) (-4 *1 (-246 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-749)) (-4 *1 (-259 *2)) (-4 *2 (-825))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-113)))) - ((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-113)))) + (-12 (-4 *4 (-1025)) (-4 *3 (-827)) (-4 *5 (-261 *3)) (-4 *6 (-773)) + (-5 *2 (-1 *1 (-751))) (-4 *1 (-248 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-751)) (-4 *1 (-261 *2)) (-4 *2 (-827))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-113)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) - (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-749)))) + (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) + (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-751)))) ((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) - (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-749)))) - ((*1 *2 *1) (-12 (-4 *1 (-259 *3)) (-4 *3 (-825)) (-5 *2 (-749))))) + (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) + (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-751)))) + ((*1 *2 *1) (-12 (-4 *1 (-261 *3)) (-4 *3 (-827)) (-5 *2 (-751))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *2 (-51)) - (-5 *1 (-254)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *1 (-256 *2)) - (-4 *2 (-1183))))) -(((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) + (|partial| -12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *2 (-51)) + (-5 *1 (-256)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *1 (-258 *2)) + (-4 *2 (-1185))))) +(((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))) +(((*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))) (((*1 *1) (-5 *1 (-142))) - ((*1 *1 *2) (-12 (-5 *2 (-1104 (-219))) (-5 *1 (-254)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-893)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-848)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) -(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-254)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-620 (-254))) (-5 *1 (-255))))) -(((*1 *2 *3) - (-12 (-5 *3 (-899)) + ((*1 *1 *2) (-12 (-5 *2 (-1106 (-221))) (-5 *1 (-256)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-257))))) +(((*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))) +(((*1 *1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-256)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-895)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-850)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))) +(((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))) +(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-256)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-622 (-256))) (-5 *1 (-257))))) +(((*1 *2 *3) + (-12 (-5 *3 (-901)) (-5 *2 - (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) - (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) + (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) + (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-899)) (-5 *4 (-400 (-536))) + (-12 (-5 *3 (-901)) (-5 *4 (-402 (-538))) (-5 *2 - (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) - (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) + (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) + (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) - (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) - (-5 *1 (-151)) (-5 *3 (-620 (-917 (-219)))))) + (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) + (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) + (-5 *1 (-151)) (-5 *3 (-622 (-919 (-221)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) - (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) - (-5 *1 (-151)) (-5 *3 (-620 (-620 (-917 (-219))))))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-254))))) -(((*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254))))) -(((*1 *1 *2) (-12 (-5 *2 (-848)) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-371)) (-5 *1 (-254))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219) (-219))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-219) (-219))) (-5 *1 (-254))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-400 (-536))))) (-5 *1 (-254)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 (-1060 (-371)))) (-5 *1 (-254))))) + (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) + (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) + (-5 *1 (-151)) (-5 *3 (-622 (-622 (-919 (-221))))))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-256))))) +(((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256))))) +(((*1 *1 *2) (-12 (-5 *2 (-850)) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-373)) (-5 *1 (-256))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221) (-221))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-221) (-221))) (-5 *1 (-256))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-402 (-538))))) (-5 *1 (-256)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 (-1062 (-373)))) (-5 *1 (-256))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-254))) (-5 *4 (-1147)) (-5 *2 (-112)) (-5 *1 (-254))))) + (-12 (-5 *3 (-622 (-256))) (-5 *4 (-1149)) (-5 *2 (-112)) (-5 *1 (-256))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1232)) - (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) + (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1234)) + (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1232)) (-5 *1 (-248 *3)) - (-4 *3 (-13 (-596 (-525)) (-1072))))) + (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1234)) (-5 *1 (-250 *3)) + (-4 *3 (-13 (-598 (-527)) (-1074))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-851 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) - (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1232)) (-5 *1 (-248 *6)))) + (-12 (-5 *3 (-853 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) + (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1234)) (-5 *1 (-250 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-851 *5)) (-5 *4 (-1063 (-371))) - (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1232)) (-5 *1 (-248 *5)))) + (-12 (-5 *3 (-853 *5)) (-5 *4 (-1065 (-373))) + (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1234)) (-5 *1 (-250 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-853 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) - (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *6)))) + (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) + (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-853 *5)) (-5 *4 (-1063 (-371))) - (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *5)))) + (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-373))) + (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1233)) - (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) + (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1235)) + (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1233)) (-5 *1 (-248 *3)) - (-4 *3 (-13 (-596 (-525)) (-1072))))) + (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1235)) (-5 *1 (-250 *3)) + (-4 *3 (-13 (-598 (-527)) (-1074))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-856 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) - (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *6)))) + (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) + (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-856 *5)) (-5 *4 (-1063 (-371))) - (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1233)) (-5 *1 (-248 *5)))) + (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-373))) + (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1235)) (-5 *1 (-250 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *5 (-620 (-254))) - (-5 *2 (-1232)) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *5 (-622 (-256))) + (-5 *2 (-1234)) (-5 *1 (-251)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1232)) - (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1234)) + (-5 *1 (-251)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1232)) (-5 *1 (-249)))) + (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1234)) (-5 *1 (-251)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-851 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1232)) - (-5 *1 (-249)))) + (-12 (-5 *3 (-853 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1234)) + (-5 *1 (-251)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) + (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) - (-5 *1 (-249)))) + (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) + (-5 *1 (-251)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) - (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) + (-5 *1 (-251)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) (-5 *2 (-1233)) - (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) (-5 *2 (-1235)) + (-5 *1 (-251)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) - (-5 *2 (-1233)) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) + (-5 *2 (-1235)) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1233)) (-5 *1 (-249)))) + (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1235)) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) - (-5 *2 (-1233)) (-5 *1 (-249)))) + (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) + (-5 *2 (-1235)) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-286 *7)) (-5 *4 (-1147)) (-5 *5 (-620 (-254))) - (-4 *7 (-414 *6)) (-4 *6 (-13 (-543) (-825) (-1012 (-536)))) (-5 *2 (-1232)) - (-5 *1 (-250 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1232)) (-5 *1 (-253)))) + (-12 (-5 *3 (-288 *7)) (-5 *4 (-1149)) (-5 *5 (-622 (-256))) + (-4 *7 (-416 *6)) (-4 *6 (-13 (-545) (-827) (-1014 (-538)))) (-5 *2 (-1234)) + (-5 *1 (-252 *6 *7)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1234)) (-5 *1 (-255)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-620 (-219))) (-5 *4 (-620 (-254))) (-5 *2 (-1232)) - (-5 *1 (-253)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *2 (-1232)) (-5 *1 (-253)))) + (-12 (-5 *3 (-622 (-221))) (-5 *4 (-622 (-256))) (-5 *2 (-1234)) + (-5 *1 (-255)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *2 (-1234)) (-5 *1 (-255)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-620 (-917 (-219)))) (-5 *4 (-620 (-254))) (-5 *2 (-1232)) - (-5 *1 (-253)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-620 (-219))) (-5 *2 (-1233)) (-5 *1 (-253)))) + (-12 (-5 *3 (-622 (-919 (-221)))) (-5 *4 (-622 (-256))) (-5 *2 (-1234)) + (-5 *1 (-255)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-622 (-221))) (-5 *2 (-1235)) (-5 *1 (-255)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-620 (-219))) (-5 *4 (-620 (-254))) (-5 *2 (-1233)) - (-5 *1 (-253))))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-251))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-251))))) -(((*1 *2 *2) (-12 (-5 *2 (-536)) (-5 *1 (-251))))) + (-12 (-5 *3 (-622 (-221))) (-5 *4 (-622 (-256))) (-5 *2 (-1235)) + (-5 *1 (-255))))) +(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-253))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-253))))) +(((*1 *2 *2) (-12 (-5 *2 (-538)) (-5 *1 (-253))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1060 (-219))) - (-5 *2 (-1233)) (-5 *1 (-251))))) + (-12 (-5 *3 (-1 (-166 (-221)) (-166 (-221)))) (-5 *4 (-1062 (-221))) + (-5 *2 (-1235)) (-5 *1 (-253))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-166 (-219)) (-166 (-219)))) (-5 *4 (-1060 (-219))) - (-5 *5 (-112)) (-5 *2 (-1233)) (-5 *1 (-251))))) + (-12 (-5 *3 (-1 (-166 (-221)) (-166 (-221)))) (-5 *4 (-1062 (-221))) + (-5 *5 (-112)) (-5 *2 (-1235)) (-5 *1 (-253))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-917 (-219)) (-219) (-219))) - (-5 *3 (-1 (-219) (-219) (-219) (-219))) (-5 *1 (-249))))) + (-12 (-5 *2 (-1 (-919 (-221)) (-221) (-221))) + (-5 *3 (-1 (-221) (-221) (-221) (-221))) (-5 *1 (-251))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-853 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) - (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) - (-5 *1 (-248 *6)))) + (-12 (-5 *3 (-855 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) + (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) + (-5 *1 (-250 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-853 *5)) (-5 *4 (-1063 (-371))) - (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) - (-5 *1 (-248 *5)))) + (-12 (-5 *3 (-855 *5)) (-5 *4 (-1065 (-373))) + (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) + (-5 *1 (-250 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) - (-5 *1 (-248 *3)) (-4 *3 (-13 (-596 (-525)) (-1072))))) + (-12 (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) + (-5 *1 (-250 *3)) (-4 *3 (-13 (-598 (-527)) (-1074))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1063 (-371))) (-5 *2 (-1104 (-219))) (-5 *1 (-248 *3)) - (-4 *3 (-13 (-596 (-525)) (-1072))))) + (-12 (-5 *4 (-1065 (-373))) (-5 *2 (-1106 (-221))) (-5 *1 (-250 *3)) + (-4 *3 (-13 (-598 (-527)) (-1074))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-856 *6)) (-5 *4 (-1063 (-371))) (-5 *5 (-620 (-254))) - (-4 *6 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) - (-5 *1 (-248 *6)))) + (-12 (-5 *3 (-858 *6)) (-5 *4 (-1065 (-373))) (-5 *5 (-622 (-256))) + (-4 *6 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) + (-5 *1 (-250 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-856 *5)) (-5 *4 (-1063 (-371))) - (-4 *5 (-13 (-596 (-525)) (-1072))) (-5 *2 (-1104 (-219))) - (-5 *1 (-248 *5)))) + (-12 (-5 *3 (-858 *5)) (-5 *4 (-1065 (-373))) + (-4 *5 (-13 (-598 (-527)) (-1074))) (-5 *2 (-1106 (-221))) + (-5 *1 (-250 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-853 (-1 (-219) (-219)))) (-5 *4 (-1060 (-371))) - (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + (-12 (-5 *3 (-855 (-1 (-221) (-221)))) (-5 *4 (-1062 (-373))) + (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-917 (-219)) (-219))) (-5 *4 (-1060 (-371))) - (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-919 (-221)) (-221))) (-5 *4 (-1062 (-373))) + (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-219) (-219) (-219))) (-5 *4 (-1060 (-371))) - (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-221) (-221) (-221))) (-5 *4 (-1062 (-373))) + (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-917 (-219)) (-219) (-219))) (-5 *4 (-1060 (-371))) - (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + (-12 (-5 *3 (-1 (-919 (-221)) (-221) (-221))) (-5 *4 (-1062 (-373))) + (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) - (-5 *5 (-620 (-254))) (-5 *2 (-1104 (-219))) (-5 *1 (-249)))) + (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) + (-5 *5 (-622 (-256))) (-5 *2 (-1106 (-221))) (-5 *1 (-251)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-856 (-1 (-219) (-219) (-219)))) (-5 *4 (-1060 (-371))) - (-5 *2 (-1104 (-219))) (-5 *1 (-249))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-216 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-247 *3)))) - ((*1 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-247 *2)) (-4 *2 (-1183))))) + (-12 (-5 *3 (-858 (-1 (-221) (-221) (-221)))) (-5 *4 (-1062 (-373))) + (-5 *2 (-1106 (-221))) (-5 *1 (-251))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-218 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-249 *3)))) + ((*1 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-249 *2)) (-4 *2 (-1185))))) (((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) - (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-620 *4))))) + (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) + (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-622 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-246 *4 *3 *5 *6)) (-4 *4 (-1023)) (-4 *3 (-825)) - (-4 *5 (-259 *3)) (-4 *6 (-771)) (-5 *2 (-620 (-749))))) + (-12 (-4 *1 (-248 *4 *3 *5 *6)) (-4 *4 (-1025)) (-4 *3 (-827)) + (-4 *5 (-261 *3)) (-4 *6 (-773)) (-5 *2 (-622 (-751))))) ((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) - (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-620 (-749)))))) + (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) + (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-622 (-751)))))) (((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *5 *6)) (-4 *3 (-1023)) (-4 *4 (-825)) - (-4 *5 (-259 *4)) (-4 *6 (-771)) (-5 *2 (-112))))) + (-12 (-4 *1 (-248 *3 *4 *5 *6)) (-4 *3 (-1025)) (-4 *4 (-827)) + (-4 *5 (-261 *4)) (-4 *6 (-773)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-246 *3 *4 *2 *5)) (-4 *3 (-1023)) (-4 *4 (-825)) (-4 *5 (-771)) - (-4 *2 (-259 *4))))) + (-12 (-4 *1 (-248 *3 *4 *2 *5)) (-4 *3 (-1025)) (-4 *4 (-827)) (-4 *5 (-773)) + (-4 *2 (-261 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1023)) (-4 *3 (-825)) - (-4 *4 (-259 *3)) (-4 *5 (-771))))) + (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) + (-4 *4 (-261 *3)) (-4 *5 (-773))))) (((*1 *1 *1) - (-12 (-4 *1 (-246 *2 *3 *4 *5)) (-4 *2 (-1023)) (-4 *3 (-825)) - (-4 *4 (-259 *3)) (-4 *5 (-771))))) -(((*1 *2 *1) (-12 (-5 *2 (-181)) (-5 *1 (-242))))) -(((*1 *1 *2) (-12 (-5 *2 (-181)) (-5 *1 (-242))))) -(((*1 *2 *1) (-12 (-5 *2 (-1235)) (-5 *1 (-242))))) + (-12 (-4 *1 (-248 *2 *3 *4 *5)) (-4 *2 (-1025)) (-4 *3 (-827)) + (-4 *4 (-261 *3)) (-4 *5 (-773))))) +(((*1 *2 *1) (-12 (-5 *2 (-182)) (-5 *1 (-244))))) +(((*1 *1 *2) (-12 (-5 *2 (-182)) (-5 *1 (-244))))) +(((*1 *2 *1) (-12 (-5 *2 (-1237)) (-5 *1 (-244))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-749)) - (-4 *3 (-13 (-705) (-361) (-10 -7 (-15 ** (*3 *3 (-536)))))) - (-5 *1 (-240 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-239 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1) (-12 (-4 *1 (-238 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-238 *2)) (-4 *2 (-1183))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-536)) (-5 *1 (-235)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-536)) (-5 *1 (-235))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-1235)) (-5 *1 (-235)))) - ((*1 *2 *3) (-12 (-5 *3 (-620 (-1129))) (-5 *2 (-1235)) (-5 *1 (-235))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1129)) (-5 *3 (-536)) (-5 *1 (-235))))) -(((*1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-235))))) -(((*1 *1 *2) (-12 (-5 *2 (-1229 *4)) (-4 *4 (-1183)) (-4 *1 (-232 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-286 (-920 (-536)))) + (|partial| -12 (-5 *2 (-751)) + (-4 *3 (-13 (-707) (-363) (-10 -7 (-15 ** (*3 *3 (-538)))))) + (-5 *1 (-242 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-241 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1) (-12 (-4 *1 (-240 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-240 *2)) (-4 *2 (-1185))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-538)) (-5 *1 (-237)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-538)) (-5 *1 (-237))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-1237)) (-5 *1 (-237)))) + ((*1 *2 *3) (-12 (-5 *3 (-622 (-1131))) (-5 *2 (-1237)) (-5 *1 (-237))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1131)) (-5 *3 (-538)) (-5 *1 (-237))))) +(((*1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-237))))) +(((*1 *1 *2) (-12 (-5 *2 (-1231 *4)) (-4 *4 (-1185)) (-4 *1 (-234 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-288 (-922 (-538)))) (-5 *2 - (-2 (|:| |varOrder| (-620 (-1147))) - (|:| |inhom| (-3 (-620 (-1229 (-749))) "failed")) - (|:| |hom| (-620 (-1229 (-749)))))) - (-5 *1 (-230))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-4 *1 (-229 *3)))) - ((*1 *1) (-12 (-4 *1 (-229 *2)) (-4 *2 (-1072))))) -(((*1 *1) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169)))))) -(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169)))))) -(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169)))))) -(((*1 *1 *2) (-12 (-5 *1 (-221 *2)) (-4 *2 (-13 (-356) (-1169)))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))) -(((*1 *2 *2) (-12 (-5 *2 (-219)) (-5 *1 (-220)))) - ((*1 *2 *2) (-12 (-5 *2 (-166 (-219))) (-5 *1 (-220))))) + (-2 (|:| |varOrder| (-622 (-1149))) + (|:| |inhom| (-3 (-622 (-1231 (-751))) "failed")) + (|:| |hom| (-622 (-1231 (-751)))))) + (-5 *1 (-232))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-4 *1 (-231 *3)))) + ((*1 *1) (-12 (-4 *1 (-231 *2)) (-4 *2 (-1074))))) +(((*1 *1) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))) +(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))) +(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))) +(((*1 *1 *2) (-12 (-5 *1 (-223 *2)) (-4 *2 (-13 (-358) (-1171)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))) +(((*1 *2 *2) (-12 (-5 *2 (-221)) (-5 *1 (-222)))) + ((*1 *2 *2) (-12 (-5 *2 (-166 (-221))) (-5 *1 (-222))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-920 *6)) (-5 *4 (-1147)) - (-5 *5 (-817 *7)) (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-4 *7 (-13 (-1169) (-29 *6))) (-5 *1 (-218 *6 *7)))) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-922 *6)) (-5 *4 (-1149)) + (-5 *5 (-819 *7)) (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-4 *7 (-13 (-1171) (-29 *6))) (-5 *1 (-220 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1141 *6)) (-5 *4 (-817 *6)) - (-4 *6 (-13 (-1169) (-29 *5))) - (-4 *5 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-218 *5 *6))))) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1143 *6)) (-5 *4 (-819 *6)) + (-4 *6 (-13 (-1171) (-29 *5))) + (-4 *5 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-220 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-817 *4)) (-5 *3 (-593 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1169) (-29 *6))) - (-4 *6 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *1 (-218 *6 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1129)) (-4 *4 (-13 (-444) (-825) (-1012 (-536)) (-619 (-536)))) - (-5 *2 (-112)) (-5 *1 (-218 *4 *5)) (-4 *5 (-13 (-1169) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1023)) (-14 *3 (-620 (-1147))))) + (|partial| -12 (-5 *2 (-819 *4)) (-5 *3 (-595 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1171) (-29 *6))) + (-4 *6 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *1 (-220 *6 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1131)) (-4 *4 (-13 (-446) (-827) (-1014 (-538)) (-621 (-538)))) + (-5 *2 (-112)) (-5 *1 (-220 *4 *5)) (-4 *5 (-13 (-1171) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1025)) (-14 *3 (-622 (-1149))))) ((*1 *1 *1) - (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) - (-14 *3 (-620 (-1147)))))) + (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) + (-14 *3 (-622 (-1149)))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1023)) - (-14 *4 (-620 (-1147))))) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1025)) + (-14 *4 (-622 (-1149))))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-217 *3 *4)) (-4 *3 (-13 (-1023) (-825))) - (-14 *4 (-620 (-1147)))))) + (-12 (-5 *2 (-112)) (-5 *1 (-219 *3 *4)) (-4 *3 (-13 (-1025) (-827))) + (-14 *4 (-622 (-1149)))))) (((*1 *1 *2) - (-12 (-5 *2 (-307 *3)) (-4 *3 (-13 (-1023) (-825))) (-5 *1 (-217 *3 *4)) - (-14 *4 (-620 (-1147)))))) + (-12 (-5 *2 (-309 *3)) (-4 *3 (-13 (-1025) (-827))) (-5 *1 (-219 *3 *4)) + (-14 *4 (-622 (-1149)))))) (((*1 *1 *1) - (-12 (-5 *1 (-217 *2 *3)) (-4 *2 (-13 (-1023) (-825))) - (-14 *3 (-620 (-1147)))))) + (-12 (-5 *1 (-219 *2 *3)) (-4 *2 (-13 (-1025) (-827))) + (-14 *3 (-622 (-1149)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1147)) (-5 *6 (-112)) - (-4 *7 (-13 (-300) (-825) (-145) (-1012 (-536)) (-619 (-536)))) - (-4 *3 (-13 (-1169) (-934) (-29 *7))) + (-12 (-5 *4 (-1149)) (-5 *6 (-112)) + (-4 *7 (-13 (-302) (-827) (-145) (-1014 (-538)) (-621 (-538)))) + (-4 *3 (-13 (-1171) (-936) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-817 *3)) (|:| |f2| (-620 (-817 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-819 *3)) (|:| |f2| (-622 (-819 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-213 *7 *3)) (-5 *5 (-817 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-400 (-536))) (-5 *1 (-211))))) + (-5 *1 (-215 *7 *3)) (-5 *5 (-819 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-402 (-538))) (-5 *1 (-213))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-112)) (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-345)) (-5 *2 (-112)) (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4))))) + (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-749)) (-4 *4 (-343)) (-5 *1 (-210 *4 *2)) (-4 *2 (-1205 *4))))) + (-12 (-5 *3 (-751)) (-4 *4 (-345)) (-5 *1 (-212 *4 *2)) (-4 *2 (-1207 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-343)) (-5 *2 (-620 (-2 (|:| |deg| (-749)) (|:| -2900 *3)))) - (-5 *1 (-210 *4 *3)) (-4 *3 (-1205 *4))))) + (-12 (-4 *4 (-345)) (-5 *2 (-622 (-2 (|:| |deg| (-751)) (|:| -2905 *3)))) + (-5 *1 (-212 *4 *3)) (-4 *3 (-1207 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-343)) + (-12 (-5 *4 (-112)) (-4 *5 (-345)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -2762 (-620 (-2 (|:| |irr| *3) (|:| -2482 (-536))))))) - (-5 *1 (-210 *5 *3)) (-4 *3 (-1205 *5))))) + (|:| -2767 (-622 (-2 (|:| |irr| *3) (|:| -2487 (-538))))))) + (-5 *1 (-212 *5 *3)) (-4 *3 (-1207 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-356)) (-4 *6 (-1205 (-400 *2))) - (-4 *2 (-1205 *5)) (-5 *1 (-209 *5 *2 *6 *3)) (-4 *3 (-335 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-358)) (-4 *6 (-1207 (-402 *2))) + (-4 *2 (-1207 *5)) (-5 *1 (-211 *5 *2 *6 *3)) (-4 *3 (-337 *5 *2 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |pde| (-620 (-307 (-219)))) + (-2 (|:| |pde| (-622 (-309 (-221)))) (|:| |constraints| - (-620 - (-2 (|:| |start| (-219)) (|:| |finish| (-219)) (|:| |grid| (-749)) - (|:| |boundaryType| (-536)) (|:| |dStart| (-667 (-219))) - (|:| |dFinish| (-667 (-219)))))) - (|:| |f| (-620 (-620 (-307 (-219))))) (|:| |st| (-1129)) - (|:| |tol| (-219)))) - (-5 *2 (-112)) (-5 *1 (-204))))) + (-622 + (-2 (|:| |start| (-221)) (|:| |finish| (-221)) (|:| |grid| (-751)) + (|:| |boundaryType| (-538)) (|:| |dStart| (-669 (-221))) + (|:| |dFinish| (-669 (-221)))))) + (|:| |f| (-622 (-622 (-309 (-221))))) (|:| |st| (-1131)) + (|:| |tol| (-221)))) + (-5 *2 (-112)) (-5 *1 (-206))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-620 (-307 (-219)))) (-5 *3 (-219)) (-5 *2 (-112)) - (-5 *1 (-204))))) -(((*1 *2 *2) (-12 (-5 *2 (-307 (-219))) (-5 *1 (-204))))) + (-12 (-5 *4 (-622 (-309 (-221)))) (-5 *3 (-221)) (-5 *2 (-112)) + (-5 *1 (-206))))) +(((*1 *2 *2) (-12 (-5 *2 (-309 (-221))) (-5 *1 (-206))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-371)) (-5 *1 (-199))))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-373)) (-5 *1 (-201))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-371)) (-5 *1 (-199))))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-373)) (-5 *1 (-201))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-371)) (-5 *1 (-199))))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-373)) (-5 *1 (-201))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-371)) (-5 *1 (-199))))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-373)) (-5 *1 (-201))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |xinit| (-219)) (|:| |xend| (-219)) - (|:| |fn| (-1229 (-307 (-219)))) (|:| |yinit| (-620 (-219))) - (|:| |intvals| (-620 (-219))) (|:| |g| (-307 (-219))) - (|:| |abserr| (-219)) (|:| |relerr| (-219)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) - (-5 *1 (-199))))) -(((*1 *2 *3) - (-12 (-5 *3 (-667 (-307 (-219)))) - (-5 *2 (-2 (|:| |stiffnessFactor| (-371)) (|:| |stabilityFactor| (-371)))) - (-5 *1 (-199))))) -(((*1 *2 *3) (-12 (-5 *3 (-667 (-307 (-219)))) (-5 *2 (-371)) (-5 *1 (-199))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-199)))) - ((*1 *2 *2 *3) (-12 (-5 *3 (-620 (-371))) (-5 *2 (-371)) (-5 *1 (-199))))) + (-2 (|:| |xinit| (-221)) (|:| |xend| (-221)) + (|:| |fn| (-1231 (-309 (-221)))) (|:| |yinit| (-622 (-221))) + (|:| |intvals| (-622 (-221))) (|:| |g| (-309 (-221))) + (|:| |abserr| (-221)) (|:| |relerr| (-221)))) + (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) + (-5 *1 (-201))))) +(((*1 *2 *3) + (-12 (-5 *3 (-669 (-309 (-221)))) + (-5 *2 (-2 (|:| |stiffnessFactor| (-373)) (|:| |stabilityFactor| (-373)))) + (-5 *1 (-201))))) +(((*1 *2 *3) (-12 (-5 *3 (-669 (-309 (-221)))) (-5 *2 (-373)) (-5 *1 (-201))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-201)))) + ((*1 *2 *2 *3) (-12 (-5 *3 (-622 (-373))) (-5 *2 (-373)) (-5 *1 (-201))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-536)) (-5 *1 (-198))))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-538)) (-5 *1 (-200))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-620 (-219))) (-5 *1 (-198))))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-622 (-221))) (-5 *1 (-200))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-2 (|:| -2831 (-113)) (|:| |w| (-219)))) (-5 *1 (-198))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1009)) (-5 *3 (-1147)) (-5 *1 (-186))))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-2 (|:| -2836 (-113)) (|:| |w| (-221)))) (-5 *1 (-200))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1011)) (-5 *3 (-1149)) (-5 *1 (-188))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) - (-5 *2 (-371)) (-5 *1 (-186))))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) + (-5 *2 (-373)) (-5 *1 (-188))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-186))))) + (-5 *1 (-188))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1147)) (|:| |fn| (-307 (-219))) - (|:| -1556 (-1060 (-817 (-219)))) (|:| |abserr| (-219)) - (|:| |relerr| (-219)))) + (-2 (|:| |var| (-1149)) (|:| |fn| (-309 (-221))) + (|:| -1561 (-1062 (-819 (-221)))) (|:| |abserr| (-221)) + (|:| |relerr| (-221)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-186))))) -(((*1 *2 *3) (-12 (-5 *2 (-398 (-1141 (-536)))) (-5 *1 (-185)) (-5 *3 (-536))))) -(((*1 *2 *3) (-12 (-5 *2 (-620 (-1141 (-536)))) (-5 *1 (-185)) (-5 *3 (-536))))) + (-5 *1 (-188))))) +(((*1 *2 *3) (-12 (-5 *2 (-400 (-1143 (-538)))) (-5 *1 (-187)) (-5 *3 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-622 (-1143 (-538)))) (-5 *1 (-187)) (-5 *3 (-538))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-620 (-536))) (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184))))) + (-12 (-5 *3 (-622 (-538))) (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 (-536))) (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184))))) + (-12 (-5 *3 (-622 (-538))) (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1149 (-400 (-536)))) (-5 *2 (-400 (-536))) (-5 *1 (-184))))) -(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) -(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) -(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) -(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) -(((*1 *2 *3) (-12 (-5 *2 (-1149 (-400 (-536)))) (-5 *1 (-184)) (-5 *3 (-536))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1229 (-667 *4))) (-4 *4 (-170)) - (-5 *2 (-1229 (-667 (-920 *4)))) (-5 *1 (-183 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-181))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-1152))) (-5 *1 (-181))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1183)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1183)) (-5 *2 (-749)) (-5 *1 (-180 *4 *3)) (-4 *3 (-652 *4))))) + (-12 (-5 *3 (-1151 (-402 (-538)))) (-5 *2 (-402 (-538))) (-5 *1 (-186))))) +(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538))))) +(((*1 *2 *3) (-12 (-5 *2 (-1151 (-402 (-538)))) (-5 *1 (-186)) (-5 *3 (-538))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1231 (-669 *4))) (-4 *4 (-170)) + (-5 *2 (-1231 (-669 (-922 *4)))) (-5 *1 (-185 *4))))) +(((*1 *1) (-5 *1 (-183)))) +(((*1 *1) (-5 *1 (-183)))) +(((*1 *1) (-5 *1 (-183)))) +(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-182))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-1154))) (-5 *1 (-182))))) +(((*1 *2 *1) (-12 (-5 *2 (-1149)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-181))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-751)) (-5 *1 (-113)))) + ((*1 *2 *1) (-12 (-5 *2 (-1093)) (-5 *1 (-181))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1185)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1185)) (-5 *2 (-751)) (-5 *1 (-180 *4 *3)) (-4 *3 (-654 *4))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1183)) (-5 *1 (-180 *3 *2)) (-4 *2 (-652 *3))))) + (|partial| -12 (-4 *3 (-1185)) (-5 *1 (-180 *3 *2)) (-4 *2 (-654 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-823))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2762 (-398 *3)))) (-5 *1 (-179 *4 *3)) - (-4 *3 (-1205 (-166 *4)))))) + (-12 (-4 *4 (-13 (-358) (-825))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2767 (-400 *3)))) (-5 *1 (-179 *4 *3)) + (-4 *3 (-1207 (-166 *4)))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1205 (-166 *2)))))) + (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1207 (-166 *2)))))) (((*1 *2 *3) - (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-356) (-823))) - (-4 *3 (-1205 *2))))) + (-12 (-5 *2 (-166 *4)) (-5 *1 (-179 *4 *3)) (-4 *4 (-13 (-358) (-825))) + (-4 *3 (-1207 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1205 (-166 *2))))) + (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1207 (-166 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-356) (-823))) (-5 *1 (-179 *2 *3)) - (-4 *3 (-1205 (-166 *2)))))) + (-12 (-4 *2 (-13 (-358) (-825))) (-5 *1 (-179 *2 *3)) + (-4 *3 (-1207 (-166 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) - (-4 *2 (-1205 (-166 *3)))))) + (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) + (-4 *2 (-1207 (-166 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-398 *3)) (-5 *1 (-179 *4 *3)) - (-4 *3 (-1205 (-166 *4)))))) + (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-400 *3)) (-5 *1 (-179 *4 *3)) + (-4 *3 (-1207 (-166 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-356) (-823))) (-5 *1 (-179 *3 *2)) - (-4 *2 (-1205 (-166 *3)))))) + (-12 (-4 *3 (-13 (-358) (-825))) (-5 *1 (-179 *3 *2)) + (-4 *2 (-1207 (-166 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-356) (-823))) - (-5 *2 (-620 (-2 (|:| -2762 (-620 *3)) (|:| -1651 *5)))) - (-5 *1 (-179 *5 *3)) (-4 *3 (-1205 (-166 *5))))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-358) (-825))) + (-5 *2 (-622 (-2 (|:| -2767 (-622 *3)) (|:| -1656 *5)))) + (-5 *1 (-179 *5 *3)) (-4 *3 (-1207 (-166 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-356) (-823))) - (-5 *2 (-620 (-2 (|:| -2762 (-620 *3)) (|:| -1651 *4)))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4)))))) + (-12 (-4 *4 (-13 (-358) (-825))) + (-5 *2 (-622 (-2 (|:| -2767 (-622 *3)) (|:| -1656 *4)))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-620 (-166 *4))) (-5 *1 (-153 *3 *4)) - (-4 *3 (-1205 (-166 (-536)))) (-4 *4 (-13 (-356) (-823))))) + (-12 (-5 *2 (-622 (-166 *4))) (-5 *1 (-153 *3 *4)) + (-4 *3 (-1207 (-166 (-538)))) (-4 *4 (-13 (-358) (-825))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-620 (-166 *4))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4))))) + (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-622 (-166 *4))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-356) (-823))) (-5 *2 (-620 (-166 *4))) - (-5 *1 (-179 *4 *3)) (-4 *3 (-1205 (-166 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-620 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-300)) (-5 *1 (-177 *3))))) + (-12 (-4 *4 (-13 (-358) (-825))) (-5 *2 (-622 (-166 *4))) + (-5 *1 (-179 *4 *3)) (-4 *3 (-1207 (-166 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-622 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-302)) (-5 *1 (-177 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1169) (-976)))))) + (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1171) (-978)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1169) (-976)))))) + (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1171) (-978)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1169) (-976)))))) + (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1171) (-978)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1169) (-976)))))) + (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1171) (-978)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1169) (-976)))))) + (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1171) (-978)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1169) (-976)))))) + (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1171) (-978)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-917 *3) (-917 *3))) (-5 *1 (-174 *3)) - (-4 *3 (-13 (-356) (-1169) (-976)))))) + (-12 (-5 *2 (-1 (-919 *3) (-919 *3))) (-5 *1 (-174 *3)) + (-4 *3 (-13 (-358) (-1171) (-978)))))) (((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-917 *3)) (-4 *3 (-13 (-356) (-1169) (-976))) + (-12 (-5 *2 (-919 *3)) (-4 *3 (-13 (-358) (-1171) (-978))) (-5 *1 (-174 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-108))) (-5 *1 (-173))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-108))) (-5 *1 (-173))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-173))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1124 *2)) (-4 *2 (-300)) (-5 *1 (-172 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 (-400 *3))) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124 *3)) (-5 *1 (-172 *3)) (-4 *3 (-300))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1126 *2)) (-4 *2 (-302)) (-5 *1 (-172 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *1 *1) (-12 (-5 *1 (-172 *2)) (-4 *2 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126 (-402 *3))) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) +(((*1 *2 *1) (-12 (-5 *2 (-1126 *3)) (-5 *1 (-172 *3)) (-4 *3 (-302))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-169))))) (((*1 *1) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-164 *2)) (-4 *2 (-170))))) (((*1 *2 *1) - (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1032)) (-4 *3 (-1169)) + (-12 (-4 *1 (-164 *3)) (-4 *3 (-170)) (-4 *3 (-1034)) (-4 *3 (-1171)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1 *1) (-5 *1 (-159))) - ((*1 *1 *2) (-12 (-5 *2 (-536)) (-5 *1 (-159))))) + ((*1 *1 *2) (-12 (-5 *2 (-538)) (-5 *1 (-159))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-414 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147)))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-416 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149)))) ((*1 *1 *1) (-4 *1 (-158)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *1 (-156 *4 *2)) - (-4 *2 (-414 *4)))) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)) + (-4 *2 (-416 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1063 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) + (-12 (-5 *3 (-1065 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-156 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1063 *1)) (-4 *1 (-158)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1147))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1065 *1)) (-4 *1 (-158)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-158)) (-5 *2 (-1149))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))) (((*1 *1 *1 *1) (-4 *1 (-141))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-620 *2)) (-4 *2 (-535)) (-5 *1 (-157 *2))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-622 *2)) (-4 *2 (-537)) (-5 *1 (-157 *2))))) (((*1 *1 *1) (-4 *1 (-141))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-535))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-157 *2)) (-4 *2 (-537))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-543)))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-827) (-545)))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-543)))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-827) (-545)))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-543)))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-827) (-545)))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-543)))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-827) (-545)))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-543)))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-827) (-545)))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *2)) (-4 *2 (-414 *4)) (-5 *1 (-156 *4 *2)) - (-4 *4 (-13 (-825) (-543)))))) + (-12 (-5 *3 (-622 *2)) (-4 *2 (-416 *4)) (-5 *1 (-156 *4 *2)) + (-4 *4 (-13 (-827) (-545)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *1 (-156 *3 *2)) (-4 *2 (-414 *3))))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *1 (-156 *3 *2)) (-4 *2 (-416 *3))))) (((*1 *1) (-5 *1 (-155)))) -(((*1 *2) (-12 (-5 *2 (-893)) (-5 *1 (-155))))) +(((*1 *2) (-12 (-5 *2 (-895)) (-5 *1 (-155))))) (((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-219)) + (-12 (-5 *4 (-221)) (-5 *2 - (-2 (|:| |brans| (-620 (-620 (-917 *4)))) (|:| |xValues| (-1060 *4)) - (|:| |yValues| (-1060 *4)))) - (-5 *1 (-151)) (-5 *3 (-620 (-620 (-917 *4))))))) + (-2 (|:| |brans| (-622 (-622 (-919 *4)))) (|:| |xValues| (-1062 *4)) + (|:| |yValues| (-1062 *4)))) + (-5 *1 (-151)) (-5 *3 (-622 (-622 (-919 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-899)) + (-12 (-5 *3 (-901)) (-5 *2 - (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) - (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) + (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) + (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-899)) (-5 *4 (-400 (-536))) + (-12 (-5 *3 (-901)) (-5 *4 (-402 (-538))) (-5 *2 - (-2 (|:| |brans| (-620 (-620 (-917 (-219))))) - (|:| |xValues| (-1060 (-219))) (|:| |yValues| (-1060 (-219))))) + (-2 (|:| |brans| (-622 (-622 (-919 (-221))))) + (|:| |xValues| (-1062 (-221))) (|:| |yValues| (-1062 (-221))))) (-5 *1 (-151))))) (((*1 *1 *2) - (-12 (-5 *2 (-893)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-356)) - (-14 *5 (-967 *3 *4))))) + (-12 (-5 *2 (-895)) (-5 *1 (-150 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-358)) + (-14 *5 (-969 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1183))))) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-149 *2)) (-4 *2 (-1185))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4348)) (-4 *1 (-149 *2)) (-4 *2 (-1183)) - (-4 *2 (-1072))))) + (-12 (|has| *1 (-6 -4353)) (-4 *1 (-149 *2)) (-4 *2 (-1185)) + (-4 *2 (-1074))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) + (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-400 *5)) - (|:| |c2| (-400 *5)) (|:| |deg| (-749)))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1205 (-400 *5)))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-402 *5)) + (|:| |c2| (-402 *5)) (|:| |deg| (-751)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1207 (-402 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1205 *2)) (-4 *2 (-1188)) (-5 *1 (-146 *2 *4 *3)) - (-4 *3 (-1205 (-400 *4)))))) + (-12 (-4 *4 (-1207 *2)) (-4 *2 (-1190)) (-5 *1 (-146 *2 *4 *3)) + (-4 *3 (-1207 (-402 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-400 *6)) (-4 *5 (-1188)) (-4 *6 (-1205 *5)) - (-5 *2 (-2 (|:| -2488 (-749)) (|:| -4308 *3) (|:| |radicand| *6))) - (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-749)) (-4 *7 (-1205 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) - (-5 *2 (-2 (|:| |radicand| (-400 *5)) (|:| |deg| (-749)))) - (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1205 (-400 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1188)) (-4 *5 (-1205 *4)) - (-5 *2 (-2 (|:| -4308 (-400 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) - (-4 *3 (-1205 (-400 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-749)) (-5 *1 (-142))))) -(((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-142)))) - ((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-142))))) + (-12 (-5 *3 (-402 *6)) (-4 *5 (-1190)) (-4 *6 (-1207 *5)) + (-5 *2 (-2 (|:| -2493 (-751)) (|:| -4313 *3) (|:| |radicand| *6))) + (-5 *1 (-146 *5 *6 *7)) (-5 *4 (-751)) (-4 *7 (-1207 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) + (-5 *2 (-2 (|:| |radicand| (-402 *5)) (|:| |deg| (-751)))) + (-5 *1 (-146 *4 *5 *3)) (-4 *3 (-1207 (-402 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1190)) (-4 *5 (-1207 *4)) + (-5 *2 (-2 (|:| -4313 (-402 *5)) (|:| |poly| *3))) (-5 *1 (-146 *4 *5 *3)) + (-4 *3 (-1207 (-402 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-142))))) +(((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-142)))) + ((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-142))))) (((*1 *1) (-5 *1 (-142)))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) @@ -15461,1084 +15469,1083 @@ (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-142))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 (-142))) (-5 *1 (-139)))) - ((*1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-139))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 (-142))) (-5 *1 (-139)))) + ((*1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-139))))) (((*1 *1) (-5 *1 (-139)))) (((*1 *1) (-5 *1 (-139)))) (((*1 *1) (-5 *1 (-139)))) (((*1 *1) (-5 *1 (-139)))) -(((*1 *2 *1) (-12 (-5 *2 (-1147)) (-5 *1 (-137))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-620 (-536))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) - (-14 *4 (-749)) (-4 *5 (-170))))) + (-12 (-5 *2 (-622 (-538))) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) + (-14 *4 (-751)) (-4 *5 (-170))))) (((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170))))) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170))))) (((*1 *1) - (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-536)) (-14 *3 (-749)) (-4 *4 (-170))))) + (-12 (-5 *1 (-134 *2 *3 *4)) (-14 *2 (-538)) (-14 *3 (-751)) (-4 *4 (-170))))) (((*1 *2 *1) - (-12 (-5 *2 (-620 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) - (-14 *4 (-749)) (-4 *5 (-170))))) + (-12 (-5 *2 (-622 *5)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) + (-14 *4 (-751)) (-4 *5 (-170))))) (((*1 *1 *2) - (-12 (-5 *2 (-620 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-536)) - (-14 *4 (-749))))) -(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-133))))) + (-12 (-5 *2 (-622 *5)) (-4 *5 (-170)) (-5 *1 (-134 *3 *4 *5)) (-14 *3 (-538)) + (-14 *4 (-751))))) +(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-133))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) (((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) (((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-133))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-749)) (-5 *2 (-1235))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-131)) (-5 *3 (-751)) (-5 *2 (-1237))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-130)))) -(((*1 *1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-128))))) +(((*1 *1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-128))))) (((*1 *1 *1 *1) (-5 *1 (-128)))) (((*1 *1 *1 *1) (-5 *1 (-128)))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1072)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1072))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-126 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1072))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1074)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1074))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-126 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1074))))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) (((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-825)) (-5 *1 (-121 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-825))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) - ((*1 *2 *2) (-12 (-5 *2 (-749)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1205 (-536)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-119 *2)) (-4 *2 (-1183))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4349)) (-4 *1 (-119 *2)) (-4 *2 (-1183))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-356) (-1012 (-400 *2)))) (-5 *2 (-536)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1205 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1072)) (-4 *2 (-825)) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-827)) (-5 *1 (-121 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-827))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))) + ((*1 *2 *2) (-12 (-5 *2 (-751)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1207 (-538)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1185))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4354)) (-4 *1 (-119 *2)) (-4 *2 (-1185))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-358) (-1014 (-402 *2)))) (-5 *2 (-538)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1207 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-113)) (-4 *2 (-1074)) (-4 *2 (-827)) (-5 *1 (-114 *2))))) (((*1 *2 *3) - (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-825)) (-4 *3 (-1072))))) + (-12 (-5 *2 (-113)) (-5 *1 (-114 *3)) (-4 *3 (-827)) (-4 *3 (-1074))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-620 (-1 *4 (-620 *4)))) (-4 *4 (-1072)) + (-12 (-5 *2 (-113)) (-5 *3 (-622 (-1 *4 (-622 *4)))) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1072)) (-5 *1 (-114 *4)))) + (-12 (-5 *2 (-113)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1074)) (-5 *1 (-114 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-113)) (-5 *2 (-620 (-1 *4 (-620 *4)))) - (-5 *1 (-114 *4)) (-4 *4 (-1072))))) -(((*1 *2 *1) (-12 (-5 *2 (-620 (-939))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1129) (-751))) (-5 *1 (-113))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-749)) (-5 *1 (-113))))) + (|partial| -12 (-5 *3 (-113)) (-5 *2 (-622 (-1 *4 (-622 *4)))) + (-5 *1 (-114 *4)) (-4 *4 (-1074))))) +(((*1 *2 *1) (-12 (-5 *2 (-622 (-941))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1131) (-753))) (-5 *1 (-113))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-113))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-113) (-113))) (-5 *1 (-113))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-112)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1129)) (-5 *1 (-113))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1129)) (-5 *3 (-751)) (-5 *1 (-113))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1129) (-751))) (-5 *1 (-113))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-112)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1131)) (-5 *1 (-113))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1131)) (-5 *3 (-753)) (-5 *1 (-113))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1131) (-753))) (-5 *1 (-113))))) (((*1 *1 *1) (-5 *1 (-112)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-109))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1147)) (-5 *3 (-620 (-939))) (-5 *1 (-108))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-4 *1 (-106 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183))))) -(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1183))))) -(((*1 *2) (-12 (-5 *2 (-620 (-1147))) (-5 *1 (-104))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1147)) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1093)) (-5 *1 (-109))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1149)) (-5 *3 (-622 (-941))) (-5 *1 (-108))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-4 *1 (-106 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185))))) +(((*1 *2 *1) (-12 (-4 *1 (-106 *2)) (-4 *2 (-1185))))) +(((*1 *2) (-12 (-5 *2 (-622 (-1149))) (-5 *1 (-104))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1149)) (-5 *2 - (-2 (|:| |zeros| (-1124 (-219))) (|:| |ones| (-1124 (-219))) - (|:| |singularities| (-1124 (-219))))) + (-2 (|:| |zeros| (-1126 (-221))) (|:| |ones| (-1126 (-221))) + (|:| |singularities| (-1126 (-221))))) (-5 *1 (-104))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4350 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) - (-4 *2 (-1023)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1205 *2)) - (-4 *4 (-664 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) + (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1207 *2)) + (-4 *4 (-666 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4350 "*"))) (-4 *5 (-365 *2)) (-4 *6 (-365 *2)) - (-4 *2 (-1023)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1205 *2)) - (-4 *4 (-664 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4355 "*"))) (-4 *5 (-367 *2)) (-4 *6 (-367 *2)) + (-4 *2 (-1025)) (-5 *1 (-103 *2 *3 *4 *5 *6)) (-4 *3 (-1207 *2)) + (-4 *4 (-666 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1023)) (-4 *2 (-664 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) - (-4 *3 (-1205 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) + (-12 (-4 *4 (-1025)) (-4 *2 (-666 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) + (-4 *3 (-1207 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1023)) (-4 *2 (-664 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) - (-4 *3 (-1205 *4)) (-4 *5 (-365 *4)) (-4 *6 (-365 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-102 *3)) (-4 *3 (-1072))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-102 *3))))) + (-12 (-4 *4 (-1025)) (-4 *2 (-666 *4 *5 *6)) (-5 *1 (-103 *4 *3 *2 *5 *6)) + (-4 *3 (-1207 *4)) (-4 *5 (-367 *4)) (-4 *6 (-367 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-102 *3)) (-4 *3 (-1074))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-102 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1072)) (-5 *1 (-102 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1072))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1074)) (-5 *1 (-102 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-102 *2)) (-4 *2 (-1074))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-620 *2) *2 *2 *2)) (-4 *2 (-1072)) (-5 *1 (-102 *2)))) + (-12 (-5 *3 (-1 (-622 *2) *2 *2 *2)) (-4 *2 (-1074)) (-5 *1 (-102 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1072)) (-5 *1 (-102 *2))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1074)) (-5 *1 (-102 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-444) (-145))) (-5 *2 (-398 *3)) (-5 *1 (-99 *4 *3)) - (-4 *3 (-1205 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-620 *3)) (-4 *3 (-1205 *5)) (-4 *5 (-13 (-444) (-145))) - (-5 *2 (-398 *3)) (-5 *1 (-99 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-536))) (-4 *3 (-1023)) (-5 *1 (-98 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-98 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1023)) (-5 *1 (-98 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1129)) (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2) (-12 (-5 *2 (-1235)) (-5 *1 (-96))))) -(((*1 *2 *2) (-12 (-5 *2 (-371)) (-5 *1 (-96))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1129)) (-5 *1 (-96)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-371)) (-5 *3 (-1129)) (-5 *1 (-96))))) -(((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1072)) (-5 *1 (-90 *3))))) + (-12 (-4 *4 (-13 (-446) (-145))) (-5 *2 (-400 *3)) (-5 *1 (-99 *4 *3)) + (-4 *3 (-1207 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-622 *3)) (-4 *3 (-1207 *5)) (-4 *5 (-13 (-446) (-145))) + (-5 *2 (-400 *3)) (-5 *1 (-99 *5 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-538))) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1025)) (-5 *1 (-98 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96))))) +(((*1 *2 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1131)) (-5 *2 (-373)) (-5 *1 (-96))))) +(((*1 *2) (-12 (-5 *2 (-1237)) (-5 *1 (-96))))) +(((*1 *2 *2) (-12 (-5 *2 (-373)) (-5 *1 (-96))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1131)) (-5 *1 (-96)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-373)) (-5 *3 (-1131)) (-5 *1 (-96))))) +(((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1074)) (-5 *1 (-90 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-356)) (-4 *5 (-543)) + (-12 (-4 *5 (-358)) (-4 *5 (-545)) (-5 *2 - (-2 (|:| |minor| (-620 (-893))) (|:| -3612 *3) - (|:| |minors| (-620 (-620 (-893)))) (|:| |ops| (-620 *3)))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-893)) (-4 *3 (-636 *5))))) + (-2 (|:| |minor| (-622 (-895))) (|:| -3617 *3) + (|:| |minors| (-622 (-622 (-895)))) (|:| |ops| (-622 *3)))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-638 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-1229 (-667 *4))) (-5 *1 (-89 *4 *5)) - (-5 *3 (-667 *4)) (-4 *5 (-636 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-1231 (-669 *4))) (-5 *1 (-89 *4 *5)) + (-5 *3 (-669 *4)) (-4 *5 (-638 *4))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-543)) - (-5 *2 (-2 (|:| -1695 (-667 *5)) (|:| |vec| (-1229 (-620 (-893)))))) - (-5 *1 (-89 *5 *3)) (-5 *4 (-893)) (-4 *3 (-636 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-749)) (-5 *1 (-57 *3)) (-4 *3 (-1183)))) - ((*1 *1 *2) (-12 (-5 *2 (-620 *3)) (-4 *3 (-1183)) (-5 *1 (-57 *3))))) + (-12 (-4 *5 (-545)) + (-5 *2 (-2 (|:| -1700 (-669 *5)) (|:| |vec| (-1231 (-622 (-895)))))) + (-5 *1 (-89 *5 *3)) (-5 *4 (-895)) (-4 *3 (-638 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-751)) (-5 *1 (-57 *3)) (-4 *3 (-1185)))) + ((*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-1185)) (-5 *1 (-57 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-536)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1183)) (-4 *3 (-365 *4)) - (-4 *5 (-365 *4))))) + (-12 (-5 *2 (-538)) (-4 *1 (-56 *4 *3 *5)) (-4 *4 (-1185)) (-4 *3 (-367 *4)) + (-4 *5 (-367 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-536)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1183)) (-4 *5 (-365 *4)) - (-4 *3 (-365 *4))))) + (-12 (-5 *2 (-538)) (-4 *1 (-56 *4 *5 *3)) (-4 *4 (-1185)) (-4 *5 (-367 *4)) + (-4 *3 (-367 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-620 (-1147))) (-4 *4 (-1072)) - (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) - (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4))))))) + (-12 (-5 *3 (-622 (-1149))) (-4 *4 (-1074)) + (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) + (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-620 (-1046 *4 *5 *2))) (-4 *4 (-1072)) - (-4 *5 (-13 (-1023) (-860 *4) (-825) (-596 (-864 *4)))) - (-4 *2 (-13 (-414 *5) (-860 *4) (-596 (-864 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-622 (-1048 *4 *5 *2))) (-4 *4 (-1074)) + (-4 *5 (-13 (-1025) (-862 *4) (-827) (-598 (-866 *4)))) + (-4 *2 (-13 (-416 *5) (-862 *4) (-598 (-866 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-620 (-1046 *5 *6 *2))) (-5 *4 (-893)) (-4 *5 (-1072)) - (-4 *6 (-13 (-1023) (-860 *5) (-825) (-596 (-864 *5)))) - (-4 *2 (-13 (-414 *6) (-860 *5) (-596 (-864 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-751)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-838)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-751)) (-5 *1 (-51))))) -(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1129)) (-5 *1 (-51))))) + (-12 (-5 *3 (-622 (-1048 *5 *6 *2))) (-5 *4 (-895)) (-4 *5 (-1074)) + (-4 *6 (-13 (-1025) (-862 *5) (-827) (-598 (-866 *5)))) + (-4 *2 (-13 (-416 *6) (-862 *5) (-598 (-866 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1076)) (-5 *3 (-753)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-840)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1076)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-51))))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1131)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) + (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3))))) (((*1 *2) - (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) + (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-413 *3))))) (((*1 *2) - (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) + (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-413 *3))))) (((*1 *2) - (-12 (-4 *3 (-543)) (-5 *2 (-620 (-667 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-411 *3))))) + (-12 (-4 *3 (-545)) (-5 *2 (-622 (-669 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-413 *3))))) (((*1 *2) - (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) + (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3))))) (((*1 *2) - (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) + (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3))))) (((*1 *2) - (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) + (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3))))) (((*1 *2) - (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) + (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3))))) (((*1 *2) - (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) + (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-620 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-622 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4))))) (((*1 *2) - (-12 (-4 *3 (-543)) (-5 *2 (-620 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-411 *3))))) + (-12 (-4 *3 (-545)) (-5 *2 (-622 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-413 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-749)) (-5 *1 (-43 *4 *3)) (-4 *3 (-411 *4))))) + (-12 (-4 *4 (-545)) (-5 *2 (-751)) (-5 *1 (-43 *4 *3)) (-4 *3 (-413 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-113)) (-5 *4 (-749)) (-4 *5 (-444)) (-4 *5 (-825)) - (-4 *5 (-1012 (-536))) (-4 *5 (-543)) (-5 *1 (-41 *5 *2)) (-4 *2 (-414 *5)) + (-12 (-5 *3 (-113)) (-5 *4 (-751)) (-4 *5 (-446)) (-4 *5 (-827)) + (-4 *5 (-1014 (-538))) (-4 *5 (-545)) (-5 *1 (-41 *5 *2)) (-4 *2 (-416 *5)) (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3326 ((-1096 *5 (-593 $)) $)) - (-15 -3325 ((-1096 *5 (-593 $)) $)) - (-15 -4312 ($ (-1096 *5 (-593 $)))))))))) + (-13 (-358) (-293) + (-10 -8 (-15 -3331 ((-1098 *5 (-595 $)) $)) + (-15 -3330 ((-1098 *5 (-595 $)) $)) + (-15 -4317 ($ (-1098 *5 (-595 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) + (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3)) (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) - (-15 -3325 ((-1096 *3 (-593 $)) $)) - (-15 -4312 ($ (-1096 *3 (-593 $)))))))))) + (-13 (-358) (-293) + (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) + (-15 -3330 ((-1098 *3 (-595 $)) $)) + (-15 -4317 ($ (-1098 *3 (-595 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) + (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3)) (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) - (-15 -3325 ((-1096 *3 (-593 $)) $)) - (-15 -4312 ($ (-1096 *3 (-593 $)))))))))) + (-13 (-358) (-293) + (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) + (-15 -3330 ((-1098 *3 (-595 $)) $)) + (-15 -4317 ($ (-1098 *3 (-595 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-444)) (-4 *3 (-825)) (-4 *3 (-1012 (-536))) (-4 *3 (-543)) - (-5 *1 (-41 *3 *2)) (-4 *2 (-414 *3)) + (-12 (-4 *3 (-446)) (-4 *3 (-827)) (-4 *3 (-1014 (-538))) (-4 *3 (-545)) + (-5 *1 (-41 *3 *2)) (-4 *2 (-416 *3)) (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) - (-15 -3325 ((-1096 *3 (-593 $)) $)) - (-15 -4312 ($ (-1096 *3 (-593 $)))))))))) + (-13 (-358) (-293) + (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) + (-15 -3330 ((-1098 *3 (-595 $)) $)) + (-15 -4317 ($ (-1098 *3 (-595 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-543)) (-5 *2 (-1141 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-545)) (-5 *2 (-1143 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 - (-13 (-356) (-291) - (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) - (-15 -3325 ((-1096 *4 (-593 $)) $)) - (-15 -4312 ($ (-1096 *4 (-593 $)))))))))) + (-13 (-358) (-293) + (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $)) + (-15 -3330 ((-1098 *4 (-595 $)) $)) + (-15 -4317 ($ (-1098 *4 (-595 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) - (-15 -3325 ((-1096 *3 (-593 $)) $)) - (-15 -4312 ($ (-1096 *3 (-593 $))))))))) + (-13 (-358) (-293) + (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) + (-15 -3330 ((-1098 *3 (-595 $)) $)) + (-15 -4317 ($ (-1098 *3 (-595 $))))))))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) - (-15 -3325 ((-1096 *3 (-593 $)) $)) - (-15 -4312 ($ (-1096 *3 (-593 $))))))))) + (-13 (-358) (-293) + (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) + (-15 -3330 ((-1098 *3 (-595 $)) $)) + (-15 -4317 ($ (-1098 *3 (-595 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-620 *2)) + (-12 (-5 *3 (-622 *2)) (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) - (-15 -3325 ((-1096 *4 (-593 $)) $)) - (-15 -4312 ($ (-1096 *4 (-593 $))))))) - (-4 *4 (-543)) (-5 *1 (-41 *4 *2)))) + (-13 (-358) (-293) + (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $)) + (-15 -3330 ((-1098 *4 (-595 $)) $)) + (-15 -4317 ($ (-1098 *4 (-595 $))))))) + (-4 *4 (-545)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-620 (-593 *2))) + (-12 (-5 *3 (-622 (-595 *2))) (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3326 ((-1096 *4 (-593 $)) $)) - (-15 -3325 ((-1096 *4 (-593 $)) $)) - (-15 -4312 ($ (-1096 *4 (-593 $))))))) - (-4 *4 (-543)) (-5 *1 (-41 *4 *2))))) + (-13 (-358) (-293) + (-10 -8 (-15 -3331 ((-1098 *4 (-595 $)) $)) + (-15 -3330 ((-1098 *4 (-595 $)) $)) + (-15 -4317 ($ (-1098 *4 (-595 $))))))) + (-4 *4 (-545)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-543)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-545)) (-5 *1 (-41 *3 *2)) (-4 *2 - (-13 (-356) (-291) - (-10 -8 (-15 -3326 ((-1096 *3 (-593 $)) $)) - (-15 -3325 ((-1096 *3 (-593 $)) $)) - (-15 -4312 ($ (-1096 *3 (-593 $)))))))))) -(((*1 *2 *3) - (-12 (-5 *3 (-749)) (-4 *4 (-356)) (-4 *5 (-1205 *4)) (-5 *2 (-1235)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1205 (-400 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1205 (-48)))))) + (-13 (-358) (-293) + (-10 -8 (-15 -3331 ((-1098 *3 (-595 $)) $)) + (-15 -3330 ((-1098 *3 (-595 $)) $)) + (-15 -4317 ($ (-1098 *3 (-595 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-751)) (-4 *4 (-358)) (-4 *5 (-1207 *4)) (-5 *2 (-1237)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1207 (-402 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1207 (-48)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1072)) (-4 *4 (-1072)) - (-5 *2 (-2 (|:| -4215 *3) (|:| -2186 *4)))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1074)) (-4 *4 (-1074)) + (-5 *2 (-2 (|:| -4220 *3) (|:| -2191 *4)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-749)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-751)) (-5 *2 (-112))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-536)) (-4 *2 (-414 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1012 *4)) - (-4 *3 (-13 (-825) (-543)))))) + (-12 (-5 *4 (-538)) (-4 *2 (-416 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1014 *4)) + (-4 *3 (-13 (-827) (-545)))))) (((*1 *2 *3) - (-12 (-5 *3 (-620 *5)) (-4 *5 (-414 *4)) (-4 *4 (-13 (-825) (-543))) - (-5 *2 (-838)) (-5 *1 (-32 *4 *5))))) + (-12 (-5 *3 (-622 *5)) (-4 *5 (-416 *4)) (-4 *4 (-13 (-827) (-545))) + (-5 *2 (-840)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1141 *2)) (-4 *2 (-414 *4)) (-4 *4 (-13 (-825) (-543))) + (-12 (-5 *3 (-1143 *2)) (-4 *2 (-416 *4)) (-4 *4 (-13 (-827) (-545))) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-920 (-536))) (-5 *3 (-1147)) (-5 *4 (-1060 (-400 (-536)))) + (-12 (-5 *2 (-922 (-538))) (-5 *3 (-1149)) (-5 *4 (-1062 (-402 (-538)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1141 *1)) (-5 *4 (-1147)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1141 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-920 *1)) (-4 *1 (-27)) (-5 *2 (-620 *1)))) + (-12 (-5 *3 (-1143 *1)) (-5 *4 (-1149)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1143 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-922 *1)) (-4 *1 (-27)) (-5 *2 (-622 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1147)) (-4 *4 (-13 (-825) (-543))) (-5 *2 (-620 *1)) + (-12 (-5 *3 (-1149)) (-4 *4 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-13 (-825) (-543))) (-5 *2 (-620 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1141 *1)) (-5 *3 (-1147)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1141 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-920 *1)) (-4 *1 (-27)))) + (-12 (-4 *3 (-13 (-827) (-545))) (-5 *2 (-622 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1143 *1)) (-5 *3 (-1149)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1143 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-922 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1147)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-825) (-543))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-825) (-543)))))) -((-1263 . 730107) (-1264 . 729680) (-1265 . 729559) (-1266 . 729444) - (-1267 . 729318) (-1268 . 729188) (-1269 . 729119) (-1270 . 729065) - (-1271 . 728930) (-1272 . 728854) (-1273 . 728698) (-1274 . 728470) - (-1275 . 727506) (-1276 . 727259) (-1277 . 726957) (-1278 . 726655) - (-1279 . 726353) (-1280 . 726015) (-1281 . 725923) (-1282 . 725831) - (-1283 . 725739) (-1284 . 725647) (-1285 . 725555) (-1286 . 725463) - (-1287 . 725368) (-1288 . 725273) (-1289 . 725181) (-1290 . 725089) - (-1291 . 724997) (-1292 . 724905) (-1293 . 724813) (-1294 . 724711) - (-1295 . 724609) (-1296 . 724507) (-1297 . 724415) (-1298 . 724348) - (-1299 . 724297) (-1300 . 724245) (-1301 . 724194) (-1302 . 724143) - (-1303 . 724073) (-1304 . 723635) (-1305 . 723433) (-1306 . 723310) - (-1307 . 723187) (-1308 . 723043) (-1309 . 722873) (-1310 . 722749) - (-1311 . 722510) (-1312 . 722437) (-1313 . 722296) (-1314 . 722245) - (-1315 . 722196) (-1316 . 722126) (-1317 . 721991) (-1318 . 721856) - (-1319 . 721628) (-1320 . 721382) (-1321 . 721202) (-1322 . 721031) - (-1323 . 720954) (-1324 . 720880) (-1325 . 720725) (-1326 . 720570) - (-1327 . 720384) (-1328 . 720201) (-1329 . 720024) (-1330 . 719967) - (-1331 . 719911) (-1332 . 719855) (-1333 . 719781) (-1334 . 719703) - (-1335 . 719647) (-1336 . 719616) (-1337 . 719547) (-1338 . 719473) - (-1339 . 719417) (-1340 . 719346) (-1341 . 719272) (-1342 . 719198) - (-1343 . 719146) (-1344 . 719094) (-1345 . 719042) (-1346 . 718980) - (-1347 . 718857) (-1348 . 718535) (-1349 . 718447) (-1350 . 718346) - (-1351 . 718225) (-1352 . 718144) (-1353 . 718063) (-1354 . 717906) - (-1355 . 717755) (-1356 . 717677) (-1357 . 717619) (-1358 . 717546) - (-1359 . 717481) (-1360 . 717416) (-1361 . 717354) (-1362 . 717281) - (-1363 . 717165) (-1364 . 717131) (-1365 . 717097) (-1366 . 717045) - (-1367 . 717001) (-1368 . 716930) (-1369 . 716878) (-1370 . 716829) - (-1371 . 716777) (-1372 . 716725) (-1373 . 716609) (-1374 . 716493) - (-1375 . 716401) (-1376 . 716309) (-1377 . 716186) (-1378 . 716133) - (-1379 . 716105) (-1380 . 716077) (-1381 . 716049) (-1382 . 716021) - (-1383 . 715911) (-1384 . 715859) (-1385 . 715807) (-1386 . 715755) - (-1387 . 715703) (-1388 . 715651) (-1389 . 715599) (-1390 . 715571) - (-1391 . 715468) (-1392 . 715416) (-1393 . 715250) (-1394 . 715066) - (-1395 . 714855) (-1396 . 714740) (-1397 . 714507) (-1398 . 714408) - (-1399 . 714314) (-1400 . 714199) (-1401 . 713801) (-1402 . 713583) - (-1403 . 713534) (-1404 . 713506) (-1405 . 713415) (-1406 . 713303) - (-1407 . 713191) (-1408 . 713079) (-1409 . 712967) (-1410 . 712855) - (-1411 . 712743) (-1412 . 712570) (-1413 . 712494) (-1414 . 712312) - (-1415 . 712254) (-1416 . 712196) (-1417 . 711858) (-1418 . 711573) - (-1419 . 711489) (-1420 . 711356) (-1421 . 711298) (-1422 . 711246) - (-1423 . 711191) (-1424 . 711139) (-1425 . 711065) (-1426 . 710991) - (-1427 . 710910) (-1428 . 710829) (-1429 . 710774) (-1430 . 710700) - (-1431 . 710626) (-1432 . 710552) (-1433 . 710475) (-1434 . 710420) - (-1435 . 710361) (-1436 . 710262) (-1437 . 710163) (-1438 . 710064) - (-1439 . 709965) (-1440 . 709866) (-1441 . 709767) (-1442 . 709668) - (-1443 . 709554) (-1444 . 709440) (-1445 . 709326) (-1446 . 709212) - (-1447 . 709098) (-1448 . 708984) (-1449 . 708867) (-1450 . 708791) - (-1451 . 708715) (-1452 . 708328) (-1453 . 707982) (-1454 . 707880) - (-1455 . 707618) (-1456 . 707516) (-1457 . 707311) (-1458 . 707198) - (-1459 . 707096) (-1460 . 706939) (-1461 . 706850) (-1462 . 706756) - (-1463 . 706676) (-1464 . 706616) (-1465 . 706563) (-1466 . 706444) - (-1467 . 706362) (-1468 . 706280) (-1469 . 706198) (-1470 . 706116) - (-1471 . 706034) (-1472 . 705940) (-1473 . 705870) (-1474 . 705800) - (-1475 . 705709) (-1476 . 705615) (-1477 . 705533) (-1478 . 705451) - (-1479 . 704960) (-1480 . 704407) (-1481 . 704197) (-1482 . 704122) - (-1483 . 703868) (-1484 . 703641) (-1485 . 703431) (-1486 . 703301) - (-1487 . 703220) (-1488 . 703071) (-1489 . 702716) (-1490 . 702424) - (-1491 . 702132) (-1492 . 701840) (-1493 . 701548) (-1494 . 701489) - (-1495 . 701382) (-1496 . 700954) (-1497 . 700794) (-1498 . 700595) - (-1499 . 700459) (-1500 . 700359) (-1501 . 700259) (-1502 . 700165) - (-1503 . 700106) (-1504 . 699764) (-1505 . 699663) (-1506 . 699544) - (-1507 . 699328) (-1508 . 699147) (-1509 . 698980) (-1510 . 698765) - (-1511 . 698326) (-1512 . 698217) (-1513 . 698102) (-1514 . 698033) - (-1515 . 697964) (-1516 . 697895) (-1517 . 697829) (-1518 . 697704) - (-1519 . 697487) (-1520 . 697409) (-1521 . 697359) (-1522 . 697288) - (-1523 . 697145) (-1524 . 697004) (-1525 . 696923) (-1526 . 696842) - (-1527 . 696786) (-1528 . 696730) (-1529 . 696657) (-1530 . 696517) - (-1531 . 696464) (-1532 . 696412) (-1533 . 696360) (-1534 . 696242) - (-1535 . 696124) (-1536 . 696006) (-1537 . 695873) (-1538 . 695592) - (-1539 . 695456) (-1540 . 695400) (-1541 . 695344) (-1542 . 695285) - (-1543 . 695226) (-1544 . 695170) (-1545 . 695114) (-1546 . 694917) - (-1547 . 692575) (-1548 . 692448) (-1549 . 692302) (-1550 . 692174) - (-1551 . 692122) (-1552 . 692070) (-1553 . 692018) (-1554 . 687979) - (-1555 . 687884) (-1556 . 687745) (-1557 . 687536) (-1558 . 687434) - (-1559 . 687332) (-1560 . 686416) (-1561 . 686339) (-1562 . 686210) - (-1563 . 686083) (-1564 . 686006) (-1565 . 685929) (-1566 . 685802) - (-1567 . 685675) (-1568 . 685509) (-1569 . 685382) (-1570 . 685255) - (-1571 . 685038) (-1572 . 684600) (-1573 . 684234) (-1574 . 684127) - (-1575 . 683908) (-1576 . 683839) (-1577 . 683780) (-1578 . 683699) - (-1579 . 683588) (-1580 . 683522) (-1581 . 683456) (-1582 . 683382) - (-1583 . 683310) (-1584 . 682933) (-1585 . 682881) (-1586 . 682822) - (-1587 . 682718) (-1588 . 682614) (-1589 . 682507) (-1590 . 682400) - (-1591 . 682293) (-1592 . 682186) (-1593 . 682079) (-1594 . 681972) - (-1595 . 681865) (-1596 . 681758) (-1597 . 681651) (-1598 . 681544) - (-1599 . 681437) (-1600 . 681330) (-1601 . 681223) (-1602 . 681116) - (-1603 . 681009) (-1604 . 680902) (-1605 . 680795) (-1606 . 680688) - (-1607 . 680581) (-1608 . 680474) (-1609 . 680367) (-1610 . 680260) - (-1611 . 680153) (-1612 . 680046) (-1613 . 679939) (-1614 . 679832) - (-1615 . 679653) (-1616 . 679531) (-1617 . 679280) (-1618 . 678977) - (-1619 . 678771) (-1620 . 678604) (-1621 . 678433) (-1622 . 678381) - (-1623 . 678318) (-1624 . 678255) (-1625 . 678203) (-1626 . 678014) - (-1627 . 677860) (-1628 . 677780) (-1629 . 677700) (-1630 . 677620) - (-1631 . 677490) (-1632 . 677258) (-1633 . 677230) (-1634 . 677202) - (-1635 . 677121) (-1636 . 677031) (-1637 . 676953) (-1638 . 676866) - (-1639 . 676806) (-1640 . 676648) (-1641 . 676455) (-1642 . 675970) - (-1643 . 675728) (-1644 . 675466) (-1645 . 675365) (-1646 . 675284) - (-1647 . 675203) (-1648 . 675133) (-1649 . 675063) (-1650 . 674904) - (-1651 . 674600) (-1652 . 674357) (-1653 . 674233) (-1654 . 674174) - (-1655 . 674112) (-1656 . 674050) (-1657 . 673985) (-1658 . 673923) - (-1659 . 673644) (-1660 . 673434) (-1661 . 673160) (-1662 . 672589) - (-1663 . 672075) (-1664 . 671930) (-1665 . 671863) (-1666 . 671782) - (-1667 . 671701) (-1668 . 671599) (-1669 . 671525) (-1670 . 671444) - (-1671 . 671370) (-1672 . 671161) (-1673 . 670948) (-1674 . 670858) - (-1675 . 670791) (-1676 . 670655) (-1677 . 670588) (-1678 . 670506) - (-1679 . 670425) (-1680 . 670323) (-1681 . 670123) (-1682 . 670055) - (-1683 . 669813) (-1684 . 669562) (-1685 . 669320) (-1686 . 669078) - (-1687 . 669010) (-1688 . 668674) (-1689 . 667673) (-1690 . 667453) - (-1691 . 667372) (-1692 . 667298) (-1693 . 667224) (-1694 . 667150) - (-1695 . 667046) (-1696 . 666973) (-1697 . 666905) (-1698 . 666695) - (-1699 . 666643) (-1700 . 666588) (-1701 . 666498) (-1702 . 666411) - (-1703 . 664560) (-1704 . 664481) (-1705 . 663736) (-1706 . 663606) - (-1707 . 663399) (-1708 . 663237) (-1709 . 663075) (-1710 . 662914) - (-1711 . 662775) (-1712 . 662681) (-1713 . 662583) (-1714 . 662489) - (-1715 . 662374) (-1716 . 662289) (-1717 . 662191) (-1718 . 661995) - (-1719 . 661904) (-1720 . 661810) (-1721 . 661743) (-1722 . 661690) - (-1723 . 661637) (-1724 . 661584) (-1725 . 660446) (-1726 . 659936) - (-1727 . 659857) (-1728 . 659798) (-1729 . 659770) (-1730 . 659742) - (-1731 . 659683) (-1732 . 659570) (-1733 . 659193) (-1734 . 659140) - (-1735 . 659029) (-1736 . 658976) (-1737 . 658923) (-1738 . 658867) - (-1739 . 658811) (-1740 . 658646) (-1741 . 658576) (-1742 . 658481) - (-1743 . 658386) (-1744 . 658291) (-1745 . 658134) (-1746 . 657977) - (-1747 . 657824) (-1748 . 657066) (-1749 . 656813) (-1750 . 656502) - (-1751 . 656150) (-1752 . 655933) (-1753 . 655670) (-1754 . 655295) - (-1755 . 655111) (-1756 . 654977) (-1757 . 654811) (-1758 . 654645) - (-1759 . 654511) (-1760 . 654377) (-1761 . 654243) (-1762 . 654109) - (-1763 . 653978) (-1764 . 653847) (-1765 . 653716) (-1766 . 653333) - (-1767 . 653206) (-1768 . 653078) (-1769 . 652826) (-1770 . 652702) - (-1771 . 652450) (-1772 . 652326) (-1773 . 652074) (-1774 . 651950) - (-1775 . 651665) (-1776 . 651392) (-1777 . 651119) (-1778 . 650821) - (-1779 . 650719) (-1780 . 650574) (-1781 . 650433) (-1782 . 650282) - (-1783 . 650121) (-1784 . 650033) (-1785 . 650005) (-1786 . 649923) - (-1787 . 649826) (-1788 . 649358) (-1789 . 649007) (-1790 . 648574) - (-1791 . 648433) (-1792 . 648363) (-1793 . 648293) (-1794 . 648223) - (-1795 . 648132) (-1796 . 648041) (-1797 . 647950) (-1798 . 647859) - (-1799 . 647768) (-1800 . 647682) (-1801 . 647596) (-1802 . 647510) - (-1803 . 647424) (-1804 . 647338) (-1805 . 647264) (-1806 . 647159) - (-1807 . 646933) (-1808 . 646855) (-1809 . 646780) (-1810 . 646687) - (-1811 . 646583) (-1812 . 646487) (-1813 . 646318) (-1814 . 646241) - (-1815 . 646164) (-1816 . 646073) (-1817 . 645982) (-1818 . 645782) - (-1819 . 645627) (-1820 . 645472) (-1821 . 645317) (-1822 . 645162) - (-1823 . 645007) (-1824 . 644852) (-1825 . 644785) (-1826 . 644630) - (-1827 . 644475) (-1828 . 644320) (-1829 . 644165) (-1830 . 644010) - (-1831 . 643855) (-1832 . 643700) (-1833 . 643545) (-1834 . 643471) - (-1835 . 643397) (-1836 . 643342) (-1837 . 643287) (-1838 . 643232) - (-1839 . 643177) (-1840 . 643106) (-1841 . 642901) (-1842 . 642800) - (-1843 . 642609) (-1844 . 642516) (-1845 . 642379) (-1846 . 642242) - (-1847 . 642105) (-1848 . 642037) (-1849 . 641921) (-1850 . 641805) - (-1851 . 641689) (-1852 . 641636) (-1853 . 641439) (-1854 . 641354) - (-1855 . 641046) (-1856 . 640991) (-1857 . 640339) (-1858 . 640024) - (-1859 . 639740) (-1860 . 639621) (-1861 . 639569) (-1862 . 639517) - (-1863 . 639465) (-1864 . 639412) (-1865 . 639359) (-1866 . 639300) - (-1867 . 639187) (-1868 . 639074) (-1869 . 639016) (-1870 . 638958) - (-1871 . 638908) (-1872 . 638773) (-1873 . 638723) (-1874 . 638660) - (-1875 . 638600) (-1876 . 638003) (-1877 . 637943) (-1878 . 637776) - (-1879 . 637684) (-1880 . 637571) (-1881 . 637487) (-1882 . 637372) - (-1883 . 637281) (-1884 . 637190) (-1885 . 637001) (-1886 . 636946) - (-1887 . 636759) (-1888 . 636636) (-1889 . 636563) (-1890 . 636490) - (-1891 . 636370) (-1892 . 636297) (-1893 . 636224) (-1894 . 636151) - (-1895 . 635931) (-1896 . 635598) (-1897 . 635414) (-1898 . 635270) - (-1899 . 634909) (-1900 . 634741) (-1901 . 634573) (-1902 . 634317) - (-1903 . 634061) (-1904 . 633866) (-1905 . 633671) (-1906 . 633077) - (-1907 . 633001) (-1908 . 632863) (-1909 . 632461) (-1910 . 632334) - (-1911 . 632175) (-1912 . 631849) (-1913 . 631360) (-1914 . 630871) - (-1915 . 630353) (-1916 . 630285) (-1917 . 630214) (-1918 . 630143) - (-1919 . 629960) (-1920 . 629841) (-1921 . 629722) (-1922 . 629631) - (-1923 . 629540) (-1924 . 629248) (-1925 . 629126) (-1926 . 629074) - (-1927 . 629022) (-1928 . 628970) (-1929 . 628918) (-1930 . 628866) - (-1931 . 628717) (-1932 . 628536) (-1933 . 628296) (-1934 . 628101) - (-1935 . 628073) (-1936 . 628045) (-1937 . 628017) (-1938 . 627989) - (-1939 . 627961) (-1940 . 627933) (-1941 . 627905) (-1942 . 627853) - (-1943 . 627763) (-1944 . 627713) (-1945 . 627644) (-1946 . 627575) - (-1947 . 627470) (-1948 . 627099) (-1949 . 626948) (-1950 . 626797) - (-1951 . 626592) (-1952 . 626470) (-1953 . 626395) (-1954 . 626317) - (-1955 . 626242) (-1956 . 626164) (-1957 . 626086) (-1958 . 626011) - (-1959 . 625933) (-1960 . 625699) (-1961 . 625544) (-1962 . 625245) - (-1963 . 625090) (-1964 . 624764) (-1965 . 624624) (-1966 . 624484) - (-1967 . 624403) (-1968 . 624322) (-1969 . 624057) (-1970 . 623324) - (-1971 . 623187) (-1972 . 623096) (-1973 . 622959) (-1974 . 622891) - (-1975 . 622822) (-1976 . 622734) (-1977 . 622646) (-1978 . 622475) - (-1979 . 622401) (-1980 . 622257) (-1981 . 621797) (-1982 . 621417) - (-1983 . 620653) (-1984 . 620509) (-1985 . 620365) (-1986 . 620203) - (-1987 . 619965) (-1988 . 619824) (-1989 . 619677) (-1990 . 619438) - (-1991 . 619202) (-1992 . 618963) (-1993 . 618771) (-1994 . 618648) - (-1995 . 618444) (-1996 . 618221) (-1997 . 617982) (-1998 . 617841) - (-1999 . 617703) (-2000 . 617564) (-2001 . 617311) (-2002 . 617055) - (-2003 . 616898) (-2004 . 616744) (-2005 . 616503) (-2006 . 616218) - (-2007 . 616080) (-2008 . 615993) (-2009 . 615327) (-2010 . 615151) - (-2011 . 614969) (-2012 . 614793) (-2013 . 614611) (-2014 . 614432) - (-2015 . 614253) (-2016 . 614066) (-2017 . 613684) (-2018 . 613505) - (-2019 . 613326) (-2020 . 613139) (-2021 . 612757) (-2022 . 611764) - (-2023 . 611380) (-2024 . 610996) (-2025 . 610878) (-2026 . 610721) - (-2027 . 610579) (-2028 . 610461) (-2029 . 610279) (-2030 . 610155) - (-2031 . 609865) (-2032 . 609575) (-2033 . 609291) (-2034 . 609007) - (-2035 . 608728) (-2036 . 608640) (-2037 . 608555) (-2038 . 608456) - (-2039 . 608357) (-2040 . 608133) (-2041 . 608033) (-2042 . 607930) - (-2043 . 607852) (-2044 . 607527) (-2045 . 607235) (-2046 . 607162) - (-2047 . 606777) (-2048 . 606749) (-2049 . 606550) (-2050 . 606376) - (-2051 . 606135) (-2052 . 606080) (-2053 . 606004) (-2054 . 605633) - (-2055 . 605517) (-2056 . 605440) (-2057 . 605367) (-2058 . 605286) - (-2059 . 605205) (-2060 . 605124) (-2061 . 605023) (-2062 . 604964) - (-2063 . 604745) (-2064 . 604506) (-2065 . 604382) (-2066 . 604258) - (-2067 . 604031) (-2068 . 603978) (-2069 . 603923) (-2070 . 603591) - (-2071 . 603267) (-2072 . 603079) (-2073 . 602888) (-2074 . 602724) - (-2075 . 602389) (-2076 . 602222) (-2077 . 601981) (-2078 . 601653) - (-2079 . 601461) (-2080 . 601244) (-2081 . 601071) (-2082 . 600649) - (-2083 . 600422) (-2084 . 600151) (-2085 . 600013) (-2086 . 599872) - (-2087 . 599394) (-2088 . 599271) (-2089 . 599035) (-2090 . 598781) - (-2091 . 598531) (-2092 . 598236) (-2093 . 598095) (-2094 . 597751) - (-2095 . 597610) (-2096 . 597417) (-2097 . 597224) (-2098 . 597049) - (-2099 . 596775) (-2100 . 596340) (-2101 . 596266) (-2102 . 596105) - (-2103 . 595942) (-2104 . 595781) (-2105 . 595614) (-2106 . 595561) - (-2107 . 595508) (-2108 . 595379) (-2109 . 595319) (-2110 . 595266) - (-2111 . 595213) (-2112 . 595142) (-2113 . 595089) (-2114 . 594947) - (-2115 . 594852) (-2116 . 594761) (-2117 . 594645) (-2118 . 594551) - (-2119 . 594453) (-2120 . 594359) (-2121 . 594218) (-2122 . 593953) - (-2123 . 593096) (-2124 . 592940) (-2125 . 592571) (-2126 . 592519) - (-2127 . 592416) (-2128 . 592331) (-2129 . 592243) (-2130 . 592097) - (-2131 . 591948) (-2132 . 591658) (-2133 . 591580) (-2134 . 591505) - (-2135 . 591452) (-2136 . 591399) (-2137 . 591368) (-2138 . 591305) - (-2139 . 591186) (-2140 . 591097) (-2141 . 590977) (-2142 . 590682) - (-2143 . 590488) (-2144 . 590300) (-2145 . 590155) (-2146 . 590010) - (-2147 . 589724) (-2148 . 589279) (-2149 . 589245) (-2150 . 589208) - (-2151 . 589171) (-2152 . 589134) (-2153 . 589097) (-2154 . 589066) - (-2155 . 589035) (-2156 . 589004) (-2157 . 588970) (-2158 . 588936) - (-2159 . 588881) (-2160 . 588692) (-2161 . 588450) (-2162 . 588208) - (-2163 . 587971) (-2164 . 587919) (-2165 . 587864) (-2166 . 587794) - (-2167 . 587705) (-2168 . 587636) (-2169 . 587564) (-2170 . 587334) - (-2171 . 587282) (-2172 . 587227) (-2173 . 587196) (-2174 . 587090) - (-2175 . 586857) (-2176 . 586539) (-2177 . 586357) (-2178 . 586164) - (-2179 . 585885) (-2180 . 585812) (-2181 . 585747) (-2182 . 585719) - (-2183 . 585669) (-2184 . 584246) (-2185 . 583098) (-2186 . 581960) - (-2187 . 581468) (-2188 . 580890) (-2189 . 580148) (-2190 . 579571) - (-2191 . 578927) (-2192 . 578348) (-2193 . 578274) (-2194 . 578222) - (-2195 . 578170) (-2196 . 578096) (-2197 . 578041) (-2198 . 577989) - (-2199 . 577937) (-2200 . 577885) (-2201 . 577815) (-2202 . 577367) - (-2203 . 577153) (-2204 . 576896) (-2205 . 576554) (-2206 . 576292) - (-2207 . 575982) (-2208 . 575771) (-2209 . 575471) (-2210 . 574901) - (-2211 . 574763) (-2212 . 574560) (-2213 . 574279) (-2214 . 574193) - (-2215 . 573848) (-2216 . 573706) (-2217 . 573414) (-2218 . 573193) - (-2219 . 573068) (-2220 . 572944) (-2221 . 572798) (-2222 . 572655) - (-2223 . 572540) (-2224 . 572410) (-2225 . 572038) (-2226 . 571778) - (-2227 . 571503) (-2228 . 571263) (-2229 . 570933) (-2230 . 570588) - (-2231 . 570180) (-2232 . 569757) (-2233 . 569560) (-2234 . 569285) - (-2235 . 569117) (-2236 . 568916) (-2237 . 568694) (-2238 . 568539) - (-2239 . 568346) (-2240 . 568318) (-2241 . 568139) (-2242 . 568070) - (-2243 . 568000) (-2244 . 567881) (-2245 . 567703) (-2246 . 567648) - (-2247 . 567402) (-2248 . 567312) (-2249 . 567122) (-2250 . 567049) - (-2251 . 566979) (-2252 . 566914) (-2253 . 566859) (-2254 . 566768) - (-2255 . 566461) (-2256 . 566116) (-2257 . 566042) (-2258 . 565720) - (-2259 . 565513) (-2260 . 565427) (-2261 . 565341) (-2262 . 565255) - (-2263 . 565169) (-2264 . 565083) (-2265 . 564997) (-2266 . 564911) - (-2267 . 564825) (-2268 . 564739) (-2269 . 564653) (-2270 . 564567) - (-2271 . 564481) (-2272 . 564395) (-2273 . 564309) (-2274 . 564223) - (-2275 . 564137) (-2276 . 564051) (-2277 . 563965) (-2278 . 563879) - (-2279 . 563793) (-2280 . 563707) (-2281 . 563621) (-2282 . 563535) - (-2283 . 563449) (-2284 . 563363) (-2285 . 563277) (-2286 . 563174) - (-2287 . 563085) (-2288 . 562875) (-2289 . 562816) (-2290 . 562760) - (-2291 . 562671) (-2292 . 562559) (-2293 . 562471) (-2294 . 562323) - (-2295 . 562138) (-2296 . 561974) (-2297 . 561807) (-2298 . 561622) - (-2299 . 561401) (-2300 . 561277) (-2301 . 561069) (-2302 . 560977) - (-2303 . 560885) (-2304 . 560749) (-2305 . 560654) (-2306 . 560559) - (-2307 . 559043) (-2308 . 558983) (-2309 . 558893) (-2310 . 558798) - (-2311 . 558717) (-2312 . 558410) (-2313 . 558215) (-2314 . 558122) - (-2315 . 558016) (-2316 . 557598) (-2317 . 557545) (-2318 . 557517) - (-2319 . 557464) (-2320 . 557289) (-2321 . 557212) (-2322 . 557023) - (-2323 . 556843) (-2324 . 556419) (-2325 . 556267) (-2326 . 556087) - (-2327 . 555914) (-2328 . 555652) (-2329 . 555400) (-2330 . 554589) - (-2331 . 554420) (-2332 . 554201) (-2333 . 553297) (-2334 . 553153) - (-2335 . 553009) (-2336 . 552865) (-2337 . 552721) (-2338 . 552577) - (-2339 . 552433) (-2340 . 552238) (-2341 . 552044) (-2342 . 551901) - (-2343 . 551586) (-2344 . 551471) (-2345 . 551131) (-2346 . 550971) - (-2347 . 550832) (-2348 . 550693) (-2349 . 550564) (-2350 . 550479) - (-2351 . 550427) (-2352 . 549939) (-2353 . 548661) (-2354 . 548546) - (-2355 . 548417) (-2356 . 548110) (-2357 . 547859) (-2358 . 547784) - (-2359 . 547709) (-2360 . 547634) (-2361 . 547575) (-2362 . 547504) - (-2363 . 547451) (-2364 . 547389) (-2365 . 547318) (-2366 . 546955) - (-2367 . 546668) (-2368 . 546557) (-2369 . 546464) (-2370 . 546371) - (-2371 . 546284) (-2372 . 546064) (-2373 . 545844) (-2374 . 545701) - (-2375 . 545608) (-2376 . 545465) (-2377 . 545313) (-2378 . 545159) - (-2379 . 545088) (-2380 . 544879) (-2381 . 544701) (-2382 . 544491) - (-2383 . 544313) (-2384 . 544195) (-2385 . 543880) (-2386 . 543602) - (-2387 . 543481) (-2388 . 543354) (-2389 . 543269) (-2390 . 543196) - (-2391 . 543106) (-2392 . 543035) (-2393 . 542979) (-2394 . 542923) - (-2395 . 542867) (-2396 . 542796) (-2397 . 542725) (-2398 . 542654) - (-2399 . 542575) (-2400 . 542497) (-2401 . 542412) (-2402 . 542152) - (-2403 . 542063) (-2404 . 541765) (-2405 . 541667) (-2406 . 541589) - (-2407 . 541511) (-2408 . 541368) (-2409 . 541289) (-2410 . 541217) - (-2411 . 541014) (-2412 . 540958) (-2413 . 540770) (-2414 . 540671) - (-2415 . 540553) (-2416 . 540432) (-2417 . 540289) (-2418 . 540146) - (-2419 . 540006) (-2420 . 539866) (-2421 . 539723) (-2422 . 539596) - (-2423 . 539466) (-2424 . 539342) (-2425 . 539218) (-2426 . 539112) - (-2427 . 539006) (-2428 . 538903) (-2429 . 538753) (-2430 . 538600) - (-2431 . 538447) (-2432 . 538303) (-2433 . 538149) (-2434 . 538072) - (-2435 . 537992) (-2436 . 537837) (-2437 . 537757) (-2438 . 537677) - (-2439 . 537597) (-2440 . 537494) (-2441 . 537435) (-2442 . 537260) - (-2443 . 537107) (-2444 . 536954) (-2445 . 536780) (-2446 . 536588) - (-2447 . 536289) (-2448 . 536094) (-2449 . 535979) (-2450 . 535853) - (-2451 . 535776) (-2452 . 535644) (-2453 . 535338) (-2454 . 535155) - (-2455 . 534610) (-2456 . 534390) (-2457 . 534216) (-2458 . 534046) - (-2459 . 533947) (-2460 . 533848) (-2461 . 533630) (-2462 . 533528) - (-2463 . 533455) (-2464 . 533379) (-2465 . 533300) (-2466 . 533003) - (-2467 . 532904) (-2468 . 532742) (-2469 . 532508) (-2470 . 532066) - (-2471 . 531936) (-2472 . 531796) (-2473 . 531487) (-2474 . 531185) - (-2475 . 530869) (-2476 . 530463) (-2477 . 530395) (-2478 . 530327) - (-2479 . 530259) (-2480 . 530164) (-2481 . 530056) (-2482 . 529948) - (-2483 . 529846) (-2484 . 529744) (-2485 . 529642) (-2486 . 529564) - (-2487 . 529240) (-2488 . 528759) (-2489 . 528132) (-2490 . 528068) - (-2491 . 527949) (-2492 . 527830) (-2493 . 527722) (-2494 . 527614) - (-2495 . 527458) (-2496 . 526856) (-2497 . 526618) (-2498 . 526450) - (-2499 . 526328) (-2500 . 525930) (-2501 . 525694) (-2502 . 525493) - (-2503 . 525285) (-2504 . 525092) (-2505 . 524822) (-2506 . 524649) - (-2507 . 524470) (-2508 . 524401) (-2509 . 524325) (-2510 . 524184) - (-2511 . 523981) (-2512 . 523837) (-2513 . 523587) (-2514 . 523279) - (-2515 . 522923) (-2516 . 522764) (-2517 . 522558) (-2518 . 522398) - (-2519 . 522325) (-2520 . 522206) (-2521 . 522087) (-2522 . 521927) - (-2523 . 521747) (-2524 . 521564) (-2525 . 521466) (-2526 . 521368) - (-2527 . 521267) (-2528 . 521163) (-2529 . 521037) (-2530 . 520911) - (-2531 . 520782) (-2532 . 520650) (-2533 . 520552) (-2534 . 520454) - (-2535 . 520353) (-2536 . 520252) (-2537 . 520086) (-2538 . 519920) - (-2539 . 519726) (-2540 . 519560) (-2541 . 519392) (-2542 . 519221) - (-2543 . 519056) (-2544 . 518891) (-2545 . 518791) (-2546 . 518599) - (-2547 . 518498) (-2548 . 518303) (-2549 . 518053) (-2550 . 517808) - (-2551 . 517486) (-2552 . 517098) (-2553 . 516897) (-2554 . 516633) - (-2555 . 516090) (-2556 . 515796) (-2557 . 515659) (-2558 . 515413) - (-2559 . 515209) (-2560 . 515102) (-2561 . 515001) (-2562 . 514891) - (-2563 . 514781) (-2564 . 514653) (-2565 . 514546) (-2566 . 514442) - (-2567 . 514286) (-2568 . 514152) (-2569 . 514018) (-2570 . 513908) - (-2571 . 513789) (-2572 . 513612) (-2573 . 513478) (-2574 . 513341) - (-2575 . 513210) (-2576 . 513100) (-2577 . 512978) (-2578 . 512853) - (-2579 . 512752) (-2580 . 512568) (-2581 . 512394) (-2582 . 512195) - (-2583 . 512021) (-2584 . 511905) (-2585 . 511780) (-2586 . 511652) - (-2587 . 511533) (-2588 . 511308) (-2589 . 511137) (-2590 . 510966) - (-2591 . 510789) (-2592 . 510637) (-2593 . 510360) (-2594 . 509968) - (-2595 . 509837) (-2596 . 509632) (-2597 . 509449) (-2598 . 509265) - (-2599 . 509136) (-2600 . 509032) (-2601 . 508891) (-2602 . 508759) - (-2603 . 508645) (-2604 . 508497) (-2605 . 508358) (-2606 . 508257) - (-2607 . 508153) (-2608 . 508046) (-2609 . 507936) (-2610 . 507835) - (-2611 . 507728) (-2612 . 507621) (-2613 . 507508) (-2614 . 507401) - (-2615 . 507288) (-2616 . 507157) (-2617 . 507008) (-2618 . 506470) - (-2619 . 506327) (-2620 . 506177) (-2621 . 506054) (-2622 . 505950) - (-2623 . 505846) (-2624 . 505739) (-2625 . 505601) (-2626 . 505494) - (-2627 . 505363) (-2628 . 505207) (-2629 . 504934) (-2630 . 504787) - (-2631 . 504584) (-2632 . 504483) (-2633 . 504329) (-2634 . 504209) - (-2635 . 504080) (-2636 . 503985) (-2637 . 503897) (-2638 . 503809) - (-2639 . 503721) (-2640 . 503633) (-2641 . 503545) (-2642 . 503451) - (-2643 . 503363) (-2644 . 503275) (-2645 . 503187) (-2646 . 503099) - (-2647 . 503011) (-2648 . 502923) (-2649 . 502835) (-2650 . 502747) - (-2651 . 502659) (-2652 . 502571) (-2653 . 502433) (-2654 . 502295) - (-2655 . 502175) (-2656 . 502055) (-2657 . 501914) (-2658 . 501826) - (-2659 . 501738) (-2660 . 501650) (-2661 . 501562) (-2662 . 501424) - (-2663 . 501286) (-2664 . 501198) (-2665 . 501110) (-2666 . 501022) - (-2667 . 500934) (-2668 . 500846) (-2669 . 500758) (-2670 . 500667) - (-2671 . 500573) (-2672 . 500479) (-2673 . 500382) (-2674 . 500332) - (-2675 . 500282) (-2676 . 500229) (-2677 . 499975) (-2678 . 499926) - (-2679 . 499876) (-2680 . 499842) (-2681 . 499777) (-2682 . 499740) - (-2683 . 499603) (-2684 . 499365) (-2685 . 499116) (-2686 . 498958) - (-2687 . 498417) (-2688 . 498218) (-2689 . 498003) (-2690 . 497841) - (-2691 . 497442) (-2692 . 497275) (-2693 . 496200) (-2694 . 496077) - (-2695 . 495860) (-2696 . 495729) (-2697 . 495598) (-2698 . 495440) - (-2699 . 495336) (-2700 . 495277) (-2701 . 495218) (-2702 . 495112) - (-2703 . 495006) (-2704 . 494088) (-2705 . 491959) (-2706 . 491143) - (-2707 . 489338) (-2708 . 489270) (-2709 . 489202) (-2710 . 489134) - (-2711 . 489066) (-2712 . 488998) (-2713 . 488920) (-2714 . 488518) - (-2715 . 488162) (-2716 . 487980) (-2717 . 487451) (-2718 . 487275) - (-2719 . 487053) (-2720 . 486831) (-2721 . 486609) (-2722 . 486390) - (-2723 . 486171) (-2724 . 485952) (-2725 . 485733) (-2726 . 485514) - (-2727 . 485295) (-2728 . 485194) (-2729 . 484461) (-2730 . 484406) - (-2731 . 484351) (-2732 . 484296) (-2733 . 484241) (-2734 . 484091) - (-2735 . 483798) (-2736 . 483539) (-2737 . 483511) (-2738 . 483461) - (-2739 . 482869) (-2740 . 482335) (-2741 . 481886) (-2742 . 481714) - (-2743 . 481523) (-2744 . 481234) (-2745 . 480846) (-2746 . 479970) - (-2747 . 479628) (-2748 . 479459) (-2749 . 479236) (-2750 . 478985) - (-2751 . 478635) (-2752 . 477617) (-2753 . 477302) (-2754 . 477090) - (-2755 . 476523) (-2756 . 476007) (-2757 . 474229) (-2758 . 473757) - (-2759 . 473158) (-2760 . 472908) (-2761 . 472774) (-2762 . 472322) - (-2763 . 471833) (-2764 . 471473) (-2765 . 471190) (-2766 . 471075) - (-2767 . 470960) (-2768 . 470745) (-2769 . 470692) (-2770 . 470639) - (-2771 . 470587) (-2772 . 470535) (-2773 . 470443) (-2774 . 470372) - (-2775 . 470298) (-2776 . 470227) (-2777 . 470174) (-2778 . 470103) - (-2779 . 470050) (-2780 . 469997) (-2781 . 469944) (-2782 . 469891) - (-2783 . 469838) (-2784 . 469785) (-2785 . 469732) (-2786 . 469679) - (-2787 . 469626) (-2788 . 469573) (-2789 . 469520) (-2790 . 469467) - (-2791 . 469414) (-2792 . 469361) (-2793 . 469290) (-2794 . 469219) - (-2795 . 469147) (-2796 . 469075) (-2797 . 469000) (-2798 . 468947) - (-2799 . 468894) (-2800 . 468841) (-2801 . 468788) (-2802 . 468735) - (-2803 . 468682) (-2804 . 468629) (-2805 . 468576) (-2806 . 468523) - (-2807 . 468470) (-2808 . 468417) (-2809 . 468364) (-2810 . 468311) - (-2811 . 468258) (-2812 . 468206) (-2813 . 468154) (-2814 . 468101) - (-2815 . 468048) (-2816 . 467957) (-2817 . 467904) (-2818 . 467876) - (-2819 . 467848) (-2820 . 467820) (-2821 . 467792) (-2822 . 467714) - (-2823 . 467654) (-2824 . 467602) (-2825 . 467550) (-2826 . 467498) - (-2827 . 467446) (-2828 . 467394) (-2829 . 466590) (-2830 . 466513) - (-2831 . 466436) (-2832 . 466370) (-2833 . 466303) (-2834 . 466236) - (-2835 . 466179) (-2836 . 466103) (-2837 . 466035) (-2838 . 465964) - (-2839 . 465893) (-2840 . 465827) (-2841 . 465740) (-2842 . 465668) - (-2843 . 465561) (-2844 . 465375) (-2845 . 465206) (-2846 . 465026) - (-2847 . 464435) (-2848 . 464272) (-2849 . 463694) (-2850 . 463619) - (-2851 . 463253) (-2852 . 462574) (-2853 . 462396) (-2854 . 462324) - (-2855 . 462184) (-2856 . 461994) (-2857 . 461887) (-2858 . 461780) - (-2859 . 461664) (-2860 . 461548) (-2861 . 461432) (-2862 . 461281) - (-2863 . 461137) (-2864 . 461063) (-2865 . 460977) (-2866 . 460903) - (-2867 . 460829) (-2868 . 460755) (-2869 . 460611) (-2870 . 460460) - (-2871 . 460285) (-2872 . 460134) (-2873 . 459983) (-2874 . 459856) - (-2875 . 459467) (-2876 . 459181) (-2877 . 458895) (-2878 . 458484) - (-2879 . 458198) (-2880 . 458125) (-2881 . 457978) (-2882 . 457872) - (-2883 . 457798) (-2884 . 457727) (-2885 . 457656) (-2886 . 457554) - (-2887 . 457451) (-2888 . 457354) (-2889 . 457257) (-2890 . 457097) - (-2891 . 457010) (-2892 . 456923) (-2893 . 456836) (-2894 . 456777) - (-2895 . 456718) (-2896 . 456585) (-2897 . 456526) (-2898 . 456356) - (-2899 . 456268) (-2900 . 456171) (-2901 . 456137) (-2902 . 456106) - (-2903 . 456022) (-2904 . 455966) (-2905 . 455904) (-2906 . 455870) - (-2907 . 455836) (-2908 . 455802) (-2909 . 455768) (-2910 . 455734) - (-2911 . 452981) (-2912 . 452947) (-2913 . 452913) (-2914 . 452879) - (-2915 . 452767) (-2916 . 452733) (-2917 . 452681) (-2918 . 452647) - (-2919 . 452550) (-2920 . 452488) (-2921 . 452397) (-2922 . 452306) - (-2923 . 452251) (-2924 . 452199) (-2925 . 452147) (-2926 . 452095) - (-2927 . 452043) (-2928 . 451619) (-2929 . 451453) (-2930 . 451400) - (-2931 . 451331) (-2932 . 451278) (-2933 . 451122) (-2934 . 450601) - (-2935 . 450460) (-2936 . 450426) (-2937 . 450371) (-2938 . 449660) - (-2939 . 449345) (-2940 . 448840) (-2941 . 448762) (-2942 . 448710) - (-2943 . 448658) (-2944 . 448474) (-2945 . 448422) (-2946 . 448370) - (-2947 . 448294) (-2948 . 448232) (-2949 . 448014) (-2950 . 447759) - (-2951 . 447692) (-2952 . 447598) (-2953 . 447504) (-2954 . 447321) - (-2955 . 447239) (-2956 . 447117) (-2957 . 446995) (-2958 . 446849) - (-2959 . 446194) (-2960 . 445487) (-2961 . 445383) (-2962 . 445282) - (-2963 . 445181) (-2964 . 445070) (-2965 . 444902) (-2966 . 444696) - (-2967 . 444603) (-2968 . 444526) (-2969 . 444470) (-2970 . 444399) - (-2971 . 444279) (-2972 . 444178) (-2973 . 444080) (-2974 . 444000) - (-2975 . 443920) (-2976 . 443843) (-2977 . 443772) (-2978 . 443701) - (-2979 . 443630) (-2980 . 443559) (-2981 . 443488) (-2982 . 443417) - (-2983 . 443324) (-2984 . 443129) (-2985 . 442885) (-2986 . 442715) - (-2987 . 442343) (-2988 . 442174) (-2989 . 442058) (-2990 . 441554) - (-2991 . 441172) (-2992 . 440926) (-2993 . 440497) (-2994 . 440405) - (-2995 . 440308) (-2996 . 437018) (-2997 . 436198) (-2998 . 436085) - (-2999 . 436011) (-3000 . 435919) (-3001 . 435725) (-3002 . 435531) - (-3003 . 435460) (-3004 . 435389) (-3005 . 435308) (-3006 . 435227) - (-3007 . 435102) (-3008 . 434968) (-3009 . 434887) (-3010 . 434813) - (-3011 . 434648) (-3012 . 434489) (-3013 . 434258) (-3014 . 434110) - (-3015 . 434006) (-3016 . 433902) (-3017 . 433817) (-3018 . 433449) - (-3019 . 433368) (-3020 . 433281) (-3021 . 433200) (-3022 . 432954) - (-3023 . 432734) (-3024 . 432547) (-3025 . 432225) (-3026 . 431932) - (-3027 . 431639) (-3028 . 431329) (-3029 . 431012) (-3030 . 430883) - (-3031 . 430695) (-3032 . 430222) (-3033 . 430140) (-3034 . 429925) - (-3035 . 429710) (-3036 . 429451) (-3037 . 429020) (-3038 . 428499) - (-3039 . 428369) (-3040 . 428095) (-3041 . 427916) (-3042 . 427801) - (-3043 . 427697) (-3044 . 427642) (-3045 . 427565) (-3046 . 427495) - (-3047 . 427422) (-3048 . 427367) (-3049 . 427294) (-3050 . 427239) - (-3051 . 426884) (-3052 . 426476) (-3053 . 426323) (-3054 . 426170) - (-3055 . 426089) (-3056 . 425936) (-3057 . 425783) (-3058 . 425648) - (-3059 . 425513) (-3060 . 425378) (-3061 . 425243) (-3062 . 425108) - (-3063 . 424973) (-3064 . 424917) (-3065 . 424764) (-3066 . 424653) - (-3067 . 424542) (-3068 . 424474) (-3069 . 424364) (-3070 . 424261) - (-3071 . 420110) (-3072 . 419662) (-3073 . 419235) (-3074 . 418618) - (-3075 . 418017) (-3076 . 417799) (-3077 . 417621) (-3078 . 417361) - (-3079 . 416950) (-3080 . 416656) (-3081 . 416213) (-3082 . 416035) - (-3083 . 415642) (-3084 . 415249) (-3085 . 415064) (-3086 . 414857) - (-3087 . 414636) (-3088 . 414330) (-3089 . 414131) (-3090 . 413502) - (-3091 . 413345) (-3092 . 412954) (-3093 . 412902) (-3094 . 412853) - (-3095 . 412801) (-3096 . 412752) (-3097 . 412700) (-3098 . 412554) - (-3099 . 412502) (-3100 . 412356) (-3101 . 412304) (-3102 . 412158) - (-3103 . 412106) (-3104 . 411731) (-3105 . 411679) (-3106 . 411630) - (-3107 . 411578) (-3108 . 411529) (-3109 . 411477) (-3110 . 411428) - (-3111 . 411376) (-3112 . 411327) (-3113 . 411275) (-3114 . 411226) - (-3115 . 411160) (-3116 . 411042) (-3117 . 409880) (-3118 . 409463) - (-3119 . 409355) (-3120 . 409110) (-3121 . 408961) (-3122 . 408812) - (-3123 . 408645) (-3124 . 406394) (-3125 . 406117) (-3126 . 405963) - (-3127 . 405817) (-3128 . 405671) (-3129 . 405452) (-3130 . 405320) - (-3131 . 405245) (-3132 . 405170) (-3133 . 405035) (-3134 . 404905) - (-3135 . 404775) (-3136 . 404648) (-3137 . 404521) (-3138 . 404394) - (-3139 . 404267) (-3140 . 404164) (-3141 . 404064) (-3142 . 403970) - (-3143 . 403840) (-3144 . 403689) (-3145 . 403310) (-3146 . 403195) - (-3147 . 402952) (-3148 . 402489) (-3149 . 402176) (-3150 . 401608) - (-3151 . 401038) (-3152 . 400026) (-3153 . 399483) (-3154 . 399170) - (-3155 . 398832) (-3156 . 398501) (-3157 . 398181) (-3158 . 398128) - (-3159 . 398001) (-3160 . 397472) (-3161 . 396315) (-3162 . 396260) - (-3163 . 396205) (-3164 . 396129) (-3165 . 396010) (-3166 . 395935) - (-3167 . 395860) (-3168 . 395782) (-3169 . 395631) (-3170 . 395539) - (-3171 . 395469) (-3172 . 395377) (-3173 . 395307) (-3174 . 395215) - (-3175 . 395145) (-3176 . 395053) (-3177 . 394983) (-3178 . 394928) - (-3179 . 394858) (-3180 . 394738) (-3181 . 394683) (-3182 . 394613) - (-3183 . 394579) (-3184 . 394545) (-3185 . 394448) (-3186 . 394351) - (-3187 . 394133) (-3188 . 393983) (-3189 . 393853) (-3190 . 393723) - (-3191 . 393623) (-3192 . 393446) (-3193 . 393286) (-3194 . 393186) - (-3195 . 393009) (-3196 . 392849) (-3197 . 392690) (-3198 . 392551) - (-3199 . 392401) (-3200 . 392271) (-3201 . 392141) (-3202 . 391994) - (-3203 . 391867) (-3204 . 391764) (-3205 . 391657) (-3206 . 391560) - (-3207 . 391395) (-3208 . 391247) (-3209 . 390818) (-3210 . 390718) - (-3211 . 390615) (-3212 . 390527) (-3213 . 390447) (-3214 . 390297) - (-3215 . 390167) (-3216 . 390115) (-3217 . 390025) (-3218 . 389913) - (-3219 . 389600) (-3220 . 389419) (-3221 . 387808) (-3222 . 387175) - (-3223 . 387115) (-3224 . 386997) (-3225 . 386879) (-3226 . 386735) - (-3227 . 386580) (-3228 . 386419) (-3229 . 386258) (-3230 . 386050) - (-3231 . 385861) (-3232 . 385706) (-3233 . 385548) (-3234 . 385390) - (-3235 . 385235) (-3236 . 385095) (-3237 . 384669) (-3238 . 384541) - (-3239 . 384413) (-3240 . 384285) (-3241 . 384142) (-3242 . 383999) - (-3243 . 383857) (-3244 . 383712) (-3245 . 382959) (-3246 . 382799) - (-3247 . 382611) (-3248 . 382454) (-3249 . 382214) (-3250 . 381967) - (-3251 . 381720) (-3252 . 381509) (-3253 . 381370) (-3254 . 381159) - (-3255 . 380869) (-3256 . 380658) (-3257 . 380519) (-3258 . 380308) - (-3259 . 380002) (-3260 . 379857) (-3261 . 379715) (-3262 . 379491) - (-3263 . 379349) (-3264 . 379124) (-3265 . 378925) (-3266 . 378768) - (-3267 . 378438) (-3268 . 378278) (-3269 . 378118) (-3270 . 377958) - (-3271 . 377786) (-3272 . 377614) (-3273 . 377439) (-3274 . 377087) - (-3275 . 376893) (-3276 . 376731) (-3277 . 376657) (-3278 . 376583) - (-3279 . 376509) (-3280 . 376435) (-3281 . 376361) (-3282 . 376287) - (-3283 . 376163) (-3284 . 375989) (-3285 . 375865) (-3286 . 375779) - (-3287 . 375713) (-3288 . 375647) (-3289 . 375581) (-3290 . 375515) - (-3291 . 375449) (-3292 . 375383) (-3293 . 375317) (-3294 . 375251) - (-3295 . 375185) (-3296 . 375119) (-3297 . 375053) (-3298 . 374987) - (-3299 . 374921) (-3300 . 374855) (-3301 . 374789) (-3302 . 374723) - (-3303 . 374657) (-3304 . 374591) (-3305 . 374525) (-3306 . 374459) - (-3307 . 374393) (-3308 . 374327) (-3309 . 374261) (-3310 . 374195) - (-3311 . 374129) (-3312 . 374063) (-3313 . 373414) (-3314 . 372765) - (-3315 . 372637) (-3316 . 372514) (-3317 . 372391) (-3318 . 372250) - (-3319 . 372095) (-3320 . 371951) (-3321 . 371776) (-3322 . 371138) - (-3323 . 371015) (-3324 . 370891) (-3325 . 370213) (-3326 . 369515) - (-3327 . 369414) (-3328 . 369358) (-3329 . 369302) (-3330 . 369246) - (-3331 . 369190) (-3332 . 369131) (-3333 . 369067) (-3334 . 368959) - (-3335 . 368851) (-3336 . 368743) (-3337 . 368464) (-3338 . 368390) - (-3339 . 368164) (-3340 . 368083) (-3341 . 368005) (-3342 . 367927) - (-3343 . 367849) (-3344 . 367770) (-3345 . 367692) (-3346 . 367599) - (-3347 . 367500) (-3348 . 367432) (-3349 . 367383) (-3350 . 366691) - (-3351 . 366042) (-3352 . 365250) (-3353 . 365169) (-3354 . 365065) - (-3355 . 364973) (-3356 . 364881) (-3357 . 364807) (-3358 . 364733) - (-3359 . 364659) (-3360 . 364604) (-3361 . 364549) (-3362 . 364483) - (-3363 . 364417) (-3364 . 364355) (-3365 . 363968) (-3366 . 363467) - (-3367 . 363001) (-3368 . 362747) (-3369 . 362557) (-3370 . 362214) - (-3371 . 361917) (-3372 . 361748) (-3373 . 361617) (-3374 . 361477) - (-3375 . 360393) (-3376 . 360238) (-3377 . 360069) (-3378 . 358683) - (-3379 . 358549) (-3380 . 358407) (-3381 . 358178) (-3382 . 357908) - (-3383 . 357848) (-3384 . 357791) (-3385 . 357734) (-3386 . 357521) - (-3387 . 357381) (-3388 . 357273) (-3389 . 357155) (-3390 . 357088) - (-3391 . 357014) (-3392 . 356899) (-3393 . 356642) (-3394 . 356540) - (-3395 . 356342) (-3396 . 356026) (-3397 . 355552) (-3398 . 355445) - (-3399 . 355337) (-3400 . 355186) (-3401 . 355044) (-3402 . 354625) - (-3403 . 354375) (-3404 . 353698) (-3405 . 353543) (-3406 . 353428) - (-3407 . 353317) (-3408 . 352487) (-3409 . 352434) (-3410 . 352381) - (-3411 . 352185) (-3412 . 350830) (-3413 . 350379) (-3414 . 348977) - (-3415 . 348114) (-3416 . 348064) (-3417 . 348014) (-3418 . 347964) - (-3419 . 347896) (-3420 . 347820) (-3421 . 347616) (-3422 . 347543) - (-3423 . 347467) (-3424 . 347394) (-3425 . 347276) (-3426 . 347224) - (-3427 . 347144) (-3428 . 347064) (-3429 . 346984) (-3430 . 346932) - (-3431 . 346686) (-3432 . 346368) (-3433 . 346283) (-3434 . 346198) - (-3435 . 346136) (-3436 . 345746) (-3437 . 344871) (-3438 . 344295) - (-3439 . 343057) (-3440 . 342247) (-3441 . 341995) (-3442 . 341743) - (-3443 . 341409) (-3444 . 341163) (-3445 . 340917) (-3446 . 340671) - (-3447 . 340425) (-3448 . 340179) (-3449 . 339933) (-3450 . 339686) - (-3451 . 339439) (-3452 . 339192) (-3453 . 338945) (-3454 . 338515) - (-3455 . 338397) (-3456 . 337553) (-3457 . 337521) (-3458 . 337174) - (-3459 . 336947) (-3460 . 336847) (-3461 . 336747) (-3462 . 334977) - (-3463 . 334863) (-3464 . 333812) (-3465 . 333719) (-3466 . 332728) - (-3467 . 332393) (-3468 . 332058) (-3469 . 331953) (-3470 . 331866) - (-3471 . 331837) (-3472 . 331780) (-3473 . 331700) (-3474 . 331628) - (-3475 . 331553) (-3476 . 331478) (-3477 . 331446) (-3478 . 331414) - (-3479 . 331382) (-3480 . 331350) (-3481 . 331318) (-3482 . 331286) - (-3483 . 331254) (-3484 . 331222) (-3485 . 331193) (-3486 . 331080) - (-3487 . 330967) (-3488 . 330854) (-3489 . 330741) (-3490 . 329652) - (-3491 . 329530) (-3492 . 329393) (-3493 . 329259) (-3494 . 329125) - (-3495 . 328828) (-3496 . 328531) (-3497 . 328183) (-3498 . 327953) - (-3499 . 327723) (-3500 . 327610) (-3501 . 327497) (-3502 . 322216) - (-3503 . 317843) (-3504 . 317531) (-3505 . 317376) (-3506 . 316848) - (-3507 . 316515) (-3508 . 316318) (-3509 . 316121) (-3510 . 315924) - (-3511 . 315727) (-3512 . 315611) (-3513 . 315485) (-3514 . 315369) - (-3515 . 315253) (-3516 . 315158) (-3517 . 315063) (-3518 . 314950) - (-3519 . 314744) (-3520 . 313587) (-3521 . 313492) (-3522 . 313376) - (-3523 . 313281) (-3524 . 313032) (-3525 . 312919) (-3526 . 312701) - (-3527 . 312582) (-3528 . 312283) (-3529 . 311513) (-3530 . 310936) - (-3531 . 310442) (-3532 . 310194) (-3533 . 309946) (-3534 . 309647) - (-3535 . 309033) (-3536 . 308585) (-3537 . 308428) (-3538 . 308282) - (-3539 . 307956) (-3540 . 307798) (-3541 . 307655) (-3542 . 307512) - (-3543 . 307369) (-3544 . 307088) (-3545 . 306866) (-3546 . 306339) - (-3547 . 306124) (-3548 . 305909) (-3549 . 305521) (-3550 . 305341) - (-3551 . 305129) (-3552 . 304819) (-3553 . 304618) (-3554 . 304436) - (-3555 . 303282) (-3556 . 302893) (-3557 . 302683) (-3558 . 302470) - (-3559 . 301627) (-3560 . 301598) (-3561 . 301529) (-3562 . 301458) - (-3563 . 301291) (-3564 . 301262) (-3565 . 301233) (-3566 . 301177) - (-3567 . 301016) (-3568 . 300956) (-3569 . 300260) (-3570 . 299082) - (-3571 . 299021) (-3572 . 298797) (-3573 . 298725) (-3574 . 298668) - (-3575 . 298611) (-3576 . 298554) (-3577 . 298497) (-3578 . 298422) - (-3579 . 297831) (-3580 . 297472) (-3581 . 297397) (-3582 . 297337) - (-3583 . 297219) (-3584 . 296268) (-3585 . 296141) (-3586 . 295928) - (-3587 . 295853) (-3588 . 295799) (-3589 . 295680) (-3590 . 295571) - (-3591 . 295258) (-3592 . 295150) (-3593 . 295047) (-3594 . 294886) - (-3595 . 294785) (-3596 . 294687) (-3597 . 294549) (-3598 . 294411) - (-3599 . 294273) (-3600 . 294011) (-3601 . 293801) (-3602 . 293663) - (-3603 . 293374) (-3604 . 293221) (-3605 . 292942) (-3606 . 292720) - (-3607 . 292567) (-3608 . 292414) (-3609 . 292261) (-3610 . 292108) - (-3611 . 291955) (-3612 . 291799) (-3613 . 291680) (-3614 . 291289) - (-3615 . 290954) (-3616 . 290609) (-3617 . 290258) (-3618 . 289913) - (-3619 . 289568) (-3620 . 289181) (-3621 . 288794) (-3622 . 288407) - (-3623 . 288036) (-3624 . 287306) (-3625 . 286955) (-3626 . 286501) - (-3627 . 286072) (-3628 . 285455) (-3629 . 284854) (-3630 . 284462) - (-3631 . 284126) (-3632 . 283734) (-3633 . 283398) (-3634 . 283176) - (-3635 . 282649) (-3636 . 282434) (-3637 . 282219) (-3638 . 282003) - (-3639 . 281823) (-3640 . 281607) (-3641 . 281427) (-3642 . 281039) - (-3643 . 280859) (-3644 . 280647) (-3645 . 280557) (-3646 . 280467) - (-3647 . 280376) (-3648 . 280289) (-3649 . 280199) (-3650 . 280118) - (-3651 . 279929) (-3652 . 279873) (-3653 . 279792) (-3654 . 279711) - (-3655 . 279630) (-3656 . 279495) (-3657 . 279360) (-3658 . 279236) - (-3659 . 279115) (-3660 . 278997) (-3661 . 278861) (-3662 . 278728) - (-3663 . 278609) (-3664 . 278350) (-3665 . 278167) (-3666 . 278095) - (-3667 . 278003) (-3668 . 277911) (-3669 . 277825) (-3670 . 277727) - (-3671 . 277610) (-3672 . 277331) (-3673 . 277052) (-3674 . 276992) - (-3675 . 276926) (-3676 . 276860) (-3677 . 276719) (-3678 . 276662) - (-3679 . 276605) (-3680 . 276545) (-3681 . 276148) (-3682 . 275624) - (-3683 . 275346) (-3684 . 274925) (-3685 . 274812) (-3686 . 274370) - (-3687 . 274138) (-3688 . 273935) (-3689 . 273753) (-3690 . 273623) - (-3691 . 273417) (-3692 . 273210) (-3693 . 273019) (-3694 . 272454) - (-3695 . 272198) (-3696 . 271907) (-3697 . 271613) (-3698 . 271316) - (-3699 . 271016) (-3700 . 270886) (-3701 . 270753) (-3702 . 270617) - (-3703 . 270478) (-3704 . 269199) (-3705 . 268874) (-3706 . 268493) - (-3707 . 268380) (-3708 . 268126) (-3709 . 267830) (-3710 . 267534) - (-3711 . 267273) (-3712 . 267098) (-3713 . 267019) (-3714 . 266931) - (-3715 . 266830) (-3716 . 266735) (-3717 . 266653) (-3718 . 266581) - (-3719 . 265780) (-3720 . 265708) (-3721 . 265376) (-3722 . 265304) - (-3723 . 264972) (-3724 . 264900) (-3725 . 264451) (-3726 . 264379) - (-3727 . 264274) (-3728 . 264199) (-3729 . 264124) (-3730 . 264052) - (-3731 . 263709) (-3732 . 263579) (-3733 . 263502) (-3734 . 262953) - (-3735 . 262810) (-3736 . 262667) (-3737 . 262169) (-3738 . 261823) - (-3739 . 261595) (-3740 . 261325) (-3741 . 260945) (-3742 . 260705) - (-3743 . 260465) (-3744 . 260225) (-3745 . 259985) (-3746 . 259757) - (-3747 . 259529) (-3748 . 259377) (-3749 . 259193) (-3750 . 259088) - (-3751 . 258965) (-3752 . 258857) (-3753 . 258749) (-3754 . 258422) - (-3755 . 258156) (-3756 . 257845) (-3757 . 257540) (-3758 . 257230) - (-3759 . 256495) (-3760 . 255900) (-3761 . 255723) (-3762 . 255578) - (-3763 . 255423) (-3764 . 255300) (-3765 . 255195) (-3766 . 255080) - (-3767 . 254981) (-3768 . 254497) (-3769 . 254387) (-3770 . 254277) - (-3771 . 254167) (-3772 . 253063) (-3773 . 252548) (-3774 . 252481) - (-3775 . 252407) (-3776 . 251534) (-3777 . 251460) (-3778 . 251404) - (-3779 . 251348) (-3780 . 251316) (-3781 . 251230) (-3782 . 251198) - (-3783 . 251112) (-3784 . 250688) (-3785 . 250264) (-3786 . 249707) - (-3787 . 248595) (-3788 . 246871) (-3789 . 245309) (-3790 . 244513) - (-3791 . 244009) (-3792 . 243517) (-3793 . 243109) (-3794 . 242449) - (-3795 . 242374) (-3796 . 242302) (-3797 . 242230) (-3798 . 242188) - (-3799 . 242066) (-3800 . 241626) (-3801 . 241186) (-3802 . 240746) - (-3803 . 240224) (-3804 . 240059) (-3805 . 239894) (-3806 . 239583) - (-3807 . 239496) (-3808 . 239406) (-3809 . 239048) (-3810 . 238931) - (-3811 . 238850) (-3812 . 238691) (-3813 . 238577) (-3814 . 238502) - (-3815 . 237650) (-3816 . 236464) (-3817 . 236364) (-3818 . 236264) - (-3819 . 235923) (-3820 . 235844) (-3821 . 235768) (-3822 . 235661) - (-3823 . 235503) (-3824 . 235395) (-3825 . 235259) (-3826 . 235123) - (-3827 . 235000) (-3828 . 234904) (-3829 . 234755) (-3830 . 234659) - (-3831 . 234504) (-3832 . 234349) (-3833 . 233669) (-3834 . 232989) - (-3835 . 232246) (-3836 . 231678) (-3837 . 231110) (-3838 . 230542) - (-3839 . 229861) (-3840 . 229180) (-3841 . 228499) (-3842 . 227930) - (-3843 . 227361) (-3844 . 226792) (-3845 . 226224) (-3846 . 225656) - (-3847 . 225088) (-3848 . 224520) (-3849 . 223952) (-3850 . 223384) - (-3851 . 223280) (-3852 . 222691) (-3853 . 222585) (-3854 . 222509) - (-3855 . 222366) (-3856 . 222273) (-3857 . 222180) (-3858 . 222087) - (-3859 . 221988) (-3860 . 221882) (-3861 . 221758) (-3862 . 221634) - (-3863 . 221267) (-3864 . 221144) (-3865 . 221042) (-3866 . 220678) - (-3867 . 220144) (-3868 . 220068) (-3869 . 219992) (-3870 . 219899) - (-3871 . 219717) (-3872 . 219621) (-3873 . 219545) (-3874 . 219452) - (-3875 . 219359) (-3876 . 219197) (-3877 . 218636) (-3878 . 218075) - (-3879 . 215347) (-3880 . 215174) (-3881 . 213710) (-3882 . 213148) - (-3883 . 212949) (-12 . 212777) (-3885 . 212605) (-3886 . 212433) - (-3887 . 212261) (-3888 . 212089) (-3889 . 211917) (-3890 . 211745) - (-3891 . 211527) (-3892 . 211412) (-3893 . 211142) (-3894 . 211079) - (-3895 . 211016) (-3896 . 210953) (-3897 . 210675) (-3898 . 210408) - (-3899 . 210355) (-3900 . 209694) (-3901 . 209643) (-3902 . 209450) - (-3903 . 209377) (-3904 . 209297) (-3905 . 209184) (-3906 . 208994) - (-3907 . 208630) (-3908 . 208358) (-3909 . 208307) (-3910 . 208256) - (-3911 . 208186) (-3912 . 208067) (-3913 . 208038) (-3914 . 207936) - (-3915 . 207814) (-3916 . 207760) (-3917 . 207583) (-3918 . 207522) - (-3919 . 207341) (-3920 . 207280) (-3921 . 207208) (-3922 . 206733) - (-3923 . 206358) (-3924 . 203074) (-3925 . 203021) (-3926 . 202893) - (-3927 . 202741) (-3928 . 202688) (-3929 . 202546) (-3930 . 200688) - (-3931 . 191333) (-3932 . 191182) (-3933 . 191131) (-3934 . 191080) - (-3935 . 191029) (-3936 . 190959) (-3937 . 190761) (-3938 . 190618) - (-3939 . 190504) (-3940 . 190383) (-3941 . 190265) (-3942 . 190153) - (-3943 . 190035) (-3944 . 189930) (-3945 . 189849) (-3946 . 189745) - (-3947 . 188808) (-3948 . 188588) (-3949 . 188351) (-3950 . 188269) - (-3951 . 187922) (-3952 . 187848) (-3953 . 187753) (-3954 . 187679) - (-3955 . 187477) (-3956 . 187386) (-3957 . 187270) (-3958 . 187157) - (-3959 . 187066) (-3960 . 186975) (-3961 . 186885) (-3962 . 186795) - (-3963 . 186705) (-3964 . 186617) (-3965 . 184255) (-3966 . 184187) - (-3967 . 184133) (-3968 . 184008) (-3969 . 183944) (-3970 . 183819) - (-3971 . 183700) (-3972 . 182932) (-3973 . 182871) (-3974 . 182752) - (-3975 . 182000) (-3976 . 181947) (-3977 . 181758) (-3978 . 181694) - (-3979 . 181640) (-3980 . 181531) (-3981 . 180208) (-3982 . 180126) - (-3983 . 180036) (-3984 . 179978) (-3985 . 179713) (-3986 . 179628) - (-3987 . 179553) (-3988 . 179468) (-3989 . 179411) (-3990 . 179195) - (-3991 . 179054) (-3992 . 178319) (-3993 . 177749) (-3994 . 177179) - (-3995 . 176609) (-3996 . 175874) (-3997 . 175192) (-3998 . 174600) - (-3999 . 174008) (-4000 . 173730) (-4001 . 173275) (-4002 . 172926) - (-4003 . 172568) (-4004 . 172244) (-4005 . 172111) (-4006 . 171978) - (-4007 . 171646) (-4008 . 171537) (-4009 . 171428) (-4010 . 171319) - (-4011 . 171210) (-4012 . 171101) (-4013 . 170992) (-4014 . 170883) - (-4015 . 170774) (-4016 . 170665) (-4017 . 170556) (-4018 . 170447) - (-4019 . 170338) (-4020 . 170229) (-4021 . 170120) (-4022 . 170011) - (-4023 . 169902) (-4024 . 169793) (-4025 . 169684) (-4026 . 169575) - (-4027 . 169466) (-4028 . 169357) (-4029 . 169248) (-4030 . 169139) - (-4031 . 169030) (-4032 . 168921) (-4033 . 168723) (-4034 . 168408) - (-4035 . 166837) (-4036 . 166682) (-4037 . 166544) (-4038 . 166401) - (-4039 . 166198) (-4040 . 164243) (-4041 . 164115) (-4042 . 163990) - (-4043 . 163862) (-4044 . 163638) (-4045 . 163414) (-4046 . 163286) - (-4047 . 163083) (-4048 . 162904) (-4049 . 162377) (-4050 . 161850) - (-4051 . 161569) (-4052 . 161151) (-4053 . 160624) (-4054 . 160439) - (-4055 . 160296) (-4056 . 159796) (-4057 . 159154) (-4058 . 159098) - (-4059 . 159004) (-4060 . 158883) (-4061 . 158812) (-4062 . 158738) - (-4063 . 158507) (-4064 . 157882) (-4065 . 157450) (-4066 . 157368) - (-4067 . 157226) (-4068 . 156748) (-4069 . 156626) (-4070 . 156504) - (-4071 . 156364) (-4072 . 156177) (-4073 . 156061) (-4074 . 155800) - (-4075 . 155731) (-4076 . 155532) (-4077 . 155373) (-4078 . 155218) - (-4079 . 155111) (-4080 . 155060) (-4081 . 154676) (-4082 . 154435) - (-4083 . 154344) (-4084 . 152529) (-4085 . 151940) (-4086 . 151861) - (-4087 . 146393) (-4088 . 145603) (-4089 . 145224) (-4090 . 145152) - (-4091 . 144963) (-4092 . 144788) (-4093 . 144298) (-4094 . 143876) - (-4095 . 143436) (-4096 . 142572) (-4097 . 142448) (-4098 . 142321) - (-4099 . 142212) (-4100 . 142060) (-4101 . 141946) (-4102 . 141807) - (-4103 . 141725) (-4104 . 141643) (-4105 . 141535) (-4106 . 141115) - (-4107 . 140691) (-4108 . 140616) (-4109 . 140350) (-4110 . 140083) - (-4111 . 139700) (-4112 . 138999) (-4113 . 138939) (-4114 . 138864) - (-4115 . 138789) (-4116 . 138666) (-4117 . 138414) (-4118 . 138327) - (-4119 . 138251) (-4120 . 138175) (-4121 . 138079) (-4122 . 134115) - (-4123 . 132933) (-4124 . 132270) (-4125 . 132083) (-4126 . 129861) - (-4127 . 129535) (-4128 . 129154) (-4129 . 128710) (-4130 . 128475) - (-4131 . 128227) (-4132 . 128136) (-4133 . 126640) (-4134 . 126561) - (-4135 . 126455) (-4136 . 124919) (-4137 . 124506) (-4138 . 124089) - (-4139 . 123987) (-4140 . 123905) (-4141 . 123747) (-4142 . 122353) - (-4143 . 122271) (-4144 . 122192) (-4145 . 121837) (-4146 . 121780) - (-4147 . 121708) (-4148 . 121651) (-4149 . 121594) (-4150 . 121464) - (-4151 . 121260) (-4152 . 120891) (-4153 . 120469) (-4154 . 115304) - (-4155 . 114701) (-4156 . 114073) (-4157 . 113858) (-4158 . 113643) - (-4159 . 113475) (-4160 . 113260) (-4161 . 113092) (-4162 . 112924) - (-4163 . 112756) (-4164 . 112588) (-4165 . 110445) (-4166 . 110173) - (-4167 . 103236) (** . 100173) (-4169 . 99753) (-4170 . 99505) (-4171 . 99448) - (-4172 . 98950) (-4173 . 96045) (-4174 . 95895) (-4175 . 95731) - (-4176 . 95567) (-4177 . 95471) (-4178 . 95353) (-4179 . 95229) - (-4180 . 95086) (-4181 . 94915) (-4182 . 94788) (-4183 . 94643) - (-4184 . 94490) (-4185 . 94330) (-4186 . 93844) (-4187 . 93754) - (-4188 . 93086) (-4189 . 92892) (-4190 . 92796) (-4191 . 92486) - (-4192 . 91310) (-4193 . 91103) (-4194 . 89926) (-4195 . 89851) - (-4196 . 88670) (-4197 . 85065) (-4198 . 84701) (-4199 . 84424) - (-4200 . 84332) (-4201 . 84239) (-4202 . 83962) (-4203 . 83869) - (-4204 . 83776) (-4205 . 83683) (-4206 . 83299) (-4207 . 83228) - (-4208 . 83136) (-4209 . 82978) (-4210 . 82624) (-4211 . 82466) - (-4212 . 82358) (-4213 . 82329) (-4214 . 82262) (-4215 . 82108) - (-4216 . 81949) (-4217 . 81555) (-4218 . 81480) (-4219 . 81374) - (-4220 . 81302) (-4221 . 81224) (-4222 . 81151) (-4223 . 81078) - (-4224 . 81005) (-4225 . 80933) (-4226 . 80861) (-4227 . 80788) - (-4228 . 80547) (-4229 . 80207) (-4230 . 80059) (-4231 . 79986) - (-4232 . 79913) (-4233 . 79840) (-4234 . 79586) (-4235 . 79442) - (-4236 . 78106) (-4237 . 77912) (-4238 . 77641) (-4239 . 77493) - (-4240 . 77345) (-4241 . 77105) (-4242 . 76910) (-4243 . 76640) - (-4244 . 76444) (-4245 . 76415) (-4246 . 76314) (-4247 . 76213) - (-4248 . 76112) (-4249 . 76011) (-4250 . 75910) (-4251 . 75809) - (-4252 . 75708) (-4253 . 75607) (-4254 . 75506) (-4255 . 75405) - (-4256 . 75290) (-4257 . 75175) (-4258 . 75124) (-4259 . 75007) - (-4260 . 74949) (-4261 . 74848) (-4262 . 74747) (-4263 . 74646) - (-4264 . 74530) (-4265 . 74501) (-4266 . 73769) (-4267 . 73644) - (-4268 . 73519) (-4269 . 73379) (-4270 . 73261) (-4271 . 73136) - (-4272 . 72981) (-4273 . 71998) (-4274 . 71139) (-4275 . 71085) - (-4276 . 71031) (-4277 . 70823) (-4278 . 70449) (-4279 . 70035) - (-4280 . 69674) (-4281 . 69313) (-4282 . 69160) (-4283 . 68858) - (-4284 . 68702) (-4285 . 68376) (-4286 . 68305) (-4287 . 68234) - (-4288 . 68022) (-4289 . 67215) (-4290 . 67009) (-4291 . 66635) - (-4292 . 66115) (-4293 . 65847) (-4294 . 65297) (-4295 . 64747) - (-4296 . 64621) (-4297 . 63392) (-4298 . 62186) (-4299 . 61584) - (-4300 . 61366) (-4301 . 61180) (-4302 . 59080) (-4303 . 56905) - (-4304 . 56757) (-4305 . 56575) (-4306 . 56167) (-4307 . 55866) - (-4308 . 55515) (-4309 . 55347) (-4310 . 55179) (-4311 . 54865) - (-4312 . 31672) (-4313 . 17711) (-4314 . 16591) (* . 12095) (-4316 . 11839) - (-4317 . 11653) (-4318 . 10648) (-4319 . 10379) (-4320 . 9747) (-4321 . 8470) - (-4322 . 7222) (-4323 . 6350) (-4324 . 5085) (-4325 . 382) (-4326 . 280) - (-4327 . 160) (-4328 . 30)) \ No newline at end of file + (-12 (-5 *2 (-1149)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-827) (-545))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-827) (-545)))))) +((-1265 . 730363) (-1266 . 729936) (-1267 . 729815) (-1268 . 729700) + (-1269 . 729574) (-1270 . 729444) (-1271 . 729375) (-1272 . 729321) + (-1273 . 729186) (-1274 . 729110) (-1275 . 728954) (-1276 . 728726) + (-1277 . 727762) (-1278 . 727515) (-1279 . 727213) (-1280 . 726911) + (-1281 . 726609) (-1282 . 726271) (-1283 . 726179) (-1284 . 726087) + (-1285 . 725995) (-1286 . 725903) (-1287 . 725811) (-1288 . 725719) + (-1289 . 725624) (-1290 . 725529) (-1291 . 725437) (-1292 . 725345) + (-1293 . 725253) (-1294 . 725161) (-1295 . 725069) (-1296 . 724967) + (-1297 . 724865) (-1298 . 724763) (-1299 . 724671) (-1300 . 724604) + (-1301 . 724553) (-1302 . 724501) (-1303 . 724450) (-1304 . 724399) + (-1305 . 724329) (-1306 . 723891) (-1307 . 723689) (-1308 . 723566) + (-1309 . 723443) (-1310 . 723299) (-1311 . 723129) (-1312 . 723005) + (-1313 . 722766) (-1314 . 722693) (-1315 . 722552) (-1316 . 722501) + (-1317 . 722452) (-1318 . 722382) (-1319 . 722247) (-1320 . 722112) + (-1321 . 721884) (-1322 . 721638) (-1323 . 721458) (-1324 . 721287) + (-1325 . 721210) (-1326 . 721136) (-1327 . 720981) (-1328 . 720826) + (-1329 . 720640) (-1330 . 720457) (-1331 . 720280) (-1332 . 720223) + (-1333 . 720167) (-1334 . 720111) (-1335 . 720037) (-1336 . 719959) + (-1337 . 719903) (-1338 . 719872) (-1339 . 719803) (-1340 . 719729) + (-1341 . 719673) (-1342 . 719602) (-1343 . 719528) (-1344 . 719454) + (-1345 . 719402) (-1346 . 719350) (-1347 . 719298) (-1348 . 719175) + (-1349 . 718853) (-1350 . 718765) (-1351 . 718664) (-1352 . 718543) + (-1353 . 718462) (-1354 . 718381) (-1355 . 718224) (-1356 . 718073) + (-1357 . 717995) (-1358 . 717937) (-1359 . 717864) (-1360 . 717799) + (-1361 . 717734) (-1362 . 717672) (-1363 . 717599) (-1364 . 717483) + (-1365 . 717449) (-1366 . 717415) (-1367 . 717363) (-1368 . 717319) + (-1369 . 717248) (-1370 . 717196) (-1371 . 717147) (-1372 . 717095) + (-1373 . 717043) (-1374 . 716927) (-1375 . 716811) (-1376 . 716719) + (-1377 . 716627) (-1378 . 716504) (-1379 . 716476) (-1380 . 716448) + (-1381 . 716420) (-1382 . 716392) (-1383 . 716282) (-1384 . 716230) + (-1385 . 716178) (-1386 . 716126) (-1387 . 716074) (-1388 . 716022) + (-1389 . 715970) (-1390 . 715942) (-1391 . 715839) (-1392 . 715787) + (-1393 . 715621) (-1394 . 715437) (-1395 . 715226) (-1396 . 715111) + (-1397 . 714878) (-1398 . 714779) (-1399 . 714685) (-1400 . 714570) + (-1401 . 714172) (-1402 . 713954) (-1403 . 713905) (-1404 . 713877) + (-1405 . 713786) (-1406 . 713674) (-1407 . 713562) (-1408 . 713450) + (-1409 . 713338) (-1410 . 713226) (-1411 . 713114) (-1412 . 712941) + (-1413 . 712865) (-1414 . 712683) (-1415 . 712625) (-1416 . 712567) + (-1417 . 712229) (-1418 . 711944) (-1419 . 711860) (-1420 . 711727) + (-1421 . 711669) (-1422 . 711617) (-1423 . 711562) (-1424 . 711510) + (-1425 . 711436) (-1426 . 711362) (-1427 . 711281) (-1428 . 711200) + (-1429 . 711145) (-1430 . 711071) (-1431 . 710997) (-1432 . 710923) + (-1433 . 710846) (-1434 . 710791) (-1435 . 710732) (-1436 . 710633) + (-1437 . 710534) (-1438 . 710435) (-1439 . 710336) (-1440 . 710237) + (-1441 . 710138) (-1442 . 710039) (-1443 . 709925) (-1444 . 709811) + (-1445 . 709697) (-1446 . 709583) (-1447 . 709469) (-1448 . 709355) + (-1449 . 709238) (-1450 . 709162) (-1451 . 709086) (-1452 . 708699) + (-1453 . 708353) (-1454 . 708251) (-1455 . 707989) (-1456 . 707887) + (-1457 . 707682) (-1458 . 707569) (-1459 . 707467) (-1460 . 707310) + (-1461 . 707221) (-1462 . 707127) (-1463 . 707047) (-1464 . 706934) + (-1465 . 706831) (-1466 . 706771) (-1467 . 706718) (-7 . 706690) (-8 . 706662) + (-9 . 706634) (-1471 . 706515) (-1472 . 706433) (-1473 . 706351) + (-1474 . 706269) (-1475 . 706187) (-1476 . 706105) (-1477 . 706011) + (-1478 . 705941) (-1479 . 705871) (-1480 . 705780) (-1481 . 705686) + (-1482 . 705604) (-1483 . 705522) (-1484 . 705031) (-1485 . 704478) + (-1486 . 704268) (-1487 . 704193) (-1488 . 703939) (-1489 . 703712) + (-1490 . 703502) (-1491 . 703372) (-1492 . 703291) (-1493 . 703142) + (-1494 . 702787) (-1495 . 702495) (-1496 . 702203) (-1497 . 701911) + (-1498 . 701619) (-1499 . 701560) (-1500 . 701453) (-1501 . 701025) + (-1502 . 700865) (-1503 . 700666) (-1504 . 700530) (-1505 . 700430) + (-1506 . 700330) (-1507 . 700236) (-1508 . 700177) (-1509 . 699835) + (-1510 . 699734) (-1511 . 699615) (-1512 . 699399) (-1513 . 699218) + (-1514 . 699051) (-1515 . 698836) (-1516 . 698397) (-1517 . 698288) + (-1518 . 698173) (-1519 . 698104) (-1520 . 698035) (-1521 . 697966) + (-1522 . 697900) (-1523 . 697775) (-1524 . 697558) (-1525 . 697480) + (-1526 . 697430) (-1527 . 697359) (-1528 . 697216) (-1529 . 697075) + (-1530 . 696994) (-1531 . 696913) (-1532 . 696857) (-1533 . 696801) + (-1534 . 696728) (-1535 . 696588) (-1536 . 696535) (-1537 . 696483) + (-1538 . 696431) (-1539 . 696313) (-1540 . 696195) (-1541 . 696077) + (-1542 . 695944) (-1543 . 695663) (-1544 . 695527) (-1545 . 695471) + (-1546 . 695415) (-1547 . 695356) (-1548 . 695297) (-1549 . 695241) + (-1550 . 695185) (-1551 . 694988) (-1552 . 692646) (-1553 . 692519) + (-1554 . 692373) (-1555 . 692245) (-1556 . 692193) (-1557 . 692141) + (-1558 . 692089) (-1559 . 688050) (-1560 . 687955) (-1561 . 687816) + (-1562 . 687607) (-1563 . 687505) (-1564 . 687403) (-1565 . 686487) + (-1566 . 686410) (-1567 . 686281) (-1568 . 686154) (-1569 . 686077) + (-1570 . 686000) (-1571 . 685873) (-1572 . 685746) (-1573 . 685580) + (-1574 . 685453) (-1575 . 685326) (-1576 . 685109) (-1577 . 684671) + (-1578 . 684305) (-1579 . 684198) (-1580 . 683979) (-1581 . 683910) + (-1582 . 683851) (-1583 . 683770) (-1584 . 683659) (-1585 . 683593) + (-1586 . 683527) (-1587 . 683453) (-1588 . 683381) (-1589 . 683004) + (-1590 . 682952) (-1591 . 682893) (-1592 . 682789) (-1593 . 682685) + (-1594 . 682578) (-1595 . 682471) (-1596 . 682364) (-1597 . 682257) + (-1598 . 682150) (-1599 . 682043) (-1600 . 681936) (-1601 . 681829) + (-1602 . 681722) (-1603 . 681615) (-1604 . 681508) (-1605 . 681401) + (-1606 . 681294) (-1607 . 681187) (-1608 . 681080) (-1609 . 680973) + (-1610 . 680866) (-1611 . 680759) (-1612 . 680652) (-1613 . 680545) + (-1614 . 680438) (-1615 . 680331) (-1616 . 680224) (-1617 . 680117) + (-1618 . 680010) (-1619 . 679903) (-1620 . 679724) (-1621 . 679602) + (-1622 . 679351) (-1623 . 679048) (-1624 . 678842) (-1625 . 678675) + (-1626 . 678504) (-1627 . 678452) (-1628 . 678389) (-1629 . 678326) + (-1630 . 678274) (-1631 . 678085) (-1632 . 677931) (-1633 . 677851) + (-1634 . 677771) (-1635 . 677691) (-1636 . 677561) (-1637 . 677329) + (-1638 . 677301) (-1639 . 677273) (-1640 . 677192) (-1641 . 677102) + (-1642 . 677024) (-1643 . 676937) (-1644 . 676877) (-1645 . 676719) + (-1646 . 676526) (-1647 . 676041) (-1648 . 675799) (-1649 . 675537) + (-1650 . 675436) (-1651 . 675355) (-1652 . 675274) (-1653 . 675204) + (-1654 . 675134) (-1655 . 674975) (-1656 . 674671) (-1657 . 674428) + (-1658 . 674304) (-1659 . 674245) (-1660 . 674183) (-1661 . 674121) + (-1662 . 674056) (-1663 . 673994) (-1664 . 673715) (-1665 . 673505) + (-1666 . 673231) (-1667 . 672660) (-1668 . 672146) (-1669 . 672001) + (-1670 . 671934) (-1671 . 671853) (-1672 . 671772) (-1673 . 671670) + (-1674 . 671596) (-1675 . 671515) (-1676 . 671441) (-1677 . 671232) + (-1678 . 671019) (-1679 . 670929) (-1680 . 670862) (-1681 . 670726) + (-1682 . 670659) (-1683 . 670577) (-1684 . 670496) (-1685 . 670394) + (-1686 . 670194) (-1687 . 670126) (-1688 . 669884) (-1689 . 669633) + (-1690 . 669391) (-1691 . 669149) (-1692 . 669081) (-1693 . 668745) + (-1694 . 667744) (-1695 . 667524) (-1696 . 667443) (-1697 . 667369) + (-1698 . 667295) (-1699 . 667221) (-1700 . 667117) (-1701 . 667044) + (-1702 . 666976) (-1703 . 666766) (-1704 . 666714) (-1705 . 666659) + (-1706 . 666569) (-1707 . 666482) (-1708 . 664631) (-1709 . 664552) + (-1710 . 663807) (-1711 . 663677) (-1712 . 663470) (-1713 . 663308) + (-1714 . 663146) (-1715 . 662985) (-1716 . 662846) (-1717 . 662752) + (-1718 . 662654) (-1719 . 662560) (-1720 . 662445) (-1721 . 662360) + (-1722 . 662262) (-1723 . 662066) (-1724 . 661975) (-1725 . 661881) + (-1726 . 661814) (-1727 . 661761) (-1728 . 661708) (-1729 . 661655) + (-1730 . 660517) (-1731 . 660007) (-1732 . 659928) (-1733 . 659869) + (-1734 . 659841) (-1735 . 659813) (-1736 . 659754) (-1737 . 659641) + (-1738 . 659264) (-1739 . 659211) (-1740 . 659100) (-1741 . 659047) + (-1742 . 658994) (-1743 . 658938) (-1744 . 658882) (-1745 . 658717) + (-1746 . 658647) (-1747 . 658552) (-1748 . 658457) (-1749 . 658362) + (-1750 . 658205) (-1751 . 658048) (-1752 . 657895) (-1753 . 657137) + (-1754 . 656884) (-1755 . 656573) (-1756 . 656221) (-1757 . 656004) + (-1758 . 655741) (-1759 . 655366) (-1760 . 655182) (-1761 . 655048) + (-1762 . 654882) (-1763 . 654716) (-1764 . 654582) (-1765 . 654448) + (-1766 . 654314) (-1767 . 654180) (-1768 . 654049) (-1769 . 653918) + (-1770 . 653787) (-1771 . 653404) (-1772 . 653277) (-1773 . 653149) + (-1774 . 652897) (-1775 . 652773) (-1776 . 652521) (-1777 . 652397) + (-1778 . 652145) (-1779 . 652021) (-1780 . 651736) (-1781 . 651463) + (-1782 . 651190) (-1783 . 650892) (-1784 . 650790) (-1785 . 650645) + (-1786 . 650504) (-1787 . 650353) (-1788 . 650192) (-1789 . 650104) + (-1790 . 650076) (-1791 . 649994) (-1792 . 649897) (-1793 . 649429) + (-1794 . 649078) (-1795 . 648645) (-1796 . 648504) (-1797 . 648434) + (-1798 . 648364) (-1799 . 648294) (-1800 . 648203) (-1801 . 648112) + (-1802 . 648021) (-1803 . 647930) (-1804 . 647839) (-1805 . 647753) + (-1806 . 647667) (-1807 . 647581) (-1808 . 647495) (-1809 . 647409) + (-1810 . 647335) (-1811 . 647230) (-1812 . 647004) (-1813 . 646926) + (-1814 . 646851) (-1815 . 646758) (-1816 . 646654) (-1817 . 646558) + (-1818 . 646389) (-1819 . 646312) (-1820 . 646235) (-1821 . 646144) + (-1822 . 646053) (-1823 . 645853) (-1824 . 645698) (-1825 . 645543) + (-1826 . 645388) (-1827 . 645233) (-1828 . 645078) (-1829 . 644923) + (-1830 . 644856) (-1831 . 644701) (-1832 . 644546) (-1833 . 644391) + (-1834 . 644236) (-1835 . 644081) (-1836 . 643926) (-1837 . 643771) + (-1838 . 643616) (-1839 . 643542) (-1840 . 643468) (-1841 . 643413) + (-1842 . 643358) (-1843 . 643303) (-1844 . 643248) (-1845 . 643177) + (-1846 . 642972) (-1847 . 642871) (-1848 . 642680) (-1849 . 642587) + (-1850 . 642450) (-1851 . 642313) (-1852 . 642176) (-1853 . 642108) + (-1854 . 641992) (-1855 . 641876) (-1856 . 641760) (-1857 . 641707) + (-1858 . 641510) (-1859 . 641425) (-1860 . 641117) (-1861 . 641062) + (-1862 . 640410) (-1863 . 640095) (-1864 . 639811) (-1865 . 639692) + (-1866 . 639640) (-1867 . 639588) (-1868 . 639536) (-1869 . 639483) + (-1870 . 639430) (-1871 . 639371) (-1872 . 639258) (-1873 . 639145) + (-1874 . 639087) (-1875 . 639029) (-1876 . 638979) (-1877 . 638844) + (-1878 . 638794) (-1879 . 638731) (-1880 . 638671) (-1881 . 638074) + (-1882 . 638014) (-1883 . 637847) (-1884 . 637755) (-1885 . 637642) + (-1886 . 637558) (-1887 . 637443) (-1888 . 637352) (-1889 . 637261) + (-1890 . 637072) (-1891 . 637017) (-1892 . 636830) (-1893 . 636707) + (-1894 . 636634) (-1895 . 636561) (-1896 . 636441) (-1897 . 636368) + (-1898 . 636295) (-1899 . 636222) (-1900 . 636002) (-1901 . 635669) + (-1902 . 635485) (-1903 . 635341) (-1904 . 634980) (-1905 . 634812) + (-1906 . 634644) (-1907 . 634388) (-1908 . 634132) (-1909 . 633937) + (-1910 . 633742) (-1911 . 633148) (-1912 . 633072) (-1913 . 632934) + (-1914 . 632532) (-1915 . 632405) (-1916 . 632246) (-1917 . 631920) + (-1918 . 631431) (-1919 . 630942) (-1920 . 630424) (-1921 . 630356) + (-1922 . 630285) (-1923 . 630214) (-1924 . 630031) (-1925 . 629912) + (-1926 . 629793) (-1927 . 629702) (-1928 . 629611) (-1929 . 629319) + (-1930 . 629197) (-1931 . 629145) (-1932 . 629093) (-1933 . 629041) + (-1934 . 628989) (-1935 . 628937) (-1936 . 628788) (-1937 . 628607) + (-1938 . 628367) (-1939 . 628172) (-1940 . 628144) (-1941 . 628116) + (-1942 . 628088) (-1943 . 628060) (-1944 . 628032) (-1945 . 628004) + (-1946 . 627976) (-1947 . 627924) (-1948 . 627834) (-1949 . 627784) + (-1950 . 627715) (-1951 . 627646) (-1952 . 627541) (-1953 . 627170) + (-1954 . 627019) (-1955 . 626868) (-1956 . 626663) (-1957 . 626541) + (-1958 . 626466) (-1959 . 626388) (-1960 . 626313) (-1961 . 626235) + (-1962 . 626157) (-1963 . 626082) (-1964 . 626004) (-1965 . 625770) + (-1966 . 625615) (-1967 . 625316) (-1968 . 625161) (-1969 . 624835) + (-1970 . 624695) (-1971 . 624555) (-1972 . 624474) (-1973 . 624393) + (-1974 . 624128) (-1975 . 623395) (-1976 . 623258) (-1977 . 623167) + (-1978 . 623030) (-1979 . 622962) (-1980 . 622893) (-1981 . 622805) + (-1982 . 622717) (-1983 . 622546) (-1984 . 622472) (-1985 . 622328) + (-1986 . 621868) (-1987 . 621488) (-1988 . 620724) (-1989 . 620580) + (-1990 . 620436) (-1991 . 620274) (-1992 . 620036) (-1993 . 619895) + (-1994 . 619748) (-1995 . 619509) (-1996 . 619273) (-1997 . 619034) + (-1998 . 618842) (-1999 . 618719) (-2000 . 618515) (-2001 . 618292) + (-2002 . 618053) (-2003 . 617912) (-2004 . 617774) (-2005 . 617635) + (-2006 . 617382) (-2007 . 617126) (-2008 . 616969) (-2009 . 616815) + (-2010 . 616574) (-2011 . 616289) (-2012 . 616151) (-2013 . 616064) + (-2014 . 615398) (-2015 . 615222) (-2016 . 615040) (-2017 . 614864) + (-2018 . 614682) (-2019 . 614503) (-2020 . 614324) (-2021 . 614137) + (-2022 . 613755) (-2023 . 613576) (-2024 . 613397) (-2025 . 613210) + (-2026 . 612828) (-2027 . 611835) (-2028 . 611451) (-2029 . 611067) + (-2030 . 610949) (-2031 . 610792) (-2032 . 610650) (-2033 . 610532) + (-2034 . 610350) (-2035 . 610226) (-2036 . 609936) (-2037 . 609646) + (-2038 . 609362) (-2039 . 609078) (-2040 . 608799) (-2041 . 608711) + (-2042 . 608626) (-2043 . 608527) (-2044 . 608428) (-2045 . 608204) + (-2046 . 608104) (-2047 . 608001) (-2048 . 607923) (-2049 . 607598) + (-2050 . 607306) (-2051 . 607233) (-2052 . 606848) (-2053 . 606820) + (-2054 . 606621) (-2055 . 606447) (-2056 . 606206) (-2057 . 606151) + (-2058 . 606075) (-2059 . 605704) (-2060 . 605588) (-2061 . 605511) + (-2062 . 605438) (-2063 . 605357) (-2064 . 605276) (-2065 . 605195) + (-2066 . 605094) (-2067 . 605035) (-2068 . 604816) (-2069 . 604577) + (-2070 . 604453) (-2071 . 604329) (-2072 . 604102) (-2073 . 604049) + (-2074 . 603994) (-2075 . 603662) (-2076 . 603338) (-2077 . 603150) + (-2078 . 602959) (-2079 . 602795) (-2080 . 602460) (-2081 . 602293) + (-2082 . 602052) (-2083 . 601724) (-2084 . 601532) (-2085 . 601315) + (-2086 . 601142) (-2087 . 600720) (-2088 . 600493) (-2089 . 600222) + (-2090 . 600084) (-2091 . 599943) (-2092 . 599465) (-2093 . 599342) + (-2094 . 599106) (-2095 . 598852) (-2096 . 598602) (-2097 . 598307) + (-2098 . 598166) (-2099 . 597822) (-2100 . 597681) (-2101 . 597488) + (-2102 . 597295) (-2103 . 597120) (-2104 . 596846) (-2105 . 596411) + (-2106 . 596337) (-2107 . 596176) (-2108 . 596013) (-2109 . 595852) + (-2110 . 595685) (-2111 . 595632) (-2112 . 595579) (-2113 . 595450) + (-2114 . 595390) (-2115 . 595337) (-2116 . 595284) (-2117 . 595213) + (-2118 . 595160) (-2119 . 595018) (-2120 . 594923) (-2121 . 594832) + (-2122 . 594716) (-2123 . 594622) (-2124 . 594524) (-2125 . 594430) + (-2126 . 594289) (-2127 . 594024) (-2128 . 593167) (-2129 . 593011) + (-2130 . 592642) (-2131 . 592590) (-2132 . 592487) (-2133 . 592402) + (-2134 . 592314) (-2135 . 592168) (-2136 . 592019) (-2137 . 591729) + (-2138 . 591651) (-2139 . 591576) (-2140 . 591523) (-2141 . 591470) + (-2142 . 591439) (-2143 . 591376) (-2144 . 591257) (-2145 . 591168) + (-2146 . 591048) (-2147 . 590753) (-2148 . 590559) (-2149 . 590371) + (-2150 . 590226) (-2151 . 590081) (-2152 . 589795) (-2153 . 589350) + (-2154 . 589316) (-2155 . 589279) (-2156 . 589242) (-2157 . 589205) + (-2158 . 589168) (-2159 . 589137) (-2160 . 589106) (-2161 . 589075) + (-2162 . 589041) (-2163 . 589007) (-2164 . 588952) (-2165 . 588763) + (-2166 . 588521) (-2167 . 588279) (-2168 . 588042) (-2169 . 587990) + (-2170 . 587935) (-2171 . 587865) (-2172 . 587776) (-2173 . 587707) + (-2174 . 587635) (-2175 . 587405) (-2176 . 587353) (-2177 . 587298) + (-2178 . 587267) (-2179 . 587161) (-2180 . 586928) (-2181 . 586610) + (-2182 . 586428) (-2183 . 586235) (-2184 . 585956) (-2185 . 585883) + (-2186 . 585818) (-2187 . 585790) (-2188 . 585740) (-2189 . 584317) + (-2190 . 583169) (-2191 . 582031) (-2192 . 581539) (-2193 . 580961) + (-2194 . 580219) (-2195 . 579642) (-2196 . 578998) (-2197 . 578419) + (-2198 . 578345) (-2199 . 578293) (-2200 . 578241) (-2201 . 578167) + (-2202 . 578112) (-2203 . 578060) (-2204 . 578008) (-2205 . 577956) + (-2206 . 577886) (-2207 . 577438) (-2208 . 577224) (-2209 . 576967) + (-2210 . 576625) (-2211 . 576363) (-2212 . 576053) (-2213 . 575842) + (-2214 . 575542) (-2215 . 574972) (-2216 . 574834) (-2217 . 574631) + (-2218 . 574350) (-2219 . 574264) (-2220 . 573919) (-2221 . 573777) + (-2222 . 573485) (-2223 . 573264) (-2224 . 573139) (-2225 . 573015) + (-2226 . 572869) (-2227 . 572726) (-2228 . 572611) (-2229 . 572481) + (-2230 . 572109) (-2231 . 571849) (-2232 . 571574) (-2233 . 571334) + (-2234 . 571004) (-2235 . 570659) (-2236 . 570251) (-2237 . 569828) + (-2238 . 569631) (-2239 . 569356) (-2240 . 569188) (-2241 . 568987) + (-2242 . 568765) (-2243 . 568610) (-2244 . 568417) (-2245 . 568389) + (-2246 . 568210) (-2247 . 568141) (-2248 . 568071) (-2249 . 567952) + (-2250 . 567774) (-2251 . 567719) (-2252 . 567473) (-2253 . 567383) + (-2254 . 567193) (-2255 . 567120) (-2256 . 567050) (-2257 . 566985) + (-2258 . 566930) (-2259 . 566839) (-2260 . 566532) (-2261 . 566187) + (-2262 . 566113) (-2263 . 565791) (-2264 . 565584) (-2265 . 565498) + (-2266 . 565412) (-2267 . 565326) (-2268 . 565240) (-2269 . 565154) + (-2270 . 565068) (-2271 . 564982) (-2272 . 564896) (-2273 . 564810) + (-2274 . 564724) (-2275 . 564638) (-2276 . 564552) (-2277 . 564466) + (-2278 . 564380) (-2279 . 564294) (-2280 . 564208) (-2281 . 564122) + (-2282 . 564036) (-2283 . 563950) (-2284 . 563864) (-2285 . 563778) + (-2286 . 563692) (-2287 . 563606) (-2288 . 563520) (-2289 . 563434) + (-2290 . 563348) (-2291 . 563245) (-2292 . 563156) (-2293 . 562946) + (-2294 . 562887) (-2295 . 562831) (-2296 . 562742) (-2297 . 562630) + (-2298 . 562542) (-2299 . 562394) (-2300 . 562209) (-2301 . 562045) + (-2302 . 561878) (-2303 . 561693) (-2304 . 561472) (-2305 . 561348) + (-2306 . 561140) (-2307 . 561048) (-2308 . 560956) (-2309 . 560820) + (-2310 . 560725) (-2311 . 560630) (-2312 . 559114) (-2313 . 559054) + (-2314 . 558964) (-2315 . 558869) (-2316 . 558788) (-2317 . 558481) + (-2318 . 558286) (-2319 . 558193) (-2320 . 558087) (-2321 . 557669) + (-2322 . 557616) (-2323 . 557588) (-2324 . 557535) (-2325 . 557360) + (-2326 . 557283) (-2327 . 557094) (-2328 . 556914) (-2329 . 556490) + (-2330 . 556338) (-2331 . 556158) (-2332 . 555985) (-2333 . 555723) + (-2334 . 555471) (-2335 . 554660) (-2336 . 554491) (-2337 . 554272) + (-2338 . 553368) (-2339 . 553224) (-2340 . 553080) (-2341 . 552936) + (-2342 . 552792) (-2343 . 552648) (-2344 . 552504) (-2345 . 552309) + (-2346 . 552115) (-2347 . 551972) (-2348 . 551657) (-2349 . 551542) + (-2350 . 551202) (-2351 . 551042) (-2352 . 550903) (-2353 . 550764) + (-2354 . 550635) (-2355 . 550550) (-2356 . 550498) (-2357 . 550010) + (-2358 . 548732) (-2359 . 548617) (-2360 . 548488) (-2361 . 548181) + (-2362 . 547930) (-2363 . 547855) (-2364 . 547780) (-2365 . 547705) + (-2366 . 547646) (-2367 . 547575) (-2368 . 547522) (-2369 . 547460) + (-2370 . 547389) (-2371 . 547026) (-2372 . 546739) (-2373 . 546628) + (-2374 . 546535) (-2375 . 546442) (-2376 . 546355) (-2377 . 546135) + (-2378 . 545915) (-2379 . 545772) (-2380 . 545679) (-2381 . 545536) + (-2382 . 545384) (-2383 . 545230) (-2384 . 545159) (-2385 . 544950) + (-2386 . 544772) (-2387 . 544562) (-2388 . 544384) (-2389 . 544266) + (-2390 . 543951) (-2391 . 543673) (-2392 . 543552) (-2393 . 543425) + (-2394 . 543340) (-2395 . 543267) (-2396 . 543177) (-2397 . 543106) + (-2398 . 543050) (-2399 . 542994) (-2400 . 542938) (-2401 . 542867) + (-2402 . 542796) (-2403 . 542725) (-2404 . 542646) (-2405 . 542568) + (-2406 . 542483) (-2407 . 542223) (-2408 . 542134) (-2409 . 541836) + (-2410 . 541738) (-2411 . 541660) (-2412 . 541582) (-2413 . 541439) + (-2414 . 541360) (-2415 . 541288) (-2416 . 541085) (-2417 . 541029) + (-2418 . 540841) (-2419 . 540742) (-2420 . 540624) (-2421 . 540503) + (-2422 . 540360) (-2423 . 540217) (-2424 . 540077) (-2425 . 539937) + (-2426 . 539794) (-2427 . 539667) (-2428 . 539537) (-2429 . 539413) + (-2430 . 539289) (-2431 . 539183) (-2432 . 539077) (-2433 . 538974) + (-2434 . 538824) (-2435 . 538671) (-2436 . 538518) (-2437 . 538374) + (-2438 . 538220) (-2439 . 538143) (-2440 . 538063) (-2441 . 537908) + (-2442 . 537828) (-2443 . 537748) (-2444 . 537668) (-2445 . 537565) + (-2446 . 537506) (-2447 . 537331) (-2448 . 537178) (-2449 . 537025) + (-2450 . 536851) (-2451 . 536659) (-2452 . 536360) (-2453 . 536165) + (-2454 . 536050) (-2455 . 535924) (-2456 . 535847) (-2457 . 535715) + (-2458 . 535409) (-2459 . 535226) (-2460 . 534681) (-2461 . 534461) + (-2462 . 534287) (-2463 . 534117) (-2464 . 534018) (-2465 . 533919) + (-2466 . 533701) (-2467 . 533599) (-2468 . 533526) (-2469 . 533450) + (-2470 . 533371) (-2471 . 533074) (-2472 . 532975) (-2473 . 532813) + (-2474 . 532579) (-2475 . 532137) (-2476 . 532007) (-2477 . 531867) + (-2478 . 531558) (-2479 . 531256) (-2480 . 530940) (-2481 . 530534) + (-2482 . 530466) (-2483 . 530398) (-2484 . 530330) (-2485 . 530235) + (-2486 . 530127) (-2487 . 530019) (-2488 . 529917) (-2489 . 529815) + (-2490 . 529713) (-2491 . 529635) (-2492 . 529311) (-2493 . 528830) + (-2494 . 528203) (-2495 . 528139) (-2496 . 528020) (-2497 . 527901) + (-2498 . 527793) (-2499 . 527685) (-2500 . 527529) (-2501 . 526927) + (-2502 . 526689) (-2503 . 526521) (-2504 . 526399) (-2505 . 526001) + (-2506 . 525765) (-2507 . 525564) (-2508 . 525356) (-2509 . 525163) + (-2510 . 524893) (-2511 . 524720) (-2512 . 524541) (-2513 . 524472) + (-2514 . 524396) (-2515 . 524255) (-2516 . 524052) (-2517 . 523908) + (-2518 . 523658) (-2519 . 523350) (-2520 . 522994) (-2521 . 522835) + (-2522 . 522629) (-2523 . 522469) (-2524 . 522396) (-2525 . 522277) + (-2526 . 522158) (-2527 . 521998) (-2528 . 521818) (-2529 . 521635) + (-2530 . 521537) (-2531 . 521439) (-2532 . 521338) (-2533 . 521234) + (-2534 . 521108) (-2535 . 520982) (-2536 . 520853) (-2537 . 520721) + (-2538 . 520623) (-2539 . 520525) (-2540 . 520424) (-2541 . 520323) + (-2542 . 520157) (-2543 . 519991) (-2544 . 519797) (-2545 . 519631) + (-2546 . 519463) (-2547 . 519292) (-2548 . 519127) (-2549 . 518962) + (-2550 . 518862) (-2551 . 518670) (-2552 . 518569) (-2553 . 518374) + (-2554 . 518124) (-2555 . 517879) (-2556 . 517557) (-2557 . 517169) + (-2558 . 516968) (-2559 . 516704) (-2560 . 516161) (-2561 . 515867) + (-2562 . 515730) (-2563 . 515484) (-2564 . 515280) (-2565 . 515173) + (-2566 . 515072) (-2567 . 514962) (-2568 . 514852) (-2569 . 514724) + (-2570 . 514617) (-2571 . 514513) (-2572 . 514357) (-2573 . 514223) + (-2574 . 514089) (-2575 . 513979) (-2576 . 513860) (-2577 . 513683) + (-2578 . 513549) (-2579 . 513412) (-2580 . 513281) (-2581 . 513171) + (-2582 . 513049) (-2583 . 512924) (-2584 . 512823) (-2585 . 512639) + (-2586 . 512465) (-2587 . 512266) (-2588 . 512092) (-2589 . 511976) + (-2590 . 511851) (-2591 . 511723) (-2592 . 511604) (-2593 . 511379) + (-2594 . 511208) (-2595 . 511037) (-2596 . 510860) (-2597 . 510708) + (-2598 . 510431) (-2599 . 510039) (-2600 . 509908) (-2601 . 509703) + (-2602 . 509520) (-2603 . 509336) (-2604 . 509207) (-2605 . 509103) + (-2606 . 508962) (-2607 . 508830) (-2608 . 508716) (-2609 . 508568) + (-2610 . 508429) (-2611 . 508328) (-2612 . 508224) (-2613 . 508117) + (-2614 . 508007) (-2615 . 507906) (-2616 . 507799) (-2617 . 507692) + (-2618 . 507579) (-2619 . 507472) (-2620 . 507359) (-2621 . 507228) + (-2622 . 507079) (-2623 . 506541) (-2624 . 506398) (-2625 . 506248) + (-2626 . 506125) (-2627 . 506021) (-2628 . 505917) (-2629 . 505810) + (-2630 . 505672) (-2631 . 505565) (-2632 . 505434) (-2633 . 505278) + (-2634 . 505005) (-2635 . 504858) (-2636 . 504655) (-2637 . 504554) + (-2638 . 504400) (-2639 . 504280) (-2640 . 504151) (-2641 . 504056) + (-2642 . 503968) (-2643 . 503880) (-2644 . 503792) (-2645 . 503704) + (-2646 . 503616) (-2647 . 503522) (-2648 . 503434) (-2649 . 503346) + (-2650 . 503258) (-2651 . 503170) (-2652 . 503082) (-2653 . 502994) + (-2654 . 502906) (-2655 . 502818) (-2656 . 502730) (-2657 . 502642) + (-2658 . 502504) (-2659 . 502366) (-2660 . 502246) (-2661 . 502126) + (-2662 . 501985) (-2663 . 501897) (-2664 . 501809) (-2665 . 501721) + (-2666 . 501633) (-2667 . 501495) (-2668 . 501357) (-2669 . 501269) + (-2670 . 501181) (-2671 . 501093) (-2672 . 501005) (-2673 . 500917) + (-2674 . 500829) (-2675 . 500738) (-2676 . 500644) (-2677 . 500550) + (-2678 . 500453) (-2679 . 500403) (-2680 . 500353) (-2681 . 500300) + (-2682 . 500046) (-2683 . 499997) (-2684 . 499947) (-2685 . 499913) + (-2686 . 499848) (-2687 . 499811) (-2688 . 499674) (-2689 . 499436) + (-2690 . 499187) (-2691 . 499029) (-2692 . 498488) (-2693 . 498289) + (-2694 . 498074) (-2695 . 497912) (-2696 . 497513) (-2697 . 497346) + (-2698 . 496271) (-2699 . 496148) (-2700 . 495931) (-2701 . 495800) + (-2702 . 495669) (-2703 . 495511) (-2704 . 495407) (-2705 . 495348) + (-2706 . 495289) (-2707 . 495183) (-2708 . 495077) (-2709 . 494159) + (-2710 . 492030) (-2711 . 491214) (-2712 . 489409) (-2713 . 489341) + (-2714 . 489273) (-2715 . 489205) (-2716 . 489137) (-2717 . 489069) + (-2718 . 488991) (-2719 . 488589) (-2720 . 488233) (-2721 . 488051) + (-2722 . 487522) (-2723 . 487346) (-2724 . 487124) (-2725 . 486902) + (-2726 . 486680) (-2727 . 486461) (-2728 . 486242) (-2729 . 486023) + (-2730 . 485804) (-2731 . 485585) (-2732 . 485366) (-2733 . 485265) + (-2734 . 484532) (-2735 . 484477) (-2736 . 484422) (-2737 . 484367) + (-2738 . 484312) (-2739 . 484162) (-2740 . 483869) (-2741 . 483610) + (-2742 . 483582) (-2743 . 483532) (-2744 . 482940) (-2745 . 482406) + (-2746 . 481957) (-2747 . 481785) (-2748 . 481594) (-2749 . 481305) + (-2750 . 480917) (-2751 . 480041) (-2752 . 479699) (-2753 . 479530) + (-2754 . 479307) (-2755 . 479056) (-2756 . 478706) (-2757 . 477688) + (-2758 . 477373) (-2759 . 477161) (-2760 . 476594) (-2761 . 476078) + (-2762 . 474300) (-2763 . 473828) (-2764 . 473229) (-2765 . 472979) + (-2766 . 472845) (-2767 . 472393) (-2768 . 471904) (-2769 . 471544) + (-2770 . 471261) (-2771 . 471146) (-2772 . 471031) (-2773 . 470816) + (-2774 . 470763) (-2775 . 470710) (-2776 . 470658) (-2777 . 470606) + (-2778 . 470514) (-2779 . 470443) (-2780 . 470369) (-2781 . 470298) + (-2782 . 470245) (-2783 . 470174) (-2784 . 470121) (-2785 . 470068) + (-2786 . 470015) (-2787 . 469962) (-2788 . 469909) (-2789 . 469856) + (-2790 . 469803) (-2791 . 469750) (-2792 . 469697) (-2793 . 469644) + (-2794 . 469591) (-2795 . 469538) (-2796 . 469485) (-2797 . 469432) + (-2798 . 469361) (-2799 . 469290) (-2800 . 469218) (-2801 . 469146) + (-2802 . 469071) (-2803 . 469018) (-2804 . 468965) (-2805 . 468912) + (-2806 . 468859) (-2807 . 468806) (-2808 . 468753) (-2809 . 468700) + (-2810 . 468647) (-2811 . 468594) (-2812 . 468541) (-2813 . 468488) + (-2814 . 468435) (-2815 . 468382) (-2816 . 468329) (-2817 . 468277) + (-2818 . 468225) (-2819 . 468172) (-2820 . 468119) (-2821 . 468028) + (-2822 . 467975) (-2823 . 467947) (-2824 . 467919) (-2825 . 467891) + (-2826 . 467863) (-2827 . 467785) (-2828 . 467725) (-2829 . 467673) + (-2830 . 467621) (-2831 . 467569) (-2832 . 467517) (-2833 . 467465) + (-2834 . 466661) (-2835 . 466584) (-2836 . 466507) (-2837 . 466441) + (-2838 . 466374) (-2839 . 466307) (-2840 . 466250) (-2841 . 466174) + (-2842 . 466106) (-2843 . 466035) (-2844 . 465964) (-2845 . 465898) + (-2846 . 465811) (-2847 . 465739) (-2848 . 465632) (-2849 . 465446) + (-2850 . 465277) (-2851 . 465097) (-2852 . 464506) (-2853 . 464343) + (-2854 . 463765) (-2855 . 463690) (-2856 . 463324) (-2857 . 462645) + (-2858 . 462467) (-2859 . 462395) (-2860 . 462255) (-2861 . 462065) + (-2862 . 461958) (-2863 . 461851) (-2864 . 461735) (-2865 . 461619) + (-2866 . 461503) (-2867 . 461352) (-2868 . 461208) (-2869 . 461134) + (-2870 . 461048) (-2871 . 460974) (-2872 . 460900) (-2873 . 460826) + (-2874 . 460682) (-2875 . 460531) (-2876 . 460356) (-2877 . 460205) + (-2878 . 460054) (-2879 . 459927) (-2880 . 459538) (-2881 . 459252) + (-2882 . 458966) (-2883 . 458555) (-2884 . 458269) (-2885 . 458196) + (-2886 . 458049) (-2887 . 457943) (-2888 . 457869) (-2889 . 457798) + (-2890 . 457727) (-2891 . 457625) (-2892 . 457522) (-2893 . 457425) + (-2894 . 457328) (-2895 . 457168) (-2896 . 457081) (-2897 . 456994) + (-2898 . 456907) (-2899 . 456848) (-2900 . 456789) (-2901 . 456656) + (-2902 . 456597) (-2903 . 456427) (-2904 . 456339) (-2905 . 456242) + (-2906 . 456208) (-2907 . 456177) (-2908 . 456093) (-2909 . 456037) + (-2910 . 455975) (-2911 . 455941) (-2912 . 455907) (-2913 . 455873) + (-2914 . 455839) (-2915 . 455805) (-2916 . 453052) (-2917 . 453018) + (-2918 . 452984) (-2919 . 452950) (-2920 . 452838) (-2921 . 452804) + (-2922 . 452752) (-2923 . 452718) (-2924 . 452621) (-2925 . 452559) + (-2926 . 452468) (-2927 . 452377) (-2928 . 452322) (-2929 . 452270) + (-2930 . 452218) (-2931 . 452166) (-2932 . 452114) (-2933 . 451690) + (-2934 . 451524) (-2935 . 451471) (-2936 . 451402) (-2937 . 451349) + (-2938 . 451193) (-2939 . 450672) (-2940 . 450531) (-2941 . 450497) + (-2942 . 450442) (-2943 . 449731) (-2944 . 449416) (-2945 . 448911) + (-2946 . 448833) (-2947 . 448781) (-2948 . 448729) (-2949 . 448545) + (-2950 . 448493) (-2951 . 448441) (-2952 . 448365) (-2953 . 448303) + (-2954 . 448085) (-2955 . 447830) (-2956 . 447763) (-2957 . 447669) + (-2958 . 447575) (-2959 . 447392) (-2960 . 447310) (-2961 . 447188) + (-2962 . 447066) (-2963 . 446920) (-2964 . 446265) (-2965 . 445558) + (-2966 . 445454) (-2967 . 445353) (-2968 . 445252) (-2969 . 445141) + (-2970 . 444973) (-2971 . 444767) (-2972 . 444674) (-2973 . 444597) + (-2974 . 444541) (-2975 . 444470) (-2976 . 444350) (-2977 . 444249) + (-2978 . 444151) (-2979 . 444071) (-2980 . 443991) (-2981 . 443914) + (-2982 . 443843) (-2983 . 443772) (-2984 . 443701) (-2985 . 443630) + (-2986 . 443559) (-2987 . 443488) (-2988 . 443395) (-2989 . 443200) + (-2990 . 442956) (-2991 . 442786) (-2992 . 442414) (-2993 . 442245) + (-2994 . 442129) (-2995 . 441625) (-2996 . 441243) (-2997 . 440997) + (-2998 . 440568) (-2999 . 440476) (-3000 . 440379) (-3001 . 437089) + (-3002 . 436269) (-3003 . 436156) (-3004 . 436082) (-3005 . 435990) + (-3006 . 435796) (-3007 . 435602) (-3008 . 435531) (-3009 . 435460) + (-3010 . 435379) (-3011 . 435298) (-3012 . 435173) (-3013 . 435039) + (-3014 . 434958) (-3015 . 434884) (-3016 . 434719) (-3017 . 434560) + (-3018 . 434329) (-3019 . 434181) (-3020 . 434077) (-3021 . 433973) + (-3022 . 433888) (-3023 . 433520) (-3024 . 433439) (-3025 . 433352) + (-3026 . 433271) (-3027 . 433025) (-3028 . 432805) (-3029 . 432618) + (-3030 . 432296) (-3031 . 432003) (-3032 . 431710) (-3033 . 431400) + (-3034 . 431083) (-3035 . 430954) (-3036 . 430766) (-3037 . 430293) + (-3038 . 430211) (-3039 . 429996) (-3040 . 429781) (-3041 . 429522) + (-3042 . 429091) (-3043 . 428570) (-3044 . 428440) (-3045 . 428166) + (-3046 . 427987) (-3047 . 427872) (-3048 . 427768) (-3049 . 427713) + (-3050 . 427636) (-3051 . 427566) (-3052 . 427493) (-3053 . 427438) + (-3054 . 427365) (-3055 . 427310) (-3056 . 426955) (-3057 . 426547) + (-3058 . 426394) (-3059 . 426241) (-3060 . 426160) (-3061 . 426007) + (-3062 . 425854) (-3063 . 425719) (-3064 . 425584) (-3065 . 425449) + (-3066 . 425314) (-3067 . 425179) (-3068 . 425044) (-3069 . 424988) + (-3070 . 424835) (-3071 . 424724) (-3072 . 424613) (-3073 . 424545) + (-3074 . 424435) (-3075 . 424332) (-3076 . 420181) (-3077 . 419733) + (-3078 . 419306) (-3079 . 418689) (-3080 . 418088) (-3081 . 417870) + (-3082 . 417692) (-3083 . 417432) (-3084 . 417021) (-3085 . 416727) + (-3086 . 416284) (-3087 . 416106) (-3088 . 415713) (-3089 . 415320) + (-3090 . 415135) (-3091 . 414928) (-3092 . 414707) (-3093 . 414401) + (-3094 . 414202) (-3095 . 413573) (-3096 . 413416) (-3097 . 413025) + (-3098 . 412973) (-3099 . 412924) (-3100 . 412872) (-3101 . 412823) + (-3102 . 412771) (-3103 . 412625) (-3104 . 412573) (-3105 . 412427) + (-3106 . 412375) (-3107 . 412229) (-3108 . 412177) (-3109 . 411802) + (-3110 . 411750) (-3111 . 411701) (-3112 . 411649) (-3113 . 411600) + (-3114 . 411548) (-3115 . 411499) (-3116 . 411447) (-3117 . 411398) + (-3118 . 411346) (-3119 . 411297) (-3120 . 411231) (-3121 . 411113) + (-3122 . 409951) (-3123 . 409534) (-3124 . 409426) (-3125 . 409181) + (-3126 . 409032) (-3127 . 408883) (-3128 . 408716) (-3129 . 406465) + (-3130 . 406188) (-3131 . 406034) (-3132 . 405888) (-3133 . 405742) + (-3134 . 405523) (-3135 . 405391) (-3136 . 405316) (-3137 . 405241) + (-3138 . 405106) (-3139 . 404976) (-3140 . 404846) (-3141 . 404719) + (-3142 . 404592) (-3143 . 404465) (-3144 . 404338) (-3145 . 404235) + (-3146 . 404135) (-3147 . 404041) (-3148 . 403911) (-3149 . 403760) + (-3150 . 403381) (-3151 . 403266) (-3152 . 403023) (-3153 . 402560) + (-3154 . 402247) (-3155 . 401679) (-3156 . 401109) (-3157 . 400097) + (-3158 . 399554) (-3159 . 399241) (-3160 . 398903) (-3161 . 398572) + (-3162 . 398252) (-3163 . 398199) (-3164 . 398072) (-3165 . 397543) + (-3166 . 396386) (-3167 . 396331) (-3168 . 396276) (-3169 . 396200) + (-3170 . 396081) (-3171 . 396006) (-3172 . 395931) (-3173 . 395853) + (-3174 . 395702) (-3175 . 395610) (-3176 . 395540) (-3177 . 395448) + (-3178 . 395378) (-3179 . 395286) (-3180 . 395216) (-3181 . 395124) + (-3182 . 395054) (-3183 . 394999) (-3184 . 394929) (-3185 . 394809) + (-3186 . 394754) (-3187 . 394684) (-3188 . 394650) (-3189 . 394616) + (-3190 . 394519) (-3191 . 394422) (-3192 . 394204) (-3193 . 394054) + (-3194 . 393924) (-3195 . 393794) (-3196 . 393694) (-3197 . 393517) + (-3198 . 393357) (-3199 . 393257) (-3200 . 393080) (-3201 . 392920) + (-3202 . 392761) (-3203 . 392622) (-3204 . 392472) (-3205 . 392342) + (-3206 . 392212) (-3207 . 392065) (-3208 . 391938) (-3209 . 391835) + (-3210 . 391728) (-3211 . 391631) (-3212 . 391466) (-3213 . 391318) + (-3214 . 390889) (-3215 . 390789) (-3216 . 390686) (-3217 . 390598) + (-3218 . 390518) (-3219 . 390368) (-3220 . 390238) (-3221 . 390186) + (-3222 . 390096) (-3223 . 389984) (-3224 . 389671) (-3225 . 389490) + (-3226 . 387879) (-3227 . 387246) (-3228 . 387186) (-3229 . 387068) + (-3230 . 386950) (-3231 . 386806) (-3232 . 386651) (-3233 . 386490) + (-3234 . 386329) (-3235 . 386121) (-3236 . 385932) (-3237 . 385777) + (-3238 . 385619) (-3239 . 385461) (-3240 . 385306) (-3241 . 385166) + (-3242 . 384740) (-3243 . 384612) (-3244 . 384484) (-3245 . 384356) + (-3246 . 384213) (-3247 . 384070) (-3248 . 383928) (-3249 . 383783) + (-3250 . 383030) (-3251 . 382870) (-3252 . 382682) (-3253 . 382525) + (-3254 . 382285) (-3255 . 382038) (-3256 . 381791) (-3257 . 381580) + (-3258 . 381441) (-3259 . 381230) (-3260 . 380940) (-3261 . 380729) + (-3262 . 380590) (-3263 . 380379) (-3264 . 380073) (-3265 . 379928) + (-3266 . 379786) (-3267 . 379562) (-3268 . 379420) (-3269 . 379195) + (-3270 . 378996) (-3271 . 378839) (-3272 . 378509) (-3273 . 378349) + (-3274 . 378189) (-3275 . 378029) (-3276 . 377857) (-3277 . 377685) + (-3278 . 377510) (-3279 . 377158) (-3280 . 376964) (-3281 . 376802) + (-3282 . 376728) (-3283 . 376654) (-3284 . 376580) (-3285 . 376506) + (-3286 . 376432) (-3287 . 376358) (-3288 . 376234) (-3289 . 376060) + (-3290 . 375936) (-3291 . 375850) (-3292 . 375784) (-3293 . 375718) + (-3294 . 375652) (-3295 . 375586) (-3296 . 375520) (-3297 . 375454) + (-3298 . 375388) (-3299 . 375322) (-3300 . 375256) (-3301 . 375190) + (-3302 . 375124) (-3303 . 375058) (-3304 . 374992) (-3305 . 374926) + (-3306 . 374860) (-3307 . 374794) (-3308 . 374728) (-3309 . 374662) + (-3310 . 374596) (-3311 . 374530) (-3312 . 374464) (-3313 . 374398) + (-3314 . 374332) (-3315 . 374266) (-3316 . 374200) (-3317 . 374134) + (-3318 . 373485) (-3319 . 372836) (-3320 . 372708) (-3321 . 372585) + (-3322 . 372462) (-3323 . 372321) (-3324 . 372166) (-3325 . 372022) + (-3326 . 371847) (-3327 . 371209) (-3328 . 371086) (-3329 . 370962) + (-3330 . 370284) (-3331 . 369586) (-3332 . 369485) (-3333 . 369429) + (-3334 . 369373) (-3335 . 369317) (-3336 . 369261) (-3337 . 369202) + (-3338 . 369138) (-3339 . 369030) (-3340 . 368922) (-3341 . 368814) + (-3342 . 368535) (-3343 . 368461) (-3344 . 368235) (-3345 . 368154) + (-3346 . 368076) (-3347 . 367998) (-3348 . 367920) (-3349 . 367841) + (-3350 . 367763) (-3351 . 367670) (-3352 . 367571) (-3353 . 367503) + (-3354 . 367454) (-3355 . 366762) (-3356 . 366113) (-3357 . 365321) + (-3358 . 365240) (-3359 . 365136) (-3360 . 365044) (-3361 . 364952) + (-3362 . 364878) (-3363 . 364804) (-3364 . 364730) (-3365 . 364675) + (-3366 . 364620) (-3367 . 364554) (-3368 . 364488) (-3369 . 364426) + (-3370 . 364039) (-3371 . 363538) (-3372 . 363072) (-3373 . 362818) + (-3374 . 362628) (-3375 . 362285) (-3376 . 361988) (-3377 . 361819) + (-3378 . 361688) (-3379 . 361548) (-3380 . 360464) (-3381 . 360309) + (-3382 . 360140) (-3383 . 358754) (-3384 . 358617) (-3385 . 358472) + (-3386 . 358241) (-3387 . 357971) (-3388 . 357911) (-3389 . 357854) + (-3390 . 357797) (-3391 . 357584) (-3392 . 357444) (-3393 . 357336) + (-3394 . 357218) (-3395 . 357151) (-3396 . 357077) (-3397 . 356962) + (-3398 . 356705) (-3399 . 356603) (-3400 . 356405) (-3401 . 356089) + (-3402 . 355615) (-3403 . 355508) (-3404 . 355400) (-3405 . 355249) + (-3406 . 355107) (-3407 . 354688) (-3408 . 354438) (-3409 . 353761) + (-3410 . 353606) (-3411 . 353491) (-3412 . 353380) (-3413 . 352550) + (-3414 . 352497) (-3415 . 352444) (-3416 . 352248) (-3417 . 350893) + (-3418 . 350442) (-3419 . 349040) (-3420 . 348177) (-3421 . 348127) + (-3422 . 348077) (-3423 . 348027) (-3424 . 347959) (-3425 . 347883) + (-3426 . 347679) (-3427 . 347606) (-3428 . 347530) (-3429 . 347457) + (-3430 . 347339) (-3431 . 347287) (-3432 . 347207) (-3433 . 347127) + (-3434 . 347047) (-3435 . 346995) (-3436 . 346749) (-3437 . 346431) + (-3438 . 346346) (-3439 . 346261) (-3440 . 346199) (-3441 . 345809) + (-3442 . 344934) (-3443 . 344358) (-3444 . 343120) (-3445 . 342310) + (-3446 . 342058) (-3447 . 341806) (-3448 . 341472) (-3449 . 341226) + (-3450 . 340980) (-3451 . 340734) (-3452 . 340488) (-3453 . 340242) + (-3454 . 339996) (-3455 . 339749) (-3456 . 339502) (-3457 . 339255) + (-3458 . 339008) (-3459 . 338578) (-3460 . 338460) (-3461 . 337616) + (-3462 . 337584) (-3463 . 337237) (-3464 . 337010) (-3465 . 336910) + (-3466 . 336810) (-3467 . 335040) (-3468 . 334926) (-3469 . 333875) + (-3470 . 333782) (-3471 . 332791) (-3472 . 332456) (-3473 . 332121) + (-3474 . 332016) (-3475 . 331929) (-3476 . 331900) (-3477 . 331843) + (-3478 . 331763) (-3479 . 331691) (-3480 . 331616) (-3481 . 331541) + (-3482 . 331509) (-3483 . 331477) (-3484 . 331445) (-3485 . 331413) + (-3486 . 331381) (-3487 . 331349) (-3488 . 331317) (-3489 . 331285) + (-3490 . 331256) (-3491 . 331143) (-3492 . 331030) (-3493 . 330917) + (-3494 . 330804) (-3495 . 329715) (-3496 . 329593) (-3497 . 329456) + (-3498 . 329322) (-3499 . 329188) (-3500 . 328891) (-3501 . 328594) + (-3502 . 328246) (-3503 . 328016) (-3504 . 327786) (-3505 . 327673) + (-3506 . 327560) (-3507 . 322279) (-3508 . 317906) (-3509 . 317594) + (-3510 . 317439) (-3511 . 316911) (-3512 . 316578) (-3513 . 316381) + (-3514 . 316184) (-3515 . 315987) (-3516 . 315790) (-3517 . 315674) + (-3518 . 315548) (-3519 . 315432) (-3520 . 315316) (-3521 . 315221) + (-3522 . 315126) (-3523 . 315013) (-3524 . 314807) (-3525 . 313650) + (-3526 . 313555) (-3527 . 313439) (-3528 . 313344) (-3529 . 313095) + (-3530 . 312982) (-3531 . 312764) (-3532 . 312645) (-3533 . 312345) + (-3534 . 311575) (-3535 . 310998) (-3536 . 310504) (-3537 . 310256) + (-3538 . 310008) (-3539 . 309709) (-3540 . 309095) (-3541 . 308647) + (-3542 . 308490) (-3543 . 308344) (-3544 . 308018) (-3545 . 307860) + (-3546 . 307717) (-3547 . 307574) (-3548 . 307431) (-3549 . 307150) + (-3550 . 306928) (-3551 . 306401) (-3552 . 306186) (-3553 . 305971) + (-3554 . 305583) (-3555 . 305403) (-3556 . 305191) (-3557 . 304881) + (-3558 . 304680) (-3559 . 304498) (-3560 . 303344) (-3561 . 302955) + (-3562 . 302745) (-3563 . 302532) (-3564 . 301689) (-3565 . 301660) + (-3566 . 301591) (-3567 . 301520) (-3568 . 301353) (-3569 . 301324) + (-3570 . 301295) (-3571 . 301239) (-3572 . 301078) (-3573 . 301018) + (-3574 . 300322) (-3575 . 299144) (-3576 . 299083) (-3577 . 298859) + (-3578 . 298787) (-3579 . 298730) (-3580 . 298673) (-3581 . 298616) + (-3582 . 298559) (-3583 . 298484) (-3584 . 297893) (-3585 . 297534) + (-3586 . 297459) (-3587 . 297399) (-3588 . 297281) (-3589 . 296330) + (-3590 . 296203) (-3591 . 295990) (-3592 . 295915) (-3593 . 295861) + (-3594 . 295742) (-3595 . 295633) (-3596 . 295320) (-3597 . 295212) + (-3598 . 295109) (-3599 . 294948) (-3600 . 294847) (-3601 . 294749) + (-3602 . 294611) (-3603 . 294473) (-3604 . 294335) (-3605 . 294073) + (-3606 . 293863) (-3607 . 293725) (-3608 . 293436) (-3609 . 293283) + (-3610 . 293004) (-3611 . 292782) (-3612 . 292629) (-3613 . 292476) + (-3614 . 292323) (-3615 . 292170) (-3616 . 292017) (-3617 . 291861) + (-3618 . 291742) (-3619 . 291351) (-3620 . 291016) (-3621 . 290671) + (-3622 . 290320) (-3623 . 289975) (-3624 . 289630) (-3625 . 289243) + (-3626 . 288856) (-3627 . 288469) (-3628 . 288098) (-3629 . 287368) + (-3630 . 287017) (-3631 . 286563) (-3632 . 286134) (-3633 . 285517) + (-3634 . 284916) (-3635 . 284524) (-3636 . 284188) (-3637 . 283796) + (-3638 . 283460) (-3639 . 283238) (-3640 . 282711) (-3641 . 282496) + (-3642 . 282281) (-3643 . 282065) (-3644 . 281885) (-3645 . 281669) + (-3646 . 281489) (-3647 . 281101) (-3648 . 280921) (-3649 . 280709) + (-3650 . 280619) (-3651 . 280529) (-3652 . 280438) (-3653 . 280351) + (-3654 . 280261) (-3655 . 280180) (-3656 . 279991) (-3657 . 279935) + (-3658 . 279854) (-3659 . 279773) (-3660 . 279692) (-3661 . 279557) + (-3662 . 279422) (-3663 . 279298) (-3664 . 279177) (-3665 . 279059) + (-3666 . 278923) (-3667 . 278790) (-3668 . 278671) (-3669 . 278412) + (-3670 . 278229) (-3671 . 278157) (-3672 . 278065) (-3673 . 277973) + (-3674 . 277887) (-3675 . 277789) (-3676 . 277672) (-3677 . 277393) + (-3678 . 277114) (-3679 . 277054) (-3680 . 276988) (-3681 . 276922) + (-3682 . 276781) (-3683 . 276724) (-3684 . 276667) (-3685 . 276607) + (-3686 . 276210) (-3687 . 275686) (-3688 . 275408) (-3689 . 274987) + (-3690 . 274874) (-3691 . 274432) (-3692 . 274200) (-3693 . 273997) + (-3694 . 273815) (-3695 . 273685) (-3696 . 273479) (-3697 . 273272) + (-3698 . 273081) (-3699 . 272516) (-3700 . 272260) (-3701 . 271969) + (-3702 . 271675) (-3703 . 271378) (-3704 . 271078) (-3705 . 270948) + (-3706 . 270815) (-3707 . 270679) (-3708 . 270540) (-3709 . 269261) + (-3710 . 268936) (-3711 . 268555) (-3712 . 268442) (-3713 . 268188) + (-3714 . 267892) (-3715 . 267596) (-3716 . 267335) (-3717 . 267160) + (-3718 . 267081) (-3719 . 266993) (-3720 . 266892) (-3721 . 266797) + (-3722 . 266715) (-3723 . 266643) (-3724 . 265842) (-3725 . 265770) + (-3726 . 265438) (-3727 . 265366) (-3728 . 265034) (-3729 . 264962) + (-3730 . 264513) (-3731 . 264441) (-3732 . 264336) (-3733 . 264261) + (-3734 . 264186) (-3735 . 264114) (-3736 . 263771) (-3737 . 263641) + (-3738 . 263564) (-3739 . 263015) (-3740 . 262872) (-3741 . 262729) + (-3742 . 262231) (-3743 . 261885) (-3744 . 261657) (-3745 . 261387) + (-3746 . 261007) (-3747 . 260767) (-3748 . 260527) (-3749 . 260287) + (-3750 . 260047) (-3751 . 259819) (-3752 . 259591) (-3753 . 259439) + (-3754 . 259255) (-3755 . 259150) (-3756 . 259027) (-3757 . 258919) + (-3758 . 258811) (-3759 . 258484) (-3760 . 258218) (-3761 . 257907) + (-3762 . 257602) (-3763 . 257292) (-3764 . 256557) (-3765 . 255962) + (-3766 . 255785) (-3767 . 255640) (-3768 . 255485) (-3769 . 255362) + (-3770 . 255257) (-3771 . 255142) (-3772 . 255043) (-3773 . 254559) + (-3774 . 254449) (-3775 . 254339) (-3776 . 254229) (-3777 . 253125) + (-3778 . 252610) (-3779 . 252543) (-3780 . 252469) (-3781 . 251596) + (-3782 . 251522) (-3783 . 251466) (-3784 . 251410) (-3785 . 251378) + (-3786 . 251292) (-3787 . 251260) (-3788 . 251174) (-3789 . 250750) + (-3790 . 250326) (-3791 . 249769) (-3792 . 248657) (-3793 . 246933) + (-3794 . 245371) (-3795 . 244575) (-3796 . 244071) (-3797 . 243579) + (-3798 . 243171) (-3799 . 242511) (-3800 . 242436) (-3801 . 242364) + (-3802 . 242292) (-3803 . 242250) (-3804 . 242128) (-3805 . 241688) + (-3806 . 241248) (-3807 . 240808) (-3808 . 240286) (-3809 . 240121) + (-3810 . 239956) (-3811 . 239645) (-3812 . 239558) (-3813 . 239468) + (-3814 . 239110) (-3815 . 238993) (-3816 . 238912) (-3817 . 238753) + (-3818 . 238639) (-3819 . 238564) (-3820 . 237712) (-3821 . 236526) + (-3822 . 236426) (-3823 . 236326) (-3824 . 235985) (-3825 . 235906) + (-3826 . 235830) (-3827 . 235723) (-3828 . 235565) (-3829 . 235457) + (-3830 . 235321) (-3831 . 235185) (-3832 . 235062) (-3833 . 234966) + (-3834 . 234817) (-3835 . 234721) (-3836 . 234566) (-3837 . 234411) + (-3838 . 233731) (-3839 . 233051) (-3840 . 232308) (-3841 . 231740) + (-3842 . 231172) (-3843 . 230604) (-3844 . 229923) (-3845 . 229242) + (-3846 . 228561) (-3847 . 227992) (-3848 . 227423) (-3849 . 226854) + (-3850 . 226286) (-3851 . 225718) (-3852 . 225150) (-3853 . 224582) + (-3854 . 224014) (-3855 . 223446) (-3856 . 223342) (-3857 . 222753) + (-3858 . 222647) (-3859 . 222571) (-3860 . 222428) (-3861 . 222335) + (-3862 . 222242) (-3863 . 222149) (-3864 . 222050) (-3865 . 221944) + (-3866 . 221820) (-3867 . 221696) (-3868 . 221329) (-3869 . 221206) + (-3870 . 221104) (-3871 . 220740) (-3872 . 220206) (-3873 . 220130) + (-3874 . 220054) (-3875 . 219961) (-3876 . 219779) (-3877 . 219683) + (-3878 . 219607) (-3879 . 219514) (-3880 . 219421) (-3881 . 219259) + (-3882 . 218698) (-3883 . 218137) (-3884 . 215409) (-3885 . 215236) + (-3886 . 213772) (-3887 . 213210) (-3888 . 213011) (-12 . 212839) + (-3890 . 212667) (-3891 . 212495) (-3892 . 212323) (-3893 . 212151) + (-3894 . 211979) (-3895 . 211807) (-3896 . 211589) (-3897 . 211474) + (-3898 . 211204) (-3899 . 211141) (-3900 . 211078) (-3901 . 211015) + (-3902 . 210737) (-3903 . 210470) (-3904 . 210417) (-3905 . 209706) + (-3906 . 209655) (-3907 . 209462) (-3908 . 209389) (-3909 . 209309) + (-3910 . 209196) (-3911 . 209006) (-3912 . 208642) (-3913 . 208370) + (-3914 . 208319) (-3915 . 208268) (-3916 . 208198) (-3917 . 208079) + (-3918 . 208050) (-3919 . 207948) (-3920 . 207826) (-3921 . 207772) + (-3922 . 207595) (-3923 . 207534) (-3924 . 207353) (-3925 . 207292) + (-3926 . 207220) (-3927 . 206745) (-3928 . 206370) (-3929 . 203086) + (-3930 . 203033) (-3931 . 202905) (-3932 . 202753) (-3933 . 202700) + (-3934 . 202558) (-3935 . 200700) (-3936 . 191345) (-3937 . 191194) + (-3938 . 191143) (-3939 . 191092) (-3940 . 191041) (-3941 . 190971) + (-3942 . 190773) (-3943 . 190630) (-3944 . 190516) (-3945 . 190395) + (-3946 . 190277) (-3947 . 190165) (-3948 . 190047) (-3949 . 189942) + (-3950 . 189861) (-3951 . 189757) (-3952 . 188820) (-3953 . 188600) + (-3954 . 188363) (-3955 . 188281) (-3956 . 187934) (-3957 . 187860) + (-3958 . 187765) (-3959 . 187691) (-3960 . 187489) (-3961 . 187398) + (-3962 . 187282) (-3963 . 187169) (-3964 . 187078) (-3965 . 186987) + (-3966 . 186897) (-3967 . 186807) (-3968 . 186717) (-3969 . 186629) + (-3970 . 184267) (-3971 . 184199) (-3972 . 184145) (-3973 . 184020) + (-3974 . 183956) (-3975 . 183831) (-3976 . 183712) (-3977 . 182944) + (-3978 . 182883) (-3979 . 182764) (-3980 . 182012) (-3981 . 181959) + (-3982 . 181770) (-3983 . 181706) (-3984 . 181652) (-3985 . 181543) + (-3986 . 180220) (-3987 . 180138) (-3988 . 180048) (-3989 . 179990) + (-3990 . 179725) (-3991 . 179640) (-3992 . 179565) (-3993 . 179480) + (-3994 . 179423) (-3995 . 179207) (-3996 . 179066) (-3997 . 178331) + (-3998 . 177761) (-3999 . 177191) (-4000 . 176621) (-4001 . 175886) + (-4002 . 175204) (-4003 . 174612) (-4004 . 174020) (-4005 . 173742) + (-4006 . 173287) (-4007 . 172938) (-4008 . 172580) (-4009 . 172256) + (-4010 . 172123) (-4011 . 171990) (-4012 . 171658) (-4013 . 171549) + (-4014 . 171440) (-4015 . 171331) (-4016 . 171222) (-4017 . 171113) + (-4018 . 171004) (-4019 . 170895) (-4020 . 170786) (-4021 . 170677) + (-4022 . 170568) (-4023 . 170459) (-4024 . 170350) (-4025 . 170241) + (-4026 . 170132) (-4027 . 170023) (-4028 . 169914) (-4029 . 169805) + (-4030 . 169696) (-4031 . 169587) (-4032 . 169478) (-4033 . 169369) + (-4034 . 169260) (-4035 . 169151) (-4036 . 169042) (-4037 . 168933) + (-4038 . 168735) (-4039 . 168420) (-4040 . 166849) (-4041 . 166694) + (-4042 . 166556) (-4043 . 166413) (-4044 . 166210) (-4045 . 164255) + (-4046 . 164127) (-4047 . 164002) (-4048 . 163874) (-4049 . 163650) + (-4050 . 163426) (-4051 . 163298) (-4052 . 163095) (-4053 . 162916) + (-4054 . 162389) (-4055 . 161862) (-4056 . 161581) (-4057 . 161163) + (-4058 . 160636) (-4059 . 160451) (-4060 . 160308) (-4061 . 159808) + (-4062 . 159166) (-4063 . 159110) (-4064 . 159016) (-4065 . 158895) + (-4066 . 158824) (-4067 . 158750) (-4068 . 158519) (-4069 . 157894) + (-4070 . 157462) (-4071 . 157380) (-4072 . 157238) (-4073 . 156760) + (-4074 . 156638) (-4075 . 156516) (-4076 . 156376) (-4077 . 156189) + (-4078 . 156073) (-4079 . 155812) (-4080 . 155743) (-4081 . 155544) + (-4082 . 155385) (-4083 . 155230) (-4084 . 155123) (-4085 . 155072) + (-4086 . 154688) (-4087 . 154447) (-4088 . 154356) (-4089 . 152541) + (-4090 . 151952) (-4091 . 151873) (-4092 . 146405) (-4093 . 145615) + (-4094 . 145236) (-4095 . 145164) (-4096 . 144975) (-4097 . 144800) + (-4098 . 144310) (-4099 . 143888) (-4100 . 143448) (-4101 . 142584) + (-4102 . 142460) (-4103 . 142333) (-4104 . 142224) (-4105 . 142072) + (-4106 . 141958) (-4107 . 141819) (-4108 . 141737) (-4109 . 141655) + (-4110 . 141547) (-4111 . 141127) (-4112 . 140703) (-4113 . 140628) + (-4114 . 140362) (-4115 . 140095) (-4116 . 139712) (-4117 . 139011) + (-4118 . 138951) (-4119 . 138876) (-4120 . 138801) (-4121 . 138678) + (-4122 . 138426) (-4123 . 138339) (-4124 . 138263) (-4125 . 138187) + (-4126 . 138091) (-4127 . 134127) (-4128 . 132945) (-4129 . 132282) + (-4130 . 132095) (-4131 . 129873) (-4132 . 129547) (-4133 . 129166) + (-4134 . 128722) (-4135 . 128487) (-4136 . 128239) (-4137 . 128148) + (-4138 . 126652) (-4139 . 126573) (-4140 . 126467) (-4141 . 124931) + (-4142 . 124518) (-4143 . 124101) (-4144 . 123999) (-4145 . 123917) + (-4146 . 123759) (-4147 . 122365) (-4148 . 122283) (-4149 . 122204) + (-4150 . 121849) (-4151 . 121792) (-4152 . 121720) (-4153 . 121663) + (-4154 . 121606) (-4155 . 121476) (-4156 . 121272) (-4157 . 120903) + (-4158 . 120481) (-4159 . 115316) (-4160 . 114713) (-4161 . 114085) + (-4162 . 113870) (-4163 . 113655) (-4164 . 113487) (-4165 . 113272) + (-4166 . 113104) (-4167 . 112936) (-4168 . 112768) (-4169 . 112600) + (-4170 . 110457) (-4171 . 110185) (-4172 . 103248) (** . 100185) + (-4174 . 99765) (-4175 . 99517) (-4176 . 99460) (-4177 . 98962) + (-4178 . 96057) (-4179 . 95907) (-4180 . 95743) (-4181 . 95579) + (-4182 . 95483) (-4183 . 95365) (-4184 . 95241) (-4185 . 95098) + (-4186 . 94927) (-4187 . 94800) (-4188 . 94655) (-4189 . 94502) + (-4190 . 94342) (-4191 . 93856) (-4192 . 93766) (-4193 . 93098) + (-4194 . 92904) (-4195 . 92808) (-4196 . 92498) (-4197 . 91322) + (-4198 . 91115) (-4199 . 89938) (-4200 . 89863) (-4201 . 88682) + (-4202 . 85077) (-4203 . 84713) (-4204 . 84436) (-4205 . 84344) + (-4206 . 84251) (-4207 . 83974) (-4208 . 83881) (-4209 . 83788) + (-4210 . 83695) (-4211 . 83311) (-4212 . 83240) (-4213 . 83148) + (-4214 . 82990) (-4215 . 82636) (-4216 . 82478) (-4217 . 82370) + (-4218 . 82341) (-4219 . 82274) (-4220 . 82120) (-4221 . 81961) + (-4222 . 81567) (-4223 . 81492) (-4224 . 81386) (-4225 . 81314) + (-4226 . 81236) (-4227 . 81163) (-4228 . 81090) (-4229 . 81017) + (-4230 . 80945) (-4231 . 80873) (-4232 . 80800) (-4233 . 80559) + (-4234 . 80219) (-4235 . 80071) (-4236 . 79998) (-4237 . 79925) + (-4238 . 79852) (-4239 . 79598) (-4240 . 79454) (-4241 . 78118) + (-4242 . 77924) (-4243 . 77653) (-4244 . 77505) (-4245 . 77357) + (-4246 . 77117) (-4247 . 76922) (-4248 . 76652) (-4249 . 76456) + (-4250 . 76427) (-4251 . 76326) (-4252 . 76225) (-4253 . 76124) + (-4254 . 76023) (-4255 . 75922) (-4256 . 75821) (-4257 . 75720) + (-4258 . 75619) (-4259 . 75518) (-4260 . 75417) (-4261 . 75302) + (-4262 . 75187) (-4263 . 75136) (-4264 . 75019) (-4265 . 74961) + (-4266 . 74860) (-4267 . 74759) (-4268 . 74658) (-4269 . 74542) + (-4270 . 74513) (-4271 . 73781) (-4272 . 73656) (-4273 . 73531) + (-4274 . 73391) (-4275 . 73273) (-4276 . 73148) (-4277 . 72993) + (-4278 . 72010) (-4279 . 71151) (-4280 . 71097) (-4281 . 71043) + (-4282 . 70835) (-4283 . 70461) (-4284 . 70047) (-4285 . 69686) + (-4286 . 69325) (-4287 . 69172) (-4288 . 68870) (-4289 . 68714) + (-4290 . 68388) (-4291 . 68317) (-4292 . 68246) (-4293 . 68034) + (-4294 . 67227) (-4295 . 67021) (-4296 . 66647) (-4297 . 66127) + (-4298 . 65859) (-4299 . 65309) (-4300 . 64759) (-4301 . 64633) + (-4302 . 63404) (-4303 . 62198) (-4304 . 61596) (-4305 . 61378) + (-4306 . 61192) (-4307 . 59092) (-4308 . 56917) (-4309 . 56769) + (-4310 . 56587) (-4311 . 56179) (-4312 . 55878) (-4313 . 55527) + (-4314 . 55359) (-4315 . 55191) (-4316 . 54877) (-4317 . 31684) + (-4318 . 17723) (-4319 . 16603) (* . 12107) (-4321 . 11851) (-4322 . 11665) + (-4323 . 10660) (-4324 . 10391) (-4325 . 9759) (-4326 . 8482) (-4327 . 7229) + (-4328 . 6353) (-4329 . 5088) (-4330 . 382) (-4331 . 280) (-4332 . 160) + (-4333 . 30)) \ No newline at end of file -- cgit v1.2.3